filesystem backup Documentation
Release 0.1.2

Miguel Garcia

Nov 09, 2017

Overview

1.1 Motivation
1.2 Backup System Overview
1.3 So, how do I start?
1.4 Collaboration

Database Structure

2.1 Filesystem
22 Volumes

Volume Content

Filesystem config files

Detailed command usage
5.1 Database Creation

5.2 Create reports for backup status
5.3 Database £iles update

5.4 Volume update

5.5 Volume clensing
5.6 Volume processing
5.7 Information recovery from volumes

5.8 Recalculation of Volume Information
5.9 Volume Integrity Check

Observations

6.1 Volume identification
6.2 Volume content

Please, be aware!

7.1 Regarding tests
7.2 Information safety
73 License

TODO

Release History

9.1 0.1.2(2017-11-09)
9.2 0.1.1(2017-11-05)

10 Code documentation

CONTENTS

W N — =

W

15

... 15
.. 15

17

.. 17
.. 17
........................... 18

19

21

.. 21
.. 21

23

10.1 Main Commands Module e e 23
10.2 Auxiliary Modules L e e e e e e 24
10.3 Class HashVOLUME v v v v i e e e e e e e e e e e e e e e e e e e s e e 25
10.4 ClasSFL1eDB . . . v v v o o e e e e e e e e e 27
10.5 Class MountPathInDrive v v v vt e e e e e e e e e e e s e e 28
11 Indices and tables 29
Python Module Index 31

CHAPTER
ONE

OVERVIEW

A command-line script in Python is provided, to manage backups for large filesystems in multiple external disks.

It is intended as a minimalist system, to get the job done but with no GUI or other niceties. At least not yet! I just
wanted to sleep well at night.

1.1 Motivation

1.1.1 The Problem

For more than a decade I had being gathering content and storing it in external drives. For backup purposes I used to
buy them in pairs, so that one would work as the other’s mirror. Of course the solution was far from ideal, there were
tv-series, movies, and documentaries in most disks, sparsed pretty much randomly, and when the number of disks
reached 15 (plus backups) even finding content was a pain. I had simple text files with the file contents of each disk,
which needed to be updated, etc.

1.1.2 An Improvement

A friend talked to me about a NAS he had recently acquired. After little consideration I realized I had been needing
one myself for a long time, just did not know such a thing existed. Taking into account the size of the files I already
had, plus reasonable mid-term foreseable needs, I bought a 6-slots NAS and put 8GB disks in it (5 of them currently).

Now the content was neatly organised, easy to find and maintain.

I was using RAIDS, which is nice, but in several forums I found the clear warning that RAID does not work as backup,
so I started worring. I had the need of a real backup, and a bunch of external drives which content was already in the
NAS. Obviously they might be used to backup content, but I could not bring myself to even try to micro-manage it. It
would be particularly hard because some folders are way bigger that the external drives, so they would have to be split
manually.

1.2 Backup System Overview

The idea behind the implementation of fsbackup is pretty simple, and everything gets done by the fsbck command.
Given a list of one or more paths that we want backed-up, the backup system works in three stages.

https://serverfault.com/questions/2888/why-is-raid-not-a-backup

filesystem backup Documentation, Release 0.1.2

1.2.1 Stage 1

A command (intended to be scheduled nightly) keeps a collection in a mongoDB database updated with the absolute
path, size, last modification timestamp and a hash function (currently SHA-256) of each file in that list of paths. They
are interpreted as file-trees, so all the content buried in those paths is included. It can be done with something like:

fsbck.py refreshHashes —-db=conn_multimedia. json

Only new files, or files with a more recent modification timestamp than the one in the database have their hash function
recalculated (since it is really time-consuming). As you might have guessed, the db argument refers to a json file with
information regarding the location of the filesystem, as well as mongoDB collections where the information is stored.

1.2.2 Stage 2

External hard disks work as backup volumes, containing files renamed with their hash function. The folder structure
in the original filesystem is not replicated, all files are at root level. Except that, using git-style, they are divided in
folders according to the first letters in the hash, to avoid having thousands of files in the same directory.

