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1 Introduction
In order to produce electricity, a solar cell must first absorb photons, and thus maximizing how much sunlight
is absorbed by a solar cell is unsurprisingly an important research area for improving solar cell efficiency.
Light-trapping strategies range from relatively simple, for example the use of reflective materials such as
metals at the rear surface of a cell, to highly-engineered nanophotonic structures to maximize broadband
absorption of sunlight in very thin layers. Strategies to maximize absorption fall broadly into two categories:
minimizing front-surface reflection, and making sure light which is able to enter the cell remains trapped
until it is absorbed in the photovoltaic layers (some structures, such a pyramids on an Si cell, may perform
both of these functions).

The optical design of solar cells is extremely important for all types of device, whether they are III-
V-based, (multi)-crystalline or amorphous Si, thin-film devices, organic materials or otherwise. There are
many strategies for increasing the path length inside the cell to increase absorption, e.g. causing light to
travel at a more oblique angle and/or have multiple passes due to internal reflection. Assuming light enters
perpendicularly to the cell interface with no front surface reflection and makes a single pass through the
cell, and is not reflected at the back surface, the total absorption in the layer will be given simply by the
Beer-Lambert law:

ABL = 1− e−αd (1)

A theoretically simple enhancement which significantly boosts absorption in a cell is to assume perfect
rear reflection, so that the light makes a double pass through the cell (again, assuming normal incidence):

θ
a) b)

Figure 1: Optical sheets with a) planar surface and b) a randomizing surface texture with acceptance angle
θ.
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ADP = 1− e−2αd (2)

However, absorption can be improved further by scattering the light into more oblique angles inside the
cell, increasing the path length. A theoretical upper limit to absorption enhancement can be derived using
a thermodynamic approach; according to Minano [1], in this limit the average path length of rays entering
into a cell is given by:

l̄th ≤ 4n2

sin2(θ)
(3)

With the upper limit occurring when all ray paths in the cell are illuminated at maximum brightness [2].
The angle θ is the “angular acceptance” of the cell: only incident light within a cone of θ from the surface
normal can enter the cell (see Fig. 1). In general, for a planar surface being illuminated isotropically, light
may enter from any θ between 0 and 90◦, and the expression for the limit reduces to:

l̄Lam = 4n2 (4)

Yablonovitch and Cody [3] showed that the mean path length for ideal Lambertian scattering is identical
to equation 4; a Lambertian scatterer is an ideal diffuse reflector, having the same radiance (radiant flux
per unit projected unit solid angle) regardless of the viewing angle. This increase in path length leads to an
absorption given by:

AYC =
4n2αd

1 + 4n2αd
(5)

In fact, although this value can be computed at any wavelength with corresponding values of n and α, it
is only physically meaningful in the limit of low absorption (α → 0). Green [4] generalized the Lambertian
limit over all wavelengths, giving:

AGreen =
1− e−4αd

1−
[
1− 1

n2

]
e−4αd

(6)

As expected, AGreen reduces to AYC in the limit αd ≪ 1, so that e−4αd ≈ 1− 4αd.
Practically, increased path lengths inside cells can be achieved in various ways, including through diffrac-

tion gratings [2, 5], random or periodic scattering structures [6], reflectors [3], and plasmonic structures
involving metals [7, 8]. Such structures can be placed on the front and/or rear of the cell, or even between
junctions of a multi-junction cell [5] depending on the device design. Highly efficient Si cells generally have
random or regular pyramidal textures to reduce front-surface reflectivity, and increase path length inside
the cell by redirecting light into more oblique angles and increasing internal reflection [9, 10, 11]. The
Green/Lambertian limit applies to the maximum possible amount of broadband path enhancement with-
out wavelength restriction. However, in a solar cell, we generally only require light-trapping over a limited
wavelength range, generally at energies just above the bandgap where absorption is weakest, and thus it
is possible to exceed the Green limit over a limited wavelength range [12, 2, 13, 14, 15] by using periodic
scattering structures.

Optical simulations are key in developing, analysing and optimizing novel concepts for light-trapping
architectures. Depending on the device structure and light-trapping strategies used, very different modelling
methods may be appropriate. Some of these methods include:
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1. The Beer-Lambert law (eq. 1), describing absorption in a bulk material without scattering or additional
front surface or interface reflections; it is often used in conjunction with other methods or to provide
initial estimates of the absorption.

2. Ray-tracing. A geometrical optics method in which light is treated as a collection of rays which can
reflect or refract at material interfaces. These methods are appropriate when describing the interaction
of light with material layers and features with characteristic sizes much larger than the wavelength, a
regime in which wave-optical effects such as diffraction and interference can be neglected.

3. Transfer-matrix method (TMM) [16]. A wave-optical method which deals correctly with the reflection
of light at multiple interfaces, and resulting interference. This method can only describe planar layers;
any structure such as a grating or nanoparticles can only be described using an effective medium
approximation (EMA) which treats the structure as a one-dimensional layer with an effective refractive
index.

4. Rigorous coupled-wave analysis [17, 18]. A wave-optical Maxwell solver also referred to as the Fourier
modal method (FMM). RCWA is a method for solving Maxwell’s equations in layer stacks which may
contain structures such as gratings.

5. Guided mode analysis [19, 20]. By treating the solar cell as a waveguide, in which certain guided
modes can be excited through diffraction by a periodic structure (depending on the geometry and
period of the grating). However, the effectiveness of diffraction into each possible mode will depend on
the precise specifications of the grating, and thus this method can only predict where resonant features
may occur; thus it can be used to inform the development of structures alongside e.g. RCWA.

Separate implementations for each of these methods exist, but for certain light-trapping architectures
which combine optical features over multiple length scales, it may not be physically appropriate or computa-
tionally efficient to use a single method for the full structure. For example, for a silicon cell with a thickness
on the order of 100 µm with a rear-side grating with a period of 1 µm [21] it is possible to use a Maxwell solver
such as RCWA, or alternative Finite Element (FEM) or Finite Difference Time Domain (FDTD) methods,
to describe the behaviour of the full structure, but this will be extremely inefficient computationally due to
the very large difference in feature sizes between the bulk thickness and the grating. Another technologically
relevant example is the implementation of perovskite on Si tandem cells; the thin perovskite layers will need
to be treated with e.g. TMM, while the silicon cell will generally be more suited to geometric optics (ray-
tracing) methods if it has a pyramidal texture [22]. These problems have led several groups to independently
develop matrix methods which can combine different optical methods across interfaces; implementations
include GenPro4, developed by Santbergen et al. at TU Delft [23], the OPTOS formalism developed by
Tucher, Eisenlohr et al. at Fraunhofer ISE [11, 24] and by Li et al. at UNSW Sydney [25]. For e.g. thin-film
on Si tandem cells, methods combining ray-tracing for the pyramidal textures with reflection, transmission
and absorption probabilities calculated through TMM have also been developed both in conjunction with
general matrix methods, as for GenPro4 [23] or separately, including the CROWM simulator by Lipovšek
et al. [26] (University of Ljubljana). RayFlare [27] combines several optical simulation methods into one
open-source Python package.

Accurate and efficient optical modelling of different types of structures (planar vs. structured layers,
random vs. periodic structures, nano vs. micro-scale or larger) requires the use of different computational
methods. Although in principle most problems can be solved by the most sophisticated type of solver
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available (in the case of the types of optical simulations we are considering, a full Maxwell solver), this
is often not computationally efficient and can be less insightful than using a method with appropriate
simplifications for the structure being considered. For instance, modelling micron-sized pyramids with a
Maxwell solver such as RCWA or FDTD (finite-difference time-domain), or using RCWA to calculate the
effect of a distributed Bragg reflector (DBR) made of planar layers, is possible and should yield correct
results but is both computationally slow compared to a more physically appropriate method (e.g. ray-
tracing and TMM, respectively, for the examples given), and does not generally lend additional insight into
the physical processes that choosing a suitable simpler model would not. Especially if the problem being
considered has an optimization aspect, requiring the simulation of many different structures, it is important
to choose a modelling method which can accurately describe the relevant structure but is not unnecessarily
computationally intensive. The development of RayFlare began due to a desire to integrate the various
optical modelling codes developed and adapted for different types of problems over the course of the PhD
into a single user-friendly Python package, which can be used to solve a wide range of optical problems by
implementing ray-tracing, TMM, RCWA, simple Beer-Lambert law absorption, analytic models for surface
scattering (e.g. perfect mirrors or Lambertian scattering) and an angular matrix formalism [24, 11]. The
angular matrix formalism allows coupling of surfaces treated with the same or different optical methods
across a thick, incoherent layer. By using Solcore’s [28] material system and database, and ability to define
new materials easily it thus becomes possible to model the wavelength-dependent optical behaviour of a wide
variety of structures including structures involving planar layers of any thickness, structures with diffraction
gratings, or structures with larger-scale textures such as pyramids. Combining e.g. a structure with pyramids
on one side and a diffraction grating on the other is possible through the matrix framework, and comparison
with idealized cases such as a perfect mirror or Lambertian scattering is easy and fast.

The matrix framework used is similar to OPTOS [11, 24]. It divides the optical structure into three
parts: the front surface, the bulk, and the back surface1. The front and back interfaces may be made up
of several layers, or be textured, as long as there is a way to calculate the reflection and transmission for
different angles of incidence, as well as (if relevant) the absorption in each layer of the interface. The matrix
method itself is straightforward, and essentially amounts to matrix multiplication. For both interfaces, using
any suitable optical method (e.g. TMM, ray-tracing, RCWA, or analytical expressions), a matrix must
be constructed which describes how light incident on the interfaces is redistributed into other angles, or
absorbed. In two dimensions, with a non-absorbing interface, this matrix will relate some polar angle θin

to one or more θout, with the matrix elements describing what fraction of incident light is directed into
each outgoing angle. This can be expanded to three dimensions by including an azimuthal angle ϕ [11].
The angular matrix framework and structures of the matrices in 2D, specifically using an integrated ray-
tracing/TMM approach, are illustrated in Fig. 2. The ray-tracer takes the probabilities of reflection and
transmission from an angle- and wavelength-dependent TMM calculation, to account for the multi-layer
structure of the front surface of a realistic solar cell. The OPTOS framework has been expanded since its
initial publication to include absorption in surface layers [30]; this ability was also developed independently
as part of RayFlare over the course of the PhD approximately simultaneously [27]. While the existing matrix
frameworks discussed above provide methods for combining different surface textures, there is no existing
open-source modelling package which combines the angular matrix method with the actual generation of the
matrices describing the redistribution at each interface. OPTOS provides only the matrix multiplication for

1The formalism could also be expanded to a stack with multiple interfaces and several ‘bulk’ materials, though this has not
yet been implemented.

