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1
QUATERNION FUNDAMENTALS

ch:quat

Quaternions were developed by Hamilton in 1866
hamilton1866

[1] as an means of representing

rotations in three dimensions. They are based on Euler’s rotation theorem, whereby

any rotation can be represented as a rotation by a single angle about a single axis.

The various quaternion operations discussed in this thesis are are summarized

below, following the discussion in
kovalevsky2004

[2].

A quaternion q is composed of a scalar component q0 and a vector component

q = (q1,q2,q3). The quaternion is in essence an extension of complex numbers into

three dimensions, where the scalar component is real and the vector components

are orthogonal imaginary quantities:

q = (q0,q) = q0 + q1i + q2j + q3k (1.1)

The imaginary axes i, j,k satisfy the following conditions:

i2 = j2 = k2 = -1,

ij = -ji = k,

jk = -kj = i,

ki = -ik = j.

(1.2) {eq:quat_cond}

1
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quaternion fundamentals 2

The complex conjugate is then q⇤ = (q0,-q). The conditions
eq:quat_cond

eq. (1.2) imply that

multiplication of two quaternions is not commutative. Working through the com-

plex arithmetic, the product of two quaternions p and q can be written as

pq = (p0q0 - p · q,p0q+ q0p+ p⇥ q). (1.3) {eq:quat_prod}

From
eq:quat_prod

eq. (1.3), we find that the quaternion norm is |q|2 = q⇤q = q2
0 + |q|2. The

inverse of a quaternion, which satisfies q-1q = 1, is q-1 = q⇤/|q|2. A normalized

(unit) quaternion, with |q| = 1, provides a compact representation of a rotation

about a unit axis u by an angle ✓:

R
u
(✓) = (cos

✓

2
, sin

✓

2
u). (1.4) {eq:quat_rot}

A sequence of rotations is then simply a multiplication of quaternions as in
eq:quat_prod

eq. (1.3). To apply a rotation q to an arbitrary vector v, we treat the vector as a

purely imaginary quaternion v = (0, v), and rotation is performed as a conjugation

of v by q:

v0 = qvq-1
. (1.5)

This is equivalent to multiplying v by the matrix

M(q) =

0

BBBBB@

q2
0 + q2

1 - q2
2 - q2

3 2 (q1q2 - q0q3) 2 (q1q3 + q0q2)

2 (q1q2 + q0q3) q2
0 - q2

1 + q2
2 - q2

3 2 (q2q3 - q0q1)

2 (q1q3 - q0q2) 2 (q2q3 + q0q1) q2
0 - q2

1 - q2
2 + q2

3

1

CCCCCA
. (1.6) {eq:quat_mat}
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quaternion fundamentals 3
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figure 1.1: ZYZ Euler angles used throughout this thesis. Shown are the longitu-
dinal and latitudinal angles (↵,�) between the fixed (xyz) and rotated
(XYZ) frames that define the direction of the Z-axis, and the rotation
angle � about the Z-axis. Note that here � is defined as the compli-
ment of the angle between the fixed and rotated polar axes.

fig:euler_angles

Astronomical coordinates are typically defined in terms of the ZYZ-form Euler

angles, as shown in
fig:euler_angles

Figure 1.1. The rotation matrix form for these angles is

RZ(↵)RY

�
⇡
2 -�

�
RZ(�) =

0

BBBBB@

c↵s�c� - s↵s� -s↵c� - c↵s�s� c↵c�

c↵s� + s↵s�c� c↵c� - s↵s�s� s↵c�

-c�c� c�s� s�

1

CCCCCA
, (1.7) {eq:euler_mat}

where (c�, s�) are shorthand for (cos�, sin�). Comparing
eq:quat_mat

eq. (1.6) to
eq:euler_mat

eq. (1.7),

we obtain expressions for the Euler angles in terms of the elements of the unit
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quaternion fundamentals 4

quaternion. First, for the case when cos� 6= 0, we use the elements of the third

column and third row of the rotation matrix to obtain:

↵ = atan2 (q2q3 - q0q1, q1q3 + q0q2)

sin� = q2
0 - q2

1 - q2
2 + q2

3

sin 2� = 2 (q0q1 + q2q3) (q0q2 - q1q3) / cos

2 �

cos 2� = 2 (q0q2 - q1q3)
2 / cos

2 �- 1,

(1.8) {eq:quat_coords}

where atan2(y, x) accounts for the signs of the numerator and denominator in com-

puting tan

-1 (y/x), and the � and � terms are written in the form typically re-

quired for proper decomposition of the Stokes Q and U parameters on the sphere.

