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1 General aim and target
DL-FIND is a modern and flexible structure optimiser to be included in electronic
structure codes. It provides a stable way to find reaction energy differences as well as
activation barriers. This can be performed starting from input structures in the region
of the reactant and the product. The whole process should require as little action from
the user as possible. The code should parallelise at least the energy and gradient evalu-
ations and possibly expensive calculations within the optimiser. All units write restart
information at regular intervals to enable a restart of the optimiser.

DL-FIND incorporates an MPI split-communicator taskfarming parallelisation frame-
work. This is employed in the parallel optimisers (genetic algorithm and stochastic
search), finite-difference Hessian evaluation, the nudged elastic band method and in-
stanton calculations.

DL-FIND should be cited as: Johannes Kästner, Joanne M. Carr, Thomas W. Keal,
Walter Thiel, Adrian Wander, and Paul Sherwood, J. Phys. Chem. A, 2009, 113 (43),
11856-11865.

A light-weighted description of some capabilities of DL-FIND can be found in the
2007 issue of Frontiers:

http://www.cse.scitech.ac.uk/about us/Frontiers2007/Kaestner - Finding

Minima - CSE Frontiers 2007.pdf

Excited state and parallel optimisation methods are covered in the 2009 Frontiers
article:

http://www.cse.scitech.ac.uk/about us/Frontiers2009/Keal - Geometry

Optimisation - Frontiers2009.pdf

1.1 Functionalities
Emphasised: remains to be implemented
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1.1.1 Coordinate systems:

• Cartesians (including frozen atoms and components)

• Mass-weighted cartesians (including frozen atoms and components)

• Internals (including all constraints):

– DLC (delocalised internal coordinates)

– DLC-TC (total connection)

– HDLC

– HDLC-TC

• Fractional coordinates and unit cell optimisation?

• Parallel optimisation in internal coordinates?

1.1.2 Combinations of coordinates (images):

• NEB (nudged elastic band)

• (Growing) String method

• Dimer method [1–3]

• Replica path method following [4]

All of the combinations should work with all versions of coordinate systems.

1.1.3 Optimisers:

• steepest descent

• conjugate gradient

• Newton-Raphson/quasi-Newton

• Damped dynamics

• L-BFGS

• P-RFO Hessian update mechanisms: Powell [5] and Bofill [6]. Hessian either
by input or by finite-difference. In the latter case either in cartesians (then the
update also in cartesians, and one can output frequencies), or in internals.

A criterion can be specified with absolute eigenvalues of the hessian below that
criterion are frozen (considered to be “soft”). At maximum 6 eigenmodes are
frozen.

• Reaction path following / IRC ?
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1.1.4 Microiterative optimisation for QM/MM

• Microiterative minimisation with L-BFGS for both regions

• Microiterative TS search with P-RFO inner region/L-BFGS environment

• Microiterative TS search with dimer inner region/L-BFGS environment

• Microiterative NEB with L-BFGS minimised environment

Microiterative optimisation methods improve the efficiency of QM/MM optimi-
sation by separating the active atoms into an inner region (which should contain the
QM region) and an outer environment. After each step taken in the inner region, the
environment is relaxed completely. The idea is to minimise expensive inner region
(macroiterative) evaluations at the cost of increasing the number of environment (mi-
croiterative) cycles.

Microiterative methods only save overall calculation time if QM region calculations
are not performed during the microiterations. In the case of electrostatic embedding
QM/MM calculations with ChemShell, the electrostatic influence of the QM region is
approximated by fitting point charges at the QM atom sites to an electrostatic potential
generated by the QM code.

In all cases the outer environment region is relaxed using L-BFGS. For the transi-
tion state and reaction path methods, this is equivalent to specifying spectator degrees
of freedom (setting weights to zero) in a standard optimisation. This is useful for elim-
inating complications that can be caused by irrelevant degrees of freedom. For P-RFO
this also means that the Hessian is only calculated over the inner degrees of freedom,
which can dramatically reduce the cost of the Hessian calculation.

1.1.5 Line search algorithms:

• Simple scaling of the proposed step (covering the maximum step length)

• Trust radius based on energy decrease

• Trust radius based on the projection of the gradient on the step

• Trust radius based on the overlap of the lowest eigenmode (for P-RFO)

• full line search ? which algorithm?

