cyanDiff — a forward-mode AD library

Introduction

cyanDiff will implement forward-mode automatic differentiation in Python us-
ing Dual Numbers to differentiate many functions.

Solving the automatic differentiation problem is useful not only because it is
a core mathematical operation that can be used in scenarios like CASes (com-
puter algebra systems), but because it has key applications in tasks such as
machine learning and data analysis. In particular, automatic differentiation is
a critical component of the ML model training process. By modeling a gener-
alized differentation scheme within cyanDiff, users will be able to differentiate
all sorts of functions composed from basic elementary functions and variables,
which is exactly the type of thing that appears in complex ML models with
heterogeneous architectures.

Background

Automatic differentiation and our package rely on the chain rule in calculus.
For scalars, the chain rule is given by:

L (Fo)@) = F'(gla) o (@),
2

For example, if we are differentiating the elementary function, sin z*, we would
get 2x - cos 2 because cos is the derivative of sin and 2z is the derivative of 22.

At its core, automatic differentiation allows for a program to differentiate an
elementary function (or the composition of elementary functions, including exp,
trig functions, polynomials, log etc) by repeatedly applying the chain rule to
the compositions of functions. AD also keeps track of the directional derivative,
which is given by multiplying the currently computed derivative by a direction
vector commonly denoted p.

This necessitates the use of a computational graph. Each node in the graph
keeps track of the derivative and the directional derivative. Then, edges between
the nodes are represented by functions (addition, multiplication, e* etc). It is
worth noting that while we gave scalar functions above, we will support the
differentiation of elementary vector valued functions f: R™ — R™.

Now we describe the technical details about implementing automatic differen-
tiation. Specifically, we talk a bit about dual numbers and how they are used
in the automatic differentiation process. Dual numbers are similar to complex
numbers, except instead of using the imaginary unit 7, we use a value € such that
€2 = 0. So, dual numbers are of the form a + be, where a, b are real numbers.

What is the advantage of using dual numbers? There is a clever way of using
the properties of € so that we can store both the primal and tangent traces of

a computation within a single dual number. This drastically simplifies com-
putations, and combined with overloaded DualNumber-supporting functions,
forward-mode AD becomes a simple task.

To understand how DualNumbers can be used to streamline AD, we first dis-
cuss the idea of a computational graph. All mathematical functions can be
represented in terms of simpler “elementary” functions. These functions are
things such as addition, exponentiation, and cosine. We then represent a math-
ematical function as a composition of a bunch of these elementary functions,
on top of a set of input “independent” variables. Let’s consider the function
f(z,y) = x * y + 2y for the remainder of this section. This function takes two
input variables x,y and is computed as follows, in terms of elementary func-
tions: we multiply z and y, multiply 2 and y, and then add those two results
together in order to get f(x,y). We can then represent these chained operations
in the following graph, where the v; represent intermediate computed values
when ¢ > 0, and for ¢ < 0 we simply have the independent input variables:

X Y 3 @

XU -ﬂy

J “

Now, suppose we want to use this computational graph to help us calculate
the gradient of vs, the function value, with respect to the inputs v_; and v,.
The trick is to store both the imtermediate value and (directional) derivative
in the form of a single Dual number at every node of the computational graph.
So, suppose we want to compute the directional derivative in a direction vector
p at some point (zy,y,) = x. We would store at every node v, the value
v;(x) + D, (v;)(x)e, where D,, denotes the directional derivative in direction p
(the Jacobian multiplied by p).

Then, by storing both the function value v;(x) and the derivative D, (v;)(x) in a
single Dual number, we can compute successive function values and derivatives
simply by performing the corresponding elementary function operations on the
dual numbers themselves. For example: suppose we’re in the above graph
and want to compute v;3’s node from v; and v,. We simply add their Dual
number values to get v, (x)+vy(x)+ [D,,(v;)(x) + D, (vy)(x)] &, which is exactly
v3(x) + D, (v3)(x)e, by the addition rule for derivatives.

This holds true for more complex scenarios; suppose we wanted to multiply
nodes v; and v,. The product rule is required when computing the derivative
of the resultant node v3 = v; - v5. But when using Dual numbers, simply multi-
plying the Dual number representations works: (vq(x) + D, (v;)(x)e) - (vy(x) +
D, (vy)(x)e) = vy (x)vy(x) + [v3D,(vy)(X) + vy D, (v)(x)] €, which is exactly
what we’d get from the product rule. Notice how the term with 2 cancels out
by definition.

