
The F2 DBMS in Python

Thibault Estier

september 2004 - june 2014

Ecole des HEC - University of Lausanne
Email: thibault.estier@unil.ch

Abstract

This document is a brief introduction to F2-Python, the Python version of the F2 Database Management System.
F2 is an evolution oriented DBMS. New users of F2 may use this text to discover how to build, manage and transform
a database (or more appropriately an object base) in Python. This introduction is more a tutorial than a full reference
manual, and is intended to give an overview of F2 features and ease of use from Python.

Contents

1 Introduction 3

2 Installing F2 for Python 3
2.1 Downloading ZODB before installing F2 . 3
2.2 Installing F2 itself . 4
2.3 Checking your installation . 4
2.4 Testing F2 without server (DB in a simple file) . 4
2.5 Testing F2 with a client/server configuration . 5
2.6 Restricting access to a F2 server . 5

3 Using F2: a short introduction 5
3.1 Opening access to F2 . 6
3.2 Creating a new class, creating objects . 6
3.3 Accessing object values, assigning new values . 7
3.4 Selecting objects . 8
3.5 Using keys in classes . 9
3.6 Deleting objects . 9

4 The F2 kernel 11
4.1 Classes to define classes, attributes, etc. 11
4.2 Schema creation and evolution . 12

5 F2 reference guide 14
5.1 The F2 python package . 14

Methods of a F2 connection object . 14
5.2 F2.F2 Object and F2.F2 Object list . 15

F2 Object . 15
F2 Object list . 16

5.3 F2.F2 Class . 17

5.4 F2.F2 Attribute . 19
5.5 Extending F2 . 19

Index 20

2 Contents

1 Introduction

F2 is an object-oriented Database Management System (DBMS) specially built to support schema evolution. Its main
purpose is to support persistent data for which the initial schema is very prone to changes. Its underlying design
choices are based on reflexivity (no separation between meta-levels and objects, no DDL) and transposed storage
(grouping values of the same attribute for different objects, instead of grouping all attributes values of an object). It
was developed in the database research laboratory leaded by prof. Michel Léonard at University of Geneva, between
1989 and 1991. Further research and applications of F2 (benchmarking, support of additional concepts, building of
ontologies) continued up to 1997. The initial version of F2 was written in Ada by Thibault Estier. For several years, F2
development has been continued in Ada and F2 is still available on every platform supporting the Gnu-Ada compiler
(called Gnat).

In october 2003, Thibault started to bootstrap a new version of F2 in Python, using the ZODB1 persistence engine.
The motivation for a Python version is twofold:

• to offer a native python access to F2, allowing usage from within web application servers like Zope,

• to give an interpretative environment to F2 by substituting Python to the original F2 manipulation language
(called FarTalk). This avoids the traditional syntactic gap2 between a programming language and a DB manip-
ulation/query language (like embedding SQL in a C++ program).

The F2Python DBMS may run in two different modes: directly on local data files (called FileStorage in ZODB), or on
a RPC-controlled server (called ZEO Storage in ZODB). The first mode is used when F2 runs within a Zope server:
F2 classes collections are managed in the current Zope storage. The second mode is used by python clients programs
sharing a common F2 server, without the use of a Zope application server.

2 Installing F2 for Python

2.1 Downloading ZODB before installing F2

F2 requires ZODB so you have to install it before F2. If you intent to use F2 uniquely from within a Zope application
server, ZODB is already there, so you don’t need to worry about this point. If you want to use F2 from other python
programs, or if you want to test your python scripts without Zope, then you need to install it:

1. get the latest (stable) version of ZODB + ZEO from PyPi.
see http://www.zodb.org,

2. depending on your installation environment, one of the following command should do it:

$ pip install ZODB3

or

$ easy_install ZODB3

The installation of ZODB3 combines automatically for you four installations into a single one: ZODB itself, ZEO,
persistent, and Btrees. These four packages are required by F2. When the ZODB installation procedure starts, it will
try to compile a few C source code files. If it doesn’t find a compiler onboard your machine, the installation script

1ZODB is the storage mechanism developed for and used by Zope application servers, see http://www.zope.org
2also called impedance mismatch in database literature

3

will end with errors. So you will need a C compiler installed. This is most certainly already the case for a Debian-like
Linux install. This may also be the case on a Mac if you have the MacOS Developper tools installed. If not, get them
from the Apple App Store. On Windows, you may install VCforPython27 , a small package containing the Microsoft
C++ compiler plus some python addons and development libraries.3 Once you have your compiler installed, run the
ZODB installation script again: easy install ZODB3 .

2.2 Installing F2 itself

Whatever the way you got F2 for python on your machine, you probably received a zip file with a name like ‘F2-
1.3.1.zip’ or ‘F2-1.3.1.tar.gz’, depending on the platform you are using it. Open this archive file with the appropriate
tool 4 to obtain somewhere on your disc a ‘F2-1.3.1’ directory.