4



Figure 2: Schematic of the angular matrix framework, specifically when used with the integrated ray-
tracing/TMM method, showing a) the function of the matrices B, C and D; b) how the matrix B could be
calculated through ray-tracing; and c) how the TMM can be used with the ray-tracer to calculate reflection,
absorption and transmission for a multi-layer surface. From [29].

calculating absorption in the bulk layers, but the matrices have to be computed and stored in the correct
format by the user using external methods, while GenPro4 [23] is a proprietary software which combines
the matrix approach with the generation of matrices but does not include an RCWA solver or other method
for calculating diffraction from wavelength-scale periodic structures. The aim of RayFlare is to provide a
free, open-source solution integrating both the generation of the matrices and the matrix multiplication to
generate useful results, as well as tools for visualizing the outputs and matrices generated.

This section describes the work undertaken so far in developing the integrated optical modelling pack-
age RayFlare. The new ray-tracing implementation, developed specifically for RayFlare, is discussed first,
followed by the description of the matrix method and validation of the various methods contained within
RayFlare.

2 Ray-tracing
The ray-tracer used was written in Python3 specifically for use with RayFlare. The basis of the ray-tracer
is the definition of a surface in terms of the Delaunay triangulation of a set of (x, y, z) points which define a
surface, and the intersection of rays (directed lines) with those triangular planes. The surface could be very
simple, such as regular V-grooves or pyramids (see Fig. 6a), or a more complicated surface based on e.g. an
AFM scan of a real surface structure.

The equations for a point on a line l (i.e. a ray) and a triangular plane p (i.e. one of the planes defining
the surface) can be expressed in parametric form as:
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l = la + dt

p = p0 + p01u+ p02v
(7)

where d is a vector pointing in the ray’s direction of travel. The meaning of the symbols relating to
the line-plane intersection is shown in Fig. 3a. Setting the RHS of both equations in eq. 7 equal to one
another (which occurs at the intersection of the line l and the plane p) and rearranging, the following matrix
equation can be found:

[la − p0] =
[
−d p01 p02

] t

u

v

 (8)

Note that since d, p01 and p02 are vectors, the first term on the RHS of this equation is a 3 by 3 matrix.
This matrix equation can be solved in the standard way, by inverting the matrix, which after rearranging

and multiplying out gives:

t =
(p01 × p02) · (ra − p0)

−d · (p01 × p02)

u =
(p02 ×−d) · (ra − p0)

−d · (p01 × p02)

v =
(−d× p01) · (ra − p0)

−d · (p01 × p02)

(9)

For the intersection of a triangular surface with corners at p0, p1 and p2, with a forward-travelling ray,
the following must be satisfied:

• t > 0, since the ray is travelling forward; t < 0 means the intersection point lies behind the point of
origin of the ray

• u > 0 and v > 0 for the point to lie inside the triangle

• u+ v ≤ 1 for the point to lie inside the triangle

This calculation is straightforward to carry out for all the triangles which define a surface; however,
looping through each surface and checking whether the ray intersects with it is computationally inefficient.
For a complicated surface, such as one defined by an AFM scan, there may be hundreds or thousands
of individual triangles; even for a single square-based pyramid, there are four surfaces to check. Thus,
vectorizing this calculation so that for any given line, all surfaces can be checked at once using matrix
operations will lead to much faster code. This can be done by defining matrices P0, P1 and P2 which contain
the p0, p1, and p2 points of all the surfaces in the triangulation, and matrix versions of d and ra:

P0 =


p0,I

p0,II

...
p0,N

 Ra =


ra

ra
...
ra

 D =


d

d
...
d

 (10)

where in the first equation, p0,I refers to the p0 coordinates of the first triangle in the surface triangulation,
p0,II refers to the second triangle, etc.
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Figure 3: a) Intersection of a line with a finite, triangular plane. b) Reflection and transmission of a ray
through an interface (in this case, from low to high refractive index).

Eq. 9 has some vectors which appear multiple times. Matrix forms of these values can be computed
once, then used in the calculation of matrix forms of t, u and v. The following quantities are defined:

C =


(p1,I − p0,I)× (p2,I − p0,I)

(p1,II − p0,II)× (p2,II − p0,II)
...

(p1,N − p0,N )× (p2,N − p0,N )

 = P01 × P02 (11)

C is a matrix with dimensions (ntriangles, 3) and contains the cross products of p01 and p02 for each of
the N triangles in the surface (one cross product per row). The ‘×’ symbol in the final expression is used to
mean the row-wise cross product rather than the more standard cross or outer product. Note that because C
depends exclusively on the surface itself and not on the incident ray, it can be computed before ray-tracing
begins and stored for use in each call of the check_intersect function (see Listing 1). The vector version of
the denominator factor common to the expressions of t, u and v is:

Pi =
1∑

j(−D ⊙ C)ij
(12)

Pi is a vector where the number of elements is equal to the number of triangles which define the surface.
The ‘⊙’ symbol is used to mean element-wise multiplication of the values in the matrix. The sum over the
second matrix dimension j achieves the dot product per column (i.e. summing over the three dimensions after
multiplying element-wise). This factor can be recognized as the denominator common to the expressions for
t, u and v in eq. 9.

Finally, the matrix version of the (ra − p0) factor common to t, u and v is defined simply as X = Ra−P0.
Combining all this, and considering the relevant cross products and dot products, the vector versions of

t, u and v can be written as:
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ti = Pi

∑
j(C ⊙X)ij

ui = Pi

∑
j [(P02 ×−D)⊙X]ij

vi = Pi

∑
j [(−D × P01)⊙X]ij

(13)

Note that throughout this section the use of indexing subscripts is not Einstein notation (summation of
repeated indices is not implied – summation is explicitly denoted), but refers explicitly to which elements
of the vectors should be multiplied together to give the ith element of t, u, and v. Computationally, all
elements of t, u and v are calculated simultaneously using array multiplication in Python. Once t, u and
v are computed, the conditions for intersection given above are checked simultaneously using logical ‘and’
statements to determine whether there is an intersection with each surface, resulting in a vector of ‘True’
and ‘False’ values with length equal to the number of triangles. Depending on the incident ray and surface,
there may be more than one ‘True’ entry in the vector (the ray travelling in the forward direction can
strike more than one triangle in the surface if allowed to continue travelling indefinitely); thus, if there are
multiple intersections, the intersection with the minimum value of t is found, corresponding to the closest
triangle. The location of the intersection is then given simply by x = ra + tmind. The surface normal and
thus the local angle of incidence between d and the surface normal are also calculated, since this is needed
to calculate the reflection and transmission probabilities using either the Fresnel equations directly, or the
TMM if a multi-layer surface is being considered.

The check_intersect function (Listing 1) implements the mathematical procedure as outlined, and forms
the core of the ray-tracing algorithm. In order to treat a real structure, multiple auxiliary functions are
needed, which define the triangulated surfaces, materials and implement scanning across the surface for a
large number of rays. The reflection and refraction of light in three dimensions, with the correct wavelength-
dependent refractive index of the material on each side of the surface, must also be implemented:

d⃗r = d⃗− 2d⃗⊥ = d⃗− 2
(
d⃗ · N⃗

)
N⃗

d⃗t,∥ = n0

n1
d⃗∥ = n0

n1

(
d⃗−

(
d⃗ · N⃗

)
N⃗
)

d⃗t,⊥ = −
√
1−

∣∣∣d⃗t,∥∣∣∣2N⃗
d⃗t = d⃗∥ + d⃗⊥

(14)

which is shown schematically in Fig. 3b. d⃗ is the unit direction vector of the incoming ray, while d⃗r

and d⃗t are the directions of the reflected and transmitted ray, respectively. N⃗ is the normal to the plane,
pointing into the half-plane from which the ray d⃗ is entering. During reflection of the ray, the component
of the ray perpendicular to the surface is flipped, while in transmission the component of the ray parallel
to the surface obeys Snell’s law (n0 sin θ0 = n1 sin θ1, or in vector notation n0d⃗∥ = n1d⃗t,∥). The parallel (∥)
and perpendicular (⊥) components are as indicated in Fig. 3b.

This describes a single interaction of the ray with a specific point of intersection with one triangular
plane in the surface texture, but each ray must be tracked through the surface since in general a ray may
interact with the same surface multiple times before being reflected or transmitted into the material above
or below. Intersections with the surface texture inside one unit cell are checked until no further intersections
are found; the ray is then translated back into the unit cell at the point where it would enter the next unit
cell of the structure, assuming it is periodic in the x and y directions. This procedure is repeated until the
ray is fully below (lower than the minimum point on the surface) or above (higher than the highest point on
the surface) the triangulated surface. A diagram of a ray interacting with a square-based pyramid texture,
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Figure 4: a) Schematic of three-dimensional ray-tracing for pyramids. b) Illustration of the meaning of the
local angle of incidence θl and the global angle of incidence θg.

interacting with multiple interfaces, is shown in Fig. 4a. In order to accurately capture the behaviour of a
surface, the unit cell defining the surface must be scanned, since a ray striking e.g. the top of a pyramid
will behave differently to a ray which strikes the structure near the base. The reflection and transmission
probabilities can be calculated directly from the optical constants of the interface materials using the Fresnel
equations, or calculated through TMM (see Section 2.2).

