
Counts File Library Documentation
Release 1.1.0

Dominik Schrempf

Jul 26, 2016

CONTENTS

1 cflib 3

2 Contents 5
2.1 libPoMo.main . 5
2.2 libPoMo.seqbase . 6
2.3 libPoMo.fasta . 10
2.4 libPoMo.vcf . 14
2.5 libPoMo.cf . 19

3 Indices and tables 25

Python Module Index 27

Index 29

i

ii

Counts File Library Documentation, Release 1.1.0

This library provides functions and classes to handle file conversion between standard formats (e.g., fasta or VCF
files) to counts files that are used by IQ-TREE with PoMo, and implementation of a polymorphism aware phylogenetic
model.

Created by:

• Dominik Schrempf

For a reference, please see and cite: Schrempf, D., Minh, B. Q., De Maio, N., von Haeseler, A., & Kosiol, C. (2016).
Reversible Polmorphism-Aware Phylotenetic Models and their Application to Tree Inference. Journal of Theoretical
Biology, in press.

Feel free to post any suggestions, doubts and bugs.

CONTENTS 1

http://www.cibiv.at/software/iqtree/
http://www.cibiv.at/software/iqtree/doc/Polymorphism-Aware-Models/

Counts File Library Documentation, Release 1.1.0

2 CONTENTS

CHAPTER

ONE

CFLIB

cflib contains several modules that ease the handling and preparation of data files in variant call format (vcf), fasta
format and counts format (cf).

The libPoMo package is split into the following modules:

• main: Contains functions that are used by PoMo.

• seqbase: Provides basic functions and classes needed to work with sequence data.

• fasta: Provides functions to read, write and access fasta files.

• vcf : Provides functions to read, write and access vcf files.

• cf : Provides functions to read, write and access files that are in counts format.

3

Counts File Library Documentation, Release 1.1.0

4 Chapter 1. cflib

CHAPTER

TWO

CONTENTS

2.1 libPoMo.main

This library contains functions that are used by PoMo.

libPoMo.main.a(n)
Calculate the Watterson’s Theta coefficient.

libPoMo.main.binom(s, p, n)
Binomial Distribution

Calculate the binomial sampling probability (not very efficient, but not much effieciency is needed with small
samples).

libPoMo.main.dsRatio(dsR)
Downsampling ratio type for argparse.

libPoMo.main.get_data_from_cf_line(cfStr)
Read in the data of a single counts format line.

The return type is a list with the number of samples and a two dimensional array of the form
data[species][nucleotide], where species is the index of the species and nucleotide is the index of the nucleotide
(0,1,2 or 3 for a,c,g and t, respectively).

Parameters CFStream (cfStr) – The CFStream pointing to the line to be read in.

Return type ([int] n_samples, [[int]] data)

libPoMo.main.get_species_from_cf_headerline(line)
Get the number of species and the names fom a counts format header line.

Parameters line (str) – The header line.

Return type (int n_species, [str] sp_names)

libPoMo.main.is_number(s)
Determine if value is an integer.

libPoMo.main.mutModel(mm)
Mutation model type for argparse.

libPoMo.main.probability_matrix(n)
Create probability matrices for the HyPhy batch file.

libPoMo.main.read_data_write_HyPhy_input(fn, N, thresh, path_bf, muts, mutgamma, sels,
selgamma, PoModatafile, PoModatafile_cons,
theta=None, vb=None)

Read the count data and write the HyPhy input file.

5

Counts File Library Documentation, Release 1.1.0

The provided filename has to point to a data file in counts format (cf. cf). The data will be downsampled if
necessary and the HyPhy batch and input files will be written. The number of species, the species names, the
number of species samples and the theta value (usr_def) will be returned in a tuple.

Parameters

• fn (str) – Counts format file name.

• N (int) – Virtual population size.

• thresh (float) – Trheshold of data discard for downsampling.

• path_bf (str) – Path to the HyPhy batch files

• muts (str) – Mutation model (mutModel()).

• mutgamma (str) – Gamma of the mutation model (setGM()).

• sels (str) – Selection model (selModel()).

• selgamma (str) – Gamma of selection model (setGS()).

• PoModatafile (str) – Path to HyPhy input file.

• PoModatafile_cons (str) – Path to HyPhy input file.

• vb (Boolean) – Verbosity.

Return type (int n_species, [str] sp_names, [str] sp_samples, Boolean all_one, float usr_def)

libPoMo.main.selModel(sm)
Selection model type for argparse.

libPoMo.main.setGM(gm)
Set variable mutation rate, if gm is given.

libPoMo.main.setGS(gs)
Set fixation bias, if gs is given.

libPoMo.main.timeStr()
Time in human readable format.

2.2 libPoMo.seqbase

This module provides basic functions and classes needed to work with sequence data.

2.2.1 Objects

Classes:

• Seq , stores a single sequence

• Region, region in a genome

Exception Classes:

• SequenceDataError

• NotAValidRefBase

Functions:

• stripFName(), strip filename off its ending

6 Chapter 2. Contents

Counts File Library Documentation, Release 1.1.0

exception libPoMo.seqbase.NotAValidRefBase
Reference base is not valid.

class libPoMo.seqbase.Region(chrom, start, end, name=None, orientation=’+’)
Region in a genome.

The start and end points need to be given 1-based and are converted to 0-based positions that are used internally
to save all positional data.

Parameters

• chrom (str) – Chromosome name.

• start (int) – 1-based start position.

• end (int) – 1-based end position.

• name (str) – Optional, region name.

Variables

• chrom (str) – Chromosome name.

• start (int) – 0-based start position.

• end (int) – 0-base end position.

• name (str) – Region name.

print_info()
Print information about the region.

class libPoMo.seqbase.Seq
A class that stores sequence data. .. _seqbase-seq:

Variables

• name (str) – Name of the sequence (e.g. species or individual name).

• descr (str) – Description of the sequence.

• data (str) – String with sequence data.

• dataLen (int) – Number of saved bases.