To install this software, open a command shell (or terminal) and type the following command:

$ cd ./F2-1.3.1
$ python setup.py install

You will see a lot of messages, indicating essentially the move of files into appropriate places in your installation. To
be successful, the installation must be run with administration rights. On several platforms (MacOSX or Linux) you
may have to prefix your command with the sudo command:

$ sudo python setup.py install

This will usually require your password before actually executing install instructions.

2.3 Checking your installation

Type the following command:

$ python -c ’import F2’

If this command returns without any effect or message, then your installation is a success. If it displays any form of
error message containing ”ImportError” then something failed during the preceding steps.

2.4 Testing F2 without server (DB in a simple file)

Type the following command:

$ python bootf2.py file:root.db

You should normally see a succession of lines commenting the ongoing bootstrap of a F2 kernel. The resulting database
will be in the current directory under name ‘root.db’.

3download this package from (https://www.microsoft.com/en-us/search/result.aspx?q=vcforpython27).
4with a zip file, use the command $unzip F2-1.3.1.zip , with a tar.gz file, use the command $tar zxvf F2-1.3.1.tar.gz

4 2 Installing F2 for Python

2.5 Testing F2 with a client/server configuration

1. check content of file ‘f2 zeoserver.conf’, verify that port 8081 is not already used on your machine, this is the
port on which your F2 server will listen and serve clients. If this is the case, replace ’8081’ by some other
appropriate port number in the ‘f2 zeoserver.conf’ file (this is a simple text file that you may modify with the
help of any standard editor).

2. create a local subdirectory called ’var’ in the current directory. The server will store F2 data files, logs and other
control files in it.

3. launch your server with the following command:

$./start_f2_server

4. bootstrap the server database with the following command:

$ python bootf2.py rpc:127.0.0.1:8081

You will of course replace ’8081’ by the port number you choosed in point 1) if you changed it. The ’127.0.0.1’
address is the standard IP address designing your own machine. On many platforms, it may also be replaced by
the equivalent ‘localhost’ string, so you may use the rpc:localhost:8081 form instead. A client program
running on another machine would use instead the effective address of your machine. This implies you opened
the port 8081 to other machines on the network. If this is the case, BEWARE because anyone can use your F2
database while your server is running. When in doubt, ask your local network administrator.

5. to stop your F2 server use:

$./stop_f2_server

2.6 Restricting access to a F2 server

You can restrict access to your F2 server using a simple user/password scheme, relying completely on the authen-
tication mechanism offerd by ZODB/ZEO. To do this, modify the file ‘f2 zeoserver.conf’ by removing comments
on lines defining authentication parameters. The file which contains (encrypted) usernames and passwords is in the
‘./var/useraccess’ file. You update this file using the zeopasswd.py utility, which you can find in your ZODB distri-
bution (in directory ‘ZEO’ of your local installation). Usage of this utility is described by the program itself when you
launch it without any parameter. By default, your F2 distribution is configured with only one user called admin with
password admin. Change it immediately if you decide to activate authentification !

3 Using F2: a short introduction

Before beginning to execute F2 queries and manipulations, ensure you are working on a non empty database: an F2
database has to contain a minimal set of objects called the F2 kernel. This set of objects is actually a self describing
collection of F2 classes. The F2 kernel is described in details in section 4, page 11. The sections 2.4 and 2.5 describe
how to create the F2 kernel in your DB.

2.5 Testing F2 with a client/server configuration 5

3.1 Opening access to F2

Using the F2 DBMS from a python script or interactively from a python shell is not very difficult. Basically, you open
a connection to a F2 database and keep this connection in a python variable. Then this variable is like a namespace
giving you direct access to F2 classes: if you know the name of your classes, you will have access to all your objects,
and you will execute methods of these objects and classes to manipulate your database. The following example
illustrates this step by step on an interactive python session.

$ python
Python 2.7.5 (default, Mar 9 2014, 22:15:05)
[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import F2
>>> f2 = F2.connect(’rpc:127.0.0.1:8081’)

Now variable f2 can be used as a namespace to give access to already defined F2 classes.

>>> f2.String, f2.Int, f2.CLASS, f2.Attribute
(<CLASS.String>, <CLASS.Int>, <CLASS.CLASS>, <CLASS.Attribute>)

3.2 Creating a new class, creating objects

Our f2 variable can also be used to create a new class, using method class create. This method is actually a
shortcut to create new objects in the class CLASS. We will come back to this later on.