1.1.6 Conical intersection optimisations:

• Penalty function

• Gradient projection

• Lagrange-Newton
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1.1.7 Population-based search:

• Random (stochastic) search [7, 8]

• Genetic algorithm [9–11]

1.1.8 A global task manager:

Should define which methods are used depending on the input. In case a method fails,
this should be recognised and another method should be tried.

1.1.9 Parallelisation:

The parallel optimisers (stochastic search and genetic algorithm), finite-difference Hes-
sian evaluation and the nudged elastic band method can be run in taskfarming mode us-
ing MPI (message passing interface), where each taskfarm (workgroup) calculates the
energy and gradient for a non-overlapping subset of the total required gradients. The
load-balancing is static, and the number of workgroups must be a factor of the total
number of processors for a given job. If the number of workgroups requested is less
than the total number of processors, then the single-point energy and gradient calcula-
tions for each individual in a workgroup can also be parallelised. This is handled by the
program that provides the energy and gradient routines. Thus, two-level parallelisation
is possible (as implemented, for example, in the task-farming version of ChemShell).

Wrappers for the required MPI routines are located in the file dlf mpi.f90, and the
corresponding “dummy” subroutines are in dlf serial.f90. Which of the corresponding
.o object files is linked should depend on the build option chosen. For example, the
default build of the standalone DL-FIND with its test driver program gives a serial
executable. A make parallel command will produce the parallel-enabled standalone
executable, Pfind.x. See makefile and Makefile.standalone for details.

Notes:

• If DL-FIND is in charge of disentangling the standard output from all the proces-
sors, then the variable keep alloutput in dlf global module.f90 is used.
Rather than being an input option, it is hardwired in the code (so that it can
be known before any output occurs). For example, keep alloutput is used
in main.f90 (when a standalone program is made for testing) in the interface
subroutine dlf output as follows: if true, then for processor n (n/ = 0) in the
global communicator (MPI COMM WORLD), the file output.proc< n> is opened on
unit stdout; if false, then for processor n (n/= 0), /dev/null is “opened” on unit
stdout. Output from the rank-zero processor in either case goes to standard out
or a named file on unit stdout.

If such I/O issues are dealt with by the main, calling program, then simply use the
subroutine dlf output to change the DL-FIND defaults (stdout and stderr

stored in dlf global module.f90) for the required unit numbers, if necessary.

• Integer variables mpi rk and mpi ik are declared in dlf mpi module and set in
subroutine dlf mpi initialize to the values of the MPI datatypes MPI Double precision
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and MPI Integer, respectively. This matches the use of real(rk) in DL-FIND’s
declarations, where rk = kind(1.d0). However, problems will arise if a com-
piler flag is used to change the nature of double precision numbers, as the MPI
libraries will (probably) have been complied with a different specification for
double precision. Could use MPI Sizeof and MPI Type match size instead if
this turns out to be a common problem.

• Random numbers are an integral part of the parallel optimisers. Therefore, the
seeding of the random-number generator is dealt with in dlf parallel opt.f90.
Current policy is that only the rank-zero processor generates random numbers
for the parallel optimisers. Only the routines that manipulate the population
need random numbers, so currently only the rank-zero processor does any work
in such routines.

1.1.10 Restart mechanism:

The optimiser should be fully restartable. Status: everything is restartable, except for
the instanton part. There, most information during the runs is stored as well, but one
can not directly start from the global restart files and continue exactly where the last
run has ended (a practical solution, but not consistent with the rest of DL-FIND)

1.1.11 Compilation:

The portland compiler version 7.1 and 7.1-1 (and 7.1-2) do not compile the code prop-
erly. They do not save the contents of the hdlc derived type. This is a compiler bug.
The portland compilers 6.1 and 7.0-4 do compile it (as well as v9 and later).

2 Quality Assurance Plan
An automated testing system (Buildbot) is used to test DL-FIND as part of the ChemShell
and GAMESS-UK distributions. The ChemShell build of DL-FIND is tested with PGI
Fortran, Intel Fortran, g95 and GNU Fortran.

3 Software Design Plan
Language: Fortran 95 + TR 15581 (technical report: meaning, allocatable arrays in
derived types are used). Pointers are only to be used where strictly necessary.

3.1 Interface to the Calling Program / API
DL-FIND is designed as a library to be linked to quantum chemical or MD codes.
However, for testing purposes, a driver module (main.f90) providing some analytic
energy functions is used. DL-FIND is included in GAMESS-UK and ChemShell.

