
A Users Guide for the

Doubly Linked List API

Version 2.0.0

Carl J. Nobile

carl.nobile@gmail.com

Created: March 28, 1999

Updated: January 17, 2012

Preface

Writing an API for a link list came about after many years of struggling with
data storage problems. I would often write link list code embedded in my
application, exposing all of its innards to the application. This was a nightmare
to weed through as the application grew in functionality and complexity. Often
much of the functionality that I would have liked in my application would be
too difficult to implement or would be kludged in. If more than one link list
was needed my beard would thin.

This manual documents the implementation and use of the Doubly Linked List
API. A brief overview of the design philosophy and how the data is abstracted
will be discussed followed by a thorough explanation of the calling and return
mechanism of each function.

I hope it is as useful for you as it has been for me.

Carl J. Nobile
April 1999

i

Contents

Preface i

1 Distribution 1

2 License 2
2.1 Artistic License . 2
2.2 Eclipse License . 4

3 Introduction 9

4 Python epydoc Overview 10

5 C API Overview 10

6 Structures 11

7 Enumerations 14

8 Functions 16
8.1 Initialization . 16
8.2 Status and State . 18
8.3 Pointer Manipulation . 21
8.4 List Update . 23
8.5 Search . 26
8.6 Input/Output . 28

ii

1 Distribution

This Doubly Linked List can be downloaded from the following sites. The first
site below has a web page dedicated to the API. All current releases will become
available here first.

http://tetrasys.homelinux.org

You will also find the API at the following site and its mirrors.

ftp://ibiblio.org/pub/linux/lib

Bug reports should go to me at carl.nobile@gmail.com.

1

2 License

The Doubly Link List API can now be used with either of the two following
licenses. I have added the Eclipse License because it is somewhat more business
friendly and have kept the Artistic License so as to not disappoint anybody that
may already be satisfied with it.

2.1 Artistic License

The“Artistic License”

Preamble

The intent of this document is to state the conditions under which a Package
may be copied, such that the Copyright Holder maintains some semblance of
artistic control over the development of the package, while giving the users of the
package the right to use and distribute the Package in a more-or-less customary
fashion, plus the right to make reasonable modifications.

Definitions:

“Package” refers to the collection of files distributed by the Copyright
Holder, and derivatives of that collection of files created through textual
modification.

“Standard Version” refers to such a Package if it has not been modified, or
has been modified in accordance with the wishes of the Copyright Holder
as specified below.

“Copyright Holder” is whoever is named in the copyright or copyrights for
the package.

“You” is you, if you’re thinking about copying or distributing this Package.

“Reasonable copying fee” is whatever you can justify on the basis of media
cost, duplication charges, time of people involved, and so on. (You will
not be required to justify it to the Copyright Holder, but only to the
computing community at large as a market that must bear the fee.)

“Freely Available” means that no fee is charged for the item itself, though
there may be fees involved in handling the item. It also means that re-
cipients of the item may redistribute it under the same conditions they
received it.

1. You may make and give away verbatim copies of the source form of the Stan-
dard Version of this Package without restriction, provided that you duplicate
all of the original copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications derived
from the Public Domain or from the Copyright Holder. A Package modified in
such a way shall still be considered the Standard Version.

2

3. You may otherwise modify your copy of this Package in any way, provided
that you insert a prominent notice in each changed file stating how and when
you changed that file, and provided that you do at least ONE of the following:

(a) place your modifications in the Public Domain or otherwise make them
Freely Available, such as by posting said modifications to Usenet or an
equivalent medium, or placing the modifications on a major archive site
such as uunet.uu.net, or by allowing the Copyright Holder to include your
modifications in the Standard Version of the Package.

(b) use the modified Package only within your corporation or organization.

(c) rename any non-standard executables so the names do not conflict with
standard executables, which must also be provided, and provide a separate
manual page for each non-standard executable that clearly documents how
it differs from the Standard Version.

(d) make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or executable
form, provided that you do at least ONE of the following:

(a) distribute a Standard Version of the executables and library files, to-
gether with instructions (in the manual page or equivalent) on where to
get the Standard Version.

(b) accompany the distribution with the machine-readable source of the
Package with your modifications.

(c) give non-standard executables non-standard names, and clearly doc-
ument the differences in manual pages (or equivalent), together with in-
structions on where to get the Standard Version.

(d) make other distribution arrangements with the Copyright Holder.

5. You may charge a reasonable copying fee for any distribution of this Package.
You may charge any fee you choose for support of this Package. You may not
charge a fee for this Package itself. However, you may distribute this Pack-
age in aggregate with other (possibly commercial) programs as part of a larger
(possibly commercial) software distribution provided that you do not advertise
this Package as a product of your own. You may embed this Package’s inter-
preter within an executable of yours (by linking); this shall be construed as a
mere form of aggregation, provided that the complete Standard Version of the
interpreter is so embedded.

