
All of Probability in a Box 0
Chapter

Stat 218

Contents

1 Introduction 1

2 Fixed Random Payoffs 2
2.1 Kinds . 4
2.2 FRPs at Scale . 6
2.3 Why We Care . 13

3 Equivalent Kinds 19

4 Building New FRPs: Mixtures 29
4.1 Independent Mixtures . 30
4.2 General Mixtures . 38

5 Building New FRPs: Statistics and Transforms 48
5.1 Projection and Marginals . 56
5.2 Transformed Kinds . 58

6 Building New FRPs: Conditionals 62

7 Interlude: Computations in Practice 75

8 Risk-Neutral Prices 86
8.1 Fundamental Properties of Risk-Neutral Prices 94
8.2 Computing Risk-Neutral Prices . 111
8.3 Expectations and Probabilities . 116

9 Making Predictions 119

v1.0.10 Last Updated 29 Aug 2023 at 0020

10 Building Models 119

2

1 Introduction

Our goal this semester is to develop powerful tools to model and analyze random
systems so that in the face of uncertainty, we can make better decisions, devise better
algorithms, solve challenging problems, and make effective use of data.

But human intuition is famously terrible at reasoning under uncertainty. Even
simple problems can be quite slippery. So, we develop a mathematical framework –
called probability theory – to express concepts and operations precisely and help us
build intuition about them in a real-world context. Probability theory is a rich and
technical subject, but its core ideas and mechanics are actually quite simple. The
most common operation reduces to taking weighted averages.

In this chapter, we cover all the core ideas in probability theory using random
systems that produces a finite collection of values. The calculations are straightfor-
ward, there is very little math, and we can model many random systems of interest
even with this restriction. The good news is that the concepts and operations we use
here carry the same meaning as in the general case we will cover later. The general
case will expand the reach and power of our tools, at the cost of some complexity Most of the technical

complexity in probability
theory stems from the
challenge of handling infinite
sets in a sensible way.

and abstraction. Here, we keep things simple while building a solid foundation of
understanding.

Learning how to do the calculations is helpful, but to use probability theory
effectively, it is critical to understand what the underlying quantities mean, both
conceptually and in the context of the real systems we are modeling. Meaning will
guide you in deciding what variables to define, which calculations to do and when,
and how to express the solution to a problem cleanly. Meaning also reveals the
common structure in what can seem like different ideas, deepening understanding.
Throughout these notes, we will capture that meaning through a series of models,
stories that give a framework for interpreting the quantities and operations we use.

In this chapter, our model centers on hypothetical devices – called Fixed Random
Payoff boxes, or FRPs for short – with a simple behavior: push a button, get a payoff.
Although it is not obvious at first, the key question is: How much should we pay
to push the button on an FRP? The answer to that question quantifies our ability
to predict the payoff and thus forms the basis for all of our analysis in probability
theory. With a few simple rules, we can analyze FRPs fully, and given a real-world
random system, we will see how to model that system with an FRP.

1

2 Fixed Random Payoffs

A Fixed Random Payoff box, or FRP for short, is a device that does one
thing, one time: it produces a value. Once the value is produced it is fixed for all
time, but before that it is uncertain, non-deterministic, . . . random. The value
represents a payoff that goes to the owner of the FRP, and the question of how
much an FRP is worth hinges on how well we can predict its value.

Since an FRP produces a single value by mysterious means, we need more
information to predict that value effectively. Fortunately, each FRP has a kind ,
and we have access to an unlimited supply of FRPs allowing us to study each
kind in aggregate. Examining the values of many FRPs of the same kind – across
a variety of kinds – helps us understand what to expect from FRPs.

An FRP kind is a complete tree with a positive, numeric weight on each
edge and a list of numbers at each node. The leaf nodes give the possible values
that the FRP can produce; each value is a list of numbers. And a path from
the root to the leaf shows a sequence of numbers being successively added to
the list, which starts out empty at the root. The lengths of the lists at the leaf
nodes must all be the same and is called the dimension of the FRP and its
kind. When the dimension is 1, we have a scalar FRP and kind. The number of
leaf nodes (and thus possible values) is called the size of the FRP and its kind.

Key Take Aways

An FRP is a closed box whose top face has a single button, an LED, several ports, a
touch-screen display, and a smaller metallic display. (Figure 1.) We can neither open
the box nor see what is inside it, directly or indirectly.

An FRP does one thing, one time – it produces a value. Before the button has
ever been pushed, the FRP is fresh, with both the Observed Indicator LED and the
Display off. The first time the button is pushed, the LED turns on and remains
steadily on thereafter. The Display then turns on for a few moments and shows a
value. Whenever the button is pushed thereafter, the display turns on for a few
moments and shows that same value.

So if you own an FRP, you hold the promise of some value. Before you push the
button, you do not know what that value will be, and once you’ve pushed the button,

2

Kind

⟨⟩

⟨−2⟩1

⟨0⟩3

⟨1⟩2

⟨−2⟩

⟨−2⟩ ⟨0⟩ ⟨1⟩ All

Button
Observed
Indicator
LED

Input Port

Output Ports

Metallic Display

Touch Screen Display

Figure 1. The top face of a typical fixed random payoff box, or FRP. The text will explain the
role of each element shown here, including Kinds in section 2.1 and the
input/output ports in Section 4 and 5.

the value is fixed for all time (the F in FRP). You do not know where the value comes
from or how it was produced. It could be the result of a complex physical process
or a value that a group of gnomes living inside the box finds amusing. The FRP’s
output value is random in a sense we will explore (the R in FRP).

Here, we will only consider FRPs that output lists of numbers, and we will require It is common to use
parentheses for lists, tuples,
and vectors like (3, 4, 5).
This is fine, but parentheses
are so frequently used and
overloaded that it is helpful
to have a more salient
delimiter for this purpose.

that all the possible values that might be output by any particular FRP are lists of
the same length. Throughout, we will use angle brackets ⟨⟩ to denote lists and tuples.
For example, ⟨⟩ is the empty list, ⟨1⟩ has a single element 1, ⟨0, 1⟩ has two elements
with first element 0, ⟨−1, 2, 32⟩ has three elements with first element -1, and so forth.

We will formalize our
treatment of lists, tuples,
and vectors in the next
chapter.

The length of a list is the number of elements it has. A list of length 1 is called a
scalar and is treated specially. In practice, we make no distinction between the list
with one element and the value it contains. If I give you ⟨42⟩, then for all practical
purposes I have given you the number 42, and vice versa. We say that an FRP has
dimension n if it outputs only lists of length n. If it has dimension 1, we call it a
scalar FRP .

How do we interpret an FRP’s (fixed for all time yet randomly produced) value?

3

As the P in FRP suggests, an FRP is a promise of a payoff. If you own a scalar
FRP with value v, you are entitled to receive $v one time. If v < 0, this entails
an obligation to pay $|v|. (For an FRP of dimension n > 1, we think of its value
⟨v1, v2, . . . , vn⟩ as a menu of n payoffs, and we must choose how much of each we
want before we see the value. But more on that later; for now concentrate on the
scalar case.)

How much is an FRP worth? An answer to that question is a prediction about
the FRPs value. A good answer incorporates all the information we have about the
FRP at a given time, accounting for the uncertain outcome. Understanding how to
answer that question is at the core of probability theory and will be our focus for the
rest of this chapter (and then some).

Because each FRP produces just a single value in mysterious ways, we need more
information if we are to make good predictions about the value. Fortunately, the
metallic display on each FRP depicts its kind, and we will see that FRPs with the
same kind behave similarly. So by considering a large collection of FRPs of the same
kind, we can learn what we need to make good predictions.

2.1 Kinds

The kind of an FRP describes the nature of the FRP in a way that we will explore
empirically. A kind is a tree where the values at the leaves indicate all the possible
values that an FRP of that kind might output. All these values must be distinct, For reasons that will

become clear later, we allow
for the trivial tree with only
a root node ⟨⟩ to represent
an FRP that returns only an
empty list.

and they all must have the same type (in particular, the lists at each leaf must have
the same number of elements). A tree representing a kind must also be complete,
meaning that every path from root to leaf has the same length. Each edge in the tree
has an associated number. These numbers are called the weights. All the weights
must be positive numbers. We will learn what the weight means as we play with
FRPs below.

Figure 2 shows a few simple examples of kinds and Figure 4 shows a more
complicated example. We display kinds horizontally with the root at the left and
the leaves at the right rather than the more common root-at-the-top display. This
layout offers several advantages for us, including compactness, easier comparison of
values and weights, and simpler output for the programs we use below. Figures 2
and 3 show the same kinds with horizontal and vertical layout to help you get used

4

to the former.

⟨⟩ ⟨1⟩1 ⟨⟩
⟨−1⟩1

⟨1⟩1
⟨⟩

⟨−1⟩1
4

⟨0⟩1
2

⟨9⟩1
4

Figure 2. Several FRP kinds, all with dimension 1 (scalar) and with sizes 1, 2, and 3,
respectively. The leaves, which must be distinct, give the possible values that can be
output, and the positive numbers on the edges are called weights.

⟨⟩

⟨1⟩

1

⟨⟩

⟨−1⟩

1

⟨1⟩

1

⟨⟩

⟨−1⟩

1
4

⟨0⟩

1
2

⟨9⟩

1
4

Figure 3. The same kinds as in Figure 2 but displayed with the root at the top. These more
familiar orientations are intended to help you get used to the horizontal layout. You
can use either orientation in your work, but these notes will use the horizontal layout
in what follows.

We say that an FRP and its kind have size m if the kind has m leaves; that is,
the FRP can produce one of m distinct possible values. We say that the FRP and its
kind have dimension n if the list at every leaf of the kind has length n. FRPs of
the kinds in Figure 2 have, respectively: size 1, 2, and 3. They all have dimension 1.
The kind in Figure 4 has size 6 and dimension 2. The trivial FRP, called empty, has
size 1 and dimension 0 ; it’s kind is just a root node with an empty list, denoted by
⟨⟩. We will look closely at these examples below. We call FRPs with dimension 1
scalar FRPs.

For kinds of dimension bigger than 1, the structure of the tree gives us a picture of
a random process at work in stages, generating numbers one at a time and collecting
them into a list. Starting from the empty list at the root, the FRP generates and
appends a number to the list at each level along a path from root to leaves, with
the possible numbers determined at each stage by the path taken so far. The list at
each node shows the numbers generated so far on the path to that node, with the
last element having been generated and appended at that level. So, we can think of
the FRP as generating numbers one at a time, contingent on the previous numbers

5

⟨⟩

⟨−1⟩
⟨−1,−15⟩0.4

⟨−1,−5⟩0.6
1

⟨0⟩ ⟨0, 10⟩13

⟨9⟩
⟨9, 12⟩1

⟨9, 20⟩4

⟨9, 32⟩5

2

Figure 4. A more complicated FRP. We think of the values on the leaves as being generated
in stages. Starting from an empty list at the root, the FRP first generates one of -1,
0, or 9 and appends it to the list, producing one of the lists shown at the first level.
Then depending on whether -1, 0, or 9 was appended, generates another number (-5
or -15, 10, and 12 or 20 or 32 respectively) and appends it to the list. The list at
each node contains the numbers generated in order along the path from the root.
Remember that at each level the generated numbers must be distinct and the
weights positive.

generated, and gathering these into a list. Or equivalently, we can think of the FRP
as generating a list of numbers (from the set of values at the leaf nodes) all at once.
Either way, the lists at the leaves show the distinct possible values we might see.

Puzzle 1. Draw the kind of an FRP of dimension 2 in which the second element
generated is not influenced by the first element generated.

Puzzle 2. Draw the kind of an FRP of dimension 3 (and size bigger than 3) in
which the values generated are all lists whose elements sum to zero.

2.2 FRPs at Scale

You have access to a warehouse containing a seemingly inexhaustible supply of FRPs.
The warehouse manager does not like other people poking around in the warehouse,
so you tell the manager the kind and number of FRPs you want, and the manager
retrieves them for you. All these FRPs are fresh; their buttons have not ever been
pushed.

It is rather tiresome to go to the warehouse and haul back tons of boxes whenever
you order some FRPs, not to mention pushing all the buttons and recording the

6

values. Fortunately, the warehouse is highly automated, so you can manage the entire
transaction with a program called frp that the warehouse makes available. With a
single command from your computer, you can request any number of fresh FRPs,
have their buttons pushed, and receive a record of the values from each (as a list or
summary). Fast and painless for you, though a lot of work for the warehouse staff. Many Bothans worked hard

to bring you this
information.For a short time, you have a free trial where you can get as many FRPs as you

like at no cost, and see their values. As this is a demo only, you receive no payoff
when you push the button. We will use this free trial to understand how FRPs work,
what their kinds mean, and how to price them. Later, when the trial expires, money
will change hands, so the stakes will be higher.

Activity. Install the frplib package by following the instructions at https:

//github.com/genovese/frplib. This is a Python application and library that
you can run standalone or use from your own programs. (There are several
ways to invoke the program as described in the instructions on the GitHub
page, including python3 -m frplib, but in what follows here, we will use the
command frp as a placeholder.)

You run the frp application from the terminal command line on Mac OS,
Linux, or Windows, invoking it with different sub-commands to use it in various
ways, like frp market and frp playground.

In this section, we will focus on frp market. When you enter this at the
terminal prompt, you will be repeatedly prompted for tasks to send to the FRP
warehouse. When you see the prompt market> you can enter a task. These
can span multiple lines and must end in a period (.). After the first line of a
multi-line command, the prompt will become ...> indicating an incomplete
task. Type “exit.” or “done.” at the prompt to end your session, or “help.”
for assistance.

Some of the market commands operate on a kind, and to specify that kind
we use a simple text format that represents the tree. The program needs you to
specify the kind of FRP to simulate. Details can be seen with the “help kinds.”
task in the market. For example, the kind in Figures 2 and 4 are represented by
the following strings:

7

https://github.com/genovese/frplib
https://github.com/genovese/frplib

(<> 1 <1>)

(<> 1 <-1> 1 <1>)

(<> 0.25 <-1> 0.5 <0> 0.25 <9>)

(<> 1 (<-1> 0.4 <-1, -15> 0.6 <-1, -5>)

3 (<0> 1 <0, 10>)

2 (<9> 1 <9, 12> 4 <9, 20> 5 <9, 32>))

Each string is a ()-balanced expression with weights and values in alternating
pairs at each level. Each value tuple is enclosed in <>. Whitespace, including
any newlines, is ignored.

We will show the commands at the “market> ” prompt and see the program’s
output in response. Any text from # to the end of a line is a comment for your benefit;
you should not enter it when following along.

We can always use the show command to check that our input string gives the
kind we expect. For example:

market> show kind (<> 1 (<0> 1 <0, 0> 2 <0, 1> 3 <0, 2>)

...> 2 (<1> 1 <1,1> 1 <-1, -1>)).

,------- 1 ------- <0, 0>

,----- 1 ---- <0> +------- 2 ------- <0, 1>

| `------- 3 ------- <0, 2>

<> +

| ,------- 1 ------- <-1, -1>

`----- 1 ---- <1> |

`------- 1 ------- <1, 1>

market> show kind (<> 1)

The input '(<> 1)' is not a valid kind; it appears to be missing a value.

Now let’s begin by examining the simplest, non-empty FRP, ⟨⟩ ⟨1⟩1

market> demo 10000 with kind (<> 1 <1>).

Activated 10000 FRPs with kind (<> 1 <1>)

Summary of output values:

8

1 10000 (100%)

(Notice that since this is a scalar FRP, the table elides the distinction between the
value 1 and the value ⟨1⟩.)

This tells us that all 10000 of the FRPs of this kind gave value 1, which makes
sense as that is the only possible value it can give. Try again with a different weight,
for instance:

market> demo 10000 with kind (<> 0.001 <1>).

Activated 10000 FRPs with kind (<> 0.001 <1>)

Summary of output values:

1 10000 (100%)

which yields the same result.
Try it yourself for a variety of weights. It seems that with an FRP whose kind has

size 1, the weights have no influence, and it always outputs the value on the single
leaf node.

So an FRP with kind ⟨⟩ ⟨v⟩w is called a constant FRP with value v.
For all weights w, it can be completely identified with the constant v itself; whether I
gave you the value v or an FRP that produces that value, you should be indifferent.
For all practical purposes, they are the same. Indeed, in this special case, we can
abuse our notation a bit and display the constant kind without the (irrelevant)
weight, which we will implicitly take to be 1: ⟨⟩ ⟨v⟩ is the constant v.

Next, consider the kind
⟨⟩

⟨0⟩1

⟨1⟩1 and run a demo where you examine
the values of 10,000 FRPs of this kind. Here’s the command and an output similar
to what you will see:

market> demo 10_000 with kind (<> 1 <0> 1 <1>).

Activated 10000 FRPs with kind (<> 1 <0> 1 <1>)

Summary of output values:

0 5031 (50.31%)

1 4969 (49.69%)

(In the market, numbers can contain _ to separate blocks of three digits and make
the numbers more readable.) The numbers of 0’s and 1’s are almost equal. Trying it
with a larger number of FRPs might give

9

market> demo 1_000_000 with kind (<> 1 <0> 1 <1>).

Activated 1000000 FRPs with kind (<> 1 <0> 1 <1>)

Summary of output values:

0 499895 (49.99%)

1 500105 (50.01%)

This suggests a hypothesis about the weights. Let’s vary the weights:

market> demo 1_000_000 with kind (<> 1 <0> 4 <1>).

Activated 1000000 FRPs with kind (<> 1 <0> 4 <1>)

Summary of output values:

0 200300 (20.03%)

1 799700 (79.97%)

So when the weights were both 1, we saw about the same number of 0’s and 1’s, but
when the weights were 1 and 4, the relative frequencies of 0’s and 1’s produced was 1
to 4. Let’s scale up the weights:

market> demo 1_000_000 with kind (<> 100 <0> 400 <1>).

Activated 1000000 FRPs with kind (<> 100 <0> 400 <1>)

Summary of output values:

0 199987 (20.00%)

1 800013 (80.00%)

and down:

market> demo 1_000_000 with kind (<> 0.2 <0> 0.8 <1>).

Activated 1000000 FRPs with kind (<> 0.2 <0> 0.8 <1>)

Summary of output values:

0 199987 (20.00%)

1 800013 (80.00%)

The frequencies are the same: 1 to 4.

Puzzle 3. If I give you a choice between two FRPs, with actual payoff, with kinds
(<> 10 <-1> 30 <0> 20 <10>) and (<> 100 <-1> 300 <0> 200 <10>), which

10

do you prefer and why?
Back up your preferences with evidence from the frp market.

Puzzle 4. If you demo a large number of FRPs with kind (<> a <0> b <1> c <2>),
where a, b, and c are arbitrary positive weights, what relative frequencies of the
values 0, 1, and 2 do you expect to see?

Try it for various values of a, b, and c. Did your intuition match the results?
What happens if you increase or decrease the number of FRPs you sampled?

The buy command in the market allows you to purchase FRPs of specified kinds
and numbers at specified prices. Since we are still in our free trial, there are no
consequences, so it is like demo but computes our net payoffs:

market> buy 1_000_000 @ 1

...> with kind (<> 2 <-5> 3 <0> 5 <4>).

Buying 1,000,000 FRPs with kind (<> 2 <-5> 3 <0> 5 <4>) at each price

Price/Unit Net Payoff Net Payoff/Unit

$1.00 $ -1,319.00 $-0.001319

Puzzle 5. If you run a demo with kind (<> 2 <-5> 3 <0> 5 <4>) and specify
the price per FRP (the number after the @ in the buy command), how would you
use the demo results and the price to compute a table similar to what the buy

command shows.
Can you go the other way? What if the kind were of the form (<> a <0> b <1>)

for some weights a and b?
Note: in any run of the demo and buy commands, the results will be slightly

different because different FRPs are being activated, even if they have the same
kind.

To test our intuition, let’s consider a kind of size 2.

market> demo 1_000_000 with kind

...> (<> 1 (<0> 1 <0, 0> 2 <0, 1> 3 <0, 2>)

...> 2 (<1> 1 <1,1> 1 <-1, -1>)).

11

Activated 1000000 FRPs with kind

(<> 1 (<0> 1 <0, 0> 2 <0, 1> 3 <0, 2>)

2 (<1> 1 <1,1> 1 <-1, -1>))

Summary of output values:

<0, 0> 83553 (8.36%)

<0, 1> 166528 (16.65%)

<0, 2> 249566 (24.96%)

<-1, -1> 250614 (25.06%)

<1, 1> 249739 (24.97%)

These results are a bit more mysterious, and we will see exactly where they came
from in the next section. But for now, look closely at the weights and think about
the process in stages. Try varying the weights slightly in the market. For instance,
what happens with weights (<0> 1 <0, 0> 1 <0, 1> 3 <0, 2>) on the top subtree
of the kind? Putting this together, can you get a sense of why the demo shows these
relative frequencies?

Puzzle 6. Considering your explorations over the last few puzzles and examples,
how would you summarize your findings in a sentence? Can you state a general
hypothesis about what the weights tell us?

Explore with further demos to see what you can learn about what the kind of an
FRP tells us about its output.

Activity. Use the frp program to empirically explore the meaning of FRPs and
their kinds. Start with kinds of dimension 1 and convince yourself of the above
hypothesis. What then can you deduce about higher dimensional kinds? Try
some simple cases to connect the weights on the tree to the proportions in the
summary output.

Puzzle 7. We have seen empirically that an FRP with kind (<> 1 <0> 1 <1>)

will produce roughly even proportion of 0’s and 1’s. How does this depend on the
number of FRPs you sample?

12

To investigate this, start with a couple demos of 100 FRPs of this kind. How
close are the frequencies of 0’s and 1’s to 50%. How many FRPs do you have to
include in your demo for these frequencies to get an extra decimal point closer to
50%?

2.3 Why We Care

We have gotten an introduction to what FRPs and their kinds are and gotten an
inkling of how they behave. In the next few sections, we will develop these ideas fully
so that we can make good predictions about FRPs output. These predictions – and
the calculations underlying them – gives us probability theory in a nutshell. The big
payoff comes in Section 10 when we see how to use FRPs to model random processes
in the real world and find that we already know how to answer all the questions we
need. But as motivation toward that payoff, here is an example to give you a sense
of what is to come.

The (in)famous Monty Hall game goes as follows:

1. You are faced with three doors: left, middle, right.
2. Monty has selected a door at random and placed a prize behind it; the other

two doors have nothing behind them.
3. You choose a door.
4. Monty – the MC of our game – opens one of the other doors revealing that it

does not hide the prize.
5. He offers you a chance to switch doors.
6. You indicate whether you will switch your choice.
7. Your final door is opened. If you picked the prize, you win; otherwise, you lose.

Should you take Monty’s offer to switch?
To begin, consider the strategies available to you in this game. Each strategy

specifies: i. how you pick your initial door, and ii. whether you accept Monty’s offer
to switch from your initial door choice. For example, one strategy is (Pick the Left
Door, Do not switch); another is (Pick the Door based on a size 3 FRP with equal
weights, Switch). We will analyze each distinct strategy separately, using one FRP
per strategy.