• rc (Boolean) – True if self.data stores the reverse-complement of the real sequence.

get_base(pos)
Returns base at 1-based position pos.

get_exon_nr()
Try to find the current and the total exon number of the sequence.

Extract the exon number and the total number of exons, if the name of the sequence is of the form (cf.
UCSC Table Browser):

>CCDS3.1_hg18_2_19

Return type (int nEx, int nExTot)

Raises SequenceDataError, if the format of the sequence name is invalid.

2.2. libPoMo.seqbase 7

http://genome.ucsc.edu/goldenPath/help/hgTablesHelp.html#FASTA

Counts File Library Documentation, Release 1.1.0

get_in_frame()
Try to find the inFrame of the gene.

inFrame: the frame number of the first nucleotide in the exon. Frame numbers can be 0, 1, or 2 depending
on what position that nucleotide takes in the codon which contains it. This function gets the inFrame, if
the description of the sequence is of the form (cf. UCSC Table Browser):

918 0 0 chr1:58954-59871+

Return type int

Raises SequenceDataError, if format of description is invalid.

get_out_frame()
Try to find the outFrame of the gene.

outFrame: the frame number of the last nucleotide in the exon. Frame numbers can be 0, 1, or 2 depending
on what position that nucleotide takes in the codon which contains it. This function gets the outFrame, if
the description of the sequence is of the form (cf. UCSC Table Browser):

918 0 0 chr1:58954-59871+

Return type int

Raises SequenceDataError, if format of description is invalid.

get_rc()
Return True if the sequence is reversed and complemented.

Return type Boolean

get_region()
Try to find the Region that the sequence spans.

The sequence might not physically start at position 1 but at some arbitrary value that is indicated in the
sequence description. This function gets this physical Region, if the description of the sequence is of the
form (cf. UCSC Table Browser):

918 0 0 chr1:58954-59871+

Raises SequenceDataError, if format of description is invalid.

get_region_no_description(offset=0)
Get the region of the sequence.

If no regional information is available in the sequence description (cf. get_region()), the position of
the first base in the reference genome can be given manually. E.g., if the first base of the sequence does
not correspond to the first but to the 11th base of the reference sequence, the offset should be 10.

The name of the chromosome will be set to the name of the sequence.

Parameters offset (int) – Optional, offset of the sequence.

is_synonymous(pos)
Return True if the base at pos is 4-fold degenerate.

This function checks if the base at pos is a synonymous one. The description of the sequence has to be of
the form (cf. UCSC Table Browser):

8 Chapter 2. Contents

http://genome.ucsc.edu/goldenPath/help/hgTablesHelp.html#FASTA
http://genome.ucsc.edu/goldenPath/help/hgTablesHelp.html#FASTA
http://genome.ucsc.edu/goldenPath/help/hgTablesHelp.html#FASTA
http://genome.ucsc.edu/goldenPath/help/hgTablesHelp.html#FASTA

Counts File Library Documentation, Release 1.1.0

918 0 0 chr1:58954-59871+

Variables pos (int) – Position of the base in the sequence (0 to self.dataLen).

Rtype Boolean True if base is 4-fold degenerate.

Raises SequenceDataError, if format of description is invalid.

print_data(fo=<_io.TextIOWrapper name=’<stdout>’ mode=’w’ encoding=’UTF-8’>)
Print the sequence data.

Variables fo (fileObject) – Print to file object fo. Defaults to stdout.

print_fa_entry(maxB=None, fo=<_io.TextIOWrapper name=’<stdout>’ mode=’w’
encoding=’UTF-8’>)

Print a fasta file entry with header and sequence data.

Variables maxB (int) – Print a maximum of maxB bases. Default: print all bases.

print_fa_header(fo=<_io.TextIOWrapper name=’<stdout>’ mode=’w’ encoding=’UTF-8’>)
Print the sequence header line in fasta format.

Variables fo (fileObject) – Print to file object fo. Defaults to stdout.

print_info(maxB=50)
Print sequence information.

Print sequence name, description, the length of the sequence and a maximum of maxB bases (defaults to
50).

purge()
Purge data saved in this sequence.

rev_comp(change_sequence_only=False)
Reverses and complements the sequence.

This is rather slow for long sequences.

set_rc()
Set the self.rc.

The instance variable self.rc is a Boolean value that is true if the saved sequence is reversed and comple-
mented. This function sets this value according to the last character in the sequence description.

Raises ValueError() if state could not be detected.

toggle_rc()
Toggle the state of self.rc.

exception libPoMo.seqbase.SequenceDataError
General sequence data error exception.

libPoMo.seqbase.gz_open(fn, mode=’r’)
Open file with io.open() or gzip.open().

Parameters

• fn (str) – Name of the file to open.

• md (char) – Mode ‘r‘ | ‘w’.

libPoMo.seqbase.stripFName(fn)
Convenience function to strip filename off the ”.xyz” ending.

2.2. libPoMo.seqbase 9

Counts File Library Documentation, Release 1.1.0

2.3 libPoMo.fasta

This module provides functions to read, write and access fasta files.

2.3.1 Objects

Classes:

• FaStream, fasta file sequence stream object

• MFaStream, multiple alignment fasta file sequence stream object

• FaSeq , fasta file sequence object

• MFaStrFilterProps, define multiple fasta file filter preferences

Exception Classes:

• NotAFastaFileError

Functions:

• filter_mfa_str(), filter a given MFaStream according to the filters defined in
MFaStrFilterProps

• init_seq(), initialize fasta sequence stream from file

• open_seq(), open fasta file

• save_as_vcf(), save a given FaSeq in variant call format (VCF)

• read_seq_from_fo(), read a single sequence from file object

• read_align_from_fo(), read an alignment from file object

class libPoMo.fasta.FaSeq
Store sequence data retrieved from a fasta file.

Variables

• name (str) – Name of the FaSeq object.

• seqL ([Seq]) – List of Seq objects that store the actual sequence data.