In order to update the backup, we can mount a disk that works as backup volume (say, it is in G:), and run:

fsbck.py processDrive —db=conn_multimedia. json --drive=G

This action:
* Removes from the volume files that are not necessary anymore.
 Copies new files that were not backed-up yet.
* Provides a backup status report, with:
— the number of files/size pending backup (if there was not enough room in that volume).
— a summary of the number of files/size in each volume.
— afile per volume is created with the detailed absolute paths of each file backed-up in it.

For this to work properly, another collection in the database stores the hashes backed in each volume.

1.2.3 Stage 3

If/when the time comes information needs to be retrieved from the volumes, the script handles that as well. For
instance, the command:

fsbck.py checkout -db=conn_multimedia.json —--drive=G —--sourcepath=//Zeycus/multimedia/
—movies --destpath=F:\chekouts\movies

recovers the relevant information in the actual (G:) volume for a particular folder. In a worst-case scenario, to recover
all the files you’d have to do this for every volume.

1.3 So, how do | start?

In a nutshell:

1. Get a mongoDB server connection and create a database there. It could be local, mongoDB hosting (like mlab ,
just to name one), etc.

2 Chapter 1. Overview

https://www.mongodb.com/
https://en.wikipedia.org/wiki/JSON
https://mlab.com/

filesystem backup Documentation, Release 0.1.2

2. Build a JSON config_file for the filesystem you want backed-up. For instance:

"connstr": "mongodb://myuser:mypwd@ds21135.mlab.com:34562/fsbackup_tvs761_main",
"paths": [

"\\\\ZEYCUS-TVS671\\Multimedia",

"\\\\ZEYCUS-TVS671\\Resources"

1,
"reportpref": "F:\\Dropbox\\fsbackup\\reports\\main_"

where connstr is the conection string to your mongoDB database (in this case, fsbackup_tvs761_main).
More details in the documentation. Make sure the path in reportpref actually exists, reporting files are created
there. In this case, F: \\Dropbox\\ fsbackup\\reports.

3. Create the actual collections in the database with:

’fsbck.py createDatabase —-db=<config_file> ——force

4. Gather the current filesystem information with:

’fsbck.py refreshHashes —-db=<config_file>

The first time hashes are calculated for all files, so this may take long.

5. Connect a formated external drive. Assuming it gets mounted in driveLetter, execute:

’fsbck.py processDrive —db=<config_ file> --drive=<drivelLetter>

This fills the volume with backup data. When finished, a message will clarify whether more volumes are needed to go
on with the backup.

1.4 Collaboration

You may wish to improve or add features, in that case you are more than welcome, feel free to contact me at zey-
cus @gmail.com.

1.4. Collaboration 3

mailto:zeycus@gmail.com
mailto:zeycus@gmail.com

filesystem backup Documentation, Release 0.1.2

4 Chapter 1. Overview

CHAPTER
TWO

DATABASE STRUCTURE

Information regarding the filesystem to be backed-up, and the current content of volumes, is stored in a mongoDB
database.

2.1 Filesystem

The collection that stores the information about the files currently in the filesystem is (uninspiredly!) named files.
The entries/documents in it have the form:

{

'_id': ObjectId("59%9e0a7lc2afc32cfcde7fadg"),

'filename': r"\\ZEYCUS-TVS671\Multimedia\video\animePlex\Shin Chan\Season 01\Shin_
—Chan - SO01E613.mp4",

'hash': "4a7facfed2e8f£f8812f9cab058bf79981974d9e2e300d56217d675ec5987¢cf05",
'timestamp': 1197773340,

'size': 68097104

}

where:
e The filename field is the absolute path of the file.
* The hash field is the SHA-256 hash of the file.
* timestamp is the file’s last-modified timestamp.
* size is the size of the file in bytes, obtained with os.stat (fn) . st_mtime.

The fields used for look-up are £ilename and hash, so the collection should have an index on each of them. The
one on filename should have unique=True, to ensure no filename is added twice” .

The class that manages this collection is i 1eDB.