The routine to be called by the main program is dl find(nvarin,nvarin2,nspec,master),
in the file dl find.f90. It only returns after the complete geometry optimisation.
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The main program has to provide the following routines, which are called from
dl find.f90 and dlf formstep.f90:

• dlf get params(...) Provide input parameters. The argument list is expected
to change as DL-FIND is developed. New arguments should only be appended
to existing ones which makes it possible to keep interfaces up to date. The argu-
ments are documented in dlf global module.f90.

• dlf get gradient(nvar,coords,energy,gradient,iimage,status)Cal-
culate the energy and gradient at the position coords.

• dlf get hessian(nvar,coords,hessian,status) Calculate the Hessian at
the position coords.

• dlf get multistate gradients(nvar,coords, energy, gradient, coupling,

needcoupling, iimage, status) Calculate gradients of a pair of electronic
states and optionally the interstate coupling between them. Required for conical
intersection search.

• dlf put coords(nvar,switch,energy,coords,iam) Feeds a geometry back
to the calling program. If switch is 1, coords contains the actual geometry. If
switch is 2, coords contains the transition mode. The presence of iam allows the
behaviour on the rank zero processor to be coded differently: for example, turn-
ing off the writing of coordinates to a file from all but the rank-zero processor.

• dlf error() Error termination. Return to the calling program. dlf error

should not return.

• dlf update() Allows the calling code to update any neighbour list, i.e. allows
for discontinuities in the potential energy surface. This routine is called after a
reset of the optimisation algorithm.

These may be C routines but have to be Fortran-callable. Examples of interface routines
are available in main.f90, dlf.c, and dlfind gamess.m.

If the taskfarming functionality is required, then the following additions to the main
program should also be made:

• call dlf mpi initialize() to either have DL-FIND set up the global MPI
communications, including calling MPI Init, or to get the required parameters
for the global communications that have already been set up in the main program.
In the former case, this call should be placed before any I/O occurs, as close to
the start of the main program as possible, as usual with MPI Init. If the main
program sets up the communications, then this call should be made after the
rank of each processor and the total number of processors are known (ideally,
immediately afterwards). This call is an obligatory addition to the main program.

• call dlf mpi finalize() to close down MPI before exiting the main program.
Not necessary if the main program calls MPI Finalize already; can be added
safely after such a call in the main program (but is redundant).
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• call dlf output(dlf stdout,dlf stderr) passing unit numbers for I/O from
the main program to DL-FIND. The call may be omitted if it is not necessary to
change the defaults set in dlf global module.f90, and if the main program
deals with the output from different processors.

• provide subroutine dlf output(dlf stdout,dlf stderr), if required, to set
the DL-FIND variables stdout and stderr. If necessary, implement the strategy
for dealing with standard output from the different processors here.

• provide subroutine dlf put procinfo(dlf nprocs,dlf iam,dlf global comm).
Called from dlf mpi initialize if MPI Init was called there. Passes the to-
tal number of processors, the rank of the current process and a variable set to the
handle for the global communicator (MPI COMM WORLD) to the main program.

• provide subroutine dlf get procinfo(dlf nprocs,dlf iam,dlf global comm).
Called from dlf mpi initialize if MPI Init had already been called by the
main program. The total number of processors, the rank of the current process
and a variable set to the handle for the global communicator (MPI COMM WORLD)

are passed from the main program to DL-FIND.

• provide subroutine dlf put taskfarm(dlf ntasks,dlf nprocs per task,

dlf iam in task,dlf mytask,dlf task comm,dlf ax tasks comm). Called
from dlf make taskfarm if DL-FIND sets up the split communicators. Passes
to the main program the number of taskfarms (workgroups), the number of pro-
cessors per farm, the rank of the current process in its farm, the rank of the
current process’s farm, and variables containing the handles for communicators
within each farm and for the rank-n processor in each farm. The main program
indicates to DL-FIND which of the two should set up the split communicators via
an argument to the general interface routine dlf get params. tdlf farm = 0
means the main program does the setup; tdlf farm ̸= 0 means DL-FIND does.