• nSepcies (int) – Number of saved species / individuals / chromosomes.

get_distance()
Number of segregating bases.

get_seq_base(seq, pos)
Return base at 1-based position pos in sequence with name seq.

get_seq_by_id(i)
Return sequence number i as Seq object.

get_seq_names()
Return a list with sequence names.

print_info(maxB=50)
Print fasta sequence information.

Print fasta sequence identifier, species names, the length of the sequence and a maximum of maxB bases
(defaults to 50).

10 Chapter 2. Contents

Counts File Library Documentation, Release 1.1.0

class libPoMo.fasta.FaStream(name, firstSeq, nextHL, faFileObject)
A class that stores a fasta file sequence stream.

The sequence of one species / individual / chromosome is saved and functions are provided to read in the next
sequence in the file, if there is any. This saves memory if files are huge and doesn’t increase runtime.

This object is usually initialized with init_seq().

Parameters

• name (str) – Name of the stream.

• firstSeq (Seq) – First sequence (Seq object) to be saved.

• nextHL (str) – Next header line.

• faFileObject (fo) – File object associated with the stream.

Variables

• name (str) – Stream name.

• seq (Seq) – Saved sequence (Seq object)

• nextHeaderLine (str) – Next header line.

• fo (fo) – File object that points to the start of the data of the next sequence.

close()
Close the linked file.

print_info(maxB=50)
Print sequence information.

Print information about this FaStream object, the fasta sequence stored at the moment the length of the
sequence and a maximum of maxB bases (defaults to 50).

read_next_seq()
Read next fasta sequence in file.

The return value is the name of the next sequence or None if no next sequence is found.

class libPoMo.fasta.MFaStrFilterProps(nSpecies)
Define filter preferences for multiple fasta alignments.

Define the properties of the filter to be applied to an MFaStream.

By default, all filters are applied (all variables are set to True).

Parameters nSpecies (int) – Number of species that are aligned.

Variables

• check_all_aligned (Boolean) – Check if all treated species are available in the
alignment (nSpecies gives the number of species, given to the object upon initialization).

• check_divergence (Boolean) – Check if the divergence of the reference genome (the
first sequence in the alignment) is lower than maxDiv (defaults to 10 percent).

• check_start_codons (Boolean) – Check if all start codons are conserved.

• check_stop_codons (Boolean) – Check if all stop codons are conserved.

• check_frame_shifting_gaps (Boolean) – Check, that there are no frame-shifting
gaps.

• check_for_long_gaps (Boolean) – Check if no gap is longer than maxGapLength
(defaults to 30) bases.

2.3. libPoMo.fasta 11

Counts File Library Documentation, Release 1.1.0

• check_nonsense_codon (Boolean) – Check if there is no premature stop codon).

• check_exon_length (Boolean) – Check that the exon is longer than minExonLen
(defaults to 21).

• check_exon_numbers (Boolean) – Check if exon number match for all sequences in
the alignment.

class libPoMo.fasta.MFaStream(faFileName, maxskip=50, name=None)
Store a multiple alignment fasta file sequence stream.

The sequences of one gene / alignment are saved for all species / individuals / chromosomes. Functions are
provided to read in the next gene / alignment in the file that fulfills the given criteria, if there is any. This saves
memory if files are huge and doesn’t increase runtime.

Initialization of an MFaStream opens the given fasta file, checks if it is in fasta format and reads the first
alignment. The end of an alignment is reached when a line only contains the newline character. This object can
later be used to parse the whole multiple alignment fasta file.

Alignments can be filtered with filter_mfa_str().

Parameters

• faFileName (str) – File name of the multiple alignment fasta file.

• maxskip (int) – Only look maxskip lines for the start of a sequence (defaults to 50).

• name (str) – Set the name of the stream to name, otherwise set it to the stripped filename.

Variables

• name (str) – Stream name.

• seqL ([Seq]) – Saved sequences (Seq objects) in a list.

• nSpecies (int) – Number of saved sequences / species in the alignment.

• nextHeaderLine (str) – Next header line.

• fo (fo) – File object that points to the start of the data of the next sequence.

Please close the associated file object with FaStream.close() when you don’t need it anymore.

close()
Close the linked file object.

orient(firstOnly=False)
Orient all sequences of the alignment to be in forward direction.

This is rather slow for long sequences.

Parameters firstOnly (Boolean) – If true, orient the first sequence only.

print_info(maxB=50)
Print sequence information.

Print information about this MFaStream object, the fasta sequence stored at the moment the length of the
sequence and a maximum of maxB bases (defaults to 50).

print_msa(fo=<_io.TextIOWrapper name=’<stdout>’ mode=’w’ encoding=’UTF-8’>)
Print multiple sequence alignment at point.

Variables fo (fileObject) – Print to file object fo. Defaults to stdout.

read_next_align()
Read next alignment in fasta file.

12 Chapter 2. Contents

Counts File Library Documentation, Release 1.1.0

The return value is the name of the newly saved alignment or None if no next alignment is found.

exception libPoMo.fasta.NotAFastaFileError
Exception raised if given fasta file is not valid.

libPoMo.fasta.filter_mfa_str(mfaStr, fp, verb=None)
Check multiple sequence alignment of an MFaStream.

Multiple sequence alignments usually include alignments that are not apt for analysis. These low quality align-
ments need to be filtered out of the original multiple sequence alignment fasta file. If verb is unset from None,
information about any possible rejection is printed to the standard output.

Variables

• mfaStr (MFaStream) – MFaStream object to check.

• fp (MFaStrFilterProps) – MFaStrFilterProps; Properties of the filter to be ap-
plied.

• verb (Boolean) – Verbosity.

Return type Boolean, True if all filters have been passed.

libPoMo.fasta.init_seq(faFileName, maxskip=50, name=None)
Open a fasta file and initialize an FaStream.

This function tries to open the given fasta file, checks if it is in fasta format and reads the first sequence. It
returns an FaStream object. This object can later be used to parse the whole fasta file.

Please close the associated file object with FaStream.close() when you don’t need it anymore.

Parameters

• faFileName (str) – File name of the fasta file.

• maxskip (int) – Only look maxskip lines for the start of a sequence (defaults to 50).