>>> D = f2.class_create(
... className=’Department’, database=’test’,
... schema={’name’: f2.String})
>>> D
<TupleClass.Department>
>>> market = D.create(name = ’Marketing’)
>>> market
<Department.0>
>>> market.name
’Marketing’

This shows the simplest way for creating a new class Department, to attach this new class to the database named ’test’
and then immediately a department called Marketing. Now, lets create a class to describe Person’s and a subclass of
Employee’s who work in departments and have managers.

6 3 Using F2: a short introduction

>>> P = f2.class_create(
... className = ’Person’, database=’test’,
... schema={’firstname’: f2.String,
... ’lastname’ : f2.String})
>>> P
<TupleClass.Person>
>>> E = f2.class_create(
... className = ’Employee’, database=’test’,
... superClass = P,
... schema={’work_in’ : (f2.Department, 1, ’*’),
... ’manager’ : f2.Person })
>>> E
<TupleClass.Employee>

This example shows how you can declare cardinality constraints for your attributes: an employee (who is a person,
of course) works in at least one department, and possibly several (’*’ means the maximum is not bounded). These
three new classes (Person, Employee, and Department) now belong to the current namespace f2. In order to create
new objects in these classes both following notations are equivalent :

>>> joe = P.create(firstname=’Joe’, lastname=’Cool’)
>>> larry = f2.Person.create(firstname=’Larry’, lastname=’Ellison’)

3.3 Accessing object values, assigning new values

To evaluate objects attributes or to assign new values to them, we simply use the natural python dotted notation:

>>> (larry.firstname, larry.lastname)
(’Larry’, ’Ellison’)
>>> larry.firstname = ’Lawrence’
>>> linus = f2.Employee.create(firstname = ’Linus’, lastname = ’Torvald’,
... manager = larry, work_in = market)
>>> linus.work_in.name
’Marketing’
>>> linus.manager.firstname
’Lawrence’
>>> linus.manager.work_in
AttributeError: F2 attribute work_in not applicable to this object (<Person.1>)

Oops, that’s right, Larry is a person, but not an employee (so it doesn’t mean anything to ask for the department he
works in). Let’s hire him: make the object larry enter into (sub-)class Employee. This is legal because Employee is a
subclass of Person.

>>> larry = f2.Employee.enter(larry)
>>> larry.work_in = market
>>> larry.work_in.name
’Marketing’
>>> linus.manager.work_in == linus.work_in
True

The dotted notation of the Python language also implies that you can use the builtins functions getattr(),
hasattr(), and setattr() to access and assign object values when attribute names are variables. The fol-

3.3 Accessing object values, assigning new values 7

lowing example shows simply how to print all attribute values of an object, whatever the class schema is at the time
being:

for attr in f2.Employee.all_attributes():
an = attr.attributeName
print an, ’=’, getattr(larry, an)

3.4 Selecting objects

To retrieve objects using their attribute values (the same way you select tuples from a table in SQL), you apply selectors
to a class. If you do not specify any selector, this will return all objects of the class. A selector is a pair giving the
name of an attribute and a matching value: an object belongs to the selected result if the attribute applies to it (because
its an inherited attribute for example) and if it takes exactly this value.

>>> f2.Person(work_in = market)
[<Person.1>, <Person.2>]
>>> f2.Employee(work_in = market)
[<Employee.1>, <Employee.2>]
>>> john = f2.Person(firstname = ’John’, lastname=’Smith’)
>>> john_vehicles = f2.Vehicle(owner = john)

The result of a selection is a (python-)list, even if the result contains only one object. More precisely, the result is a
F2 object list on which you can apply further attributes evaluations, for example:

>>> f2.Employee(work_in = market).firstname
[’Lawrence’, ’Linus’]

The use of selectors may be used very efficiently by F2 to select/retrieve objects, specially when the corresponding
attribute has been configured with its reversed function. Selectors allow only very simple expressions to be used.
To select objects using arbitrary complex predicates, you can use the special where selector which takes an arbitrary
lambda expression as value. This lets you build any selection predicates using python syntax. The following example
shows how to select employees who work in the same department as larry does and whose firstname is not ’John’ :

>>> f2.Employee(_where = lambda e:
... e.work_in == larry.work_in and e.firstname != ’John’)
[<Employee.1>, <Employee.2>]

You may also combine freely simple selectors and where predicates in the same selection. Selectors are first applied
(efficiently when possible), and then the predicate is filtering the resulting object set.

>>> johns_vehicles = f2.Vehicle(owner = john,
... model = ’BMW’,
... _where = lambda v : v.year_built >= 1999
... and v.color in (’blue’, ’black’, ’grey’))

Actually, the where parameter is not necessarily a lambda expression. It might as well be a function or a method as
long as it takes exactly one parameter (the selected object) and returns a boolean value (True or False). So you can
define separately your predicate, and reuse it in several selections.