Note that we assume cos� > 0, so that � is restricted to the range [-⇡
2 ,

⇡
2 ]. In the

case when cos� = 0, we fix ↵ = 0 and solve for � using the remaining matrix

elements. If sin� = 1, then

sin 2� = 4q0q3

�
q2
0 - q2

3

�
,

cos 2� = 2
�
q2
0 - q2

3

�2
- 1;

(1.9) {eq:quat_coords2}

and if sin� = -1, then

sin 2� = 4q1q2

�
q2
2 - q2

1

�
,

cos 2� = 2
�
q2
2 - q2

1

�2
- 1.

(1.10) {eq:quat_coords3}
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2
CELEST IAL COORDINATE TRANSFORMAT IONS

ch:pnt

E�cient computation has become a significant concern with the exponential

growth of the amount of data acquired by present-day CMB experiments. Various

computational methods have been developed to speed up processing of data, but

a significant bottleneck remains with reading data from, and writing to, on-disk

storage. One major concern is how to e�ciently store and compute pointing data

for each of thousands of individual channels.

A natural way to store pointing information is using a time-ordered set of hori-

zon coordinates

a azimuth,
e elevation,
p pitch,
r roll,
� Earth longitude,
� Earth latitude, and
t UTC time.

These indicate the orientation of the telescope boresight with respect to the Earth’s

horizon. Typically many channels are arranged in the telescope focal plane such

that each channel is observing a slightly di↵erent location on the sky relative to the

boresight direction. The orientation of each channel on the sky is a time-ordered

set of celestial coordinates
5
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celestial coordinate transformations 6

↵ right ascension,
� declination, and
' position angle.

In order to determine the direction each individual channel is pointing at any

given time, the boresight horizon coordinates must be rotated into the celestial

frame, and shifted by the pre-determined pointing o↵set of each channel. The at-

titude of a single channel qc in celestial coordinates can be expressed in terms

of the boresight attitude in horizon coordinates using the following quaternion

expression:

qc = Aa

�
qC(t) qT (t) Ad

�
Fr

�
qH(t) q� q (t)

���
' qB(t) q� q (t). (2.1) {eq:pntalga}

Each of the terms in
eq:pntalga

eq. (2.1) are discussed in more detail below.

The process of computing
eq:pntalga

eq. (2.1) can be computationally intensive; therefore,

the per-channel pointing solutions are often computed once and stored on disk.

However, as the number of channels increases exponentially, reading such data

from disk becomes prohibitively slow, so on-the-fly computation becomes neces-

sary. The algorithm described in this text, based largely on the libactpol pointing

library and the latest conventions of the International Earth Rotation and Refer-

ence Systems Service (IERS)
iers2010

[3], provides an e�cient and parallelized method for

calculating telescope pointing on the fly, with some control over the accuracy (and

therefore, the speed) of the computation. The algorithm is implemented as part of

the qpoint pointing library, which is used by the Spider team for pointing simu-

lations as well as parallelized per-channel pointing computation and mapmaking

in the analysis pipeline. We plan to release the qpoint code for public use by the

astrophysics community.
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2.1 channel offset 7

2.1 channel offset

The channel o↵set is expressed in terms of a beam centroid measured as a local

azimuth �a and elevation �e relative to boresight a = e = 0, and angular orienta-

tion of polarization sensitivity (�') as measured relative to the vertical. The o↵set

quaternion q� is thus

q� = Rx(-�a) Ry(�e) Rz(-�'), (2.2) {eq:quat_deltaa}

where the rotations R{x,y,z} are defined as in
eq:quat_rot

eq. (1.4). The channel o↵set is a sta-

tionary quantity throughout the observation period, and thus only needs to be

computed once.

When a HWP is present in front of the bolometer, the position angle is o↵set by

twice the waveplate angle  :

q = Rz(-2 ). (2.3) {eq:quat_delta_hwp}

In the case of a stepped HWP, it is most e�cient to update the channel o↵set q�

at each HWP step using
eq:quat_delta_hwp

eq. (2.3), rather than to treat the HWP angle as a separate

time series.
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2.2 rotation to horizon frame 8

2.2 rotation to horizon frame

The o↵set quaternion q�, defined in
eq:quat_deltaa

eq. (2.2), is rotated into the horizon frame

by applying the quaternion qH, which is defined in terms of the the boresight

azimuth, elevation, pitch and roll as

qH = Rx(-r) Ry(-p) Rz(-a) Ry(
⇡
2 - e) Rz(⇡). (2.4) {eq:quat_horiz}

The horizon coordinates are measured using a variety of onboard sensors and

encoders, as discussed in
sec:gondola

??.

