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Abstract

This document serves as a technical reference for PAWpySeed. The main novel
development of PAWpySeed, covered in Section 1, is the ability to evaluate the over-
lap operators of Kohn-Sham states in the PAW formulism which belong to different
structures. For examples, one might want to project a defect level in a point defect
structure onto the bands of the bulk structure. Additional sections will cover other
developments as they are made.

1 Overlap Operators in PAW for Different Struc-
tures

The equation of a PAW wavefunction is|1]
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where the sum is over the sites a in the structure and a set of angular and radial
quantum nubers [, m, and € at each site. The conventional overlap operator used for
these wavefunctions is
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where i and j are abbreviations for a particular index set a,l,m,e. This overlap
operator requires that the augmentation regions of the two wavefunctions are same.
Since these augmentation regions are defined by the sites in the structure, the structures
must be the same, so a new formalism is necessary to calculate overlap operators for
wavefunctions in different structures.

This section procedes first by deriving the main formula for calculating the overlap
operator for KS states in different structures, and then presents a runtime scaling table
for each operation involved in evaluating the formula. The algorithm for each operation
is then discussed



1.1 Derivation of Formula

The following section derives an equation for the overlap operator between one Kohn-
Sham single particle state of one structure R and one Kohn-Sham single particle state of
another structure S, where R and S share a common lattice and the DFT wavefunctions
are constructed with the same plane-wave PAW basis set. It should be noted this
derivation might better be described as a manipulation of terms of the PAW pseudo-
operator, because its main purpose is to present the overlap operator in a method
convenient for computation rather than to derive an entirely new expression. The
derivation also makes particular note of how the expression of the overlap operator
relates to interfacing with the VASP code, though the expressions are applicable to
any PAW code.

The starting point for this derivation is the transformation operator that is per-
formed on the pseudowavefunction to obtain the all electron wavefunction
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where ¢qme are all electron (AE) partial waves, %a,mg are pseudo (PS) partial waves,
Dalme are projector functions, a are the site indices of each atom in the structure,
and [, m, and € specify a spherical harmonic and index which uniquely specify partial
wave at a given index. A summation over i (or j, as below) represents a summation
over a, I, m, and e. For further details on the PAW method, including the physical
significance and construction of the partial waves and projector functions, see Blochl’s
original paper and Kresse and Joubert’s paper relating ultrasoft pseudopotentials and
PAW.[1} [2] The next step is to define a pseudo operator A for each operator A such
that (] A ) = (Y| A |¢). Because |¢) = T'|1)), one can write

A=TtAT (4)
One can then plug Equation [3] into Equation |§| to find
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Using the following relatlon,
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one can rearrange Equation [5in the manner of Blochl[1]:
A=A+ 3 215 (ol Alos) - (@il 4167)) (B3]
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When the operator A is local, then }_, |$J> (pj| = 1, so the entire second line of
Equation [7| vanishes, giving Blochl’s formulation:|1]
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However, while the overlap operator is local, the simplification in Equation [§| as-
sumes that the summations over ¢ and j go over the same species at the same locations
in the same lattice; only the third condition is always satisfied for systems of interest
for projections between different bases. Equation [5|is a more convenient representation
than Equation [7]for this purpose because it is easily seen that all terms between projec-
tors whose augmentation regions do not overlap vanish. In addition, the POTCAR file
in VASP only stores the PS and AE partial waves out to the edge of the augmentation
region, where they are equal but not nonzero, so it is useful to organize the terms so
that they are guaranteed to vanish outside the augmentation regions. Replacing A
with unity allows the overlap between two bands in different structures R and S with
the same lattice to be specified (note that the summation over ¢ is for structure R and
the summation over j is for structure S):
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The pseudowavefunctions can be expanded as a summation of plane waves,
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so the overlap between two pseudowavefunctions per unit cell can be written as
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In VASP, structures with the same energy, k-points, and lattice will have the same
basis set, so this projection is performed simply by reading plane wave coefficients from
the VASP WAVECAR file.

