
Pulsations:

Stars:

Pulsations:

Adipls

MESA

Support:

Nuclear:

WeakLib

Cyberhub:

NuGrid

Nuclear:

StarLib
Nuclear:

AZURE

3D hydro:

Athena

3D hydro:

3D hydro:

FLASH

Dedalus

MAESTRO

3D hydro:

PPMStar

3D hydro:

Phantom

3D hydro:

Opacity:

Opacity:

ASTROBEAR

OP

OPLIB

3D hydro:

Changa

3D hydro:

ENZO

GAMMA

PyMESA
HYPATIA

VMESA

MESA-
Docker

Support:

GCE:

Ports:

SYGMA
Yields:

Stars:

Stars: OMEGA

GCE:

Support:

JINABase

3D hydro:

3D hydro:

Isochrones:

GYRE

N-Body:
Amuse

Spectra:

Spectra:Chemistry: Chemistry:

CLOUDY

CMFGENGrackle KROME

StarCrash

Education:

MESAWeb Support:

MESA-
Test

Stars:

Dstar

Nuclear:

JINA
Reaclib

Radiation:

STELLA

Stellar
Pulsations:

RSP
MI T

LIGO Hubble NuSTARLSST LCOGTGaia SDSS JWST TESS

Laboratory Astrophysics

1D 3D
MESA2HYDRO

1DMESA2HYDRO3D

The User’s Guide

Meridith Joyce1,2 & Lianne Lairmore3

1Research School of Astronomy & Astrophysics, Australian National University, Canberra, Australia
2Department of Physics & Astronomy, Dartmouth College, New Hampshire, USA
3Robotics Engineering Department, KeyMe, New York, NY, USA

1

Contents

1 Declaration of Use 3

2 Introduction 3

3 Algorithm 3

4 Input 6
4.1 Configuration Files . 6
4.2 Default Parameter Values . 7
4.3 Parameter Description and Options . 7
4.4 Command Line Arguments . 7
4.5 Input MESA/SSEC Data Format . 8

5 Output 9
5.1 NR Files . 9
5.2 IC Files . 10

6 Prerequisites 11

7 Installation 13
7.1 Via GitHub–recommended . 13
7.2 Via pip . 13

8 Setup 14

9 Running a Test Case 15
9.1 Basic Operation . 15
9.2 Using run conversion.py . 16

10 Components 16
10.1 MESA2HYDRO/DOCUMENTATION . 17
10.2 MESA2HYDRO/lib . 17
10.3 MESA2HYDRO/work . 17

11 External MESA data 18
11.1 MESA2HYDRO/data . 18
11.2 MESA2HYDRO/out . 19

12 Test Suite 19

13 Current Limitations and Known Issues 20

14 How to Contribute 20
14.1 Authors’ Statement . 20

2

1 Declaration of Use

If you use this package or any of its components, please cite the paper:

@article{MESA2HYDRO,

doi = {10.3847/1538-4357/ab3405},

url = {https://doi.org/10.3847%2F1538-4357%2Fab3405},

year = 2019,

month = {sep},

publisher = {American Astronomical Society},

volume = {882},

number = {1},

pages = {63},

author = {M. Joyce and L. Lairmore and D. J. Price and S. Mohamed and T. Reichardt},

title = {Density Conversion between 1D and 3D Stellar Models with 1DMESA2HYDRO3D},

journal = {The Astrophysical Journal}

}

2 Introduction

The 1DMESA2HYDRO3D package can be used to render a one-dimensional (1-D) stellar density
profile as a three-dimensional (3-D) particle distribution representing some or all of a model star.
Using MESA and our Python interface, the user can create custom stellar models and convert
those directly to hydrodynamical initial conditions (ICs). In this guide, we provide instruction on
installing and operating the software and the necessary details required to reproduce the test cases
laid out in Joyce et al. (2019).

3 Algorithm

The mapping occurs by spatially parameterizing a 1-D density profile generated by a MESA, or
other stellar structure and evolution code (SSEC), as a set of N,R coordinates. The profile must
be given in the form of discrete ρ(r), r data (density as a function of radius). N,R coordinates,
named for “number” and“radius,” describe the count and relative locations of particles representing
some shellular cross section of a star. The 3-D coordinates for each particle are imparted using the
HEALPix spherical tessellation algorithm (described below).
The algorithm for computing a set of shell radii proceeds as follows:

• A discrete density profile r, ρ(r) corresponding to some percentage of the mass or radial distri-
bution (as specified by the user) is extracted from a smooth MESA profile or similarly formatted
file. The region representing the core mass is separated from the region to be rendered as SPH
particles.

• At the base of the region to be translated, we search for a solution to the equality

mshell =

∫ ru

rl

4πr2ρ(r) dr = (12N2)mp, (1)

by shifting the upper bound on the mass shell integral, ru,0, surface-ward from its local position
until the integrated mass and mass from the summation of HEALPix particles are equal to within
some user-defined tolerance, δTOL.
In equation (1), mp is the mass per particle and N is the HEALPix integer, both of which are set
by the user. The choice of mp and δTOL have the largest effect on the computation time: higher

3

Obtain smooth
1D ρ(r) profileMESA

Integrate to
obtain N , R
coordinates

Generate shell
distributions

Print 3D
(x, y, z) arrays
to SPH IC file

Decrease
tolerance

Good
recovery?

Phantom

HEALPix

I/O

HDF5no

yes

4

values of mp translate to less frequent solutions and hence a lower resolution profile and shorter
computation times, whereas lower values of δTOL correspond to increased precision on the location
of ru and thus longer computation times. The default tolerance is δTOL = 0.01.