Code Listing 1: The check_intersection function which forms the basis of RayFlare’s ray-tracing algorithm.
def check_intersect (r_a , d , t r i ) :

D = np . t i l e ( -d , ( t r i . s i ze , 1) )
pre f = 1 / np . sum(D * t r i . crossP , axis=1)
corner = r_a - t r i .P_0s
t = pref * np . sum( t r i . crossP * corner , axis=1)
u = pref * np . sum(np . cross ( t r i .P_2s - t r i .P_0s , D) * corner , axis=1)
v = pref * np . sum(np . cross (D, t r i .P_1s - t r i .P_0s) * corner , axis=1)

which_intersect = (u + v <= 1) & (np . a l l (np . vstack ((u , v) ) >= -1e -10 , axis=0)) & ( t > 0)

i f sum(which_intersect ) > 0:

t = t [ which_intersect ]
P0 = t r i .P_0s [ which_intersect ]
P1 = t r i .P_1s [ which_intersect ]
P2 = t r i .P_2s [ which_intersect ]
ind = np . argmin ( t )
t = min( t )

intersn = r_a + t * d
N = np . cross (P1 [ ind ] - P0 [ ind ] , P2 [ ind ] - P0 [ ind ] )
N = N / np . l i n a l g . norm(N)

theta = atan (np . l i n a l g . norm(np . cross (N, -d) )/np . dot (N, -d) ) # in radians , angle r e l a t i v e
to plane

return [ intersn , theta , N]
e l s e :

return False
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Figure 5: a) Comparison between the calculated reflection (total reflection and front surface reflection, R0),
transmission and absorption for a c-Si wafer, calculated using the widely-used PVLighthouse wafer ray-tracer
[31] and the new Python3-based ray-tracer built for RayFlare. The structure considered is 300 µm of c-Si
[32] with regular inverted pyramids with an elevation angle of 55◦ and base width 2 µm on the front surface.
The rear surface is planar, and the surrounding medium is air. b) Comparison of the calculated path length
enhancement using both methods.

Note that once an intersection has been found, before continuing to see if there are other intersections
with the surface, the ray-tracer advances the ray by an infinitesimally small amount (d × 10−9), otherwise
the same intersection would immediately be found again. It is possible to use the ray-tracer in conjunction
with the matrix method (Section 2.3) to calculate the angular redistribution of light at one interface, or to
track the rays throughout the whole structure, interacting with the front and back surfaces until the ray is
absorbed, transmitted, or reflected.

2.1 Model validation

To check if the ray-tracing algorithm is performing as expected, its results were compared to the widely-used
PVLighthouse wafer ray-tracer [31], which is available as an online tool. Note that the matrix framework
discussed below was not used in these simulations; ray-tracing was used to track the full path of rays through
the structure. The same structures are defined in RayFlare and the PVLighthouse ray-tracer, consisting of
a 300 µm thick Si wafer (optical constants in both cases were taken from [32]). The front surface of the
wafer is textured with regular inverted pyramids with an opening angle of 55◦ while the rear of the cell is
planar. The results in terms of total absorption, transmission, front surface reflection R0, and total reflection
calculated through both methods are shown in Fig. 5, showing very close agreement between both ray-tracing
implementations. The total reflection includes the front surface reflection, i.e. light which is reflected during
the first interaction of the incident light with the wafer, and escape reflection caused by rays which escape
when light hits the front surface of the cell from the inside.

In addition, the results for the path length enhancement in an Si substrate patterned with random
pyramids and regular pyramids depending on the substrate thickness are shown in Fig. 6. In both the
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Figure 6: a) Example of a Delaunay triangulation surface object used for ray-tracing both regular and
random pyramids. b) Comparison between the path length enhancement at 1100 nm compared to a single
pass through a 200 µm Si substrate for structures with random (pink circles) and regular pyramids (blue
diamonds) on the front surface, and a planar rear surface. The open symbols show the calculated data while
the line shows a three-point moving average.

regular and random cases, the opening angle of the pyramids is 55◦, the typical opening angle for chemically
etched pyramids in Si. The size of the pyramids was set to 5 µm. The front surface is patterned with upright
pyramids while the rear surface is planar. The triangulated surface used for both regular and random
pyramids is shown in Fig. 6a; for the regular pyramids, the overall position in the unit cell is tracked while
the ray makes passes inside the cell, preserving the location information of the ray. To simulate the effect of
random pyramids, the same unit cell is used but the position of the ray is randomized before each interaction
with the front or rear surface (the direction vector is kept at the value calculated during the previous surface
interaction). The path length enhancement, depending on the Si thickness, at incident wavelength 1100 nm
(close to the bandgap of Si) is shown in Fig. 6b. Fig. 6b shows that the path length enhancement for
the regular pyramids is significantly lower than for the random pyramids. This is due to increased escape
reflection through the front surface due to the relationship between the location on a pyramid at which the
light enters the cell and the corresponding point on a pyramid which it will hit after traversing the cell.
For truly random pyramids, the ray should be equally likely to encounter any (x, y) position of the unit cell
with no correlation to its previous interaction with the surface, while for regular pyramids, there is a clear
geometric relationship between the face of the pyramid the ray strikes while entering the cell and the face
it will strike after traversing the cell and reflecting from the planar back surface, as discussed in detail in
[9]. This effect can enhance or reduce the light-trapping; if a ray strikes the equivalent face of a pyramid
through which it was coupled into the structure, it will be totally internally reflected back into the cell, while
if it strikes the opposite face, it is likely to couple straight out of the cell (the reflection probability below
the critical angle at an Si/air interface is around 30%). The results here are consistent with the predictions
in [9]: random pyramids on the front surface only, with a planar back surface, consistently perform better
than regular pyramids in a square grid, and are not very sensitive to the substrate thickness except a general
trend of increasing absorption as the thickness increases. Note that while the total absorption increases, the
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path length enhancement – the ratio of the fraction of light absorbed in the structure with light-trapping to
the fraction of light absorbed in a single pass of a planar cell, calculated through the Beer-Lambert law –
actually decreases, as shown in Fig. 6b. As the cell gets thicker, less absorption enhancement can be gained
from the light-trapping structures, as the light has an increasing probability of being absorbed in a single
pass. The performance of regular pyramids is extremely sensitive to the thickness of the substrate, shown by
the sharp oscillations in Fig. 6b. For regular pyramids, the predicted interval between substrate thicknesses
at which the path length enhancement reaches a local maximum is predicted to be [9]:

∆W ′ = (d/2) tan (θ1 + θ2) (15)

where θ1 = cot−1(
√
2) ≈ 0.615 and θ2 = sin−1 [(cos θ1) /n3] ≈ 0.233, giving ∆W ′ = 2.83 µm for d = 5

µm, matching the peak spacing observed in Fig. 6b.
The fact that regular pyramids consistently perform worse than random pyramids seems somewhat

counter-intuitive, since random pyramids must represent some average over many different regular struc-
tures, and thus there must be regular structures which outperform a random structure for any wafer thick-
ness and pyramid size. However, as shown in [9], these optimal regular structures are not structures where
the pyramids are on a regular square grid, but rather regular structures where the overall grid is periodically
staggered.

To further illustrate the effectiveness of randomizing the ray direction before rays return to a surface
with similar features, Fig 7 compares the absorption in Si at long wavelengths for multiple structures with
either regular V-grooves, random pyramids, or regular pyramids on the front surface and V-grooves, a planar
rear surface, a perfect mirror or a perfect Lambertian reflector (see Section 2.7) on the rear surface. In each
case, the feature size (pyramid base width or spacing between groove maxima) is 5 µm and the elevation
angle of the features is 55◦, with a substrate thickness of 100 µm. This means the front surface reflection for
normal incidence in all cases is very similar (around 10% for the wavelength range 800-1200 nm), as Fig. 7
demonstrates. However, the transmission through the back surface and escape reflection vary significantly
depending on the combination of front and rear surfaces. A structure with V-grooves on both sides performs
significantly better when the V-grooves on the two surfaces are perpendicular; in the crossed case, most rays
reaching the back surface cannot couple straight out by striking an equivalent surface to the one they entered
through, reducing transmission, and the direction of the rays is changed before they re-encounter the front
surface, thus also reducing escape reflection compared to the parallel case. Similarly, random front surface
pyramids significantly outperform regular pyramids; in this case, the difference is mainly due to a reduction
in escape reflection, since transmission through the planar back surface is similar. Random pyramids or a
Lambertian scattering back surface lead to more absorption, with the highest absorption at long wavelengths
achieved in the structure with random front pyramids and a Lambertian rear surface.

The results of the ray-tracing results are stochastic, as demonstrated by the fluctuations visible in the
results shown here; a summary of the convergence of the ray-tracing for different numbers of rays and
scanning points on the surface is shown in Appendix B.

2.2 Ray-tracing with integrated TMM

RayFlare can calculate the probability of reflection and transmission in the ray-tracer directly using the
Fresnel equations; however, the probabilities can also be calculated using TMM if there are multiple surface
layers, one or more of which may be absorbing. To be a useful approximation, the thickness of the surface

12



800 850 900 950 1000 1050 1100 1150 1200
Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

A 
/ R

0

R0

A

V-grooves both sides, same direction
V-grooves both sides, opposite direction
V-grooves front + perfect mirror
V-grooves front + Lambertian rear
Regular front pyramids + planar rear
Random front pyramids + planar rear
Random pyramids front + perfect mirror
Random pyramids front + Lambertian rear

Figure 7: Comparison of the bulk absorption and front surface reflection R0 for different structures with
increasingly Lambertian behaviour.

textures should be thinner than the lateral dimensions of the surface texture (Fig. 2).
Computationally, it was found to be much faster to use the TMM to pre-compute lookup-tables with

reflection, transmission and absorption probabilities which can be used as-needed by the ray-tracer, rather
than doing individual TMM calculations each time those probabilities are needed. The TMM capabilities of
RayFlare are based on the existing methods implemented in Solcore, which are vectorized over wavelengths,
and thus pre-computing the probabilities for a large number of incidence angles and the desired wavelength
values is relatively fast (taking a few seconds or minutes on a normal computer depending on the struc-
ture) compared to computing individual probabilities as-needed, especially for a large number of rays. The
downside is that these large arrays must be stored, as discussed in Section 2.8.

