
Free group automorphisms and train-tracks with

Sage

User’s Guide

Thierry Coulbois

March 17, 2016

1 Introduction

The Train-track package was first written by Thierry Coulbois and received
contributions by Matt Clay, Brian Mann and others.

It is primarily intended to implement the computation of a train-track rep-
resentative for automorphisms of free groups as introduced by M. Bestvina and
M. Handel [1].

Sage is based on Python. This is an object oriented language: the post-
fix convention is used. For instance phi.train-track() applies the method
train-track() to the object phi. Note that method is the object oriented
linguo for what mathematicians call “function”.

You can always ask for automatic completion and help by using the TAB
key:

1. Hitting the TAB key after a letter offers all possible completions known
to Sage.

2. Hitting the TAB key after a dot shows all methods that can be applied to
that object.

3. Hitting the TAB key after an opening parenthesis gives help on how this
method should be used.

Most methods have verbose options to display intermediate computations.
They are turned off by default, but you can supply a verbose=True option or
any non-negative number to get extra details.

The main documentation for using this package is inline help and automat-
ically created documentation. This User guide is only intended for beginners
and general structure.

2 Installation and files

To use this package you first need a recent distribution of Sage. We recommand
that you run the latest version. Sage is constantly under development, so check
regularly at https://sagemath.org. Then you need to download the files from
https://github.com/coulbois/sage-train-track. We hope that soon this
package will be part of the Sage distribution.

1

https://sagemath.org
https://github.com/coulbois/sage-train-track

3 Free groups and automorphisms

3.1 Creating free groups

Probably you first need to create a free group. It can be specified by its rank
or a list of letters. You can also first create the alphabet.

sage: F=FreeGroup(3); F

Free group over [’a’, ’b’, ’c’]

sage: F=FreeGroup([’x0’,’x1’,’x3’,’x4’]); F

Free group over [’x0’, ’x1’, ’x3’, ’x4’]

sage: A=AlphabetWithInverses(5,type=’a0’)

sage: F=F(A); F

Free group over [’a0’, ’a1’, ’a2’, ’a3’, ’a4’]

You can declare anything to be a letter, but beware that if letters are not single
ascii characters (like ’x0’), you will need to be careful while going from Strings
to Words.

3.2 Free group elements

Free group elements are words. They are created by

sage: F=FreeGroup(3)

sage: F(’abA’)

word: abA

sage: w=F(’abAaab’); w

word: abAaab

sage: w.reduced()

word: abab

Note that they are not reduced by default.
Words can be multiplied and inverted easily:

sage: w=F(’abA’)

sage: w*w

word: abbA

sage: w.inverse()

word: aBA

sage: w**5

word: abbbbbA

Warning: be careful when the free group alphabet is not made of ascii letters:

sage: A=AlphabetWithInverses(3,type=’x0’)

sage: F=FreeGroup(A)

sage: ws=’x0X0x1’

sage: w=F(ws); w

word: ’x0X0x1’

sage: w.reduced()

KeyError: ’x’

sage: w=F([’x0’,’X0’,’x1’]); w

word: x0,X0,x1

sage: w.reduced()

word: x1

2

3.3 Free group automorphisms

The creation (and the parsing) of free group automorphisms relies on that of
substitutions. Most of what you might expect should correctly create a free
group automorphism:

sage: phi=FreeGroupMorphism(’a->ab,b->a’); phi

Automorphism of the Free group over [’a’, ’b’]:

a->ab,b->a

Automorphisms can be composed, inverted (note that there is no test of invert-
ibility upon creation), exponentiated, applied to free group elements.

sage: phi=FreeGroupAutomorphism(’a->ab,b->ac,c->a’)

sage: phi=FreeGroupAutomorphism(’a->c,b->ba,c->bcc’)

sage: print phi*psi

a->a,b->acab,c->acaa

sage: print phi.inverse()

a->c,b->Ca,c->Cb

sage: print phi**3

a->abacaba,b->abacab,c->abac

sage: phi(’aBc’)

word: abC

There is a list of pre-defined automorphisms of free groups taken from the
litterature:

sage: print free_group_automorphisms.Handel_Mosher_inverse_with_same_lambda()

a->b,b->c,c->Ba

Also Free group automorphisms can be obtained as composition of elemen-
tary Nielsen automorphisms (of the form a 7→ ab). Up to now they are rather
called Dehn twists.