• When one instance of equality (1) is satisfied, the coordinates N and rmid = (ru + rl)/2 are
recorded in a standard text file with the prefix “NR.” For other physical quantities, such as internal
energy E or temperature log T , 1DMESA2HYDRO3D searches the MESA data directly for the r
values bordering rmid and linearly interpolates between them to produce approximate values for
E(rmid), log T (rmid), etc., as desired.
Following the computation of one such ru, the subsequent lower bound rl,1 is set to ru,0, and the
process repeats until rl,1, ru,1 again satisfy equation (1).

• The calculation of placement radii rmid continues until 1DMESA2HYDRO3D has subdivided the
profile into k regions of variable size (ru − rl)j , where j = 1, ..., k. Each region j is then uniquely
characterized by its N,R coordinate pair. The generation of an NR file can take anywhere from
several minutes to several hours depending on the choice of mp, δTOL, and the penetration depth.
The completed NR file is then passed to HEALPix via healpy.

• For each shell k, HEALPix distributes np,k particles across the surface of a sphere with radius
Rk = rmid,k using the equal cell method described in Górski et al. (2005).

• Having obtained 12N2 sets of (x, y, z) coordinates for the associated particles, the shells are
stacked concentrically to form a 3-dimensional, hollowed sphere by normalizing each HEALPix
shell by its placement radius relative to the total stellar radius.

• Each shell is arbitrarily rotated with respect to its neighbors in order to avoid ordered particle
alignments. The rotated coordinates (x′, y′, z′)k are computed via the multiplication of (x, y, z)k
by the unit matricesx′y′

z′

 =

1 0 0
0 cos θ −sin θ
0 sin θ cos θ

 cosφ 0 sinφ
0 1 0

−sinφ 0 cosφ

cosψ −sinψ 0
sinψ cosψ 0

0 0 1

xy
z


with θ, φ and ψ pseudo-randomly generated over the interval [0, 2π]. The pseudo-random num-
ber generator used is Python’s random.random, a wrapper for the Mersenne Twister algorithm
(Matsumoto & Nishimura, 1998), which uses the current timestamp as a seed. New values of θ, φ
and ψ are computed for every k but not for every particle; otherwise, the distribution provided by
HEALPix would not be preserved.

• The final set of k stacked, rotated, concentric sets of (x, y, z) coordinates and the MESA at-
tributes assigned to them particle-by-particle are output to a file with the prefix “IC.” These arrays
can be passed to subroutines that organize the data into file structures compatible with various
hydrodynamics codes directly. Currently, 1DMESA2HYDRO3D supports output in the GADGET-2
unstructured binary and hdf5 formats, the Phantom binary format, and a simple ASCII text file.
The user may control the precision with which the numerical data are written to the IC file, as well as
the format of that file, using flags in the configuration file. For example, filetype=phantom_binary
will produce a binary file in the Phantom format.

• 1DMESA2HYDRO3D can reload the 3-D data it has generated directly and reduce it to a 1-D
r, ρ(r) curve using binning parameters specified by the user.

The integral in equation (1) is solved using a fourth-order Runge–Kutta scheme with adaptive step
size refinement (Runge, 1895). This method was found to be more well-suited to our problem than,
for example, Python’s scipy.integrate function, due to the large variation in radial width that can
correspond to a fixed shell mass. One can provide an initial guess for the integration step size in
the configuration file, though this will be adjusted automatically as necessary depending on the

5

local shape of the density profile and on the particle mass and solution tolerance provided by the
user. An inappropriate choice in step size may prolong the first few shell calculations, but it will
not have a large impact on the computation time. Changes in the solution tolerance, however, scale
linearly with computation time.
The 1DMESA2HYDRO3D workflow is subdivided into two main procedures: the first translates a
1-D density profile to an NR file by calculating the shell placement radii, and the second translates
an NR file to an IC file using the radial spacings and the HEALPix tessellation. As the former
conversion takes much longer than the latter, the subroutines are written to be executable in
isolation. Within these subroutines, many other components of the workflow can be isolated by
manipulating the appropriate flags in a configuration file.

4 Input

1DMESA2HYDRO3D reads input data and run time parameters from text files organized into
keyword, value pairs. These are called “configuration files” and use a “.cfg” extension. The
format of a configuration file follows the convention of a Fortran namelist, as is commonly used in
other stellar modeling packages. The user can also specify configurable values through the command
line directly.

4.1 Configuration Files

In a .cfg file, keywords are on the left side of an equals sign and the desired values are on the right.
Each name, value pair must be on its own line. Boolean values must be true or false, but the case
does not matter (TRUE/FALSE, True/False, true/false all are legal values).
At execution,the –config-file flag is used to tell run_conversion.py the name and location of the
configuration file. The complete path to the configuration file from the current directory is needed.
To issue a run with arguments passed via configuration file (e.g. mainsequence.cfg), the command
line should read

./run_conversion.py mainsequence.cfg

or

python run_conversion.py mainsequence.cfg

The contents of a configuration file should look similar to this:

This is a sample for a config file for run_conversion.py

MESA_file = /home/mjoyce/MESA2HYDRO/data/sample_MESA_output/profile_ms.data

check_MESA_profile = True

make_NR_file = True # Have M2H make a new NR file

make_IC_file = True # Have M2H make a new IC file

new_NR_filename= out/NR_files/NR_ms_test.dat

new_IC_filename= work/IC_ms_test

loaded_NR_filename = out/NR_files/NR.ms.dt0.01.R0.00.mp1m5.dat

loaded_IC_filename= work/IC_ms.dt0.01.R0.00.mp1m5

IC_format_type = phantom_binary # data format for output IC (recommended)

masscut = 0.999 # corresponds to 5% depth cut by mass

r_depth = 0.96 # depth cut by radius...always overrides depth by mass

N = 8 # HEALPix integer

mp = 1e-7 # solar mass units

stepsize = 1.0e8 # initial guess for step size

at start of each shell integral

TOL=0.01 # solution tolerance

6

Configuration (*.cfg) files understand Python comments (#) and revert to default values if the
user-given value is not understood.

