
Stoner Python Package

C.S. Allen, M. Newman, R. Temple, S. Morely and G. Burnell

January 8, 2014

Contents

1 Introduction 3
1.1 Getting the Stoner Package . 3

1.1.1 Getting the Latest Development Code 3
1.2 Using the Stoner Package . 3
1.3 Documentation . 4
1.4 Users’ Guide . 4

2 Loading a data file 4
2.1 Loading Data from a stromg or iterable object 6

3 Examining and Basic Manipulations of Data 6
3.1 Data Structure . 6

3.1.1 Data, Column headers and metadata 6
3.1.2 Masked Data and Why You Care . 7
3.1.3 Working with columns of data . 7
3.1.4 Working with complete rows of data 8
3.1.5 Manipulating the metadata . 9
3.1.6 More on Indexing the data . 9
3.1.7 Selecting Individual rows and columns of data 10
3.1.8 Find out more about the data . 11
3.1.9 Copying Data . 11

3.2 Modifying Data . 12
3.2.1 Appending data . 12
3.2.2 Working with Columns of Data . 13
3.2.3 Rearranging Columns of Data . 13
3.2.4 Renaming Columns of Data . 13
3.2.5 Inserting Columns of Data . 13
3.2.6 Deleting Rows of Data . 13
3.2.7 Deleting Columns of Data . 14
3.2.8 Sorting Data . 14

3.3 Saving Data . 14

4 Plotting Data 15
4.1 Plotting 2D data . 15
4.2 Plotting 3D Data . 16
4.3 Getting More Control on the Figure . 17

1

5 Manipulating and Analysing Data 18
5.1 Manipulating Data . 18
5.2 Curve Fitting . 19

5.2.1 Simple polynomial Fits . 19
5.2.2 Simple function fitting . 20
5.2.3 Fitting with limits . 20

5.3 More AnalyseFile Functions . 21
5.3.1 Applying an arbitary function through the data 21
5.3.2 Basic Data Inspection . 22
5.3.3 Thresholding and Interpolating Data 22
5.3.4 Smoothing and Differentiating Data 23
5.3.5 Peak Finding . 23

5.4 Non-linear curve fitting with initialisation file 23

6 Working with Lots of Files 23
6.1 Getting a List of Files . 23
6.2 Doing Something With Each File . 25
6.3 Sorting, Filtering and Grouping Data Files 25

7 Cookbook 28
7.1 The Utils module . 28
7.2 Extract X-Y(Z) from X-Y-Z data . 28
7.3 Mapping X-Y-Z data to Z(X,Y) data . 28

8 Developer’s Guide 29
8.1 Adding New Data File Types . 29

2

Stoner Python Package Manual

1 Introduction

This manual provides a user guide and reference for the Stoner python pacakage. The
Stoner python package provides a set of python classes and functions for reading, ma-
nipulating and plotting data acquired with the lab equipment in the Condensed Matter
Physics Group at the University of Leeds.

1.1 Getting the Stoner Package

The easiest way to get and install the package is to make use of the EGG package on
PyPi. This will install a reasonably stable release into your Python setup. Open a
command prompt and run:

easy_install Stoner

The advantage of getting the package this way is that it is installed into your Python
path properly. The disadvantage is that you don’t get this user guide and the version
may not be the most up to date (although given the fragile and continuously being
broken state of the code that may be a good thing !).

1.1.1 Getting the Latest Development Code

These isntrctions are for members of the University of Leeds Condensed Matter Physics
Group. External users are recommended to download the source from GitHub

The source code for the Stoner python module is kept on github using the git revision
control tool. A nightly development release of the code is available for copying and use
in \\stonerlab\data\software\python\PythonCode\.

The Stoner Package currently depends on a number of other modules. These are
installed on the lab machines that have Python installed. Primarily these are Numpy,
SciPy and Matplotlib. The easiest way to get a Python installation with all the necessary
dependencies for the Stoner Package is to install the Enthought Python Distribution,
Canopy. Installers for Windows, MacOS and Linux are kept in
\\stonerlab\data\software\Python

1.2 Using the Stoner Package

If you have installed the Stoner Package with the easy install command given above, then
you can disregard this section.

The easiest way to use the Stoner Package is to add the path to the directory containing
Stoner.py to your PYTHONPATH environment variable. This can be done on Macs and
Linux by doing:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthcd <path to PythonCode d i r ec to ry>
linewidthlinewidthlinewidth linewidthexport PYTHONPATH=‘pwd ‘ :$PYTHONPATH

linewidthlinewidth

On a windows machine the easiest way is to create a permanent entry to the folder in
the system environment variables. Go to Control Panel -¿ System -¿ Advanced Tab
-¿ click on Environment button and then add or edit an entry to the system variable
PYTHONPATH.

January 8, 2014 3

Manual Stoner Python Package

One this has been done, the Stoner module may be loaded from python command
line:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthimport Stoner

linewidthlinewidth
or

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthfrom Stoner import ∗

linewidthlinewidth

1.3 Documentation

This document provides a user guide to the Stoner package and its various modules
and classes. It is not a reference to the library but instead aims to explain the various
operations that are possible and provide short examples of use. For the API reference
for the library, please see the Python Code API compiled windows help file. Rowan has
also made a single sided “cheat sheet” that summarises the examples in this user guide.

The code is still under active development to fix bugs and add features.
Generally things don’t get deliberately broken, but accidents happen, so if
something stops working, please either fix and commit the code or tell Gavin.

1.4 Users’ Guide

The Users’Guide provides a brief overview of the functions contained within the Stoner
module and so basic examples of how the module can be used.

The Stoner module provides several Python classes that can be used to manipulate
experimental data. The main class that provides the basic functionality is the DataFile
class. This handles loading data, finding and manipulating meta data, selecting rows or
columns of data, adding or removing data, and saving data.

The PlotFile class is a descendent of DataFile, meaning it shares all the same func-
tionality as DataFile, but in addition has methods to present data graphically. The
AnalyseFile class is another descendent of DataFile, but provides extra methods to fit
curves, smooth and differentiate data, find peaks and carry out other simple analysis
operations.

2 Loading a data file

The first step in using the Stoner module is to load some data from a measurement.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthimport Stoner
linewidthlinewidthlinewidth linewidthlinewidthd=Stoner . DataFi le (’my data . txt ’)
linewidthlinewidthlinewidth linewidthlinewidthd=Stoner . VSMFile (’my VSM data . f l d ’)

linewidthlinewidth

In this example we have loaded data from my data.txt which should be in the current
directory – here we are assuming that my data.txt contains data in the TDI Format 1.5
which is produced by the LabVIEW rigs. Assuming that the file successfully loads, d,
is an instance of the DataFile object. Here the DataFile constructor has been used to
both create the instance and load the data in one go.

4 January 8, 2014

Stoner Python Package Manual

The second example shows the use of one of the sub-classes of the DataFile object to
load data from a specific instrument (in this case the VSM).

This is an API change from earlier versions of the Stoner package where
a second parameter on the constructor of the DataFile object was used to
identify the type of data file. This syntax is now depreciated !).

The possible sub-classes are:

DataFile Tagged Data Interchange Format 1.5 – the default format produced by the
LabVIEW measurement rigs

VSMFile The text files produced by the group’s Oxford Instruments VSM

BigBlueFile Datafiles produced by VB Code running on Big Blue. The BigBlue version
of the DataFile.load and DataFile constructors takes two additional parameters
that specify the row on which the column headers will be found and the row on
which the data starts.

CSVFile Reads a generic comma separated value file. The CSVFile load routine takes
four additional parameters to the constructor and load methods. In addition to
the two extra arguments used for the BigBlue variant, a further two parameters
specify the deliminators for the data and header rows. CSVFile also offers a save
method to allow data to be saved in a simple deliminated text way (see Section
3.3 for details).

XRDFile Loads a scan file produced by Arkengarthdale - the group’s Brucker XRD
Machine.

SPCFile Loads a Raman scan file (.spc format) produced by the Rensihaw and Horiba
Raman spectrometers. This may also work for other instruments that produce spc
files, but has not been extensively tested.

BNLFile Loads a SPEC file from Brookhaven (so far only tested on u4b files but may well
work with other synchrotron data). Produces metadata Snumber: Scan number,
Stype: Type of scan, Sdatetime: date time stamp for the measurement, Smotor: z
motor position.

TDMSFile Loads a file saved in the National Instruments TDMS format

QDSquidVSMFile Loads data from a Quantum Design SQUID VSM as used on the I10
Beamline in Diamond.

OpenGDAFile Reads a scan file generated by OpenGDA – a software suite used for
synchtrons such as Diamond.

RasorFile Simply an alias for OpenGDAFile used for the RASOR instrument on I10 at
Diamond.

FmokeFile Loads a file from Dan Allwood’s Focussed MOKE System in Sheffield.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthimport Stoner
linewidthlinewidthlinewidth linewidthd=Stoner . DataFi le ()
linewidthlinewidthlinewidth linewidthd . load (’my data . txt ’)
linewidthlinewidthlinewidth linewidthv=Stoner . VSMFIle ()

January 8, 2014 5

Manual Stoner Python Package

linewidthlinewidthlinewidth linewidthlinewidthv . load (’my VSM data . f l d ’)
linewidthlinewidthlinewidth linewidthlinewidthc=Stoner . CSVFile ()
linewidthlinewidthlinewidth linewidthlinewidthc . load (’ data . csv ’ , 1 , 0 , ’ , ’ , ’ , ’)

linewidthlinewidth

The load method, like many of the DataFile methods returns a copy of the Datafile
object as well as modifying the object itself. The advantage of this is that it is then
possible to chain several methods into one command

Sometimes you won’t know exactly which subclass of DataFile is the one to use.
Unfortunately, there is no sure fire way of telling, but DataFile.load will try to do the
best it can and will try all of the subclasses in memory in turn to see if one will load the
file without throwing an error. If this succeeds then the actual type of file that worked
is stored in the metadata of the loaded file.