Once your strategy has been specified, we build a corresponding FRP to represent
the decisions made at each stage of the game. Those choices are:

13

1. Monty hides the prize behind the left, middle, or right door.

2. You select either the left, middle, or right door according to your strategy.

These decisions are illustrated in Figure 5.

Monty hides
prize behind

Left Door, and you choose
Left Door

Middle Door
Right Door

Middle Door, and you choose
Left Door

Middle Door
Right Door

Right Door, and you choose
Left Door

Middle Door
Right Door

Figure 5. The decision tree leading to your initial door choice in the Monty Hall game. For
any given strategy, these are the choices that determine the outcome of the game.

We model this process with an FRP. First, we assign numeric values to the
outcome at each stage, with Left Door as 1, the Middle Door as 2, and the Right
Door as 3. Second, we assign weights based on the description of the problem. Note
that Monty has placed the prize behind a door picked at random with equal weight
on each door, and then you pick a initial door according to your particular strategy.
An FRP reflecting this interpretation thus has kind shown in Figure 6. Here, we have
quantified your strategy as an arbitrary choice of positive weights ℓ,m, r and a choice
of whether to switch.

It turns out, as we will see later, that the choice of weights has no impact on our
analysis, so we will focus on comparing the “Don’t Switch” and “Switch” strategies.

Puzzle 8. What does it say about your strategy if ℓ, m, and r are all equal? What
does it say about your strategy if ℓ = 1 = r but m is very, very, very large?

By the game’s structure of the game, if you do not switch, then you only win if
you chose the prize initially; if you do switch, then you only win if you did not choose
the prize initially.

14

⟨⟩

⟨1⟩
⟨1, 1⟩ℓ

⟨1, 2⟩m

⟨1, 3⟩r

1

⟨2⟩
⟨2, 1⟩ℓ

⟨2, 2⟩m

⟨2, 3⟩r

1

⟨3⟩
⟨3, 1⟩ℓ

⟨3, 2⟩m

⟨3, 3⟩r

1

Figure 6. The kind for the FRPs modeling the Monty Hall game. In each value list, the first
element is Monty’s door choice and the second element is your door choice. The
weights ℓ, m, and r are discussed in the text.

Puzzle 9. (Important!)
For each leaf node in Figure 6, fill in the table below indicating whether you

Win or Lose under the Don’t Switch and the Switch strategies.

Value Don’t Switch Switch

⟨1, 1⟩

⟨1, 2⟩

⟨1, 3⟩

⟨2, 1⟩

⟨2, 2⟩

⟨2, 3⟩

⟨3, 1⟩

⟨3, 2⟩

⟨3, 3⟩

This means that if the FRP’s value is denoted by ⟨dMonty, dYou⟩, then

• If you do not switch, you win if and only if dMonty = dYou.

• If you do switch, you win if and only if dMonty ̸= dYou.

15

As we will see, we can now transform the output of each FRP using a statistic that
gives a value 1 if you win and 0 if you lose in either case. This gives us new FRPs We will see how to do this

in Section 5.with kinds shown in Figure 7 for the no switch case (top) and the switch (bottom).

Don’t switch: ⟨⟩

⟨0⟩2

⟨1⟩1

Switch: ⟨⟩

⟨0⟩1

⟨1⟩2

Figure 7. The kind for the transformed FRPs in the no-switch and switch cases, respectively.
Notice that the weights in the two cases are different and that they do not depend
at all on ℓ, m, or r.

Later we will use the frp playground command to build and play with FRPs Here and later, text from #
to the end of a line is a
comment for your benefit.
You should not type that.

and their kinds. Here is a preview related to this example.
We first load from frplib.examples.monty two pre-defined kinds and a predefined

“statistic”:

playground> from frplib.examples.MontyHall import (

...> door_with_prize, chosen_door, got_prize_door_initially

...>)

The first two are kinds, described as follows:

• door_with_prize models which door has the prize, giving equal weight to 1, 2,
and 3; and

• chosen_door models your initial door choice. It has arbitrary weights ℓ,m, r
on all three doors.

We can combine these with an independent mixture to get the kind in Figure 6.
(What is the playground expression for that mixture?)

We then transform that kind into new kinds using statistics. A statistic takes the Don’t worry about the
details here; we will cover it
soon. See the “Playground
Overview” on page 36 and
the frplib Cheatsheet for
a summary.

value produced by an FRP as input and computes a new value, possibly of different
dimension, as output. For example,

16

got_prize_door_initially

extracts from the game outcome a 1 when your initial door choice hides the prize, or 0 if
not. From that, we define the complementary statistic didnt_get_prize_door_initially

playground> didnt_get_door_prize_initially = Not(got_prize_door_initially)

We use these statistics to produce the kinds of the game results under both the Don’t

Switch and Switch strategies:

playground> game_outcome = door_with_prize * chosen_door # Kind in Fig 6

playground> dont_switch_win = got_prize_door_initially(game_outcome)

playground> switch_win = didnt_get_prize_door_initially(game_outcome)

playground> dont_switch_win

,---- 2/3 ---- 0

<> -+

`---- 1/3 ---- 1

playground> switch_win

,---- 1/3 ---- 0

<> -+

`---- 2/3 ---- 1

Finally, we activate FRPs of each kind to see what we should do in the game.

playground> Frp.sample(12_000, dont_switch_win)

Summary of output values:

0 7929 (66.1%)

1 4071 (33.9%)

playground> Frp.sample(12_000, switch_win)

Summary of output values:

0 3954 (32.9%)

1 8046 (67.1%)

17

Here, we pushed the buttons on 12,000 FRPs of each kind dont_switch and switch,
respectively. The results are clear cut: switching seems like the right choice.

After reading this section you should be able to:

• Describe what an FRP is and what each of the words fixed, random, and
payoff in the name refers to.

• Explain the structure of a valid FRP kind.

• Use the frp market to examine the values of FRPs of a given kind.

• Make some educated guesses, based on your work in the market, about an
FRPs value from its kind.

• Explain roughly how FRPs might be useful for modeling real systems.

Checkpoints

18

3 Equivalent Kinds

Kinds are described by weighted, complete trees, yet as we intuited in our
explorations earlier, different trees can be equivalent in terms of predicting an
FRP’s value.

Two kinds k and k′ with the same size, dimension, and set of values on their
leaves are equivalent if given a collection containing any number of FRPs which
each have either kind k or kind k′, one cannot distinguish the kinds of the FRPs
using their values, even in the aggregate. We can define this formally in terms
of prices. The bottom line is that FRPs with equivalent kinds are completely
interchangeable.

Kinds that differ only in the order of branches at a node are equivalent.
Kinds that differ only in a constant scaling of the weights branching from any
node are equivalent. And any kind can be reduced to an equivalent kind in
compact form by Algorithm Compact.

Every kind tree has a canonical form, which we can obtain (Algorithm
Canonical) by

1. Ordering the leaves from top to bottom in increasing lexicographic order.

2. At each non-leaf node of the tree, normalizing the weights on the edges
branching from that node so that they sum to 1.

3. Reducing the tree to compact form using Algorithm Compact.

Every kind is equivalent to its canonical form. Two kinds are equivalent
if they have the same canonical form.

Algorithms Compact and Unfold can be used to convert between a single-
level compact form and a multi-level (in general) unfolded form. The calculations
that carry out this transformation will arise later in our prediction methods.

Key Take Aways

An FRP produces a single value, fixed for all time once the button is first pushed.
So how can we predict anything about its value? Fortunately, we have seen in our

19

empirical investigations that we can make predictions in the aggregate by demoing
many FRPs of the same kind. The kind represents an “ideal” version of the demo, in
that as we demo more and more FRPs of that kind, the relative frequencies of the
values we see in the demo more closely match the weights in the kind.

Kinds are described by weighted, complete trees, with values of the same dimension
on the leaves and positive numbers for the weights. As we intuited in our explorations
earlier, it is possible to have different trees that are equivalent in terms of the
predictions they make about an FRP of that kind. Here, we take a closer look
at when two kind trees are equivalent and see how to convert among different
representatios of equivalent kinds. Such conversions will be useful when we calculate
predictions in coming sections.

Loosely speaking, two kinds k and k′ are equivalent when, before observing any
FRPs’ values, we are indifferent to replacing any FRP of kind k with an FRP of
kind k′ and vice versa. If one kind were easier to predict or tended to produce bigger
payoffs or if we could distinguish the kinds based on the values we see, then we
would not be indifferent between them. Equivalent kinds lead to FRPs that are
interchangeable.

Definition 1. Two kinds k and k′ are equivalent if both the following conditions
hold:

1. k and k′ have the same size, dimension, and set of values on their leaves.

2. If we can purchase m FRPs, either all of kind k or all of kind k′, at a per
unit price c, we would be willing to purchase m FRPs with any mixture of
kinds k and k′ at the same price c.

for any positive integer m and real number c. Recall that purchased FRPs are

Negative prices mean we are
paid to acquire the FRP.

fresh, so their buttons have never been pushed when we check this condition.

Another way to state this definition is that if you had a collection containing
any number of FRPs which each of which is either kind k or kind k′, you cannot
distinguish the kinds of the FRPs using their values, even in the aggregate. We could
not, for instance, separate the FRPs into groups by kind, even after seeing the FRPs’
values.

20

It is easy to check condition 1 of this definition by inspection, but it’s less clear how
to check condition 2. Condition 2 relates to the possible values and the corresponding
weights along each path from root to leaf. The good news is that given condition
1, condition 2 reduces to a few simple rules, making it easy to recognize equivalent
kinds.

One arbitrary choice we make in displaying a kind tree is the order of branches at
each node. For example, in Figure 8, the following two kinds differ only in branch
order and FRPs with these kinds would be indistinguishable in their behavior. Kinds
that differ only in the order of branches at a node are equivalent.

⟨⟩

⟨−1⟩
⟨−1,−15⟩0.4

⟨−1,−5⟩0.6
1

⟨0⟩ ⟨0, 10⟩13

⟨9⟩
⟨9, 12⟩1

⟨9, 20⟩4

⟨9, 32⟩5

2

⟨⟩

⟨0⟩ ⟨0, 10⟩13

⟨9⟩
⟨9, 32⟩5

⟨9, 12⟩1

⟨9, 20⟩4

2

⟨−1⟩
⟨−1,−5⟩0.6

⟨−1,−15⟩0.4
1

Figure 8. Two kinds that differ only in the order of branches at some nodes.

We can choose a canonical branch order. At each branching, order the nodes
in increasing order of the last component in the value. Equivalently, we order
the branches so that the leaf tuples are sorted from bottom to top in increasing
lexicographic order (sort first by the first component, then by the second, and so forth).
We are not required to use this order, but it provides a standard for comparison, as
we will see below. For example, the top kind in Figure 8 is in canonical branch order.

Another choice we have to make in specifying a kind is the size of the weights.

21

This is not arbitrary like the branch order, but we do have some freedom. Consider
the kinds in Figure 9. Are these distinguishable? You can try these in the frp market

using the compare command, which acts like demo but takes two kinds with the same
size dimension and value. For example,

compare 1000 with kinds (<> 1 <0> 1 <1>) (<> 0.5 <0> 0.5 <1>).

will print a table results by value for the two kinds. Can you tell these apart?

⟨⟩
⟨0⟩1

⟨1⟩1
⟨⟩

⟨0⟩100

⟨1⟩100
⟨⟩

⟨0⟩1
2

⟨1⟩1
2

Figure 9. Three kinds whose weights differ only by a constant multiplicative factor.

Short answer: no. If we scale all the weights branching from any node in a
kind tree by the same multiplicative factor, we get a new kind whose demos will be
indistinguishable from the original. Kinds that differ only in a constant scaling of the
weights weights branching from any node are equivalent. This means that we have
two kinds of the same size, dimension, and values and whose weights on the edges
branching from some node, w1, . . . , wm and w′

1, . . . , w
′
m, satisfy: there is a c > 0

where wi/w
′
i = c for every i.

We make a canonical choice of scalings: the sum of the weights emanating from
any node equals 1. Again, we are not required to use this scaling, and it is sometimes
convenient not to, but it serves as a standard to make comparison (and some other
calculations) easier.

The last choice we make in presenting kinds is the number of levels to depict
for kinds of dimension > 1. Having multiple levels in the tree emphasizes the
sequential nature of the values generated and highlights the contingent choices made
for each component of the generated value. But at the same time, there is redundant
information in the multi-level presentation. Can you construct one kind in Figure 10
from the other? The kind shown on top is a multi-level tree; we call this the unfolded
form. The kind shown on the bottom has the same size, dimension, and values but
has one level; we call this the compact form. It might not seem obvious at first but
the two are equivalent, and there are easy algorithms to go back and forth between
them. See Algorithms Unfolded

and Compact.

22

⟨⟩

⟨10⟩
⟨10, 40⟩1

⟨10, 50⟩2

⟨10, 60⟩3

1

⟨20⟩
⟨20, 70⟩1

⟨20, 80⟩3
1

⟨30⟩ ⟨30, 90⟩11

⟨⟩

⟨10, 40⟩1
18

⟨10, 50⟩1
9

⟨10, 60⟩1
6

⟨20, 70⟩1
12

⟨20, 80⟩1
4

⟨30, 90⟩1
3

Figure 10. A kind in two forms: unfolded and compact. Can you go from one to the other?

23

Our canonical choice is to show kinds in compact form. Again, we are not required
to use this choice – unfolded form can be illuminating – but it will be our default.

Every kind has a canonical form , which we can find with the following algorithm.

Algorithm Canonical

Given as input a kind k, returns the canonical form of that kind in three steps:

1. Order the leaves from top to bottom in increasing lexicographic order.

2. At each non-leaf node of the tree, normalize the weights on the edges branching
from that node so that they sum to 1.

3. Reduce the tree to compact form using Algorithm Compact.

The result is the canonical form of kind k.

And here is the key principle of equivalence.

Every kind is equivalent to its canonical form. Two kinds are equivalent if they
have the same canonical form.

So, from here on, when we consider a kind, we will effectively identify it with the
class of kinds that are equivalent to that tree. We treat the canonical form as the
(typical) representative of this class, though we can freely translate among different
equivalent trees when it gives us insight or helps with calculations.

At this point, it will be useful to establish a naming convention for FRPs and
kinds, to make it easier to reference them. We will use capital Roman letters (like
X,Y , and Z) to name FRPs, sometimes with subscripts to indicate FRPs that are
related in some way. Thus, we can name FRPs X, Y1, Y2, R, M , D3 and so forth. If
we want to emphasize that a group of FRPs represent distinct FRPs with the same
kind, we will use the same base letter and wrap the subscripts with the index in
brackets. For instance, a collection of four like-kinded FRPs X[1], X[2], X[3], X[4].

We will also use adorned letters like k, k′, k1, . . . to refer to particular but unspec-
ified kinds.

If X is an FRP, kind(X) is its kind, dimension(X) is its dimension, size(X) is its
size, and its set of values is values(X). Again, kind(X) really refers to an equivalence

24

class of trees, though we can display it as any of the equivalent trees, with the
canonical form by default.

Finally, we turn to the algorithms for compactifying and unfolding a kind tree.
Consider first the kind at the top of Figure 10. We will carry out Algorithm Compact

in three steps. First, we normalize the weights so that for each non-leaf node, the
branches coming from that node have weights that sum to 1. The tree becomes

⟨⟩

⟨10⟩
⟨10, 40⟩1

6

⟨10, 50⟩1
3

⟨10, 60⟩1
2

1
3

⟨20⟩
⟨20, 70⟩1

4

⟨20, 80⟩3
4

1
3

⟨30⟩ ⟨30, 90⟩11
3

We work one non-leaf node at a time, including the root. Typically, we would reduce
fractions to lowest terms, but that is not always necessary or clarifying. Then, for
each leaf node, we multiply the normalized weights along the path from root to leaf,
recording the result. For instance, for the ⟨10, 40⟩ leaf node, we get 1

3 · 1
6 = 1

18 ; for
the ⟨20, 80⟩ leaf node, we get 1

3 ·
3
4 = 1

4 ; and so on. Creating a one level tree with the
same leaf nodes and the weights corresponding to these products yields the compact
form at the bottom of the Figure.

Algorithm Compact

Input: a kind as an unfolded tree
Returns: the kind in equivalent compact form.

Step 1. At each non-leaf node of the tree, normalize the weights on the edges
branching from that node so that they sum to 1.

Step 2. For each leaf node of the tree, multiply together the weights along the
path from the root to that leaf. Record the resulting product for that leaf.

Step 3. Create a single level tree with the same leaf nodes and set the weight for

25

each leaf node to be the product you computed for that node in Step 2.

The resulting kind tree is the compact form.

You use the frp playground command to view and manipulate kinds and under- When showing playground
input and output, text from
to the end of a line is a
comment for your benefit.
You should not type or enter
that.

stand this transformation. Within the playground, you can assign FRPs and kinds
to variables. Pick a kind, apply the algorithms, and then use commands like the
following to see both forms.

playground> practice_1 = '(<> 10 (<3> 1 <3, 2> 7 <3,3>)

...> 11 (<30> 4 <30,0> 8 <30,2>))'

playground> k1 = kind(practice_1) # The kind specified by practice_1

playground> unfold(k1) # shows the unfolded form

playground> k1 # shows the k1's canonical form

The playground can do much more, as we will see in the next section.
Now let’s go the other way, looking at the bottom tree Figure 10. The key to

making this work is that each value generated at each level must be distinct. First, we
normalize the weights as in the previous two algorithms, then we build the unfolded
form from the leaves up.

The leaf nodes in the unfolded form will be the same as in the compact form. To
get the nodes at the next higher level, we remove the last value in the list. When
we do this, we get three ⟨10⟩’s and two ⟨20⟩’s, and because values must be distinct,
we need to combine each of these sets into a subtree. Let’s focus on the ⟨10⟩’s and
the three nodes from which they come. These nodes will be grouped in a subtree
with ⟨10⟩ at the branch. Add together the weights for these three nodes, yielding
1
18 + 1

9 + 1
6 = 1

3 . We carry the 1/3 forward and divide each of the nodes’ weights
by 1

3 to renormalize the sum to 1. Our subtree weights then become 1
6 ,

1
3 , and 1

2

respectively. Now we repeat the process with the node ⟨10⟩. We remove the last item
from the list which gives the empty node; there are no repeats here. The 1

3 that we
carried over becomes the weight for that edge.

For completeness, let’s do the other two cases. The leaf nodes that start with 20
have weights 1

12 and 1
4 ; adding these gives 1

3 . Renormalizing gives weights 1
4 and 3

4

for the subtree with nodes ⟨20, 70⟩ and ⟨20, 80⟩, carrying 1
3 forward. Repeating for

⟨20⟩ brings us to the root, so that edge has weight 1
3 .

The node is ⟨30, 90⟩. We remove the 90, but there no duplicates and the weight

26

is 1
3 , which normalizes to 1, carrying 1

3 forward. Removing 30 brings us to the root
with a weight of 1

3 . The result is as in the earlier Figure.
Algorithm Unfolded carries out these same operations for arbitrary kinds.

Algorithm Unfolded

Input: a kind as a compact (single level) tree
Returns: the kind in equivalent unfolded form.

Step 1. Convert the compact tree to canonical form; in particular, normalize the
weights in the input kind so that they sum to 1. Call this T0.

Step 2. Define two kind-valued variables S and T . Initialize both to T0

Step 3. While kind S has dimension > 1, do the following:

i. Partition the leaf nodes S into disjoint sets L1, . . . ,Lm (for some m ≥ 1)
of leaf nodes whose values are equal excluding the last element.

ii. For Lj with j ∈ [1 . .m], do the following:

a. Let n1, . . . , nk be the leaf nodes in Lj , with values of the form
⟨v1, . . . , vd−1, xi⟩ d = dimension(S) and i ∈ [1 . . k], where v1, . . . , vd
are the same for all k nodes and x1, . . . , xk are distinct.

b. Modify T by removing the edges from the common parent of the
nodes n1, . . . , nk and replacing them with an edge from that common
parent to a new node bj and with edges from bj to each node
n1, . . . , nk.

c. Set the value for node bj to ⟨v1, . . . , vn−1⟩.
d. If w1, . . . , wk are the weights on the edges from n1, . . . , nk to their

original parent in T , set the new weight on the branch from bj to
each ni to wi/(w1 + · · ·+ wk) and the weight on the branch from
bj to its parent to be w1 + · · ·+ wk.

iii. Set S to the (upper) subtree of T consisting of all nodes from the root
up to and including the new nodes (i.e., b1, . . . , bm) added in step ii.

Step 4. Return T .

27

Activity. Generate several kinds in a mixture of unfolded and compact forms.
Apply the algoritms to convert each to the other form. Use the frp playground

command to view each kind in both forms and check your answers.

After reading this section you should be able to:

• Determine if two kind trees are equivalent.

• Convert a kind tree into canonical form via Algorithm Canonical

• Apply Algorithms Compact and Unfolded to convert back and forth
between the compact and unfolded views of a kind.

Checkpoints

28

4 Building New FRPs: Mixtures

We can combine FRPs by connecting output ports to input ports in several ways
to build new FRPs. The resulting FRPs capture important concepts: generating
random outcomes contingent on earlier outcomes (mixtures), transforming the
output of an FRP by some algorithm (statistics), and making predictions based
on partial information (conditionals). The operations on FRPs lead to directly
analogous operations on kinds, which will be fundamental in building and
analyzing models for real systems. By combining mixtures, statistics, and
conditionals we can model – and answer – most questions that arise in probability
theory.

A mixture builds a higher-dimensional FRP from two or more lower-
dimensional FRPs. It selects one of several FRPs of the equal dimension (the
targets) to activate contingent on the output value of another FRP (the mixer).
We hook each of the output ports of the mixer to an input port of one of the
targets, and when the mixer is activated, it triggers the rest, producing a value
that concatenates the value produced by the mixer and the activated target.
Mixtures capture a common feature of many random processes: contingent
evolution.

Key Take Aways

A mixture builds a higher-dimensional FRP from several lower-dimensional FRPs.
One of these is called the mixer, and the rest are called targets, which must all
have the same dimension. The mixture FRP selects one of the targets to activate
contingent on the output value of the mixer. We hook the mixer’s output ports to the
targets’ input ports, and when the mixer is activated, it triggers the rest, producing
a value that concatenates the value produced by the mixer and the activated target.

Mixtures capture a common feature of many random processes: contingent
evolution. First something happens, then something else happens depending on
what happened initially, and so on. We start with the case of independent mixtures,
where what happens at each stage does not influence what happens later. Then we
generalize from there.

29

4.1 Independent Mixtures

Think back to the Monty Hall game in Section 2.3. For any given strategy, the
outcome is determined by two stages: Monty’s choice of a door and your choice of
a door. However, those two choices do not interact : you choose a door in exactly
the same way whatever Monty does. You do not know what his choice was and are
completely uninfluenced by it.

To reflect that with an FRP, we start with two FRPs, M (for Monty) and Y for
you, with respective kinds

⟨⟩

⟨1⟩1

⟨2⟩1

⟨3⟩1

M ⟨⟩

⟨1⟩ℓ

⟨2⟩m

⟨3⟩r

Y

We want to combine them to form a new FRP where the first part of the value
(Monty’s door) gets generated at the push of the button which triggers the second
part of the value to be generated (your door) but in the same way regardless of the
first part.