4.2 Default Parameter Values

The default parameter values can be found in the SCRIPT_CONFIGS dictionary in run conversion.py.
New parameters and default values can also be added there.

SCRIPT_CONFIGS = {

’check_MESA_profile’: True,

’MESA_file’: ’data/sample_MESA_output/profile_mainsequence_logE.data’,

’make_NR_file’: False,

’loaded_NR_filename’: ’work/NR_files/saveNR_ms.dat’,

’new_NR_filename’: ’latest_NR.dat’,

’make_IC_file’: False,

’loaded_IC_filename’: ’ms_logE’,

’new_IC_filename’: ’latest_IC’,

’IC_format_type’: ’phantom_binary’,

’masscut’: 0.95,

’r_depth’: 0.5,

’N’: 8,

’mp’: 1e-7,

’mp_cgs’: 1.988e26,

’stepsize’: 2.45e6,

’which_dtype’:’f’,

’TOL’:0.01}

There are a few cases where parameter specifications may conflict. Given competing values for
particle mass mp, 1DMESA2HYDRO3D will default to solar mass units. Given competing values
for the radial/mass depth, masscut and r_depth, 1DMESA2HYDRO3D will default to the “mass
contained” within r_depth. Given conflicting instructions to make a new file or use an old one,
1DMESA2HYDRO3D will load the existing NR (IC) file unless make_NR_file (make_IC_file) is
set to True. If no value is provided for some parameter in the configuration file, the value listed
here will be assumed.

4.3 Parameter Description and Options

Table 4.3 gives the configuration file parameters alongside their allowed values, Python data type,
and description of function.

4.4 Command Line Arguments

The user may also set configuration values via command line arguments. The help flag

./run_conversion.py --help

will list all command line configurable options. Boolean options are set by specifying a flag alone,
while all other options are specified with a flag followed by the desired value:

./run_conversion.py --check-MESA --N 16 --r_depth 0.80 --make-IC-file

This example sets check_MESA and make_IC_file to True, sets N to 16, and sets r_depth to 0.80.
The order of the flags does not matter as long as the intended value immediately follows the flag.
Currently, the configuration file flag and the configuration setting flags cannot be used together.
Any value not set in either place will assume a default value. A complete list of configurable values
can be found with the –help flag. The –defaults flag will print the internal defaults and exit.

7

Table 1: Configuration File Parameters
Name Options Data Type Description

check_MESA_profile True/False boolean load a plot of the input profile before calculation
MESA_file file name string name of the MESA profile to convert
make_NR_file True/False Boolean make new or use old NR file (default: old)
loaded_NR_filename True/False Boolean name of existing NR file to be read
new_NR_filename True/False Boolean name of new NR file to be generated
make_IC_file True/False Boolean make new or use old IC file (default: old)
loaded_IC_filename file name Boolean name of existing IC file to be read
new_IC_filename file name Boolean name of new IC file to be generated
IC_format_type ’phantom binary’ flag Phantom structured binary

’binary’ flag GADGET-2/GIZMO unstructured binary format 1
’hdf5’ flag GADGET-2 hdf5 binary format
’text’ flag ascii text file; default

masscut number float depth of penetration from surface by mass, 0 to 1
r_depth number flag depth of penetration from surface by radius, 0 to 1
N number integer HEALPix integer, N ∈ {2x}
mp number float mass per particle, M� (overrides cgs)
mp_cgs number float mass per particle, cgs
stepsize number float initial guess for Runge-Kutta step size, cm
which_dtype ’f’/’d’ string float ’f’ or double ’d’ precision
TOL number float integration solution tolerance

4.5 Input MESA/SSEC Data Format

While it is not (in theory) necessary to use the inlists, profile columns, and history columns pre-
scriptions for MESA provided with this suite, some subroutines assume a particular format for the
MESA data. Recovery has only been verified when this format was used.
The header of a MESA profile that is readable by 1DMESA2HYDRO3D is formatted as follows:

(line 1) 1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

(line 2) model_number num_zones initial_mass initial_zstar_age time_step

Teffphotosphere_Lphotosphere_r center_eta center_h1 center_he3 center_he4

center_c12 center_n14 center_o16 center_ne20 star_mass star_mdot

star_mass_h1star_mass_he3star_mass_he4star_mass_c12star_mass_n14star_mass_o16

star_mass_ne20 he_core_mass c_core_mass o_core_mass si_core_mass fe_core_mass

neutron_rich_core_mass tau10_mass tau10_radius tau100_masstau100_radius

dynamic_time kh_timescalenuc_timescale power_nuc_burn power_h_burnpower_he_burn

power_neu burn_min1 burn_min2 time_seconds

(line 3) 57785 1.0000000000000000E+000 2.0000000000000000E-002

5.0000000000000000E+009 2.0202602043678632E+008 5.7596827540378790E+003

1.0132344316590454E+000 1.0123173502173932E+000 -1.5113464067642879E+000

3.1060348935066984E-001 5.9709952550457791E-006 6.6892475065480950E-001

2.3136476321419881E-005 5.7240751976072694E-003 8.5287930921241241E-003

2.0994599496981497E-003 1.0000000000000000E+000 0.0000000000000000E+000

6.5823041794771087E-001 7.6530927338120010E-004 3.2085402682590725E-001

2.5315830371697599E-003 2.0798345475335099E-003 9.3490441350858634E-003

2.0994599496976882E-003 0.0000000000000000E+000 0.0000000000000000E+000

0.0000000000000000E+000 0.0000000000000000E+000 0.0000000000000000E+000

0.0000000000000000E+000 9.9999999989740374E-001 1.0121039705504904E+000

9.9999999982281740E-001 1.0119857705574893E+000 1.0197849350849037E+004

2.2885105513658181E+007 9.8693843078607616E+009 1.0134436805771265E+000

1.0134436805771267E+000 3.4867849786949279E-043 2.5223359611021012E-002

5.0000000000000000E+001 1.0000000000000000E+003 1.5779074992000000E+017

(line 4)