2.2 Volumes

On the other hand, the present state of backup volumes is stored in the collection volumes, with entries like

{
'_id': ObjectId("59e484603e12972bd4209fbe"),
'volume': "3ECOBECC",

2 This is not true for hash, because we need to be able to backup systems that contain the same file in different locations. I was surprised to
find that I had about a 5% of file redundancy in number of files, it turned out that some tiny files were necessary in many locations.

https://www.mongodb.com/

filesystem backup Documentation, Release 0.1.2

'hash': "0017eef276f4247807fa3f4e565b8c925a2db0f8bfbb020248ad6c3dfeabea777",
'size': 97092
}

where:

* The volume is the volume SerialNumber.

* The hash field is the SHA-256 hash of the file.

* size is the size of the file in bytes.
This entry is saying that volume 3ECOBECC contains a file with the given hash, and filesize 97,092 bytes.
There should be a a unique index on field hash' .

The methods that add/remove files from a volume (see class HashVolume) also update this collection, so that it
remains up-to-date.

! In fact, this enforces that only one volume may contain a file with a specific hash. If the backup methods are working correctly this should be
the case. If the same file is found in different folders in the filesystem, or with different names, no space is wasted and just one copy will be present
in backup volumes.

6 Chapter 2. Database Structure

CHAPTER
THREE

VOLUME CONTENT

Volumes contain backups of the files in the filesystem: files with the same content. However, they are renamed with
the hash of the content. This means that no information regarding the filename in the real filesystem, or the path where
it is located, can be found in the volumes (that information is stored in the £iles collection in the database). All the
files in the volume are placed in the root of the filesystem, but classified with their first 3 letters to avoid the problems
associated with having too many files in the same folder. An actual volume looks like this:

= M » LocalDisk(G) » 4 » 2 » 2

~' o Local Disk (G3) A # Name »~ Ext Size Type
* $RECYCLEBIN 1|1 4221fb877c966034d985eaala7 f85a80ca26c157098c13d9412af09fe30082 772,842 KB File
+ 0 2 [] 422297eb04e94a780a61ced2096d0b696121ccfh5642ee42ad5cf86ddfccd522 548,727 KB File
+ 1 3 [] 4224120fe18c480eafd59b02f413262383820a8ceb83bd4002069cae0c163e7¢ 4 KB File
+ 2
+ 3
- 4
+ 0
+ 1
- 2
2
5
e
+ 3
+ 4

Fig. 3.1: Content of a backup volume.

filesystem backup Documentation, Release 0.1.2

8 Chapter 3. Volume Content

CHAPTER
FOUR

FILESYSTEM CONFIG FILES

The information about filesystems that we want backed-up is gathered in JSON files, one per filesystem. For instance:

{
"connstr": "mongodb://myuser:mypwd@ds21135.mlab.com:34562/fsbackup_tvs761_main",
"paths": [
"\\\\ZEYCUS-TVS671\\Multimedia",
"\\\\ZEYCUS-TVS671\\Resources"
]I
"reportpref": "F:\\Dropbox\\fsbackup\\reports\\main_"

The information is as follows:
connstr The connection string to the mongoDB database.

paths The list of paths in the filesystem that we want backed-up. So far I've been using absolute paths myself, but I
think that paths relative to the location of the config file work as well. But I have not tested it that heavily.

reportpref Prefix for reports. All files created by the backupStatus command are created with that prefix.

filesystem backup Documentation, Release 0.1.2

10 Chapter 4. Filesystem config files

CHAPTER
FIVE

DETAILED COMMAND USAGE

Everything works via the fsbck command. If the installation is correct, it should be available no matter what the
active directory is. In this section, the basic usage is shown, but the full detail and optional parameters can be found in
commands module documentation.

5.1 Database Creation

It is achieved with:

’fsbck.py createDatabase -db=<config_file>

If the database containing the two necessary collections £iles and volumes do not exist, they are created. Other-
wise the execution fails. If you want it rebuild, add the ——force flag.

5.2 Create reports for backup status

With:

’fsbck.py backupStatus —-db=<config_file>

several text files are created (with different level of detail) regarding the status of the backup:
* size and number of files in each backup volume
* size and number of files not yet backed-up
* size and number of files in the volumes than are no longer necessary
« explicit list of files in each volume
An example of the files created:

Contrary to what it might seem, this operation is fairly quick.