To do that, we can connect the All output port of M to the input port of Y . This
has several effects:

• Y ’s button is disabled, and Y is instead activated when M produces a value.

• When M ’s button is pushed, Y ’s display shows the combined value, and M ’s
display is disabled.

• Y ’s output ports reconfigure (and relabel) automatically to give access to the
combined value.

We call this FRP the independent mixture of M and Y and denote the resulting
FRP by M ⋆ Y . The kind M ⋆ Y is shown in Figures 11. The ⋆ operation on kinds
means that we attach a copy of the kind(Y) tree to each leaf node in kind(M) and
convert the new leaf nodes to hold the concanated lists, as shown in the Figure.
Hence, we have the useful identity

kind(M ⋆ Y) = kind(M) ⋆ kind(Y), (4.1)

showing that FRPs and kinds combine in similar ways.

30

⟨⟩

⟨1⟩1

⟨2⟩1

⟨3⟩1

⟨⟩

⟨1⟩ℓ

⟨2⟩m

⟨3⟩r

⟨⟩

⟨1⟩ℓ

⟨2⟩m

⟨3⟩r

⟨⟩

⟨1⟩ℓ

⟨2⟩m

⟨3⟩r

⟨⟩

⟨1⟩

⟨1, 1⟩ℓ

⟨1, 2⟩m

⟨1, 3⟩r

1

⟨2⟩

⟨2, 1⟩ℓ

⟨2, 2⟩m

⟨2, 3⟩r

1

⟨3⟩

⟨3, 1⟩ℓ

⟨3, 2⟩m

⟨3, 3⟩r

1

Figure 11. Constructing the kind mixture kind(M) ⋆ kind(Y). For each leaf of kind(M), we
take a copy of kind(Y) and attach it, forming the kind tree on the right.

Puzzle 10. Convince yourself that equation 4.1 is true. Notice that after M
generates a value, the next stage looks the same no matter what that value is.

In M ⋆ Y , we connected M to Y using the All port, but we can construct an
equivalent FRP that looks more like Figure 11 by hooking clones of Y to the individual
⟨1⟩, ⟨2⟩, ⟨3⟩ output ports of M . We do the following:

1. Obtain three “clone” FRPs Y[1], Y[2], Y[3] with kind equivalent to kind(Y).

2. For each v ∈ {1, 2, 3}, attach M ’s ⟨v⟩-output port to Y[v]’s input port.

3. Push the button on M .

Connecting to the input ports disables the buttons on Y[1], Y[2], Y[3] and propagates
the values similarly to the way described above, but: when M generates a value 1, it
will trigger only Y[1]; when M generates a value 2, it will trigger only Y[2]; and when
M generates a value 3, it will trigger only Y[3]. The activated FRP will show the
combined value on its display.

31

Puzzle 11. Convince yourself that the “All” method and the “clone” method of
creating M ⋆ Y have the same kind.

Puzzle 12. In the classic game Dungeons & Dragons, each player has a character
with various attributes (strength, charisma, etc.). Each attribute is determined by
the rolls of three six-side dice. Let D be the FRP with kind

⟨⟩

⟨1⟩1

⟨2⟩1

⟨3⟩1

⟨4⟩1

⟨5⟩1

⟨6⟩1

Express the roll of three dice as an independent mixture in terms of D. Sketch its
kind. How does that kind relate to the kind shown just above?

One problem though: D&D players’ character attributes are the sum of the
three dice. How do we get that from the mixture you devised above? The answer is
that we use a statistic, as described in Section 5 and shown in Example 4.1 below.

Puzzle 13. If X and Y are FRPs, is X ⋆ Y the same as Y ⋆ X? If so, how do you
know? If not, how are they related?

If k1 and k2 are kinds, is k1 ⋆ k2 the same as k2 ⋆ k1? If so, how do you know?
If not, how are they related?

Aside. The independent mixture operation ⋆ has a few notable properties. First,
let X be an FRP. Recall that empty is the trivial FRP with kind ⟨⟩, just a root
node with an empty list.

If we connect the All output port of empty to the input port of X, then when
we push the button on empty, we get just the output of X because the empty
list does not add anything to the value. So, empty ⋆X is the same as X.

Similarly if we connect the All output port of X to empty (or the individual

32

output ports of size(X) copies of empty), the result is again the same as X. So,
X ⋆ empty is the same as X. That is:

X ⋆ empty = X = empty ⋆X.

This applies to the kinds as well:

kind(X) ⋆ ⟨⟩ = kind(X) = ⟨⟩ ⋆ kind(X).

For FRPs and kinds, respectively, empty and ⟨⟩ are “identity elements” for
independent mixture.

Second, with three FRPs X, Y , and Z, we can take the independent mixture
of the three in two different ways: X ⋆ (Y ⋆ Z) or (X ⋆ Y) ⋆ Z. As we are just
connecting output and input ports, it does not matter which pair we mix first,
and similarly with kinds:

X ⋆ (Y ⋆ Z) = (X ⋆ Y) ⋆ Z

kind(X) ⋆ (kind(Y) ⋆ kind(Z)) = (kind(X) ⋆ kind(Y)) ⋆ kind(Z).

We say that ⋆ is “associative” for FRPs and kinds, and we can write the mixture
without parentheses, X ⋆ Y ⋆ Z and kind(X) ⋆ kind(Y) ⋆ kind(Z).

A set of objects (here either FRPs or kinds) with an associative binary
operation and an identity element is called a monoid.

Example 4.1. Here we analyze the dice example above more fully. Invoke the
frp playground command and follow along. First, we will generate the kind of

See “Playground Overview”
on page 36 for guidance.

D, then draw samples of FRPs with that kind. The uniform factory takes one
or more values and produces a kind with equal weights on those values.

playground> d6 = uniform(1,2,3,4,5,6) # All 6 rolls have equal weight

,---- 1/6 ---- 1

|---- 1/6 ---- 2

|---- 1/6 ---- 3

<> -|

33

|---- 1/6 ---- 4

|---- 1/6 ---- 5

`---- 1/6 ---- 6

playground> Frp.sample(12_000, d6) # Order 12,000 FRPs

Summary of output values:

1 1959 (16.33%)

2 1986 (16.55%)

3 2096 (17.47%)

4 2012 (16.77%)

5 1977 (16.48%)

6 1970 (16.42%)

Second, look at an independent mixture of two dice, D ⋆ D. Examine the
tree by entering unfold(d6 * d6). (The unfold shows the full tree; if you enter
d6 * d6 instead, you will get an equivalent but more compact form, which we
will discuss in the next section.)

Finally, try the case of three dice for your self. Compute the kind of D⋆D⋆D
and check its size and dimension and values with:

playground> three_d6 = d6 * d6 * d6

playground> three_d6.size

playground> three_d6.dim

playground> three_d6.values

I’ve excluded the output here, but you will see it. You can also look at the tree
to compare it with your sketch from earlier. (It’s large, though, so you may want
to paste it into a file.)

As a preview of the next section, we can also compute the kind of an FRP
that generates the sum of the three dice. Here we transform the tree using the
Sum statistic into the kind the describes the sum of three dice.

playground> Sum(d6 * d6 * d6)

,---- 1/216 ---- 3

|---- 3/216 ---- 4

|---- 6/216 ---- 5

34

|---- 10/216 ---- 6

|---- 15/216 ---- 7

|---- 21/216 ---- 8

|---- 25/216 ---- 9

|---- 27/216 ---- 10

<> -|

|---- 27/216 ---- 11

|---- 25/216 ---- 12

|---- 21/216 ---- 13

|---- 15/216 ---- 14

|---- 10/216 ---- 15

|---- 6/216 ---- 16

|---- 3/216 ---- 17

`---- 1/216 ---- 18

This example highlights a common pattern, where we take an independent mixture
of an FRP or kind with itself some number of times, like D ⋆D ⋆ D. Because this is
so common, we have a shorthand for it.

For any FRP X and any natural number m, we define

X ⋆⋆m =

m times︷ ︸︸ ︷
X ⋆ · · · ⋆ X, (4.2)

where X ⋆⋆ 0 = empty.

For any kind k and any natural number m, we similarly define

k ⋆⋆m =

m times︷ ︸︸ ︷
k ⋆ · · · ⋆ k, (4.3)

where k ⋆⋆ 0 = ⟨⟩.

In the playground, we use the ** operator for this, so these mixtures look like
X ** m and k ** m.

35

Playground Overview

Most operations in the playground can be categorized as either factories, combinators,
or actions. Factories create things, combinators combine existing things into a new
thing, and actions use things to produce an effect. Here we list some of the most
commonly used of these; see the frplib help and cheatsheet for more.

Kind Factories

kind – constructs a kind from a string, an FRP, or another kind.

conditional_kind – constructs a conditional kind from a dict or function

lazy – a kind that optimizes computations for large sizes

constant – the kind of a constant FRP with specified value

uniform – the kind with specified values and equal weights

either – either(a,b,w=1) has values a and b with weights w and 1

symmetric – weights on values determined by a symmetric function

weighted_by – weights on values determined by a general function

bin, evenly_spaced, integers

subsets, without_replacement, permutations_of

arbitrary – the kind with specified values and symbolic (unspecified) weights

FRP Factories

frp – constructs an FRP from a kind or clones another FRP.

conditional_frp – constructs a conditional kind from a dict or function

Kind and FRP Combinators

* operator – a * b is the independent mixture of a and b

** operator – a * n is the independent mixture of a with itself n times.

>> operator – a >> b is the mixture with mixer a and target b

| operator – a | c is the condtitional of a given the condition c

// operator – b // a (read “b given a”) is equivalent to
a >> b ^ Project[-b.dim, -b.dim+1,...,-1]

36

Playground Overview (cont’d)

Statistic Factories

statistic and scalar_statistics – convert a function into a statistic

Proj – produces a projection statistic on the given indices

Permute – produces a permutation statistic with the given permutation

Statistics

__, Scalar – stands for the value passed in, the latter forces a scalar

Constantly – a statistic that always returns the same value

Sum, Min, Max, Count – arithmetic operations on the value’s components

Mean, StandardDeviation – statistical summaries of a value’s components

Abs, Dot – absolute value/norm and dot product with a specified vector

Diff and Diffs – successive differences of the values components

Exp, Log, Log2, Log10, Sin, Cos, Tan, Sqrt – scalar mathematical functions

Statistic Combinators

And, Or, Not – logic operators

Fork - Fork(f1,f2,...,fn) applies each fi to its corresponding component

ForEach – apply a statistic to each component of a value

IfThenElse – if a condition is true, apply one statistic else another.

^ – s1 ^ s2 (“s1 then s2”) and s2 @ s1 (“s2 after s1”)

@ – stat @ X is like stat(X) but passes X to a following conditional

Actions

• unfold – unfold a canonical kind tree

• Frp.sample – activate clones of a given FRP

Utilities

• dim, codim, size, values – get properties

• clone – copy an FRP (with its own value)

• irange, index_of – inclusive integer ranges and index finding

• identity, const, compose – useful functions

Help

• info – frplib specific help

• help – built-in python help

• Cheatsheet on course website

37

4.2 General Mixtures

The “clone” method for constructing an independent mixture generalizes immediately.
By attaching different FRPs (of the same dimension) to each output of an FRP (e.g.,
M), we get an FRP where the second number generated is contingent on the first
number generated. This gives us a general mixture .

Example 4.2.
One out of a thousand people have a particular disease. When 1000 people

with the disease are tested, roughly 950 will test positive When 1000 people with-
out the disease are tested, roughly 10 will test positive. We want to (eventually)
make a good prediction on whether someone has the disease given that they test
positive. Here, we will build an FRP to describe this situation.

We will build an FRP by mixture in two stages. As before, we associate a
number with each outcome:

0 ↔ No Disease 0 ↔ Test Negative

1 ↔ Disease 1 ↔ Test Positive

The first stage corresponds to whether an individual has the disease, an FRP D

with kind

⟨⟩
⟨0⟩999

⟨1⟩1

The second stage corresponds to the test, and there are two possibilities depending
on the outcome of the first stage. Call the FRPs N and P , respectively, with
kinds:

⟨⟩
⟨0⟩990

⟨1⟩10

⟨⟩
⟨0⟩50

⟨1⟩950

38

Now, we attach the ⟨0⟩ output port of D to the input port of N , and the ⟨1⟩
output port of D to the input port of P . The resulting FRP is the mixture of D
with N and P . More specifically, we define a mapping M from the values of D
to the corresponding FRP, a rule that tells us to which input ports to connect
each output port of D.

M(⟨0⟩) = N

M(⟨1⟩) = P.

We call this mapping a conditional FRP because it gives a rule for choosing
an FRP conditionally based on a given value. We denote the resulting mixture

Like a conditional in
programming: “if we get a 0
then use N , else use P .”

FRP by D ▷M and call it the mixture of M by D.
For kinds, things look analogous. We need a mapping m that associates the

values of D to the corresponding kinds of N and P . Unsurprisingly, we call m a
conditional kind . We say that m is compatible with kind(D) if every possible
value of kind(D) is a valid input to m. The dimension of m is the common
dimension of the kinds it returns.

We need to ensure m is consistent with M in that m(0) should give the kind
of M(0) and m(1) should give the kind of M(1). So it must be that:

m(⟨0⟩) = kind(N)

m(⟨1⟩) = kind(P).

Mathematically, we write m = kind ◦M, which is read as “m after M.” We denote
the resulting mixture of kinds by kind(D) ▷m. This is illustrated in Figure 12.

You can play with Example 4.2 in the frp playground. Try the following to get
started. Here, either(u, v, weight_u) is a kind factory producing kinds with two
values u and v and respective weights weight_u and 1.

playground> kindD = either(0, 1, 999)

playground> kindN = either(0, 1, 99)

playground> kindP = either(0, 1, 1/19)

First, we can define the conditional kind m in several ways: as a dictionary mapping
values to kinds,

39

⟨⟩

⟨0⟩999

⟨1⟩1 ⟨⟩
⟨0⟩990

⟨1⟩10

⟨⟩
⟨0⟩50

⟨1⟩950

⟨⟩

⟨0⟩
⟨0, 0⟩990

⟨0, 1⟩10
999

⟨1⟩
⟨1, 0⟩50

⟨1, 1⟩950
1

Figure 12. Constructing the kind mixture kind(D) ▷m. For each value v of kind(D), we take
the kind m(v) and attach it, forming the kind tree on the right.

playground> m = { (0,): kindN, (1,): kindP }

or as a (named) function,
Here (0,) and (1,) are the
tuples ⟨0⟩ and ⟨1⟩, with the
extra comma distinguishing
a tuple from a parenthesized
number.playground> def m(value):

...> if value == (0,):

...> return kindN

...> return kindP

or equivalently and more simply, as an anonymous function In Python, anonymous
functions are introdued with
the lambda keyword and
have the form
lambda args : expr ,
returning the value of
expresssion expr.

playground> m = lambda value: kindN if value == (0,) else kindP

Next, we can define the mixture of this conditional kind by kindD. In the
playground, we use >> for the ▷ operator; see the Playground Overview on page
36.

playground> mixed = kindD >> m

playground> unfold(mixed)

Again, evaluating just mixed will show you a more compact tree.
In the above, we are using kinds, but the same operations work on FRPs:

playground> D = frp(kindD) >> { (0,): frp(kindN), (1,): frp(kindP) }

playground> D.value

<0, 0>

playground> Frp.sample(1_000_000, Kind(D))

Summary of output values:

<0,0> 988786 (98.88%)

40

<0,1> 10176 (1.02%)

<1,0> 44 (0.00%)

<1,1> 994 (0.10%)

We are close to answering our original question here and will see a nice way to do it
exactly. But we can see an approximate answer here; 994/10176 is the proportion of
positive tests with the disease.

To define mixtures formally, it helps to look carefully at the pieces. For a mixture
of FRPs, we need an FRP to generate the values in the first stage, the values we pass
to downstream FRPs. We call this FRP the mixer. We need a collection of FRPs
whose input ports we will connect the mixers outputs to; call these the targets. And
finally we need a rule that tells us which targets to connect to which output ports of
the mixer. This is a conditional FRP. And for kinds, we have analogous pieces.

Definition 2. Suppose R is an FRP of size s and dimension d1 with possible values
v1, . . . , vs. Let L1, . . . , Ls be FRPs of equal dimension d2. We call R the mixer
and L1, . . . , Ls the targets.

A conditional FRP M is a mapping that associates each mixer value with a
distinct target: M(vi) = Li for all i ∈ [1 . . s]. The dimension of M is the common
dimension of the targets. Think of this as a rule that tells us how connect the
output ports of the mixer with the targets.

An FRP R is compatible with a conditional FRP M when all the possible values
of R are valid inputs to M.

Definition 3. Suppose k is an kind of size s and dimension d1 with possible values
v1, . . . , vs. Let k′1, . . . , k′s be kinds of equal dimension d2. We call k the mixer kind
and k′1, . . . , k′s the target kinds.

A conditional kind m is a mapping that associates each mixer value with
a target kind: m(vi) = k′i for all i ∈ [1 . . s]. The dimension of m is the common
dimension of the target kinds.

An kind k is compatible with a conditional kind m when the values of k are
valid inputs to m.

41

Definition 4. If k is a kind and m is a compatible conditional kind, we define
the mixture k ▷ m to be the kind with dimension dimension(k) + dimension(m)

obtained by attaching, for every value v of k, the target kind (m)(v) to the v leaf
node of k, and prepending v to every list in that subtree. This gives a larger tree.

If all the target kinds in m are equivalent to a kind k′, then the mixture reduces
to an independent mixture: k ▷m = k ⋆ k′.

Definition 5. If R is an FRP and M is a compatible conditional FRP, we define the
mixture R ▷M is the FRP with dimension dimension(R) + dimension(M) obtained
by joining each output value v of R to the input of the corresponding target M(v).

We can also define a conditional kind that is compatible with kind(R) by
m(v) = kind(M(v)) for every value v of R.

The mixture R ▷M is the FRP with dimension d1 + d2 obtained by joining
each output value of R to the input of the corresponding Li.

The kind of R ▷M satisfies

kind(R ▷M) = kind(R) ▷m. (4.4)

If, for all values of R, the targets in M are the same FRP L, then the mixture
reduces to an independent mixture: X ▷M = X ∗ L.

The next example nicely illustrates the contingent evolution that mixtures capture.

Example 4.3. Theseus has awoken from a night of revelry to find himself trapped
in a labyrinth . . . again (Figure 13). With both the excess of honey mead and
the lack of Ariadne’s help, he is not at his best, and he wanders about at random
from his starting position, looking for the exit.

Because our FRPs generate lists of numbers, our first step is to assign a
number to each relevant outcome. Here, the key information is which junctures
in the labyrinth Theseus visits. So we assign a unique number to each juncture,
as shown in the Figure.

When Theseus stands at juncture 17, for example, he has three choices (move
to junctures 4, 18, 19), and in his stupor he chooses from among them randomly

42

S

E

1

2

3

4

5

6

7 8

9

10

11

12

13

14

1516

17

1819

20

21

22

23

24

25

26

272829

3031

32

Figure 13. Another labyrinth that has ensnared poor Theseus. His starting point (S=0) and
exit (E) are marked, and each juncture is assigned a number. The FRPs will
generate a number corresponding to the juncture that Theseus wanders into.

43

with equal weight (uniform(4, 18, 19) in the playground). The same applies
at every juncture, beginning with the starting point 0.

Open the playground and follow along. We start by by creating the kind of
the FRP for Theseus’s starting position. He begins at juncture 0 with certainty,
so this is a constant.

playground> start = constant(0)

Then, we import some data about the labyrinth so that you do not have
to type it all in. The variable labyrinth contains a dictionary mapping each
juncture to the junctures Theseus can reach from it. Take a look at its value
and see how it corresponds to the Figure.

playground> from frplib.examples.Labyrinth import *

playground> labyrinth

Notice that juncture 42 is the exit, and even in his diminished capacity,
Theseus will take the exit when he gets there. So, labyrinth[42] = [42] to
reflect that he exits when he reaches juncture 42.

We want to use labyrinth to generate mixtures, and this is easy to do.
We start by creating the kinds for Theseus’s moves at each juncture. For each
“item” in the labyrinth – a juncture and its list of neighbors – we associate with

In Python, this is called a
dictionary comprehension.

that juncture a kind that gives equal weight to every neighbor (via the uniform

factory). The call to the conditional_kind factory gives steps some useful
properties and makes it print out nicely but is not strictly necessary.

playground> steps = conditional_kind({

...> juncture: uniform(neighbors)

...> for juncture, neighbors in labyrinth.items()

...> })

playground> steps

playground> moves = from_latest(steps)

These are the kinds of Theseus’s moves at each stage, where steps gives the
kinds for single step moves, and the call to from_latest ensures that moves can

from_latest also ensures
that moves print out nicely.

44

handle a path of any length. Specifically, steps maps each juncture number
to the kind for a move out of that juncture, and moves takes a list describing
Theseus’s path so far and uses steps to make a move based on the last juncture
in the path.

Now, consider the FRPs that describe Theseus’s path after one, two, and
three moves. Take a moment to think about how we get the kinds of those FRPs
from start and moves.

Puzzle 14. We could generate a table of FRPs at each juncture like

playground> steps_at = conditional_frp({

...> juncture: frp(kind}

...> for juncture, kind in steps.items()

...> })

Why isn’t this sufficient to simulate Theseus’s trip through the maze? Hint:
Once you push the button on an FRP, can the value change?

At any juncture, moves gives the kind for a move from that juncture, so that
will go on the right-hand side of >>. So this yields

playground> start # starting position

playground> start >> moves # after one move

playground> start >> moves >> moves # after two moves

playground> start >> moves >> moves >> moves # after three moves

The >> operator is left-associative, so without parentheses, an expression like
the last line groups from the left automatically:

((start >> moves) >> moves) >> moves

At each leaf, we see – for that particular random outcome – Theseus’s entire
path through the maze so far. The results show the kind trees in compact form;
you can always use unfold to see the full tree, e.g., unfold(start >> moves),
though these can get big.

45

Puzzle 15. How would you find the kind of the FRP describing Theseus’s path
through n ≥ 0 moves? Write or sketch a function n_moves that takes an initial
kind and n and a conditional kind like moves and returns the corresponding
kind when you call n_moves(start, n, moves).

For large numbers of moves, the kind trees get large because the FRP’s value
can reflect many possible paths. Of course, in Theseus’s besotted state, he is not
thinking too clearly, and he is making moves that ignore his previous path. So,
we will borrow a trick from the next section to make things more manageable:
we will look at the kind of his most recent move only. That is, we will create an
FRP that answers the question at what juncture is Theseus after 100 moves?

The function after_move_n has been loaded into your playground to help
with this. Let’s simulate Theseus’s 100th move, passing steps (not moves).

playground> move100_kind = after_move_n(100, start, steps)

playground> frp(move100_kind).value

playground> Frp.sample(1000, move100_kind)

The first line gives the kind of an FRP that records just Theseus’s 100th
move. The second line gives an FRP with that kind and pushes the button. The
third line generates 1000 FRPs with that kind and summarizes the result.