2.3 atmospheric refraction

The e↵ects of refraction through the Earth’s atmosphere are negligible at float alti-

tudes, but in principle the elevation should be corrected for this as

e0 = e0 - �r, (2.5)

where the correction term �r depends on the local weather conditions (pressure,

humidity, altitude), the observation wavelength, and the uncorrected elevation e0

of the observer q, which is

e0 = sin

-1
⇣⇣

qẑq-1
⌘
· ẑ
⌘

. (2.6)
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2.4 diurnal aberration 9
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figure 2.1: Refraction correction angle as a function of elevation, assuming
10mbar atmospheric pressure and 0.1% relative humidity at an al-
titude of 35km.

fig:refraction

Writing the refraction correction in the form of a quaternion product, we have:

Fr(q) = q Rz(-⇡) Ry(�r) Rz(⇡) = q Ry(-�r). (2.7) {eq:quat_ref}

The refraction correction is expected to be<200 throughout Spider’s elevation range,

and vary over the 20° field of view by no more than 0.500, assuming 10mbar atmo-

spheric pressure and 0.1% relative humidity at an altitude of 35km.
fig:refraction

Figure 2.1

shows the correction �r as a function of elevation for these weather conditions.

2.4 diurnal aberration

The aberration of light due to motion of the observer induces an apparent shift in

the location of objects on the sky, as shown in
fig:aberration

Figure 2.2. The aberration correction

depends on the orientation of the observer, thus cannot be applied as a simple

rotation. For an observer q moving with velocity � = v/c and looking along the
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2.4 diurnal aberration 10

u u+�

�u⇥�

�✓

figure 2.2: Aberration of light due to motion of the observer. The apparent direc-
tion u+ � is realized by rotating the geometric direction u about the
normal u⇥� by an angle �✓ = sin

-1 |u⇥�|.
fig:aberration

direction u = qẑq-1 in the co-moving reference frame, the aberration correction

is

q0 = A(q) = Rn̂(-�✓) q, (2.8) {eq:quat_aber}

where the rotation is applied about the direction n = u⇥�, by the angle sin�✓ =

|n|.

The angular velocity of the Earth’s surface at the equator is |�| ' 0.300, thus

the diurnal aberration correction Ad for an Antarctic observer is typically <0.100,

which is negligible given Spider’s pointing accuracy requirements. The correction

can be ignored altogether, or applied solely at the boresight orientation to average

the correction over the field of view. In the latter case, we apply the approximation

A (q q�) ' A (q)q� = q0q�, (2.9) {eq:quat_aber_simple}
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2.5 rotation to terrestrial frame 11

so that
eq:pntalga

eq. (2.1) simplifies to

qc = Aa

�
qC qT q0

H q�
�

. (2.10) {eq:pntalg2}

2.5 rotation to terrestrial frame

The corrected horizon orientation is then rotated into a reference frame that is

co-rotating with the Earth, using the latitude and longitude of the telescope:

qT = Rz(�) Ry(
⇡
2 -�) Rz(⇡). (2.11) {eq:quat_ter}

These coordinates are provided by an onboard GPS every 30 seconds for Spider.

For a ground-based instrument, these coordinates are of course fixed.

2.6 rotation to celestial frame

Rotating the channel coordinates from the terrestrial frame onto the sky requires

knowledge of the Earth’s orientation relative to the barycentric celestial reference

frame with high precision. Following the conventions in Chapter 5 of
iers2010

[3], the trans-

formation is performed in three steps:

qC = qP qR qW (2.12) {eq:quat_cel}

where qW accounts for the “wobble” of the Earth’s rotation axis relative to the

terrestrial reference frame; qR accounts for the rotation of the terrestrial frame

[Draft Version as of July 14, 2016 at 15:37 ]



2.6 rotation to celestial frame 12
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(a) Polar motion parameters throughout
December 2014 and January 2015.

fig:wobble
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(b) The components of the Earth’s orbital
velocity during the same period.

fig:eob

figure 2.3: Amplitudes of several correction terms discussed in the text.
fig:wobble_eob

relative to the celestial frame; and qP accounts for the motion of the Earth’s pole

due to precession and nutation about the solar orbit. Various astronomical libraries
sofa

[e.g., 4] provide codes for calculating these terms, as summarized below.