sage: F=FreeGroup(3)

sage: FreeGroupAutomorphism.dehn_twist(F,’a’,’c’)

a->ac, b->b, c->c

sage: FreeGroupAutomorphism.dehn_twist(F,’A’,’c’)

Automorphism of the Free group over [’a’, ’b’, ’c’]:

a->Ca,b->b,c->c

sage: print FreeGroupAutomorphism.dehn_twist(F,’a’,’b’,on_left=True)

a->ba,b->b,c->c

If the free group as even rank N = 2g, then it is the fundamental group of
an oriented surface of genus g with one boundary component. In this case the
mapping class group of Sg,1 is a subgroup of the outer automorphism group of
FN and it is generated by a collection of 3g−1 Dehn twists along curves. Those
Dehn twists are accessed through:

sage: F=FreeGroup(4)

sage: print FreeGroupAutomorphism.surface_dehn_twist(F,2)

a->a,b->ab,c->acA,d->adA

Similarly the braid group BN is a subgroup of Aut(FN) and its usual gen-
erators are obtained by:

3

sage: F=FreeGroup(3)

sage: print FreeGroupAutomorphism.braid_automorphism(F,0)

a->c,b->b,c->caC

Finally for statistical purpose, one can access random automorphisms or
random mapping classes or random braids. The random elements are obtained
by composition of a given number of randomly chosen generators of these groups.

sage: F=FreeGroup(4)

sage: F.random_automorphism(8)

4 Graphs and maps

Graphs and maps are used to represent free group automorphisms. A graph here
is a GraphWithInverses: it has a set of vertices and a set of edges in one-to-one
correspondance with the letters of an AlphabetWithInverses: each non-oriented
edge is a pair {e, ē} of a letter of the alphabet and its inverse. This is complient
with Serre’s view [5, 6]. As the alphabet has a set of positive letters there is a
default choice of orientation for edges.

The easiest graph is the rose:

sage: A=AlphabetWithInverses(3)

sage: G=GraphWithInverses.rose_graph(A)

sage: print G

Graph with inverses: a: 0->0, b: 0->0, c: 0->0

sage: G.plot()

Otherwise a graph can be given by a variety of inputs like a list of edges, etc.
Graphs can easily be plotted. Note that plot() tries to lower the number of
accidental crossing of edges, using some thermodynamics and randomness, thus
two calls of plot() may output two different figures.

A number of operations on graphs are defined: subdividing, folding, collaps-
ing edges, etc. But, as of now, not all Stallings [7] moves are implemented.

Graphs come with maps between them: a map is a continuous map from
a graph to another which maps vertices to vertices and edges to edge-paths.
Again they can be given by a variety of means. As Graph maps are intended
to represent free group automorphisms a simple way to create a graph map is
from a free group automorphism:

sage: phi=free_group_automorphisms.tribonacci()

sage: print phi.rose_representative()

GraphSelfMap:

Marked graph: a: 0->0, b: 0->0, c: 0->0

Marking: a->a, b->b, c->c

Edge map: a->ab, b->ac, c->a

Remark that by default the rose graph is marked: it comes with a marking
from the rose (itself, but you should think of that one as fixed) to the graph.
Here the graph map is a graph self map as the source and the target are the
same.

Graph maps can also be folded, subdivided, etc. If the graphs are marked
then those operations will carry on the marking.