Puzzle 16. Use a sample of FRPs to estimate how likely Theseus is to have
exited the labyrinth after 10 moves, 50 moves, 100 moves, and 1000 moves.

Answers to Selected Puzzles.
Puzzle 14. As Theseus is wandering around the labyrinth, it is possible – even
likely – that he will revisit the same juncture more than once. Each FRP has a
single fixed value but Theseus makes a separate decision each time he visits. So
more than one FRP per juncture may be needed.
Puzzle 15. We need to keep updating by mixing with moves n times, as follows:

def n_moves(start, n, moves):

current = start

for _ in range(n):

46

current = current >> moves

return current

Keep in mind though that the number of paths grows exponentially with n, so
the tree gets very big rather quickly. We will see a way around next.
Puzzle 16. For each n = 10, 50, 100, 1000, we do something like this

exit = 42

iter = 10000

nth = Frp.sample(iter, after_move_n(n, start, steps))

len([juncture for juncture in nth if juncture == exit])/iter

This computes the proportion of samples in which Theseus has reached the exit
by move n. This works because once he reaches the exit, the FRP will always
return that value.

After reading this section you should be able to:

• Explain how to construct an independent mixture of FRPs or of kinds and
what such mixtures mean.

• Describe what distinguishes an independent mixture from a more general
mixture.

• Describe conditional kinds and conditional FRPs and show how to create
them in the playground.

• Explain how to construct a general mixture between a kind and a condi-
tional kind or between an FRP and a conditional FRP.

• Find the dimension, size, and values of k ▷m from the properties of k and
m.

• Recover k from k ▷m by applying an appropriate statistic.

• Recover m from k▷m by combining an appropriate conditional and statistic.

• Relate the kind of a mixture FRP X of an FRP and conditional FRP M
to the mixture of the kind kind(X) and conditional kind kind ◦M.

Checkpoints

47

5 Building New FRPs: Statistics and Transforms

We can combine FRPs by connecting output ports to input ports in several ways
to build new FRPs. The resulting FRPs capture important concepts: generating
random outcomes contingent on earlier outcomes (mixtures), transforming the
output of an FRP by some algorithm (statistics), and making predictions based
on partial information (conditionals). The operations on FRPs lead to directly
analogous operations on kinds, which will be fundamental in building and
analyzing models for real systems. By combining mixtures, statistics, and
conditionals we can model – and answer – most questions that arise in probability
theory.

The data we collect from observing random processes is often high dimensional,
but in most situations, we are interested in information derived from that data.
A statistic is a data processing algorithm, a function that takes as input one
of the possible values of an FRP and returns a value of a specified type. We
transform an FRP by applying a statistic to its output value, yielding a new FRP
with possibly different size and dimension.

Key Take Aways

The mixtures we saw in the last section showed the power of FRPs to captures
systems that evolve in contingent ways. As the complexity of the systems grows,
however, the FRPs produce more complex data. And in most cases, the questions
we want to answer are about quantities derived from these data. For that, we use
statistics.

Before we formalize this, let’s look at a simple example of how we might apply a
statistic to transform an FRP.

Example 5.1.
Consider a simple FRP D with kind

48

⟨⟩

⟨1⟩1

⟨2⟩1

⟨3⟩1

⟨4⟩1

⟨5⟩1

⟨6⟩1

This might, for instance, be used to model the roll of a balanced 6-sided die.
How would we capture the rolls of 5 such dice?

This is just an independent mixture: D ⋆ D ⋆ D ⋆ D ⋆ D. This is just the
independent mixture of D with itself five times, so recall our shorthand for this
from equation 4.2: D⋆⋆ 5.

Each value of D⋆⋆ 5 is a tuple of length 5, with each element a number from
1 to 6. The elements of the tuple give the values of successive “rolls of the dice.”
We use the values of D⋆⋆ 5 as data to answer questions.

Most questions driving our analyses will tend to focus on information extracted
from or summarizing this tuple, rather than the whole list. Consider some of the
questions we might ask about the dice rolls:

1. What is the sum of the five rolls?

2. What is the value of the third die roll?

3. What is the maximum value of the five rolls?

4. How many rolls does it take until a 6 first appears, if at all?

5. How many times did the most common value appear among all rolls?

6. Did either pattern 1,2,3 or 4,5,6 ever occur on successive rolls?

We can answer each of these questions with statistics, which are functions/algorithms
that process the tuple produced and give a different value to answer a question.

We use statistics to transform FRPs and kinds into new FRPs and kinds
that answer more specific questions. In the frplib playground, we can transform

49

an FRP or kind by applying the statistic as a function directly to the FRP or
kind. It is sometimes more convenient to give the statistic separately; for this we
use the ^ (“arrow”) operator, with an_frp_or_kind ^ statistic equivalent to
statistic(an_frp_or_kind). The arrow operator is intended to be evocative
of the “flow of data” from the FRP/kind and through the statistic.

For example, to answer the first three questions above, we could compute

playground> five_d6 = D ** 5

playground> Sum(five_d6)

An FRP of dimension 1 and size 26 with value 21

playground> five_d6 ^ Proj[3]

An FRP of dimension 1 and size 6 with value 4

playground> Max(five_d6)

An FRP of dimension 1 and size 6 with value 6

playground> kind(Sum(five_d6)).values

{5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}

playground> Sum(kind(five_d6)) == kind(Sum(five_d6))

True

where Sum, Proj, and Max are pre-defined by frplib. Sum and Max compute the
sum and the maximum, respectively, of the list of value produced by the FRP.
Proj[3] is a projection statistic; it extracts the third element of the value; and
Proj[3](five_d6) is equivalent to five_d6 ^ Proj[3], which you choose is a
matter of taste. (See the “Playground Overview” on page 36 for more.)

In the playground, you can also build statistics dynamically with expressions
in terms of other statistics, numbers, and arithmetic operators. Here __ acts as
a placeholder for the value. For instance,

playground> bit = uniform(0,1)

playground> bit ^ (2 * __ - 1)

,---- 1/2 ---- -1

<> -|

`---- 1/2 ---- 1

50

playground> bit ** 5 ^ (Sum - 2.5)

,---- 1/32 ---- -2.5

|---- 5/32 ---- -1.5

|---- 5/16 ---- -0.5

<> -|

|---- 5/16 ---- 0.5

|---- 5/32 ---- 1.5

`---- 1/32 ---- 2.5

playground> bit ** 3 ^ ForEach(2 * __ - 1)

,---- 1/8 ---- <-1, -1, -1>

|---- 1/8 ---- <-1, -1, 1>

|---- 1/8 ---- <-1, 1, -1>

|---- 1/8 ---- <-1, 1, 1>

<> -|

|---- 1/8 ---- <1, -1, -1>

|---- 1/8 ---- <1, -1, 1>

|---- 1/8 ---- <1, 1, -1>

n `---- 1/8 ---- <1, 1, 1>

playground> uniform(1,2,3) ** 3 ^ ForEach(IfThenElse(__ % 2 == 0, 2, 3))

,---- 1/27 ---- <2, 2, 2>

|---- 2/27 ---- <2, 2, 3>

|---- 2/27 ---- <2, 3, 2>

|---- 4/27 ---- <2, 3, 3>

<> -|

|---- 2/27 ---- <3, 2, 2>

|---- 4/27 ---- <3, 2, 3>

|---- 4/27 ---- <3, 3, 2>

`---- 8/27 ---- <3, 3, 3>

The first of these converts each bit, 0 or 1, to a sign, -1 or 1. The second computes
the sum of five random bits and centers the sum at 0. The third converts each
component bit to a sign. The fourth converts each component to 2 if it is even

The last two cases show the
kinds’ compact forms (see
Section 3).

or 3 otherwise. Notice that the weights in the last case are not uniform. These

51

dynamic statistics either as functions or with the ^ operator, interchangeably,
(2 * __ - 1)(bit) is equal to bit ^ (2 * __ - 1).

Puzzle 17. Use unfold to explain the non-uniform weights in the last case.
Look at the unfolded kind of uniform(1,2,3) ** 3 before and after the
transformation. Which paths in the former tree correspond to each path in
the latter? (Sketching a picture might help.) Now look at the compact trees
and see the connection with what you just did.

These dynamic statistics are convenient, but it is sometimes easier to write
custom, named statistics. To do this, define a Python function with either
@statistic() or @scalar_statistic() as “decorators” before the definition,
with an optional description of the statistic. Remember that our FRPs store lists
of numbers, so ensure you return numbers (including ±∞, written as infinity
and -infinity). However, boolean statistics are automatically handled to map
False to 0 and True to 1, so it is fine to return a boolean as well. For question 4
above, we might write:

playground> @scalar_statistic('Rolls until a 6, or infinity if none.')

...> def when_first_6(rolls):

...> try: # This will fail unless there is a roll of 6

...> return 1 + rolls.index(6) # .index() starts from 0

...> except: # There is no roll with value 6, do this

...> return math.inf

playground> when_first_6(five_d6)

An FRP of dimension 1 and size 6 with value 2.

For question 5, we might write:

playground> @statistic('Number of rolls with most common value')

...> def most_common_count(rolls):

...> counts = [0] * len(rolls)

...> for roll in rolls:

...> counts[roll] += 1

...> return max(counts)

playground> most_common_roll(five_d6)

52

An FRP of dimension 1 and size 6 with value 2.

We can do similar operations on kinds as well to see the kind of the transformed
FRP. For example:

playground> Sum(kind(D) ** 5)

,---- 1/7776 ---- 5

|---- 5/7776 ---- 6

|---- 15/7776 ---- 7

|---- 35/7776 ---- 8

|---- 70/7776 ---- 9

|---- 126/7776 ---- 10

|---- 205/7776 ---- 11

|---- 305/7776 ---- 12

|---- 420/7776 ---- 13

|---- 540/7776 ---- 14

|---- 651/7776 ---- 15

|---- 735/7776 ---- 16

|---- 780/7776 ---- 17

<> -|

|---- 780/7776 ---- 18

|---- 735/7776 ---- 19

|---- 651/7776 ---- 20

|---- 540/7776 ---- 21

|---- 420/7776 ---- 22

|---- 305/7776 ---- 23

|---- 205/7776 ---- 24

|---- 126/7776 ---- 25

|---- 70/7776 ---- 26

|---- 35/7776 ---- 27

|---- 15/7776 ---- 28

|---- 5/7776 ---- 29

`---- 1/7776 ---- 30

More on this in subsection 5.2.

53

Puzzle 18. Create a statistic like most_common_count that produces the value of
the most common roll and the count of how many times it appeared.

Puzzle 19. Create a statistic to answer question 6.

With this experience in hand, we can define a statistic more precisely.

Definition 6. A statistic is a data-processing algorithm, a function that takes as
input any of the possible values produced by an FRP and returns a transformed
value of a specified type. Here, we will consider only statistics that return lists of
numbers, though later we will also consider statistics that return Boolean values
(i.e., true and false).

For an FRP of dimension n, a statistic is a function that maps a list of n
numbers to a list of n′ numbers for some positive integer n′. We call n the
dimension of the statistic∗ and n′ the co-dimension (or codim for short). If the ∗Sometimes called its arity

codim is 1, we say it is a scalar statistic, and we identify the returned list with the
number itself, as we did before.

We will use Greek letters to denote statistics, especially ψ (“psi”, pronounced
like sigh), ϕ (“phi” pronounced fee or fi), ξ (“xi”, pronounced zigh or ksee), and ζ
(“zeta”).

An FRP and a statistic are compatible if (i) they have the same dimensions and
(ii) every possible value of the FRP is a valid input to the statistic. Analogously, Put simply: we can plug the

output of the FRP into the
input of the statistic.we say that a kind and a statistic are compatible if the same two conditions hold:

the dimensions match and the value at each leaf of the kind is a valid input to the
statistic.

We create a transformed FRP by connecting the All output port of the original
FRP to the input port of a trivial FRP using an adapter like that shown in Figure
14. The adapter has circuitry to compute a specific statistic from the value of the
original FRP, when it is produced. The original’s output port is connected to the
bottom of the adapter and the transformed value is emitted from the central output
port on top. (The adapter’s other two output ports simply copy its input so that
we can create multiple transforms of the same original FRP.) The trivial FRP it
is connected has its output ports and kind display automatically reconfigured and

54

relabeled accordingly, and its button is disabled. It will display its value after the
button on the original FRP is pushed. The connection like this can only be made
physically with an adapter for a statistic that is compatible with the original FRP.

Sum

Figure 14. An adapter used to transform an FRP by the Sum statistic. The value comes from
the original FRPs All output port and is transformed and emitted through the top
center port. The original value enters through the bottom port on the adapter and
leaves through the top-center port. The other two ports on top simply copy the
original value, allowing us to construct multiple transforms or mixtures at the same
time. Different statistics’ adapters look the same but have different names and
internal circuitry. Notice how that the adapter resembles the letter ψ.

Definition 7. If X is an FRP and ψ is a compatible statistic, then X transformed
by ψ – denoted by ψ(X) – is the FRP that produces value ψ(⟨v1, . . . , vn⟩) when
X produces value ⟨v1, . . . , vn⟩.

For simple functions like ψ(x) = x2, ϕ(x) = 4x, or ζ(x1, y2) = −x1x2, we can
write the transformed FRPs as X2, 4X, or −X1X2 without naming the statistic.

The notation ψ(X) is intended to evoke the physical transformation we are
making on the FRP, passing the value produced by X through ψ. Think of X in
this expression as “hole” that we will fill with X’s value when it is available.

Note that X2 is not the same as X ⋆X; make sure you are clear on why.

Notational Convention. For a function ψ that takes lists of dimension n as input,
it is convenient to be flexible with how we write its arguments. If v = ⟨v1, . . . , vn⟩,
we treat the following as equivalent and interchangeable:

ψ(⟨v1, . . . , vn⟩) ψ(v) ψ(v1, . . . , vn)

using whichever form is clearest and most convenient at any moment.

55

5.1 Projection and Marginals

Some of the most commonly used statistics are projections; these extract one or
more components from a list of values into a new list.∗ In the playground, we access ∗Remember that we elide the

distinction between lists of
length 1 and scalars.these statistics using Proj[indices...], where the indices start counting from 1. For

example:

playground> Proj[3]((10, 20, 30, 40, 50))

30

playground> Proj[3,5]((10, 20, 30, 40, 50))

(30, 50)

playground> Proj[1,3,5]((10, 20, 30, 40, 50))

(10, 30, 50)

Between the brackets Proj can accept multiple individual indices or a list/tuple/iterable
of indices, like Proj[(1,3,5)] or Proj[range(2,5)]. Note that range(a,b) includes
a but not b. When we write these statistics mathematically (as opposed to in frplib)
we use proj with the indices in a subscript; for instance,

proj3(⟨10, 20, 30, 40, 50⟩) = 30

proj3,5(⟨10, 20, 30, 40, 50⟩) = ⟨30, 50⟩

proj1,3,5(⟨10, 20, 30, 40, 50⟩) = ⟨10, 30, 50⟩.

In the playground, you can apply a projection statistic directly to an FRP or kind
as discussed earlier, but frplib also supports direct indexing by index lists or slices
(e.g., 1:5:2). For example, if we make the following definitions,

playground> bit = uniform(0,1)

playground> d6 = uniform(1,2,3,4,5,6)

playground> the_bits = [1, 3, 5]

playground> also_the_bits = Proj[1, 3, 5]

playground> first_d = Proj[2]

the following are equivalent:

playground> (bit * d6 * bit * d6 * bit) ^ Proj[1, 3, 5]

playground> (bit * d6 * bit * d6 * bit) ^ also_the_bits

56

playground> (bit * d6 * bit * d6 * bit)[1, 3, 5]

playground> (bit * d6 * bit * d6 * bit)[the_bits]

playground> (bit * d6 * bit * d6 * bit)[also_the_bits]

playground> (bit * d6 * bit * d6 * bit)[1:5:2]

where 1:5:2 is a “slice” saying “go from 1 to 5 skipping by 2” and where you can
use lists of indices or Projection statistics as well as explicit integers. Similarly, the
following are equivalent

playground> Proj[2](bit * d6 * bit * d6 * bit)

playground> first_d(bit * d6 * bit * d6 * bit)

playground> (bit * d6 * bit * d6 * bit)[2]

playground> (bit * d6 * bit * d6 * bit)[first_d]

Try these out and see the results.

Definition 8. If X is an FRP and X ′ = proji1,i2,...,im(X) is an FRP obtained by
applying a projection statistic to X, then we call X ′ a marginal FRP of X. It is
specifically identified by the indices i1, i2, . . . , im.

If k is a kind and k′ = proji1,i2,...,im(k) is kind obtained by applying a projection
statistic to k, then we call k′ a marginal kind of k′. It is specifically identified by
the indices i1, i2, . . . , im.

The process of transforming an FRP or kind this way is called marginalization .

When dealing with high-dimensional FRPs, we often want to refer to the value
at some index in the list of numbers produced, so it helps to have some language
for that. Suppose X is an FRP of dimension n. We know that X produces a value
that is a list of n numbers. The ith component of X, for i ∈ [1 . . n], is just the FRP
that gives us the ith element of the list that X produces, which is exactly the value
of the transformed FRP proji(X). If we define Xi = proji(X) for i ∈ [1 . . n], we call
⟨X1, X2, . . . , Xn⟩ the the components of X.

Using the previous (somewhat silly) example,

Notice that
288 = 2 · 6 · 2 · 6 · 2.

playground> random_stuff = frp(bit * d6 * bit * d6 * bit)

playground> random_stuff

An FRP of dimension 5 and size 288 with value <0, 4, 1, 2, 0>.

57

playground> random_stuff[1]

An FRP of dimension 1 and size 2 with value 0.

playground> random_stuff[2]

An FRP of dimension 1 and size 6 with value 4.

playground> random_stuff[3]

An FRP of dimension 1 and size 2 with value 1.

playground> random_stuff[4]

An FRP of dimension 1 and size 6 with value 2.

playground> random_stuff[5]

An FRP of dimension 1 and size 2 with value 0.

Puzzle 20. If S, T, U are scalar FRPs and W = S ⋆T ⋆U , what are the components
of W?

Puzzle 21. If X has components ⟨X1, X2, . . . , Xn⟩, is it always true that we can
write X = X1 ⋆ X2 ⋆ · · · ⋆ Xn ? If so why? If not, can you find an example where
this relationship does not hold?

Definition 9. If an FRP X has dimension n, then we can decompoese it into
components, scalar FRPs X1, . . . , Xn with Xi = proji(X) for each i ∈ [1 . . n].
We call X1, . . . , Xn the components FRPs of X, or just the components of X for
short.

5.2 Transformed Kinds

Throughout our exploration of FRPs so far, we’ve seen a close parallel between FRPs
and their kinds. A mixture of FRPs, for example, has a kind that is the mixture of
the original kinds. The same relationship holds with transformation by statistics.

If X is an FRP with kind k and ψ is a compatible statistic, then the transformed
FRP ψ(X) has a kind that we denote by ψ(k).

The transformation of FRPs makes concrete sense: we get a value from the device
and pass that vaule as input to the statistic. For kinds, the transformation seems

58

a bit more abstract, so let’s start with the picture in Figure 15 to help understand
it. The top panel of the figure shows a kind of dimension 3 in unfolded form that
we want to transform by the Sum statistic. The blue bar represents the action of the
statistics adapter: each value is mapped to the sum of its components. These will be
the values of the new, transformed FRP, but remember that all the values of an FRP
must be distinct. So, we need to combine all the paths in this tree with equal leaf.

To do this, we first convert the tree to canonical form, as described in Section 3.
This gives us the weights on each path in a way that is comparable across the tree.
This tree is shown on the bottom left of the figure. The final step is to combine the
paths from the canonical tree with the same leaf, adding the canonical weights. The
result is the transformed tree, at bottom right.

Figure 16 is pretty much the same story. The only difference here is that there
are no “duplicates,” so the mapping is direct in the bottom of the panel.

After reading this section you should be able to:

• Define a statistic and give several examples of useful statistics.

• Explain how to transform an FRP or kind using a statistic.

• Use the playgroud to construct a statistics.

• Use the playground to transform an FRP or kind using a statistic.

• Define the components of an FRP.

• Use projection statistics (via Proj) to find the kind of an FRP component
and to construct the FRP for a component.

• Describe what it means for a statistic to be compatible with an FRP or
kind.

Checkpoints

59

⟨⟩

⟨0⟩

⟨0, 0⟩
⟨0, 0, 0⟩ ⟨0⟩1

⟨0, 0, 1⟩ ⟨1⟩1
1

⟨0, 1⟩
⟨0, 1, 0⟩ ⟨1⟩1

⟨0, 1, 1⟩ ⟨2⟩1
1

1

⟨1⟩

⟨1, 0⟩
⟨1, 0, 0⟩ ⟨1⟩1

⟨1, 0, 1⟩ ⟨2⟩1
1

⟨1, 1⟩
⟨1, 1, 0⟩ ⟨2⟩1

⟨1, 1, 1⟩ ⟨3⟩1
1

1

⟨x, y, z⟩ 7→ x+ y + z

⟨⟩

⟨0, 0, 0⟩ ⟨0⟩1
8

⟨0, 0, 1⟩ ⟨1⟩1
8

⟨0, 1, 0⟩ ⟨1⟩1
8

⟨0, 1, 1⟩ ⟨2⟩1
8

⟨1, 0, 0⟩ ⟨1⟩1
8

⟨1, 0, 1⟩ ⟨2⟩1
8

⟨1, 1, 0⟩ ⟨2⟩1
8

⟨1, 1, 1⟩ ⟨3⟩1
8

⟨⟩

⟨0⟩1
8

⟨1⟩3
8

⟨2⟩3
8

⟨3⟩1
8

Figure 15. (Top) A kind (bit ** 3 in the playground) with its output connected to the Sum
statistic. The blue bar identifies where the statistics adapter takes effect, and the
⟨x, y, z⟩ 7→ x+ y + z label shows how the statistics acts on the values of the
original kind. (The label could also be just the word “Sum” in this case.) The
values to the right of the blue bar are the output values for the transformed FRP.
(Bottom Left) The original kind in canonical form. To obtain the transformed kind,
we combine all leaves with the same value, adding their canonical weights.
(Bottom Right) The transformed kind from the other panels in canonical form.

60

⟨⟩

⟨−1⟩
⟨−1,−15⟩ ⟨−16⟩0.4

⟨−1,−5⟩ ⟨−6⟩0.6
1

⟨0⟩ ⟨0, 10⟩ ⟨10⟩13

⟨9⟩

⟨9, 12⟩ ⟨21⟩1

⟨9, 20⟩ ⟨29⟩4

⟨9, 32⟩ ⟨41⟩5

2

⟨x, y⟩ 7→ x+ y

⟨⟩

⟨−1,−15⟩ ⟨−16⟩2
30

⟨−1,−5⟩ ⟨−6⟩3
30

⟨0, 10⟩ ⟨10⟩15
30

⟨9, 12⟩ ⟨21⟩1
30

⟨9, 20⟩ ⟨29⟩4
30

⟨9, 32⟩ ⟨31⟩5
30

⟨⟩

⟨−16⟩2
30

⟨−6⟩3
30

⟨10⟩15
30

⟨21⟩1
30

⟨29⟩4
30

⟨32⟩5
30

Figure 16. (Top) A kind with its output connected to the Sum statistic. The blue bar
identifies where the statistics adapter takes effect, and the ⟨x, y⟩ 7→ x+ y label
shows how the statistics acts on the values of the original kind. (The label could
also be just the word “Sum” in this case.) The values to the right of the blue bar
are the output values for the transformed FRP. (Bottom Left) The original kind in
canonical form. To obtain the transformed kind, we combine all leaves with the
same value, adding their canonical weights. (Bottom Right) The transformed kind
from the other panels in canonical form.