(line 5) 1 2 3 4 5 6 7 8 9 10

8

(line 6) zone mass logR logT logRho logP logE

x_mass_fraction_H y_mass_fraction_He z_mass_fraction_metals

(line 7) 1 1.0000000000000000E+000 5.3166803327612203E-003 3.7606022794428209E+000

-6.8095799232935716E+000 4.7554327493173005E+000 1.2313339024408560E+001

7.0000000000000007E-001 2.8000000000000008E-001 1.9999999999999796E-002

where “(line x)” is not part of the structure. Lines 1 through 3 specify MESA model attributes
which are not needed by 1DMESA2HYDRO3D but may be needed for additional processing with
MESA, and lines 4 and 5 are purely organizational; however, 1DMESA2HYDRO3D assumes a header
containing 5 lines, which it will pass. Line 6 contains the attribute names 1DMESA2HYDRO3D

understands, and lines 7 through the end of the profile file contain the stellar structure data. The
user may use any SSEC code (e.g. Dotter et al. (2008); Demarque et al. (2004); VandenBerg et al.
(2006); Pietrinferni et al. (2004); Cordier et al. (2007)) to generate an input profile, so long as it
is formatted as above. This profile header is pulled from the MESA profile of a solar-like main
sequence model, included in our test suite.

5 Output

1DMESA2HYDRO3D relies on two critical data structures: the NR file and IC file. Either of the
subprocesses that generate these files can be turned off via flags at the command line or in the
configuration file. The NR file can take several hours to compute from the MESA profile, depending
primarily on particle mass and solution tolerance. The NR → IC process takes no more than a few
seconds for reasonable particle numbers.

5.1 NR Files

The “heavy lifting” that this software performs is the generation of an NR coordinate file from an
SSEC model. An NR file is a basic text file containing 4 columns of numerical data:
(1) HEALPix integer N (dimensionless),
(2) radii r (cm),
(3) masses M (grams),
(4) internal energy E (ergs)
The first column contains the integer used by HEALPix to determine the number of particles np
distributed over a spherical shell. In order to divide the surface of a sphere into equal-area regions,
the HEALPix tessellation requires np = 12N2 and that N be a power of 2. Allowed values of N
are thus 2,4,8,16, etc. (see Górski et al. (2005) for more information).
The radii represent midpoint values rmid = (ru + rl)/2, in physical units (cm), corresponding to
the radius at which a given shell must be placed in order to recast the mass contained in a region
(ru − rl) as a shellular distribution of particles. The third column gives the mass contained in this
interval (in M�). The fourth gives the internal energy (ergs). The length of the file corresponds
to the number of shells needed to reconstruct the sampled profile as a nest of concentric surface
particle distributions.
The only quantities 1DMESA2HYDRO3D technically requires to build a particle distribution are
mass, radius, and density. However, additional physical information is necessary to build the
appropriate arrays on the 3D end. In order for the distributions to achieve hydrostatic equilibrium
(HSE), pressure and temperature (equivalently, internal energy per unit particle) must also be
propagated.
Any number of additional physical quantities can be tracked in the NR files by adding the MESA
column name to the NR writing routine. Some physical quantities and their recognized names are

9

Table 2: Allowed Values for Input Profile Columns

No. Physical quantity Column Name Required?

1 Radial shell number zone no
2 Mass contained in shell (M�) mass yes
3 log10 Radius (cm) logR yes
4 Local Temperature log10T (K) logT no
5 log10 ρ (g/cm3) logRho yes
6 Pressure log10P (cgs) logP yes for HSE
7 Internal energy log10E (ergs) logE yes for HSE
8 Hydrogen abundance (fractional) x mass fraction H no
9 Helium abundance (fractional) y mass fraction He no
10 Metal abundance (fractional) z mass fraction metals no

Number in the first column corresponds to the column number in the example header provided

given in Table 2.
If one forgets to track a particular quantity during the writing of the NR file, the value at the
appropriate R coordinate can be found after-the-fact by interpolating the input MESA profile data.
1DMESA2HYDRO3D uses this backward-hunting method to source the appropriate values of, e.g.,
pressure during the writing of the IC files in any case. There should not be a difference between
pressure values passed during NR computation versus those found after, based on equivalent radii
and input profiles.
The header, first few lines, and footer of an NR file look like this:

(line 1) ## fname /home/usr/MESA2HYDRO/data/sample_MESA_output/profile_mainsequence_logE.data

masscut 0.9832621098341146 N 8 mp (Ms) 1e-07 mp (g) 1.988e+26 stepsize 1.0000000e+08

(line 2) #N (ru+rl)/2 (cm) Mcontained in shell ru-rl u(rmid)

(line 3) 8 52836985702.89638 1.52715912738e+29 386768540555151.5

(line 4) 8 52869798202.89638 1.52334100923e+29 386768540555151.5

(line 5) 8 52902610702.89638 1.51950987585e+29 386768540555151.5

(line 6) 8 52935423202.89638 1.51566571402e+29 380430917840439.9

.

.

.

(line 223) 8 69881907577.89638 0.0 15375658296637.578

(line 224) #

(line 225) #

(line 226) # runtime: 2669.62379599 seconds

5.2 IC Files

1DMESA2HYDRO3D optionally writes the 3-D particle distributions directly to some SPH-compatible
initial conditions (“IC”) file formats. This I/O feature has been tested most rigorously for com-
patibility with Price et al. (2018)’s Phantom smoothed-particle hydrodynamics code, but options
to write output in the style of GADGET-2’s binary format 1, GADGET-2 HDF5, and basic ascii
text files are also available. Where formatting directly to the desired IC type is not available, it is
likely that Price (2007)’s SPLASH can perform the appropriate conversion via, e.g.,

ssplash phantom_file.tmp to ascii

where phantom_file.tmp is the phantom binary–formatted output from 1DMESA2HYDRO3D, and
ascii is the keyword SPLASH understands for converting to a basic text file. Options for con-

10

versions within SPLASH can be found in the SPLASH documentation. As of the current release,
this is probably the safest way to obtain initial conditions that are not in the Phantom format
directly, but one must be aware that the definitions for smoothing lengths differ between
Phantom and GADGET-2. Module io lib.py handles this via slightly different definitions of
hsml (smoothing length) in the write routines for Phantom versus GADGET-2.

