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Motivation 1: Understanding the basis of synaptic
plasticity
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É Synapses crucial for development of functional brains and
encoding semantic and episodic memories

É Patterns of pre- and postsynaptic activity on a time scale of
milliseconds lead to long-lasting changes in synaptic strength
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Long term potentiation & long term depression

É Bliss and Lømo
(1973)

É Electrical activity
(ms) leads to change
in AMPAR receptors
in membrane that
lasts for days
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Motivation 2: synaptic plasticity in disease
É Models of LTP and LTD based on signalling cascades

Ca->CaM->CaMKII etc exist...
É ... But other synaptic proteins are involved in many brain

diseases (schizophrenia, depression) (Pocklington et al., 2006)
É Why does this go wrong?
É There is a feedback loop: neural activity→ synaptic changes→

neural activity
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The postsynaptic density (PSD)

[Sheng and Hoogenraad (2007) 5 / 35



Mutations in PSD proteins affect synaptic plasticity

Carlisle et al. (2008)
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Outline
Compartmental models Neurons as electrical devices
Rule-based models The post-synaptic proteome as a molecular

device
Method Combining compartmental and rule-based models in

synapses
Validation and demonstration
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Neuron as electrical device: The resting membrane
potential
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É Intracellular space (cytoplasm), extracellular space
É membrane potential typically about −65mV
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Intracellular recordings of endplate potentials
Fatt and Katz (1951)

Stimulating electrode

Recording electrodes

Endplate

Muscle fibre

Motor neuron

É Propagation is passive: it decays with distance
É Excitatory postsynaptic potentials (EPSPs) in motor neurons

(Coombs et al., 1956)
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Action potentials (Hodgkin and Huxley, 1939)

Stimulating electrode

Recording electrodes

Squid giant axon

É Propagation is active: the amplitude of the action potential
does not decay with distance
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The neuronal membrane
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The equivalent electrical circuit of a patch of membrane.

extracellular

intracellular 

lipid bilayer

Ichan
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É Lipid bilayer modelled by a capacitor + Kirchoff’s first law⇒

Icap =Cm
dV
dt
=−Ichan

Na − Ichan
K − Ipump

Na − Ipump
K

É In neurons pump currents often ignored due to small size
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Channel current
É Goldman-Hodgkin-Katz theory:

Potassium Calcium

É In general, current carried by species S depends on the
membrane potential V and the intra- and extracellular
concentrations of S:

Ichan
S = gS fS(V ,[S]i,[S]e)

É In biological range, reasonable to approximate curve for K+

with a straight line intersecting the voltage axis at EK

IK = gK(V −EK)
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Passive patch of membrane
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É Membrane time constant is product of membrane resistance
and capacitance:

τ =RmCm
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Hodgkin & Huxley’s big insight

gK = gKn4 and gNa = gNam3h

e.g. Potassium activation gating
variable

dn
dt
= αn(1−n)−βnn

OR express the HH potassium n4

variable as Markov system:
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Example of pump

Ca binding: P+Ca
k1−−→ P ·Ca

Ca release: P ·Ca
k2−−→ P

É Here Ipump
Ca = k2[P ·Ca]2Fv/a
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A length of passive neurite
É To deal extended neurites, where voltage may vary down

length, split into multiple isopotential compartments
É A compartmental model with N compartments, each

representing length l of neurite of diameter d

d

l

Cm Rm

Em

I /AeRm

Em

Cm Rm

Em

Cm

Ra RaVj Vj+1Vj-1

Ra is the axial
resistivity

É New version of the membrane equation for each compartment

Cm

dVj

dt
=

Em−Vj

Rm
+

Vj+1−Vj

4Ral2
+

Vj−1−Vj

4Ral2
+

Ie,j

πdl
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Summary of system

Ci
dVi

dt
=
∑

j∈N i

dij(Vj−Vi)

4Ral2
ij

−
∑

S

�

Ichan
S,i + Ipump

S,i

�

+ Ie,i

Ie is a forcing input (e.g. current injection), which does not depend
on other state variables.