The Earth’s wobble is constructed as

qW = R3(s
0) R2(-xp) R1(-yp), (2.13) {eq:quat_wobble}

where (xp,yp) are the coordinates of the pole in arcseconds, and s0 is the dis-

placement of the terrestrial meridian. The polar coordinates are tabulated daily

in IERS Bulletin A
iers_bulla

[5]. These are typically no larger than 0.500 and vary on the

timescale of a year, so are thus negligible for Spider’s pointing requirements. In

practice, s0 < 0.4mas
iers2010

[3], and is thus entirely negligible for most cosmological pur-

poses.
fig:wobble

Figure 2.3a shows the variation in the wobble parameters throughout the

2014/2015 austral summer.
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2.6 rotation to celestial frame 13

The rotation of the Earth relative to the barycentric frame is calculated as a func-

tion of the sidereal angle ✏ as

qR = R3(✏). (2.14) {eq:quat_era}

Finally, precession and nutation of the Earth’s orbit relative to the J2000 epoch

is accounted for by

qP = R3(E) R2(d) R3(-E- s), (2.15) {eq:quat_npb}

where the polar coordinates (E,d) are calculated from the vector coordinates (X, Y)

as

E = atan2(Y,X), d = cos

-1
p

1-X2 - Y2
, (2.16) {eq:npb_coords}

and the parameter s describes the displacement of the celestial meridian. The

parameters (X, Y, s) are calculated using the IAU 2006/2000A model for full ac-

curacy, or the IAU 2000B model for more e�cient computation at reduced accu-

racy. A comparison of the parameters calculated using these two models is shown

in
fig:npb_comp

Figure 2.4. The 2000B model, which is twelve times more e�cient than the

2006/2000A model1, is more than adequate for Spider’s purposes.

1 As measured on a Macbook Pro with a 2.5GHz Core i5 processor and 8GB RAM
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figure 2.4: Comparison of the full 2006/2000A and reduced 2000B models for
nutation and precession.

fig:npb_comp

2.7 annual aberration

The final correction applied to recover the celestial coordinates of each channel is

the stellar aberration correction due to the orbit of the Earth. The orbital velocity

is calculated in the barycentric reference frame using pre-computed ephemerids
sofa

[4], and the correction is applied according to
eq:quat_aber

eq. (2.8). The average velocity is ap-

proximately 2000 (
fig:eob

Figure 2.3b). While this correction is small, it is comparable to

the expected accuracy of the post-flight pointing reconstruction, so in principle it

should be accounted for to ensure that the aberration correction is subdominant.

As a compromise, a mean correction can be applied to all channels using the ap-

proximation
eq:quat_aber_simple

eq. (2.9), so that
eq:pntalg2

eq. (2.10) reduces to

qc = Aa

�
qC qT q0

H q�
�
' Aa (qB)q� = q0

Bq�, (2.17) {eq:pntalg3}
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2.7 annual aberration 15
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fig:pnt_err_sigma
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(b) The di↵erence between the corrected
and uncorrected position angle '.

fig:pnt_err_pol

figure 2.5: Maximum error in reconstructed channel pointing if the e↵ect of an-
nual aberration relative to the boresight orientation is left uncorrected.
The error is calculated using a simulated pointing dataset computed
over one sidereal day, using a complete Spider 150GHz focal plane of
512 polarized channels clocked at 22.5° about the boresight.

fig:pnt_err

where the second equality defines the pointing quaternion qB for the boresight

direction.

The annual aberration correction varies by as much as several arcseconds across

the focal plane throughout the sidereal day, as shown in
fig:pnt_err

Figure 2.5. While the

amplitude is small, the error has a coherent shape across the focal plane, which

could induce a systematic signal in the data. Signal simulations, performed using

the pipeline outlined in
sec:sims

??, can be used to show whether ignoring this pointing

error for the sake of e�ciency would induce a significant systematic e↵ect.

It is important to note that any measurement of the CMB temperature is also

aberrated by the motion of the observer
planck_aber

[6]. However, this correction can be ap-
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2.7 annual aberration 16
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figure 2.6: Error in the angular separation of a pair of star cameras, as deter-
mined from their respective celestial pointing solutions, if the e↵ect
of annual aberration is not taken into account. The error is shown as a
function of the horizon coordinates of one star camera, assuming the
second camera is fixed at a = e = 0.

fig:sc_aber

plied in the map domain after the relative e↵ects of aberration have been corrected

in the pointing solution.