6 Prerequisites

1DMESA2HYDRO3D is written in Python 2.7. It will be re-released in Python 3 at the end of
October, 2019 Components that interface with MESA have been developed using MESA version
10398. MESA-v10398’s protocols and capabilities are approximately associated with the third
instrument paper (Paxton et al., 2015), though MESA versions are released much more frequently
than instrument papers.
1DMESA2HYDRO3D is threadsafe so long as the user does not point concurrent instances to the
same output filename.
1DMESA2HYDRO3D evaluates the mass integral at each shell using RK4 (4th order Runge-Kutta,
Runge 1895) with an adaptive step size, where the user provides a “best guess” for the initial
integration step size, in cm (defaulting to a working value for the Sun if not otherwise specified).
A “good guess” will vary dramatically from problem to problem; see the tables here
and Joyce et al. (2019) for suggestions.
The efficiency of evaluation will change somewhat depending on the initial guess, as this is reset
at each new shell. This method was selected over other schemes (e.g. scipy.integrate, Newton-
Raphson) because of its flexibility in dealing with the high variance in scale in a stellar profile.
Faster integration times over restricted domains could certainly be achieved using pre-built integra-
tors written in C or Fortran (or perhaps some of Python’s own); our choice was designed primarily
to deal with the fact that the distance scales covered in a single model star can vary, from shell
to shell, by orders of magnitude, and thus allowing for large changes in step size within a given
run is necessary to make computing times tractable. We are confident there are more sophisticated
numerical techniques available to address this problem and would like to improve our methods—if
you are familiar with any such solutions, please let us know.
The main algorithm implements a pseudorandom number generator via Python’s random.random,
a wrapper for the Mersenne Twister algorithm (Matsumoto & Nishimura, 1998), which uses the
current timestamp as a seed.
1DMESA2HYDRO3D is not currently parallelized, but this is a goal of future releases.
In addition to standard, built-in Python libraries, the following Python 2.7 (or higher) packages
are required by 1DMESA2HYDRO3D:

- argparse

- cython

- h5py (optional: only necessary if using HDF5 data format)

- HDF5lib (optional: only necessary if using HDF5 data format)

- healpy

- matplotlib.pyplot

- numpy

- python-tk

- random

11

- scipy.interpolate

- scipy.optimize

- tables (optional: only necessary if using HDF5 data format

- time

These can be installed from the command line via

sudo apt-get install python-tk

or similarly via, e.g., pip install numpy. We recommend that the user try to install these addi-
tional libraries via command line rather than through pip.
To run the test case, the user must have numerical and other libraries required by healpy/HEALPix

https://healpy.readthedocs.io/en/latest/

installed on their machine. The installation command for healpy is:

pip install healpy

More information on dealing with healpy can be found at: https://healpy.readthedocs.io/en/latest/install.html
Optionally, HDF5

https://support.hdfgroup.org/HDF5/

can be used. 1DMESA2HYDRO3D produces phantom_binary and ASCII output without involving
HDF5, and if an HDF5 installation can be avoided, it should be.
If the user wishes to test their results using Phantom or another SPH code, they must install these
codes separately. Phantom is available at

https://bitbucket.org/danielprice/phantom/wiki/Home

MESA itself requires mesasdk, the MESA software development kit. Installation instructions for
this are available at

http://mesa.sourceforge.net/

This project was verified using MESA version 10398.
Lists of parameters that can be specified in MESA inlists are given in the “controls.defaults”
and “star job.defaults” files, which include variable names and short explanations of what each
parameter controls physically. MESA output is controlled by two additional attribute lists called
“history columns.list” and “profile columns.list,” from which the user can specify the quantities
for MESA to log throughout the model star’s temporal evolution or as a function of radial depth,
respectively. The MESA software suite and documentation provide glossaries of the available input
physics options, as well as all of the calculated quantities the user can request. Parameters are
categorized by which aspect of the model they affect, e.g. atmosphere, convective vs diffusive
regions. These categories are indexed at the top of the list files, and variable naming strives to be
somewhat intuitive. More information on MESA controls can be found in section 11.
This suite does not require an SPH code to run, but the user should use an SPH viewer, such
as SPLASH (Price, 2007) or gadgetviewer (Helly, 2003), to verify properly the recovery of
a density profile from SPH-compatible file types. Approximate verification is possible with the
Python routines included with 1DMESA2HYDRO3D, but these do not invoke smoothing kernels
and hence may be subject to normalization errors (see Price (2012)).

12

7 Installation

7.1 Via GitHub–recommended

One may clone the git repository

git clone https://github.com/mjoyceGR/MESA2HYDRO

or download the .tar.gz file and unpack it. The git clone command will create a directory called
MESA2HYDRO in the current location. Run the following from the top level MESA2HYDRO directory:

sudo python2 setup.py install

or equivalently

make install

to set up all software and dependencies manually. sudo access is required to do this. If errors
related to missing packages emerge when attempting to run the code, the user may have to install
additional dependencies from the command line (sudo apt-get) or pip manually.