• provide subroutine dlf get taskfarm(dlf ntasks,dlf nprocs per task,

dlf iam in task,dlf mytask,dlf task comm,dlf ax tasks comm). Called
from dlf make taskfarm if the main program sets up the split communicators.
The number of taskfarms (workgroups), the number of processors per farm, the
rank of the current process in its farm, the rank of the current process’s farm,
and variables containing the handles for communicators within each farm and
for the rank-n processor in each farm, are all passed from the main program to
DL-FIND. The main program indicates to DL-FIND which of the two should
set up the split communicators via an argument to the general interface rou-
tine dlf get params. tdlf farm= 0 means the main program does the setup;
tdlf farm ̸= 0 means DL-FIND does.

• ensure either MPI Abort or dlf mpi abort() is called from the dlf error()

subroutine.
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3.2 Program Units and Their Contents:
3.2.1 Modules

The code makes use of four modules that can be used from any subroutine throughout
the DL-FIND: dlf parameter module, which only provides the real kind rk. It is lo-
cated in the file dlf stat module.f90. dlf checkpoint: variables and subroutines
for reading and writing checkpoint files. dlf stat: statistics. May be deleted and
replaced in the future. dlf global: contains many global parameters and also arrays
(Cartesian coordinates, internal coordinates, the step, ...). All those parameters are part
of a variable glob, which has a derived type (also defined in the module dlf global).
pi, stdout, and stderr are defined there as well.

All other modules must only be used within the file they are defined! If data of
these module should be provided to other files (units), get- and set routines must be
used!

3.2.2 Main Units:

• Main Unit (dl find.f90)

• Convergence tester

• Coordinate transform

• Optimisation algorithms (dlf formstep.f90 and routines called from there)

• Scalestep: line search and trust radius approaches

• Utility units

3.2.3 Other details:

File units that are used longer than for an immediate write (> 1000): 1001 – 1001+nim-
age,max 1050 for xyz of NEB (dlf neb.f90)

When arrays are allocated, the variables glob%storage and glob%maxstorage

should be adjusted accordingly to enable control over the memory usage.

3.3 Program Documentation
The documentation is done using the robodoc tool. Each (important) subroutine should
have an entry marking its connection within the code, the input and output variables of
the global module, and its main purpose. An example file is dlf dimer.f90.

Details of the documentation:
Fortran subroutines are to be documented as functions. The header gives the unit

and the full subroutine name “NAME” should not be specified “SYNOPSIS” should
be the actual code statement beginning the subroutine.

Module header names should be something short and descriptive rather than the
actual Fortran name.
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4 Code fragments obtained from external sources
Part of dlf lbfgs.f90were obtained from http://www.ece.northwestern.edu/~nocedal/lbfgs.html.

The HDLC part has been taken from the HDLC optimiser in ChemShell. These are
the files: dlf hdlc constraint.f90 dlf hdlc hdlclib.f90 dlf hdlc interface.f90

dlf hdlc matrixlib.f90 and dlf hdlc primitive.f90. Walter Thiel agreed to
make them publically available (even under GNU license), as long as he gets DL-FIND
for the MNDO code:

[...] I have included the coordinate transformation part of the HDLC opti-
miser into DL-find. I expect HDLCs to work with the dimer method, and
maybe they even work with NEB. I hope there are no objections from you
as long as it only goes into ChemShell and gamess. However, I would like
to make it available more broadly. It would be interesting to include it into
other Daresbury codes (I mainly think of DL POLY and possibly Crystal –
if those people are interested, maybe the solid state people (around Walter
Temmerman) are also interested). At a later stage, I think it would also
be worth making DL-find with the HDLC coordinate transform available
under the GNU license. Alternatively, I would have to make a DL-find
version that runs without HDLCs.

What do think about that? I.e. would you give us (DL) permission to
distribute part of the HDLCopt code more widely?

Dear Johannes,

all this is fine with me. It is a good idea to make HDLCopt available to a
wider audience. In return, I would like to include DL-find in the MNDO
program (with no restrictions concerning its distribution). I had planned to
add other optimisers to MNDO anyway, and it would obviously be good
not to duplicate such work.

Best wishes and Happy New Year,

Walter Thiel

5 Test Plan
The driver program will enable tests of all functionalities with analytic energy function.
Should noisy gradients be tested as well, a random part can be added to the gradient.
Test cases from analytic 2-dimensional potentials showing minima and transition states
(e.g. the Müller–Brown potential [12]) as well as clusters of Lennard–Jones particles
will be used. The latter can be extended to systems with very many degrees of freedom.

6 Method documentation
This section documents non-standard implementations in DL-FIND. Published stan-
dard methods are not documented here.
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6.1 Weights
A list of weights (one for each atom) can be specified in the input array coords2. It
will be remapped onto weights of each degree of freedom (internal coordinates) to be
optimised.