6. The scripts and library files supplied as input to or produced as output from
the programs of this Package do not automatically fall under the copyright
of this Package, but belong to whomever generated them, and may be sold
commercially, and may be aggregated with this Package. If such scripts or
library files are aggregated with this Package via the so-called “undump” or
“unexec” methods of producing a binary executable image, then distribution of

3

such an image shall neither be construed as a distribution of this Package nor
shall it fall under the restrictions of Paragraphs 3 and 4, provided that you do
not represent such an executable image as a Standard Version of this Package.

7. C subroutines (or comparably compiled subroutines in other languages) sup-
plied by you and linked into this Package in order to emulate subroutines and
variables of the language defined by this Package shall not be considered part of
this Package, but are the equivalent of input as in Paragraph 6, provided these
subroutines do not change the language in any way that would cause it to fail
the regression tests for the language.

8. Aggregation of this Package with a commercial distribution is always permit-
ted provided that the use of this Package is embedded; that is, when no overt
attempt is made to make this Package’s interfaces visible to the end user of the
commercial distribution. Such use shall not be construed as a distribution of
this Package.

9. The name of the Copyright Holder may not be used to endorse or promote
products derived from this software without specific prior written permission.

10. THIS PACKAGE IS PROVIDED “AS IS” AND WITHOUT ANY EX-
PRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITA-
TION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE.

The End

2.2 Eclipse License

Eclipse Public License - v 1.0
THE ACCOMPANYING PROGRAM IS PROVIDEDUNDER THE TERMS

OF THIS ECLIPSE PUBLIC LICENSE (”AGREEMENT”). ANY USE, RE-
PRODUCTION OR DISTRIBUTION OF THE PROGRAM CONSTITUTES
RECIPIENT’S ACCEPTANCE OF THIS AGREEMENT.

1. DEFINITIONS
”Contribution” means:
a) in the case of the initial Contributor, the initial code and documenta-

tion distributed under this Agreement, and b) in the case of each subsequent
Contributor:

i) changes to the Program, and
ii) additions to the Program;
where such changes and/or additions to the Program originate from and are

distributed by that particular Contributor. A Contribution ’originates’ from a
Contributor if it was added to the Program by such Contributor itself or anyone
acting on such Contributor’s behalf. Contributions do not include additions to
the Program which: (i) are separate modules of software distributed in con-
junction with the Program under their own license agreement, and (ii) are not
derivative works of the Program.

4

”Contributor” means any person or entity that distributes the Program.
”Licensed Patents ” mean patent claims licensable by a Contributor which

are necessarily infringed by the use or sale of its Contribution alone or when
combined with the Program.

”Program” means the Contributions distributed in accordance with this
Agreement.

”Recipient” means anyone who receives the Program under this Agreement,
including all Contributors.

2. GRANT OF RIGHTS
a) Subject to the terms of this Agreement, each Contributor hereby grants

Recipient a non-exclusive, worldwide, royalty-free copyright license to repro-
duce, prepare derivative works of, publicly display, publicly perform, distribute
and sublicense the Contribution of such Contributor, if any, and such derivative
works, in source code and object code form.

b) Subject to the terms of this Agreement, each Contributor hereby grants
Recipient a non-exclusive, worldwide, royalty-free patent license under Licensed
Patents to make, use, sell, offer to sell, import and otherwise transfer the Con-
tribution of such Contributor, if any, in source code and object code form.
This patent license shall apply to the combination of the Contribution and the
Program if, at the time the Contribution is added by the Contributor, such
addition of the Contribution causes such combination to be covered by the Li-
censed Patents. The patent license shall not apply to any other combinations
which include the Contribution. No hardware per se is licensed hereunder.

c) Recipient understands that although each Contributor grants the licenses
to its Contributions set forth herein, no assurances are provided by any Con-
tributor that the Program does not infringe the patent or other intellectual
property rights of any other entity. Each Contributor disclaims any liability to
Recipient for claims brought by any other entity based on infringement of intel-
lectual property rights or otherwise. As a condition to exercising the rights and
licenses granted hereunder, each Recipient hereby assumes sole responsibility to
secure any other intellectual property rights needed, if any. For example, if a
third party patent license is required to allow Recipient to distribute the Pro-
gram, it is Recipient’s responsibility to acquire that license before distributing
the Program.

d) Each Contributor represents that to its knowledge it has sufficient copy-
right rights in its Contribution, if any, to grant the copyright license set forth
in this Agreement.

3. REQUIREMENTS
A Contributor may choose to distribute the Program in object code form

under its own license agreement, provided that:
a) it complies with the terms and conditions of this Agreement; and
b) its license agreement:
i) effectively disclaims on behalf of all Contributors all warranties and con-

ditions, express and implied, including warranties or conditions of title and
non-infringement, and implied warranties or conditions of merchantability and
fitness for a particular purpose;

5

ii) effectively excludes on behalf of all Contributors all liability for damages,
including direct, indirect, special, incidental and consequential damages, such
as lost profits;

iii) states that any provisions which differ from this Agreement are offered
by that Contributor alone and not by any other party; and

iv) states that source code for the Program is available from such Contribu-
tor, and informs licensees how to obtain it in a reasonable manner on or through
a medium customarily used for software exchange.