It is important to simplify the calculation of the other terms in equation [9] as much
as possible because their calculation can be quite computationally intensive, and the
number of necessary calculations for projecting onto an entire basis set can scale with
the number of sites times the size of the basis set. One major simplification is that if
a site a in structure R and site b in structure S have the same species and position, a
and b will only have overlapping augmentation regions with each other and no other



sites. Then, defining O, as the summation over on-site terms for the identical sites a
and b in Oq:
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which is the local operator solution derived by Blochl. All three terms must be evalu-
ated in full for the other sites, but terms in O3 where ¢ and j correspond to sites with
nonoverlapping augmentation spheres vanish. Therefore, if Mgg is the set of identical
sites in the structures R and S, Nr and Ng are the sets of sites in R and S not in Mgg,
and Npgg is the set of pairs of sites not in M with overlapping augmentation regions,
then
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1.2 Overlap of Pseudowavefunction (O)

The pseudowavefunction is expanded as a sum of plane waves:
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where V is the volume of the unit cell, k is the k-point, n is the band index, r is
the position, and C,xq are the plane-wave coeflicients for the plane-waves with vector
k+G.

Since plane waves are orthogonal and normalized to V when integrated over the
unit cell, the overlap of two pseudowavefunctions is evaluated easily by summing over
plane-wave coefficients as described in the derivation section above.

1.3 Concentric Augmentation Spheres (O,

Integrals of the type <7Z Rnik|Paime, ) between a pseudowavefunction and projector func-
tion are evaluated using a real-space FFT grid, as with VASP with LREAL=TRUE.|3]
Integrals of the type (@aime, |Paime,) between partial waves are evaluated by simple
radial integration. This is possible because the augmentation spheres are concentric,
so the spherical harmonics for the partial waves are orthonormal.



Table 1: Runtime scaling functions for each component of the code and definitions for
shorthand symbols to express runtime. Approximate scales with the number of electrons are
also shown. *The frequency refers to how often the routine is called. ”Per band” indicates
that the routine runs once every time a band from one structure is projected onto all the
bands of a basis structure. ”Per structure” indicates that the routine is a "setup” routine
that must be called once for each structure and corresponding band structure to do perform
projections. " Per lattice” operations are required once per unique lattice used. ” Per structure
pair” is the same as "per structure” except that the routine is only run once for a pair of
structures with the same lattice and plane-wave basis set, the bands of one such structure
to be used as a basis set for the other. **Number of sites flexibly refers to the number of
sites relevant to the calculation, which worst-case scales with the total number of sites in the
structure. For example, calculating Oy, and Oy only require the sites in sets M and NgS,
respectively.

Computational Task S} Frequency™
O BKSW ~ n? per band
Onm BKSNP ~ n? per band
Opg and Og BKSNP ~ n? per band
On BKSNP ~ n? per band
(@]&nk) BKSFlog(F) ~ n*log(n) per structure
((i] = (&3]) [nic) BKSNPW ~ n? per structure
spherical Bessel transform partial waves NPGlog(G) ~n per structure pair
project plane waves onto partial waves EPKW ~n per lattice
projections for overlapping aug spheres NPL ~n per structure pair
Symbol Definition
B number of bands
E number of elements
F size of FFT grid
G size of partial wave radial grid
K number of k-points
L size of Legendre-Gauss grid around ions
N number of sites**
P number of projector functions
S number of spin states
W number of plane waves
n number of electrons (approximate scaling)




1.4 Partial Waves Overlapping with Pseudowavefunction
(Og, Os)

These integrals are a little bit trickier because it is necessary to project a smoothly
varying pseudowavefunction onto a rapidly varying AE partial wave. Performing such
projections can become prohibitively computationally expensive for large cells. Taking
advantage of the orthogonality of plane waves, this projection can be done in real space.
Since a plane wave can be expanded around an arbitrary origin in space (to a phase
factor) using Rayleigh expansion:

oo l
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partial waves can be Fourier transformed into reciprocal space by evaluating overlap
integrals with spherical Bessel functions. This is done using the O(NlogN) NUMSBT
algorithm developed by Talman.[4] Then, all frequency components greater than the
FFT grid density can be set to 0 because those plane-waves are orthogonal to the
finite plane-wave basis set of the pseudowavefunctions, and the partial waves can be
transformed back into real space, also using the NUMSBT algorithm. This results in
a smooth partial waves for which ((¢;| — (¢i]) |¥nk) can be evaluated in real space.

1.5 Partial Wave Overlap on Non-Orthgonal Augmenta-
tion Spheres (Oy)

The Oy term appears similar to the Ops term, except that the integrals ({(¢s| —
(#i])(|¢5) — |¢;)) are more difficult to evaluate because the partial waves are centered
at different sites. However, transforming these partial waves into reciprocal space us-
ing the spherical Bessel transform allows the overlap integrals to be evaluated using
Equation (47) in Talman’s NUMSBT paper.[4].
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