It can be used to restrict the NEB path to a certain set of atoms, or the direction of
the dimer.
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6.2 Instanton search and reaction rates
The code for calculating instantons is not documented in the ChemShell documentation
for the time being. Thus, some user documentation is summarised here.

6.2.1 Work flow

1. Location of a minimum and a saddle point on the potential energy surface
(“classical transition state”) associated with the minimum (i.e. no barrier be-
tween the saddle point and the minimum). Hessians at both of these stationary
points have to be calculated (ChemShell: thermal=true, DL-FIND: iopt=11).
This writes files qts reactant.txt and qts hessian rs.txt in case of the
reactant, and qts ts.txt and qts hessian ts.txt in case of the transition
state. In case of a TS, the crossover temperature Tc is calculated:

Tc =
h̄ωb

2πkB
(1)

with ωb being the absolute value of the imaginary frequency.

2. Rates without tunnelling: the files qts reactant.txt, qts ts.txt, and class.in
have to be provided. The latter is an input file of the following format:
first line: ignored
second line: number of zero eigenvalues for the reactant and for the TS (e.g.
“6 6”)
third line: starting temperature, end temperature, number of temperature steps
(e.g. 300. 150. 20).
fourth line: “T” if bimolecular rates should be calculated, see below (6.2.2 on
page 14)

These files are required to run DL-FIND with rate=true (or iopt=13). The
output (stdout or the file arrhenius) can directly be used in an Arrhenius plot:
1000/T in Kelvin, log10 of the classical rates in s−1 (cm3s−1 in case of bimolec-
ular rates) calculated completely classical, with quantised vibrations (which in-
cludes the zero-point vibrational energy) and including tunnelling approxima-
tively via the simplified Wigner correction:

κ(T ) = 1+
1

24
(β h̄ωb)

2 = 1+
1

24

(
2πTc

T

)2

, κ(Tc) = 1+
(2π)2

24
≈ 2.645 (2)

For temperatures above the crossover temperature Tc, the full Wigner-corrected
rates is also given:

κ(T ) =
β h̄ωb/2

sin(β h̄ωb/2)
(3)

In the last column the exact analytical quantum rates for a symmetric Eckart
barrier fitted to the particular system (barrier hight and ωb) are shown. All de-
grees of freedom perpendicular to the reaction coordinate are approximated as
quantum mechanical harmonic oscillators.
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KIEs can be calculated directly by first running DL-FIND with rate=true (or
iopt=13) on the Hessians for the light isotopologue. The file arrhenius of this
run can be copied to rate H to the directory where the rate with heavier isotopes
is to be calculated. There, the same class.in as in the light case (at least the
same temperature parameters) should be used. The rates obtained with the light
nucleids is read and the KIE is directly calculated and written to a file called kie.

3. Optimisation of the first instanton starting from the classical TS: The file
qts hessian ts.txt has to be renamed to qts hessian.txt. All geometri-
cal data are read in from qts hessian.txt. However, coords and coords2

still have to be provided (for historic reasons, number of atoms, ...), but are ig-
nored (as in all instanton optimisations and rate calculations. A finite value of
distort specifies how far the images will be spread along the unstable mode
of the classical TS, see [13]. Newton–Raphson optimisation (optimiser=NR
/ iopt=20) is recommended [13, 14]. A QTS search is chosen by qts=true

(ChemShell) or icoord=190 (DL-FIND). The NR optimiser is modified to avoid
convergence to higher-order saddle points [14]. This avoids the collapse of the
instanton path to the classical TS.
Instanton searches are performed in mass-weighted coordinates with masses con-
sistent with atomic units (electron mass, me). That is, the mass of a hydrogen
atom (1H) is 1837.15 me. This scales all distances up by a factor of 42.695
(= (atomic mass unit/me)

1/2) compared to mass-scaled coordinates. Thus, the
tolerance criterion (tolerance) has to be smaller by the same factor to achieve
equivalent convergence. A tolerance of 10−7 (input as 1.E-7 in ChemShell) is
usually sufficient, a tolerance of 10−8 is also often still possible. Since NR con-
verges quadratically, the more stringent tolerance generally does not increase the
number of steps dramatically.
If NR (or P-RFO) is used, the updated Hessian will be used to calculate a pre-
liminary estimate of the rate (if qts reactant.txt is available). In that case,
qts hessian upd.txt will be written, which contains only the updated Hes-
sian. qts coords.txt will in any case be written. It acts as input for subsequent
recalculation of the Hessian and a rate calculation.
Restarting instanton searches: Proper restart information (check files) is not
written for the time being. Using NR, a restart is possible, though, by re-
naming qts hessian intermediate.txt (which is written after each step)
to qts hessian.txt and starting the simulation again. It will start from the
Hessian and the geometry after the last full set of energies has been obtained.