When the Program is made available in source code form:
a) it must be made available under this Agreement; and
b) a copy of this Agreement must be included with each copy of the Program.
Contributors may not remove or alter any copyright notices contained within

the Program.
Each Contributor must identify itself as the originator of its Contribution,

if any, in a manner that reasonably allows subsequent Recipients to identify the
originator of the Contribution.

4. COMMERCIAL DISTRIBUTION
Commercial distributors of software may accept certain responsibilities with

respect to end users, business partners and the like. While this license is in-
tended to facilitate the commercial use of the Program, the Contributor who
includes the Program in a commercial product offering should do so in a manner
which does not create potential liability for other Contributors. Therefore, if a
Contributor includes the Program in a commercial product offering, such Con-
tributor (”Commercial Contributor”) hereby agrees to defend and indemnify
every other Contributor (”Indemnified Contributor”) against any losses, dam-
ages and costs (collectively ”Losses”) arising from claims, lawsuits and other
legal actions brought by a third party against the Indemnified Contributor to
the extent caused by the acts or omissions of such Commercial Contributor in
connection with its distribution of the Program in a commercial product offering.
The obligations in this section do not apply to any claims or Losses relating to
any actual or alleged intellectual property infringement. In order to qualify, an
Indemnified Contributor must: a) promptly notify the Commercial Contributor
in writing of such claim, and b) allow the Commercial Contributor to control,
and cooperate with the Commercial Contributor in, the defense and any related
settlement negotiations. The Indemnified Contributor may participate in any
such claim at its own expense.

For example, a Contributor might include the Program in a commercial
product offering, Product X. That Contributor is then a Commercial Contrib-
utor. If that Commercial Contributor then makes performance claims, or offers
warranties related to Product X, those performance claims and warranties are
such Commercial Contributor’s responsibility alone. Under this section, the
Commercial Contributor would have to defend claims against the other Con-
tributors related to those performance claims and warranties, and if a court
requires any other Contributor to pay any damages as a result, the Commercial
Contributor must pay those damages.

5. NO WARRANTY

6

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE
PROGRAM IS PROVIDEDONAN ”AS IS” BASIS, WITHOUTWARRANTIES
OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED IN-
CLUDING, WITHOUT LIMITATION, ANYWARRANTIES OR CONDITIONS
OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Each Recipient is solely responsible for
determining the appropriateness of using and distributing the Program and as-
sumes all risks associated with its exercise of rights under this Agreement ,
including but not limited to the risks and costs of program errors, compliance
with applicable laws, damage to or loss of data, programs or equipment, and
unavailability or interruption of operations.

6. DISCLAIMER OF LIABILITY
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEI-

THER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LI-
ABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT
LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OR DISTRIBUTION OF THE PROGRAM OR
THE EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. GENERAL
If any provision of this Agreement is invalid or unenforceable under appli-

cable law, it shall not affect the validity or enforceability of the remainder of
the terms of this Agreement, and without further action by the parties hereto,
such provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

If Recipient institutes patent litigation against any entity (including a cross-
claim or counterclaim in a lawsuit) alleging that the Program itself (excluding
combinations of the Program with other software or hardware) infringes such
Recipient’s patent(s), then such Recipient’s rights granted under Section 2(b)
shall terminate as of the date such litigation is filed.

All Recipient’s rights under this Agreement shall terminate if it fails to com-
ply with any of the material terms or conditions of this Agreement and does
not cure such failure in a reasonable period of time after becoming aware of
such noncompliance. If all Recipient’s rights under this Agreement terminate,
Recipient agrees to cease use and distribution of the Program as soon as rea-
sonably practicable. However, Recipient’s obligations under this Agreement and
any licenses granted by Recipient relating to the Program shall continue and
survive.

Everyone is permitted to copy and distribute copies of this Agreement, but
in order to avoid inconsistency the Agreement is copyrighted and may only be
modified in the following manner. The Agreement Steward reserves the right to
publish new versions (including revisions) of this Agreement from time to time.
No one other than the Agreement Steward has the right to modify this Agree-

7

ment. The Eclipse Foundation is the initial Agreement Steward. The Eclipse
Foundation may assign the responsibility to serve as the Agreement Steward
to a suitable separate entity. Each new version of the Agreement will be given
a distinguishing version number. The Program (including Contributions) may
always be distributed subject to the version of the Agreement under which it
was received. In addition, after a new version of the Agreement is published,
Contributor may elect to distribute the Program (including its Contributions)
under the new version. Except as expressly stated in Sections 2(a) and 2(b)
above, Recipient receives no rights or licenses to the intellectual property of any
Contributor under this Agreement, whether expressly, by implication, estop-
pel or otherwise. All rights in the Program not expressly granted under this
Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the
intellectual property laws of the United States of America. No party to this
Agreement will bring a legal action under this Agreement more than one year
after the cause of action arose. Each party waives its rights to a jury trial in
any resulting litigation.