5.3 Database files update

This command updates the database information to match the current state of the filesystem. If files are modified their
hash is recalculated, if files were removed their entries are eliminated from the database, and new files require new
entries.

This is achieved with:

11

filesystem backup Documentation, Release 0.1.2

= M » Datos (F) » Dropbox » fsbackup » reports

Name ~ Ext Size Type

D main_content 3E129063.txt txt 104 KB Text Document
2 D main_content 3ECOBECC.txt txt 3,456 KB Text Document
3 D main_content 4CA4EDO4.txt txt 2,546 KB Text Document
4 D main_content SEAF0685.txt txt 3,133 KB Text Document
5 D main_content 9CO5C5EB.txt ot 4,181 KB Text Document
6 D main_content FC5A663E.txt it 3,322 KB Text Document
7 D main_missing.txt ot 0 KB Text Document
8 D main_summary.txt ot 1 KB Text Document

Fig. 5.1: Files created by backupStatus.

Modified

05/11/2017 8:00....
05/11/2017 8:00....
05/11/2017 8:00....
05/11/2017 8:00....
05/11/2017 8:00....
05/11/2017 8:00....
05/11/2017 8:00....
05/11/2017 8:00....

Created

04/11/2017 11:4
04/11/2017 11:4
04/11/2017 11:4
04/11/2017 11:4
04/11/2017 11:4
04/11/2017 11:4
04/11/2017 11:4
04/11/2017 11:4

fsbck.py refreshHashes —db=<config file>

For large filesystems the calculation of hashes is time-consuming. The first calculation for my NAS took nearly a
whole week, so I prefer to perform this process dayly, in scheduled task at night, and a backupStatus immediatly

after it.

5.4 Volume update

This is the way content gets actually backed-up. Suppose you have a volume with available space on it, or if you are
going to create a new volume, just a formated external drive. When connected, it is assigned a drive letter, say J:* .

Then to perform the update use:

fsbck.py updateVolume -db=<config_file> —--drive=J

New files are added to the volume, until it is full or all of them are processed, a text message tells which of the two.

that new files were created.

Warning: Be sure that the £iles information is updated (via command refreshHashes) before invoking
a volume update. Otherwise, when the script tries to copy a file that the database is mentioning, it might not be
physically there anymore, and thus exceptions would arise. There is no problem, however, if the only difference is

5.5 Volume clensing

When you remove files from your backed-up filesystem, copies of them remain in backup volumes. There is no harm
in it, just the waste of space. As time passes, the wasted space in volumes could amount to something. With:

fsbck.py cleanVolume -db=<config_file> --drive=<driveletter>

the files in the volume than are not shown as necessary by the database are removed.

3 I realize this is terribly Windows-oriented. For linux systems it would be rather similar, if/when Linux support is provided this documentation

should be improved.

12 Chapter 5. Detailed command usage

filesystem backup Documentation, Release 0.1.2

5.6 Volume processing

In the first days, when I wanted to update a volume I found myself always performing:
1. volume clensing
2. volume update
3. backuptatus reports regeneration

I created a batch, but after a while I decided an additional command was in order to do it all: processDrive. With:

fsbck.py processDrive —-db=<config_ file> —--drive=<driveletter>

those three tasks are performed. This keeps the volumes clean of old files, the system fully updated and the status
reports reflecting the current backup status.

In a day-to-day basis this is almost the only command you need (if the refreshHashes is taken care of by an
scheduled task). Of course, you could manually run refreshHashes before processing a drive, just to make sure
the database is up-to-date.

5.7 Information recovery from volumes

All the burden of keeping the filesystem updated has a single purpose: to be able to recover content from the backup
volumes when necessary. This operation may be infrequent, but it is arguably the most important. It is currently
performed with the checkout command:

fsbck.py updateVolume -db=<config_file> --drive=<drivelLetter> --sourcepath=\\ZEYCUS-
—TVS671\Multimedial\video\seriesPlex\Monk --destpath=F:\temp\Monk

This process finds all the files in the volume that are a backup of a file in the given sourcepath (or in a subfolder),
and copies them recreating the folder structure within the path destpath.