4

Note that to associate an automorphism to a graph self map that is a ho-
motopy equivalence we need to fix a base point to compute the fundamental
group. Thus if we do not fix the base point we only get an outer automor-
phism of the free group. However, the program do not handle directly outer
automorphism, rather f.automophism() returns an automorphism but with no
guarantee on how the base is chosen, thus this automorphism is an arbitrary
representative of the graph self map f . Moreover, if the base graph is not
marked, then the automorphism is only defined up to conjugacy in Out(FN).
In this case f.automorphism() returns an arbitrary automorphism in the conju-
gacy class. We provide a phi.simple outer representative() which return
an automorphism in the outer class of φ with the smallest possible length of
images.

5 Train-tracks

The main feature and the main achievement of the program is to compute train-
track representative for (outer) automorphisms of free groups. phi.train track()

computes a train-track representative for the (outer) automorphism phi. This
train-track can be either an absolute train-track or a relative train-track. The
celebrated theorem of M. Bestvina and M. Handel [1] assures that if Φ is fully
irreducible (iwip) then there exists an absolute train-track representing Φ.

The train track(relative=False) method will terminate with either an
absolute train-track or with a topological representative with a reduction: an
invariant strict subgraph with non-trivial fundamental group.

One more feature of train-tracks (absolute or relative) is to lower the number
of Nielsen paths. Setting the stable=True option will return a train-track with
at most one indivisible Nielsen path (per exponential stratum if it is a relative
train-track).

5.1 Examples

Let’s start with building absolute train-tracks.

sage: phi=free_group_automorphisms.tribonacci()

sage: phi.train_track()

Train-track map:

Marked graph: a: 0->0, b: 0->0, c: 0->0

Marking: a->a, b->b, c->c

Edge map: a->ab, b->ac, c->a

Irreducible representative

Indeed Tribonacci automorphism φ : a 7→ ab, b 7→ ac, c 7→ a is a positive auto-
morphism (also called substitution), and thus it defines a map from the rose to
itself which is a train-track map. Note that here the output is a TrainTrackMap.

sage: phi=FreeGroupAutomorphism("a->ab,b->ac,c->c")

sage: phi.train_track(relative=False)

Marked graph: a: 0->0, b: 0->0, c: 0->0

Marking: a->a, b->b, c->c

Edge map: a->ab, b->ac, c->c

Strata: [set([’c’]), set([’a’, ’b’])]

5

Here the automorphism is not irreducible (it fixes the free group element c).
And the algorithm correctly detect that by returning a stratified graph map.
Although the rose representative is reducible, it is a train track map (because
the automorphism is positive). But this is not detected by the train track()

method. We provide a is train track() method to test that.

sage: phi=FreeGroupAutomorphism("a->ab,b->ac,c->c")

sage: f=phi.rose_representative()

sage: f.is_train_track()

True

You can promote this map to become a TrainTrackMap by using TrainTrackMap(f).
This can be useful to compute Nielsen paths of such reducible train-track maps
(but this may cause infinite loops in the program).

Reducible automorphisms always have a relative train-track representative.

sage: phi=FreeGroupAutomorphism("a->ab,b->ac,c->c")

sage: phi.train_track()

Graph self map:

Marked graph: a: 2->0, b: 1->0, c: 0->0, d: 1->0, e: 2->0

Marking: a->Ea, b->Db, c->c

Edge map: a->b, b->ac, c->c, d->e, e->dAe

Strata: [set([’c’]), set([’a’, ’b’]), set([’e’, ’d’])]

(compare with the above example and note that the default option is relative=True).
Ask for details of the computation by setting option verbose=1 (or 2, or more).

The default option for this train track method is to set stable=True,
meaning that it looks for a stable train-track.

5.2 Train-tracks and graph maps

In the previous section we computed train-track representatives for automor-
phisms of free group. The process goes by building a graph self map on the rose
to represent the automorphism (this is called a topological representative and
then perform operations on this graph self map.

The graph on which the topological representative is built can be any kind of
our graphs: GraphWithInverses, MarkedGraph, MetricGraph, MarkedMetricGraph.
If the graph is not marked, then one give up the possibility to recover the origi-
nal outer automorphism from the train-track. Indeed, all outer automorphisms
in a conjugacy class in Out(FN) can be represented as the same homotopy
equivalence on a graph.