• name (str) – Set the name of the sequence to name, otherwise set it to the stripped file-
name.

libPoMo.fasta.open_seq(faFileName, maxskip=50, name=None)
Open and read a fasta file.

This function tries to open the given fasta file, checks if it is in fasta format and reads the sequence(s). It returns
an FaSeq object that contains a list of species names, a list of the respective desriptions and a list with the
sequences.

Parameters

• faFileName (str) – Name of the fasta file.

• maxskip (int) – Only look maxskip lines for the start of a sequence (defaults to 50).

• name (str) – Set the name of the sequence to name otherwise set it to the stripped filename.

libPoMo.fasta.read_align_from_fo(line, fo)
Read a single fasta alignment.

Read a single fasta alignment from file object fo and save it to new Seq sequence objects. Return the header
line of the next fasta alignment and the newly created sequences in a list. If no new alignment is found, the next
header line will be set to None.

Parameters

• line (str) – Header line of the sequence.

• fo (fo) – File object of the fasta file.

2.3. libPoMo.fasta 13

Counts File Library Documentation, Release 1.1.0

Return type (str, [Seq])

libPoMo.fasta.read_seq_from_fo(line, fo, getAlignEndFlag=False)
Read a single fasta sequence.

Read a single fasta sequence from file object fo and save it to a new Seq sequence object. Return the header
line of the next fasta sequence and the newly created sequence. If no new sequence is found, the next header
line will be set to None.

Parameters

• line (str) – Header line of the sequence.

• fo (fo) – File object of the fasta file.

• getAlignFlag (Boolean) – If set to true, an additional Boolean value that specifies if
a multiple sequence alignment ends, is returned.

Return type (str, Seq) | (str, Seq, Boolean)

libPoMo.fasta.save_as_vcf(faSeq, ref, VCFFileName)
Save the given :classL‘FaSeq‘ in VCF format.

In general, we want to convert a fasta file with various individuals with the help of a reference that contains
one sequence to a VCF file that contains all the SNPs. This can be done with this function. Until now it is not
possible to do this conversion for several chromosomes for each individual in one run. Still, the conversion can
be done chromosome by chromosome.

This function saves the SNPs of faSeq, a given FaSeq (fasta sequence) object in VCF format to the file VCF-
FileName. The reference genome ref, to which faSeq is compared to, needs to be passed as a Seq object.

The function compares all sequences in faSeq to the sequence given in ref. The names of the individuals in the
saved VCF file will be the sequence names of the faSeq object.

#CHROM = sequence name of the reference
POS = position relative to reference
ID = .
REF = base of reference
ALT = SNP (e.g. 'C' or 'G,T' if 2 different SNPs are present)
QUAL = .
FILTER = .
INFO = .
FORMAT = GT

Parameters

• faSeq (FaSeq) – FaSeq object to be converted.

• ref (Seq) – Seq object of the reference sequence.

• VCFFileName (str) – Name of the VCF output file.

2.4 libPoMo.vcf

This module provides functions to read, write and access vcf files.

14 Chapter 2. Contents

Counts File Library Documentation, Release 1.1.0

2.4.1 Objects

Classes:

• NucBase, store a nucleotide base

• VCFStream, a variant call format (VCF) stream object

• VCFSeq , a VCF file sequence object

Exception Classes:

• NotAVariantCallFormatFileError

• NotANucBaseError

Functions:

• update_base(), read a line into a base

• get_nuc_base_from_line(), create a new NucBase from a line

• check_fixed_field_header(), check a VCF fixed field header string

• get_indiv_from_field_header(), extract list of individuals from header

• init_seq(), open VCF file and initialize VCFStream

• open_seq(), open VCF file and save it to a VCFSeq

• get_header_line_string(), print vcf header line

exception libPoMo.vcf.NotANucBaseError
Exception raised if given nucleotide base is not valid.

exception libPoMo.vcf.NotAVariantCallFormatFileError
Exception raised if given VCF file is not valid.

class libPoMo.vcf.NucBase
Stores a nucleotide base.

FIXME: Bases are split by ‘/’. They should also be split by ‘|’.

A class that stores a single nucleotide base and related information retrieved from a VCF file. Please see
http://www.1000genomes.org/ for a detailed description of the vcf format.

Variables

• chrom (str) – Chromosome name.

• pos (int) – 1-based position on the chromosome.

• id (str) – ID.

• ref (str) – Reference base.

• alt (str) – Alternative base(s).

• qual (str) – Quality.

• filter (str) – Filter.

• info (str) – Additional information.

• format (str) – String with format specification.

• speciesData ([str]) – List with strings of the species data (e.g. 0/1:...).

2.4. libPoMo.vcf 15

http://www.1000genomes.org/

Counts File Library Documentation, Release 1.1.0

• ploidy (int) – Ploidy (number of sets of chromosomes) of the sequenced individuals.
Can be set with set_ploidy().

get_alt_base_list()
Return alternative bases as a list.

get_base_ind(iI, iC)
Return the base of a specific individual.

Parameters

• indiv (int) – 0-based index of individual.

• chrom (int) – 0-based index of chromosome (for n-ploid individuals).

Return type character with nucleotide base.

get_info()
Return nucleotide base information string.

get_ref_base()
Return reference base.

Return type char

get_speciesData()
Return species data as a list.

•data[0][0] = data of first species/individual on chromatide A

•data[0][1] = only set for non-haploids; data of first species/individual on chromatide B

Sets data[i][j] to None if the base of individual i on chromosome j could not be read (e.g. it is not valid).

Return type matrix of integers

print_info()
Print nucleotide base information.

Print the stored single nucleotide base and related information from the VCF file.

purge()
Purge the data associated with this NucBase.

set_ploidy()
Set self.ploidy.

class libPoMo.vcf.VCFSeq
Store data retrieved from a VCF file.

Initialized with open_seq().

Variables

• name (str) – Sequence name.

• header (str) – Sequence header.

• speciesL ([str]) – List with species / individuals.

• nSpecies (int) – Number of species / individuals.