8 3 Using F2: a short introduction

3.5 Using keys in classes

Consider the relation built over all the attributes of class Person (list of attributes that you can obtain by
f2.Person.all attributes()). You may want to declare that the pair (firstname, lastname) acts as a key
on this relation. In other words, there is at most one person p ∈ f2.P erson() with a given pair of strings (fn, ln)
with: (fn == p.firstname and ln == p.lastname). To obtain support from F2 in order to maintain this
rule (this functional dependency), you would declare that class Person has the key (firstname, lastname) with the
following instruction:

newK = f2.add_key(f2.Person, ’firstname’, ’lastname’)

This has the following effect: you will be prevented to create object in class Person with an already used pair
(firstname, lastname) by a previously existing person, or you will not be able to update the name of a person
in any way if it leads to give the same combination of values for two of them.

F2 will also consider from now that this pair of attributes forms an identification value combination. This means
that these attributes can be used to enhance the display of an object of class Person: replacing <Person.3112> by
<Person.Joe Cool>. In the case of the class Department, if you declare the attribute name as a key with:

newK = f2.add_key(f2.Department, ’name’)

then you will see results displaying things like <Department.Marketing> instead of an ugly
<Department.15223>, because F2 considers now the name of a department as an identifying value. The queries
shown above would now give the following result:

>>> market
<Department.Marketing>
>>> f2.Person(work_in = market)
[<Person.Lawrence_Ellison>, <Person.Linus_Torvald>]
>>> f2.Employee(work_in = market)
[<Employee.Lawrence_Ellison>, <Employee.Linus_Torvald>]
>>> f2.Employee(work_in = market).firstname
[’Lawrence’, ’Linus’]

3.6 Deleting objects

In F2, you delete objects by removing them from any (sub-)class they belong to. This is done by applying the
leave() primitive. It has the exact opposite effect of the enter() primitive: applying Employee.leave(joe)
will remove object joe from the subclass Employee, but it remains an object of class Person. When an object leaves
the topmost class of a hierarchy, it disappears completely from the base: so Person.leave(joe) is equivalent to
a delete.

The C.leave(o) primitive respects the schema consistency of your database: this implies essentially two things:

1. by leaving a class C, your object automatically leaves also all subclasses of C 5,

2. any object x referring directly to o via an attribute a will be affected, depending on the attribute’s minimum
cardinality: if minCard is defined, the deletion may be cascaded to x, if minCard is undefined (= ’?’) then x.a
simply becomes undefined (= ’?’).

5the symetric is true for primitive SC.enter(o), which automatically forces object o to enter into any superclass of SC where it was not yet
defined.

3.5 Using keys in classes 9

The following example illustrates this on a class of orders, each order containing several order lines.

>>> Ord = f2.class_create(className = ’Order’,
... schema={’doc_number’ : f2.Int,
... ’established’: f2.Time,
... ’order_by’ : f2.Client }
...)
>>> OL = f2.class_create(className=’OrderLine’,
... schema={’in_order’ : (Ord, 1, 1),
... ’prod’ : f2.Product,
... ’Q’ : f2.Int,
... ’unit_price’ : f2.Real }
...)

Order lines do only exists inside an order and belong to exactly one order, this is expressed by the cardinalities (1,1)
of attribute in order. With this schema, the execution of statement:

>>> Ord.leave(my_order)

will also provoque the deletion of all order lines ol for which ol.in order = my order. This is the traditional
cascade effect. In F2, this effect is controlled by the schema definition (minCard of attributes) instead of options of a
delete primitive, or options of constraints declarations (like in SQL).

10 3 Using F2: a short introduction

4 The F2 kernel

4.1 Classes to define classes, attributes, etc.

The initial state of a F2 database, called the F2 kernel, contains the minimal set of classes and objects necessary to
describe F2 schemas. This is equivalent to the catalog or dictionary part of other database management systems. It
contains essentially the class of all classes, the class of all attributes, etc. The figure 1 gives an UML schema of the F2
kernel. A class (an object of class CLASS) is either an AtomClass or a TupleClass.

className
CLASS

TupleClass
infValue
supValue

AtomClass SubClass

baseTypeName
BaseType

baseType

attributeName
minCard
maxCard
visibility

Attribute

superClass

rangeClass

domainClassclassStateAttribute

name
Database

db

Key

ofClass

keyAttrs

Figure 1: UML schema of the F2 kernel

AtomClasses describe atomic objects (a string, an integer, or a real number are atomic objects). We know the value
domain baseType of the class, possibly restricted by bounds (infValue and supValue. Atomic objects are their own
identifiers.

TupleClasses describe composite objects (tuples), defined with the help of other classes through attributes. Each
attribute has a name, a domain class (domainClass) and a range of values (rangeClass). An attribute a may also be
interpreted as a function from domainClass(a) to 2rangeClass(a). The size of values may be bounded by minCard &
maxCard 6.