The automatic loading assumes that each load routine does sufficient sanity
checking that it will throw and error if it gets bad data. Whilst one might
wish this was always true it relies on whoever writes the load method to make
sure of this ! If you want to stop the automatic guessing from happening use
the auto load=False keyword in the load method.

2.1 Loading Data from a stromg or iterable object

In some circumstances you may have a string representation of a DataFile object and
want to transform this into a proper DataFile object. This might be, for example, from
transmitting the data over a network connection or receiving it from another program.
In these situations the left shift operator, <<, can be used.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthdata=Stoner . Core . DataFi le () << s t r i n g o f d a t a
linewidthlinewidthlinewidth linewidthlinewidthdata=Stoner . Core . DataFi le () << i t e r a b l e o b j e c t

linewidthlinewidth

The second example would allow any object that can be iterated (i.e. has a next()
method that returns lines of the data file, to be used as the source of the data. The
Stoner.Core.DataFile() creates an empty object so that the left shift operator calls
the method in DataFile to read the data in. It also determines the type of the object
data. This also provides an alternative syntax for reading a file from disk:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthdata=Stoner . Core . DataFi le ()<<open (” F i l e on Disk . txt ”)

linewidthlinewidth

3 Examining and Basic Manipulations of Data

3.1 Data Structure

3.1.1 Data, Column headers and metadata

Having loaded some data, the next stage might be to take a look at it. Internally, data
is represented as a 2D numpy masked array of floating point numbers, along with a list
of column headers and a dictionary that keeps the metadata and also keeps track of the
expected type of the metadata (i.e.the meta-metadata). These can be accessed like so:

6 January 8, 2014

Stoner Python Package Manual

linewidthlinewidth
linewidthlinewidthlinewidth linewidthd . data
linewidthlinewidthlinewidth linewidthd . column headers
linewidthlinewidthlinewidth linewidthd . metadata

linewidthlinewidth

3.1.2 Masked Data and Why You Care

Masked data arrays differ from normal data arrays in that they include an option to
mask or hide individual data elements. This can be useful to temporarily discount parts
of your data when, for example, fitting a curve or calculating a mean value or plotting
some data. One could, of course, simply ignore the masking option and use the data as
is, however, masking does have a number of practical uses.

The data mask can be accessed via the mask attribute of DataFile:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthimport numpy.ma as ma
linewidthlinewidthlinewidth linewidthprint d . mask
linewidthlinewidthlinewidth linewidthd .mask=False
linewidthlinewidthlinewidth linewidthd .mask=ma. nomask
linewidthlinewidthlinewidth linewidthd .mask=numpy. array ([[True , True , Fale , . . . Fa l se] , . . . , [False ,⤦
linewidthlinewidthlinewidth linewidthTrue , . . . True]])
linewidthlinewidthlinewidth linewidthd .mask=lambda x : x [0]<50
linewidthlinewidthlinewidth linewidthd .mask=lambda x : [y<50 for y in x]

linewidthlinewidth

The first line is simply the import statement for the numpy masked arrays in order
to get the nomask symbol. The second line will simply print the current mask. The
next two examples will unmask all the data i.e.make the values visible and useable.
The next example illustrates using a numpy array of booleans to set the mask - every
element in the mask array that evaluates as a boolean True will be masked and every
False value unmasked. So far the semantics here are the same as if one had accessed
the mask directly on the data via d.data.mask but the final two examples illustrate an
extension that setting the DataFile mask attribute allows. If you pass a callable object
to the mask attribute it will be executed, passing each row of the data array to the user
supplied function as a numpy array. The user supplied function can then either return
a single boolean value – in which case it will be used to mask the entire row – or a list
of booleans to mask individual cells in the current row.

By default when the DataFile object is printed or saved, data values that have been
masked are replaced with a “fill” value of 1020.

This is somewhat dangerous behaviour. Be very careful to remove a mask
before saving data if there is any chance that you will need the masked data
values again later !

3.1.3 Working with columns of data

This is all very well, but often you want to examine a particular column of data or a
particular row:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthd . column (0)
linewidthlinewidthlinewidth linewidthd . column (’ Temperature ’)
linewidthlinewidthlinewidth linewidthd . column ([’ Temperature ’ , 0])

linewidthlinewidth

January 8, 2014 7

Manual Stoner Python Package

In the first example, the first column of numeric data will be returned. In the second
example, the column headers will first be checked for one labeled exactly Temperature
and then if no column is found, the column headers will be searched using Temperature as
a regular expression. This would then match Temperature (K) or Sample Temperature.
The third example results in a 2 dimensional numpy array containing two columns in
the order that they appear in the list (i.e.not the order that they are in the data file).
For completeness, the DataFile.column method also allows one to pass slices to select
columns and should do the expected thing.

There is a convenient shortcut for working with cases where the column headers are
not the same as the names of any of the attributes of the DataFile object:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthd . Temperature
linewidthlinewidthlinewidth linewidthlinewidthd . column (’ Temperature ’)

linewidthlinewidth

both return the same data.
Whenever the Stoner package needs to refer to a column of data, you cn specify it in

a number of ways:

• As an integer where the first column on the left is index 0

• As a string. if the string matches a column header exactly then the index of that
column is returned. If the string fails to match any column header it is compiled as
a regular expression and then that is tried as a match. If multiple columns match
then only the first is returned.

• As a regular expression directly - this is similar to the case above with a string,
but allows you to pass a pre-compiled regular expression in directly with any extra
options (like case insensitivity flags) set.

• As a slice object (ee.g. 0:10:2) this is expanded to a list of integers.

• As a list of any of the above, in which case the column finding routine is called
recursively in turn for each element of the list and the final result would be to use
a list of column indices.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthimport r e
linewidthlinewidthlinewidth linewidthlinewidthco l=re . compile (’ ˆtemp ’ , r e .IGNORECASE)
linewidthlinewidthlinewidth linewidthlinewidthd . column (co l)

linewidthlinewidth

3.1.4 Working with complete rows of data

Rows don’t have labels, so are accessed directly by number:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthd [1]
linewidthlinewidthlinewidth linewidthlinewidthd [1 : 4]

linewidthlinewidth

The second example uses a slice to pull out more than one row. This syntax also supports
the full slice syntax which allows one to, for example, decimate the rows, or directly pull
out the last fews rows in the file.

8 January 8, 2014

Stoner Python Package Manual

3.1.5 Manipulating the metadata

What happens if you use a string and not a number in the above examples ?

linewidthlinewidth
linewidthlinewidthlinewidth linewidthd [’ User ’]

linewidthlinewidth

in this case, it is assumed that you meant the metadata with key User. To get a list of
possible keys in the metadata, you can do:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthd . dir ()
linewidthlinewidthlinewidth linewidthd . dir (’ Option \ : . ∗ ’)

linewidthlinewidth

In the first case, all of the keys will be returned in a list. In the second, only keys
matching the pattern will be returned – all keys containing Option:. For compatibility
with normal opython semantics: d.keys() is synonymous with d.dir().

We mentioned above that the metadata also keeps a note of the expected type of the
data. You can get at the metadata type for a particular key like this:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthd . metadata . type (’ User ’)

linewidthlinewidth

to get a dictionary of all of the types associated with each key you could do:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthdict (zip (d . dir () ,d . metadata . type (d . dir ())))

linewidthlinewidth

but an easier way would be to use the typeHintedDict.types attribute:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthd . metadata . types

linewidthlinewidth
.

3.1.6 More on Indexing the data

There are a number o other forms of indexing supported for DataFile objects.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthd [1 0 , 0]
linewidthlinewidthlinewidth linewidthd [0 : 1 0 , 0]
linewidthlinewidthlinewidth linewidthd [10 , ’Temp ’]
linewidthlinewidthlinewidth linewidthd [0 : 1 0 , [’ Voltage ’ , ’Temp ’]

linewidthlinewidth

The first variant just returns the data in the 11th row, first column (remember indexing
starts at 0). The second variant returns the first 10 values in the first column. The third
variant demonstrates that columns can be indexed by string as well as number, and the
last variant demonstrates indexing multiplerows and columns – in this case the first 10
values of the Voltage and Temp columns.

You might think of the data as being a list of records, where each column is a field in the
record. Numpy supports this type of structured record view of data and the DataFile
object provides the DataFile.records attribute to d this. This read-only attribute is just
providing an alternative view of the same data.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthd . r ecord s

linewidthlinewidth

January 8, 2014 9

Manual Stoner Python Package

3.1.7 Selecting Individual rows and columns of data

Many of the function in the Stoner module index columns by searching the column head-
ings. If one wishes to find the numeric index of a column then the DataFile.find col
method can be used:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthindex=d . f i n d c o l (1)
linewidthlinewidthlinewidth linewidthlinewidthindex=d . f i n d c o l (’ Temperature ’)
linewidthlinewidthlinewidth linewidthlinewidthindex=d . f i n d c o l (’Temp.∗ ’)
linewidthlinewidthlinewidth linewidthlinewidthindex=d . f i n d c o l (’ 1 ’)
linewidthlinewidthlinewidth linewidthlinewidthindex=d . f i n d c o l (1 : 1 0 : 2)
linewidthlinewidthlinewidth linewidthlinewidthindex=d . f i n d c o l ([’ Temperature ’ ,2 , ’ Res i s tance ’])

linewidthlinewidth

DataFile.find col takes a number of different forms. If the argument is an integer
then it returns (trivially) the same integer, a string argument is first checked to see if it
exactly matches one of the column headers in which case the number of the matching
column heading is returned. If no exact match is found then a regular expression search
is carried out on the column headings. In both cases, only the first match is returned.
If the string still doesn’t match, then the string is checked to see if it can be cast to an
integer, in which case the integer value is used.