7.2 Via pip

1DMESA2HYDRO3D is installable via Python’s pip tool. To install via pip, type into the command
line:

pip2 install MESA2HYDRO

To upgrade to a newer version, run

pip install --upgrade MESA2HYDRO==0.1.XXXX

where 0.1.XXXX should be replaced with the lastest version number on

https://pypi.org/manage/project/MESA2HYDRO/releases/

Sometimes the error

ERROR: Cannot uninstall ’MESA2HYDRO’. It is a distutils installed project and thus we

cannot accurately determine which files belong to it which would lead to only a partial uninstall.

is triggered by an attempt to use pip install --upgrade. As a workaround, remove any current
installation of MESA2HYDRO, followed by

pip install MESA2HYDRO==0.1.XXXX

or

pip install MESA2HYDRO

for the most recent version.

13

8 Setup

If the package has been installed via pip, pip will place the MESA2HYDRO home directory with
other Python packages, most likely somewhere like

/usr/share/bin/python2.7/

If the user has failed to specify pip2 and also has more recent versions of Python installed, it may
end up somewhere like

~/anaconda/lib/python3.5/site-packages/

To locate the directory where pip has stored the package, run

pip show MESA2HYDRO

In any case, we advise copying or moving the entire MESA2HYDRO root directory somewhere
more sensible, since the user will need to work out of it directly. Navigate to the desired root
location and run

cp <location_from_pip_show_command>/MESA2HYDRO/ .

From there, one should set the $MESA2HYDRO_ROOT environment variable in their .bashrc to point
to the root directory. $MESA2HYDRO_ROOT can also be set manually in .bashrc, or exported in the
command line via:

export MESA2HYDRO_ROOT=/home/usr/YOUR_PATH_TO/MESA2HYDRO

If $MESA2HYDRO_ROOT is not set in .bashrc, this export command will need to be issued before
operation every time a new terminal is opened.
If planning to use 1DMESA2HYDRO3D to interface with MESA directly, one should also set

export MESASDK_ROOT=/home/usr/mesasdk

export MESA_DIR=/home/usr/mesa-r10398

export OP_NUM_THREADS=8

in .bashrc.
Then,

cd $MESA2HYDRO_ROOT/

If one has installed 1DMESA2HYDRO3D via pip, no additional set up should be necessary.
If one has installed the package via tarball, direct downlod, or GitHub, 1DMESA2HYDRO3D can
be configured by running

python setup.py install

in the MESA2HYDRO directory.

14

9 Running a Test Case

To successfully run a basic MESA2HYDRO instance, the user must have, at minimum, the
following Python and external packages installed on their machine:

argparse

cython

healpy

matplotlib.pyplot

numpy

python-tk

random

scipy.interpolate

scipy.optimize

time

If they were not automatically installed via pip or the setup procedure, these can be installed from
the command line via, e.g.,

sudo apt-get install python-tk

or similarly via, e.g.,

pip install numpy

The authors have had better results installing these additional libraries via command line rather
than through pip.
In particular, one must have numerical and other libraries required by healpy/HEALPix (https://healpy.readthedocs.io/en/latest/)
installed on their machine. The installation command for healpy is:

pip install healpy

More information on dealing with healpy can be found at https://healpy.readthedocs.io/en/latest/install.html

9.1 Basic Operation

A basic execution of 1DMESA2HYDRO3D is issued via the following command in the MESA2HYDRO/work/
repository

./run_conversion.py --config-file mainsequence.cfg

or simply

./run_conversion.py mainsequence.cfg

This creates an instance of 1DMESA2HYDRO3D for a solar-like main sequence star, with param-
eters from the “mainsequence.cfg” namelist (see 4.3 for discussion of configuration files) using
pre-generated MESA profile data in the example format.

15

9.2 Using run conversion.py

The script run conversion.py contains all actions required to obtain a quick-and-dirty (i.e. com-
puted without a smoothing kernel) density profile recovery from an input MESA profile file. Using
routines encapsulated in /lib/mainlib.py, the run conversion.py script performs the following
actions after parsing either a configuration file or set of command line arguments:

1. check MESA profile generates a pop-up figure of the loaded MESA profile data. Close
this to proceed.

2. make NR file generates an NR data file by numerically integrating regions of the loaded
MESA density profile to determine sets of bounding radii rlower, rupper that correspond to
fixed mass per shell. This mass is determined by the user-specified number of particles per
shell (N) and mass per particle (mp). Fourth-order Runge-Kutta integration is used to obtain
shell mass from the MESA density profile. The internal energy of the model star at the MESA
radius rmid = (rlower + rupper)/2 is tracked as a fourth parameter in the NR file.

Because the MESA data are discrete, linear interpolation is used to connect nearest neighbors.
The resulting file contains sets of N values, radial midpoints, and shell masses that serve as
input conditions to the HEALPix algorithm. Internal energy is tracked for use in constructing
the SPH IC files; any other quantity may be tracked this way with minor modification. The
number of entries in this file is the number of shells which will be used to generate the 3D
distribution. An NR file producing smooth recovery may take up to a few hours to generate.
The time it takes to achieve reasonable agreement varies with star type and desired solution
tolerance. The ones provided in our sample took between 1 and 3 hours to generate (see
Table 12).

3. make IC file loads the NR data generated in (1) into healpy (the Python interface to
HEALPix) shell by shell, from which 12N2 sets of x, y, z coordinates are produced per entry.
These values are iteratively concatenated to a global array. Each shell is rotated by an ar-
bitrary angle θ and normalized by the placement radius given in the NR file. The resulting
randomized, normalized array contains the set of particle positions corresponding to the en-
tire radial span of the loaded MESA data. The resulting file should be an SPH-compatible
IC file, written with data organization structures specified in the configuration file. For a
reasonable NR file, this component should execute in a few seconds, maximum.

4. try reload This gives a very rough indication of recovery by loading the IC file generated
in (2) back into Python arrays containing the recovered radii and densities. Plots showing
the loaded versus recovered profile in log and linear space are generated. A multiplicative
offset (in linear space) manifests as a linear offset in the semilog plots, and can be caused by
overshooting the target shell mass during numerical integration in (1)—this can be resolved
by setting a lower solution tolerance on the mass integral. If this is the case, the recovered
data may present slightly higher densities than the MESA data, but the curvature of the
profile will be preserved.