The train-track algorithm can be called directly on a graph self map f.train track()

with the same options as for automorpism but f will not be promoted to become
a TrainTrackMap even if it could. One can access intermediate operations like
f.stabilize(), f.reduce(), etc.

5.3 Nielsen paths

Nielsen paths are a main tool to refine the understanding of train-tracks and
of automorphisms of free groups. A Nielsen path for a graph self map f is
a path homotopic to its image relative to its endpoints. In our context, we

6

only compute and use Nielsen paths in the case of train-track maps (or relative
train-track maps).

Nielsen paths of a graph self map f can be computed f.indivisible nielsen paths().
The output is a list of pairs (u,v) of paths in the domain of f. The paths u and
v starts at the same vertex and the ends of the Nielsen path are inside the last
edges of u and v. We also provide the computation of periodic Nielsen paths,
that-is-to-say Nielsen paths of iterates of f. In this case a Nielsen path is coded
by ((u,v),period). To build longer Nielsen paths we need to concatenate
the indivisible ones and for that we need to encode the endpoints of periodic
Nielsen paths. This normal form for points inside edges is a little tricky and
can be obtained using TrainTrackMap.periodic point normal form().

6 More on free group automorphisms

We implemented the computation of other invariants for iwip automorphisms
of free groups. Beware, that Python and Sage let you check the requirements:
computing the index of a reducible automorphism may cause errors or infinite
loops by the program.

A graph self map as Whitehead graphs at each vertex and thanks to Brian
Mann, they can be computed. The Whitehead graph of a graph self map f :
G → G at a vertex v as the set of germs of edges outgoing from v as vertices
and as an edge for a germ from another if and only this turn is taken by the
iterated image of an edge. Stable Whitehead graphs are also available: they
only keep germs of edges which are periodic.

Finally the ideal Whitehead graph is an invariant of iwip automorphisms.
And we can compute them. From the ideal Whitehead graph one can compute
the index list and the index of an iwip automorphism of a free group.

Using the train track() method our program can decide wether an auto-
morphism is fully irreducible or not. If it is iwip, one can compute the index,
index-list or ideal Whitehead graphs. Not that these computations are done
using an absolute expanding train-track representative: they can be use for a
broader class than just iwip automorphisms.

7 Convex cores, curve complex and more

7.1 Metric simplicial trees and Outer space

The programm is also designed to handle trees in Outer space as well as sim-
plicial trees in the boundary of Outer space.

Recall that M. Culler and K. Vogtmann [2] introduced the Outer space of
a free group FN which we denote by CVN . Outer space is made of simplicial
metric trees T with a free minimal action of the free group FN by isometries.
Alternatively a point in Outer space is a marked metric graph T/FN .

Our classes MetricGraph and MarkedMetricGraph allow us to handle points
in Outer space. In a metric graph edges of length 0 can be used as an artefact
to code simplicial trees with non-free action. For instance

sage: A = AlphabetWithInverses(3)

sage: G = MarkedMetricGraph.splitting(2,A)

7

sage: print G

Marked graph: a: 0->0, b: 0->0, c: 1->1, d: 0->1

Marking: a->a, b->b, c->dcD

Length: a:0, b:0, c:0, d:1

This graphs codes the splitting of the free group F3 = F2∗Z. HNN-splittings are
also available: MarkedMetricGraph.HNN splitting(). Thus the metric graphs
(with edges of length 0) are a convenient tool to work with the splitting complex.

Let us emphasize that the splitting complex of a free group is becoming a
popular tool after being proved hyperbolic by M. Handel and L. Mosher [4].

In the geometric situation, these non-free trees can be used to encode arcs
in the arc complex for a surface Sg,1 of genus g with one puncture, ideal arcs
(a curve from the puncture to itself) are in one-to-one correspondance with
splittings of the free group π1(Sg,1). They can also be used to study curve
diagram in the context of braid groups.