• baseL ([NucBase]) – List with stored NucBase objects.

• nBases (int) – Number of NucBase objects stored.

append_nuc_base(base)
Append base, a given NucBase, to the VCFSeq object.

16 Chapter 2. Contents

Counts File Library Documentation, Release 1.1.0

get_header_line_string(indiv)
Return a standard VCF File header string with individuals indiv.

get_nuc_base(chrom, pos)
Return base at position pos of chromosome chrom.

has_base(chrom, pos)
Return True (False) if base is (not) found.

Parameters

• chrom (str) – Chromosome name.

• pos (int) – 1-based position on chrom.

print_header_line(indiv)
Print a standard VCF File header with individuals indiv.

print_info(maxB=50, printHeader=False)
Print VCF sequence information.

Print vcf header, the total number of nucleotides and a maximum of maxB bases (defaults to 50). Only
prints header if printHeader = True is given.

class libPoMo.vcf.VCFStream(seqName, vcfFileObject, speciesList, firstBase)
Store base data from a VCF file line per line.

It can be initialized with init_seq(). This class stores a single base retrieved from a VCF file and the file
itself. It is used to parse through a VCF file line by line processing the bases without having to read the whole
file at one.

Parameters

• seqName (str) – Name of the stream.

• vcfFileObject (fo) – File object associated with the stream.

• speciesList ([str]) – List with species / individuals.

• firstBase (NucBase) – First NucBase to be saved.

Variables

• name (str) – Name of the stream.

• fo (fo) – Stored VCF file object.

• speciesL ([str]) – List with species / individuals.

• nSpecies (int) – Number of species / individuals.

• base (NusBase) – Stored NucBase.

close()
Closes the linked file.

print_info()
Prints VCFStream information.

read_next_base()
Read the next base.

Return position of next base.

Raise a ValueError if no next base is found.

2.4. libPoMo.vcf 17

Counts File Library Documentation, Release 1.1.0

libPoMo.vcf.check_fixed_field_header(ln)
Check if the given line ln is the header of the fixed fields.

Sample header line:

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT
→˓SpeciesL

libPoMo.vcf.get_header_line_string(indiv)
Return a standard VCF File header string with individuals indiv.

libPoMo.vcf.get_indiv_from_field_header(ln)
Return species from a fixed field header line ln.

Sample header line:

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT
→˓SpeciesL

libPoMo.vcf.get_nuc_base_from_line(ln, info=False, ploidy=None)
Retrieve base data from a VCF file line ln.

Split a given VCF file line and returns a NucBase object. If info is set to False, only #CHROM, POS, REF, ALT
and speciesData will be read.

Parameters

• info (Bool) – Determines if info is retrieved from ln.

• ploidy (int) – If ploidy is known and given, it is set.

libPoMo.vcf.init_seq(VCFFileName, maxskip=100, name=None)
Open a (gzipped) VCF4.1 file.

Try to open the given VCF file, checks if it is in VCF format. Initialize a VCFStream object that contains the
first base.

Please close the associated file object with VCFStream.close() when you don’t need it anymore.

Parameters

• VCFFileName (str) – Name of the VCF file.

• maxskip (int) – Only look maxskip lines for the start of the bases (defaults to 80).

• name (str) – Set the name of the sequence to name, otherwise set it to the filename.

libPoMo.vcf.open_seq(VCFFileName, maxskip=100, name=None)
Open a VCF4.1 file.

Try to open the given VCF file, checks if it is in VCF format and reads the bases(s). It returns an VCFSeq
object that contains all the information.

Parameters

• VCFFileName (str) – Name of the VCF file.

• maxskip (int) – Only look maxskip lines for the start of the bases (defaults to 80).

• name (str) – Set the name of the sequence to name, otherwise set it to the filename.

libPoMo.vcf.update_base(ln, base, info=True)
Read line ln into base base.

Split a given VCF file line and returns a NucBase object. If info is set to False, only #CHROM, REF, ALT and
speciesData will be read.

18 Chapter 2. Contents

Counts File Library Documentation, Release 1.1.0

2.5 libPoMo.cf

This model provides functions to read, write and access files that are in counts format.

2.5.1 The Counts Format

This file format is used by PoMo and lists the base counts for every position.

It contains:

• 1 line that specifies the file as counts file and states the number of populations as well as the number of
sites

• 1 headerline with tab separated sequence names

• N lines with counts of A, C, G and T bases at position n

It can contain:

• any number of lines that start with a #, these are treated as comments; There are no more comments allowed
after the headerline.

COUNTSFILE NPOP 5 NSITES N
CHROM POS Sheep BlackSheep RedSheep Wolf
→˓ RedWolf
1 s 0,0,1,0 0,0,1,0 0,0,1,0 0,0,5,0 0,0,0,1
1 s + 1 0,0,0,1 0,0,0,1 0,0,0,1 0,0,0,5 0,0,0,1
.
.
.
9 8373 0,0,0,1 1,0,0,0 0,1,0,0 0,1,4,0 0,0,1,0
.
.
.
Y end 0,0,0,1 0,1,0,0 0,1,0,0 0,5,0,0 0,0,1,0

2.5.2 Convert to Counts Format

To convert a fasta reference file with SNP information from a variant call format (VCF) to counts format use the
CFWriter. If you want to convert a multiple alignment fasta file, use the CFWriter together with the convenience
function write_cf_from_MFaStream().

Tabix index files need to be provided for all VCF files. They can be created from the terminal with $(tabix -p vcf
“vcf-file.vcf.gz”) if tabix is installed.