2.3 Matrix framework for multi-scale optical calculations

As discussed in the introduction, it is not always appropriate to treat an optical structure with a single
optical modelling method, for example because of diverging length scales (e.g. a diffraction grating with
a period of hundreds of nanometres in a cell with a thickness of hundreds of microns). This is where the
angular matrix method comes in; by calculating matrices which describe how incoming light is redistributed
into outgoing directions by one interface of a structure (or absorbed in interface layers), optical methods
can be combined across a single structure. The power fraction in each angular bin, P (θi, ϕj), at any point
within the simulation is represented as a vector v⃗:

v⃗ =



P (θ1, ϕ1)

P (θ1, ϕ2)
...

P (θ2, ϕ1)
...

P (θm, ϕn)


=



1

0
...
0
...
0


(16)
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Figure 8: Schematic showing the labelling conventions used in RayFlare.

The length of the vector is l, the total number of angle bins (combinations of θ and ϕ). The specific
example for v⃗ shown on the right-hand side of eq. 16 is for light incident from θ = 0◦ which has not yet
interacted with any texture. Often, this is the form v⃗0, the vector representing the incident light, will take.
The discretization of θ and ϕ used here is the one proposed for the three-dimensional implementation of
OPTOS [30]. The polar angle bins have equal sin(θ) spacing; this means the k vector of light projected onto
the surface planes has uniform spacing [24]. The azimuthal angle spacing is equidistant, and the number
of azimuthal angle bins for any polar angle bin is given by Nazimuth = ⌈cazimuth · rpolar ⌉, where r is the
index of the polar angle bin (starting from r = 1 for the θ = 0 bin), ⌈⌉ denotes rounding up the nearest
integer, and cazimuth is a number between 0 and 1 which describes how fine the discretization should be.
This discretization method means that the size of the angle bins when projected onto the plane in which the
surfaces lie is approximately equal for all bins. The value of cazimuth used for all results presented here is
1/4, demonstrated to give accurate results while reducing computation time relative to using cazimuth = 1

[11].
Fig. 8 shows an outline of how the propagation of light across a thick (compared to the wavelength of

light) layer with front and rear textures is described by RayFlare. The v⃗ vectors, with length l, describe
light propagating in the incidence or transmission medium, or within the structure, while the a⃗ vectors track
the light absorbed in the interface layers. The v⃗r and v⃗t vectors track light which travels into the semi-
infinite incidence and transmission media, respectively. Note that there is a difference between the meaning
of the v⃗f/v⃗b vectors inside the structure and the v⃗r/v⃗t vectors outside the structure; the former track the
total fraction of incident intensity left in the light propagating inside the structure over the course of the
simulation, while the latter track how much power escapes from the structure at each interaction with the
interface, and thus need to be summed over to give total reflection or transmission in each angular bin. The
a⃗ vectors have length equal to the number of layers in the corresponding interface.

The R and T matrices describe the redistribution of light into other angular channels at each interface,
either transmitted through the interface or reflected back into the same half-plane from which the light is
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incident. The R and T labels clarify whether the matrix describes reflection or transmission through an
interface, but could describe light incident from either the front or back of the texture; the subscripted ‘f ’ or
‘b’ labels are used to distinguish incidence from the front and back respectively (‘front’ meaning the side of
any interface closest to the incidence medium), while the subscripted number describes which interface the
matrices describe. For instance, matrix Tb,1 describes the angular redistribution when light incident from
the inside of the structure onto the back of the front interface is transmitted into the incidence medium. For
the 3D case, including azimuthal angle discretization, the matrices R and T take the form:

R,T =



p({θ1, ϕ1} → {θ1, ϕ1}) p({θ1, ϕ2} → {θ1, ϕ1}) . . . p({θn, ϕm} → {θ1, ϕ1})
p({θ1, ϕ1} → {θ1, ϕ2}) p({θ1, ϕ2} → {θ1, ϕ2}) . . . p({θn, ϕm} → {θ1, ϕ2})

... . . . ...

p({θ1, ϕ1} → {θn, ϕm}) p({θ1, ϕ2} → {θn, ϕm}) . . . p({θn, ϕm} → {θn, ϕm})


(17)

where p({θi, ϕj} → {θk, ϕl}) is the probability that light incident from a direction in the {θi, ϕj} bin is
scattered into a direction in the {θk, ϕl} bin.

The A matrices describing absorption take the form:

A =


p ({θ1, ϕ1} → A1) p ({θ1, ϕ2} → A1) · · · p ({θm, ϕn} → A1)

p ({θ1, ϕ1} → A2) p ({θ1, ϕ2} → A2) · · · p ({θm, ϕn} → A2)
...

... . . . ...
p ({θ1, ϕ1} → Ak) p ({θ1, ϕ2} → Ak) · · · p ({θm, ϕn} → Ak)

 (18)

Where p ({θ1, ϕ1} → A1) is the probability that light incident from a direction that falls in the {θ1, ϕ1}
bin is absorbed in layer 1 of the interface. The dimensions of the Af/b,i matrix depend on which interface it
is describing; the number of columns is l, as for the R and T matrices, while the number of rows is equal to
the number of layers in the interface with label i (thus the number of rows is interface-dependent, because
not every interface has the same number of surface layers). In this labelling convention, and the code, ‘layer
1’ of an interface is always the layer at the front (closest to the incidence medium), and not necessarily the
first layer the light encounters; light incident from inside the structure on the front surface would encounter
the kth layer first.

Note that while Fig. 8 shows the light travelling through the structure as discrete rays to avoid confusion,
light is generally scattered into multiple directions at each interface; the v⃗ vectors do not represent light
travelling in a single direction, but keep track of the fraction of the incident intensity in each angular bin.

The definition of the angles θ and ϕ is somewhat ambiguous; Fig. 9 shows how light interacting with an
interface with incident angles {θ1, ϕ1} is scattered into outgoing angles {θ2, ϕ2}. θ is the polar angle from
the positive z-direction, while ϕ is the azimuthal angle counter-clockwise from the x-axis (when viewed from
the z > 0 half-plane). This coordinate system fully describes three-dimensional space with ranges 0 ≤ θ < π

and 0 ≤ ϕ < 2π. Keeping the same definition of θ and ϕ, the scattered ray travelling away from the first
interaction in the {θ2, ϕ2} direction will then be incident on a subsequent surface with polar angle θ′2 = π−θ2

and azimuthal angle ϕ′
2 = π+ϕ2. The same coordinate system, with the z-axis pointing towards or into the

incidence medium of the structure, is used for all interfaces. The transformation θ → π − θ and ϕ → π + ϕ

is applied to angles describing ‘outgoing’ directions to convert them into ‘incoming’ directions after each
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Figure 9: Schematic of the angle conventions used in RayFlare, and how they are transformed for incoming
and outgoing light paths.

interaction with a surface (Fig. 9).2

Considering these definitions, it can be deduced that the R matrices describe light incident with some
value of θ scattered so the outgoing direction (prior to a transformation into an ‘incoming’ vector) is in the
same half-plane (so if θ < π/2 before the interaction, it remains so after the interaction with the surface, and
vice versa). The T matrices describe light where the value of θ is changed so the outgoing ray is travelling
into the other half-plane. The attenuation of the intensity in the bulk, which in these simulations are assumed
to be thick enough that interference effects within the bulk can be ignored, is described by matrix D using
the Beer-Lambert absorption law:

2Applying this transformation often does not affect the results, as surfaces with mirror symmetry along the x and y axes,
such as regular square-based pyramids or a square diffraction grating, are not affected by the transformations θ → π − θ and
ϕ → π + ϕ. However, implementing this transformation ensures the framework can be used for surfaces which do not exhibit
such symmetry.
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D =


e−αd/| cos θ1| 0 . . . 0

0
. . . 0

0
...

... 0

0 . . . 0 e−αd/| cos θm|


The absolute value sign ensures that it does not matter whether the D matrix is applied before or after

the transformation from outgoing to incoming direction, since cos(π − x) = − cos(x). There may be multiple
identical diagonal entries for each θ, depending on how many corresponding ϕ channels there are. The matrix
D has the same dimensions as R and T. Note that the Rb,1 and Rf ,2 matrices are equivalent to the B and
C matrices, respectively, in the OPTOS formalism [24]; the labelling of the D matrix in Fig. 8 is unchanged
from OPTOS.

After each surface interaction or pass through the bulk of the structure, the power remaining as a fraction
of the incident power can be calculated by adding up all the entries in v⃗ inside the structure:

P =

l∑
m=1

v⃗m (19)

Note that the sum here is over all the angular bins, of which there are l. The initial total power sums
to one:

∑l
m=1

⃗(v0)m = 1. With reference to Fig. 8 for the vector and matrix labelling, the absorption,
reflection and transmission can be calculated iteratively as follows:

First interaction with front surface:

v⃗f↓,1 = Tf ,1v⃗0

v⃗r,1 = Rf ,1v⃗0

a⃗1,1 = Af ,1v⃗0

(20)

Iterative calculation:

v⃗b↓,i = D v⃗f↓,i

a⃗2,i = Af ,2 v⃗b↓,i

v⃗t,i = Tf ,2 v⃗b↓,i

v⃗b↑,i = Rf ,2 v⃗b↓,i

v⃗f↑,i = D vb↑,i

a⃗1,i+1 = Ab,1 v⃗f↑,i

v⃗r,i+1 = Tb,1 v⃗f↑,i

vf↓,i+1 = Rb,1 vf↑,i

...