8

3 Introduction

There are many goals to achieve when deciding to write an API. The func-
tions in the library should be reenterable, easy to include in an application,
platform independent, and reasonably flexible with enough functionality to be
usable. These goals can often be contradictory; however, they are achievable
with enough forethought and planning.

This package is sufficiently abstracted so that the programmer will neither need
to know or care how it is implemented; at least that is the goal I have striven
to achieve while writing it.

Within this package is found the: source files written in C; make files for various
platforms and compilers; a text script which sets the environment correctly
when it runs the demo program created by the make utility; README and
INSTALL text files; Artistic and Eclipse Licenses; documentation in LATEX2ε
form; and Python epydoc API documentation; however, most of this document
is dedicated to the C API.

A short overview will follow, discussing the philosophy of how the package works
including a rationale of the structure and type definition used in the package.

Then the library itself is broken into six groups: initialization, status and
state, pointer manipulation, list update, search, and input/output. The
Python version has a seventh miscellaneous helper methods.

(a) The initialization group handles the creation, initializing, and de-
struction of the link list.

(b) The status and state group returns various kinds of information
about the status of the link list during its operation.

(c) The pointer manipulation group allows the positioning of the cur-
rent pointer to the head, the tail, or an arbitrary node within the list.

(d) The list update group adds and deletes nodes.

(e) The search group returns the record information based on key data
or on the absolute record position.

(f) The input/output group saves or retrieves record data to or from a
disk file.

(g) The Python miscellaneous helper methods group adds some func-
tionality for comparison and testing the Info object.

At this writing there are 29 functions in the C library, each one of which is
thoroughly explained and examples given when needed.

9

4 Python epydoc Overview

It is best to read the epydoc HTML documentation to get a better ideas of how
the Python API is used and operates. It has the exact same functionality as
the C API, but is in a class which takes care of most of the low level work that
needs to be done. The Python API uses ctypes to thinly wrap the C API, so it
will be fast.

5 C API Overview

When writing tools such as this, one needs to be concerned with how it affects
the entire programming environment. One of the most important aspects of
this environment is the problem concerning namespace pollution. To minimize
this problem I have used DLL as a prefix to all function names and enumerated
typedef s.

It is often the case that search criteria will remain the same between queries.
As such, a state table is implemented that passes the current state to the search
functions. There are two functions: one to set and the other to read the state
table.

10

6 Structures

Most implementations of link lists allocate a single node per record and these
nodes are what are linked to each other. This type of algorithm works well when
the link list is embedded in the application code, but not when implementing a
link list within an API, because it cannot be made reenterant.

A well written Application Programming Interface (API) requires that the func-
tions contained within it be reenterant and also creates an environment in which
the code can be abstracted. In order to take advantage of these two ideas the
Doubly Linked List (hereafter referred to as the DLL) has a three level hierarchy
as pictured in the figure.

The first level we will refer to as the “Top Level Struct”. All the global data is
held by one of these structures and it is allocated once for each incident of the
link list.

typedef struct list

{

Node *head; /* pointer to head record */

Node *tail; /* pointer to tail record */

Node *current; /* pointer to current record */

Node *saved; /* pointer to stored record */

size_t infosize; /* size of record incident */

unsigned long listsize; /* number of records in list */

unsigned long current_index; /* index value of current record */

unsigned long save_index; /* index value of stored record */

DLL_Boolean modified; /* modified flag (TRUE or FALSE) */

DLL_SrchOrigin search_origin; /* location a search originates from */

DLL_SrchDir search_dir; /* direction the search proceeds from */

} List;

At the next level is the “Node Struct”. This structure holds the pointer to the
actual record data plus the pointers to the next and prior nodes. It is allocated
once for each record structure.

typedef struct node

{

Info *info; /* pointer to record data */

struct node *next; /* pointer to next node */

struct node *prior; /* pointer to prior node */

} Node;

11

Hierarchical Structure of the Doubly Linked List

12

The third and final level is the “Info Struct”, which holds the actual data in-
serted by the application. The Info Struct is defined by the developer and is
only restricted by the environment in which the application runs or is compiled
in.

typedef struct your_info

{

type your_data; /* Your data goes here */

} YourInfo;

There is one more structure which is not part of this hierarchy. It is only used
to return the current state of the search criteria.

typedef struct search_modes

{

DLL_SrchOrigin search_origin; /* Search from head, tail, or current */

DLL_SrchDir search_dir; /* Search up or down */

} DLL_SearchModes;

13

7 Enumerations

I’m a firm believer that the return values of functions should be predefined
typedef enumerations. There are two reasons for this. The first is that many
compilers will complain when a switch statement is used to test the return values
of functions with one or more of the enumerated values missing, thus alerting
the developer to use the default statement. The second reason is that the typedef
name can be used as the return type of the function, disallowing anything other
than the enumerated values to be returned. These are good things and should
be taken advantage of.