The final two examples given above both return a list of indices, firstly using a slice
construct - in this case the result is trivially the same as the slice itself, and in the last
example by passing a list of column headers to look for.

This is the function that is used internally by DataFile.column, DataFile.search
etcand for this reason the trivial integer and slice forms are implemented to allow these
other functions to work with multiple columns.

Sometimes you may want to iterate over all of the rows or columns in a data set. This
can be done quite easily:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthfor row in d . rows () :
linewidthlinewidthlinewidth linewidthlinewidthprint row
linewidthlinewidthlinewidth linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthfor column in d . columns () :
linewidthlinewidthlinewidth linewidthlinewidthprint column
linewidthlinewidthlinewidth linewidthlinewidth.

linewidthlinewidth

The first example could also have been written more compactly as:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthfor row in d :
linewidthlinewidthlinewidth linewidthlinewidthprint row
linewidthlinewidthlinewidth linewidthlinewidth.

linewidthlinewidth

In many cases you do not know which rows in the data file are of interest - in this case
you want to search the data.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthd . search (’ Temperature ’ , 4 . 2)
linewidthlinewidthlinewidth linewidthlinewidthd . search (’ Temperature ’ , 4 . 2 , [’ Temperature ’ , ’ Res i s tance ’])
linewidthlinewidthlinewidth linewidthlinewidthd . search (’ Temperature ’ , lambda x , y : x>10 and x<100)
linewidthlinewidthlinewidth linewidthlinewidthd . search (’ Temperature ’ , lambda x , y : x>10 and
linewidthlinewidthlinewidth linewidthlinewidthx<1000 and y [1] <1000 , [’ Temperature ’ , ’⤦
linewidthlinewidthlinewidth linewidthlinewidthRes i s tance ’])

linewidthlinewidth

10 January 8, 2014

Stoner Python Package Manual

The general form is
DataFile.search(<search column>,<search term>[,<listof return columns>])

The first example will return all the rows where the value of the Tenperature column
is 4.2. The second example is the same, but only returns the values from the Temper-
ature, and Resistance columns. The rules for selecting the columns are the same as for
the DataFile.column method above – strings are matched against column headers and
integers select column by number.

The third and fourth examples above demonstrate the use of a function as the search
value. This allows quite complex search criteria to be used. The function passed to
the search routine should take two parameters – a floating point number and a numpy
array of floating point numbers and should return either ture or False. The function
is evaluated for each row in the data file and is passed the value corresponding to the
search column as the first parameter while the second parameter contains a list of all of
the values in the row to be returned. If the search function returns True, then the row
is returned, otherwise it isn’t. In thr last example, the final parameter can either be a
list of columns or a single column. The rules for indexing columns are the same as used
for the DataFile.find col method.

Sometimes you may want not to get the rows of data that you are looking for as
a separate array, but merely mark them for inclusion (or exclusion) from subsequent
operations. This is where the masked array (see ??) comes into its own. To select which
rows of data have been masked off, use the filter method.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthd . f i l t e r (lambda r : r [0]>5)
linewidthlinewidthlinewidth linewidthd . f i l t e r (lambda r : r [0] >5 , [’Temp ’])

linewidthlinewidth

With jsut a single argument, the filter method takes a complete row at a time and
passes it to the first argument, expecting to get a boolean response (or list olf booleans
equal in length to the number of columns). With a second argument as in the second
example, you can sepcify which columns are passed to the filtering function in what
order. The second argument must be a list of things which can be used to index a
column (i.e.strings, integers, regular expressions).

3.1.8 Find out more about the data

Another question you might want to ask is, what are all the unique values of data in a
given column (or set of columns). The Python numpy package has a function to do this
and we have a direct pass through from the DataFile object for this:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthd . unique (’Temp ’)
linewidthlinewidthlinewidth linewidthd . unique (column , r e tu rn index=False , r e t u r n i n v e r s e=False)

linewidthlinewidth

The two optional keywords cause the numpy routine to return the indices of the unique
and all non-unique values in the array. The column is specified in the same way as the
DataFile.column method does.

3.1.9 Copying Data

One of the characterisitics of Python that can confuse those used to other programming
languages is that assignments and argument passing is by reference and not by value.
This can lead to unexcted results as you can end up modifying variables you were not
expecting ! To help with creating genuine copies of data Python provides the copy

January 8, 2014 11

Manual Stoner Python Package

module. Whilst this works with DataFile objects, for convenience, the DataFile.clone
atribute is provided to make a deep copy of a DataFile object.

This is an attribute not a method, so there are no brackets here !

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidtht=d . c l one

linewidthlinewidth

3.2 Modifying Data

3.2.1 Appending data

The simplest way to modify some data might be to append some columns or rows. The
Stoner mpodule redefines two standard operators, + and & to have special meanings:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidtha=Stoner . DataFi le (’ some new data . txt ’)
linewidthlinewidthlinewidth linewidthlinewidthadd rows=d+a
linewidthlinewidthlinewidth linewidthlinewidthadd columns=d&a

linewidthlinewidth

In these example, a is a second DataFile object that contains some data. In the first
example, a new DataFile object is created where the contents of a are added as new rows
after the data in d. Any metadata that is in a and not in d are added to the metadata
as well. There is a requirement, however, that the column headers of d and a are the
same – i.e.that the two DataFile objects appear to represent similar data.

In the second example, the data in a is added as new columns after the data from d.
In this case, there is a requirement that the two DataFile objects have the same number
of rows.

These operators are not limited just to DataFile objects, you can also add numpy
arrays to the DataFile object to append additional data.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthimport numpy as np
linewidthlinewidthlinewidth linewidthlinewidthx=np . array ([1 , 2 , 3])
linewidthlinewidthlinewidth linewidthlinewidthnew data=d+x
linewidthlinewidthlinewidth linewidthlinewidthy=np . array ([1 , 2 , 3] , [1 1 , 1 2 , 1 3] , [2 1 , 2 2 , 2 3] , [3 1 , 3 2 , 3 3]])
linewidthlinewidthlinewidth linewidthlinewidthnew data=d+y
linewidthlinewidthlinewidth linewidthlinewidthz={”X” : 1 . 0 , ”Y” : 2 . 1 , ”Z” : 7 . 5}
linewidthlinewidthlinewidth linewidthlinewidthnew data=d+z
linewidthlinewidthlinewidth linewidthlinewidthnew data=d+[x , y , z]
linewidthlinewidthlinewidth linewidthlinewidthcolumn=d . column [0]
linewidthlinewidthlinewidth linewidthlinewidthnew data=d&column

linewidthlinewidth

In the first example above, we add a single row of data to d. This assumes that the
number of elements in the array matches the number of columns in the data file. The
second example is similar but this time appends a 2 dimensional numpy array to the
data. The third example demonstrates adding data from a dictioary. In this case the
keys of the dictionary are used to determine which column the values are added to. If
their columns that don’t match one of the dictionary keys, then a NaN is inserted. If
their are keys that don’t match columns labels, then new columns are added to the data
set, filled with NaN. In the fourth example, each element in the list is added in turn to
d. A similar effect would be achieved by doing new_data=d+x+y+z.

The last example appends a numpy array as a column to d. In this case the requirement
is that the numpy array has the same or fewer rows of data as d.

12 January 8, 2014

Stoner Python Package Manual

3.2.2 Working with Columns of Data

3.2.3 Rearranging Columns of Data

Sometimes it is useful to rearrange columns of data. DataFile offers a couple of methods
to help with this.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthd . swap column ((’ Res i s tance ’ , ’ Temperature ’))
linewidthlinewidthlinewidth linewidthd . swap column ((’ Res i s tance ’ , ’ Temperature ’) , h eader s too=⤦
linewidthlinewidthlinewidth linewidthFalse)
linewidthlinewidthlinewidth linewidthd . swap column ([(0 , 1) , (’Temp ’ , ’ Volt ’) , (2 , ’ Curr ’)])
linewidthlinewidthlinewidth linewidthd . r eorder ([1 , 3 , ’ Volt ’ , ’Temp ’])
linewidthlinewidthlinewidth linewidthd . r eorder ([1 , 3 , ’ Volt ’ , ’Temp ’] , header too=False)

linewidthlinewidth

The swap method takes either a tuple of column names/indices or a list of such tuples
and swaps the columns accordingly, whilst the reorder method takes a list of column
labels/indices and constructs a new data matrix out of those columns in the new order.
The headers too=False options, as the name suggests, cause the column headers not be
rearranged.

3.2.4 Renaming Columns of Data

As a convenience, DataFile also offers a useful method to rename data columns:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthd . rename (’ old name ’ , ’ new name ’)
linewidthlinewidthlinewidth linewidthd . rename (0 , ’ new name ’)

linewidthlinewidth

Alternatively,of course, one could just edit the column headers attribute.

3.2.5 Inserting Columns of Data

The append columns operator & will only add columns to the end of a dataset. If you
want to add a column of data in the middle of the data set then you should use the
add column method.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthd . add column (numpy. array (range (100)) , ’Column Header ’)
linewidthlinewidthlinewidth linewidthd . add column (numpy. array (range (100)) , ’Column Header ’ , Index)
linewidthlinewidthlinewidth linewidthd . add column (lambda x : x [0] − x [1] , ’Column Header ’ , f u n c a r g s=⤦
linewidthlinewidthlinewidth linewidthNone)

linewidthlinewidth

The first example simply adds a column of data to the end of the dataset and sets the
new column headers. The second variant inserts the new column before column Index.
Index follows the same rules as for the DataFile.colummn() method. In the third
example, the new column data is generated by applying the specified function. The
function is passed s dingle row as a 1D numpy array and any of the keyword, argument
pairs passed in a dictionary to the optional func args argument.

