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Here we derive the complete equations for constructing maps from a telescope with a
non-ideal half-wave plate to modulate polarization. This text follows the equations and
conventions in [, ].

 general formalism

We define the radiation state along a direction of propagation r̂ as a Stokes vector s(r̂),
where

sT (r̂) =
(
I(r̂) Q(r̂) U(r̂) V(r̂)

)
. ()

A polarization-sensitive bolometer can be treated in the Mueller matrix formalism as a
polarization-sensitive element with Muller matrix M, followed by an incoherent absorber
a = (1, 0, 0, 0) that is sensitive only to Stokes intensity. The signal d on the bolometer due
to incident radiation s along the direction r̂ is thus, up to an overall gain factor,

d = aTMs =MII I+MIQQ+MIUU+MIV V . ()

We can write the model of eq. () in matrix form (ignoring additive noise for clarity) for a
sequence of Nsamp measurements as

d = Am. ()

In this case, d is a vector of length Nsamp, where each element is a single data sample.
Similarly, the underlying Stokes (I,Q,U,V) parameters are interleaved into a single dis-
cretely pixelized map vector m of length 4Npix, with Npix � Nsamp. Explicitly, we have

mT =
(
sT0 · · · sTNpix

)
=
(
I0 Q0 U0 V0 · · · INpix QNpix UNpix VNpix

)
.

()

Finally, A is a sparse matrix with Nsamp × 4Npix elements that maps each set of four
Stokes parameters to a data sample according to eq. (). We often compute the quantities





 coupling of a single polarized instrument 

v = ATd and P = ATA for each map pixel in the process of solving eq. (). More explicitly,
these quantities are:

vp =

∑
r̂∈p


MII d

MIQ d

MIU d

MIV d

 ()

and

Pp =

∑
r̂∈p


M2
II MIIMIQ MIIMIU MIIMIV

− M2
IQ MIQMIU MIQMIV

− − M2
IU MIUMIV

− − − M2
IV

 , ()

where each element is summing over all values that fall into the map pixel p.
In the following sections, we compute the Mueller matrix elements in several common

mapmaking cases, with some recommendations for how to implement these in software
efficiently. Sample indices and pointing directions are suppressed for clarity.

 coupling of a single polarized instrument

We begin with the matrix equation for a single polarized instrument aligned at an angle
ψ relative to the sky coordinate axes. In the remainder of the text, this is what we call the
“boresight” or instrument angle. The rotation of the instrument is encoded in the Mueller
rotation matrix Mψ, defined as

Mψ =


1 0 0 0

0 cos(2ψ) sin(2ψ) 0

0 − sin(2ψ) cos(2ψ) 0

0 0 0 1

 , ()



 coupling of a single polarized instrument 

and we treat our instrument as a partial polarizer aligned with the vertical axis:

Mpol =
1

2


η2 + δ2 η2 − δ2 0 0

η2 − δ2 η2 + δ2 0 0

0 0 2ηδ 0

0 0 0 2ηδ

 . ()

Without loss of generality, we can normalize this matrix by its MII element, under
the assumption that co-polar (η) and cross-polar (δ) quantities are constant, and that
the overall gain of the instrument is calibrated by other means. We can now define the
instrument’s polarization efficiency as

γ =
η2 − δ2

η2 + δ2
, ()

so that the matrix of eq. () simplifies to:

Mpol =


1 γ 0 0

γ 1 0 0

0 0
√
1− γ2 0

0 0 0
√
1− γ2

 . ()

The complete Mueller matrix for this system is

M = MpolMψ, ()

which results in the data model

d = I+ γ (Q cos(2ψ) +U sin(2ψ)) . ()

This is the simplest form for the signal observed by a polarization-sensitive absorber. If
we also assume γ → 1 in the ideal polarizer limit, we can now write down the elements
of the ideal Mueller matrix M̂, which depends solely on the instrument orientation ψ:

M̂II = 1 M̂IQ = cos(2ψ) M̂IU = sin(2ψ) M̂IV = 0. ()



 coupling with multiple polarizers 

 coupling with multiple polarizers

We now consider the coupling of multiple channels aligned at different angles ξ through
a single telescope with a common boresight orientation ψ. The Mueller matrix for this
system now includes an additional rotation

M = MpolM−ξMψ. ()

Note that the sign of the channel angle used here differs from the convention in [], based
on empirical checks of TP correlations, assuming the angle sign conventions used by Spi-

der. This Mueller matrix results in the data model

d = I+ γ (Q cos(2ψ− 2ξ) +U sin(2ψ− 2ξ)) . ()

Because the channel angle ξ is typically assumed to be a constant, we can separate the
channel-dependent parts of the Mueller matrices, and write these in terms of the ideal
matrix elements of eq. ():