(21)

This iterative calculation can be repeated until the power remaining in the vector v⃗f/b describing light
travelling inside the structure is below a certain threshold defined by the user, i.e. all the light has been
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Figure 10: Schematic of a) the layout of the redistribution matrices for each surface and the angular vector
v⃗ and b) the corresponding processes at the interface.

absorbed, transmitted, or reflected. At this point, all the relevant information will be stored in the v⃗ and
a⃗ vectors. Although other values may be of interest, some of the most commonly-used quantities can be
calculated as:

Calculating absorption in the bulk:

A↓,i =
∑
l

v⃗f↓,i −
∑
l

v⃗b↓,i

A↑,i =
∑
l

v⃗b↑.i −
∑
l

v⃗f↑,i

Atotal =
∑
i

(A↓,i +A↑,i)

Calculating absorption per layer in the interfaces:

a⃗1 =
∑
i

a⃗1,i

a⃗2 =
∑
i

a⃗2,i

(22)

Calculating reflection and transmission per angular bin:

R(θ, ϕ) =
∑
i

v⃗r,i

T(θ, ϕ) =
∑
i

v⃗t,i

Calculating total reflection and transmission:

Rtotal =
∑
l

R (θ, ϕ)

Ttotal =
∑
l

T (θ, ϕ)

(23)
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The relationship of the different matrices Rf , Tb, Tf and Rb to values of θ for the ray before and after
interacting with a surface are shown in Fig. 10. Rf and Tf affect only downward-travelling rays (θin < π/2),
while Rb and Tb affect only upward travelling rays (θin > π/2). The R matrices will redistribute light into
the same half-plane while the T matrices will redistribute light into the other half-plane. Computationally,
this means that if full matrices and vectors with 0 ≤ θ ≤ π are used, three-quarters of the matrices and half
of the vectors v⃗ will, by definition, be empty during any given matrix multiplication. Thus, only the relevant
non-zero parts of the matrices and vectors are actually multiplied. The matrices Rb,2, Tb,2 and Ab,2,
corresponding to incidence from the back on the rear surface of the cell, are not automatically computed,
since it is assumed no light will enter the structure from the semi-infinite transmission medium.

The iterative nature of the calculations means that in addition to the values shown above, more complex
metrics can be tracked, e.g. how much of the incident power is absorbed on each pass of the bulk; the effect
of direct reflection R0 (due to the first interaction of the incident light with the front surface of the cell) and
escape reflection (due to light escaping into the incidence medium during subsequent interactions with the
front surface); or how much light is absorbed in the front interface layers due to light incident from outside
vs. inside the cell. Note that the dependence on wavelength of each of the matrices has not been made
explicit so far to simplify the description of the model, but in fact the iterative calculation is carried out
simultaneously for all wavelengths using three-dimensional arrays with dimensions wavelength, index of the
incoming angles, and index of the outgoing angles or absorbing layers (the Python package xarray is used
to deal with the high-dimensional arrays).

A key advantage of the matrix approach to optical modelling problems is that although changing either
of the surfaces means that the relevant R, T and A matrices must be recalculated using an appropriate
method, repeating the simulation with a different bulk thickness requires very little additional simulation
time as only matrix D has to be recalculated, which is computationally trivial. If only one of the surfaces
is changed, only the matrices for that surface need to be recalculated, rather than for the whole structure.
This is especially useful when comparing realistic structures with idealized textures (Section 2.7); comparing
the performance of a realistic back reflector or scatterer with that of a perfect mirror does not require
re-computing the behaviour of the whole structure, and is very fast because these matrices are trivial to
calculate.

2.4 Absorption in individual layers

Including absorption in the surface textures, in addition to bulk absorption and reflection/transmission at
the interfaces is a natural extension of the angular matrix framework; instead of light being redistributed into
other angles, it can be redistributed into a vector which describes absorption in each layer. This extension
was also developed for the OPTOS method [30], but was conceptualized and developed independently for
the RayFlare framework.

The ray-tracing method, whether used with the Fresnel equations or a lookup-table with values calculated
through TMM, is a Monte Carlo method and therefore inherently stochastic; rays can be reflected, absorbed,
or transmitted with some probability, depending on the structure being considered, the wavelength, and
the point of incidence on the surface. If lookup-tables for an interface with multiple layers are used, the
total probability of the light being absorbed anywhere in the stack is found by adding up the fraction of
incident light absorbed in each layer. It is not necessary to choose which layer the absorption takes place
in stochastically, since these probabilities are calculated exactly from the TMM; the choice of reflection,
transmission or absorption is made stochastically, but the distribution of absorbed photons between the
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layers can be done exactly based on the relative probabilities. Thus, if a ray is absorbed, RayFlare checks in
the lookup-table what the probability of absorption per layer is (for the correct wavelength, side of approach,
polarization and local incidence angle) and stores this information. At the end of the simulation, a matrix
can then be generated relating the global incidence angle in terms of θ and ϕ bins to the probability of
absorption in each layer; the intensity of absorbed rays is divided between the layers exactly based on the
relative probability of absorption in that layer. However, because the absorption probabilities per layer
are determined analytically using TMM while the fraction of rays reflected and transmitted are calculated
stochastically, the situation can arise that (e.g. for a two-layer stack) R+ T +Alayer 1 +Alayer 2

̸= 1. Thus,
when generating the final matrices at the end of the simulation for each wavelength, the total number of
rays which are not reflected or transmitted (i.e. must therefore have been absorbed) is stored, so that the
fraction of absorbed rays A is known for each global incidence angle. This is then used to scale the absorption
fractions per layer, so that

∑nlayers
i=1 Ai ≡ A.

2.5 Absorption profiles

When using the combined TMM/ray-tracing approach, it is possible to calculate absorption profiles within
the surface layers by considering the local incidence angle and using existing TMM methods to generate
absorption profiles. The absorption profile at a depth z in a coherent layer in a TMM calculation can be
expressed analytically as [16]:

a(z) = A1e
2z Im(kz) +A2e

−2z Im(kz) +A3e
2izRe(kz) +A∗

3e
−2izRe(kz) (24)

where kz = 2πn cos θ/λvac is the z-component of the wavevector k⃗. Eq. 24 can be found by calculating
−d(P · ẑ)/dz, the negative of the derivative with respect to the z position of the z-component of the time-
averaged Poynting vector P = 1

2 Re [(E
∗ ×H)]. Physically, A1 describes the intensity of the backward-

travelling wave in the layer, A2 describes the intensity of the forward-travelling wave, and A3 describes
interference between these waves. A1, A2 and A3 depend on the layer structure under consideration and the
wavelength. Note that if we consider a structure in which interference can be ignored, the expression for
a(z) at normal incidence simplifies to a(z) = A2e

−2z(2πκ)/λvac = A2e
−αz, which is the negative of the first

derivative with respect to z of the Beer-Lambert law (I = I0e
−αz with A2 = αI0), as expected.

When the TMM lookup-tables are generated, the relevant parameters (A1, A2, A3, and kz) used to
calculate the absorption profile for light incident on the layer stack from a specific (local) angle are stored
along with the reflection, transmission, and absorption probabilities. A1 and A2 are, by definition, real, while
kz and A3 are generally complex numbers for absorbing layers. During the ray-tracing process, the local
incidence angle for each ray which gets absorbed must be stored if the absorption profile is to be calculated,
so the correct values of the absorption profile parameters can be used (the difference between the overall
angle of incidence on the surface and the local incidence angle is shown in Fig. 4b).

There is an added complication related to the issue discussed above for calculating absorption per layer
in the combined TMM/ray-tracing approach; since the absorption fraction per layer has to be scaled to
ensure that R+A+T = 1 for each global incidence angle, it follows that A1, A2 and A3 must also be scaled
accordingly. In addition, the data in the R, A and T redistribution matrices is in terms of global incidence
angle, while the absorption profile depends on the local incidence angle. Thus, it is necessary to know the
relationship between the global incidence angle and the local incidence angle for rays which were absorbed.
Therefore, similar to the scaling to account for previous absorption, we must also scale the absorption profiles
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to account for how much of a contribution each local angle makes. For regular textures like pyramids, clearly
a global incidence angle will relate to only a small number of local incidence angles.

Although the intensity incident on the surface at each interaction can only be determined during the
full matrix calculation, the relationship between the global and local incidence angle and thus the scaling
required for A1, A2 and A3 is known after ray-tracing, before the matrix calculation takes place. During
the ray-tracing procedure, the relationship between the global incidence angle and the local incidence angle
for rays which are absorbed is recorded in a matrix, with rows describing the local incidence angle bins and
columns describing the global incident angle bin (in terms of both θ and ϕ as discussed above). Thus the
dimension of this matrix is (ntheta bins, nangle bins). The global/local angle matrix is used to scale A1, A2

and A3 for each global incidence angle. Thus, we end up with a very large multi-dimensional matrix storing
the values of A1, A2, A3 and kz for each layer and for each local angle per global incidence angle. This
can then be used to generate a depth-dependent profile by using equation 24 for each local angle with a
non-zero contribution, and then adding all the local angle contributions at each wavelength. The final result
is a matrix with the different z positions along the rows, and the different global incidence angles along the
columns.

Finally, this matrix is scaled so that the integrated total of all these contributions is consistent with the
R and T probabilities. This final matrix can be used just like the R, T and A matrices; when multiplying
a v⃗ vector, this gives the resulting absorption profile from that interaction with the surface. At the end of
the matrix multiplication, all these contributions can be added up to come up with an overall absorption
profile. Care must be taken to take into account how absorption profiles generated for front incidence and
rear incidence are added together, since the light encounters the structure from the opposite direction, so
the absorption profiles for rear incidence must be flipped.