SubClasses describe specialization of other classes (or ISA-links). In the full F2 model, a subclass may be either
an AtomClass or a TupleClass. In the present version of F2-Python, only subclasses of TupleClasses (traditional
subclasses) are supported.

Classes from the F2 kernel contain their own description, so you can query an initial F2 database (like the dictionary
of any DBMS) to retrieve information about it.

6more precisely, for an object o having an attribute a, the range of possible values for a(o) (also noted o.a) contains all finite subsets s of
rangeClass(a), with minCard 6 ‖s‖ 6 maxCard

11

>>> f2.CLASS().className
[’Attribute’, ’CLASS’, ’AtomClass’, ’TupleClass’, ’SubClass’, ’EntityState’,
’Int’, ’Real’, ’Time’, ’String’, ’DicIdent’, ’AnyValue’, ’BaseType’,
’Department’, ’Person’, ’Employee’]

>>> f2.TupleClass().className
[’Attribute’, ’CLASS’, ’AtomClass’, ’TupleClass’, ’SubClass’, ’BaseType’,
’Department’, ’Person’, ’Employee’]

>>> f2.AtomClass().className
[’EntityState’, ’Int’, ’Real’, ’Time’, ’String’, ’DicIdent’, ’AnyValue’]

>>> f2.Employee.superClass
<CLASS.Person>

>>> for attr in f2.Attribute(domainClass = f2.Person):
... print attr.attributeName, ’->’, attr.rangeClass.className
...
statePerson -> EntityState
lastname -> String
firstname -> String

Here you may note that the class Person of our example has in fact three attributes: firstname, lastname and statePer-
son. The latest one has been automatically added by F2 and stores the state of each object of this class. This allows,
among other things, for a (tuple-)class to have distinct objects even if it doesn’t hold any attribute. This is convenient
for some subclasses or for tupleclasses which will acquire attributes later on.

4.2 Schema creation and evolution

Classes in the F2 kernel are handled like any other class: you can create new attributes or classes using the
C.create() and C.enter(o) primitives. This is in fact the only direct way to manipulate a schema: apply
primitives or assign values to objects of these classes. The f2.class create() method shown in section 3.2
page 6 is actually only a syntactic short path to ease the creation of an F2 schema. In our example of Persons and
Employees, class create() actually calls the following F2 primitives:

>>> P = f2.TupleClass.create(className = ’Person’, db=f2.test)
>>> fn = f2.Attribute.create(attributeName = ’firstname’,
... domainClass = P,
... rangeClass = f2.String)
>>> ln = f2.Attribute.create(attributeName = ’lastname’,
... domainClass = P,
... rangeClass = f2.String)

After this, you can immediately start to create objects in class Person. You could even start to create objects before
you have defined any attributes. The objects already existing will simply take the null or undefined value, marked by
a ’?’ for any new attribute added later.

Similarly, the f2.add key() which declares firstname and lastname attributes as a key in class Person, does it
simply by executing:

12 4 The F2 kernel

>>> k = f2.Key.create(ofClass = P, keyAttrs = [fn, ln])

The creation of subclass Employee (see example page 6) is hardly longer:

>>> E = f2.TupleClass.create(className = ’Employee’, db=f2.test)
>>> E = f2.SubClass.enter(E, superClass = P)
>>> wi = f2.Attribute.create(attributeName = ’work_in’,
... domainClass = E,
... rangeClass = f2.Department,
... minCard = 1,
... maxCard = sys.maxint)
>>> ma = f2.Attribute.create(attributeName = ’manager’,
... domainClass = E,
... rangeClass = P)

Several attributes of F2 kernel classes have a minCard = 1. This is the case for domainClass and rangeClass.
As F2 rules apply uniformly on all classes, they also apply to kernel classes: if you delete a class (for in-
stance f2.CLASS.leave(f2.Person)) then all its attributes will disappear at the same time, plus any at-
tribute for which Person is a range (a rangeClass). Now what happens to class Employee ? If you look at the
kernel schema of figure 1, you can see that the two classes are related by attribute superClass of class Subclass
(f2.Employee.superClass == f2.Person). The minCard of Employee is also = 1. So the suppression of
class Person has triggered a f2.SubClass.leave(f2.Employee). As a consequence, Employee is not a sub-
class anymore, but it remains a tuple-class, and does not disappear completely from the DB. Only, it lost its super-class
Person, and objects from Employee have lost their Person’s attributes (firstname, lastname), but they still have their
Employee’s attributes.

This example shows that a good knowledge of the F2 kernel schema and content is necessary to anticipate effects of
F2 primitives applied to schema objects, in other words primitives applied to schema evolution.