Ichan
S,i =
∑

j

gS,j,iOijfS,i(Vi,[S]i,[S]e)

Oij are number of channels in compartment i in state j, determined
by Markov schemes, which can be simulated as ODEs.

d[S]i
dt
=−

ai

zSFvi
(Ichan

S,i + Ipump
S,i )+
∑

r
JS,r,i

JS,r,i are fluxes into intracellular reactions r, determined by ODEs.
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Solution of ODEs, e.g. with implicit Euler
É Gather all state variables into vector ~x, and express RHS as

function of states ~G and forcing inputs ~b
É Derivative evaluated at t+∆t, the end of the time step:

~x(t+∆t)−~x(t)
∆t

= ~G(~x(t+∆t))+ ~b(t+∆t)

É Taylor expand RHS in ∆t and rearrange:

~x(t+∆t) = ~x(t)+
�

I − ∂
~G

∂ ~x
∆t

�−1
�

~G(~x(t))+ ~b(t)
�

∆t

where ∂ ~G/∂ ~x is the Jacobian matrix at time t
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Motivating example: Calmodulin-calcium binding
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É Cooperative binding to C
& N lobes of calmodulin;
C & N lobes independent

É Reaction-based
stochastic simulation
algorithm would need 24
unidirectional reactions
for 9 separate species

É Rule-based expression of binding to C lobe, in terms of agents,
binding sites and links:
ca(b), CaM(c1, c2) −−*)−− ca(b!1), CaM(c1!1,c2)

ca(b), CaM(c1!_,c2) −−*)−− ca(b!1), CaM(c1!_,c2!1)

É Full definition of CaM agent is
CaM(c1, c2, n1, n2, ck, h)

“Don’t care, don’t write”
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Kappa equivalent
É Thus equivalent model in the rule-based Kappa language

requires 8 unidirectional rules to describe the behaviour of 2
agents with binding sites

É Rule-based solvers, e.g. KaSim (Danos et al., 2007) or
SpatialKappa (Sorokina et al., 2013), use variant of the Gillespie
algorithm, but with rules rather than reactions.

É States can also be defined:
%Agent: A(l~u~p)

A(l~u) −−*)−− ` A(l~p)

É Deal with complexity: only keep track of complexes that
actually exist at any time point in a simulation, not all possible
complexes that could arise. E.g. EGFR with 9 phosphorylation
sites⇒ 29 = 512 possible states
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Approach: simulator integration

Online Collections by The Strong is licensed under a Creative Commons Attribution-Noncommercial-No
www.thestrong.org

To integrate rule-based and compartmental simulators, assume that
there are:
É variables which exist only in the electrical simulator (e.g

membrane potential)
É variables which exist only in the rule-based simulator (e.g.

CaMKII phosphorylation states)
É bridge variables, shared by both simulators (e.g. calcium

concentration)
É e.g. intracellular calcium concentration, which may be read by

electrical simulator to determine calcium current via GHK
equations

É Bridge variables need to be interconverted (concentration to
number)

É Current tools: Python +NEURON + py4j + SpatialKappa
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Update algorithm
t t+Δt

Rule-based
simulator

ODE simulator

gCa1

2

3

4

ICa
pump ICa

chan+
[Ca]

1. Pass relevant continuous variables (e.g. Ca channel conductance
or current) to the rule-based simulator

2. Run the rule-based solver from t to t+∆t, creating bridge
species Si in compartment i due to channel current Ichan

S,i
3. Compute the net change ∆Stot

i in the total number of each
bridging species S (including in any complexes) over the time
step and convert back to a current density Ichan

S,i + Ipump
S,i . To

ensure consistency between membrane potential and ionic
concentrations, set the corresponding element of ~b(t) equal to
−(1/Ci)
∑

S(I
chan
S,i + Ipump

S,i )
4. Update the continuous variables using a standard numerical

integration method.
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Summary of system 23

Ci
dVi

dt
=
∑

j∈N i

dij(Vj−Vi)

4Ral2
ij

−
∑

S

�

Ichan
S,i + Ipump

S,i

�

+ Ie,i

Ie is a forcing input (e.g. current injection), which does not depend
on other state variables.