2.6 Absorbing incidence media

In absorbing incidence media, the meaning of the incidence angle θ becomes somewhat ambiguous. This can
be understood by considering the wavevector k⃗ of a plane wave. For a general plane wave (assuming without
loss of generality that we are in the x− z plane – see Fig. 9 for the angle convention):

k⃗ =
2π(n+ iκ)

λ
(sin θ̃, 0, cos θ̃) (25)

Where the complex refractive index ñ is expressed explicitly in terms of its real and imaginary parts. If
κ = 0 (non-absorbing medium), the meaning of the angle θ is clear; it is the angle from the normal at which
the light is travelling. But if we have κ ̸= 0, this meaning becomes less clear. Specifically, ñ sin θ̃ will not be
a real number if θ is a real number; this implies that there is dissipation of power in the direction parallel
to the incident medium, since the x-component of the wavevector is not real, and therefore this cannot be
an infinite plane wave. So ñ sin θ̃ must be real for a plane wave, and if ñ is complex, this means sin θ̃ must
be complex, and thus θ̃ must be complex. This is equivalent to saying Snell’s law (n0 sin θ0 = n1 sin θ1)
holds even for interfaces where one or both of the media are absorbing. Although it is possible to deduce
a relationship between the direction from which power is incident, a useful definition within the RayFlare
matrix framework, and the complex angle θ̃ (see Appendix A), this has not currently been implemented in
RayFlare; instead, the much simpler assumption that κ = 0 for all incidence media has been made. This
means that for light incident from inside the bulk structure, κ = 0 is set to zero. The justification for this
simplification is as follows:
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• To be treated correctly within the RayFlare framework, the ‘bulk’ layer must be thick relative to the
wavelength.

• If the bulk is thick relative to the wavelength and has high κ, then a large fraction of the light entering
the bulk will be absorbed before ever encountering the back surface; so while the high incidence-angle
entries3 in the redistribution matrix for the rear surface, and back of the front surface, may not be
accurate, this will not affect the overall results because a negligible fraction of the light encounters
those surfaces at the problematic wavelengths.

• If the bulk has low κ, meaning the light may make many passes through the bulk before being absorbed
and the high incidence-angle entries in the matrix become relevant (e.g. in an indirect semiconductor
or glass), the angle at which power is travelling and the angle θ will be very similar since κ is close to
zero.

Further work is needed to assess how much these assumptions affect modelling results, and whether
implementing a more rigorous treatment of the complex angles as outlined in Appendix A is beneficial.

2.7 Ideal cases

To explore fundamental limits to light trapping or compare the performance of a device design with theory, it
is useful to include a convenient way of generating matrices for several cases where the optical behaviour can
be calculated analytically. Two cases used frequently in investigations of the performance of light-trapping
structures have so far been included in RayFlare: a perfect mirror and an ideal Lambertian scatterer. The
perfect mirror case is straightforward: light hitting the interface at a polar angle θ and azimuthal angle
ϕ is scattered into outgoing direction {θ, ϕ + π}. 100% reflectivity at all wavelengths is assumed, so the
redistribution matrix is identical for all wavelengths, with a single entry equal to ‘1’ per row and column of
the matrix, with the location of the ‘1’ entry describing the change in angle.

A perfectly Lambertian scatterer is an ideal diffuse reflector, having the same radiance (radiant flux per
unit projected solid angle) regardless of the viewing angle. As the viewing angle increases from the normal,
the projected area of the emitting surface appears to decrease proportional to cos θ, and thus the radiant
flux should also decrease in order to maintain the same radiant flux. The power reflected into a polar angle
bin with angle θ and width dθ can be written as:

dP ∝ cos(θ)dθ

The azimuthal dependence, ϕ, has been ignored; it is clear from the symmetry of the coordinate system
and the requirement of an ideal diffuse reflector that the power should be divided evenly between the ϕ bins,
which are of equal size for any given θ. The total power (summing over ϕ bins), as a fraction of incoming
power, scattered into the bin at θ with a width of dθ is thus given by cos θdθ, with the final matrix normalized
so that each column (corresponding to each incoming direction) sums to 1.

2.8 Storing information

For many structures commonly used in solar cells, such as pyramids or gratings, light will be scattered into
specific directions according to its incidence angle, rather than being scattered across all possible outgoing

3The discrepancy between the angle from which power can be taken to be incident and the (real part of) the complex angle
θ increases at higher angles of incidence, and with higher values of κ, as shown in Fig. 22.
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Figure 11: The four-junction solar cell optical structure used for validation of the RayFlare angular matrix
model. The treatment of the layers in both RayFlare and the TMM reference calculation, done using Solcore’s
existing TMM implementation, is indicated. The labels Rf,1, Tf,1 etc. refer to the labels used in Fig. 8 for
the angular matrices.

directions (although this is not the case for randomly scattering structures or perfect Lambertian scattering).
This means that the redistribution matrices are often extremely sparse, i.e. the vast majority of matrix entries
is equal to zero; thus the matrices are stored in a sparse matrix format using the Python package sparse.
A sparse matrix format stores a list of locations at which the matrix is not equal to zero, and the values
at those indices, rather than storing each matrix entry explicitly. This significantly reduces the storage
space required since typically a large number of matrices are generated during a simulation over a range of
wavelengths.

In the case of perfect Lambertian scattering, where all the matrix elements describing reflection are non-
zero and the scattering is assumed to be the same at all wavelengths, only a single matrix is stored as opposed
to one matrix per wavelength to save storage space. The largest files which need to be stored are those for
the TMM lookup-tables (Section 2.2), and those storing the parameters for calculating absorption profiles
(Section 2.5); these multi-dimensional matrices are stored in NetCDF format using the xarray package.

2.9 Matrix method validation

In order to confirm if the matrix multiplication and methods for populating the redistribution matrices are
working as expected, a planar multi-layer structure with a thick, incoherent layer can be considered. Such
a structure can be modelled using the TMM method from Solcore directly, using the ability to treat layers
incoherently, or by using the angular matrix framework with redistribution matrices calculated through
TMM, ray-tracing in combination with a TMM lookup-table, or RCWA. As discussed previously, using ray-
tracing or RCWA to calculate reflection, absorption and transmission through planar layers does not offer
additional insight beyond that from a TMM calculation, but choosing a structure which can be modelled
using all these methods allows a simple check of the angular binning method used in each, and the matrix
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Figure 12: Calculated reflection, absorption per layer and transmission in a 4J solar cell-like optical structure
for normally-incident unpolarized light, calculated using the RayFlare matrix multiplication framework and
a) a TMM model, b) a ray-tracing model with TMM lookup-tables and c) an RCWA model to populate the
redistribution matrices. d) shows the expected result, calculated using Solcore’s TMM model (separate from
RayFlare).
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Figure 13: Calculated reflection, absorption per layer and transmission in a 4J solar cell-like optical struc-
ture with p-polarized light incident at 70◦ from the surface normal, calculated using the RayFlare matrix
multiplication framework and a) a TMM model, b) a ray-tracing model with TMM lookup-tables and c)
an RCWA model to populate the redistribution matrices. d) shows the expected result, calculated using
Solcore’s TMM model (separate from RayFlare).

multiplication itself.
The structure considered for the angular matrix model validation, and validation of the ray-tracing,

TMM and RCWA methods as they are implemented to generate the redistribution matrices, is shown in
Fig. 11. This structure is based on the optimized layer structure for a 4J solar cell with a SiGeSn sub-
cell. Using Solcore’s TMM method, this structure is simply a Solcore layer stack with the thick Ge layer
treated incoherently. In the RayFlare matrix method, this Ge layer is the bulk medium described by the
matrix D and the thinner layers (MgF2, Ta2O5, GaInP, GaAs and SiGeSn) form the front interface (this
is also shown in Fig. 11). When the TMM and RCWA methods are specified in RayFlare, the reflection,
absorption and transmission of these three layers is calculated by treating them as a coherent stack with an
infinite transmission medium made of Ge, and the matrix method is used to couple this behaviour to the
back surface. If ray-tracing is specified, a lookup-table is first generated using TMM. Clearly, there is much
redundancy between these methods, but the aim is to demonstrate the correct functioning of each method
individually, and the connections between them. The optical behaviour of this structure was calculated at
several angles of incidence, and for unpolarized, s and p-polarized light, using the four methods listed above.
The comparison for normally incident, unpolarized light is shown in Fig. 12, showing that the results match
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Figure 14: Comparison of absorption in 200 µm of bulk Si calculated using RayFlare (solid lines with open
circles) and OPTOS (dashed lines) for (a) a structure with a planar front surface and a crossed diffraction
grating at the rear (red lines), (b) a structure with inverted pyramids on the front of the structure and a
planar rear surface (green lines) and (c) an Si layer with both structures, inverted pyramids on the front
surface and a diffraction grating on the rear surface (blue lines). Schematics of the structures, reproduced
from [11], are shown on the right.

extremely closely; the only deviation observed are the noisy oscillations in the result calculated through
ray-tracing, due to the stochastic nature of this method. Results for p-polarized light incident at a glancing
angle of 70◦ from the normal is shown in Fig. 13. Results for s-polarization and unpolarized light at non-zero
incidence angles were also checked extensively to make sure the different methods were consistent.

To validate the performance of RayFlare for more complex structures, Fig. 14 compares the output of
RayFlare with the results of OPTOS as reported in [11]. Three structures are considered, each with the
bulk layer consisting of 200 µm of c-Si; (a) a structure with a planar front and crossed diffraction grating
with period 1000 nm on the rear, (b) a structure with a planar rear surface and regular inverted pyramids
(opening angle 55◦) on the front and (c) a structure with pyramids on the front and a grating on the rear.
The final structure uses the matrices for the front surface calculated for structure (a) and the matrix for
the rear calculated for structure (b), so no additional time-consuming simulations are needed. There is a
close match between the simulations in all cases. The dip in absorption in structure (a) around 1075 nm
appears more pronounced in the RayFlare simulation, likely due to different RCWA methods being used
with different numbers of Fourier orders (the number of orders used was not reported in the OPTOS paper).
Fig. 15 shows the redistribution matrices (summarized over all the azimuthal angles ϕ) for light incident
from inside the structure on the front surface pyramids, and for the rear-side diffraction grating.

2.10 Application of integrated optical modelling

A useful application of the RayFlare framework is studying the effect of thin-film layers deposited conformally
onto a surface texture, e.g. pyramids. An example of an application of such a structure in PV is a perovskite
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Figure 15: Reflection angular redistribution matrices, summarized per polar angle θ, for light with vacuum
wavelength 1100 nm incident on a) inverted pyramids and b) a crossed diffraction grating with period of
1 µm. In both cases, incidence from inside the cell structure (Si) is considered. Note that the pyramids
are inverted when considered from the outside of the cell, so the rays traced will actually encounter upright
pyramids when incident from the silicon.