4.2 Schema creation and evolution 13

5 F2 reference guide

5.1 The F2 python package

The F2 package contains all the necessary classes and functions to access an F2 database from python.

connect(storage name = ’file:root.db’, username = ”, passwd = ”)
Opens an F2 database connection and returns a connection object. The storage name may have two forms:

• file:<local pathname to file storage> this opens a unique (unshared) access to an F2
database located in the specified file.

• rpc:<host address>:<port number> this opens a shared access to an F2 server at the specified
(IP-)address and on the specified (TCP-)port number. If no address is given, the local host (127.0.0.1) is
used, if the port number is not precised, port 8080 is assumed.

Parameters username and passwd are only used if authentication is activated (see section 2.6). The object
returned is a F2 Connection instance, which methods are described below. Example:

>>> my_f2 = F2.connect(’rpc:127.0.0.1:8080’)

Methods of a F2 connection object

An F2 connection object acts as a namespace for an F2 storage: all current classes existing in the storage (i.e. all
classNames) may be referenced by their names as attributes of the connection object:

>>> my_f2.Person
<CLASS.Person>
>>> my_f2.CLASS
<CLASS.CLASS>

Sometimes, several classes have the same name in different databases of the same storage. In order to distinguish
them, you can prefix their name by the name of the database.

>>> my_f2.TestBase.Person == my_f2.PeopleBase.Person
False

If a class is unique in the whole storage, prefixing is not necessary 7. It is recommended to avoid creating classes
with exactly the same name as those from the Kernel. Avoid naming your own class CLASS, Attribute, Database, and
so-on. It would quickly introduce some confusion in your code.

class create(className, superClass=None, database=None, schema={ })
A syntactic shortcut for declaring classes. Example:

db = F2.connect(’file:my_database_file.db’)
f2.class_create(className=’Person’, database=’PeopleBase’

schema={’firstname’: f2.String,
’lastname’ : f2.String,
’work_in’ : f2.Department})

schema is a python dict interpreted as a list of attributes for the future class. For each attribute, cardinalities (min

7in other words, if there is only one class Person in your storage, you can safely use the expression my f2.Person

14 5 F2 reference guide

& max) may be precised in a tuple with the attribute’s range or rangeClass. See section 3.2 for further examples.
If argument superClass is given, then F2 creates and returns a sub-class of the given class is created. database
is the database schema to which the new class will be attached, it is optional. If None, the created class will not
be attached to any specific database schema. For convenience, this argument may either be a string giving the
name of a schema (it will be created on the fly with that name if it doesn’t exist yet), or a F2 Object instance of
class Database (the class of all database schemas).

add key(ofClass, attributeName (, attributeName)*)
A syntactic shortcut for adding a key to a class definition, or more simply to add an object in kernel class Key.
The key is made of tuple of values on each of the given attribute names. Example:

newKey = f2.add_key(f2.Person, ’firstname’, ’lastname’)

commit()
Commits current transaction. This is almost equivalent to using the get transaction().commit()
primitive of ZODB (See ZODB documentation for details).

rollback()
Rollbacks current transaction. This is almost equivalent to using the get transaction().abort() prim-
itive of ZODB (See ZODB documentation for details).

pack()
Forces the actual storage to pack ressources. If underlying storage does not support this function, the call is
without effect.

close(commit needed=True)
Last operation on a F2 connection before application stops. If commit needed is True (which holds by default),
the current transaction is commited before closing connection.

html repr(some value, depth=1, using=None)
Produces an HTML representation of some value, which may be either a single F2 Object, or a F2 Object list.
Recursively represents included values down to a depth of depth. If using is specified, then it is a list of attributes
to be used to display the values, if using is None then all attributes applicable to this value (included inherited
attributes) will be used.

json repr(some value, depth=1, using=None)
Produces a JSON representation of some value, which may be either a single F2 Object, or a F2 Object list.
Recursively represents included values down to a depth of depth. If using is specified, then it is a list of attributes
to be used to display the values, if using is None then all attributes applicable to this value (included inherited
attributes) will be used.

5.2 F2.F2 Object and F2.F2 Object list

The type of objects returned by a class selection or the evaluation of another object’s attribute. In other words, these
types are containers for results of F2 queries. If the result is an F2 object, the python type is F2 Object, if it is a list
of F2 objects, the python type is F2 Object list.

F2 Object

An F2 object is a python box to hold a reference to an object in the F2 DBMS. It is actually built on a pair (klass,
rank), where rank is the internal object id (OID)8 and klass is the internal class id. You never need to manipulate

directly these two OIDS, but it may be interesting to remember that an F2 object is always defined relatively to one of
its classes.

8called ”rank” only for historical reasons.