61

6 Building New FRPs: Conditionals

We can combine FRPs by connecting output ports to input ports in several ways
to build new FRPs. The resulting FRPs capture important concepts: generating
random outcomes contingent on earlier outcomes (mixtures), transforming the
output of an FRP by some algorithm (statistics), and making predictions based
on partial information (conditionals). The operations on FRPs lead to directly
analogous operations on kinds, which will be fundamental in building and
analyzing models for real systems. By combining mixtures, statistics, and
conditionals we can model – and answer – most questions that arise in probability
theory.

A conditional applies when we have partial information about the value of
an FRP. In this case, we can express the uncertain information as a new, reduced
FRP that returns a value consistent with our partial information. Conditionals
capture the phenomenon of making observations as a random process unfolds
and updating our predictions.

Key Take Aways

You run into Alice and Bob at the FRP market, and Alice is agitated. It seems
that she had planned to place an order for a sizeable batch of b FRPs A[1], A[2], . . . , A[b]

with the kind shown in Figure 17, where the deal stipulates that Alice will receive
payoff from P[i] = proj3(A[i]) for i ∈ [1 . . b]. Anticipating her likely order – she is a
regular customer – the market staff inadvertently pressed the buttons on A[1], . . . , A[b]

early, before she had committed to the deal. And Bob, who was wandering about
the facility happened to catch a glimpse of the displays. He told Alice what he saw, Bob has a good recall, or a

fast camera!and Alice proceeded with the order, happily. When the market administrator heard
what happened, she tried to rescind the order, which led to lawyers getting involved.
Let’s see why Alice was happy with the order and frustrated with the administrator’s
response.

Some specifics: from his vantage point, Bob could see only the second number in
the list displayed by each FRP A[i]. He quickly tabulated up what he observed and
showed it to Alice. Out of 10,000 FRPs, he saw 4850 0’s and 5150 1’s. Alice perked
up at the news, convinced that the negotiated price for her order was now a bargain.

62

⟨⟩

⟨0⟩

⟨0, 0⟩
⟨0, 0,−20⟩1

⟨0, 0,−10⟩1
1

⟨0, 1⟩
⟨0, 1,−1⟩1

⟨0, 1, 1⟩1
9

1

⟨1⟩

⟨1, 0⟩
⟨1, 0,−2⟩1

⟨1, 0, 0⟩1
9

⟨1, 1⟩
⟨1, 1, 5⟩1

⟨1, 1, 10⟩1
1

1

Figure 17. The kind for the FRPs in Alice’s order, before she learned Bob’s information.

Why was Alice so happy? What does the partial information that Bob oberved
mean to her? The key observation here is that once Alice obtains knowledge that
one component is fixed, the FRP that determines her payoff has effectively been
changed. To understand this, it will be useful to focus on a single FRP of the same
kind (Figure 17) as A[1], . . . , A[b].

Suppose you have such an FRP, call it A, and you learn or observe that the
second component has value 1. You do not observe the first component, but you
have nonetheless obtained information about it implicitly. To see why, look at all the
paths in the tree that are consistent with the information you have. The other paths
are no longer relevant as they produce values inconsistent with what we know to be
true. So to get the effective kind we want to eliminate those paths from consideration.
See Figure 18.

The trick to doing so cleanly is to first reduce to canonical form.
Figure 19 shows the original kind in canonical form, highlighting the paths that
are consistent with the available information. To account for the information, we
simply drop the inconsistent branches of the tree and combine branches with the
same value, adding their weights. A quick rescaling (useful but not required) returns
us to canonical form, giving the kind in the top panel of Figure 20. This is the kind of
the FRP that Alice effectively gets conditional on the information that the second
component is 1. A similar argument yields the bottom panel of Figure 20, which

63

⟨⟩

⟨0⟩

⟨0, 0⟩
⟨0, 0,−20⟩1

⟨0, 0,−10⟩1
1

⟨0, 1⟩
⟨0, 1,−1⟩1

⟨0, 1, 1⟩1
9

1

⟨1⟩

⟨1, 0⟩
⟨1, 0,−2⟩1

⟨1, 0, 0⟩1
9

⟨1, 1⟩
⟨1, 1, 5⟩1

⟨1, 1, 10⟩1
1

1

Figure 18. The kind from the previous Figure, highlighting the paths in the tree that are
consistent (black) and inconsistent (gray) with the observation that the second
component of the value equals 1.

shows the effective FRP conditional on observing that the second component is 0.
(You can obtain it by following the same procedure with different subtrees; just use
the gray parts of the previous Figure.)

Notice that all the values in Figure 20’s kinds have the second component fixed
at what it was observed to be. Only the other components of the value vary over the
original possibilities, but some values are eliminated from consideration in this case.

We denote the effective FRP corresponding to the top panel by

A | proj2(A) = 1 (6.1)

The | bar here reads as “conditional on,” or more typically, “given.” The statement
after the | is the condition that we have observed to be true. If we let ⟨A1, A2, A3⟩
be the component FRPs of A, we could also write this as

Recall that this means
Ai = proji(A).

A | A2 = 1. (6.2)

If we transform this conditional FRP by a statistic ψ, it is the same as transforming
the original FRP and then applying the conditional, so

ψ(A | A2 = 1) ≡ ψ(A) | A2 = 1 (6.3)

64

⟨⟩

⟨0, 0,−20⟩0.025

⟨0, 0,−10⟩0.025

⟨0, 1,−1⟩0.225

⟨0, 1, 1⟩0.225

⟨1, 0,−2⟩0.225

⟨1, 0, 0⟩0.225

⟨1, 1, 5⟩0.025

⟨1, 1, 10⟩0.025

Figure 19. The canonical form of the kind in the previous Figure, highlighting the values that
are consistent (black) and inconsistent (gray) with the observation that the second
component of the value equals 1.

and we write it in the latter form in practice.
Since Alice put a price on the statistic ψ = proj3 in purchasing these FRPs, we can

compare the kinds of A3 | A2 = 1 by transforming the top kind in Figure 20. Figure
21 compares the kinds of A3 | A2 = 1 (left) and A3 (right). The reason Alice was
happy to proceed with the order when she learned Bob’s information (and unhappy
when the administrator moved to rescind the order) is that the kind at left is worth
more than the kind at the right.

In the next section, we will learn how to attach a fair price to an FRP and in
turn learn to predict a typical value, or “expectation,” of its payoff. But for now, we
will can use the frp playground to compute it.

Run the frp playground application and follow along. Parts of the line after #
are comments for your benefit, but you need not type them in. To keep things simple,
we’ll load the kind kind(A) from the library. I will not show all the output here, but
you can check your results by the information in the text and figures above.

playground> from frplib.examples.AliceBob import kindA

playground> kindA # Shows the canonical form

playground> A = frp(kindA) # An FRP with that kind

playground> A | Proj[2] == 1 # The FRP given Bob's info

playground> kind(A | Proj[2] == 1) # Look familiar?

65

⟨⟩

⟨0, 1,−1⟩0.45

⟨0, 1, 1⟩0.45

⟨1, 1, 5⟩0.05

⟨1, 1, 10⟩0.05

⟨⟩

⟨0, 0,−20⟩0.05

⟨0, 0,−10⟩0.05

⟨1, 0,−2⟩0.45

⟨1, 0, 0⟩0.45

Figure 20. The effective kind of Alice’s FRPs conditional on the information that the second
component of the value equals 1 (top) and 0 (bottom).

playground> kindA | Proj[2] == 1 # It works on kinds too!

It might not be surprising that operations on FRPs are mirrored by analogous
operations on kinds, and vice versa. In fact, if you go through the argument above,
we actually defined kind(A | A2 = 1) by kind(A) | A2 = 1.

To find a good price – and hence a good prediction – of the FRPs value, we will
use a new operator, E:

playground> E(A[3]) # Risk-neutral price for A[3]

-0.825

playground> E(A[3] | Proj[2] == 1) # ...and for A[3] given A[2] == 1

0.75

playground> E(A[3] | Proj[2] == 0) # ...and for A[3] given A[2] == 1

-2.4

playground> E(A[2]) # Risk-neutral price for A[2]

0.5

This means that Alice had originally contracted for a unit price $-0.825 as that was
her predicted/typical/”expected” payoff from each FRP, but with Bob’s information
her predicted/typical/”expected” payoff from each FRP is now $0.75. She stands to
make a lot of money.

66

⟨⟩

⟨−1⟩0.45

⟨1⟩0.45

⟨5⟩0.05

⟨10⟩0.05

⟨⟩

⟨−20⟩0.025

⟨−10⟩0.025

⟨−2⟩0.225

⟨−1⟩0.225

⟨0⟩0.225

⟨1⟩0.025

⟨5⟩0.025

⟨10⟩0.225

Figure 21. The effective kind of Alice’s FRPs conditional on the information that the second
component of the value equals 1 (top) and 0 (bottom).

Recall that A[3] is just A3 = proj3(A) and similarly for A[2]. Mathematically,
we write these statements as E(A3), E(A3 | A2 = 1), E(A3 | A2 = 0), and E(A2). It
is not a coincidence that −0.825 = 0.5 · 0.75 + 0.5 · −2.4 and E(A2) = 0.5. We will
see what this means and where it comes from in the next section. For now, we turn
to defining conditionals in general.

An FRP given a condition is an FRP derived from another by the assertion that
some information has been observed with certainty. We write a conditional with the
form using FRP | Condition , where the | is read as “conditional on” or “given” and
Condition specifies the information that is asserted as known.

Conditions are just Boolean expressions that associate “true” or “false” to each
possible value of an FRP (and leaf node in a kind). That means, conditions are just
statistics that return Boolean values.

Definition 10. A condition is a statistic that returns a Boolean value.

A Boolean value is either ⊤, read “true” or “top”, or ⊥, read “false” or “bottom”.

We also abuse notation a little bit by letting ⊤ and ⊥ denote constant conditions.
In this case, ⊤ denotes the constant condition that returns true for any value and
⊥ denotes the constant condition that returns false for any value.

In our computations, we often identify ⊤ with the number 1 and ⊥ with the

67

number 0, but we distinguish them notationally because Boolean and number are
conceptually distinct types.

Recall the definition of compatibility between a statistic and an FRP or kind given
in Section 5. The dimensions must match and the values of the FRP/kind must all
be valid inputs to the statistic. The same definition applies here, so we can speak of
conditions that are compatible with FRPs and kinds.

The good news is that most of the conditions we work can be written in a simple
and intuitive form. We saw several conditions in the Alice and Bob example earlier.
For instance, in playground we wrote Proj[2] == 1 for the statistic that takes a
value and returns ⊤ if the second component of the value equals 1. (Notice that we
use == for the equality relation in the playground.) Mathematically, this is just a
function from values to Booleans, but we usually write it in a more intuitive way:
either,

proj2(·) = 1

or when working with a particular FRP like A,

proj2(A) = 1.

These expressions describe the condition with · and the FRP name acting as a “hole”
into which the FRP’s value will be inserted when available to compute the value of
the condition. When dealing with a particular FRP, we usually use the second form
because the name helps remember what we are dealing with. In the playground, we
can use __ as a similar “hole,” e.g., 2 * __ + 1, though as the earlier examples show,
it is not always necessary to do so.

We can combine conditions using logical operators: logical “and” (operator ∧),
logical “or” (operator ∨), and occasionally logical “not” (operator !). These operators
tend to be convenient when writing complicated conditions, but it’s fine to use
words (and, or, not) instead in your work. So, proj2(A) = 1 ∧ proj1(A) = 1 and
proj2(A) = 1 and proj1(A) = 1 mean the same thing. In the playground, things are a
little more awkward because of restrictions of the host language (Python). We can
use the combinators And, Or, and Not for logical and, or, and not. The first two of
these take any number of conditions and can be nested to produce arbitrary Boolean

68

tests. For example,

A | And(Proj[2] == 1, Proj[1] == 1)

A | Or(Proj[2] == 1, Proj[1] == 1)

A | Not(And(Proj[2] == 1, Proj[1] == 1))

and so forth.

Definition 11. If k is a kind, then the kind given a condition ζ, denoted by
k | ζ, is the kind obtained from k by eliminating all paths inconsistent with ζ, that
is all paths that lead to values v with ζ(v) = ⊥. Both k and k | ζ have the same
dimension.

If X is an FRP, then the FRP given a condition ζ, denoted by X | ζ, is the
FRP obtained from X that forbids any value for which zeta returns ⊥. Both X
and X | ζ have the same dimension.

We have the key relationship:

kind(X | ζ) = kind(X) | ζ. (6.4)

Notice also that

k | ⊤ = k X | ⊤ = X (6.5)

k | ⊥ = ⟨⟩ X | ⊥ = empty, (6.6)

because observing ⊤ does not eliminate any branches (since they all are consistent
with true) and observing ⊥ eliminates all of them (since none of them are consistent
with false). So a kind or FRP without a conditional is equivalent to a conditional
on a trivially true condition.∗ ∗Say that ten times fast.

If we observe some partial information about the value of an FRP, then we
just eliminate from consideration any possible values that are inconsistent with the
observed information.

Let’s look a couple more concrete examples in the playground. Follow along and As usual, when showing
playground input and
output, text from # to the
end of a line is a comment
for your benefit. You should
not type or enter that.

look at the output even when I do not reproduce it here. First, consider FRPs that
generate random bits.

playground> bit = uniform(0,1) # 0 or 1 with equal weight

69

playground> biased_bit = either(0,1,9) # 0 or 1 with 9:1 weight ratio

playground> three_random_bits = bit ** 3

playground> three_biased_bits = biased_bit ** 3

Puzzle 22. What do you expect to see when you enter

three_random_bits | (__ == (1, 0, 1))

in the playground? Explain why this makes sense.

Let’s first try several conditionals derived from three_random_bits.

playground> three_random_bits

,---- 1/8 ---- <0, 0, 0>

|---- 1/8 ---- <0, 0, 1>

|---- 1/8 ---- <0, 1, 0>

|---- 1/8 ---- <0, 1, 1>

<> -|

|---- 1/8 ---- <1, 0, 0>

|---- 1/8 ---- <1, 0, 1>

|---- 1/8 ---- <1, 1, 0>

`---- 1/8 ---- <1, 1, 1>

playground> three_random_bits | (Sum == 2)

,---- 1/3 ---- <0, 1, 1>

<> -+---- 1/3 ---- <1, 0, 1>

`---- 1/3 ---- <1, 1, 0>

playground> three_random_bits | (Proj[1] == Proj[2])

,---- 1/4 ---- <0, 0, 0>

|---- 1/4 ---- <0, 0, 1>

<> -|

|---- 1/4 ---- <1, 1, 0>

`---- 1/4 ---- <1, 1, 1>

playground> three_random_bits | (Min == 0)

,---- 1/7 ---- <0, 0, 0>

|---- 1/7 ---- <0, 0, 1>

70

|---- 1/7 ---- <0, 1, 0>

<> -+---- 1/7 ---- <0, 1, 1>

|---- 1/7 ---- <1, 0, 0>

|---- 1/7 ---- <1, 0, 1>

`---- 1/7 ---- <1, 1, 0>

In each of these conditionals, you can directly trace the method we used to derive
the conditional: simply eliminate any leaves that are inconsistent with the condition
and then (optionally but often helpfully) return to canonical form – so the weights
sum to 1. Notice the specified condition holds for all the values in the resulting kind.

The next two examples are similar but apply an additional transformation to the
conditional.

playground> (three_random_bits | And(Proj[1] == 1, Proj[2] == 0))[3]

,---- 1/2 ---- 0

<> -|

`---- 1/2 ---- 1

playground> (three_random_bits | (Proj[1] != Proj[2])) ^ (Proj[1] + Proj[3])

,---- 1/4 ---- 0

<> -+---- 1/2 ---- 1

`---- 1/4 ---- 2

The first result here looks like the kind of a random bit. This is not a coincidence
because three_random_bits is an independent mixture – the third bit’s value is
generated the same way regardless of the other bits – and the condition does not
reference the third bit. Compare this with the output of three_random_bits[3]
without the conditional.

Puzzle 23. Suppose psi is a statistic in the playground that only depends on the
first two bits. What do you expect to see when you compare the following two
kinds?

(three_biased_bits | psi)[3]

three_biased_bits[3]

Answer the same question substituting three_random_bits in both expressions.

71

Explain this.

Next, we revisit Example 4.2 about disease testing. We know the prevalence of
a disease in the population (1/1000), the sensitivity of the test (ability to correctly
detect someone with the disease, 950/1000), and the specificity of the test (ability to
correctly determine someone does not have the disease, 990/1000). We specify that
information in the playground as follows.

playground> has_disease = either(0, 1, 999) # No disease has higher weight

playground> test_by_status = conditional_kind({

...> (0,): either(0, 1, 99), # No disease, negative has high weight

...> (1,): either(0, 1, 1/19) # Yes disease, positive higher weight

...> })

playground> dStatus_and_tResult = has_disease >> test_by_status

playground> dStatus_and_tResult

,---- 98901/100000 ---- <0, 0>

|---- 999/100000 ---- <0, 1>

<> -|

|---- 1/20000 ---- <1, 0>

`---- 19/20000 ---- <1, 1>

playground> Disease_Status = Proj[1] # Naming this statistic

playground> Test_Result = Proj[2] # ...and this statistic

This produces a kind with two components that we name to aid undersanding. Our
question is: if someone tests positive how likely are they to have the disease. Think
for a moment about how you can do this in the playground. Given the value of the
Test_Result component, what do we know about the Disease_Status component?

Puzzle 24. Try to craft a single expression in the playground to answer our main
question: if someone tests positive how likely are they to have the disease.

We can answer our question with a conditional on the observed information of
test result and a projection onto disease status.

playground> (dStatus_and_tResult | (Test_Result == 1))[Disease_Status]

72

,---- 999/1094 ---- 0 # No disease

<> -|

`---- 95/1094 ---- 1 # Yes disease

We restrict attention to values for which the test is positive (our condition) and then
marginalize to look only at disease status. That’s it.

This is an example of what we will later call Bayes’s Rule. The surprisingly small
weight on having the disease even with a positive test result derives from the low
baseline prevalance in the population. Work out carefully how this result was derived.
The amazing thing is how simple it is; we just exclude branches and renormalize.
The marginal on Disease_Status of course selects one component, and given that
the test result is known the other component is not even that interesting. (Take a
look at the tree without the marginalization to see this.)

Recall that when we discussed this example in Section 4 on mixtures, we called
test_by_status a conditional kind because it specifies a kind contingent on some
other specified value. The uses of “conditional” here and there are directly connected.
For instance, when you evaluate

(dStatus_and_tResult | (Disease_Status == 0))[Test_Result]

(dStatus_and_tResult | (Disease_Status == 1))[Test_Result]

you will see that these are just test_by_status[0] and test_by_status[1], respec-
tively. Notice also that

dStatus_and_tResult[Disease_Status] == has_disease

since has_disease is just the top level of the unfolded dStatus_and_tResult.
In general, if k is a kind of dimension dk and m is a conditional kind of di-

mension dm, then k ▷ m has dimension dk + dm. From any value of k ▷ m, we Recall that Proj[a:b] is a
statistic that extracts
components a, a+ 1, . . . , b.
In math we write this as
proja:b.

can extract the k value with Proj[1:d_k] and the corresponding m value with
Proj[(d_k+1):(d_k+d_m)]. Define

playground> ks_values = Proj[1:d_k]

playground> ms_values = Proj[(d_k+1):(d_k+d_m)]

Then for every value v of k:

k == (k >> m)[ks_values]

m(v) == (k >> m | Proj[ks_values] == v)[ms_values]

73

In other words, for the conditional kind m, m(v) is the kind given the condition that
k’s value equals v. So m just packages all the conditionals given each value of k.

We can state this precisely in mathematical terms very much the same way.

Suppose k is a kind of dimension dk and m is a compatible conditional kind with
dimension dm, then k ▷m has dimension dk + dm. . Then,

k = proj1:dk(k ▷m) (6.7)

and for every value v of k,

m(v) = proj(dk+1):(dk+dm)(k ▷m | proj1:dk(·) = v). (6.8)

After reading this section you should be able to:

• Define a condition and construct several examples, mathematically and in
the playground.

• Define a kind given a condition and an FRP given a condition.

• Describe how to find k | ζ if you are handed a kind k, in canonical form,
and a condition ζ.

• Identify the difference, if any, between k | ⊤ and k for a kind k.

Checkpoints

74

7 Interlude: Computations in Practice

This section highlights several techniques for doing computations in the play-
ground and gives some interesting example calculations. The context is a friendly
conversation between Alice and Bob.

Key Take Aways

Alice and Bob are clients of the FRP warehouse whom you met during the orientation
for new users. This conversation took place during a workshop then.

Bob: I’m getting frustrated, Alice. This calculation is hanging.

Alice: The dice example again? What’s the problem?

Bob: I want to compute the kind for an FRP that models the sum of 100 rolls of a
six-sided dice. So I define the kind for one roll, d6 = uniform(1, 2, 3, 4, 5, 6),
compute the kind for 100 rolls – d6 ** 100 – and then transform . . .

Alice: Well that’s your problem right there. What is the size of d6 ** 100?

Bob: There are 6 possibilities for each of 100 rolls, so 6100 possible values. Ah. . .that’s
a big number. No wonder it’s taking so long.

But the sum of the rolls doesn’t care about the distinction between most of those
possibilities, so it seems it should be possible to do this calculation efficiently.

Alice: It actually is. I’ve been considering that problem for another project. What
does the playground display when you print the statistic Sum?

Bob: Let’s see. It says

A Monoidal Statistic ’sum’ that returns the sum of all the components of
the given value. It expects a tuple and returns a scalar.

What the heck is a “Monoidal Statistic?”

Alice: That threw me too, but after I dug into it, I realized it was a simple idea.

The Sum statistic takes in a value that is a list of numbers and adds up all the
components to give a number, so it takes in a list of numbers and returns a number.
What happens to the sum if you add some elements to the list, as we do when we
take mixtures?

75

Bob: The Sum just adds up the new elements and adds that sum to the total.

Alice: Exactly! Let’s write :: for the operation of joining two lists, so ⟨10, 20, 30⟩ ::
⟨40, 50⟩ = ⟨10, 20, 30, 40, 50⟩ and ⟨10, 20⟩ :: ⟨⟩ = ⟨10, 20⟩ and so on. What you said is

Sum(⟨10, 20, 30⟩ :: ⟨40, 50⟩) = Sum(⟨10, 20, 30⟩) + Sum(⟨40, 50⟩)

= Sum
(〈

Sum(⟨10, 20, 30⟩), Sum(⟨40, 50⟩)
〉)
,

Sum(⟨10, 20⟩ :: ⟨⟩) = Sum(⟨10, 20⟩) + Sum(⟨⟩)

= Sum
(〈

Sum(⟨10, 20⟩), Sum(⟨⟩)
〉)
,

because the sum of an empty list is 0. Make sense?