MII

MIQ

MIU

MIV

 =


1 0 0 0

0 γ cos(2ξ) γ sin(2ξ) 0

0 −γ sin(2ξ) γ cos(2ξ) 0

0 0 0 1



M̂II

M̂IQ

M̂IU

M̂IV

 ()

Note that the matrix eq. () is composed of two unique elements. This means that we can
pre-compute these quantities once per channel, and apply them to the ideal quantities of
eq. () that are typically computed for every sample of data as the instrument scans
across the sky.

 coupling through an ideal half-wave plate

To modulate the polarization angle on the sky, we can add a half-wave plate (HWP) in
front of the detector. The Mueller matrix for an ideal HWP aligned with the polarizer
axis is

MHWP =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 , ()



 coupling through a non-ideal half-wave plate 

and that of an HWP rotated by an arbitrary angle θ is

MHWP(θ) = M−θMHWPMθ =


1 0 0 0

0 cos(4θ) sin(4θ) 0

0 sin(4θ) − cos(4θ) 0

0 0 0 −1

 , ()

which results in the full Mueller matrix

M = MpolM−ξMHWP(θ)Mψ ()

and data model

d = I+ γ (Q cos(2ψ+ 4θ+ 2ξ) +U sin(2ψ+ 4θ+ 2ξ)) . ()

Writing the Mueller matrix elements in terms of eq. () now gives
MII

MIQ

MIU

MIV

 =


1 0 0 0

0 γ cos(4θ+ 2ξ) −γ sin(4θ+ 2ξ) 0

0 γ sin(4θ+ 2ξ) γ cos(4θ+ 2ξ) 0

0 0 0 1



M̂II

M̂IQ

M̂IU

M̂IV

 . ()

For efficient mapmaking, these quantities can be computed and stored once per channel
and per HWP angle.

 coupling through a non-ideal half-wave plate

In full generality, we can also introduce non-idealities in the HWP, in which case the
HWP Mueller matrix becomes

MHWP =


T ρ 0 0

ρ T 0 0

0 0 c −s

0 0 s c

 , ()

which reduces to the ideal case when T = −c = 1 and ρ = s = 0. We can again normalize
by T to fold any DC effects into the overall channel calibration; to do so we define the



 implementation in unimap 

reduced quantities ρ = ρ/T , c = c/T and s = s/T . The data model for this optical system
is

MII = 1+ γρ cos(2θ+ 2ξ), ()

MIQ = ρ cos(2θ+ 2ψ) + 1
2(1+ c)γ cos(2ψ− 2ξ) + 1

2(1− c)γ cos(2ψ+ 4θ+ 2ξ), ()

MIU = ρ sin(2θ+ 2ψ) + 1
2(1+ c)γ sin(2ψ− 2ξ) + 1

2(1− c)γ sin(2ψ+ 4θ+ 2ξ), ()
MIV = sγ sin(2θ+ 2ξ). ()

These equations can again be written in terms of M̂ as
MII

MIQ

MIU

MIV

 =


A 0 0 0

0 B −C 0

0 C B 0

0 0 0 D



M̂II

M̂IQ

M̂IU

M̂IV

 , ()

where the four unique functions are

A = 1+ γρ cos(2θ+ 2ξ), ()

B = ρ cos(2θ) + 1
2(1+ c)γ cos(2ξ) + 1

2(1− c)γ cos(4θ+ 2ξ), ()

C = ρ sin(2θ) − 1
2(1+ c)γ sin(2ξ) + 1

2(1− c)γ sin(4θ+ 2ξ), ()
D = sγ sin(2θ+ 2ξ). ()

With these equations in hand, we can either compute simulation timestreams using
eq. () or construct the vector and matrix quantities eqs. () and () to solve for the under-
lying map.

 implementation in unimap

To implement these equations in unimap, we require some changes to both the C and
python codes.

On the C end, we add an attribute called mueller of type double[4] to the qp_det_t

structure, which will store the values of A/B/C/D for each channel. This attribute is
used in both the qp_tod2map1 and qp_map2tod1 functions as follows:

. For each data sample, compute per-channel pixel number andψ using qp_quat2pix,
from a channel offset quaternion constructed from only the az and el pointing off-
sets. This produces cpp and spp parameters that are exactly the M̂IQ and M̂IU quan-
tities of eq. ().



 implementation in unimap 

. Compute the Mueller matrix elements for the data sample using eq. (), and then
construct the vec and proj arrays using eqs. () and ().

On the python end, we introduce four new bolotable columns for the A/B/C/D pa-
rameters. These columns are updated in memory whenever the HWP angle is updated.
Pre-computing these on disk isn’t necessarily accurate, since there are cases where the ac-
tual HWP angle doesn’t match the commanded value (on which the HWP index is based).
We’d have to store bolotables with over  columns, which seems kind of unwieldy.

Note that this implementation includes the fourth Stokes V dimension for both data
simulation and mapmaking.
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