5.2 F2.F2 Object and F2.F2 Object list 15

Attributes of F2 objects are evaluated using standard python dotted notation. According to actual cardinality of at-
tributes a, the result may either be a single value or a list of values. The same notation is used to assign new values to
object’s attributes. If x is a F2 Object, and a,b,c are attributes in the class schema of x, then all the examples below are
syntactically correct:

• x.a

• getattr(x, ’a’)

• x.a.b.c

• x.a = y

• setattr(x, ’a’, y)

• if hasattr(x, ’a’): ...

This notation is extended for flat evaluation by prepending a ’ ’ (underscore) in front of the name of an attribute. This
collapses the possible list of results into a set (each element is distinct). So the flat evaluation of x.a is x. a. The
flat extension cannot be used for values assignment.

If the result of an attribute evaluation is empty, then the result is the python empty list [], if it contains only one
element, then the result is this element (rather than a singleton containing this element).

Two F2 Object’s can be compared, they are equal if they designate the same F2 object (even if they contain different
klass in the same class hierarchy). They can be compared to the null value F2.F2 NULL. The truth value of a

F2 Object is being different from F2.F2 NULL (i.e. being defined). Examples:

>>> bob_dept = bob.department
>>> bob_dept == F2.F2_NULL
True
>>> if bob_dept:
... print bob_dept.name
... else:
... print "Bob’s department undefined."
...
Bob’s department undefined.

exist object()
True if object exists (is defined) in the current class (the klass part of this object). If you obtained this object
from an answer to a F2 query, it is most probably already true. If you are modifiying the F2 DBMS state while
you are holding this reference, this may become false.

exist in(in class)
True if object exists in class in class. This is the standard way to check that an object belongs also to a sub-class,
like John.exist in(f2.Employee).

F2 Object list

F2 Object list is a standard python list extended with dotted notation for both normal and flat evaluation of attributes.
Each attribute is evaluated on every object of the list. The result is the concatenated result of all these evaluations.
This essentially allows the chaining of attributes evaluation to work even in the case of multi-valued attributes. Flat
evaluation on F2 Object list implies that attributes evaluation never return lists of lists but flat sets of distinct values
instead. Example:

16 5 F2 reference guide

>>> Countries.name
[’France’, ’Deutschland’, ’USA’, ’Italy’]
>>> [c.flag.colors.name for c in Countries]
[[’blue’, ’white’, ’red’],
[’black’, ’red’, ’yellow’],
[’red’, ’blue’, ’white’],
[’green’, ’white’, ’red’]]

>>> Countries.flag._colors.name
[’red’, ’blue’, ’yellow’, ’green’, ’white’, ’black’]

5.3 F2.F2 Class

A python subclass of F2 Object used to handle instances of class CLASS. F2 Class constructor may take two forms:

• F2 Class(class name) where class name is a string, the result is the class carrying this name in the
current namespace (current schema),

• F2 Class(an object) where an object is a F2 Object, the result returns the class of this object.

call (select={}, where=None, **selectors)
This methods defines a query for selecting objects from F2 (tuple-)classes. The result is a list of instances of
this class matching the current predicate. If no parameters is given, a list of all instances of the class is returned.
Example: f2.Person() returns all objects of class Person.

If one or several selectors of the form attribut name = value are given, only objects matching simulta-
neously all conditions are returned (forming an implicit and). Example:

f2.Person(lastname=’Smith’, department=dept_fin)

If a more complex predicate is needed, the parameter where must be used with a filtering python lambda
expression or function. The lambda expression given must return True or False when evaluated against an
object of the selected class. These predicates may be arbitrary complex python expressions. Example:

f2.Vehicle(_where=lambda v:v.year_built >= 1999
or v.color in (’green’, ’black’))

Note: in the present version, there is a difference of performance between using simple selectors as shown above
and using for the same purpose where predicates: simple selectors can be exploited by the F2 system in order
to use underlying indexes, while where predicates are applied as is on full scans of objects collections 9. If
simpe selectors and where predicates are used together, as in:

>>> joes_vehicles = f2.Vehicle(owner = joe,
... model = ’BMW’,
... _where = lambda v : v.year_built >= 1999
... and v.color in (’blue’, ’black’, ’grey’))

then, selectors owner and model are first applied resulting in a intermediate list of matching objects, then the
where predicate is evaluated on objects of this list. So best performance is obtained by extracting whenever pos-

sible selectors from the where predicate and expressing them as conjunction of attribute name=value
parameters.