Needless to say, to recover the whole folder content you need to process all the volumes containing at least one relevant
file. It is possible to see which volumes are involved by searching the backup-status report files. Or just process them
all, it takes very little time if no content is necessary.

5.8 Recalculation of Volume Information

The operations that add and remove files from the volume in same time update the database. So, theoretically, the
database is always up-to-date. I have not found a single case in which this was not the case, but nevertheless imple-
mented:

fsbck.py extractVolumeInfo -db=<config_file> —--drive=<driveletter>

What this does is to remove from the volumes collection all the entries associated to the present volume, then it is
traversed and an entry is created for each actual file found.

5.9 Volume Integrity Check

In case we want to make sure that a backup volume is OK, we can perform an integrity check with:

5.6. Volume processing 13

filesystem backup Documentation, Release 0.1.2

fsbck.py integrityCheck —-db=<config_file> —--drive=<driveletter>

This is a time consuming operation that actually compares each file of the volume with its counterpart in the actual
filesystem (if it was not deleted). For 3TB disks it is taking me over a day.

Warning: This is supposed to be done after a refreshHashes. Otherwise the information in the DDBB might
not reflect the actual state of the filesystem.

14 Chapter 5. Detailed command usage

CHAPTER
SIX

OBSERVATIONS

6.1 Volume identification

Volumes are not numbered, instead they are identified by a unique identifier. For now it is their filesystem volume
serial number. This means you never need to process the volumes in any order, nor when you update them.

For instance, suppose you remove some huge files from your filesystem (who would want to see THAT tv-show
again!?). As a consequence the backupstatus report shows that a volume contains now 300GB of removable files. You
could choose this volume for your next processDrive: useless content will be dropped, making room and using it
for fresh file backups.

6.2 Volume content

Files are not backed-up in any order. The system just aims to have each file backed-up in a (single) volume. This
means content is more or less randomly divided among volumes.

15

https://en.wikipedia.org/wiki/Volume_serial_number
https://en.wikipedia.org/wiki/Volume_serial_number

filesystem backup Documentation, Release 0.1.2

16 Chapter 6. Observations

CHAPTER
SEVEN

PLEASE, BE AWARE!

Warning: To be able to use mongoDB, we must have a connection to a mongoDB server. It could be our own
machine, a hosting service, etc.

If you are new to mongoDB, several tutorials are available, this is one of them. There are also many mongoDB-hosting
services that provide free sandboxes with a decent size, no need to spend a dime just to experiment.

If you have mongoDB installed, to serve it locally (in Windows) just run:

’ mongod.exe —-dbpath=<database_path>

7.1 Regarding tests

Warning: To be able to run tests, we need a mongoDB server to connect to (I know of no better way. If there is,
please let me know). The tests are written assuming that a local server is running.

Then, a client is created that connects to it, creates testing databases/collections, fills them, accesses information
stored, and wipes them all in the end.

7.2 Information safety

The mongoDBs created are essential to be able to recover contents from the backup.

Warning: If they were lost, in the volumes you won’t see proper filenames or extensions. Therefore although the
content is indeed there, finding what you need would be, at the very least, awefully painful, if not utterly infeasable.

For that reason it is reasonable to make sure the mongoDB databases are safe, and backed-up as frequently and
redundantly as possible. I am using mongoDB hosting, and keep a local copy as well. Even periodically storing a
copy with its timestamp might be interesting, if you want to play it safe.

17

https://www.hongkiat.com/blog/webdev-with-mongodb-part1/

filesystem backup Documentation, Release 0.1.2

7.3 License

This software is released under MIT license, with no warranty implied or otherwise. That said, on the sunny side
a unittest is included that performs the complete backup cycle and makes sure that the checkout is identical to the
original filesystem. And integrityCheck command is available, which actually compares each backed-up file
with its counterpart in the filesystem.

18 Chapter 7. Please, be aware!

CHAPTER
EIGHT

TODO

1. Currently only Windows is supported.
There are several aspects in this process than are very OS-dependent. For instance:
* Copying files
» The systax for absolute paths
» Extraction of volume id

So far I had only Windows in mind, and even had to implement at least an ugly hack (to handle +260 chars
absolute paths, which surprisingly causes problems in Windows). I wish fsbackup worked for Linux as well,
at least, that is the very first thing I’d like to do.