The DataFile.add column method returns a copy of the DataFile object itself as
well as modifying the object. This is to allow the metod to be chained up with other
methods for more compact code writing.

3.2.6 Deleting Rows of Data

Removing complete rows of data is achieved using the DataFile.del row method.

January 8, 2014 13

Manual Stoner Python Package

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthd . de l r ows (10)
linewidthlinewidthlinewidth linewidthlinewidthd . de l r ows (’X Col ’ , va lue)
linewidthlinewidthlinewidth linewidthlinewidthd . de l r ows (’X Col ’ , lambda x , y : x>300)

linewidthlinewidth

The first variant will delete row 10 from the data set (where the first row will be row
0). You can also supply a list or slice to DataFile.del rows to delete multiple rows.

If you do not know in advance which row to delete, then the second and third variants
provide more advanced options. The second variant searches for and deletes all rows in
which the specified column contains value. The third variant selects which ros to delete
by calling a user supplied function for each row. The user supplied function is the same
in form and definitition as that used for the DataFile.search method.

3.2.7 Deleting Columns of Data

Deleting whole columns of data can be done by referring to a column by index or column
header - the indexing rules are the same as used for the DataFile.column method.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthd . del column (’ Temperature ’)
linewidthlinewidthlinewidth linewidthlinewidthd . del column (1)

linewidthlinewidth

3.2.8 Sorting Data

Data can be sorted by one or more columns, specifying the columns as a number or
string for single columns or a list or tuple of strings or numbers for multiple columns.
Currently only ascending sorts are supported.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthd . s o r t (’Temp ’)
linewidthlinewidthlinewidth linewidthlinewidthd . s o r t ([’Temp ’ , ’Gate ’])

linewidthlinewidth

3.3 Saving Data

Only saving data in the TDI format and as comma or tab deliminated formats is sup-
ported.

The CSVFile comma or tab deliminated files discard all metadata about
the measurement. You absolutely must not use this as your primary data
format – always keep the TDI format files as well.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthd . save ()
linewidthlinewidthlinewidth linewidthlinewidthd . save (f i l ename)
linewidthlinewidthlinewidth linewidthlinewidthd=Stoner . CSVFile (d)
linewidthlinewidthlinewidth linewidthlinewidthd . save ()
linewidthlinewidthlinewidth linewidthlinewidthd . save (f i l ename , ’ \ t ’)

linewidthlinewidth

In the first case, the filename used tosave the data is determined from the filename
attribute of the DataFile object. This will have been set when the filewas loaded from
disc.

14 January 8, 2014

Stoner Python Package Manual

If the filename attribute has not been set e.g.if the DataFile object was created from
scratch, then the DataFile.save method will cause a dialog box to be raised so that
the user can supply a filename.

In the second variant, the supplied filename is used and the filename attribute is
changed to match this i.e.d.filename will always return the last filename used for a
load or save operation.

The third is similar but convert the file to cvs format while the fourth also specifies
that the deliminator is a tab character.

4 Plotting Data

Data plotting and visualisation is handled by the PlotFile sub-class of DataFile. The
purpose of the methods detailed here is to provide quick and convenient ways to plot
data rather than providing publication ready figures.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthimport Stoner . Plot as p lo t
linewidthlinewidthlinewidth linewidthp=p lot . P l o tF i l e (d)

linewidthlinewidth

The first line imports the Stoner.Plotmodule. Strictly, this is unnecessary as the Plot
module’s namespace is imported when the Stoner package as a whole is imported. The
second line creates an instance of the PlotFile class. PlotFile inherits the constructor
method of DataFile and so all the variations detailed above work with PlotFile. In
particular, the form shown in the second line is a easy way to convert a DataFile instance
to a PlotFile instance for plotting.

4.1 Plotting 2D data

x-y plots are produced by the PlotFile.plot xy method:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthp . p lo t xy (column x , column y)
linewidthlinewidthlinewidth linewidthp . p lo t xy (column x , [y1 , y2])
linewidthlinewidthlinewidth linewidthp . p lo t xy (x , y , ’ ro ’)
linewidthlinewidthlinewidth linewidthp . p lo t xy (x , [y1 , y2] , [’ ro ’ , ’ b− ’])
linewidthlinewidthlinewidth linewidthp . p lo t xy (x , y , t i t l e=’My Plot ’)
linewidthlinewidthlinewidth linewidthp . p lo t xy (x , y , f i g u r e=2)
linewidthlinewidthlinewidth linewidthp . p lo t xy (x , y , p l o t t e r=pyplot . s emi logy)

linewidthlinewidth

The examples above demonstrate several use cases of the plot xy method. The first
parameter is always the x column that contains the data, the second is the y-data either
as a single column or list of columns. The third parameter is the style of the plot (lines,
points, colours etc) and can either be a list if the y-column data is a list or a single string.
Finally additional parameters can be given to specify a title and to control which figure
is used for the plot. All matplotlib keyword parameters can be specified as additional
keyword arguments and are passed through to the relevant plotting function. The final
example illustrates a convenient way to produce log-linear and log-log plots. By default,
plotxy uses the pyplot.plot function to produce linear scaler plots. There are a number
of useful plotter functions that will work like this:

pyplot.semilogx,pyplot.semilogy These two plotting functions will produce log-linear
plots, with semilogx making the x-axes the log one and semilogy the y-axis.

pyplot.loglog Liek the semi-log plots, this will produce a log-log plot.

January 8, 2014 15

Manual Stoner Python Package

pyplot.errorbar this particularly useful plotting function will draw error bars. The values
for the error bars are passed as keyword arguments, xerr or yerr. In standard
matplotlib, these can be numpy arrays or constants. PlotFile.plot xy extends
this by intercepting these arguements and offering some short cuts:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthp . p lo t xy (x , y , p l o t t e r=errorbar , ye r r=’ dRes i s tance ’ ,⤦
linewidthlinewidthlinewidth linewidthlinewidthxer r =[5 , ’dTemp+’])

linewidthlinewidth

This is equivalent to doing something like:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthp . p lo t xy (x , y , p l o t t e r=errorbar , ye r r=p . column (’⤦
linewidthlinewidthlinewidth linewidthlinewidthdRes i s tance ’) , x e r r=[p . column (5) ,p . column (’dTemp+’)⤦
linewidthlinewidthlinewidth linewidthlinewidth])

linewidthlinewidth

If you actually want to pass a constant to the x/yerr keywords you should use a
float rather than an integer.

The X and Y axis label will be set from the column headers.

4.2 Plotting 3D Data

A number of the measurement rigs will produce data in the form of rows of x, y, z values.
Often it is desirable to plot these on a surface plot or 3D plot. The PlotFile.plot xyz
method can be used for this.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthp . p lo t xyz (co l x , co l y , c o l z)
linewidthlinewidthlinewidth linewidthlinewidthp . p lo t xyz (co l x , co l y , c o l z , cmap=matp lo t l ib . cm . j e t)
linewidthlinewidthlinewidth linewidthlinewidthp . p lo t) xyz (co l −x , co l −y , co l −z , p l o t t e r=pyplot . p co lo r)
linewidthlinewidthlinewidth linewidthlinewidthp . p lo t xyz (co l x , co l y , c o l z , xl im=(−10 ,10 ,100) , yl im⤦
linewidthlinewidthlinewidth linewidthlinewidth=(−10 ,10 ,100))

linewidthlinewidth

By default the plot xyz will produce a 3D surface plot with the z-axis coded with a
rainbow colourmap (specifically, the matplotlib provided matplotlib.cm.jet colourmap.
This can be overriden with the cmap keyword parameter. If a simple 2D surface plot
is required, then the plotter parameter should be set to a suitable function such as
pyplot.pcolor.

Like plot xy, a figure parameter can be used to control the figure being used and any
additional keywords are passed through to the plotting function. The axes labels are set
from the corresponding column labels.

Another option is a contour plot based on (x, y, z) data points. This can be done with
the contour xyz method.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthp . contour xyz (xcol , ycol , zco l , shape =(50 ,50))
linewidthlinewidthlinewidth linewidthlinewidthp . contour xyz (xcol , ycol , zco l , xl im=(10 ,10 ,100) , yl im⤦
linewidthlinewidthlinewidth linewidthlinewidth=(−10 ,10 ,100))

linewidthlinewidth

Both plot xyz and contour xyz make use of a call to griddata which is a utility
method of the PlotFile – essentially this is just a pass through method to the under-
lying scipy.interpolate.griddata function. The shape of the grid is determined through a
combination of the xlim, ylim and shape arguments.

16 January 8, 2014

Stoner Python Package Manual

linewidthlinewidth
linewidthlinewidthlinewidth linewidthX,Y, Z=p . gr iddata (xcol , ycol , zco l , shape =(100 ,100))
linewidthlinewidthlinewidth linewidthX,Y, Z=p . gr iddata (xcol , ycol , zco l , xl im=(−10 ,10 ,100) , yl im⤦
linewidthlinewidthlinewidth linewidth=(−10 ,10 ,100))

linewidthlinewidth

If a xlim or ylim arguments are provided and are two tuples, then they set the maxi-
mum and minimum values of the relevant axis. If they are three tuples, then the third
argument is the number of points along that axis and overrides any setting in the shape
parameter. If the xlim or ylim parameters are not presents, then the maximum and
minimum values of the relevant axis are used. If not shape information is provided,
the default is to make the shape a square of sidelength given by the square root of the
number of points.