Ichan
S,i =
∑

j

gS,j,iOijfS,i(Vi,[S]i,[S]e)

Ie and Ichan
S,i + Ipump

S,i are forcing inputs which do not depend directly
on other state variables. Channel current replaced by creation rule:
∑

j gS,j,iOijfS,i(Vi,[S]i,[S]e) ·NAai/zSF
−−−−−−−−−−−−−−−−−−−−−−−−−→ S(b)

Ichan
S,i + Ipump

S,i =−∆Stot
i /∆t · zSF/aiNA

Oij are number of channels in compartment i in state j, determined
by Markov schemes, which can be simulated as ODEs. Oij are
number of channels in compartment i in state j, computed within
rule-based model

d[S]i
dt
=−

ai

zSFvi
(Ichan

S,i + Ipump
S,i )+
∑

r
JS,r,i

JS,r,i are fluxes into intracellular reactions r, determined by ODEs.
All other intracellular interactions are controlled by rules, some of
which may involve S(b)
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Validation simulations: simple calcium pump

Kappa fragment caPump.ka:

# Concent ra t ion of one a g e n t in the volume in mM
% var : ’ ac ’ 1E18 / ( ’NA’ ∗ ’ vo l ’ )
## Rule s
’ Bind ’ ca ( x ) , P ( x ) −> ca ( x ! 1 ) , P ( x ! 1 ) @ ’ k1 ’ ∗ ’ a c ’
’ R e l e a s e ’ ca ( x ! 1 ) , P ( x ! 1 ) −> P ( x ) @ ’ k2 ’
## O b se r va t io n s
% obs : ’ ca ’ ca ( x ) # Free Ca
% obs : ’P−Ca ’ ca ( x ! 1 ) , P ( x ! 1 ) # Bound Ca−P
% obs : ’P ’ P ( x ) # Free P
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Validation simulations: simple calcium pump
NEURON python fragment:

from neuron import ∗
import KappaNEURON
sh = h . S e c t i o n ( )
r = rxd . Region ( [ sh ] , n rn_reg ion= ’ i ’ )
## Def ine the s p e c i e s , the ca ion ( a l r e a d y b u i l t−in to NEURON) ,
## and the pump molecu le . These names must cor re spond to the
## a g e n t names in the Kappa f i l e .
ca = rxd . S p e c i e s ( r , name= ’ c a ’ , c h a r g e=2 , i n i t i a l =0 .0 )
P = rxd . S p e c i e s ( r , name= ’P ’ , c h a r g e=0 , i n i t i a l =0 .2 )
## Crea t e the l i n k between the Kappa model and the s p e c i e s
## j u s t d e f i n e d
kappa = KappaNEURON. Kappa ( membrane_spec ie s=[ca ] , s p e c i e s=[P ] ,

k a p p a _ f i l e="caPump . ka " , r e g i o n s=r )
run ( 3 0 )
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Validation results
Single compartment, Ca influx and pumping, stochastic Kappa and
deterministic ODE simulation
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Demonstration simulations
É Incorporates data-driven model of proteome (Sorokina et al.,

2011) and detailed models of Ca-CaM-CaMKII cascade
É Involves phosphorylated-CAMKII dependent binding of

PSD95, stargazin and GluR
É NMDAR channel state controlled by rule-based simulator
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É Bound stargazin-GluR complex proxy for GluR recruited to
synapse

É Further work: Refine and extend model with aim of
producing data-driven model of LTP and LTD.
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Discussion
É Method is similar to integration of electrical & biochemical

models introduced by Mattioni and Le Novère (2013)
É Rule-based simulator here
É Also calcium is accounted for in the biochemical simulation

rather than in the electrical simulation; this can model
competition for calcium

É Algorithm still needs more debugging
É Perhaps outwith the NEURON framework

É System almost ready to be applied!
É The curse of parameters?
É Efficiency needs to be improved; however interprocess

communication does not seem to be much of a problem.
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