A code example is:

import import_libPoMo
import libPoMo.fasta as fa
import libPoMo.cf as cf

vcfFL = ["/path/to/vcf/file1", "/path/to/vcf/file2", "..."]

cfw = cf.CFWriter(vcfFL, "name-of-outfile")
mFaStr = fa.MFaStream("/path/to/fasta/reference")

cfw.write_HLn()

2.5. libPoMo.cf 19

Counts File Library Documentation, Release 1.1.0

cf.write_cf_from_MFaStream(mFaStr, cfw)

cfw.close()

2.5.3 Objects

Classes:

• CFStream

• CFWriter, write a counts format file

Exception Classes:

• NotACountsFormatFileError

• CountsFormatWriterError

• NoSynBase

Functions:

• interpret_cf_line(), get data of a line in counts format

• faseq_append_base_of_cfS(), append CFStream line to FaSeq

• cf_to_fasta(), convert counts file to fasta file

• write_cf_from_MFaStream(), write counts file using the given MFaStream and CFWriter

• fasta_to_cf(), convert fasta to counts format

class libPoMo.cf.CFStream(CFFileName, name=None)
Store data of a CF file line per line.

Open a (gzipped) CF file. The file can be read line per line with read_next_pos().

Parameters

• CFFileName (str) – Counts format file name to be read.

• name (str) – Optional; stream name, defaults to stripped filename.

Variables

• name (str) – Stream name.

• chrom (str) – Chromosome name.

• pos (str) – Positional string.

• fo (fo) – Fileobject.

• indivL ([str]) – List of names of individuals (populations).

• countsL ([[int]]) – Numpy array of nucleotide counts.

• nIndiv (int) – Number of individuals (populations).

read_next_pos()
Get next base.

Return position of next base. Raises ValueError if there is no next base.

Return type int

20 Chapter 2. Contents

Counts File Library Documentation, Release 1.1.0

class libPoMo.cf.CFWriter(vcfFileNameL, outFileName, splitChar=’-‘, mergeL=None, nameL=None,
oneIndividual=False)

Write a counts format file.

Save information that is needed to write a CF file and use this information to write a CF file. Initialize with a
list of vcf file names and an output file name:

CFWriter([vcfFileNames], "output")

Tabix index files need to be provided for all VCF files. They can be created from the terminal with $(tabix -p
vcf “vcf-file.vcf.gz”) if tabix is installed.

Before the count file can be written, a reference sequence has to be specified. A single reference sequence can
be set with set_seq().

Write a header line to output:

self.write_HLn()

Write lines in counts format from 1-based positions start to end on chromosome chrom to output:

rg = sb.Region("chrom", start, end)
self.write_Rn(rg)

If you want to compare the SNPs of the VCF files to a multiple alingment fasta stream (MFaStream) consider
the very convenient function write_cf_from_MFaStream().

To determine the different populations present in the VCF files, the names of the individuals will be cropped at
a specific char that can be set at initialization (standard value = ‘-‘). It is also possible to collapse all individuals
of determined VCF files to a single population (cf. mergeL and nameL).

The ploidity has to be set manually if it differs from 2.

Additional filters can be set before the counts file is written (e.g. only write synonymous sites).

Important: Remember to close the attached file objectsL with close(). If the CFWriter is not closed, the
counts file is not usable because the first line is missing!

Parameters

• vcfFileNameL ([str]) – List with names of vcf files.

• outFileName (str) – Output file name.

• verb (int) – Optional; verbosity level.

• splitChar (char) – Optional; set the split character so that the individuals get sorted
into the correct populations.

• mergeL ([Boolean]) – Optional; a list of truth values. If mL[i] is True, all individuals of
self.vcfL[i] are treated as one population orspecies independent of their name. The respec-
tive counts are summed up. If self.nL[i] is given, the name of the summed sequence will be
self.nL[i]. If not, the name of the first individual in vcfL[i] will be used.

• nameL ([str]) – Optional; a list of names. Cf. self.mL.

• oneIndividual (Boolean) – Optional; pick one individual out of each population.

Variables

• refFN (str) – Name of reference fasta file.

• vcfL ([str]) – List with names of vcf files.

• outFN (str) – Output file name.

2.5. libPoMo.cf 21

Counts File Library Documentation, Release 1.1.0

• v (int) – Verbosity.

• mL ([Boolean]) – A list of truth values. If mL[i] is True, all individuals of self.vcfL[i]
are treated as one population orspecies independent of their name. The respective counts
are summed up. If self.nL[i] is given, the name of the summed sequence will be self.nL[i].
If not, the name of the first individual in vcfL[i] will be used.

• nL ([str]) – A list of names. Cf. self.mL.

• nV (int) – Number of vcf files.

• vcfTfL ([fo]) – List with pysam.Tabixfile objects. Filled by self.__init_vcfTfL() during
initialization.

• outFO (fo) – File object of the outfile. Filled by self.__init_outFO() during initialization.

• cD – List with allele or base counts. The alleles of individuals from the same population are
summed up. Hence, self.cD[p] gives the base counts of population p in the form: [0, 0, 0,
0]. Population p does not need to be the one from self.vcfL[p] because several populations
might be present in one vcf file. self.assM connects the individual j from self.vcfL[i] such
that self.assM[i][j] is p.

• chrom (str) – Name of the current chromosome. Set and updated by write_Rn().

• pos (int) – Current position on chromosome. Set and updated by write_Rn().

• offset (int) – Value that can be set with set_offset(), if the reference sequence
does not start at the 1-based position 1 but at the 1-based position offset.

• indM – Matrix with individuals from vcf files. self.indM[i] is the list of individuals found
in self.vcfL[i].

• nIndL ([int]) – List with number of individuals in self.vcfL[i].

• assM – Assignment matrix that connects the individuals from the vcf files to the correct
self.cD index. Cf. self.cD

• nPop (int) – Number of different populations in count format output file (e.g. number of
populations). Filled by self.__init_assM() during initialization.

• refSeq (Seq) – Seq object of the reference Sequence. This has to be set with set_seq .

• ploidy (int) – Ploidy of individuals in vcf files. This has to be set manually to the correct
value for non-diploids!

• splitCh (char) – Character that is used to split the individual names.

• onlySynonymous (Boolean) – Only write 4-fold degenerate sites.

• baseCounter (int) – Counts the total number of bases.