10 Components

The suite installs by default as MESA2HYDRO. This will be the name of the parent repository,
containing the lib, work, data, and out subdirectories. The work repository is where the user
should operate the run_conversion.py script, the lib repository contains the subroutines (the

16

bulk of the software), the data repository contains MESA control settings and sample input and
output data, and the out repository contains sample output in the form that that a successful
1DMESA2HYDRO3D run should produce. This repository can also serve as a dump for data
generated by the user.

10.1 MESA2HYDRO/DOCUMENTATION

This manual and the academic paper are stored here.

10.2 MESA2HYDRO/lib

The lib repository contains four original function libraries and tertiary components required by
large data format reading and writing routines, as implemented by other authors. Our libraries are
summarized as follows:

mainlib.py

This module contains the primary components of the workflow, including routines to generate the
NR data, convert the NR data to large data format IC files, and load and examine the recovered
density profile within python. Note that successful recovery in Python does not guarantee that the
generated IC file will be compatible with Phantom, GADGET-2, or other IC readers—users must
test their distributions with an SPH reader or hydrodynamics code, as we have done for all cases
using Phantom.

converge funcs.py

This module contains the numerical routines used to generate the NR data, including numerical
integrators, routines which interface with HEALPix via healpy, and basic mathematical routines.

MESAhandling.py

This module contains MESA data handling routines, including construction of dictionaries from
MESA output column headers, MESA inlist production, data selection by keyword, etc.

io lib.py

This module contains routines to deal with the conversion of NR data to various initial conditions
file formats. Many of the GADGET IC reading and writing routines are standard scripts which are
publicly available. The origin and authors of scripts that are not the original work of Joyce et al.
(2019) are noted in the comments.

cfg parser.py

This module contains routines to parse command line arguments.
Other scripts in this directory are dependencies of the I/O handling routines included in io lib.

10.3 MESA2HYDRO/work

The user should operate 1DMESA2HYDRO3D from this directory. The critical component is
run conversion.py, whose operation is detailed in 9.1. Some minor additional verification scripts
are included.

17

confirm density profile.py

Generates a plot of density versus radius from a user-provided MESA profile via command line
interaction.

confirm mass profile.py

Generates a plot of cumulative mass versus radius from a user-provided MESA profile via command
line interaction.

11 External MESA data

The algorithm has been verified on a number of test MESA profiles, which encompass a range of
model stars with a wide spectrum of physical properties. The MESA control files used to generate
these specific MESA models are included with 1DMESA2HYDRO3D in the data directory. All
MESA data used in the test suite were generated using MESA version 10398. All components
necessary to reproduce the results in Joyce et al. (2019) are described as follows:

11.1 MESA2HYDRO/data

The subdirectory MESA2HYDRO/data/MESA_controls/ contains files for MESA version 10398 which
control output settings for profile and history data. These are specifically set to 1DMESA2HYDRO3D’s
reading specifications. The files are

star_job.defaults

profile_columns_testsuite.list

profile_columns.list

history_columns_testsuite.list

history_columns.list

controls.defaults

• history_columns_testsuite.list dictates which physical quantities are retained by MESA
throughout the star’s temporal evolution, stored in a history.data file.

• profile_columns_testsuite.list dictates which physical quantities are stored in MESA’s
radial profiles, which are snapshots of the star’s internal structure at a fixed time. These are stored
in profile.data files. These are the files that 1DMESA2HYDRO3D integrates to construct
NR files.

Use caution if designing your own profile_columns.list or history_columns.list files. So
long as the essential parameter quantities (see Section 4.2) are tracked using the correct column
keyword—as defined in profile_columns.list—alternative profiles should work, but proper op-
eration is definitely not guaranteed.

• MESA2HYDRO/data/inlists/ contains MESA inlist files corresponding to each validation case
and additional MESA files (e.g. model .mod files) needed to run those cases.

• MESA2HYDRO/data/sample_MESA_output/ contains the MESA profile and history output data
used to generate our test suite (Note: 1DMESA2HYDRO3D does not make direct use of history.data
files, but these are very useful for verification that the physics of your model makes sense)

• MESA2HYDRO/data/config_file_examples/ contains example .cfg files for use with run conversion.py

18

Table 3: 1DMESA2HYDRO3D Run Time Parameters and Recovery for Test Models

Star N mp R? M? ∆r,initial Nshells np tgen σrms

Standard Solar 8 1× 10−7 0.75 0.0167 1.00×108 441 338,688 1.311 0.018
Solar Red Giant 8 1× 10−7 0.75 0.0650 1.00×108 852 654,336 4.039 0.022
Red Supergiant 8 1× 10−6 0.75 0.0034 1.00×1011 453 347,904 6.671 0.020
TP-AGB 8 5× 10−7 0.75 0.0449 1.00×1010 298 228,864 6.652 0.118
White Dwarf 8 1× 10−7 0.75 0.0330 1.00×105 556 427,008 5.128 0.045

Computational and physical features of each test model are shown for rdepth = 0.75R? and δTOL = 0.01,

corresponding to Figures 4 through 8 in Joyce et al. (2019). Particle masses are in units of M�. N is the HEALPix

integer. Initial step sizes are in physical units (cm). tgen is the generation time for the NR coordinates, in hours.

Generation times for IC files are negligible, typically on the order of 5 to 10 seconds.