How to use cyanDiff

Similar to many existing AD packages, cyanDiff will allow the user to instan-
tiate variables symbolically, and then combine those variables along with other
operators to form functions. For example:

import cyanDiff as cd

X, y, z = cd.var("x y z")
f = 2%xx + y**3 + x*kz + 4k (xx*2)* (y**4)

Other elementary functions can be imported from our package as well, which
are overloaded versions of the usual functions from NumPy that now support
Dual numbers.

f 2 =2 % cd.sin(x) + cd.exp(y)

Besides simple real-valued functions, vector functions can also constructed. For
example (continuing from above), the following creates a function g : R? — R3:

= x + 100%*y

XXy + ykk2

x/ (y + 3)
cd.matrix(g_1, g_2, g_3)

UQENOQOQ
I wN =
I

Once a function has been composed via mathematical operators and variables,
we can compute its derivative at a specified point:

pointl = (1, 2, 3)
resl = f.diff_at(pointl)

point2 = (4, 5)
res2 = g.diff_at(point2)

The output of diff_at is a matrix, specifically the Jacobian of the specific
function at the specified point. For example, res1 is the Jacobian of the function
f evaluated at pointl. Under the hood, forward-mode AD is making multiple
passes per basis vector direction and stitching together the requisite directional
derivatives in order to form the full Jacobian.

Special instances of the derivative, notably the gradient, can be computed via
corresponding functions:

point3 = (6, 7)
res3 = g.grad_at(point3)

Under the hood, the grad_at function is simply computing the transpose of the
Jacobian at the specified point. Again, the output of grad_at is a matrix.

This package requires the following dependencies to be installed: numpy

Software Organization

AutomaticDifferentiation/

|-—--__init__.py

| -—--DualNumber.py

| -—--Node.py

|----AD.py

|----tst/
|-—--__init__.py

e The directory structure will consist of a parent directory called
AutomaticDifferentiation, and there will be modules within this direc-
tory including DualNumber, Node, an AD module, and a tst subdirectory
for running tests.

e For modules, we plan to include and import DualNumber and Node.
DualNumber:

Node:

e Our test suite will live as a separate subdirectory in the same directory as
our AD module and associated modules like DualNumber and Node. This
will allow us to easily import our AD module and run tests, where we can
compare an analytically comptued derivative to our AD program’s results
and ensure that the results match.

o We will distribute cyanDiff via PyPI, with all the necessary package
configuration files. The package can thus be installed via

python3 -m pip install cyanDiff

Implementation

The classes we will need are a DiffGraph class for the graph structure, a
DiffNode class for the nodes in the auto-differentiation graph, and a DualNum
class for storing dual numbers. Our key data structure will be a graph, in-
cluded in the DiffGraph class, which will be made up of individual node data
structures. We will also make use of array data structures (in particular numpy
arrays), and as said earlier, we will create a class for dual numbers with each
DualNum object having two attributes for the two parts of the dual number. We
will incorporate dual numbers by implementing our DualNum class in such a way
that its operators are defined to be compatible with the calculations performed
using methods from our other classes.

DualNum

The DualNum object has two attributes for the two parts of the dual
number. real representing the primal trace value and dual representing
derivative (tangent trace). The method DualMathin the class can convert
basic math operations to dual number format.

We would implement the DualNum class first as it is the lowest level class here.

As done in HW 4, we need to define some functions. These include a constructor,
dunder add, dunder mul, dunder radd and dunder rmul. This allows for adding
and multiplying Dual Numbers with other Dual Numbers along with ints and
floats in either order.

For example, here is what our constructor could look like:

def __init__(self, real, dual = 1):
if isinstance(real, int) == False and isinstance(real, float)
raise TypeError

if isinstance(dual, int) == False and isinstance(dual, float) ==
raise TypeError

self.real = real
self.dual dual

We implement overloading in case user-defined math functions ever use a con-
stant int or float. We define our basic math operations to handle when one
of the values is an int or a float number. For example, when adding an int
or a float we add the value to the real part of the dual number, and when
multiplying we multiply both the real and dual parts of the dual number by the
int or float. We include the examples below to show how this works.

a_0=1
z_1 = DualNumber(5,5)

False:

False:

resl =z_1 + a_0

al=2.0
z_2 = DualNumber(2,2)
res2 = a_1 *x z_2

print(resl.real)
print(resi.dual)
print(res2.real)
print(res2.dual)

6
5
4.0
4.0

We include an example implementation of __add__ and __radd__ for our dual
number class that accounts for integers and floats:

def __add__(self, other):
if isinstance(other, DualNumber):
return DualNumber (self.real + other.real, self.dual + other.dual)
elif isinstance(other, (int, float)):
return DualNumber(self.real + other.real, self.dual)
else:
raise TypeError("Must be 'int,' 'float,' or 'DualNumber'")

def __radd__(self, other):
return self.__add__(other)

When implementing forward mode AD, we will not use any graph and node
structure. These sections are kept below as considerations for implementing
reverse mode AD.