Since at the time of this writing Booleans are not part of the C specifications,
I’ve created my own.

typedef enum

{

DLL_FALSE,

DLL_TRUE

} DLL_Boolean;

Many functions return the typedef enumerated type DLL Return as shown
below.

typedef enum

{

DLL_NORMAL, /* normal operation */

DLL_MEM_ERROR, /* malloc error */

DLL_ZERO_INFO, /* sizeof(Info) is zero */

DLL_NULL_LIST, /* List is NULL */

DLL_NOT_FOUND, /* Record not found */

DLL_OPEN_ERROR, /* Cannot open file */

DLL_WRITE_ERROR, /* File write error */

DLL_READ_ERROR, /* File read error */

DLL_NOT_MODIFIED, /* Unmodified list */

DLL_NULL_FUNCTION /* NULL function pointer */

} DLL_Return;

The next two enumerations are used to determine the state of search inquiries:
one is used to determine the origin and the other for the direction. These values
are passed as arguments to the DLL SetSearchModes function.

typedef enum

{

DLL_ORIGIN_DEFAULT, /* Use current origin setting */

DLL_HEAD, /* Set origin to head pointer */

DLL_CURRENT, /* Set origin to current pointer */

DLL_TAIL /* Set origin to tail pointer */

} DLL_SrchOrigin;

14

typedef enum

{

DLL_DIRECTION_DEFAULT, /* Use current direction setting */

DLL_DOWN, /* Set direction to down */

DLL_UP /* Set direction to up */

} DLL_SrchDir;

The last enumerated type is used to determine the direction of insertion or the
swapping of a record. This structure is passed as an argument to two functions,
DLL InsertRecord and DLL SwapRecord.

typedef enum

{

DLL_INSERT_DEFAULT, /* Does nothing legacy value--don’t use it */

DLL_ABOVE, /* Insert new record ABOVE current record toward head */

DLL_BELOW /* Insert new record BELOW current record toward tail */

} DLL_InsertDir;

15

8 Functions

The following function calls are grouped by their general functionality, as de-
scribed above. They are written in manpage style so that I only have to docu-
ment the API once.

8.1 Initialization

NAME
DLL CreateList, DLL InitializeList, DLL DestroyList

SYNOPSIS
#include <linklist.h>

List *DLL_CreateList(List **list);

DLL_Return DLL_InitializeList(List *list, size_t infosize);

void DLL_DestroyList(List **list);

DESCRIPTION
The initialization group of functions must be used in the allocation and
freeing of memory used by the link list.

DLL CreateList
This function is called first to create the environment of the link list
package. It is passed list, a pointer to a pointer, of the Top Level

Struct type List. This pointer is returned both as the return value
of the function and in the argument list.

DLL InitializeList
After defining the Info structure this function is called to initialize
the environment. Its first argument, list, is the value returned from
DLL CreateList and the second argument, infosize, is the size in
bytes of the Info structure. The value DLL ZERO INFO is re-
turned if infosize is zero; DLL NULL LIST if the pointer list is
NULL; and DLL NORMAL if the initialization was successful.

DLL DestroyList
Upon exiting the application this function when called will free all
memory allocated during this instance of the list. It is passed list,
the value returned from DLL CreateList, and has no return value of
its own; however, the argument list is set to NULL.

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

#include <linklist.h>

typedef struct name_addr /* Sample data structure */

16

{

char name[30];

char street[40];

char city[22];

char state[3];

char zip[11];

} NameAddr;

void main(void)

{

List *NAList = NULL;

DLL_Return DLL_Exit;

if(DLL_CreateList(&NAList) == NULL)

{

fputs("Fatal Memory error", stderr);

exit(EXIT_FAILURE);

}

if((DLL_Exit = DLL_InitializeList(NAList, sizeof(NameAddr)))

!= DLL_NORMAL)

{

(void)(DLL_Exit == DLL_ZERO_INFO

&& fputs("Size of address record is zero.\n\n", stderr));

(void)(DLL_Exit == DLL_NULL_LIST

&& fputs("NAList points to a NULL address.\n\n", stderr));

exit(EXIT_FAILURE);

}

DoYourThingHere(NAList);

DLL_DestroyList(&NAList);

exit(EXIT_SUCCESS);

}

17

8.2 Status and State

NAME
DLL Version, DLL IsListEmpty, DLL IsListFull,
DLL GetNumberOfRecords, DLL SetSearchModes,
DLL GetSearchModes, DLL GetCurrentIndex

SYNOPSIS
#include <linklist.h>

char *DLL_Version(void);

DLL_Boolean DLL_IsListEmpty(List *list);

DLL_Boolean DLL_IsListFull(List *list);

unsigned long DLL_GetNumberOfRecords(List *list);

DLL_Return DLL_SetSearchModes(List *list, DLL_SrchOrigin origin,

DLL_SrchDir dir);

DLL_SearchModes *DLL_GetSearchModes(List *list,

DLL_SearchModes *ssp);

unsigned long DLL_GetCurrentIndex(List *list);

DESCRIPTION
All the functions below except DLL Version take as their first argument
list the pointer returned by DLL CreateList. These functions either return
or set the status or state of some aspect of the link list.