Alternatively, if your data is already in the form of a matrix, you can use the Plot-
File.plot matrix method:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthp . p lo t matr ix ()
linewidthlinewidthlinewidth linewidthp . p lo t matr ix (xvals , yvals , rectang , t i t l e=” T i t l e ” , x l ab e l=”X ⤦
linewidthlinewidthlinewidth linewidthAxis ” , y l ab e l=”Y Axis ” , z l a b e l=”Z Axis ” ,cmap=matp lo t l ib .⤦
linewidthlinewidthlinewidth linewidthcm. j e t)
linewidthlinewidthlinewidth linewidthp . p lo t matr ix (p l o t t e r=pyplot . pco lor , f i g u r e=False)

linewidthlinewidth

The first example just uses all the default values, in which case the matrix is assumed
to run from the 2nd column in the file to the last and over all of the rows. The x
values for each row are found from the contents of the first column, and the y values for
each column are found from the column headers interpreted as a floating pint number.
The colourmap defaults to the built in ‘jet’ theme. The x axis label is set to be the
column header for the first column, the y axis label is set either from the meta data
item “ylabel” or to “Y Data”. Likewise the z axis label is set from the corresponding
metadata item or defaults to “Z Data”. In the second form these parameters are all set
explicitly. The xvals parameter can be either a column index (integer or sring) or a list,
tuple or numpy array. The yvals parameter can be either an row number (integer) or
list,tuple or numpy array. Other parameters (including plotter, figure etc) work as for
the PlotFile.plot xyz method. The rectang parameter is used to select only part of
the data array to use as the matrix. It may be 2-tuple in which case it specifies just
the origin as (row,column) or a 4-tuple in which case the third and forth elements are
the number of rows and columns to include. If xvals or yvals specify particular column
or rows then the origin of the matrix is moved to be one column further over and one
row further down (i.e.the matrix is to the right and below the columns and rows used
to generate the x and y data values). The final example illustrates how to generate a
new 2D surface plot in a new window using default matrix setup.

4.3 Getting More Control on the Figure

It is useful to be able to get access to the matplotlib figure that is used for each PlotFle
instance. The PlotFile.fig attribute can do this, thus allowing plots from multiple
PlotFile instances to be combined in a single figure.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthp1 . p lo t xy (0 ,1 , ’ r− ’)
linewidthlinewidthlinewidth linewidthp2 . p lo t xy (0 ,1 , ’ bo ’ , f i g u r e=p1 . f i g)

linewidthlinewidth

Likewise the PlotFile.axes attribute returns the current axes object of the current
figure in use by the PlotFile instance.

January 8, 2014 17

Manual Stoner Python Package

There’s a couple of extra methods that just pass through to the pyplot equivalents:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthp . draw ()
linewidthlinewidthlinewidth linewidthlinewidthp . show ()

linewidthlinewidth

5 Manipulating and Analysing Data

Curve fitting, data manipulation, and other analysis functions is handled by a sub-class
of the DataFile object – AnalyseFile

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthimport Stoner . Analys i s as Analys i s
linewidthlinewidthlinewidth linewidthlinewidtha=Analys i s . AnalyseFi l e (’Data ’)
linewidthlinewidthlinewidth linewidthlinewidtha2=Analys i s . AnalyseFi l e ()
linewidthlinewidthlinewidth linewidthlinewidtha2=d
linewidthlinewidthlinewidth linewidthlinewidtha3=Analys i s . AnalyseFi l e (d)

linewidthlinewidth

The first line imports the AnaylseFile class. Since the AnalyseFile is a child class of
DataFile, everything you can do with a DataFile also works with an AnalyseFile object.
The next two lines demonstrate creating a blank AnalyseFile and then copying all of
the data, metadata and column headings from an existing dataFile object. The final
variant shows how to cast one child-class of DataFile into another – in this case an
AnalyseFile.

5.1 Manipulating Data

Several methods are provided to assist with common data fitting and preparation tasks,
such as normalising columns, adding and subtracting columns.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidtha . normal i s e (’ data ’ , ’ r e f e r e n c e ’ , header=’ Normalised Data ’ ,⤦
linewidthlinewidthlinewidth linewidthlinewidthr ep l a c e=True)
linewidthlinewidthlinewidth linewidthlinewidtha . normal i s e (0 , 1)
linewidthlinewidthlinewidth linewidthlinewidtha . normal i s e (0 , 3 . 141592654)
linewidthlinewidthlinewidth linewidthlinewidtha . normal i s e (0 , a2 . column (0))

linewidthlinewidth

The normalise method simply divides the data column by the reference column. By
default the normalise method replaces the data column with the new (normalised) data
and appends “(norm)” to the column header. The keyword arguments header and replace
can override this behaviour. The third variant illustrates normalising to a constant (note,
however, that if the second argument is an integer it is treated as a column index and
not a constant). The final variant takes a 1D array with the same number of elements as
rows and uses that to normalise to. A typical example might be to have some baseline
scan that one is normalising to.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidtha . sub t rac t (’A ’ , ’B ’m header=”A−B” , r ep l a c e=True)
linewidthlinewidthlinewidth linewidthlinewidtha . sub t rac t (0 , 1)
linewidthlinewidthlinewidth linewidthlinewidtha . sub t rac t (0 , 3 . 141592654)
linewidthlinewidthlinewidth linewidthlinewidtha . sub t rac t (0 , a2 . column (0))

linewidthlinewidth

As one might expect form the name, the subtract method subtracts the second column
form the first. Unlike normalise the first data column will not be replaced but a new
column inserted and a new header (defaulting to column header 1 - column header 2) will

18 January 8, 2014

Stoner Python Package Manual

be created. This can be overridden with the header and replace keyword arguments. The
next two variants of the subtract method work in an analogous manner to the normalise
methods. Finally the add method allows one to add two columns in a similar fashion:

linewidthlinewidth
linewidthlinewidthlinewidth linewidtha . add (’A ’ , ’B ’ , header= ’A plus B ’ , r ep l a c e=False)
linewidthlinewidthlinewidth linewidtha . add (0 ,1)
linewidthlinewidthlinewidth linewidtha . add (0 ,3 . 141592654)
linewidthlinewidthlinewidth linewidtha . add (0 , a2 . column (0))

linewidthlinewidth

For completeness we also have:

linewidthlinewidth
linewidthlinewidthlinewidth linewidtha . d iv id e (’A ’ , ’B ’ , header=’A/B ’ , r ep l a c e=True)
linewidthlinewidthlinewidth linewidtha . mult ip ly (’A ’ , ’B ’ , header=’A∗B ’ , r ep l a c e=True)

linewidthlinewidth

with variants that take either a 1D array of data or a constant instead of the B column
index.

One might wish to split a single data file into several different data files each with the
rows of the original that have a common unique value in one data column, or for which
some function of the complete row determines which datafile each row belongs in. The
split method is useful for this case.

linewidthlinewidth
linewidthlinewidthlinewidth linewidtha . s p l i t (’ P o l a r i s a t i o n ’)
linewidthlinewidthlinewidth linewidtha . s p l i t (’ Temperature ’ , lambda x , r : x>100)
linewidthlinewidthlinewidth linewidtha . s p l i t ([’ Temperature ’ , ’ P o l a r i s a t i o n ’] , [lambda x , r : x>100 ,⤦
linewidthlinewidthlinewidth linewidthNone])

linewidthlinewidth

In these examples we assume the AnalyseFile has a data column ‘Polarisation’ that
takes two (or more) discrete values and a column ‘Temperature’ that contains numbers
above and below 100.

The first example would return aDataFoder object (see 6) containing separateAnal-
yseFile which would each contain the rows from the orginal data that had each unique
value of the polarisation data. The second example would produce a DataFolder object
containing two AnalyseFile objects for the rows with temperature abobe and below
100. The final example will result in a DataFolder object that has two groups each of
which contains AnalyseFile objects for each polarisation value.

5.2 Curve Fitting

5.2.1 Simple polynomial Fits

Simple least squares fitting of polynomial functions is handled by theAnalyseFile.polyfit
method:

linewidthlinewidth
linewidthlinewidthlinewidth linewidtha . p o l y f i t (column x , column y , po lynomia l order , bounds=lambda⤦
linewidthlinewidthlinewidth linewidthx , y : True , r e s u l t=”New Column”)

linewidthlinewidth

This is a simple pass through to the numpy routine of the same name. The x and
y columns are specified in the first two arguments using the usual index rules for the
Stoner package. The routine will fit multiple columns if column y is a list or slice. The
polynomial order parameter should be a simple integer greater or equal to 1 to define the
degree of polynomial to fit. The bounds function follows the same rules as the bounds
function in DataFile.search to restrict the fitting to a limited range of rows. The

January 8, 2014 19

Manual Stoner Python Package

method returns a list of co-efficients with the highest power first. If column y was a list,
then a 2D array of co-efficients is returned.

If result is specified then a new column with the header given by the result parameter
will be created and the fitted polynomial evaluated at each point.

5.2.2 Simple function fitting

For more general curve fitting operations the AnalyseFile.cruve fit method can be
employed. Again, this is a pass through to the numpy routine of the same name.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidtha . c u r v e f i t (func , xcol , ycol , p0=None , sigma=None , bounds=⤦
linewidthlinewidthlinewidth linewidthlinewidthlambda x , y : True , r e s u l t=True , r ep l a c e=False , header=”New⤦
linewidthlinewidthlinewidth linewidthlinewidthColumn”)

linewidthlinewidth
The first parameter is the fitting function. This should have prototype

y=func(x,p[0],p[1],p[2]...) where p is a list of fitting parameters. The p0 parame-
ter contains the initial guesses at the fitting parameters, the default value is 1. xcol and
ycol are the x and y columns to fit. This method cannot handle multiple y columns.
sigma, if present, provides the weightings for each datapoint and so should also be an
array of the same length as the x and y data. Fianlly, the bounds function can be used
to restrict the fitting to only a subset of the rows of data.