2. It seems not all filesystems have volume serialNumber. For that reason it seems that using disk serial numbers
instead might be an improvement. I chose volume serialnumbers because it was easy to extract, while the drive
serial number containing a volume seemed hard to get (Googled for a while, found no easy path).

3. For now, the only way to retrieve information from the volumes is the checkout command, which rebuilds
a folder/subfolder recursively. However, it would be easy to add filters to recover only files that match a given
regular expression, or filter them for timestamp or other features, etc.

Truth be told, this kind of operation is what I implemented for the case in which something goes wrong: content
was deleted unwantingly, or the disk just crashed. Fortunately those events happen pretty rarely, so little effort
was dedicated to the recovery of information.

19

filesystem backup Documentation, Release 0.1.2

20 Chapter 8. TODO

CHAPTER
NINE

RELEASE HISTORY

9.1 0.1.2 (2017-11-09)

Improvements

* New safe file copy: deletes target file if the writting process failed.

* New “How do I start?” section in README.

* New “Release History”.

* Replace deprecated pymongo collections remove with delete_many.
Bugfixes

* Fixed typo in setup tests_require argument.

9.2 0.1.1 (2017-11-05)

¢ First version made available

21

filesystem backup Documentation, Release 0.1.2

22 Chapter 9. Release History

CHAPTER
TEN

CODE DOCUMENTATION

10.1 Main Commands Module

fsbackup.commands .backupStatus (fDB, volDB, reportPref)
Generates the status report.

Several files are created:
e summary.txt: global summary.
* missing.txt: list of files not yet backed-up.

* content_<vol>.txt: the list of files backed-up in each volume.

Parameters
» fDB (Fi1eDB) — the information regarding files
* volDB (permanent—-dict class) - the informating regarading volumes
* reportPref (str) - prefix that tells where to create reporting
fsbackup.commands .extractVolumeInfo (hashVol)
Regenerates the DDBB information regarding the files contained in the present volume.
Parameters hashVol (HashVolume) — the information regarding volumes

fsbackup.commands.cleanVolume (fDB, hashVol)
Removes files from the volume that are not necessary anymore.

Returns the number of deleted files.
Parameters
* fDB (Fi1eDB) — the information regarding files
* hashVol (HashVolume) — the information regarding volumes
Return type int

fsbackup.commands.updateVolume (fDB, hashVol)
Deletes useless files in the volume, and copies new files that need to be backed-up.

Parameters
* £DB (FileDB) — the information regarding files
* hashVol (HashVolume) — the information regarding volumes

fsbackup.commands.refreshFileInfo (fDB, forceRecalc)
Updates the filename collection in the database, reflecting changes in the filesystem.

23

filesystem backup Documentation, Release 0.1.2

Parameters
* fDB (FileDB) — the information regarding files

* forceRecalc (bool)—1flagthat tells if hashes & timestamps should be recalculated from
the file always. If False (the default), recalculation happens always when the timestamp of
the file is more recent than that in the database, or for new files. If True, we recalculate for
every file.

fsbackup.commands.createDatabase (database, forceFlag, logger)
Creates database collections from scratch.

Parameters
* fDB (FileDB) — the information regarding files
* forceFlag (bool) - tells whether to remove info, if collections already exist

fsbackup.commands.integrityCheck (fDB, hashVol)
Performs an integrity check for the volume.

Parameters
* fDB (FileDB) — the information regarding files

* hashVol (HashVolume) — the information regarding volumes

10.2 Auxiliary Modules

10.2.1 Module miscTools
fsbackup.miscTools.buildVolumeInfolist (container)
Returns, for each volume, the association {file-hash: file-size}.
Parameters container (MongoAsDict)—a MongoAsDict with the volume information

Return type list of pairs (volld, {sha:size})

10.2.2 Module fileTools
fsbackup.fileTools.sizeof_fmt (num, suffix="B’)
Returns a human-readable string for a file size.
Parameters
e num (int) - size of the file, in units
* suffix (str)—the unit. Use ‘B’ for bytes, the default.
Return type str
Stolen from:
http://stackoverflow.com/questions/109484 1/reusable-library-to-get-human-readable- version-of-file-size

fsbackup.fileTools.abspath2longabspath (abspath)
Returns an absolute filepath than works for longer than 260 chars in Windows.