Bob: That’s a mouthful, but yes, I see. Sum(a :: b) = Sum
(〈

Sum(a), Sum(b)
〉)

. So
I can apply Sum as I go along and get the same answer. That means that the kind
Sum(d6 ** 100) is equal what I get by doing

playground> sum_of_4_rolls = Sum(d6 ** 4)

playground> sum_of_100_rolls = sum_of_4_rolls # initialize

playground> for iter in range(24): # loop to successively update

...> sum_of_100_rolls = Sum(sum_of_100_rolls * sum_of_4_rolls)

Alice: I think so, but let’s do a simpler example to make sure we understand it
correctly. Suppose we are just summing 12 rolls. The values of d6 ** 4 are lists with
four numbers in [1 . . 6] like ⟨1, 4, 3, 5⟩, ⟨3, 6, 5, 6⟩, and ⟨6, 2, 1, 1⟩. Transforming by Sum

adds these up giving values for Sum(d6 ** 4) like ⟨13⟩, ⟨20⟩, and ⟨10⟩ respectively.
Your sum_of_4_rolls looks like

,---- 1/1296 ---- 4

|---- 1/324 ---- 5

|---- 5/648 ---- 6

|---- 5/324 ---- 7

|---- 35/1296 ---- 8

|---- 7/162 ---- 9

|---- 5/81 ---- 10

|---- 13/162 ---- 11

|---- 125/1296 ---- 12

76

|---- 35/324 ---- 13

<> -+---- 73/648 ---- 14

|---- 35/324 ---- 15

|---- 125/1296 ---- 16

|---- 13/162 ---- 17

|---- 5/81 ---- 18

|---- 7/162 ---- 19

|---- 35/1296 ---- 20

|---- 5/324 ---- 21

|---- 5/648 ---- 22

|---- 1/324 ---- 23

`---- 1/1296 ---- 24

If we mix it with itself, sum_of_4_rolls * sum_of_4_rolls, it corresponds to rolling
4 dice once and then rolling 4 dice again and recording a pair of sums, with values
like ⟨13, 8⟩ and so on. Then, Sum(sum_of_4_rolls * sum_of_4_rolls) adds those
values up, giving us the sum of eight dice. And doing this yet again gives us

Sum(sum_of_4_rolls * sum_of_4_rolls * sum_of_4_rolls)

which is like rolling 4 dice three times, getting the sums for each set of 4, and then
adding up those subtotals to get the total sum. This is the kind of the sum of 12
rolls as we wanted and is the same as:

Sum(Sum(d6 ** 4) * Sum(d6 ** 4) * Sum(d6 ** 4))

Bob: Excellent. So “monoidal statistics” like Sum are those that let you do this
decomposition and compute the statistic in parallel. They could have called them
“parallel statistics,” eh?

Looking at the predefined statistics in the playground, I see that Min, Max, and Count

also have this property. I suppose that makes sense; after all,

min(⟨10, 20, 30⟩ :: ⟨40, 50⟩) = Min
(〈

Min(⟨10, 20, 30⟩),Min(⟨40, 50⟩)
〉)

min(⟨10, 20⟩ :: ⟨⟩) = Min
(〈

Min(⟨10, 20⟩),Min(⟨⟩)
〉)
,

77

which looks just like the formula for Sum above. (We take the minimum of an empty
list of numbers to be ∞ by convention.)

Alice: Right, so we have basically the same formula Min(a :: b) = Min
(〈

Min(a),Min(b)
〉)

.

Bob: So, we can get the kind for the minimum of 12 rolls by

Min(Min(d6 ** 4) * Min(d6 ** 4) * Min(d6 ** 4))

like before. That’s great, but what if I want to do something more complicated, like
the mean of the rolls or the range (difference between max and min). Those statistics
don’t have this property.

Alice: True, but we can get them both from statistics that do. For instance, if
you can find the kind of the sum, you can transform that to get the mean with
sum_of_100_rolls ^ (__ / 100).

But let’s solve the problem more generally. Have you seen the Fork combinator in
the playground?

Bob: Yes, it combines a bunch of statistics with common dimension into a big tuple
containing all of their results. For example, Fork(s1, s2)(x) = s1(x) :: s2(x) and
Fork(s1, s2, s3)(x) = s1(x) :: s2(x) :: s3(x).

Alice: And notice that if the statistics you give to Fork are “monoidal statistics”, so
is the statistic that it returns.

Bob: Because we can just apply our formula above to each component.

Alice: Yes. So if you want to compute the range (max - min), apply our formula
above with the statistic min_max = Fork(Min, Max) and then take the difference at
the end. That is,

min_max(min_max(d6 ** 4) * min_max(d6 ** 4) * min_max(d6 ** 4)) ^ Diff

Bob: Beautiful! Complicated but beautiful.

Alice: Yes, it’s a lot. The good news is that the playground can automate this with
the lazy operator, but that’s a story for another day.

Bob: My problem is solved, thanks.

Alice: Well, I have a related problem. You know how much I enjoy playing poker.

Bob: You’re a shark!

78

Alice: Well, I though I might parlay that interest into a way to beat the warehouse.
I’m trying to create FRPs to model shuffling a deck of cards, by drawing one card at
a time.

Bob: I see. The next card depends on which cards you’ve seen already. Sounds like a
mixture.

Alice: Exactly, but I found it a bit tricky to define. Can I show you? Fair warning,
there’s some Python here.

Bob: I’m not really fluent in Python, but I’m guessing I can follow along.

Alice: Absolutely you can, it should be clear, though I’ll explain any Python oddities.

Let’s start with a standard deck of 52 cards. We’ll arbitrarily assign the cards numbers
1 through 52; we can be more specific later if needed. At the first stage, I need an
FRP that selects each card with equal weight; that’s just

playground> card1 = uniform(1, 2, ..., 52)

For the next card, I need a conditional kind that picks uniformly among all but the
first card chosen. I’ll use the playground function irange that gives an inclusive
range of integers from its first to second arguments, with an option to exclude values
in a set. This looks like

playground> card2 = conditional_kind({

...> (first_card,): uniform(irange(1,52, exclude={first_card}))

...> for first_card in irange(1,52)

...> })

For each card, an integer from 1..52, this uses the uniform factory to make an equally
weighted kind on all the other cards.

Bob: And your code is building a mapping of key-value pairs for each value of
first_card, where (first_card,) is the key and the kind excluding first_card is
the value.

Alice: Right. A conditional kind maps the values of one kind to other kinds of equal
dimension. Now, I could continue like this all the way to card52, but I think I need
to be more systematic. Here’s what I tried, a function that returns a conditional kind
for a particular card draw:

79

def card(n):

"Returns the conditional kind for the nth card drawn."

if n == 1:

return uniform(1, 2, ..., 52) # (1)

def draw_kind(previous_cards): # (2)

next_cards = list(irange(1, 52, exclude=set(previous_cards))) # (3)

return uniform(next_cards) # (4)

return conditional_kind(draw_kind) # (5)

In (1), if this is the first card, we need to start things off, so we just return a kind
rather than a conditional kind. In (2), we define the conditional kind that we are
going to return as a function; this takes in the values of the earlier kind, which means
a list of all previous cards. In (3), we get the list of valid next cards, which just
excludes all the previous cards. In (4), we use the uniform factory to produce a kind
with equal weight on all of these cards. And finally, in (5) we return the conditional
kind, using conditional_kind to give us nicer output if we look at it.

Bob: OK, there’s some hairy stuff there, but I’m generally following. How do you
use this?

Alice: Well card(1) is the kind after one drawn card, and in succession

playground> card(1) >> card(2)

playground> card(1) >> card(2) >> card(3)

playground> card(1) >> card(2) >> card(3) >> card(4)

give the kind of the shuffle after 2, 3, and 4 cards are picked, respectively. We could
write a loop to do it for all cards

playground> shuffle = card(1)

playground> for n in irange(2, 52):

...> shuffle = shuffle >> card(n)

Of course, that’s impossibly slow because there are 52! different shuffles in the tree,
another big number.

80

Bob: So, you’re looking for a trick like what worked for my problem.

Alice: A trick would be fine, but I’m looking for an idea for understanding this.

Bob: I have two thoughts. First, what questions are you trying to answer? In my case,
it mattered that I was interested in the Sum, for example, which made it possible to
reduce the complexity. If you want to predict your hand, say, then you don’t need to
draw all 52 cards.

Second, are you sure you need an exact answer?

Alice: It’s true that if I’m looking at what heppens in my hand it’s easier. Like if
I’ve drawn five specific cards, and I want to know the chance of getting a fifth card,
it’s easier, but I still may have to deal with 20, 25, 30 cards.

Bob: What happens if you permute the labels? Does it matter if you observe cards
1, 5, 9, 13, and 17 (in a four player game with five cards each) versus cards 1, 2, 3, 4,
and 5?

Alice: Interesting. I think that’s an important observation, and I want to come back
to that. If I had cards 1-5 in my hand and were drawing the sixth, I could predict it
like this, for example. Draw six cards and compute the conditional for the sixth card
given a specific five cards in my hand.

playground> my_hand = card(1) >> card(2) >> card(3) >> card(4) >> card(5)

playground> next_card = (my_hand >> card(6) | (Proj[1:5] == (16,17,18,19,4)))[6]

playground> next_card ^ Or(__ == 20, __ == 15)

Bob: Cool, you’re assuming you got a particular four cards in a row and want to see
whether you get a straight. You could do this for any cards in your hand or write a
function that checks various combinations.

Alice: Yes, that’s useful. I do want to come back to the other idea you had. You
were suggesting that I demo FRPs instead of computing the kinds?

Bob: Right. The kinds let you compute everything exactly, but if you know what
question you want to answer, you can tailor an FRP to that and demo it.

Now that I think of it, that’s not a bad approach to my problem earlier.

playground> d6_frp = frp(d6)

playground> Frp.sample(10_000, Sum(d6_frp ** 100))

81

It’s not as fast or exact as what we came up with earlier, but pretty good.

Alice: The key is that the playground does not have to compute the kind of an FRP
like Sum(d6_frp ** 100) until you ask for it. It just hooks output ports to input
ports and pushes the button. I could do something similar:

def draw(n):

"Returns a conditional FRP for the nth card drawn."

return conditional_frp(card(n))

The conditional_frp turns every kind in a conditional kind into a new FRP of that
kind, which is what I need.

Bob: Then just do your loop with

playground> deck = draw(1)

playground> for n in irange(2, 52):

...> deck = deck >> draw(n)

playground> deck

to get the value of a random deck, or do Frp.sample to demo a bunch of them. It
won’t be fast or exact, but it will give you useful information.

Alice: That’s quite good; I can use that. But I’ve also been thinking about your
comment on permutations.

The Permute statistic factory in the playground produces statistics that just rearrange
the order of the list. For example, Permute([1,3,2]) swaps the second and third
components in a value list.

playground> psi = Permute([1,3,2])

playground> psi((10,20,30)) = (10, 30, 20)

Applying a permutation to the labels for our deck is just a relabeling of the cards,
but we don’t really care which number is assigned to which card.

Suppose I start with some kind k on n− 1 cards and compute the resulting kind for n
cards: k >> cards(n). If do any permutation of the labels after this, it is equivalent
to doing the same permutation on the values of k. That is, for any permutation “...”

k >> cards(n) ^ Permute(...) == (k ^ Permute(...)) >> cards(n)

82

Bob: That’s not obvious to me, but I’m trying it out in the playground and it does
seem to work.

Alice: Think of it this way. If I put new labels on all the cards after I’ve drawn
n− 1, then since all nth cards have equal weight, it’s the same as if we draw the nth

card before doing the relabeling.

Bob: Hmm. I think I’ve got it. And I see where you are going. Since the kind of the
shuffled deck is

card(1) >> card(2) >> card(3) >> ... >> card(51) >> card(52)

then if we apply a permutation at the end, we can just move it up through the >>’s.

card(1) >> card(2) >> card(3) >> ... >> card(51) >> card(52) ^ Permute(...)

card(1) >> card(2) >> card(3) >> ... >> (card(51) ^ Permute(...)) >> card(52)

...

card(1) >> card(2) >> (card(3) ^ Permute(...)) >> ... >> card(51) >> card(52)

card(1) >> (card(2) ^ Permute(...)) >> card(3) >> ... >> card(51) >> card(52)

(card(1) ^ Permute(...)) >> card(2) >> card(3) >> ... >> card(51) >> card(52)

All these are the same kind!

Alice: And here’s the punchline. We know that cards(1) is just uniform(1,2,...,52),
so cards(1) does not change when you relabel the cards.

cards(1) ^ Permute(...) == cards(1)

Bob: In other words, doing a permutation of the deck doesn’t change the kind, or
your analysis!

So, if you want to consider only your hand and a few cards to draw from, you can
use cards(1) >> ... >> cards(8), which is more manageable.

In fact, if the cards in your hand are c_1, c_2, c_3, c_4, and c_5, you can just do

playground> my_hand = (c_1, c_2, c_3, c_4, c_5)

playground> constant(my_hand) >> cards(6) >> cards(7) >> cards(8)

Alice: Nice. You used the fact that

83

playground> first_five = cards(1) >> cards(2) >> cards(3) >> cards(4) >> cards(5)

playground> my_hand == first_five | (__ == (c_1, c_2, c_3, c_4, c_5))

That makes it easier to answer many interesting questions. Good team work!

Bob: Don’t risk too much money at the table. . .

Alice: Restraint is my middle name.

Bob: (Rolls eyes affectionately)

Puzzle 25. Suppose you are interested in when a specific pattern of die rolls – 4,
6, 2 – occurred during successive rolls at any point during 100 rolls of a six-sided
die. Using the same d6 that Bob did in this section, compute the kind of an FRP
that outputs 1 if the pattern occurs and 0 otherwise.

For the next puzzles, we refer to the following example.

Example 7.1. A language is a set of strings made up of symbols from a fixed
alphabet. Consider the language consisting of one or more a’s with a zero or one
commas between each sequence of a’s. Strings “a,aaa,a,aaa,a” and “a” and
“aaaaaa,a,a,a” belong to this language, but strings “a„a” and “,a,” and “,” do
not. We will describe this language by a graph whose nodes represent “states”

If you are familiar with
regular expressions, this
language is described by
a+(,a+)*.and whose edges represent “transitions.” The graph is shown in Figure 22.

We start in the blue S node – the “Start” state. We will process a string of
a’s and ,’s one character at a time, moving from state (node) to state (node).

Suppose we are in a particular state (node) at a given time. If the next
unseen character in the string is an a, we follow the edge labeled a out of our
node. If the next unseen character in the string is an ,, we follow the edge
labeled , out of our node. This determines the next state

After seeing “a,aa”, for instance, we would be in state A; after “a,a,” in
state C; and after “a„” in state F. The green state A is “Accept” – ending there
means that the input string belongs to the language, but ending in any other
state means that it does not. The red state F is “Failure” – reaching that state
automatically means the input does not belong to the language.

84

S

A

C

F

a

,

,

a

a

,

a

,

Figure 22. The language described in Example 7.1.

Puzzle 26. Referring to the situation in Example 7.1, assign the number 0 to the
character a and the number 1 to the character , and the number 2 to an “end of
string” marker, which can be repeated.

Define char = uniform(0,1,2). What does char ** 80 represent?
Write (in code or pseudo-code) a function that takes a value of char ** 80

and returns the corresponding string.

Puzzle 27. We are interested in whether the string produced by char ** 80 in
the previous puzzle belongs to the language described by Example 7.1.

Assign the number 1 to the case where the string is accepted and 0 to the case
where the string is not accepted. Compute the corresponding kind.

You will want to construct an initial kind and a conditional kind for each move.
Like Alice and Bob, you only need some information not the whole path.

After reading this section you should be able to:

• Identify situations where FRP sizes grow quickly.

• Use conditional kinds/FRPs to describe steps in a process.

• For some large kinds, find an efficient way to answer targeted questions.

Checkpoints

85

8 Risk-Neutral Prices

How much is an FRP worth?
To begin to answer that question, we consider how well we can predict the

value of a scalar FRP. Following a long tradition, we express our prediction
through a price. A larger predicted payoff corresponds to a higher price and a
smaller (even negative) predicted payoff to a lower (even negative) price.

The FRP market lets us purchase any number of FRPs of the same kind at
a fixed price per unit. We can borrow and use unlimited funds with no interest
but must pay back that loan when our FRPs’ values are revealed.

If we can purchase a large number of FRPs of the same kind at a price $c
that essentially guarantees us a profit, we call c an arbitrage price for those
FRPs. If we have an opportunity to purchase FRPs at an arbitrage price, we
would always take it – at scale.

The set of arbitrage prices for an FRP contains every number from −∞ up
to but not including a value r, which may be a real number or ∞. This value
r is the risk-neutral price for the FRP. It is the smallest value that is bigger
than all arbitrage prices for that FRP.

No reasonable person would offer us an arbitrage price to purchase FRPs
because it would (essentially) guarantee them a loss. Nor would you accept an
offer to pay more than the risk-neutral price, for it would (essentially) guarantee
you a loss. But at the risk-neutral price, there are no guarantees; you may win
or lose, and neither buyer nor seller has the advantage.

The term risk-neutral here means that the price is not sensitive to the risk
of loss that you face or the degree of uncertainty in the FRPs value. When
you can purchase as many FRPs as you like with interest-free funding, you are
not sensitive to risk as we would be in real life. As such, the risk-neutral price
reflects our best prediction of a “typical value” produced by the FRP. More on
this point later.

We can use our free trial at the FRP market to estimate the risk-neutral
prices for any FRP. We will see an easy way to calculate it in ATTN

Key Take Aways

86

The more we know about a phenomenon, the better we are able to predict its
outcome. At one extreme, an outcome may be certain, and our prediction is perfect.
For example, the constant FRP with kind ⟨⟩ ⟨100⟩ has only possible value
(100 in this case), so we can predict with certainty that 100 is the value it will display
when we push its button. Close to that is what we will call essential certainty . It is
possible that all the air molecules in the room where you are sitting will spontaneously
organize themselves in the corner of the room, leaving you in an effective vacuum,
but for that to happen would require so many miraculous bounces that there is no
reasonable need to factor that possibility into your day.

Approaching the other extreme, an outcome may be uncertain with nothing to

distinguish the possibilities. For instance, the FRP with kind
⟨⟩

⟨0⟩1

⟨1⟩1
can produce values 0 or 1, but as we have seen earlier, there is no reason to expect
one more than the other. I say “approaching” here because we can add increase our
uncertainty by having more and more spread out possible values. For instance, an
FRP with kind

⟨⟩

⟨−10000⟩1

⟨−100⟩1

⟨−1⟩1

⟨0⟩1

⟨1⟩1

⟨100⟩1

⟨10000⟩1

seems even harder to predict. And we can increase that uncertainty without bound
with ever more complicated kinds.

This raises three questions. First, what prediction should we make in the face of
uncertainty? Second, how should we quantify the degree of uncertainty that we face?
And third, how should our decisions be affected by the degree of uncertainty? Here
we will focus on the first question, touching only briefly on the other two, but rest
assured we will consider all three as we proceed in this course.

87

Our goal in this section is to define a baseline best prediction for the value of an
FRP. We express this prediction through the price that we would pay to receive the
FRP’s payoff. Using prices to describe a prediction has a long tradition. The price of
a stock, for instance, is (in theory) the market’s prediction of the long-run value of
each share of the company. When a sports team signs a contract for a player, they
are predicting how much revenue (explicitly and implicitly through championships,
merchandise, advertising, et cetera) that player will bring to the organization. When
an insurance company offers insurance against an event, such as damage to one’s
home, the price of the insurance premiums reflects the company’s prediction about
how much they will have to pay out. And the companies have

armies of analysts, called
actuaries, whose job is to
make those predictions
based on the available data.

The last example has a resemblance to what we face with FRPs. An insurance
company makes their money in the aggregate: not on an individual homeowner’s
premiums but on a large collection of similar premiums. Particular homeowners may
require payouts on their policies, but with enough policies and good predictions, the
company can price the premiums high enough to make a profit. This assumes that the

different policies are close to
what we will call
independent; if all of the
homes are hit by the same
hurricane, the company will
lose.

Similarly, with one particular FRP, we can get any of its possible payoffs. But as
we saw in the demos of the last section, with a large enough collection of FRPs of
the same kind, we will see all of its possible payoffs in some proportion, and we can
better control our gains and losses.

We will represent our prediction of an FRPs value though the risk-neutral price
for each FRP of that kind, to be defined below. Here is the setup. We have through
the FRP market an unlimited collection of FRPs of any kind. We purchase some
number of FRPs of kind k, paying a price $ck per unit, and our total payoff is the
sum of the values of all the purchased FRPs. We can borrow as much money as we Remember that negative

payoffs means that we have
to pay out.like interest-free to purchase FRPs, but when their payoffs are revealed, we must

immediately pay back that loan.
We will define the risk-neutral price c∗k below, for any FRP of kind k. We

will see that you would be unwilling to pay more than c∗k for each FRP, and in our
setting (where you have access to unlimited interest-free funds), the market will not
be willing to sell you an FRP for less. The term “risk-neutral” has a meaning that
will be clarified below; loosely, it is the price that someone is willing to pay who is
indifferent to the magnitude of uncertainty in an FRP’s payoff.

Let us consider the simplest, non-trivial FRP: the constant, scalar FRP: the
constant ⟨⟩ ⟨v⟩ We know with certainty that this will payoff $v. If you

88

pay less than $v, you will make a profit on each FRP you purchase, so you would
purchase as many as possible. Of course, the market knows this as well, so they
would not sell such an FRP for less than $v. For all practical purposes, this constant
FRP is equivalent to $v, which is its risk-neutral price.

Consider next the simple FRP
⟨⟩

⟨0⟩1

⟨2⟩1 Use the frp market application Remember, this is still your
free trial, so no money
changes hands yet.to purchase collections of these at different prices. With the buy command, you

specify how many FRPs you want to buy at each of one or more prices, and the kind.
It shows your net payoff (total and per unit) for the batch purchased at each price.
Here are some buy command’s and some sample output.

market> buy 1_000_000 each @ 0.5, 0.9, 0.99, 0.999, 0.9999, 1, 1.01

...> with kind (<> 1 <0> 1 <2>).

Buying 1,000,000 FRPs with kind (<> 1 <0> 1 <2>) at each price

Price/Unit Net Payoff Net Payoff/Unit

$0.50 $ 500,670.00 $ 0.500670

$0.90 $ 11,534.00 $ 0.011534

$0.99 $ 537.00 $ 0.000537

$0.999 $ -1,990.00 $-0.001990

$0.9999 $ 753.00 $ 0.000753

$1.00 $ -512.00 $-0.000512

$1.01 $ -8,796.00 $-0.008796

market> buy 10_000_000 each @ 0.5, 0.9, 0.99, 0.999, 0.9999, 1, 1.01

...> with kind (<> 1 <0> 1 <2>).