AnalyseFile.curve fit returns a list of two arrays [popt,pcov] where popt is an
array of the optimal fitting parameters and pcov is a 2D array of the co-variances between
the parameters.

If result is not None then the fitted data is added to the AnalyseFile object. Where
it is added depends on the combination of the result, replace and header parameters. If
result is a string or integer it is interpreted as a column index at which the fitted data
will be inserted (replace False) or overwritten over the existing data (replace False). The
fitted data will be given the column header header unless header is not a string, in which
ase the column will be called ‘Fitted with ’ and the name of the function func.

5.2.3 Fitting with limits

For cases where one requires more flexibility in fitting data, in particular where the
fitting parameters are constrained, the AnalyzeFile.mpfit method is provided. This is
a pass through to the mpfit module.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidtha . mpf it (func , xcol , ycol , p in f o , f un c a r g s=dict () , sigma⤦
linewidthlinewidthlinewidth linewidthlinewidth=None , bounds=lambda x , y : True , ∗∗mpf i t kargs)

linewidthlinewidth
In this case, the func argument takes a slightly different prototype:

def func(x,parameters, **func_args) where parameters is a list of the fitting pa-
rameters and func args provides a dictionary of fixed i.e.non-fitting parameters. xcol
and ycol are the column indices for the x and y data, bounds is a bounding function to
select only those rows to use for fitting the function, and sigma are the weightings for
each datapoint. The remaining arguments are a dictionary of keywords to pass through
to the mpfit routine and p info which is a list of dictionaries which is used to control
the parameters in the fit. This described below.

p info contains one element for each parameter used to fit the data. Each element is
a dictionary with the following keys:

value the starting parameter value (but see the START PARAMS parameter for more
information).

20 January 8, 2014

Stoner Python Package Manual

fixed a boolean value, whether the parameter is to be held fixed or not. Fixed parameters
are not varied by MPFIT, but are passed on to MYFUNCT for evaluation.

limited a two-element boolean array. If the first/second element is set, then the param-
eter is bounded on the lower/upper side. A parameter can be bounded on both
sides. Both LIMITED and LIMITS must be given together.

limits a two-element float array. Gives the parameter limits on the lower and upper
sides, respectively. Zero, one or two of these values can be set, depending on the
values of LIMITED. Both LIMITED and LIMITS must be given together.

parname a string, giving the name of the parameter. The fitting code of MPFIT does
not use this tag in any way. However, the default iterfunct will print the parameter
name if available.

step the step size to be used in calculating the numerical derivatives. If set to zero, then
the step size is computed automatically. Ignored when AUTODERIVATIVE=0.

mpside the sidedness of the finite difference when computing numerical derivatives. This
field can take four values:

0 one-sided derivative computed automatically

1 one-sided derivative (f(x + h) − f(x))/h

-1 one-sided derivative (f(x) − f(x − h))/h

2 two-sided derivative (f(x + h) − f(x − h))/(2 ∗ h)

Where H is the STEP parameter described above. The ”automatic” one-sided
derivative method will chose a direction for the finite difference which does not
violate any constraints. The other methods do not perform this check. The two-
sided method is in principle more precise, but requires twice as many function
evaluations. Default: 0.

mpmaxstep the maximum change to be made in the parameter value. During the
fitting process, the parameter will never be changed by more than this value in
one iteration.
A value of 0 indicates no maximum. Default: 0.

tied a string expression which “ties” the parameter to other free or fixed parame-
ters. Any expression involving constants and the parameter array P are permit-
ted.Example: if parameter 2 is always to be twice parameter 1 then use the fol-
lowing: parinfo(2).tied = ’2 * p(1)’. Since they are totally constrained, tied
parameters are considered to be fixed; no errors are computed for them.[NOTE:
the PARNAME can’t be used in expressions.]

mpprint if set to 1, then the default iterfunct will print the parameter value. If set to 0,
the parameter value will not be printed. This tag can be used to selectively print
only a few parameter values out of many.
Default: 1 (all parameters printed)

5.3 More AnalyseFile Functions

5.3.1 Applying an arbitary function through the data

January 8, 2014 21

Manual Stoner Python Package

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidtha . apply (func , co l , r ep l a c e = True , header = None)

linewidthlinewidth
Here func is an arbitrary function that will take a complete row in the form of a numpy

1D array, col is the index of a column at which the resulting data is to be inserted or
overwrite the existing data (depending on the values of replace and header).

5.3.2 Basic Data Inspection

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidtha .max(column)
linewidthlinewidthlinewidth linewidthlinewidtha .min(column)
linewidthlinewidthlinewidth linewidthlinewidtha .max(column , bounds=labda x , y : y [2]>1 and y [2]<10)
linewidthlinewidthlinewidth linewidthlinewidtha .min(column , bounds=labda x , y : y [2]>1 and y [2]<10)

linewidthlinewidth
Hopefully all of the above are fairly obvious ! In the last two cases, one can use a

function to limit the search to particular rows (e.g.to search for the maximum y value
subject to some constraint in x). One important point to note is that the routines return
a tuple of two numbers, the maximum (or minimum) and the row number where the
maximum or minimum was found.

There are a couple of related functions to help here:
linewidthlinewidth

linewidthlinewidthlinewidth linewidthlinewidtha . span (column)
linewidthlinewidthlinewidth linewidthlinewidtha . span (column , bounds=lambda x , y : y [2]>100)
linewidthlinewidthlinewidth linewidthlinewidtha . c l i p (column , (max v , min v)
linewidthlinewidthlinewidth linewidthlinewidtha . c l i p (column , b . span (column))

linewidthlinewidth
The span method simply returns a tuple of minimum and maximum values within

either the whole column or bounded data. Internally this is just calling the max and
min methods. The clip method deletes rows for which the specified column as a value
that is either larger or smaller than the maximum or minimum value within the second
argument. This allows one to specify either a tuple – e.g.the result of the span method,
or a complete list as in the last example above. Specifying a single float would have
the effect of removing all rows where the column didn’t equal the float value. This is
probably not a good idea...

It is worth pointing out that these functions will respect the existing mask on the data
unless the bounds parameter is set, in which case the mask is temproarily discarded
in favour of one generated from the bounds expression. This can be worked around,
however, as the parameter passed to the bounds function is itself a masked array and
thus one can include a test of the mask in the bounds function:
linewidthlinewidth

linewidthlinewidthlinewidth linewidthlinewidtha . span (column , bounds=lambda x , y : y [2]>10 or not numpy.any(y .⤦
linewidthlinewidthlinewidth linewidthlinewidthmask))

linewidthlinewidth

5.3.3 Thresholding and Interpolating Data

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidtha . th r e sho ld (co l , thresho ld , r i s i n g=True , f a l l i n g=False ,⤦
linewidthlinewidthlinewidth linewidthlinewidtha l l v a l s=False)

linewidthlinewidth
linewidthlinewidth

linewidthlinewidthlinewidth linewidthlinewidtha . i n t e r p o l a t e (newX, kind=’ l i n e a r ’)
linewidthlinewidth

22 January 8, 2014

Stoner Python Package Manual

5.3.4 Smoothing and Differentiating Data

5.3.5 Peak Finding

5.4 Non-linear curve fitting with initialisation file

If you wish to fit your data to a non-linear function more complicated than a polynomial
you can use Stoner.nlfit.nlfit(inifile, func, data=None) or equivalently if you
have an AnalyseFile instance of your data called d say you can call d.nlfit(inifile, func).
This performs a non-linear least squares fitting algorithm to your data and returns the
AnalyseFile instance used with an additional final column that is the fit, it also plots the
fit. There is an example run script, ini file and data file in PythonCode\Scripts, have a
look at them to see how to use this function.

The function to fit to can either be created by the user and passed in or one of a library
of current existing functions can be used from the FittingFunctions.py file in Stoner\src
(just pass in the name of the function you wish to use as a string). The function takes it’s
fitting parameters information from a .ini file created by the user, look at the example
.ini file mentioned above for the format, you can see that it allows for the parameters to
be fixed or constrained which can be very useful for fitting.

Current functions existing in FittingFunctions.py:

• Various tunnelling I-V models including BDR, Simmons, Field emission and Tersoff
Hamman STM.

• 2D weak localisation

• Strijkers model for PCAR fitting

Please see the function documentation in FittingFunctions.py for more information about
these models. Please do add functions you think would be of use to everybody, have
a look at the current functions for examples, the main thing is that the function must
take an x array and a list of parameters, apply a function and then return the resulting
array.

6 Working with Lots of Files

A common case is that you have measured lots of data curves and now have a large stack
of data files sitting in a tree of folders on disc and now need to process all of them with
some code. The DataFolder class is designed to make it easier to process lots of files.