Table 1: Layer structure of the perovskite/Si tandem cell. The layer thicknesses and materials are taken
from [22]. The sources for optical constant data for each material is also given.

Material Role Thickness (nm) Optical constant source
MgF2 100 [33]
IZO 110 [34] r(O2) = 0.10%, annealed
SnO2 10 n = 2
C60 15 [35]
LiF 1 [28]
Perovskite 440 [36]*
Spiro-TTB 12 n = 1.65
a-Si (n-type) 6.5 measured† [37]
a-Si (intrinsic) 6.5 measured [37]
c-Si 260,000 [32]
a-Si (intrinsic) 6.5 measured [37]
a-Si (p-type) 6.5 measured [37]
ITO 240 measured [37]
Ag semi-infinite [38]

* = The optical constants for the perovskite were based on the data for the films deposited with a 10% evaporation
rate of CsBr to PbI2 and a ratio of 1:2 FAI to FABr in the spin-coated solution, designated as ‘CsBr 10%, 1:2’ in
the source [36], which is listed as having a bandgap of 1.65 eV. The best cell performance in [22] was actually
achieved with a CsBr/PbI2 perovskite layer with a slightly lower bandgap of 1.6 eV. The optical constants used in
the simulation were constructed by taking the optical constants of the 1.65 eV bandgap material and shifting the n
and k values down by 0.05 eV over the full wavelength range.
†= measured through spectroscopic ellipsometry at Imperial by Dr. Diego Alonso Álvarez.
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Figure 16: Structure of the perovskite/Si tandem cell structure. The incidence medium is air, with n = 1,
while the semi-infinite transmission medium is silver. The front surface includes the perovskite, while the
bulk material in RayFlare is the thick c-Si layer.

on silicon tandem cell, currently a device structure generating a large amount of research interest. One
possible device structure involves depositing the relatively thin perovskite layer, and the necessary contacting
and anti-reflection coating layers, conformally onto the pyramid structure of the Si, such as the device
presented in Sahli et al. [22]. This preserves the well-optimized and effective use of pyramids to reduce
front surface reflection and increase the path length of light in the silicon cell and increase absorption. The
structure from [22] is shown in Fig. 16, with the details of the layer structure and the source of the optical
constants used in these simulations shown in Table 1. The layer thicknesses in the stack are as reported in
[22].

This structure was modelled using RayFlare’s combined TMM/ray-tracing approach to calculate the
redistribution matrices for each surface, with the Si as the bulk coupling medium across which the angular
matrix method is applied. The overall result, with absorption in each layer, reflection, and transmission
into the Ag substrate, is shown in Fig. 17. Examples of the matrices generated by RayFlare using the
integrated ray-tracing/TMM lookup-table approach are shown in Fig. 18, showing the redistribution matrix
for reflection and transmission of light incident from inside the cell on the front pyramidal surface. The
TMM lookup-tables used during ray-tracing for the front surface are shown in Fig. 19, for light incident
from outside the cell (left column) and inside the cell (right column). Fig. 19a shows that front surface
reflection is low except at extremely glancing incidence angles4, with some visible Fabry-Perot oscillations.
In Fig. 19c and e we see low transmission and high absorption, respectively, at wavelengths below the
bandgap of the perovskite (≈ 700 nm), where most incident light is absorbed in the surface layers, and high
transmission into the Si bulk at wavelengths above the bandgap. For rear incidence, we can clearly see the
effect of total internal reflection in Fig. 19d, showing no transmission out of the cell into air above incidence
angle of ≈ 15◦ (with the exact value of the critical angle depending on the refractive index of the layers and
thus the wavelength). Light incident from inside the cell can also be absorbed in the front surface layers
(Fig. 19f).

4For normally incident light incident on a surface with regular pyramids with elevation angle 55◦, the only possible local
angle of incidence is 35◦; however, because generating the lookup-tables is fast, the full angular space is considered.
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Figure 17: Reflection (direct and escape), absorption per layer, and transmission into the Ag substrate
calculated using RayFlare for the perovskite/Si tandem cell structure shown in Fig. 16. The photogenerated
currents are shown, calculated for an AM1.5G solar spectrum. The front and rear surfaces were described
using the integrated TMM/ray-tracing framework.

0.0 0.2 0.4 0.6 0.8 1.0
sin( in)

0.0

0.2

0.4

0.6

0.8

1.0

sin
(

ou
t)

a)

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.2 0.4 0.6 0.8 1.0
sin( in)

0.0

0.2

0.4

0.6

0.8

1.0

sin
(

ou
t)

b)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Figure 18: Examples of redistribution matrices calculated for the perovskite/Si tandem cell calculated using
100 incident/outgoing bins for the polar angle θ with azimuthal discretization cazimuth = 0.25. These
matrices describe a) reflection back into the cell and b) transmission into the incidence medium (air) for
light which is incident from inside the Si on the pyramidal front surface. These matrices are summarized
per θ bin (all the azimuthal ϕ bins are added together and normalized).
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Figure 19: Example of the lookup-tables produced by RayFlare, in this case for the front surface of the
perovskite/Si structure in Fig. 16; this information is used by the ray-tracing algorithm. The plots show
incidence angle and wavelength dependence for the probability of: a) Reflection for front incidence (from
air); b) reflection for rear incidence (from Si); c) transmission for front incidence (from air); d) transmission
for rear incidence (from air); e) total absorption in the surface layers for front incidence; f) total absorption
in the surface layers for rear incidence.
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Figure 20: a) Escape reflection per interaction with the front surface and b) absorption in the bulk Si per pass
for the perovskite/Si structure. The different colours represent the contribution of each pass/interaction, as
shown in the legend.

Fig. 20 shows escape reflection (light transmitted through the front Si surface from inside the cell) and
absorption in the bulk during the first 25 interactions with the surface (for the reflection) or passes through
the cell (for the absorption). At short wavelength, all the light is absorbed before reaching the front surface
again, escape reflection is low, and absorption in a single pass in the Si is high. As the wavelength increases,
light is able to make more passes through the cell without being absorbed, leading to increased escape
reflection through the front surface as the light has an increasing number of chances to be transmitted out
of the cell as the number of interactions with the front surface increases close to the bandgap of Si. These
values are calculated from the v⃗ vectors.

Fig. 21a shows the absorption profile in the front surface layers of the structure, calculated as outlined
in Section 2.5, at three different incident wavelengths. At short wavelengths, there is considerable parasitic
absorption in the IZO layer, and the absorption profile at the start of the perovskite layer is very sharp
as α is high at short wavelengths. At an intermediate wavelength of 540 nm, closer to the bandgap of the
perovskite layer, the absorption profile is more extended throughout the layer, and thin-film interference is
clearly visible. At long wavelengths, almost no light is absorbed in the deposited layers, and light is instead
able to reach the c-Si cell.

Fig. 21b shows the effect of replacing the textured back surface of the Si cell with a perfect mirror,
or keeping the texture the same and increasing the Si thickness to 360 µm (from 280 µm), on the long-
wavelength absorption in the Si bulk. A perfect mirror actually performs slightly worse than the realistic
structure; this is because the real back surface is already a good reflector due to the silver deposited on the
rear, and in addition randomizes the ray directions further so behaves more ‘Lambertianly’ than the perfect
mirror, which reflects but does not scatter light into more oblique angles. As expected, increasing the c-Si
thickness increases the absorption near the bandgap. Both of these results are extremely quick to calculate;
the first case requires only the matrices for the rear surface to be changed to the trivial matrix for a perfect
mirror (see Section 2.7), while changing the bulk thickness only requires the matrix D to be changed, which
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Figure 21: a) Absorption profile in the surface layers deposited on the pyramidal c-Si surface of the structure
in Fig. 16 at three different wavelengths. b) Comparison of the absorption in Si at long wavelengths for the
original textured back surface, a perfect mirror, or the original textured surface with an increase in the c-Si
thickness.

uses only straightforward Beer-Lambert calculations.

2.11 Planned further work

Multiple relatively simple improvements to RayFlare could significantly decrease computation time. For
ray-tracing, automatically checking the convergence as rays are traced and terminating the process at each
wavelength once some sufficiently small standard deviation or confidence interval (adjustable by the user)
has been reached prevents an unnecessarily large number of rays being traced for e.g. a simple interface or
at wavelengths where the bulk is highly absorbing. For the matrix framework, populating the matrices can
be time-consuming depending on the surfaces and methods chosen, and depending on the wavelength, some
matrix entries may not be important; for instance, at wavelengths where the bulk material is very highly
absorbing, the entries for the interaction with the rear surface, or for interaction with light encountering the
front surface from inside the cell are not needed since no light will reach these surfaces at these wavelengths.
Even for weaker bulk absorption, if the front surface scatters only into specific angles during the first
interaction of light with the surface (e.g. a pyramidal surface), only the entries corresponding to angles into
which the light will be scattered in the bulk need to be calculated for the rear surface redistribution matrices,
as long as the light is able to make less than three passes through the cell (i.e. it does not reach the front
surface again after interacting with the rear surface). If the rear surface is planar, this further reduces the
number of matrix entries which have to be calculated. The ray-tracing and rigorous coupled-wave analysis
modules, which can be slow due to their computational intensity, already support parallel implementation to
calculate results for different wavelengths simultaneously on different threads; further improvements to the
code speed can be made by running the computation using CPU (central processing unit) or GPU (graphics
processing unit) acceleration, e.g. through the Python package numba.