2.7.1 Aberration of Star Camera Solutions

sec:sc_aber

In practice, the Spider boresight pointing solution is computed from the orien-

tation of the three star cameras observing the sky as the instrument scans in az-

imuth and elevation. Each star camera image is resolved to a celestial orientation

using the true (deaberrated) star positions. Solutions from each of the star cameras

are then combined with the gyroscope and elevation data to compute a boresight

pointing solution at the bolometer data rate. However, because each star camera is

pointing in vastly di↵erent directions on the sky relative to the other cameras, the

physical orientation of each camera relative to the others, as computed from the

[Draft Version as of July 14, 2016 at 15:37 ]



2.8 algorithm implementation 17

celestial pointing solutions, is modulated by the relative e↵ect of aberration along

each camera direction. The amplitude of this relative aberration e↵ect is illustrated

in
fig:sc_aber

Figure 2.6.

Correcting for aberration in the computation of the final boresight pointing so-

lution thus requires computing the relative orientations of the star cameras in the

aberrated celestial frame, in which the orientations of the cameras relative to each

other are constant to first order (ignoring mechanical stresses due to motion of the

gondola). A more accurate boresight solution should thus be computed using the

following procedure:

1. Aberrate each star camera solution using the inverse of
eq:quat_aber

eq. (2.8).

2. Compute the boresight pointing solution in the aberrated reference frame.

3. De-aberrate the final boresight pointing solution using
eq:quat_aber

eq. (2.8).

This algorithm should reduce errors due to modulation of the star camera orien-

tation on the sky as the cameras move relative to each other and relative to the

Earth’s velocity throughout the day.

2.8 algorithm implementation

sec:qpoint

The pointing algorithm is implemented in a way that allows control over the ac-

curacy (and therefore, the e�ciency) of the calculations described in the previous

section. The procedure is divided into steps, as shown in
tab:pnt_tune

Table 2.1. For steps in-

volving small correction terms, such as the aberration and polar motion correc-

tions, the user can control the sample rate at which the relevant quaternions are

updated. Because the pointing data are processed in a time-orderedway, correction

[Draft Version as of July 14, 2016 at 15:37 ]



2.8 algorithm implementation 18

terms can be updated everyNth sample to speed up processing without significant

loss of accuracy. This is especially useful for computationally intensive corrections

like the celestial polar motion quaternion qP, which involves hundreds of linear

operations to compute, yet varies slowly enough that it can be updated rarely. Ad-

ditionally, the refraction and aberration corrections can be applied to the boresight

quaternion qB once as in
eq:quat_aber_simple

eq. (2.9), e↵ectively averaging the correction across the

focal plane. Finally, some correction terms are small enough that they can simply

be ignored altogether for most cosmological applications; these are included in the

software library for completeness.

[Draft Version as of July 14, 2016 at 15:37 ]



2.8 algorithm implementation 19

table 2.1: Each step of the qpoint algorithm for computing a single channel’s ori-tab:pnt_tune

entation from boresight attitude to celestial coordinates. The third and
fourth columns summarize the amount of control the user has over
the computation at each step. Each correction or rotation can be ap-
plied once in the computation of qB (as an e↵ective average over the
focal plane), or at each channel individually. Moreover, some correc-
tion terms which vary slowly enough are updated at a tunable sample
rate. The sample rates selected for su�ciently accurate simulations of
Spider pointing are indicated in the final column.

step add’l inputs fpu avg? tune rate? sample rate

a

q� �a,�e,�' N N once
qH a, e,p, r Y N 1

Fr �r Yb Y never
Ad �rot Yb Yd 1

qT �,� Y Y 1

qW xp,yp, s0 Y Y never
qR ✏ Y Y 1

qP X, Y, s Y Y 10

Aa �orb Yc Yd 100

↵,�,'  e N N 1
a Corrections are calculated once and kept constant, never calculated at all, or calcu-
lated at the indicated rate of samples between updates.
b The focal-plane-averaged correction is applied by default. Correcting each channel
individually requires repeating all subsequent steps.
c The correction is applied to each channel by default, but the user can choose to apply
a focal-plane averaged correction instead.
d The rate at which the velocity vector � is updated is commandable, but the rotation
is calculated as in

eq:quat_aber

eq. (2.8) and applied at the sample rate.
e The HWP angle can optionally be applied as an independent correction rather than
a term included in the position angle o↵set �'.
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