DLL Version
This function has no arguments and returns a string in the following
format:

Ver: 2.0.0 December 30 2011

Developed by: Carl J. Nobile

Contributions: Charlie Buckheit

Graham Inchley

Wai-Sun Chia

Mark M. Feenstra

Lianqi Qiu

DLL IsListEmpty
This function determines if the link list has any nodes defined by test-
ing if the head and tail pointers are NULL. It returns DLL TRUE
if the list is empty and DLL FALSE if the list has valid nodes.

DLL IsListFull
This function determines if there is enough memory to create new
Node and Info structures by creating and then deleting them. It
returns DLL TRUE if either of the two structures could not be al-
located and DLL FALSE if the memory allocations were successful.

DLL GetNumberOfRecords
This function returns the number of records currently in the link

18

list by retrieving a counter value. It returns the number of nodes
allocated where a return value of zero is an empty list.

DLL SetSearchModes
This function sets the search mode state table which is used by var-
ious function in the API. Its second and third arguments are origin
and dir. The origin argument can take one of four values:

DLL HEAD The origin of the search starts from the node which
is at the head of the list. This is the default value if none have
been set beforehand.

DLL CURRENT The origin of the search starts from the cur-
rently selected node.

DLL TAIL The origin of the search starts from the node which is
at the tail of the list.

DLL ORIGIN DEFAULT The origin of the search defaults to the
last set value.

The dir argument can take one of three values:

DLL DOWN The direction of the search is from the head to the tail
nodes. This is the default value if none have been set beforehand.

DLL UP The direction of the search is from the tail to the head
nodes.

DLL DIRECTION DEFAULT The direction of the search de-
faults to the last set value.

It returns DLL NOT MODIFIED if an invalid value was passed
in either origin or dir. DLL NORMAL is returned if the state
table was set.

DLL GetSearchModes
This function gets the state of the search criteria, which can either be
the default values or those set by DLL SetSearchModes. Its second
argument is ssp, a pointer to the structure below. It returns a pointer
to this same instance of the structure.

typedef struct search_modes

{

DLL_SrchOrigin search_origin;

DLL_SrchDir search_dir;

} DLL_SearchModes;

NOTE: This function has a different argument list starting with re-

lease linlkist-1.1.0. The original function allocated the structure in-

ternally to the function, which was not thread safe. This WILL break

old code that used this function.

DLL GetCurrentIndex
This function returns the index of the current record by retrieving a
counter value. A return value of zero is an empty list.

19

EXAMPLE
Examples of most of these functions can be seen in the source file dll test.c
used in the testing of the link list API.

20

8.3 Pointer Manipulation

NAME
DLL CurrentPointerToHead, DLL CurrentPointerToTail,
DLL IncrementCurrentPointer, DLL DecrementCurrentPointer,
DLL StoreCurrentPointer, DLL RestoreCurrentPointer

SYNOPSIS
#include <linklist.h>

DLL_Return DLL_CurrentPointerToHead(List *list);

DLL_Return DLL_CurrentPointerToTail(List *list);

DLL_Return DLL_IncrementCurrentPointer(List *list);

DLL_Return DLL_DecrementCurrentPointer(List *list);

DLL_Return DLL_StoreCurrentPointer(List *list);

DLL_Return DLL_RestoreCurrentPointer(List *list);

DESCRIPTION
The current pointer in the link list keeps track of the last used node.
In order for this to be of benefit there needs to be a way of controlling
where this pointer is located within the list. These functions allow the
repositioning and storing of this pointer during program execution.

All of these functions return the enumerated type DLL Return and take
only one argument list the pointer returned by DLL CreateList.

DLL CurrentPointerToHead
This function sets the current pointer to the head of the list and
sets the index counter to 1. A return value of DLL NULL LIST
indicates that the list has no nodes allocated and DLL NORMAL
indicates that the function succeeded in its task.

DLL CurrentPointerToTail
This function sets the current pointer to the tail of the list and
sets the index counter to the listsize counter. A return value of
DLL NULL LIST indicates that the list has no allocated nodes
and DLL NORMAL indicates that the function succeeded in its
task.

DLL IncrementCurrentPointer
This function increments the current pointer and the index counter
each by 1. A return value of DLL NULL LIST indicates that the
list has no allocated nodes, DLL NOT FOUND indicates that the
end of the list has been reached, and DLL NORMAL indicates
that the function succeeded in its task.

DLL DecrementCurrentPointer
This function decrements the current pointer and the index counter
each by 1. A return value of DLL NULL LIST indicates that

21

the list has no allocated nodes, DLL NOT FOUND indicates that
the beginning of the list has been reached, and DLL NORMAL
indicates that the function succeeded in its task.