7.2 Convex cores

We also implemented the computation of V. Guirardel [3] convex core of two
simplicial trees in outer space and its boundary. The convex core is a square
complex inside the cartesian product T0×T1 of two trees with action of the free
group. Here it is encoded by its quotient C(T0×T1)/FN which is a finite square
complex. We have the convention that the convex core is connected and thus
we give up unicity: instead we include twice light squares inside the core.

The first way to create a convex core is by using a free group automorphism
phi. Then ConvexCore(phi) returns the convex core of the Cayley graph T0
of the free group with the tree T1 which is the same as T0 but with the action
twisted by phi.

sage: phi = FreeGroupAutomorphism.tribonacci()**3

sage: C = ConvexCore(phi)

sage: C.squares()

[[5, 0, 2, 1, ’b’, ’a’],

[5, 6, 4, 1, ’c’, ’a’],

[7, 0, 2, 3, ’c’, ’a’],

[3, 2, 6, 5, ’c’, ’b’]]

sage: C.one_squeleton(side=1)

Looped multi-digraph on 8 vertices

The second way involves creating the two trees. This requires the creation
of two marked graphs, which can be a little teddious, but some methods shorten
the typesetting.

sage: A = AlphabetWithInverses(3)

sage: G0 = MarkedGraph.rose_marked_graph(A)

sage: G1 = MarkedGraph(GraphWithInverses.valence_3(3))

sage: G1.precompose(phi)

sage: C = ConvexCore(G0,G1)

sage: C.volume()

Remark that if the automorphism is a mapping class and the trees are trans-
verse to ideal curves then the convex core (as a CW-complex) is homeomorphic
to the surface.

8

Index

alphabet, 2

base point, 5
braid, 3

curve complex, 8

Dehn twist, 3

elementary Nielsen automorphism, 3

free group, 2
free group automorphism, 3
free group element, 2
fully irreducible, 7

graph, 4
graph map, 4

ideal Whitehead graph, 7
indivisible Nielsen path, 5

mapping class group, 3
marked graph, 4
marking, 4
method, 1

Nielsen path, 5, 6

outer automorphism, 5
outer space, 7

periodic Nielsen path, 7
plot, 4

random braid, 4
random automorphism, 4
random mapping class, 4
relative train-track, 6
rose, 4

splitting, 8
stable train-track, 6
substitution, 5
surface Dehn twist, 3

topological representative, 6
train-track, 5

Whitehead graph, 7

9

References

[1] Mladen Bestvina and Michael Handel, Train tracks and automorphisms of
free groups, Ann. of Math. (2) 135 (1992), no. 1, 1–51. MR MR1147956
(92m:20017)

[2] Marc Culler and Karen Vogtmann, Moduli of graphs and automorphisms of
free groups., Invent. Math. 84 (1986), 91–119 (English).

[3] Vincent Guirardel, Cœur et nombre d’intersection pour les actions de groupes
sur les arbres, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 6, 847–888.
MR MR2216833 (2007e:20055)

[4] Michael Handel and Lee Mosher, The free splitting complex of a free group,
I: hyperbolicity, Geom. Topol. 17 (2013), no. 3, 1581–1672. MR 3073931

[5] Jean-Pierre Serre, Arbres, amalgames, SL2, Société Mathématique de
France, Paris, 1977, Avec un sommaire anglais, Rédigé avec la collabora-
tion de Hyman Bass, Astérisque, No. 46. MR 0476875

[6] , Trees, Springer Monographs in Mathematics, Springer-Verlag,
Berlin, 2003, Translated from the French original by John Stillwell, Cor-
rected 2nd printing of the 1980 English translation. MR 1954121

[7] John R. Stallings, Topology of finite graphs, Invent. Math. 71 (1983), no. 3,
551–565. MR MR695906 (85m:05037a)

10

	Introduction
	Installation and files
	Free groups and automorphisms
	Creating free groups
	Free group elements
	Free group automorphisms

	Graphs and maps
	Train-tracks
	Examples
	Train-tracks and graph maps
	Nielsen paths

	More on free group automorphisms
	Convex cores, curve complex and more
	Metric simplicial trees and Outer space
	Convex cores