Table 4: Parameters for 1DMESA2HYDRO3D Distributions Tested with Phantom

Star mp Np M? (g) R? (cm) ρavg (g/cm3) tdyn (s) Phantom EOS

Standard Solar 10−5 102,144 1.98× 1033 7.02× 1010 1.37× 100 1.80× 103 Adiabatic; γ = 5/3
Solar Red Giant 10−5 102,144 1.98× 1033 2.40× 1011 3.46× 10−2 1.13× 104 Adiabatic; γ = 5/3
Red Supergiant 10−4 64,512 1.78× 1035 1.18× 1014 2.57× 10−8 1.31× 107 Adiabatic; γ = 5/3
TP-AGB 10−5 193,536 5.05× 1033 8.69× 1012 1.84× 10−6 1.55× 106 Adiabatic; γ = 5/3
White Dwarf 10−5 134,400 1.98× 1033 2.78× 108 2.20× 107 4.48× 10−1 Helmholtz

In all cases, δTOL = 0.01. rdepth is approximately zero for all models, with the exception of the supergiant, which

uses rdepth = 0.35 due to the difficulty of resolving the extreme densities in the stellar core using a particle mass

that is suitable for the rest of the layers. When rdepth = 0.0 is used for the supergiant, the 1DMESA2HYDRO3D

solution time jumps from approximately 1.6 hr to 19 hr, and the particle number increases from ≈ 65000 to more

than 1 million.

11.2 MESA2HYDRO/out

MESA2HYDRO/data/sample_MESA_output/NR_files/ contains the NR data files created from the
MESA profile data for each of the five test cases:

main sequence NR_ms_TOL0.01_0.75R_mp1em7.dat

red giant NR_rg_TOL0.01_0.75R_mp1em7.dat

extended supergiant NR_OB_TOL0.01_0.75R_mp1em6.dat

TP-AGB NR_agb_TOL0.01_0.75R_mp5em7.dat

white dwarf NR_wd_TOL0.01_0.75R_mp1em7.dat

Any of these can be converted to an IC file directly with appropriate settings in the configuration
file.

12 Test Suite

For information on the astrophysics of the test suite, we refer the user to the academic paper. Tables
12 and 12 from Joyce et al. (2019) provide quick references for viable parameter choices. They are
reproduced here. Figures 4 through 8 in Joyce et al. (2019) are reproducible using between 22-30
bins for the 1DMESA2HYDRO3D-rendered particle data and the associated run-time parameters
given here.

19

13 Current Limitations and Known Issues

• The authors have encountered some bugs surrounding cython. In some cases, the setup pro-
cedure fails (segfault) if cython is installed via pip rather than via the command line directly
(i.e. sudo apt-get install cython). The cause of this issue is currently unknown, but may be
related to conflicting versions of Python. Purging cython and installing it from the command line
has (sometimes) fixed this.

• Only Phantom ICs have actually been evolved and had their stability numerically assessed on
the 3D side. Performing additional verification with other SPH codes would be very helpful! If 3D
SPH is your expertise, do it!

• 1DMESA2HYDRO3D is not currently parallelized

• 1DMESA2HYDRO3D does not use a smoothing kernel in its built-in recovery tests

• 1DMESA2HYDRO3D is written in Python 2.7 (yes, I know...) because development began a
long time ago. Optimistically, it will be converted to Python 3 by the end of October 2019.

• 1DMESA2HYDRO3D was developed on Linux machines using various iterations of Ubuntu.
It has been successfully installed on a computing cluster and various laptops and Linux-running
workstations. Its functionality in a Mac or Windows environment has not yet been fully explored.

14 How to Contribute

1DMESA2HYDRO3D is publicly available and can be modified as the user sees fit. M Joyce will
do her best to integrate any corrections or improvements in a timely manner. Some components
of 1DMESA2HYDRO3D fall under the domain of the MESA collaboration, who maintain an active
community of developers and participants.
For now, requests for incorporating additional functionality should be emailed to
Meridith.Joyce@anu.edu.au
If you use this package or any of its components, please cite the paper!

14.1 Authors’ Statement

This package is presented with the hope that it will help others do science.
Most of the authors are not professional software developers. In the spirit of collaboration and
to avoid discouraging others—especially women and members of other groups underrepresented in
software development—from sharing their code publicly, it is expected that all criticism, corrections,
and suggestions for improvement will be made respectfully and in good faith.

20

References

Cordier, D., Pietrinferni, A., Cassisi, S., & Salaris, M. 2007, AJ, 133, 468

Demarque, P., Woo, J.-H., Kim, Y.-C., & Yi, S. K. 2004, ApJ Suppl., 155, 667

Dotter, A., Chaboyer, B., Jevremović, D., et al. 2008, ApJ Suppl., 178, 89

Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759

Helly, J. C. 2003, gadgetviewer

Joyce, M., Lairmore, L., Price, D. J., Mohamed, S., & Reichardt, T. 2019, The Astrophysical
Journal, 882, 63

Matsumoto, M., & Nishimura, T. 1998, ACM: Transactions on Modeling and Computer Simulation,
8, 3

Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJ Suppl., 220, 15

Pietrinferni, A., Cassisi, S., Salaris, M., & Castelli, F. 2004, ApJ, 612, 168

Price, D. J. 2007, PASA, 24, 159

—. 2012, Journal of Computational Physics, 231, 759

Price, D. J., Wurster, J., Tricco, T. S., et al. 2018, PASA, 35, e031

Runge, C. 1895, Mathematische Annalen, 46, 167

VandenBerg, D. A., Bergbusch, P. A., & Dowler, P. D. 2006, ApJ Suppl., 162, 375

21

	Declaration of Use
	Introduction
	Algorithm
	Input
	Configuration Files
	Default Parameter Values
	Parameter Description and Options
	Command Line Arguments
	Input MESA/SSEC Data Format

	Output
	NR Files
	IC Files

	Prerequisites
	Installation
	Via GitHub–recommended
	Via pip

	Setup
	Running a Test Case
	Basic Operation
	Using run_conversion.py

	Components
	MESA2HYDRO/DOCUMENTATION
	MESA2HYDRO/lib
	MESA2HYDRO/work

	External MESA data
	MESA2HYDRO/data
	MESA2HYDRO/out

	Test Suite
	Current Limitations and Known Issues
	How to Contribute
	Authors' Statement