Buying 10,000,000 FRPs with kind (<> 1 <0> 1 <2>) at each price

Price/Unit Net Payoff Net Payoff/Unit

$0.50 $ 5,003,478.00 $ 0.500348

$0.90 $ 997,792.00 $ 0.099779

$0.99 $ 102,930.00 $ 0.010293

$0.999 $ 2,311.00 $ 0.000231

$0.9999 $ 96.00 $ 0.000010

$1.00 $ -2028.00 $-0.000203

$1.01 $ -99,224.00 $-0.009922

89

market> buy 100_000_000 each @ 0.5, 0.9, 0.99, 0.999, 0.9999, 1, 1.01

...> with kind (<> 1 <0> 1 <2>).

Buying 100,000,000 FRPs with kind (<> 1 <0> 1 <2>) at each price

Price/Unit Net Payoff Net Payoff/Unit

$0.50 $49,995,392.00 $ 0.499953

$0.90 $ 9,976,452.00 $ 0.099765

$0.99 $ 1,005,452.00 $ 0.010055

$0.999 $ 103,884.00 $ 0.001039

$0.9999 $ 24,664.00 $ 0.000247

$1.00 $ 262.00 $ 0.000003

$1.01 $ -998,284.00 $-0.009983

market> buy 1_000_000_000 each @ 0.5, 0.9, 0.99, 0.999, 0.9999, 1, 1.01

...> with kind (<> 1 <0> 1 <2>).

Buying 1,000,000,000 FRPs with kind (<> 1 <0> 1 <2>) at each price

Price/Unit Net Payoff Net Payoff/Unit

$0.50 $499,980,344.00 $ 0.499803

$0.90 $ 99,964,150.00 $ 0.099964

$0.99 $ 9,939,632.00 $ 0.009940

$0.999 $ 1,001,286.00 $ 0.001001

$0.9999 $ 80,598.00 $ 0.000081

$1.00 $ -38,850.00 $-0.000039

$1.01 $-10,088,852.00 $-0.100889

Although it is not perfectly clearcut, there is a pattern here. When the price is
low, the net payoff tends to be large and positive. The net payoff shrinks as the price
approaches 1, becoming more and more negative beyond that. The third column
makes it easier to see the common pattern because the numbers across runs are all
on the same “per unit scale.” Let’s zoom in near 1 to get a closer look:

market> buy 1_000_000_000_000 each @

...> 0.9999, 0.99999, 1.00, 1.00001, 1.0001

...> with kind (<> 1 <0> 1 <2>).

Buying 1,000,000,000,000 FRPs with kind (<> 1 <0> 1 <2>) at each price

90

(Due to large numbers, the values below may be slightly approximate.)

Price/Unit Net Payoff Net Payoff/Unit

$0.9999 $ 101,695,118 $ 1.01695e-4

$0.99999 $ 8,953,455 $ 8.95346e-6

$1.00 $ 915,029 $ 9.15030e-7

$1.00001 $ -10,020,272 $-1.00203e-5

$1.0001 $ -99,822,037 $-9.9822e-05

The pattern seems similar, and it appears that 1 is the inflection point. We
can guess that $1 is the right price! And we’ll see below how this might match our
intuition that 1 is the midpoint between two evenly weighted values 0 and 2.

But now it is time to define our terms. We will define the risk-neutral price
relative to prices for an FRP that let us make money with essential certainty.

Definition 12. If X is a scalar FRP, an arbitrage price for X is a real value c
such that if you pay $c per FRP, you can purchase a collection of FRPs of kind
equivalent to kind(X) and guarantee a profit with essential certainty.

If we pay an arbitrage price for any particular number of FRPs, we can still lose
money. But if we buy enough FRPs of the same kind, the possibility of losing money
becomes like the possibility of your air all gathering in the corner of the room. A profit
is essentially guaranteed. This matches the pattern we saw in the above example
with prices less than 1. So, if we were offered an arbitrage price to purchase FRPs,
we would jump on the deal and purchase as many as possible.

Arbitrage prices have an important property. We can start with some immediate
intuition: if c is an arbitrage price for X and c′ < c, then c′ is also an arbitrage price.
When c is a price that essentially guarantees a profit, then paying a smaller price
only makes it easier to make a profit, and this smaller price is then also an arbitrage
price. In fact, we can make a stronger statement:

Property A. If c is an arbitrage price for X, then there is some real number ϵ > 0

so that every c′ < c+ ϵ is also an arbitrage price for X.

This looks a little more mysterious at first but is based on similar intuition. If we can
make an essentially guaranteed profit at some price c, then we can very, very slightly

91

increase the price and still make a profit. The increase might be tiny indeed, but we
can always find a higher arbitrage price.

Be careful not to conclude from Property A that we can always find arbitrage
prices that are arbitrarily large. Suppose 1 is an arbitrage price for a particular FRP.
Property A tells us that we can find an arbitrage price that is slightly bigger than 1.
Suppose that values < 1.0001 are arbitrage prices. Then Property A tells us that we
can find a value slightly bigger than 1.00009 that is also an arbitrage price. Suppose
that values < 1.00009001 are also arbitrage prices. Continuing in this way we might
never reach 1.0001, for instance. In most cases of interest, the set of arbitrage prices
is bounded from above, and that is how we define the risk-neutral price.

Definition 13. If X is a scalar FRP, the risk-neutral price for X is the smallest
value r that is bigger than every arbitrage price for X.

If every finite c is an arbitrage price for X, the risk-neutral price is ∞. If no
finite c is an arbitrage price, the risk-neutral price is −∞.

If we pay the risk-neutral price for the FRPs, then we might make a profit or a
loss, no matter how many FRPs we purchase. There are no guarantees. Remember
that a positive price means that we pay to get the FRP; a negative price means that
we are paid to take it.

The set of arbitrage prices for an FRP contains every number from −∞ up to
but not including the risk-neutral price r. No reasonable person would offer us an
arbitrage price to purchase FRPs because it would (essentially) guarantee them a
loss. Nor would you accept an offer to pay more than the risk-neutral price, for it
would (essentially) guarantee you a loss. But at the risk-neutral price, neither buyer
nor seller has the advantage.

The term risk-neutral here means that the price accounts only for typical payoff
not for the magnitude of the losses that we risk. Consider FRPs with kinds shown in
Figure 23: all three have the same risk-neutral price of 10. Most of us facing a choice
among these three payoffs would not be indifferent among them. The first guarantees
a $10 payoff. The second offers the possibility of a slightly higher payoff ($11) at the
small risk of losing $1000 – a non-trivial loss. The third offers a bigger payoff with
higher risk (losing $10,000 is nothing to sneeze at). While you would pay $10 for the
first FRP, you would likely pay less for the latter two to account for the risk you

92

face. Real betting markets account for this risk and tend to clear at prices lower than
the risk neutral price. This risk matters in practice because you have limited funds
available.

⟨⟩ ⟨10⟩1 ⟨⟩
⟨−1000⟩1

⟨11⟩1010
⟨⟩

⟨−10000⟩1

⟨110⟩100.1

Figure 23. FRP kinds with the same risk-neutral price. Are you indifferent to which of these
payoffs you get?

But in our setup, at any price below the risk-neutral price, risk is not a consideration
because you have unlimited funds available and can purchase an arbitrarily large
number of FRPs. As such, the risk can be hedged away, and no premium for risk is
needed. This pushes the equilibrium to the risk-neutral price.

Puzzle 28. Assuming a < b, can the risk-neutral price of the FRP with kind

⟨⟩
⟨a⟩wa

⟨b⟩wb

be less than a? Greater than b? Why or why not?
Can it be equal to a or b? (Remember wa, wb > 0.) Why or why not?
If wb is very much bigger than wa, do you expect the risk-neutral price to be

closer to a or to b?

Activity. Empirically evaluate the risk-neutral price of several scalar FRPs,
using the buy command as above. As a starting point, consider FRPs with a
few simple kinds, like:

1. For various values of v,

⟨⟩
⟨0⟩1

⟨v⟩1

2. For various values of w,

93

⟨⟩
⟨0⟩1

⟨1⟩w

3. For various values of −1 < c < 1 and of w, starting with w = 1,

⟨⟩

⟨−1⟩1

⟨c⟩w

⟨1⟩1

Try some other examples as well. Can you guess the relationship between an
FRPs kind and its risk-neutral price? Don’t forget the results of our earlier
demos. What do you expect to see when you tabulate the values of a large
sample of FRPs of the same kind? What does this tell you about the risk-neutral
price?

8.1 Fundamental Properties of Risk-Neutral Prices

The risk-neutral price of an FRP X represents a good prediction of X’s value. This
might seem like an odd statement at first. For instance, we saw the FRP with kind

⟨⟩
⟨0⟩1

⟨2⟩1

has a risk-neutral price of 1 – but 1 is not a possible value of X. So if you predict 1,
you will aways be wrong. But the market captures a different notion of prediction:
prediction in the aggregate. If you guess below the risk-neutral price, the value will
tend to be above your guess (and you can make money almost certainly in the market).
If you guess above the risk-neutral price, the value will tend to be below your guess
(and you will lose money in the market if you purchase enough). The risk-neutral
price is thus a “typical” value of X; it gives us an optimal prediction for that value,
in a particular sense to be described below.

And we can learn quite a lot about X from its risk-neutral price. If X is the
constant FRP with value v, we know its risk-neutral price is v: at any price c < v,
we make $v − c > 0 for every unit purchased.

94

If the smallest possible value of X is a, then any c < a must be an arbitrage price,
because X’s value will certainly be > c. Hence, X’s risk-neutral price is ≥ a.

For a real-number s, write sX for the transformed FRP that scales the value of
X, whatever it is, by s. Formally, this is ψs(X) where ψs is the statistic defined by
ψs(x) = sx, which just scales its argument by s. Consider a large batch of FRPs
with the same kind as X: X[1], . . . , X[m]. At the market, we can choose to purchase
the batch sX[1], . . . , sX[m]. If c is any arbitrage price for X, then for large enough m,
the batch X[1], . . . , X[m] would essentially guarantee us a profit. If s > 0, then we
would also get a profit from the same batch with payoffs sX[1], . . . , xX[m], because
all the payoffs are just scaled by s, so sc is an arbitrage price for sX. Hence, the
risk-neutral price of sX is just s times the risk-neutral price for X. (If s < 0, we just
use the same argument scaling by −s, yielding the same result.)

Take s = −1 and apply the previous two paragraphs. If b is the largest possible
value of X, then −b is the smallest possible value of −X. So the risk-neutral price of
−X is ≥ −b, meaning that the risk-neutral price of X is ≤ b.

We can (and will) go on like this, deriving properties of the risk-neutral price from
the logic of arbitrage prices. But first it will be nice to have a . . . crisper notation.

Notation. If X is an FRP, we will use E(X) to denote the risk-neutral price of
the FRP. (In the playground, this is E(X).)

Consider one more property of risk-neutral prices. Let d = dimension(X) and
let Y and Z be any two components of X. That is, Y = Xi and Z = Xj for some
1 ≤ i, j ≤ d. Now define a statistic ψ by ψ(x1, x2, . . . , xd) = xi + xj and write ψ(X)

as Xi +Xj or, equivalently, Y + Z.
Consider the three FRPs Y + Z, Y , and Z. We can find E(Y + Z) from E(Y)

and E(Z). If c1 ≤ E(Y) and c2 < E(Z), then c1 + c2 is an arbitrage price for Y + Z:
we can make arbitrarily large amounts of money from the Z payoffs even if we lose
a little from the Y payoffs. Similarly, if c1 < E(Y) and c2 ≤ E(Z), c1 + c2 is an
arbitrage price for Y + Z. But E(Y) + E(Z) cannot be an arbitrage price for Y + Z

because the payoff at this price from any batch of Y + Z clones is equivalent to a
payoff from batches of Y ’s and Z’s at their risk-neutral price, for which a profit is
not essentially guaranteed. It follows that E(Y) + E(Z) is the risk-neutral price for

95

Y + Z. By Bob’s equation from the last section

Sum(a :: b) = Sum
(〈

Sum(a), Sum(b)
〉)
,

this generalizes to any number of components.
We just derived the following properties of E(X) for an FRP X.

Box 14. Key Properties of Risk-Neutral Prices. Let X be an FRP.
Constancy

If X is a constant – has only one possible value v – then

E(X) = v. (8.1)

Scaling

If s is a real number and sX is the transformed FRP scaling X by s, then,

E(sX) = sE(X). (8.2)

Ordering

If all possible values of X are ≥ a and ≤ b, then

a ≤ E(X) ≤ b (8.3)

Additivity

If X1, X2, . . . , Xn are the components of X, then

E(X1 +X2 + · · ·+Xn) = E(X1) + E(X2) + · · ·+ E(Xn). (8.4)

In terms of the Sum statistic and equation 8.6 below, we can also write this
as E(Sum(X)) = Sum(E(X)).

96

Example 8.1. If X has kind described by (<> 1 <-1> 4 <1>), what is E(X2)?
(Recall that X2 denotes the transformed FRPs by statistics ψ(x) = x2; see

Definition 7.)
X2 is a transform of X. When we see the value v that X produces at its

output ports, we feed that value through a statistics adapter that passes v2 to
the next stage. We don’t know X’s value, but we know that it will be either -1
or 1. Thus the possible values of X2 is the set of v2 for v either -1 or 1. This
means that 1 is the only possible value of X2. It is constant.

Hence, by the Constancy property (8.1), E(X2) = 1.

Example 8.2. In the previous section, Alice and Bob figured out a clever way to
compute Sum(d6 ** 100) in the playground. This is the kind of an FRP that
represents the roll of 100 balanced 6-sided dice. To compute the risk-neutral
price for this, we do not need such clever tricks.

playground> d6 = uniform(irange(1, 6))

playground> D_6 = frp(d6)

playground> D_6

An FRP of dimension 1 and size 6 with value <4>

This creates an FRP D_6 with kind d6 that simulates a single roll of a six-
sided die. We can create frp(d6 ** 4) or frp(d6 ** 8) to simulate the rolls
of 4 or 8 dice similarly.

playground> frp(d6 ** 4)

An FRP of dimension 4 and size 1296 with value <2, 1, 3, 2>

playground> frp(d6 ** 8)

An FRP of dimension 8 and size 1679616 with value <5, 6, 3, 4, 4, 1, 4, 3>

So d6 ** 100 is the kind of an FRP that simulates the rolls of 100 dice. We
already know that this kind is hard to compute, just d6 ** 8 has size 1,679,616.

The playground can, however, create such an FRP without the kind. For
four rolls, for example:

97

playground> D_6 = frp(d6)

playground> rolls4 = clone(D_6) * clone(D_6) * clone(D_6) * clone(D_6)

playground> rolls4

An FRP with value <1, 5, 3, 3>. (It may be slow to evaluate its kind.)

This gives us the value of rolls4 showing us each of the four rolls. The value
of this FRP has been computed directly by activating each of the four clones
and plugging their outputs into roll4’s input port. The kind of the FRP has
not yet been computed, as the message indicates. This allows us to construct
FRPs even if the kind is hard compute, though in this case we could just call
kind(rolls4) to find it. (Try it!)
Notice that we need to use the clone function here. Because each FRP has only
one value fixed for all time, the following would not be quite what we wanted:

playground> D_6 * D_6 * D_6 * D_6 # not quite right

An FRP with value <4, 4, 4, 4>. (It may be slow to evaluate its kind.)

No matter how many times you do this, you will get the same value each time.
Now to simulate 100 rolls, we could just type clone(D_6) * clone(D_6) * ...

100 times, but that is tedious. Instead, the playground uses the independent
mixture powers D_6 ** n as a shorthand for clone(D_6) * ... * clone(D_6)

n times. (The more literal meaning without the clones would not be at all
interesting.

playground> rolls100 = D_6 ** 100

An FRP with value <2, 1, 3, 3, 4, 1, 1, 6, 3, 5, 5, 1, 2, 1, 3,

4, 6, 2, 2, 5, 2, 1, 4, 6, 5, 6, 3, 6, 3, 2, 6, 2, 1, 1, 5, 1,

1, 6, 3, 6, 3, 3, 3, 4, 5, 4, 3, 5, 6, 5, 5, 2, 2, 6, 2, 3, 3,

6, 3, 1, 2, 4, 4, 4, 4, 3, 1, 4, 1, 3, 5, 1, 3, 2, 3, 1, 4, 4,

2, 1, 2, 6, 3, 4, 3, 1, 5, 1, 1, 2, 5, 3, 5, 2, 4, 2, 3, 6, 3,

1>. (It may be slow to evaluate its kind.)

playground> Sum(rolls100)

An FRP with value <322>. (It may be slow to evaluate its kind.)

playground> E(Sum(rolls100)) = 350

98

The risk-neutral price for for roll100 is computed using the properties in
Box 14 and Definition 15.

First, remember that E(D_6) == E(clone(D_6)) because the risk-neutral
price for an FRP only depends on its kind not its particular value. And we know
that

playground> E(D_6)

7/2

Second, Definition 15 tells us that E(D_6 ** 100) is equal to
<E(clone(D_6)), E(clone(D_6)), ..., E(clone(D_6))>, whose value we know.
Indeed, we can compute

playground> E(D_6 ** 100)

<7/2, 7/2, 7/2, ..., 7/2, 7/2>

where I’ve excised 95 of the values for brevity. Finally, Additivity (equation 8.4)
tells us that

playground> E(Sum(D_6 ** 100)) == Sum(E(D_6 ** 100))

True

playground> E(Sum(D_6 ** 100))

350

as we saw earlier.

Example 8.3. Here we revisit Alice’s deck of cards from the previous section. Let
S be the FRP of dimension 52 (and size 52!) whose values are all permutations
of 1, 2, . . . , 52. Let A = {1, 14, 27, 40} be a set of four special values in [1 . . 52].

We can use the FRP D as a model of equally-weighted shuffles of a standard
deck of cards and model components in A to be aces. We want to use this model
to predict how many cards are between each ace in the deck.

Define a statistic ψ that takes a value of S and returns ⟨a1, a2, a3, a4, a5⟩,
where a1 is number of components of S’s value before the first value in A; a2
is the number of components strictly between the first two values in A; a3 is

99

the number of components strictly between the second and third value in A; a4
is the number of components strictly between the third and fourth value in A;
and a5 is the number of components strictly after the fourth value in A. These
quantities model the number of cards before the first ace, between the first and
second aces, and so forth.

Puzzle 29. Show how to define the statistic ψ in the playground. Call it
between_aces.

We can use the shuffle FRP factory to create S:

playground> S = shuffle(irange(52)) # Values are permutations of 1..52

playground> S

An FRP with value <15, 48, 16, 41, 20, 22, 29, 4, 17, 34, 39,

14, 26, 8, 49, 1, 18, 2, 31, 32, 52, 37, 36, 42, 19, 3, 35, 28,

50, 25, 38, 33, 45, 24, 44, 46, 11, 43, 7, 23, 9, 13, 12, 40,

30, 47, 10, 21, 27, 6, 51, 5>.

We can apply the statistic you defined in the puzzle to look at the gaps
between aces in the simulated deck.

playground> A = between_aces(S)

playground> A

An FRP with value <11, 3, 27, 4, 3>. (It may be slow to evaluate its kind.)

The FRPA has dimension 5, and we can write its components asA1, A2, A3, A4, A5

whose values have the meaning described earlier.
We can look at the components individually, for instance

playground> A[1]

An FRP with value <11>. (It may be slow to evaluate its kind.)

playground> A[3]

An FRP with value <27>. (It may be slow to evaluate its kind.)

and similarly for the others.

100

To start, we would like to compute E(A1 +A2 +A3 +A4 +A5). The FRP
here is a statistic applied to A, which is in turn a statistic applied to S. This
statistic can be expressed in multiple equivalent forms.

playground> Sum(A)

playground> Sum(between_aces(S))

playground> S ^ Sum(between_aces)

playground> S ^ between_aces ^ Sum

These are all the same FRP. (Make sure you understand why.)

Puzzle 30. In the playground, construct the statistic Sum(between_aces).
This is the composition of the two statistics: to apply it, we first apply
between_aces to a deck and then apply Sum to the value it returns. “Sum after
between_aces.”

Evaluate Sum(between_aces(S)). If you clone S and do this again, what
possible values might you see?

Try:

playground> psi = Sum(between_aces)

playground> FRP.sample(100, psi(S))

What do the results tell you? Can you explain this table? What happens if
you demo 1000 samples?

What we discovered in the previous puzzle is an invariant that lets us find
the risk-neutral price. Define ζ = Sum ◦ ψ, “Sum after between_aces.” Then,
ζ(S) = A1+A2+A3+A4+A5. By property (8.1), the invariant tells us that we
have that E(ζ(S)) = 48. This result follows from logic as much as computation,
but the computations make the result clear and concrete.

With the Additivity property for risk-neutral prices, we have

48 = E(A1 +A2 +A3 +A4 +A5)

= E(A1) + E(A2) + E(A3) + E(A4) + E(A5),

101

so we’ve learned something about the risk-netural prices of the individual com-
ponents.

With a bit more logic, we can go even further. The key idea is to exploit
the symmetry of the system. Recall Alice’s and Bob’s observation from the last
section that a shuffle of the deck does not change the kind of S. That is, if ϕ is
any permutation statistic that applies a fixed permutation to the components of
the 52-tuples produced by S, we have

kind(ϕ(S)) = kind(S).

We can then ask what this symmetry implies about the kinds of FRPs obtained
by transforming S, such as ζ(S).

We can try it. But to illustrate the ideas, it will be easier to work with a
smaller “deck” and a simpler but analogous statistic. Let’s look at all shuffles of
[1 . . 5] and instead of between_aces, let’s consider the analogous two_four_gaps,
that uses {2, 4} instead of the set A.

playground> T = shuffle(irange(5))

playground> kind(T)

I’m not showing the tree here, but you should look at it. It’s still small enough
to understand and examine.

First, let’s confirm Alice’s and Bob’s observation. Pick an arbitrary permuta-
tion and turn it into a statistic. For instance, this will work:

playground> phi = Permute(clone(T).value) # This is a statistic

playground> kind(phi(T))

Look at the tree closely; it’s in canonical form and the two are the same. Indeed,
we can check this explicitly in the playground:

T.kind and kind(T) are
equivalent; we typically use
the one that is easier to
read and understand.

playground> Kind.compare(T.kind, phi(T).kind)

The two kinds are the same within numerical precision.

The permutation was arbitrary, and the results will be the same – for the reasons
Alice and Bob gave – if we try it with any other permutation.

102

Now, let’s see the impact of a permutation on our analogue of between_aces.
The statistic two_four_gaps can be defined as follows; it has dimension 5 and
co-dimension 3.

@statistic('A simpler version of between_aces', dim=5, codim=3):

def two_four_gaps(value):

targets = {2, 4}

diffs = []

last_index = -1

for i, v in enumerate(value):

if v in targets:

diffs.append(i - last_index - 1)

last_index = i

diffs.append(len(value) - last_index - 1)

return diffs

We can compare the kinds of T transformed by this statistic, before and after
an extra permutation.

playground> kind(two_four_gaps(T))

playground> kind(two_four_gaps(phi(T))) # equivalent to kind(T ^ phi ^ two_four_gaps)

Looking at the kinds, we see they are the same! (You can also use Kind.compare.)
So, the kind of two_four_gaps(T) does not change under permutations.