4. Instanton rate calculation: qts coords.txt from a previous instanton opti-
misation is read (coords and coords2 are ignored). The temperature is also
read from qts coords.txt. The rate calculation is chosen by qtsrate=true

or iopt=12. Hessians at all images and the rate are calculated as described in [14].
qts hessian.txt is written, which acts as input for subsequent instanton opti-
misations.
Restarting of rate calculations is also only possible by using the Hessian infor-
mation written for each image in qts hessian imageX.txt. For these files to
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be read, set inithessian=6.

5. Next instanton optimisation in sequential cooling: Starting from qts hessian.txt

at a previous (in general higher) temperature, another instanton is calculated.
Distort should be zero, all other parameters are the same as in 3. The number of
images may be increased. For optimal interpolation, the number of new images
Pn should be related to the number of old images Po by:

Pn = k Po − k+1 (4)

with k > 1 being an integer. This ensures k−1 new images between each pair of
old images.

6. Instanton KIEs can be calculated by starting out from a Hessian (qts hessian.txt)
for a different isotopologue and changing the masses in the input. The Hessian
will be re-weighted accordingly. The instanton geometry has to be re-optimised.
The file qts reactant.txt obtained with changed masses can not be used. In-
stead, a file qts hessian rs.txt (which includes the masses, so from a recent
version of DL-FIND) can be provided. The Hessian of the reactant obtained
from that file will also be re-weighted.

In an approximation (FPA) one can keep the instanton geometry fixed and just
change the masses [15]. This is done by calculating an instanton rate with
inithessian=5 (read the Hessian from file rather than recalculating it) and
changing the masses.

For lower temperature (compared to Tc) the number of images necessary can be
kept at bay by adapting the integration grid (dtau) to the potential energy along the
instanton path [14]. This only makes sense if the instanton path has reached the reactant
minimum. It can be achieved by setting nebk=1 (this is not interpreted as the NEB
force constant, but as a parameter which can vary from 0 to 1. One corresponds to a
fully adaptive grid).

If KIEs should be calculated with rate=true (or iopt=13), it is not necessary to
recalculate the Hessian for the heavier isotopologue. The Hessians for the reactant
and product are read in. If the masses provided via the calling code (ChemShell or
main.f90) are different from the ones in the Hessian files, the Hessians with the new
masses will be calculated.

In older versions of DL-FIND the masses were not written into the file qts hessian.txt.
The mass is needed there for calculating KIEs (unless one wants to recalculate the
whole Hessian), however. A workaround is: delete everything below the second line
in qts reactant.txt. Rename the Hessian file for which masses are needed to
qts hessian rs.txt, and run DL-FIND with rate=true (or iopt=13). It is impor-
tant that the masses provided to DL-FIND by the calling code are the same as the ones
used to calculate the Hessian. Then, DL-FIND will write a file qts hessian rs mass.txt

with the masses in, which can be used as qts hessian.txt or qts hessian rs.txt

in subsequent calculations.
An instanton rate can be calculated from an existing Hessian (i.e. from the file

qts hessian.txt) by setting inithessian=5.
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Hessians of the individual images can be read in (all or just a part) from files
qts hessian imageX.txt) by setting inithessian=6.

6.2.2 Bimolecular rates

Bimolecular rates are at the moment implemented in two ways. The simple one is
for one atom reacting with a molecule. qts reactant.txt refers to the reactant
molecule. I.e. it has 3 degrees of freedom less than the classical TS. qts reactant.txt

has to be adapted manually: the energy of the incoming atom has to be added to the
third line (which contains the energy of the reactant molecule). Additionally, the mass
on the incoming atom (in atomic mass units) should be appended at the third line (thus,
two real values in the third line).

The relative translational partition function of the incoming atom will be calculated
and replaces the vibrational partition function for three degrees of freedom. The rate
is internally calculated in atomic units (as is the case for uni-molecular reactions), but
will be converted to molecules cm3 s−1 upon output.