DLL StoreCurrentPointer
This function stores the current pointer and the index counter in the
Top Level Struct for later retrieval. Only one value can be stored
at a time so calling this function again will destroy the first stored
pointer and index values. A return value of DLL NOT FOUND
indicates that the list is empty and DLL NORMAL indicates that
the function succeeded in its task.

DLL RestoreCurrentPointer
This function restores the current pointer and the index counter
from the Top Level Struct. Since only one value can be stored at
a time, calling this function again will return the last pointer and
index values. A return value of DLL NOT FOUND indicates that
the list is empty and DLL NORMAL indicates that the function
succeeded in its task.

EXAMPLE
Examples of most of these functions can be seen in the source file dll test.c
used in the testing of the link list API.

22

8.4 List Update

NAME
DLL AddRecord, DLL InsertRecord, DLL SwapRecord,
DLL UpdateCurrentRecord, DLL DeleteCurrentRecord,
DLL DeleteEntireList

SYNOPSIS
#include <linklist.h>

DLL_Return DLL_AddRecord(List *list, Info *info,

int (*pFun)(Info *, Info *));

DLL_Return DLL_InsertRecord(List *list, Info *info,

DLL_InsertDir dir);

DLL_Return DLL_SwapRecord(List *list, DLL_InsertDir dir);

DLL_Return DLL_UpdateCurrentRecord(List *list,

Info *record);

DLL_Return DLL_DeleteCurrentRecord(List *list);

DLL_Return DLL_DeleteEntireList(List *list);

DESCRIPTION
These functions manipulate the data in the link list. They all return the
enumerated type DLL Return and take as their first argument, list, the
pointer returned by DLL CreateList.

DLL AddRecord
This function adds a new node and record to the link list. The
second argument is a pointer to the Info structure where the new
data is stored. The third argument is a pointer to a function used to
sort the insertion of the new data. The return value of this function
is identical to the return value of the strcmp function of the standard
C library.

Where the return value is

less than zero: arg1 < arg2,

zero: arg1 == arg2, or

greater than zero: arg1 > arg2.

Below is an example of this function:

int sort_foo(Info *record, Info *compare)

{

return(strcmp(record->info_element,

compare->info_element));

}

23

If a NULL is passed instead of the function pointer no sorting will
take place causing the next new node and record to be added to the
tail of the list. A return value of DLL MEM ERROR indicates
that memory could not be allocated and DLL NORMAL indicates
that the function succeeded in its task.

DLL InsertRecord
This function adds a new node and record to the link list above or
below current record. The new record will be current after comple-
tion. The second argument is a pointer to the Info structure where
the new data is stored. The third argument is passed an enumerated
define of type DLL InsertDir.

typedef enum

{

DLL_INSERT_DEFAULT, /* Use current insert setting */

DLL_ABOVE, /* Insert new record ABOVE current record */

DLL_BELOW /* Insert new record BELOW current record */

} DLL_InsertDir;

In the current version the value DLL INSERT DEFAULT is not
used; it has been included for conformity to other like definitions and
possible future expansion.

The value DLL NOT MODIFIED, if returned, indicates that a
wrong value was passed in the argument dir ; DLL MEM ERROR
indicates that memory could not be allocated; andDLL NORMAL
indicates that the function succeeded in its task.

DLL SwapRecord
This function swaps the current record up or down one place in
the list. The swapped record will remain current after completion.
The second argument is passed the same enumerated define of type
DLL InsertDir as the function DLL InsertRecord above. The
value DLL NOT MODIFIED, if returned, indicates that a value
other than the type DLL InsertDir was passed in the argument dir ;
DLL NULL LIST indicates that the list is empty and there are
no nodes to swap; DLL NOT FOUND indicates that the current
node is either at the head and cannot be swapped above or is at the
tail and cannot be swapped below; and DLL NORMAL indicates
that the function succeeded in its task.

DLL UpdateCurrentRecord
This function replaces the current data in an Info structure with
updated data from the application. The entire structure gets over-
written so all elements in the updating structure will need to be
present whether or not they have been changed. The second argu-
ment of this function is passed a pointer to an Info structure which
contains the updated information. The value DLL NULL LIST,

24

if returned, indicates that the list is empty and DLL NORMAL
indicates that the function succeeded in its task.

DLL DeleteCurrentRecord
This function deletes the current Node and its Info structures from
the list. The value DLL NULL LIST, if returned, indicates that
the list is empty and DLL NORMAL indicates that the function
succeeded in its task.

DLL DeleteEntireList
This function deletes all the Node and Info structures from the list. It
does not delete the Top Level Struct allowing the application to add
new records without having to reinitialize the list again. The value
DLL NULL LIST, if returned, indicates that the list is empty and
DLL NORMAL indicates that the function succeeded in its task.

EXAMPLE
Examples of most of these functions can be seen in the source file dll test.c
used in the testing of the link list API.