The select parameter, if defined, is a python dictionary possibly containing attr name:value pairs. It is used
when the name of selectors (i.e. the name of selecting attributes) are not constant strings of your program but
stored into variables. Example:

9Predicates analysis for query optimization is left for future versions

5.3 F2.F2 Class 17

if search_by_firstname:
first_selector = ’firstname’

else:
first_selector = ’lastname’

val_1 = ’Sean’
second_selector, val_2 = ’department’ , dept_fin
result = f2.Person(_select={first_selector : val_1,

second_selector: val_2})

create(**attr values)
Builds a new object for this class, returns the corresponding F2 Object. Values for object’s attributes can be
immediately assigned. Example:

P = f2.Person
joe = P.create(firstname=’Joe’, lastname=’Cool’)

enter(an object, **attr values)
Takes an existing object and enter it in this subclass, returns the same F2 Object, seen now as an object of this
subclass. The object must share the same class hierarchy (must have the same class root) than the class to enter.
Values for new object’s attributes can be immediately assigned. Example:

joe = f2.Employee.enter(joe, department=’Accounting’)

If necessary, the object also enters all super-classes of this class where it was not yet an instance. This means
that the operation preserves the IS-A consistency of the F2 model.

leave(an object)
Takes an existing object and forces it to leave this class. To preserve IS-A consistency, the object also leaves all
subclasses of this class. If the class is a root, the object definitely disappears from the database 10. Example:

f2.Employee.leave(joe)

The leave class method also preserves referential integrity. For each attribute a referring to the class to leave,
the following rules apply:

•if a.minCard is undefined (= ’?’), then for each object x such that x.a = an object, x.a becomes ’?’

•if a.minCard is defined, then for each x where x.a would become smaller than minCard, x is also deleted
(forced to leave its class).

root()
Returns the specialization root of this class, returns self if the class is a root.

all subclasses()
Returns the list of all subclasses (either direct or indirect) of this class. The class itself is not included in the list.

all attributes()
Returns the list of all attributes of this class, either inherited or not.

direct attributes()
Returns the list of direct attributes of this class. C.direct attributes() is equivalent to the query:
f2.Attribute(domainClass=C).

Using the above methods, it is easy to obtain the complete class tree of a given object x:

10This is equivalent to a delete, there is no explicit delete primitive in F2

18 5 F2 reference guide

rootC = F2_Class(x).root()
class_tree = [rootC] + [c for c in rootC.all_subclasses() if x.exist_in(c)]
all_x_attribs = [c.direct_attributes() for c in class_tree]

is SubClass()
True if is an instance of SubClass.

is AtomClass()
True if is an instance of AtomClass.

is TupleClass()
True if is an instance of TupleClass.

The three methods above are only here for convenience, they are equivalent to simple F2 queries.
C.is SubClass() can be tested with the following expression: C.exist in(f2.SubClass)

5.4 F2.F2 Attribute

A python subclass of F2 Object used to handle instances of class Attribute. F2 Attribute constructor takes the fol-
lowing form: F2 Attribute(attribute name, of class) where attribute name is a string, and of class
is either the name of a class (a string), or an instance of F2 Class. Examples:

P = f2.Person
attr_name_of_persons = F2_Attribute(’name’, of_class=P)
attr_birth_date = F2_Attribute(’birth_date’, of_class=P)
F2_Attribute(’owner’, of_class=’Vehicle’) # python expression equivalent...
f2.Attribute(attributeName=’owner’, domainClass=f2.Vehicle) # ...to this F2 query

set reverse function()
Forces internal storage to manage also the reverse function mapping of this attribute. Normally each attribute is
implemented by one B-Tree mapping oids of objects to the attribute values. The reverse function implements
a second B-Tree mapping attribute values to oids. This accelerates considerably the browsing of an attribute in
the direction (values to objects), at the cost of some overhead in updates (two B-Trees to update at each object
value assignment).

5.5 Extending F2

This section describes methods and interface available to extend F2 (meta-)classes and F2 behaviour. A good under-
standing of the current F2 model and kernel behaviour is necessary to obtain a successful extension of F2.

[to be written...]

5.4 F2.F2 Attribute 19

Index
call (), 17

where, 8

add key(), 9, 15
all attributes(), 18
all subclasses(), 18
authentication, 5

bootstrap, 4, 5

class create(), 6, 14
close(), 15
commit(), 15
connect(), 6, 14
create(), 6, 18

direct attributes(), 18

enter(), 7, 18
exist in(), 16
exist object(), 16

F2
connection, 6
namespace, 6
server, 5

F2 Attribute, 19
F2 Class, 17
F2 Class selection, 8, 17
F2 Object, 15
F2 Object list, 15
flat evaluation, 16

html repr(), 15

installation, 3
F2, 4
ZODB, 3

is AtomClass(), 19
is SubClass(), 19
is TupleClass(), 19

json repr(), 15

kernel
bootstrap, 4

Key, 9

lambda expressions, 8
leave(), 9, 18

namespace, 14

pack(), 15

primitive
create(), 6, 18
enter(), 7, 18
leave(), 9, 18

rollback(), 15
root(), 18
root.db, 4

selection, 8, 17
set reverse function(), 19
setup.py, 4

zeopasswd.py, 5
ZODB, 3

20