• __force (Boolean) – If set to true, skip name checks.

add_base_to_sequence(pop_id, base_char, double_fixed_sites=False)
Adds the base given in base_char to the counts of population with id pop_id. If double_fixed_sited is true,
fixed sites are counted twice. This makes sense, when heterozygotes are encoded with IUPAC codes.

close()
Write file type specifier, number of populations and number of sites to the beginning of the output file.
Close fileobjects.

set_force(val)
Sets self.__force to val.

Parameters val (Boolean) –

22 Chapter 2. Contents

Counts File Library Documentation, Release 1.1.0

set_offset(offset)
Set the offset of the sequence.

Parameters offset (int) – Value that can be set, if the reference sequence does not start at
the 1-based position 1 but at the 1-based position offset.

set_ploidy(ploidy)
Set the ploidy.

In VCF files, usually the bases of all copies of the same chromosomes are given and separated by ‘/’ or ‘|’.
If the species is not diploid, this ploidy has to be set manually with this function.

set_seq(seq)
Set the reference sequence.

write_HLn()
Write the counts format header line to self.outFN.

write_Ln()
Write a line in counts format to self.outFN.

write_Rn(rg)
Write lines in counts format to self.outFN.

Parameters rg (Region) – Region object that determines the region that is covered.

exception libPoMo.cf.CountsFormatWriterError
General CFWriter object error.

exception libPoMo.cf.NoSynBase
Not a 4-fold degenerate site.

exception libPoMo.cf.NotACountsFormatFileError
CF file not valid.

libPoMo.cf.cf_to_fasta(cfS, outname, consensus=False)
Convert a CFStream to a fasta file.

Extracts the sequences of a counts file that has been initialized with an CFStream. The conversion starts at the
line pointed to by the CFStream.

If more than one base is present at a single site, one base is sampled out of all present ones according to its
abundance.

If consensus is set to True, the consensus sequence is extracted (e.g., no sampling but the bases with highest
counts for each individual or population are chosen).

Parameters

• cfS (CFStream) – Counts format file stream.

• outname (str) – Fasta output file name.

• consensus (Boolean) – Optional; Extract consensus sequence? Defaults to False.

libPoMo.cf.faseq_append_base_of_cfS(faS, cfS, consensus=False)
Append a CFStream line to an libPoMo.fasta.FaSeq .

Randomly chooses bases for each position according to their abundance.

Parameters

• faS (FaSeq) – Fasta sequence to append base to.

• cfS (CFStream) – CFStream containing the base.

2.5. libPoMo.cf 23

Counts File Library Documentation, Release 1.1.0

libPoMo.cf.fasta_to_cf(fastaFN, countsFN, splitChar=’-‘, chromName=’NA’, dou-
ble_fixed_sites=False)

Convert fasta to counts format.

The (aligned) sequences in the fasta file are read in and the data is written to a counts format file.

Sequence names are stripped at the first dash. If the strupped sequence name coincide, individuals are put into
the same population.

E.g., homo_sapiens-XXX and homo_sapiens-YYY will be in the same population homo_sapiens.

Take care with large files, this uses a lot of memory.

The input as well as the output files can additionally be gzipped (indicated by a .gz file ending).

Variables double_fixed_sites (bool) – Set to true if heterozygotes are

encoded with IUPAC codes. Then, fixed sites will be counted twice so that the level of polymorphism stays
correct.

libPoMo.cf.interpret_cf_line(ln)
Interpret a counts file line.

Return type is a tuple containing the chromosome name, the position and a list with nucleotide counts (cf. counts
file).

Parameters ln (str) – Line in counts format.

Return type (str, int, [[int]])

libPoMo.cf.weighted_choice(lst)
Choose element in integer list according to its value.

E.g., in [1,10], the second element will be chosen 10 times as often as the first one. Returns the index of the
chosen element.

Variables lst ([int]) – List of integers.

Return type int

libPoMo.cf.write_cf_from_MFaStream(refMFaStr, cfWr)
Write counts file using the given MFaStream and CFWriter.

Write the counts format file using the first sequences of all alignments in the MFaStream. The sequences are
automatically reversed and complemented if this is needed (indicated in the header line). This is very useful if
you e.g. want to compare the VCF files to a CCDC alignment.

Parameters

• refMFaStr (FMaStream) – The reference MFaStream.

• cfWf (CFWriter) – The CFWriter object that contains the VCF files.

libPoMo.cf.write_cf_from_gp_stream(gp_stream, cfWr)
Write counts file using a given GP stream with reference and CFWriter.

Write the counts format file using all genes in the GP stream. The sequences are automatically reversed and
complemented if this is needed.

Parameters

• gp_stream (GPStream) – The GP stream and reference GPStream.

• cfWf (CFWriter) – The CFWriter object that contains the VCF files.

24 Chapter 2. Contents

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

25

Counts File Library Documentation, Release 1.1.0

26 Chapter 3. Indices and tables

PYTHON MODULE INDEX

l
libPoMo.cf, 18
libPoMo.fasta, 9
libPoMo.main, 5
libPoMo.seqbase, 6
libPoMo.vcf, 14

27

Counts File Library Documentation, Release 1.1.0

28 Python Module Index

INDEX

A
a() (in module libPoMo.main), 5
add_base_to_sequence() (libPoMo.cf.CFWriter method),

22
append_nuc_base() (libPoMo.vcf.VCFSeq method), 16

B
binom() (in module libPoMo.main), 5

C
cf_to_fasta() (in module libPoMo.cf), 23
CFStream (class in libPoMo.cf), 20
CFWriter (class in libPoMo.cf), 21
check_fixed_field_header() (in module libPoMo.vcf), 17
close() (libPoMo.cf.CFWriter method), 22
close() (libPoMo.fasta.FaStream method), 11
close() (libPoMo.fasta.MFaStream method), 12
close() (libPoMo.vcf.VCFStream method), 17
CountsFormatWriterError, 23

D
dsRatio() (in module libPoMo.main), 5

F
FaSeq (class in libPoMo.fasta), 10
faseq_append_base_of_cfS() (in module libPoMo.cf), 23
fasta_to_cf() (in module libPoMo.cf), 23
FaStream (class in libPoMo.fasta), 10
filter_mfa_str() (in module libPoMo.fasta), 13