For two molecules reacting with each other with more than one atom in each, a
second value has to be added to the third line of qts reactant.txt as well. However,
any negative value will do. It is only used as a label. The Hessians of the reactants
are read from the files qts hessian rs.txt and qts hessian rs2.txt which are
obtained from previous DL-FIND runs.

6.2.3 Tunnelling splittings

Tunnelling splittings of the vibrational ground state level following [16] can be calcu-
lated by setting tsplit=true in ChemShell or qtsflag=1 in DL-FIND. Every time a
rate is calculated, the tunnelling splitting is calculated as well. Tunnelling splittings
only make sense for symmetric molecules and barriers.
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7 Documentation of the Input Options – User Docu-
mentation

System documentation is available in the source code after the subroutine headers. The
input options will be explained here (User Documentation).

Print level (Variable printl):

0 no printout

2 print something

4 be verbose

6 debug

Type of coordinate system (Variable icoord):

“unit place” means icoord modulo 10

0–9 The whole system is to be treated as one image

Unit place 0 Cartesians

Unit place 1 HDLC - internals [17]

Unit place 2 HDLC - TC [17]

Unit place 3 DLC - internals [17]

Unit place 4 DLC - TC [17]

Unit place 5 Mass-weighted Cartesians (
√

mx) – will be deleted: use glob%massweight
for that now!

1X Lagrange-Newton conical intersection search, with two extra coordinates corre-
sponding to the gradient difference vector and interstate coupling gradient con-
straints.

10X NEB with endpoints free

11X NEB with endpoints moving only perpendicular to their tangent direction

12X NEB with frozen endpoints.

13X NEB with endpoints free. Only initialisation in coordiates X, optimisation in
cartesians.

14X NEB with endpoints moving only perpendicular to their tangent direction. Only
initialisation in coordiates X, optimisation in cartesians.
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15X NEB with frozen endpoints. Only initialisation in coordiates X, optimisation in
cartesians.

The NEB version implemented is the “improved-tangent” NEB [18] (also called
“upwind scheme”) with a climbing image.

190 Quantum transiton state search

20X Dimer method [1, 2]. Translation and rotation of the dimer are covered by the
optimiser specified trough iopt. Requires two energy evaluation per iteration.

21X Dimer method. Rotation of the dimer is done by a line search within the dimer
module, two energy calculations are used per rotation. Requires at least two
energy evaluation per iteration.

22X Dimer method. Rotation of the dimer is done by a line search within the dimer
module, one energy calculation is done per iteration, the other one is interpolated.
Requires at least two energy evaluation per iteration.

30X “Chain” search (similar to NEB, but path is expanded in arbitrary basis functions).
Better name required.

In all dimer versions: If a second set of coordinates is provided, it determines the
dimer direction, if not, the dimer direction is randomised.

Multistate calculations (Variable imultistate):

0 Single state calculation (default)

1 Conical intersection optimisation (penalty function algorithm).

2 Conical intersection optimisation (gradient projection algorithm).

3 Conical intersection optimisation (Lagrange-Newton algorithm).

Type of optimisation algorithm (Variable iopt):

0 Steepest descent

1 Conjugate gradient following Polak–Ribière [19] (with automatic restarts based on
the criterion by Powell and Beale) that is not coded properly ...

2 Conjugate gradient following Polak–Ribière [19] with CG restart every 10 steps
(hardcoded at the moment)

3 L-BFGS [20, 21]

9 Test delta for finite-difference in gradients (19 energy and gradient evaluations)

10 P-RFO [22–25] A switching mechanism for the mode to be followed is included,
but does not seem to help in any of the cases I tried sofar.
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11 Just calculate the Hessian and do a thermal analysis (harmonic approximation for
entropy, ...)

12 Calculate the Hessians of all images and the qTS rate (if inithessian=5: just the
rate, read the Hessians)

13 Rate without tunneling (only with Wigner correction)

20 Newton–Raphson/quasi-Newton

30 Damped dynamics using the variables timestep, fric0, fricfac, and fricp. The fric-
tions are defined that 0 corresponds to free (undamped) dynamics, and 1 corre-
sponds to steepest descent.

51 Random (stochastic) search [7,8], using the variables po pop size, po radius, po contraction,
po tolerance r, po tolerance g, po distribution, po maxcycle, po scalefac.