25

8.5 Search

NAME
DLL FindRecord, DLL FindNthRecord, DLL GetCurrentRecord,
DLL GetPriorRecord, DLL GetNextRecord

SYNOPSIS
#include <linklist.h>

DLL_Return DLL_FindRecord(List *list, Info *record,

Info *match, int (*pFun)(Info *, Info *));

DLL_Return DLL_FindNthRecord(List *list, Info *record,

unsigned long skip);

DLL_Return DLL_GetCurrentRecord(List *list, Info *record);

DLL_Return DLL_GetPriorRecord(List *list, Info *record);

DLL_Return DLL_GetNextRecord(List *list, Info *record);

DESCRIPTION
These functions retreive data from the list. They all return the enumerated
type DLL Return and take as their first argument list the pointer returned
by DLL CreateList.

DLL FindRecord
This function returns in its second argument a record found using
the criteria passed in its third argument based on the logic of a func-
tion passed as its forth argument. See DLL SetSearchModes for
setting the search direction and origin. The form of the passed in
function containing the search criteria is the same as that used by
the DLL AddRecord, but in this case a NULL function pointer
cannot be passed. It is shown below for convenience.

Where the return value is

less than zero: arg1 < arg2,

zero: arg1 == arg2, or

greater than zero: arg1 > arg2.

Below is an example of this function:

int sort_foo(Info *record, Info *compare)

{

return(strcmp(rcrd->info_element,

cmp->info_element));

}

The value DLL NULL FUNCTION, if returned, indicates that
a NULL was passed as the fourth argument; DLL NULL LIST

26

indicates that the list is empty; DLL NOT FOUND indicates that
a record could not be found; and DLL NORMAL indicates that
the function succeeded in its task.

DLL FindNthRecord
This function returns in its second argument the record found by
adding the skip value passed in the third argument to the index value
of the current record. The skip value is an unsigned long integer and
should always be a positive number. SeeDLL SetSearchModes for
setting the search direction and origin. The valueDLL NULL LIST,
if returned, indicates that the list is empty; DLL NOT FOUND
indicates that a record could not be found in the list or that the
skip value was out of range; and DLL NORMAL indicates that
the function succeeded in its task.

DLL GetCurrentRecord
This function returns in its second argument the current record. The
valueDLL NULL LIST, if returned, indicates that the list is empty
and DLL NORMAL indicates that the function succeeded in its
task.

DLL GetPriorRecord
This function returns in its second argument the record just prior
to the current record. The value DLL NULL LIST, if returned,
indicates that the list is empty; DLL NOT FOUND indicates that
the current record is at the head of the list and there is no prior
record; and DLL NORMAL indicates that the function succeeded
in its task.

DLL GetNextRecord
This function returns in its second argument the record just after the
current record. The value DLL NULL LIST, if returned, indicates
that the list is empty; DLL NOT FOUND indicates that the cur-
rent record is at the tail of the list and there is no next record; and
DLL NORMAL indicates that the function succeeded in its task.

EXAMPLE
Examples of most of these functions can be seen in the source file dll test.c
used in the testing of the link list API.

27

8.6 Input/Output

NAME
DLL SaveList, DLL LoadList

SYNOPSIS
#include <linklist.h>

DLL_Return DLL_SaveList(List *list, const char *path);

DLL_Return DLL_LoadList(List *list, const char *path,

int (*pFun)(Info *, Info *))

DESCRIPTION
These functions are designed to easily write and read the link list data to
a disk. They take advantage of their ability to access the Top Level Struct

for saving and loading data quickly; however, this will only be useful in
limited cases as most implementations will need application specific file
formats. Both return the enumerated type DLL Return and take as their
first argument, list, the pointer returned by DLL CreateList, and as their
second argument, path, a pointer to the file name.

DLL SaveList
This function saves all the Info structures including any NULL char-
acters in the elements. The record size is equal to, infosize, the
second argument of the DLL InitializeList function.

The value DLL NULL LIST, if returned, indicates that the list is
empty; DLL OPEN ERROR indicates that the file could not be
opened for writing; DLL WRITE ERROR indicates that there
was an error while writing to the file meaning that the data in the
list should not be trusted; DLL NOT MODIFIED indicates that
the list has not been modified since the last save and no updating to
the file was done; and DLL NORMAL indicates that the function
succeeded in its task.

DLL LoadList
This function retrieves from a file data based on the same criteria
that it was saved with. See DLL SaveList above. The third ar-
gument pFun is a pointer to a sorting function the same as can be
found in DLL AddRecord. A NULL function pointer can be passes
if no sorting is needed. The list-¿current index will have an arbi-
trary value it depending on the sort algorithm used. Use one of the
DLL CurrentPointerToHead or DLL CurrentPointerToTail
functions to get the known location.

Where the return value is

less than zero: arg1 < arg2,

28

zero: arg1 == arg2, or

greater than zero: arg1 > arg2.

Below is an example of this function:

int sort_foo(Info *record, Info *compare)

{

return(strcmp(rcrd->info_element,

cmp->info_element));

}

EXAMPLE
Examples of most of these functions can be seen in the source file dll test.c
used in the testing of the link list API.

29