In Windows there is seems to be no support for paths longer than 260 chrs. Files that exist are not found, cannot
be open, etc. However, using this trick I seem to be able to access them.

Post with the trick description:

24 Chapter 10. Code documentation

http://stackoverflow.com/questions/1094841/reusable-library-to-get-human-readable-version-of-file-size

filesystem backup Documentation, Release 0.1.2

https://msdn.microsoft.com/en-us/library/aa365247.aspx#maxpath

10.2.3 Module diskTools
fsbackup.diskTools.genDrivesInfo ()
Generator for drives information.

fsbackup.diskTools.genVolumesInfo ()
Generator for volumes information.

fsbackup.diskTools.getVolumeInfo (driveLetter)
Returns volume info for the given driveLetter.

Parameters driveLetter (str) - the drive letter, for instance ‘C’
Return type dict

fsbackup.diskTools.getAvailableLetter ()
Returns the first drive letter available.

10.3 Class HashVolume

class fsbackup.hashVolume.HashVolume (logger, locationPath, container, volld=None)
Class that handles a backup volume.

allVolumesHashes ()
Returns the set of all hashes in any volume, according to the DDBB.

Return type set

augmentWithFiles (fDB)
Include in the volume backup for the files that need it.

It is done until all files are backed-up, on until the volume is full.
Parameters £DB (FileDB) — filesystem information in DDBB.
Return type

a pair (isFinished, hashList)

« isFinished tells whether the backup is complete. It is False if there are still files that are
not backed-up in any volume.

¢ hashList is the list of hashes of the created files.

Note: The strategy to choose which file to backup next is the following, but there are no strong reasons
for this, it should be changed if another is found better.

* While there is plenty of room in the volume (threshold currently set to 20GB) and there is room for
the biggest file that requires backup, files are chosen randomly. The reason is that usually there are
folders with huge files, others with only tiny files. If files were processed by their folder order, a
volume could end up with millions of small files, while another could contain just hundreds of heavy
files. Not that it would be a problem in principle, but I thought it might be better to balance volumes,
and a simple strategy is the random choice.

* When the previous condition fails, choose the biggest file that fits, until none does.

10.3. Class HashVolume 25

https://msdn.microsoft.com/en-us/library/aa365247.aspx#maxpath

filesystem backup Documentation, Release 0.1.2

checkout (fDB, sourcePath, destPath)
Rebuilds the filesystem, or a subfolder, from the backup content.

Returns a list of the filenames (in the original filesystem) that were restored.
Parameters
* fDB (FileDB) — filesystem information in DDBB.
* sourcePath (str)— path in the filesystem that you want restored
* destPath (str) — location where you want the files created
Return type list of str

cleanOldHashes (totalHashesNeeded)
Removes files that are no longer necessary.

Returns the number of files removed.
Parameters totalHashesNeeded (set) — hashes of files that need to be backed-up.
Return type int

fnForHash (sha)
Returns the absolute path of the file for a given hash.

The first three letters in the hash are used to create a 3-levels folder system, for instance
hash 4c07766937a4d241£fafd3104426766f07c3ce9de7e577a76ad6leba512433cea cor-
responds to file

self.locationPath/4/c/0/4c07766937a4d241fafd3104426766£07c3ce9de7e577a76ad6leba!

Parameters sha (str)— any valid SHA
Return type str
getAvailableSpace ()
Returns the available free space in the volume drive, in bytes.
Return type int

recalculateContainer ()
Rebuilds the DDBB volume information, traversing the files in the volume.

Note: This is something ordinarily you don’t need to do, because the DDBB is kept synchronized with
the files in the volume. This method is to be used in case for some reason the synchronization was broken.

remove (sha)
Deletes the file with a given hash.

Parameters sha (str) — the given hash

retrieveFilename (sha, filename)
Extracts a file from the volume, given its hash.