6.1 Getting a List of Files

The first thing you probably want to do is to get a list of data files in a directory (possibly
including its subdirectories) and probably matching some sort of filename pattern.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthfrom Stoner . Folder s import DataFolder
linewidthlinewidthlinewidth linewidthf=DataFolder (pattern= ’ ∗ . dat ’)

linewidthlinewidth

In this very simple example, the DataFolder class is imported in the first line and
then a new instance f is created. The optional pattern keyword is used to only collect
the files with a .dat extension. In this example, it is assumed that the files are readable
by DataFile, if they are in some other format then the type keyword can be used:

January 8, 2014 23

Manual Stoner Python Package

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthfrom Stoner . Fi leFormats import XRDFile
linewidthlinewidthlinewidth linewidthlinewidthf=DataFolder (type=XRDFile , pattern=’ ∗ . dql ’)

linewidthlinewidth

To specify a particular directory to look in, simply give the directory as the first
argument - otherwise the current duirectory will be used.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthf=DataFolder (’ /home/phygbu/Data ’ , pattern=’ ∗ . t d i ’)

linewidthlinewidth

By default the DataFolder constructor will perform a recursive drectory listing of
the working folder. Each sub-directory is given a separate group within the structure.
This allows the DataFolder to logically represent the on-disc layout of the files. The
resulting list of files can be accessed via the files attribute and sub groups with the group
attribute (see 6.3:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthf . f i l e s

linewidthlinewidth

In some circumstances entries in the f.files attribute can be DataFile ob-
jects rather than strings. If you want to ensure that you get a list of strings
representing the filenames, use f.ls instead.

If you don’t want the file listing to be recursive, this can be suppressed by using the
recursive keyword argument and the file listing can be suppressed altogether with the
nolist keyword:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthf=DataFolder (pattern=’ ∗ . dat ’ , r e c u r s i v e=False)
linewidthlinewidthlinewidth linewidthlinewidthf2=DataFolder (n o l i s t=True)

linewidthlinewidth

If you don’t want to create groups for each sub-directory, then set the keyword pa-
rameter flatten True, or call the flatten() method. You can also use the prune method
to remove groups (including nested groups) that have no data files in them.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthf . prune ()
linewidthlinewidthlinewidth linewidthlinewidthf . f l a t t e n ()

linewidthlinewidth

The current root directory and pattern are stored in the directory and pattern key-
words and the getlist method can be used to force a new listing of files.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthf . d i r c t o r y=’ /home/phygbu/Data ’
linewidthlinewidthlinewidth linewidthlinewidthf . pattern=’ ∗ . txt ’
linewidthlinewidthlinewidth linewidthlinewidthf . g e t l i s t ()

linewidthlinewidth

Sometimes a more complex filename matching mechanism than simple “globbing” is
useful. The patter keyword can also be a compiled regular expression:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthimport r e
linewidthlinewidthlinewidth linewidthlinewidthp=re . compile (’ i10 −\d ∗ . dat ’)
linewidthlinewidthlinewidth linewidthlinewidthf=DataFolder (pattern=p)
linewidthlinewidthlinewidth linewidthlinewidthp2=re . compile (’ i10 −(?P<run>\d∗) ’)
linewidthlinewidthlinewidth linewidthlinewidthf=DataFolder (pattern=p)
linewidthlinewidthlinewidth linewidthlinewidthf [0] [’ run ’]

linewidthlinewidth

24 January 8, 2014

Stoner Python Package Manual

The second case illustrates a useful feature of regular expressions - they can be used
to capture parts of the matched pattern – and in the python version, one can name
the capturing groups. In both cases above the DataFolder has the same file members
(basically these would be runs produced by the i10 beamline at Diamond), but in the
second case the run number (which comes after “i10-” would be captured and presented
as the “run” parameter in the metadata when the file was read. Note that the files

are not modified - the extra metadata is only added as the file is read by the
DataFlder . The loading process will also add the metadata key “Loaded From” to

the file which will give you a note of the filename used to read the data.
Finally, akin to DataFile you can force a dialog box to select a directory by passing

False into the constructor or getlist methods in place of a directory name.

6.2 Doing Something With Each File

A DataFolder is an object that you can iterate over, lading the DataFile type object
for each of the files in turn. This probides an easy way to run through a set of files,
performing the same operation on each:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthf o l d e r=DataFolder (pattern= ’ ∗ . t d i ’)
linewidthlinewidthlinewidth linewidthfor f in f o l d e r :
linewidthlinewidthlinewidth linewidthf=AnalyseFi l e (f)
linewidthlinewidthlinewidth linewidthf . normal i s e (’mac116 ’ , ’mac119 ’)
linewidthlinewidthlinewidth linewidthf . save ()

linewidthlinewidth
or even more compacts:

linewidthlinewidth
linewidthlinewidthlinewidth linewidth[f . normal i s e (’mac116 ’ , ’macc119 ’) . save () for f in DataFolder (⤦
linewidthlinewidthlinewidth linewidthpattern=’ ∗ . t d i ’ , type=AnalyseFi l e)]

linewidthlinewidth

DataFolder is also indexable and has a length:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthf=DataFolder ()
linewidthlinewidthlinewidth linewidthlen (f)
linewidthlinewidthlinewidth linewidthf [0]
linewidthlinewidthlinewidth linewidthf [’ f i l ename ’]

linewidthlinewidth

For the second case of indexing, the cose will search the list of filenames for a matching
file and return that (roughly equivalent to doing f[f.files.index("filename")])

If you want to know the filenames of all the files in the DataFolder then there is a
handy attributes:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthf . l s
linewidthlinewidthlinewidth linewidthf . basenames

linewidthlinewidth

The difference between these two is that f.basenames will return only the file part of
the filename whilst f.ls returns the complete path from the root directory.

6.3 Sorting, Filtering and Grouping Data Files

The order of the files in a DataFolder is arbitary. If it is important to process them in
a given order then the sort method can be used:

January 8, 2014 25

Manual Stoner Python Package

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthf . s o r t ()
linewidthlinewidthlinewidth linewidthlinewidthf . s o r t (’ tmperature ’)
linewidthlinewidthlinewidth linewidthlinewidthf . s o r t (’ Temperature ’ , r e v e r s e=True)
linewidthlinewidthlinewidth linewidthlinewidthf . s o r t (lambda x : len (x))

linewidthlinewidth

The first variant simply sorts the files by filename. The second and third variants
both look at the “temperature” metadata in each file and use that as the sort key. In
the third variant, the revers keyword is used to reverse the order of the sort. In the final
variant, each file is loaded in turn and the supplied function is called and evaluated to
find a sort key.

The filter method can be used to prune the list of files to be used by the DataFoler:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthf . f i l t e r (’ [ab] ∗ . dat ’)
linewidthlinewidthlinewidth linewidthlinewidthimport r e
linewidthlinewidthlinewidth linewidthlinewidthf . f i l t e r (r e . compile (’ i10 −\d ∗\ . dat ’))
linewidthlinewidthlinewidth linewidthlinewidthf . f i l t e r (lambda x : x [’ Temperature ’]>150)
linewidthlinewidthlinewidth linewidthlinewidthf . f i l t e r (lambda x : x [’ Temperature ’]>150 , i n v e r t=True)

linewidthlinewidth

The first form performs the filter on the filenames (using the standard python fnmatch
module). One can also use a regular expression as illustrated int he second example –
although unlike using the pattern keyword in getlist, there is no option to capture
metadata (although one could then subsequently set the pattern to achieve this). The
third variant calls the supplied function, passing the current file as a DataFile object in
each time. If the function evaluates to be True then the file is kept. The invert keyword
is used to invert the sense of the filter (a particularly silly example here, since the greater
than sign could simply be replaced with a less than or equals sign !).

One of the more common tasks is to group a long list of data files into separate groups
according to some logical test – for example gathering files with magnetic field sweeps
in a positive direction together and those with magnetic field in a negative direction
together. The group method provides a powerful way to do this. Suppose we have a
series of data curves taken at a variety of temperatures and with three different magnetic
fields:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthf . group{ ’ temperature ’ }
linewidthlinewidthlinewidth linewidthlinewidthf . group (lambda x : ” p o s i t i v e ” i f x [’B−Fie ld ’]>0 else ”⤦
linewidthlinewidthlinewidth linewidthlinewidthnegat ive ”)
linewidthlinewidthlinewidth linewidthlinewidthf . group ([’ temperature ’ , lambda x : ” p o s i t i v e ” i f x [’B−Fie ld ’⤦
linewidthlinewidthlinewidth linewidthlinewidth]>0 else ” negat ive ”])
linewidthlinewidthlinewidth linewidthlinewidthf . groups

linewidthlinewidth

The groupmethod splits the files in theDataFolder into several groups each of which
share a common value of the arguement supplied to the group method. A group is itself
another isntanceinstance of theDataFolder class. EachDataFolder object maintains a
dictionary called groups whose keys are the distinct values of the argument of the group
methods and whose values are DataFolder objects. So, if our DataFolder f contained
files measured at 4.2, 77 and 300K and at fields of 1T and -1T then the first variant
would create 3 groups: 4.2, 77 and 300 each one of which would be a DataFolder
object containg the files measured at those temperatures. The second varaint would
produce 2 groups – “postive” containing the files measured with magnetic field of 1T
and “negative” containing the files measured at -1T. The third variant then goes one

26 January 8, 2014

Stoner Python Package Manual

stage further and would produce 3 groups, each of which in turn had 2 groups. The
groups are accessed via the group attribute:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthf . groups [4 . 2] . groups [” p o s i t i v e ”] . f i l e s

linewidthlinewidth

would return a list of the files measured at 4.2K and 1T.
If you try indexing a DataFolder with a string and there is no file with as it’s

filename and there is a group with a key of the same string then dataFolder will return
the correspondign group. This allows a more compact navigation through an xtended
group structure.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthf . group ([’ p r o j e c t ’ , ’ sample ’ , ’ d ev i ce ’])
linewidthlinewidthlinewidth linewidthf [’ASF ’] [’ASF038 ’] [’A ’]

linewidthlinewidth

If you just ant to create a new empty group in your DataFoler, you can use the
add group method.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthf . add group (” key value ”)

linewidthlinewidth

which will create the new group with a key of “key value”.
One task you might want to do would be to work through all the groups in aDataFolder

and run some function either with each file in the group or on the whole group. This is
further complicated if you want to iterate over all the sub-groups within a group. The
walk groups() method is useful here.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthf . walk groups (func , group=True , r ep l a c e t e rm ina l=True ,⤦
linewidthlinewidthlinewidth linewidthwa lke r args={”arg1 ” : ” value1 ”})

linewidthlinewidth

This will iterate over the complete hierarchy of groups and sub groups in the folder
and execute the function func once for each group. If the group parameter is False then
it will execute func once for each file. The function fun should be defined something
like:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthdef func (group , l i s t o f −group keys , arg1 , arg2 . . .)

linewidthlinewidth

The first parameter should expect and instance of PDataFile if group is False or an
instance of DataFolder if group is True. The second parameter will be given a list
of of strings representing the group key values from the topmost group to the lowest
(terminal) group.