What about the components?

playground> kind(T ^ two_four_gaps ^ Proj[1])

playground> kind(phi(T) ^ two_four_gaps ^ Proj[1])

again have the same kind. See Property 16 below.
Let’s call the components of two_four_gaps(T) ⟨G1, G2, G3⟩. What we just

saw implies that the kind of G1 is invariant under permutations of the deck,
and similarly for G2 and G3. And yet if I reverse the deck – which is just a
permutation – I just swap the values of G1 and G3. (Why?) Extra shuffles of

103

the deck change the values of these components but do not change their kinds.
This suggests that G1, G2, and G3 have the same kind. And we can check this:

playground> G = T ^ two_four_gaps

playground> kind(G[1])

playground> kind(G[2])

playground> kind(G[3])

All three are the same, as we guessed. So

playground> E(G[1]) == E(G[2]) and E(G[1]) == E(G[3]) and E(G[2]) == E(G[3])

True

playground> E(Sum(G))

3

playground> E(Sum(G)) == E(G[1]) + E(G[2]) + E(G[3])

True

All the E(Gi)’s are equal and they sum to 3, so E(Gi) = 1.
The exact same phenomenon occurs with S and A in place of T and G. It’s

just more items with the same logic. We saw above by the Constancy property
that

E(A1 +A2 +A3 +A4 +A5) = 48.

And using the symmetry as we did with T , we see that all 5 Ak’s have the same
kind. So, their risk-neutral prices are also the same. By the Additivity property
(8.4) we have

E(A1 +A2 +A3 +A4 +A5) = E(A1) + E(A2) + E(A3) + E(A4) + E(A5)

= 5E(A1)

so,

E(A1) = E(A2) = E(A3) = E(A4) = E(A5) = 9.6

And we have found the risk-neutral prices of Ai.

This example shows us the power of the properties we’ve discovered about risk-

104

neutral prices. They let us compute the risk-neutral prices without explicitly con-
sidering every possible value. This also shows that the risk-neutral prices are often
easier to compute than the full kinds.

Example 8.4. Let X be an FRP and let ψ, ϕ be two compatible statistics.
Consider the conditional kind that maps a value a to the kind of ϕ(X) | ψ(X) = a.
In other words, we observe one transformed value of X and we want to use that
information to predict a different transformed value of X. We will see how to
compute risk-neutral prices for this kind and in the process discover a useful
general property of risk-neutral prices in the case where the two statistics are
related.

As a concrete example, consider

playground> X = frp(either(0,1) >> {0: uniform(1, 2, 3) * either(4, 5),

...> 1: either(7, 2, 1/7) * either(4, 5)})

playground> X

An FRP of dimension 3 and size 10 with value <0, 3, 5>

playground> kind(X)

,---- 1/12 ----- <0, 1, 4>

|---- 1/12 ----- <0, 1, 5>

|---- 1/12 ----- <0, 2, 4>

|---- 1/12 ----- <0, 2, 5>

|---- 1/12 ----- <0, 3, 4>

<> -|

|---- 1/12 ----- <0, 3, 5>

|---- 1/32 ----- <1, 7, 4>

|---- 1/32 ----- <1, 7, 5>

|---- 7/32 ----- <1, 9, 4>

`---- 7/32 ----- <1, 9, 5>

playground> psi = Max

playground> phi = Max - Min

Suppose I want the risk neutral price for phi(X) having observed the fact that
psi(X) < 9. In the playground, we would like to write this as E(phi(X) | (phi < 9))

105

but that is not quite right because this passes the values of the transformed kind
phi(X) to the condition instead of the value of X itself. We can express this,
correctly, as

E(phi(X | (psi < 9)))

and this is fine. However, we would like the playground notation to match our
conceptual/mathematical notation – E(ϕ(X) | psi(X) < 9) – a bit better. For
this, we use some “syntactic sugar”, with phi@X in place of phi(X):

playground> E(phi@X | (psi < 9))

14/3

Here, think of phi@X (read “phi at X”) as meaning the same thing as phi(X);
the only difference is that it passes the value of X itself to the condition. This
notatio works with kinds too, as we will see.

Now, we want to find E(phi@X | (psi == a)) for each possible value a of
psi(X). For our concrete example this can be expressed

E((Max - Min)@X | (Max == a)).

This gives our prediction of the range of X’s components given an observation
of only the maximum component of X. Try evaluating these in the playground;
you should get prices 4, 5, 6, and 8 when a is 4, 5, 7, and 9, respectively.

Rather than just computing the risk-neutral prices, it makes sense to consider
the associated kinds. In the playground, we can do

playground> range_given_max = conditional_kind({

...> 4: phi @ kind(X) | (Max == 4),

...> 5: phi @ kind(X) | (Max == 5),

...> 7: phi @ kind(X) | (Max == 7),

...> 9: phi @ kind(X) | (Max == 9),

...> })

or with an “anonymous” function (denoted by lambda in Python):

106

playground> range_given_max = conditional_kind(

...> lambda a: phi @ kind(X) | (Max == a)

...>)

We’ll stick with the first form for now. Print this conditional kind (in the first
form) in the playground to see the results laid out nicely.

The E operator in the playground can compute all these risk-neutral prices
as a package:

playground> f = E(range_given_max)

which returns a function from a to the risk neutral price we want.

playground> [f(a) for a in [4, 5, 7, 9]]

[4, 5, 6, 8]

Nice.
One more key point. The statistic phi here has a special form. If we define

zeta(x, y) := y - Min(x), then
The := denotes definition.

phi(x) == zeta(x, psi(x)) == psi(x) - Min(x).

If we know that psi(x) has a particular value a, then phi(x) = a - Min(x).
So making predictions about phi(X) with that knowledge is equivalent to making
predictins about a - Min(X) with that knowledge. Put another way: if I were
making predictions about the value of phi(X) and you were making predic-
tions about the value of a - Min(X) and both of us had the information that
psi(X) == a, we would make the same predictions.

This is one way to state the substitution property for risk-neutral prices.
You can check it in the playground. For instance, compute both E((4 - Min)@X | (psi == 4))

and E(phi@X | (psi == 4)) and compare them, and similarly for the other
values of psi(X).

This yields the substitution rule : if psi and phi are statistics compatible
with X, and if phi(x) has the form zeta(x, psi(x)), then

E(phi@X | psi == a) == E(zeta(__, a)@X | psi == a).

107

Given the knowledge that psi(X) has the value a, we can simply substitute a

for psi(x) wherever we see it to the left of the |.
Mathematically, this looks like

E(ζ(X,ψ(X)) | ψ(X) = a) = E(ζ(X, a) | ψ(X) = a). (8.5)

We will see this in more data later and see why it is useful. In short, it lets us
use given information to simplify the quantities we want to predict.

We have been discussing risk-neutral prices for scalar FRPs, but we can extend
our definition to higher dimensions, and all the properties above continue to hold.

Definition 15. If FRP X has dimension n and FRPs ⟨X1, X2, . . . , Xn⟩ are its
scalar components, then we define

E(X) = ⟨E(X1),E(X2), . . . ,E(Xn)⟩, (8.6)

that is, the list of risk-neutral prices of the components.

We can think of non-scalar FRP as offering a portfolio of payoffs.
From our thinking about risk-neutral prices and our empirical studies of them, it

is clear that the risk-neutral price of an FRP is determined by its kind not by its
particular value. So all FRPs with the same kind have the same risk-neutral price.

In fact, this goes the other way as well. The kind of an FRP X is determined
by the risk-neutral prices for all transformed FRPs derived from X. This yields an
important result:

Property 16. Two FRPs X and Y have the same kind if and only if they have the
same set of possible values and

E(ψ(X)) = E(ψ(Y)) (8.7)

for every compatible statistic ψ.

This tells us that, in aggregate, the risk-neutral prices of transformed FRPs/kinds
contain all the information needed to determine the kind of the original FRP. The

108

word “determine” here does not necessarily mean that we can compute the kind
directly from this information (though we often can) but rather that any computation,
analysis, or prediction that depends only on the kind will be the same for any FRP
with that kind. This needs a little unpacking.

In one direction, Property 16 says that two FRPs with the same kind yield equal
risk-neutral prices when transformed by the same statistic. The other direction seems
less useful because it requires that the risk-neutral prices of transformed FRPs be
the same for all compatible statistics. But it turns out that this direction works with
smaller collections of statistics if they are sufficiently rich. In other words, we can
“determine” the kind of an FRP with the risk-neutral prices of a well-chosen collection
of statistics.

Definition 17. A collection Ψ of statistics compatible with an FRP X determines
the kind of X if for any FRP Y with values(X) = values(Y):

E(ψ(X)) = E(ψ(Y)) for all ψ ∈ Ψ implies kind(Y) = kind(X). (8.8)

Puzzle 31. If Z is an FRP of dimension 2, the collection proj1, proj2 does not
determine the kind of Z.

Find an example to demonstrate this.
Specifically, you need another FRP U with the same possible values as Z

where E(proj1(Z) = E(proj1(U)) and E(proj2(Z) = E(proj2(U)) but Z and U have
different kinds.

There are useful collections that do determine the kind. Suppose X is a scalar
FRP, and consider the collection of statistics ψa where −∞ < a <∞ is a real number
and ψa(x) = 1 if x ≤ a and ψa(x) = 0 if x > a.

We want to see that if Y has the same possible values as X and E(ψa(X)) =

E(ψa(Y)) for every a, then X and Y must have the same kind.
We can sketch out the argument in the playground. Define any scalar FRP X

and write ψa(x) as psi(a)(x) where phi(a) is a statistic.

playground> def psi(a):

...> @scalar_statistic(dim=1) # psi(a) == le_a is a scalar statistic

109

...> def le_a(x):

...> return int(x <= a) # returns 0 or 1

playground> vs = sorted(values(X, scalarize=True)) # Get X's values in order as scalars

playground> prev = min(vs) - 1 # A value *below* X's minimum value

playground> stats = {} # We will build a dictionary of statistics

playground> for value in vs:

...> a = 0.5*(value + prev) # a is halfway between value and prev

...> stats.append[value] = psi(value) - psi(a)

...> prev = value

Now, stats contains all the statistics ψv − ψa where v is a possible value of X and
where there are no other values of X between a and v.

Now from this, find the kinds

playground> ks = {value: stat(kind(X)) for value, stat in stats.items}

and picking any value v, look at the kind :

playground> ks[v]

What does it tell you? What is its risk-neutral price? If Y were an FRP with the
same values as X and you did the same calculation, is it possible for the risk-neutral
prices of these kinds to be the same but the kinds different?

Compute them all

playground> Eks = {value: E(ks[value]) for value in ks}

What are these prices and how do they relate to the kinds?
This calculation shows that if these prices are the same, then X and Y must have

the same kind, and all our predictions about X are the same our predictions about
Y .

That’s an important argument, and it’s worth going over in the playground to
make sure its clear.

It will be conceptually powerful to recast these quantities a bit, using the D_

operator from the playground. This operator is a bit mind bending at first, so we
will just introduce it lightly right now.

Property 16 tells us that the risk-neutral prices E(ψ(X)), varying over compatible
statistics ψ, determine the kind of X. We have seen that E(ψ(X)) is our best

110

prediction of the value of ψ(X). So what this means is that our predictions of the
values of transformed FRPs embody our knowledge of the original FRP.

The D_ operator takes an FRP (or kind) as input and returns a function mapping
every (compatible) statistic to its corresponding prediction. The function \D_(X)

embodies all our knowledge of X’s value. It is defined by

D_(X)(psi) = E(psi(X)).

Example 8.5. Try the following, computing the risk-neutral prices as shown and
directly.

playground> X = frp(uniform(1, 2, 3) * uniform(1, 2, 3))

playground> f = D_(X)

playground> f(Sum)

4

playground> f(Max)

22/9

playground> f(Min)

14/9

playground> f(Cos)

-0.28861

playground> f(Sin)

0.630629

The importance of D_ is that if you have D_(X), you have the same information
as in kind(X). And in particular, you can make good predictions about any feature
of X’s value. We will come back to this idea again.

8.2 Computing Risk-Neutral Prices

So let’s take stock. We have

1. A precise definition of risk-neutral prices that captures our “best” prediction of
an FRPs value.

2. A simple notation for the risk-neutral price of an FRP that extends to any
dimension.

111

3. A set of key properties that risk-neutral prices must follow for any FRP derived
from the logic of the definition.

4. A result that the kind of an FRP determines its risk-neutral price and is in
turn determined by the risk-neutral price of every transformed FRP.

These are powerful already, and we have seen how we can already use this to compute
predictions. But it would be nice if there were an easier way to express E(X) for an
FRP/kind.

The good news is that there is, and that we can find it by using our empirical
investigations. Let’s look at a sample demo to motivate the argument.

market> demo 10_000 with kind (<> 1 <-5> 4 <0> 3 <1> 2 <10>).

Activated 10000 FRPs with kind (<> 1 <-5> 4 <0> 3 <1> 2 <10>)

Summary of output values:

-5 1001 (10.01%)

0 4065 (40.65%)

1 3002 (30.02%)

10 1932 (19.32%)

market> demo 1_000_000 with kind (<> 1 <-5> 4 <0> 3 <1> 2 <10>).

Activated 10000 FRPs with kind (<> 1 <-5> 4 <0> 3 <1> 2 <10>)

Summary of output values:

-5 100466 (10.04%)

0 400263 (40.02%)

1 299594 (29.96%)

10 199677 (19.97%)

As we’ve seen earlier, the more FRPs we demo, the closer the relative frequencies in
this table will get to the relative weights in the kind. Now, suppose we purchase these
FRPs for a price $c for a large batch, then our payoff per unit will be approximately

−5 · 0.1 + 0 · 0.4 + 1 · 0.3 + 10 · 0.2 = 1.8,

where the approximation gets better and better as we purchases a larger and larger
batch.

If we choose a price c < 1.8, then for a sufficiently large batch, our payoff per unit
will be positive. So any c < 1.8 is an arbitrag price. If c > 1.8, then for a sufficiently

112

large batch, our payoff per unit will be negative, so no such price is an arbitrage price.
The risk-neutral price for this kind is 1.8.

Definition 18. If X is an FRP of size m with values v1, . . . , vm and corresponding
canonical weights p1, . . . , pm, then the risk-neutral price of X is given by

E(X) = p1v1 + · · ·+ pmvm. (8.9)

Risk-neutral prices are thus weighted averages of the FRP’s values.

Two important points about this definition:

1. It works for any dimension FRP. What we need here is that we can weight and
add the values, which are lists of numbers of the same dimension. And indeed
we can by defining for any real number c:

c⟨x1, x2, . . . , xd⟩ = ⟨cx1, cx2, . . . , cxd⟩ (8.10)

⟨x1, x2, . . . , xd⟩+ ⟨y1, y2, . . . , yd⟩ = ⟨x1 + y1, x2 + y2, . . . , xd + yd⟩. (8.11)

With this, equation 8.9 makes sense and is consistent with equation 8.6.

2. If the kind(X) is in compact but not canonical form, then equation 8.9 becomes

E(X) =
w1v1 + · · ·+ wdvd
w1 + · · ·+ wd

. (8.12)

We use pi’s to indicate canonical weights (that sum to 1) and wi’s when this
need not be true.

Example 8.6. If X has kind described by (<> 1 <-1> 4 <1>), what is E(X),
E(X3), and E(X ⋆X)?

(Recall that X2 and X3 denote the transformed FRPs by statistics ψ(x) = x2

and ϕ(x) = x3, respectively. See Definition 7.)

113

Applying equation 8.9 to each of these, we have

E(X) =
1

5
· (−1) +

4

5
· 1 =

3

5

E(X3) =
1

5
· (−1) +

4

5
· 1 =

3

5

E(X ⋆X) =
1

25
· ⟨−1,−1⟩+ 4

25
· ⟨−1, 1⟩

+
4

25
· ⟨1,−1⟩+ 16

25
· ⟨1, 1⟩

= ⟨3
5
,
3

5
⟩.

To see where the weights on the last two came from, compute the kinds in the
playground.

The last result in this example illustrates another common pattern. IfX1, X2, . . . , Xn

are scalar FRPs, then X = X1 ⋆ X2 ⋆ · · · ⋆ Xn is an n-dimensional FRP with scalar
components ⟨X1, X2, . . . , Xn⟩. This follows from the properties of an independent
mixture. So equation 8.6 tells us that

E(X1 ⋆ X2 ⋆ · · · ⋆ Xn) = ⟨E(X1),E(X2), . . . ,E(Xn)⟩ (8.13)

Example 8.7.
In the revisited disease testing example on page 72, we computed the kind of

an FRP whose outcome indicates whether someone has the disease when it is
known that they test positive.

playground> has_disease_pos = (dStatus_and_tResult | (Test_Result == 1))[Disease_Status]

,---- 999/1094 ---- 0 # No disease

<> -|

`---- 95/1094 ---- 1 # Yes disease

If D+ is an FRP with kind has_disease_pos, what is E(D+)?

E(D+) =
999

1094
· 0 + 95

1094
· 1 =

95

1094
≈ 0.0868.

This illustrates another common pattern. An FRP whose only values are 0 and 1

114

acts as an indicator of whether something happens. (Here 0 is playing the role of
false or ⊥, and 1 is playing the role of true or ⊤.) We will call such an FRP an event .

Equation 8.9 shows that for any event I, E(I) is just the canonical weight on its
1 branch. We will interpret this quantity as a measure of how likely that event is The discussion just after

Puzzle 31 also made good
use of this fact.to occur. In that sense, the disease-testing example is suprising in that the disease

remains unlikely after a positive test.

Example 8.8. Try these calculations; look at the weighted averages that you get;
and compare them to the risk-neutral prices that we compute. I’ve omitted the
results here.

playground> coin = either(0, 1) # Model: 1 for heads, 0 for tails; equally weighted

playground> flips10 = coin ** 10

playground> num_heads_in_10 = Sum(flips10)

playground> num_heads_in_10

playground> E(num_heads_in_10)

playground> E(num_heads_in_10 - 5) # We know this from Additivity and Constancy. Why?

We can see that the kind’s canonical form shows us the weighs and values and
can confirm that the resulting weighted average is just the revenue neutral price.
Notice how the Properties we discovered earlier help us compute the last value
without actually hitting enter.

For a value like E(num_heads_in_10), there are two ways to think about
the computation. We can look at the kind flips10 and average up the sum
of components for each value in that kind with the given weights. Or, we can
generate the new kind num_heads_in_10 and take a direct weighted average.
Both ways give the same answer.

Let’s consider that in a smaller case. Look at both kinds and do the calculation
from each tree:

playground> coin ** 4

playground> Sum(coin ** 4)

playground> E(Sum(coin ** 4))

115

The reason these give the same answer is that we defined the transformed kind
by passing the values through the statistic and combining equal weights.

Example 8.9.
Let’s look at another interesting transform along with some observed infor-

mation in a conditional.

playground> @scalar_statistic('Index of first heads, or 1000')

...> def first_heads(x):

...> return 1 + index_of(1, x, not_found=999)

playground> flips16 = coin ** 16

playground> when_heads = first_heads(flips16)

We start by defining a statistic that gives the index of the first head in 16 flips,
or (arbitrarily) 1000 if a head did not occur.

Compare the following:

playground> when_heads

playground> when_heads ^ IfThenElse(__ > 10, 1000, __)

playground> when_heads ^ IfThenElse(__ > 10, 1000, __)

playground> (when_heads | (__ > 4)) ^ IfThenElse(__ == 1000, __, __ - 5)

What do these kinds mean? How do they compare? Do you think this is a
coincidence?

The second is just the kind of when_heads, but we map every value bigger
than 10 to the arbitrary value of 1000. We do this to ease comparison with the
third. The third is the kind of an FRP that gives the number of 1’s (heads) after
the fourth flip when you have observed no 1’s (heads) in the first four flips. The
statistic at the end simply shifts the values back to the scale of the first two
kinds.

8.3 Expectations and Probabilities

We have learned a lot about risk-neutral prices by reasoning from the definition, and
we have derived several ways to find the risk-neutral price for an FRP. As we proceed,

116

we will see several different interpretations of these prices, but the critical theme is
that having these prices gives us an effective prediction for the value of that FRP
(and any with the same kind). This focus on prediction underlies may of the key
ideas to come, so here we assign a more general name to the risk-neutral price that
emphasizes this predictive interpretation.

Definition 19. If X is an FRP, we call its risk-neutral price the expectation of
X, denoted by E(X).

If in addition, c is a condition on X, then the risk-neutral price of X given
that c is true is denoted by E(X | c). When c = ⊤, the predicate that is always
true, we have E(X) = E(X | ⊤).

As we have seen, if two FRPs X and Y have the same kind, then our predictions
E(ψ(X)) and E(ψ(Y)) are equal for any compatible statistic ψ. So the expectation
is really a property of the kind . We thus can talk about the expectation of a kind
in the same way, though in practice we tend to focus on the FRPs as those are the
quantities that we want to predict.

Recall that when we apply a conditional on some condition c, we get a new
FRP/kind, X | c, with its own expectation E(X | c). These are often referred to as
conditional expectations, but really they are just plain old expectations in the context
of additional information: if c = ⊤, i.e., it is always true, then E(X | c) = E(X). A
big part of our analysis will be using new information to update our predictions –
with conditionals.

Finally, in practice, we are frequently interested in whether or not some observable
outcome occurs. Did it occur or not. We model such binaries with scalar FRPs that
have possible values 0 (for false) and 1 (for true).

Definition 20. A scalar FRP with possible values 0 and 1 is called an event . The
event is said to have occurred if the FRP produces the value 1.

Puzzle 32. If V is an event and ψ is the statistic ψ(v) = 1− v, then what can you
say about the FRP ψ(V)?

Because we often consider events, it is natural that we would want to predict

117

whether the event will occur. And just like with any FRP its the risk-neutral price –
that is, its expectation – gives a prediction. But remember our analysis earlier. If
an FRPV has a biggest possible value b, then E(V) ≤ b; if it has a smallest possible
value a, then a ≤ E(V).

So if V is an event, 0 ≤ E(V) ≤ 1. When E(V) is near 1, our risk-neutral price
is close to 1, meaning that we predict that V will tend on average to be close to 1.
Similarly, when E(V) is near 0, we predict that V will tend on average to be close
to 0. Think about the summary tables when you run demos in the market! Thus,
for events V , E(V) is a number between 0 and 1 that measures in some sense our
confidence that the event V will occur. Because we use it so often, such expectations
have a name.

Definition 21. If V is an event, then its expectation is a number between 0 and 1;
we call it the probability of the event occurring.

Probabilities are nothing new. They are just expectations – risk-neutral prices
– for FRPs whose values are in a particular range. So probabilities inherit all the
properties of expectations.

Now that we are familiar with the FRPs and kinds and the various ways to use
them, it’s time to take them out for a spin and see what we can do with them.

After reading this section you should be able to:

• Define an arbitrage price and the risk-neutral price for a scalar FRP.

• Use the market to estimate risk-neutral prices for simple FRPs.

• Use the definitions to guess at some basic properties of risk-neutral prices.

Checkpoints

118