52 Genetic algorithm [9–11], using the variables po pop size, po radius, po tolerance g,
po maxcycle, po init pop size, po reset, po mutation rate, po death rate, po nsave

Type of line search or trust radius (Variable iline):

0 simple scaling of the proposed step, taking maxstep into account

1 Trust radius based on energy as acceptance criterion (recommended for L-BFGS
optimisation)

2 Trust radius based on gradient as acceptance criterion (recommended for CG opti-
misation)

3 Hard-core line search. Does not work at the moment...

Type of initial Hessian (Variable inithessian):

0 Calculate externally using dlf get hessian. Defaults to two point finite difference
if an external Hessian is unavailable.

1 Build by one point finite difference of the gradient

2 Build by two point finite difference of the gradient

3 Build a diagonal Hessian with a single one point finite difference

4 Set the Hessian to be an identity matrix

5 Only for instanton calculations: read the Hessian from qts hessian.txt

6 Only for instanton calculations: read the Hessian from files for each imageqts hessian imageX.txt
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Hessian update mechanism (Variable update):

0 No update. Always recalculate the Hessian

1 Powell update [5]

2 Bofill update [6]

3 BFGS update

Fragment and frozen atom information (Variable spec): The array spec has an
entry for each atom. Meaning:

>0 Fragment (residue) number the atom belongs to. Active in the optimisation.

0 Active, and treated in Cartesian coordinates, even if other atoms in the system are
covered by (H)DLCs.

-1 Frozen

-2 x-component frozen (Cartesians only)

-3 y-component frozen (Cartesians only)

-4 z-component frozen (Cartesians only)

-23 x and y-components frozen (Cartesians only)

-24 x and z-components frozen (Cartesians only)

-34 y and z-components frozen (Cartesians only)

Atoms with spec < −1 will be completely frozen if used in HDLCs. One may use
Cartesian constraints there to specify frozen components. Atoms with spec > 0 will
be free in Cartesian coordinats.

After this array, spec also contains the following information:

nz entries of nuclear charges (same order as coords)

5*ncons entries of constraints (typ, atom1,atom2, atom3, atom4)

2*nconn entries of connections (atom1 atom2)

nat entries of microiterative region specification

i.e. nspec= nat + nz + 5*ncons + 2*nconn + nat

18



Microiterative optimisation (Variable imicroiter):

0 Standard (non-microiterative) optimisation

1 Microiterative optimisation

Note imicroiter is also used internally to keep track of whether the optimisation is in a
macroiterative (imicroiter=1) or microiterative (imcroiter=2) loop.

The inner region specification for microiterative optimisation is part of the spec

array with a section of length nat. A 0 entry signifies a standard optimisation or outer
region as appropriate, while 1 signifies an inner region atom.

Other parameters There are numerous other paramers that can be set via the rou-
tine dlf get params. These are at the moment explained in the global module,
dlf global module.f90.

7.0.1 Restarting

dump after how many energy and gradient evaluations is a restart file (checkpoint file)
to be written? Default: 0 (never).

restart 0: new run (default), 1: read all checkpoint files and start from those.

It is only possible to restart a job with most parameters equal to those in the check-
point file. Exeptions (input parameters that may be different from the ones in the pre-
vious run, i.e. that are not written to the checkpoint file): maxcycle. If different
parameters are to be used, the latest geometry should be used and the optimiser should
be started from scratch (restart=0).

8 Collection ...
Force weighted intenal coordinates: have a look at http://www.molpro.net/molpro-
user/archive/all/msg00071.html

At the moment, I am experiencing problems with NEB in internal coordinates.
While the structure may change continously, the internals may not. Consider H2CO
separation: it has two dihedrals. In the bound configuration, both are 180°. In the
dissociated configuration, one is 0 and one is 180, as H2 moves to one side of CO. How
to deal with that?

One possible solution: Impropers are automatically put onto atoms with nearly
planar configuration (what if more than 3 connections?). If an improper is placed on an
atom, this one should not be in the middle of a dihedral that include these atoms. This,
however, had be removed again as it leads to an underdetermined systems when not all
atoms next to the planar atom are monovalent.

svn properties:
svn propset svn:keywords "URL Author Date Rev Id" dlf_util.f90
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[3] J. Kästner and P. Sherwood: Superlinearly converging dimer method for transition
state search. J. Chem. Phys. 128, 014106 (2008).
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degrees of freedom. J. Chem. Theory Comput. 7, 690 (2011).
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