G
get_alt_base_list() (libPoMo.vcf.NucBase method), 16
get_base() (libPoMo.seqbase.Seq method), 7
get_base_ind() (libPoMo.vcf.NucBase method), 16
get_data_from_cf_line() (in module libPoMo.main), 5
get_distance() (libPoMo.fasta.FaSeq method), 10
get_exon_nr() (libPoMo.seqbase.Seq method), 7
get_header_line_string() (in module libPoMo.vcf), 18
get_header_line_string() (libPoMo.vcf.VCFSeq method),

16
get_in_frame() (libPoMo.seqbase.Seq method), 7

get_indiv_from_field_header() (in module libPoMo.vcf),
18

get_info() (libPoMo.vcf.NucBase method), 16
get_nuc_base() (libPoMo.vcf.VCFSeq method), 17
get_nuc_base_from_line() (in module libPoMo.vcf), 18
get_out_frame() (libPoMo.seqbase.Seq method), 8
get_rc() (libPoMo.seqbase.Seq method), 8
get_ref_base() (libPoMo.vcf.NucBase method), 16
get_region() (libPoMo.seqbase.Seq method), 8
get_region_no_description() (libPoMo.seqbase.Seq

method), 8
get_seq_base() (libPoMo.fasta.FaSeq method), 10
get_seq_by_id() (libPoMo.fasta.FaSeq method), 10
get_seq_names() (libPoMo.fasta.FaSeq method), 10
get_species_from_cf_headerline() (in module

libPoMo.main), 5
get_speciesData() (libPoMo.vcf.NucBase method), 16
gz_open() (in module libPoMo.seqbase), 9

H
has_base() (libPoMo.vcf.VCFSeq method), 17

I
init_seq() (in module libPoMo.fasta), 13
init_seq() (in module libPoMo.vcf), 18
interpret_cf_line() (in module libPoMo.cf), 24
is_number() (in module libPoMo.main), 5
is_synonymous() (libPoMo.seqbase.Seq method), 8

L
libPoMo.cf (module), 18
libPoMo.fasta (module), 9
libPoMo.main (module), 5
libPoMo.seqbase (module), 6
libPoMo.vcf (module), 14

M
MFaStream (class in libPoMo.fasta), 12
MFaStrFilterProps (class in libPoMo.fasta), 11
mutModel() (in module libPoMo.main), 5

N
NoSynBase, 23

29

Counts File Library Documentation, Release 1.1.0

NotACountsFormatFileError, 23
NotAFastaFileError, 13
NotANucBaseError, 15
NotAValidRefBase, 7
NotAVariantCallFormatFileError, 15
NucBase (class in libPoMo.vcf), 15

O
open_seq() (in module libPoMo.fasta), 13
open_seq() (in module libPoMo.vcf), 18
orient() (libPoMo.fasta.MFaStream method), 12

P
print_data() (libPoMo.seqbase.Seq method), 9
print_fa_entry() (libPoMo.seqbase.Seq method), 9
print_fa_header() (libPoMo.seqbase.Seq method), 9
print_header_line() (libPoMo.vcf.VCFSeq method), 17
print_info() (libPoMo.fasta.FaSeq method), 10
print_info() (libPoMo.fasta.FaStream method), 11
print_info() (libPoMo.fasta.MFaStream method), 12
print_info() (libPoMo.seqbase.Region method), 7
print_info() (libPoMo.seqbase.Seq method), 9
print_info() (libPoMo.vcf.NucBase method), 16
print_info() (libPoMo.vcf.VCFSeq method), 17
print_info() (libPoMo.vcf.VCFStream method), 17
print_msa() (libPoMo.fasta.MFaStream method), 12
probability_matrix() (in module libPoMo.main), 5
purge() (libPoMo.seqbase.Seq method), 9
purge() (libPoMo.vcf.NucBase method), 16

R
read_align_from_fo() (in module libPoMo.fasta), 13
read_data_write_HyPhy_input() (in module

libPoMo.main), 5
read_next_align() (libPoMo.fasta.MFaStream method),

12
read_next_base() (libPoMo.vcf.VCFStream method), 17
read_next_pos() (libPoMo.cf.CFStream method), 20
read_next_seq() (libPoMo.fasta.FaStream method), 11
read_seq_from_fo() (in module libPoMo.fasta), 14
Region (class in libPoMo.seqbase), 7
rev_comp() (libPoMo.seqbase.Seq method), 9

S
save_as_vcf() (in module libPoMo.fasta), 14
selModel() (in module libPoMo.main), 6
Seq (class in libPoMo.seqbase), 7
SequenceDataError, 9
set_force() (libPoMo.cf.CFWriter method), 22
set_offset() (libPoMo.cf.CFWriter method), 22
set_ploidy() (libPoMo.cf.CFWriter method), 23
set_ploidy() (libPoMo.vcf.NucBase method), 16
set_rc() (libPoMo.seqbase.Seq method), 9

set_seq() (libPoMo.cf.CFWriter method), 23
setGM() (in module libPoMo.main), 6
setGS() (in module libPoMo.main), 6
stripFName() (in module libPoMo.seqbase), 9

T
timeStr() (in module libPoMo.main), 6
toggle_rc() (libPoMo.seqbase.Seq method), 9

U
update_base() (in module libPoMo.vcf), 18

V
VCFSeq (class in libPoMo.vcf), 16
VCFStream (class in libPoMo.vcf), 17

W
weighted_choice() (in module libPoMo.cf), 24
write_cf_from_gp_stream() (in module libPoMo.cf), 24
write_cf_from_MFaStream() (in module libPoMo.cf), 24
write_HLn() (libPoMo.cf.CFWriter method), 23
write_Ln() (libPoMo.cf.CFWriter method), 23
write_Rn() (libPoMo.cf.CFWriter method), 23

30 Index

	cflib
	Contents
	libPoMo.main
	libPoMo.seqbase
	libPoMo.fasta
	libPoMo.vcf
	libPoMo.cf

	Indices and tables
	Python Module Index
	Index