For forward mode AD, we will implement our own overloaded primitives, e.g. the
basic arithmetic operations, trig functions, and exponentiations, with which
users can define math functions of one or multiple dimensions using our CyanDiff
instantiated variables. We use our diff_at function, which will take one of these
user-defined math functions as well as a user provided point to then evaluate
the derivative at the given point.

In particular, we will take the user defined point and convert each coordinate
to its own dual number. The real part is the same as the real value given in the
user-inputted point. The dual part depends on the value of the p directional
vector. For n-dimensional user input, we will calculate the primal and tangent
traces n times, with n different p vectors, with each p vector being a different
standard basis vector (one position has value 1 and the rest are all 0). We then
provide these dual numbers as input to the math function defined in terms of
our dual-number compatible functions, which will give us a dual number or a

vector of dual numbers as the output. By the properties of dual numbers as
described in the background section, the real part of the dual output will be the
primal trace, and the dual part will give the tangent trace. We then take the
tangent trace for each p vector and use them to construct our Jacobian.

DiffNode
Recall as above that this only for reverse mode.

In DiffNode class, we define a node-type object for each of the points in our
computational graph, which we must store when performing reverse mode AD.
Each node will have to have a children field, the value at that node, and the as-
sociated basic operation or function (e.g. trig functions or logarithm) associated
with that node. The children field will consist of a list of tuples of child node id
and the corresponding partial derivative of that child with respect to the parent

DiffGraph

Our DiffGraph class will have an attribute that is a list of nodes of our DiffNode
type. For reverse mode, we will use this to store the computational graph.

Licensing

We choose the MIT license because it is a relatively simple and permissive license,
allowing other people to freely use and modify our code, as well as distribute
a closed source version, while protecting us from developers claiming liability.
The only package we plan to use in numpy, which is licensed under a liberal BSD
license, so we are free to use the MIT license in our project.

Feedback

Here we address the feedback we received for milestone 1. The comments are
in bold and our responses are in normal text.

Background

It would be helpful if you include more background of Dual Number
and why it is useful in your package. - I would recommend you to
have some graphs to explain the computational graph. Remember the
users of your package may be not familiar with the technical terms.

We addressed these suggestions by including a discussion of how Dual Numbers,
by their properties under basic operations, effectively allow us to track the
primal and tangent traces in forward mode AD. Thus, they are quite useful in
our package. We also include a computational graph figure to help with reader
understanding.

How to Use

It is not so clear about the difference between the usage of grad_ at
and diff _at (-0.25)

We specify that the gradient (what grad_at returns) is the transpose of the
Jacobian (which is what diff_at returns). In short, their return values are
matrices which are transposes of each other.

Software organization

Great design! But hope the relationship between different modules
can be more clear. Maybe draw a structure graph to show it.

We include a structure graph to show the relationship between the different
modules, and further clarify in writing the module structure.

Implementation (explicit design considerations)

Please be clear how DualNumber class will be implemented. Showing
some example code will be preferred. (-0.25)

We lay out the attributes and methods that the DualNumber class will have. We
provide example code for the implementation of some of the basic operators for
dual numbers, and examples of how they will function.

Do you really need to store all the parent and corresponding functions
if you use the forward mode? Think more about the design of your
Node class. (-0.5)

We no longer use a Node class for our implementation of forward mode (though
we keep the idea around for our consideration of how to implement reverse
mode). We instead simply allow the user to define math functions using basic
math operators and functions provided from our package, and have them be
passed as input for differentiation. We do not store parents and corresponding
functions any longer, and instead use the properties of dual numbers in order
to record our primal and tangent trace calculations.

Where would you put the elementary functions? How would you
overload it? Think more about the design of elementary functions.

We implement our elementary functions in our DualNumber class. We overload
our elementary functions to accept int and float as well as dual numbers, so
that the user can include int and float values in their defined math functions
that they pass for differentiation. This is illustrated in the example code that
we provide.

	cyanDiff – a forward-mode AD library
	Introduction
	Background
	How to use cyanDiff
	Software Organization
	Implementation
	DualNum
	DiffNode
	DiffGraph

	Licensing
	Feedback