Parameters
* sha (str) - the given hash

e filename (str) — the filename of the file to be created

26 Chapter 10. Code documentation

filesystem backup Documentation, Release 0.1.2

storeFilename (filename, size, sha=None)
Creates a file in the volume.

The filename in the volume is the sha, not the original filename.
Parameters
* filename (str) - location of the original file
* size (int)—size in bytes of the original file
* sha — the hash for the file. If not provided, it is calculated now

traverseFiles ()
Iterator over pairs (hash, size) for the present volume, checking which actual files are stored in it.

10.4 Class FileDB

class fsbackup.fileDB.FileDB (logger, fsPaths, container)
Class that handles the DDBB filesystem information.

Specifically, which files need to be backed-up, their location, size and hash.

checkout (vol, sourcePath, destPath)
Rebuilds the filesystem, or a subfolder, from the backup content.

We just invoke the chekout method of the volume.
Parameters
¢ vol (HashVolume) — the volume from which information is to be restored.
* sourcePath (str) - path in the filesystem that you want restored
* destPath (str) — location where you want the files created
Return type list of str

hashesSet ()
Returns the set of hashes in the DDBB.

Return type set

reportStatusToFile (volHashesInfo, fnBase)
Creates backup-status report files.

Parameters

e volHashesInfo (dict {vol: {hash: size}}) — for each volume, asso-
ciates the hash of each file with its size.

* fnBase (str) — prefix of the report files to be created

update (forceRecalc=False)
Updates the DDBB info traversing the actual filesystem.

After execution, the DDBB reflects exactly the files currently in the filesystem, with their correct hash and
size.

Parameters forceRecalc (bool) — flag that tells if hashes & timestamps should be recal-
culated from the file always. If False (the default), recalculation happens only when the
timestamp of the file is more recent than that in the database, or for new files. If True,
recalculation takes place for every file.

10.4. Class FileDB 27

filesystem backup Documentation, Release 0.1.2

volumeIntegrityCheck (vol)
Performs a volume integrity check.

For each file that according to the DDBB is in this volume, a full comparison is performed between the
file in the filesystem and the file in the backup volume. Of course, only when the file exists yet in the
filesystem.

A final report with errors is generated, a list of errors returned.
Parameters vol (HashVolume) — the volume from which information is to be restored.

Return type list of str

10.5 Class MountPathInDrive

class fsbackup.mountPathInDrive.MountPathInDrive (path, driveLetter)
Simple context manager for temporaly mounting a path in a Windows drive.

Usage example:

with MountPathInDrive (path=r"F:\sources", driveletter='J"):
print (os.listdir("J:"))

28 Chapter 10. Code documentation

CHAPTER
ELEVEN

INDICES AND TABLES

* genindex
¢ modindex

¢ search

29

filesystem backup Documentation, Release 0.1.2

30 Chapter 11. Indices and tables

C

commands (Windows), 23
d

diskTools (Windows), 25
f

fi1eDB (Windows), 27

fileTools (Windows), 24
fsbackup.commands, 23
fsbackup.diskTools, 25
fsbackup.fileDB, 27
fsbackup.fileTools, 24
fsbackup.hashVolume, 25
fsbackup.miscTools, 24
fsbackup.mountPathInDrive, 28

h

hashVolume (Windows), 25

m

miscTools (Windows), 24
mountPathInDrive (Windows), 28

PYTHON MODULE INDEX

31

	Overview
	Motivation
	Backup System Overview
	So, how do I start?
	Collaboration

	Database Structure
	Filesystem
	Volumes

	Volume Content
	Filesystem config files
	Detailed command usage
	Database Creation
	Create reports for backup status
	Database files update
	Volume update
	Volume clensing
	Volume processing
	Information recovery from volumes
	Recalculation of Volume Information
	Volume Integrity Check

	Observations
	Volume identification
	Volume content

	Please, be aware!
	Regarding tests
	Information safety
	License

	TODO
	Release History
	0.1.2 (2017-11-09)
	0.1.1 (2017-11-05)

	Code documentation
	Main Commands Module
	Auxiliary Modules
	Class HashVolume
	Class FileDB
	Class MountPathInDrive

	Indices and tables
	Python Module Index