The replace terminal parameter applies when group is True and the function returns
a DataFile object. This indicates that the group on which the function was called
should be removed from the list fo groups and the returned DataFile object should be
added to the list of files in the folder. This operation is useful when one is processing a
group of files to combined them into a single dataset. Combining a multi-level grouping
operation and successive calls to walk groups can rapidly reduce a large set of data files
representing a multi-dimensional data set into a single file with minimal coding.

In some cases you will want to work with sets of files coming from different groups
in order. For example, if above we had a sequence of 10 data files for each field and
temperature and we wanted to process the positive and negative field curves together
for a given temperature in turn. In this case the zip groups method can be useful.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthf . groups [4 . 2] . z ip groups ([’ p o s i t i v e ’ , ’ n egat iv e ’])

linewidthlinewidth

January 8, 2014 27

Manual Stoner Python Package

This would return a list of tuples of DataFile objects where the tuples would be the
first positive and first negative field files, then the second of each, then third of each and
so. This presupposes that the files started of sorted by some suitable parameter (e.g.a
gate voltage).

7 Cookbook

This section gives some short examples to give an idea of things that can be done with
the Stoner python module in just a few lines.

7.1 The Utils module

The Stoner package comes with an extra Utils module that includes some handy utility
functions. So far the module just contains one function that will take a single dataFile
object and split it into a series of DataFile objects where one column is either rising or
falling. This is designed to help deal with analysis problems involving hysteretic data.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthfrom Stoner . U t i l s import sp l i t up down
linewidthlinewidthlinewidth linewidthlinewidthf o l d e r=sp l i t up down (data , column)

linewidthlinewidth

folder is a DataFolder instance with two groups, one for rising values of the column
and one for falling values of the column. The split up down will take an optional third
parameter which is an existing DataFolder instance to which the new groups (if they
don’t already exist) and files will be added.

7.2 Extract X-Y(Z) from X-Y-Z data

In a number of measurement systems the data is returned as 3 parameters X, Y and Z
and one wishes to extract X-Y as a function of constant Z. For example, I − V sweeps
as a function of gate voltage VG. Assuming we have a data file with columns Current,
Voltage,Gate:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthd=DataFi le (’ data . txt ’)
linewidthlinewidthlinewidth linewidthlinewidtht=d
linewidthlinewidthlinewidth linewidthlinewidthfor gate in d . unique (’Gate ’) :
linewidthlinewidthlinewidth linewidthlinewidtht . data=d . search (’ Gate ’ , gate)
linewidthlinewidthlinewidth linewidthlinewidtht . save (’Data Gate=’+str (gate)+’ . txt ’)

linewidthlinewidth

The first line opens the data file containing the I − V (VG) data. The second creates
a temporary copy of the DataFile object - ensuring that we get a copy of all metadata
and column headers. The for loop iterates over all unique values of the data in the gate
column and then inside the for loop, searches for the corresponding I − V data, sets it
as the data of the temporary DataFile and then saves it.

7.3 Mapping X-Y-Z data to Z(X,Y) data

In a similar fashion to the previous section, where data has been recorded with fixed
values of X and Y e.g.I measured for fixed V and VG, it can be useful to map the data
to a matrix.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthd=DataFi le (’Data , . txt ’)
linewidthlinewidthlinewidth linewidthlinewidtht=d

28 January 8, 2014

Stoner Python Package Manual

linewidthlinewidthlinewidth linewidthfor gate in d . unique (’Gate ’) :
linewidthlinewidthlinewidth linewidtht=t+d . search (’Gate ’ , gate) [: , d . f i n d c o l (’ Current ’)]
linewidthlinewidthlinewidth linewidtht . column headers=[’ Bias=’+str (x) for x in d . unique (’ Voltage⤦
linewidthlinewidthlinewidth linewidth’)]
linewidthlinewidthlinewidth linewidtht . add column (d . unique (’Gate ’) , ’ Gate Voltage ’ , 0)

linewidthlinewidth

The start of the script follows the previous section, however this time in the for loop
the addition operator is used to add a single row to the temporary DataFile t. In this
case we are using the utility method DataFile.find col to find the index of the column
with the current data. After the for loop we set the column headers in t and then insert
an additional column at the start with the gate voltage values.

The matrix generated by this code is suitable for feeding directly into PlotFile.
plot matrix(), however, the same plot could be generated directly from the
PlotFile.plot xyz() method too.

8 Developer’s Guide

This section provides some notes and guidance on extending the Stoner Package.

8.1 Adding New Data File Types

The first question to ask is whether the data file format that you are working with is one
that others in the group will be interested in using. If so, then the best thing would be
to include it in the fileFormats module in the package, otherwise you should just write
the class in your own script files. In either case, develop the class in your own script files
first.

The best way to implement handling a new data format is to write a new subclass of
DataFile:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthclass NewInstrumentFile (DataFi le) :
linewidthlinewidthlinewidth linewidth”””Extends DataFi le to load f i l e s from somewhere e l s e
linewidthlinewidthlinewidth linewidth
linewidthlinewidthlinewidth linewidthWritten by Gavin Burne l l 11/3/2012 ”””

linewidthlinewidth

A document string should be provided that will help the user identify the function of
the new class (and avoid using names that might be commonly replicated !). Only one
method needs to be implemented: a new loadmethod. The load method should have the
following structure:

linewidthlinewidth
linewidthlinewidthlinewidth linewidthdef load (s e l f , f i l ename=None ,∗ args) :
linewidthlinewidthlinewidth linewidth””” Just c a l l the parent c l a s s but with the r i gh t ⤦
linewidthlinewidthlinewidth linewidthparameters s e t ”””
linewidthlinewidthlinewidth linewidthi f f i l ename i s None or not f i l ename :
linewidthlinewidthlinewidth linewidths e l f . g e t f i l e n ame (’ r ’)
linewidthlinewidthlinewidth linewidthelse :
linewidthlinewidthlinewidth linewidths e l f . f i l ename = f i l ename

linewidthlinewidth

then follows the code to actually read the file. It must at the very least provide a column
header for every column of data and read in as much numeric data as possible and it
should read as much of the meta data as possible. The function terminates by returning
a copy of the current object:

January 8, 2014 29

Manual Stoner Python Package

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthreturn s e l f

linewidthlinewidth

One useful function for reading metadata from files is self.metadata.string to type()
which will try to convert a string representation of data into a sensible Python type.

There is one global attribute that can be used to tweak the automatic file importing
code.

linewidthlinewidth
linewidthlinewidthlinewidth linewidthlinewidthf . p r i o r i t y=32

linewidthlinewidth

When the subclasses are tried to see if they can load an undetermined file, they are
tried in order of priority. If your load code can make a positive determination that it
has the correct file (e.g.by looking for some magic combination of characters at the start
of the file) and can throw an exception if it tries loading an incorrect file, then you can
give it a lower priority number to force it to run earlier. Conversely if your only way
of identifying your own files is seeing they make sense when you try to load them and
that you might partially succeed with a file from another system (as can happen if you
have a tab or comma separated text file), then you should raise the priority number.
Currently DataFolder defaults to 32, CSVFile and BigBlueFile have values of 128
and 64 respectively.

If you need to write any additional methods please make sure that they have DoxyGen
document strings so that the API documentation is picked up correctly.

30 January 8, 2014

	Introduction
	Getting the Stoner Package
	Getting the Latest Development Code

	Using the Stoner Package
	Documentation
	Users' Guide

	Loading a data file
	Loading Data from a stromg or iterable object

	Examining and Basic Manipulations of Data
	Data Structure
	Data, Column headers and metadata
	Masked Data and Why You Care
	Working with columns of data
	Working with complete rows of data
	Manipulating the metadata
	More on Indexing the data
	Selecting Individual rows and columns of data
	Find out more about the data
	Copying Data

	Modifying Data
	Appending data
	Working with Columns of Data
	Rearranging Columns of Data
	Renaming Columns of Data
	Inserting Columns of Data
	Deleting Rows of Data
	Deleting Columns of Data
	Sorting Data

	Saving Data

	Plotting Data
	Plotting 2D data
	Plotting 3D Data
	Getting More Control on the Figure

	Manipulating and Analysing Data
	Manipulating Data
	Curve Fitting
	Simple polynomial Fits
	Simple function fitting
	Fitting with limits

	More AnalyseFile Functions
	Applying an arbitary function through the data
	Basic Data Inspection
	Thresholding and Interpolating Data
	Smoothing and Differentiating Data
	Peak Finding

	Non-linear curve fitting with initialisation file

	Working with Lots of Files
	Getting a List of Files
	Doing Something With Each File
	Sorting, Filtering and Grouping Data Files

	Cookbook
	The Utils module
	Extract X-Y(Z) from X-Y-Z data
	Mapping X-Y-Z data to Z(X,Y) data

	Developer's Guide
	Adding New Data File Types