RayFlare shares functionality with the optical modelling side of Solcore; in addition to the matrix frame-
work, structures using any of the optical modelling methods (TMM, ray-tracing, ray-tracing with TMM or
RCWA) for the full stack can also be defined. All these methods allow absorption profiles to be calculated,
which allow a generation profile to be generated for Solcore’s electrical solvers. An absorption profile can also
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be calculated using the matrix framework. Therefore, an easy way for RayFlare to interface with Solcore,
and generate absorption profiles which can be used directly by Solcore’s electrical solvers, will expand both
the optical methods available for use with Solcore and allow direct use of the results of RayFlare in electrical
models.
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Appendices

A Wavevectors and power flow in absorbing media
For a general plane wave (assuming without loss of generality that we are in the x − z plane, where the
incidence medium lies at z = 0):

k⃗f =
2π(n+ iκ)

λ
(sin θ̃, 0, cos θ̃) (26)

If k = 0 (non-absorbing medium), this is fine. But if we have k ̸= 0, strange things happen. Specifically,
ñ sin θ̃ may not be a real number, which implies that there is dissipation of power in the direction parallel
to the incident medium, i.e. not an infinite plane wave. So ñ sin θ̃ has to be real, and if ñ is complex, this
means sin θ̃ is complex, and thus θ̃ is complex. This is equivalent to saying Snell’s law (ñ0 sin θ0 = ñ1 sin θ1)
holds even for interfaces between absorbing media.

Let’s say we know the angle α from which power, i.e. the real part of the Poynting vector, is incident.
Can we relate this to a complex angle θ̃ for the wavevector kf? The time-averaged Poynting vector ⟨S⃗⟩ can
be related to the electric and magnetic fields through5:

k⃗f = 2πñ
λ (sin θ̃, 0, cos θ̃)

E⃗f = (0, Ef , 0)

H⃗f ∝ k⃗f × E⃗f

H⃗f ∝ (− cos θ̃, 0, sin θ̃)

⟨S⃗⟩ = Re{E⃗f × H⃗∗
f }

⟨S⃗⟩ ∝ Re{(ñ sin θ̃)∗, 0, (ñ cos θ̃)∗} = Re{ñ sin θ̃, 0, ñ cos θ̃}

(27)

Since we are asserting that for the wave to be a plane wave, ñ sin θ̃ is real, this reduces to:

⟨S⃗⟩ ∝ (ñ sin θ̃, 0,Re{ñ cos θ̃}) (28)

Where we have used notation as used by Byrnes [16] and the standard expression for real power from
the Poynting vector. The last step in (27) uses the fact that the real part of a complex number is the same
as the real part of its complex conjugate. So say that we know power, or rather, want to assert that power
is incident from an angle α, this angle is given by:

tanα =
ñ sin θ̃

Re{ñ cos θ̃}
(29)

Taking the real part of ñ sin θ̃ is not shown explicitly since, as discussed above, it must be real. Some
notation:

kx = ñ sin θ̃

kz,r = Re{ñ cos θ̃}
kz,i = Im{ñ cos θ̃}

(30)

Where the k notation represents that these quantities are proportional to the vector entries of the
5The following is for s-polarization, but as it turns out, things work out the same for p-polarization (the fact that

Re{E⃗f × H⃗∗
f } = Re{E⃗∗

f × H⃗f} for the Poynting vector is useful in that case so the maths is the same).
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Figure 22: Variation of the real (solid lines) and imaginary (dashed lines) part of the complex wavevector
angle θ̃ where the Poynting vector is travelling at a certain incidence angle in a medium with refractive index
ñ = 3 + iκ with varying κ.

wavevector, and the last two lines are the real and imaginary parts of kz. That means that:

tanα =
kx
kz,r

(31)

Clearly, for the complex angle θ̃ of the wavevector, we have (referring back to (27)):

tan θ̃ =
ñ sin θ̃

ñ cos θ̃
=

kx
kz

=
kx

kz,r + ikz,i
(32)

Some identities we can use: since sin2 θ + cos2 θ = 1 (even for complex angles!), k2x + (kz,r + ikz,i)
2 =

ñ2 = (n+ iκ)2. Separating out real and imaginary parts gives us two equations:

k2x + k2z,r − k2z,i = n2 − κ2

kz,rkz,i = nκ
(33)

So if we know α and want to find θ, we should express tan θ in terms of things we know (n, κ and α). I
actually solved for kz,r, since it is easy to then get kz,i and kx through the identities above.

Squaring (31) and plugging the first identity from (33) in to get rid of k2x:

tan2 α =
k2x
k2z,r

=
n2 − κ2 − k2z,r + k2z,i

k2z,r
(34)

Then getting rid of k2z,i by substituting the second identity from (33):

tan2 α =
n2 − κ2 − k2z,r +

n2κ2

k2
z,r

k2z,r
(35)
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Figure 23: R and T for unpolarized (average of s and p-polarization) light incident from air (n = 1) on a
medium with n (real part of the refractive index) = 2 and varying κ.

Now by multiplying both sides by k4z,r we get:

tan2 αk4z,r + (κ2 − n2)k2z,r − n2κ2 = 0 (36)

This is a quadratic equation for x = k2z,r. As it turns out, we have to take the positive root for the
solution to be real. The answer is:

kz,r = cosα

√
1

2
(n2 − κ2) +

1

2

√
((κ2 − n2)2 + 4n2κ2 sec2 α (37)

This can of course be used to find a direct expression for θ̃, but if you have numerical inputs for n, κ and
α, the quantities kz,r and thus kz,i, kx and θ̃ are all easy to calculate. Note that if κ = 0, this expression
reduces to:

kz,r = n cosα (38)

as expected.
If you know complex θ̃ but want to calculate α, that is much more straightforward, as you can simply use

(31) directly. The reason we want to use α in an angular matrix formalism is that we want to know about how
incident power is distributed and absorbed throughout the cell, and we are binning in terms of the angular
directions in which power travels. In many cases (i.e. media which are not strongly absorbing) these are
equivalent to the wavevector directions, but in strongly absorbing media (e.g. metals, direct semiconductors
or highly doped layers) this assumption may not be valid. Fig. 22 shows the difference between α and the
real and imaginary parts of θ̃ for increasing values of κ. Fig. 23 shows how R and T vary with increasing
κ of the transmission interface, showing that for highly absorbing media assuming the lossless case will give
completely incorrect results. Fig. 24 shows a situation in which total internal reflection (TIR) occurs for a
non-absorbing medium, and how R is affected by increasing absorption in the transmission medium.
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Figure 24: R for light incident from a medium with n = 4 on a medium with n = 2 and varying imaginary
part of the refractive index κ, at incidence angles θ between 0 and 90 degrees.
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B Convergence of ray-tracing calculations
Broadly speaking, increasing the number of rays used in the Monte Carlo ray-tracing algorithm will lead to
more accurate results and longer computation times; however, there are multiple ways in which the number
of rays can be increased. In order to accurately capture the behaviour of the surface, it is necessary to scan
across an entire unit cell. For instance, if the number of rays is set at 2500 per wavelength, it is possible to
trace 2500 rays incident on exactly the same point on the surface’s unit cell, or 25 points on the surface 100
times, or 2500 points once. In addition, the scanned points can be chosen to cover the surface in a systematic
way (e.g. by generating a grid of nx points in the x-direction and ny points in the y-direction and scanning
the same number of points ((nx × ny) until the total number of rays is reached) or by generating a random
position for each ray.

Fig. 25 shows how the number of surface points and total rays traced affects the absorption calculated,
using a regular grid to generate the (x, y) position at which the incident ray will strike the unit cell. The
structure used is 200 µm of Si with regular inverted pyramids with size 5 µm on the front surface and a
planar rear surface. The absorption in the Si was calculated at 300-1200 nm at 20 nm intervals. The RMS
difference, summed over all wavelengths, in Fig. 25a is calculated with respect to the result with 50000 rays
and 50 x/y points (502 = 2500 surface points), the largest number of rays and surface points. The fraction
of light absorbed in the Si, weighted by the absorption coefficient α at that wavelength, is shown in Fig. 25b.
This weighting is used since as the Si becomes more transparent, more rays will have multiple interactions
with the interfaces, meaning any systematic deviation in the calculated result should increase, thus weighting
these points more heavily will emphasize systematic differences. The RMS difference is sensitive to both
systematic deviations between different calculations, and fluctuations between adjacent wavelengths points
due to the stochastic nature of the simulation, while the weighted absorption should be less sensitive to
the stochastic fluctuations. It is clear from both figures that calculations with a relatively small number
of surface points deviate strongly in both metrics, while increasing the number of surface points leads to
convergence. Increasing the number of rays decreases the RMS difference, though the additional benefit after
20,000 rays or so is quite minimal. Increasing the number of rays has a much smaller effect on the weighted
absorption, indicating that, as expected, the overall trend is correct even for a smaller number of rays but
increasing the number of rays decreases the size of random fluctuations due to the stochastic nature of the
calculations. Both metrics indicate that in general, increasing the number of surface points is a much more
efficient way of obtaining accurate result than only increasing the number of rays.

Fig. 26 shows the full absorption results for several combinations of the number of rays and surface
points. The result with a single x/y point (not shown in Fig. 25 due to its large offset making it difficult
to see the rest of the results) is extremely far off, predicting a much higher A; this is expected, since the
single ray strikes in the centre of the unit cell, at the apex of pyramid, meaning the ray will generally be
reflected many times within this pyramid and have a very well-randomized (Lambertian-like) path inside the
cell compared to a ray striking the pyramid closer to its base. The other results show convergence appears
to happen quickly, and the number of surface points (different line colors) is more important for convergence
than the number of rays (different line types).
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Figure 25: a) Summary of the RMS difference in the calculated absorption, summed over wavelength values
shown in Fig. 26, for different numbers of surface points and total number of rays traced. The reference
values (RMS error = 0) were taken from the simulation with the maximum number of rays and surface points
(50,000 rays and 50 x and y surface points, 2500 surface points total). b) The fraction of light absorbed
in the Si, weighted by the absorption coefficient of Si, depending on the number of rays and surface points
traced.
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Figure 26: Absorption vs. wavelength for a 200 µm Si wafer with inverted, regular pyramids on the front
surface and a planar rear surface using different numbers of rays and x and y scanning the surface (e.g. for
36 x/y points a total of 362 = 1296 surface points were scanned.
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