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1.0 INTRODUCTION 

The Oregon Department of Transportation (ODOT) and its partner agencies have a need 
for one standardized Population Synthesis tool. There are multiple tools currently used by 
ODOT and other planning agencies in Oregon for population synthesis, including 
PopSynIII, PopGen, the Oregon Statewide Model (SWIM) Synthetic Population Generator 
(SPG) I and II, and a population synthesizer implemented as part of the VisionEval tool. 
Each tool operates slightly differently and has advantages and disadvantages. This 
memorandum describes a new population synthesis tool that can replace the current tools 
used for urban models, SWIM, and strategic planning models. It will be capable of 
generating synthetic populations at the urban and regional level. 
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2.0 USE CASES AND REQUIREMENTS 

2.1  | USE CASES 

The tool must be suitable for the following use cases: 

1) Urban area synthetic populations: Urban area synthetic populations are the primary 
input to activity-based travel demand models. Typically, synthetic populations 
generated for urban areas are controlled using 4-8 household and person level 
controls, at various levels of geography including county, transportation analysis 
zone (TAZ) and/or micro-analysis zone (MAZ) controls. The households generated 
by the population synthesizer must be attributed with a residence location at the 
TAZ and/or MAZ level, and accept both household and person controls at multiple 
geographic levels. 

 
2) Statewide synthetic populations: The Oregon Statewide Integrated Model (SWIM) 

utilizes a synthetic population for the person travel components. SWIM generates a 
synthetic population for the entire state of Oregon plus a halo that includes 
Southwest Washington, part of Idaho including Boise, and part of Northern 
California and Nevada north of Reno. SWIM currently operates with 3,000 TAZs 
and utilizes household constraints. Because SWIM generates a synthetic population 
for every 3 years across a 30 or 40-year simulation, runtime is a very important issue 
for this use case. 

 
3) Scenario Planning Models: There are a number of scenario planning and evaluation 

tools being developed or already in use in Oregon, including the Greenhouse Gas 
Strategic Transportation Energy Planning (GreenSTEP) and the Rapid Policy 
Assessment Tool (RPAT). These tools work at either the statewide or urban level of 
geography and typically utilize household constraints. A key difference between 
synthetic populations generated for scenario planning models versus urban or 
statewide models is that scenario planning models typically do not work at the TAZ 
level; scenario planning models may only utilize between one or a dozen district 
geographies for controls. However, scenario planning models may require multiple 
distributions with different controls to explore uncertainty associated with total 
households or control variables. While scenario planning model use case should be 
considered in the design of the Oregon population synthesizer, the many unknowns 
associated with this use case make it a lower priority than urban or statewide 
synthetic populations. 

 

2.2  | POPULATION SYNTHESIZER REQUIREMENTS 

Following is a list of population synthesizer requirements derived from the above use cases, 
as well as experience gained using the PopSyn III tool originally developed for Maricopa 
Association of Governments and used to generate synthetic populations at both the urban 
and statewide levels. 

1) The population synthesizer should work with comma-separated value inputs and 
Public Use Microdata Sample (PUMS) household and person files downloaded 
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directly from the Census Bureau, rather than a SQL database. PopSyn III requires a 
SQL server database for storage of all inputs and outputs though it does not utilize 
any database technology in the actual creation of the synthetic population.  The time 
investment that is required to set up SQL server in order to run the tool is 
unnecessary. 

 
2) The population synthesizer should accept controls for a minimum of three levels of 

geography, as per the current PopSyn III tool. Further, the tool should not utilize 
the “MAZ” and “TAZ” terminology to describe the geographies since, although the 
word “meta” correctly implies that the geography is as large or larger than the 
PUMA, the actual definition of each lower level geography may change depending 
upon how the tool is used. Instead, we suggest geographic definitions that are 
independent of specific modeling methodologies, such as “Alpha”, “Beta”, and 
“Meta”.  Or if more than two sub-PUMA controls are possible in the algorithm (for 
maximum flexibility), then the controls could be named “Meta” for the PUMA or 
greater controls, then Geography1, Geography2, Geography3, and so on for 
subsequently smaller geographies. 

 
3) The population synthesizer should accept both household and person level controls 

at any of the geographies specified above. Each control will be specified at one of 
the geographies with separate household and person inputs for each geography, and 
mapped to a field and attribute in the relevant input PUMS household or person 
data files. The user may optionally provide an integer weight that expresses the 
relative importance of the control compared to other controls across all geographies 
and across both households and persons. 

 
4) The population synthesizer should provide a consistency checker that ensures that 

all household controls and person controls are consistent each level of geography. 
For example, all household controls for each alpha zone should add up to the same 
number of households. Similarly, all person controls for each alpha zone should add 
up to the same number of persons. A more complicated input checking procedure 
could be developed that ensures that all person controls add up to the persons 
implied by the household size distributions at whatever geography that control is 
specified at (should it be specified, and by using a user-input average household size 
for the largest household size category). Finally, household size compared to 
number of workers per household distributions can be checked for consistency. 
These last two checks are considered less important than ensuring total household 
and persons match across all controls. Failure to pass the test could result in a 
warning or an error message, at the user’s discretion.  

 
5) The population synthesizer should (optionally) provide output that is automatically 

linked with the full Public Use Microdata Sample (PUMS) household and person 
files.  

 
6) The population synthesizer should (optionally) provide the aggregate multi-way 

distribution for any given geography of household attributes (minimum 
requirement) or household + person attributes, for any given synthetic population, 
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prior to integerization.  This provides a useful dataset for debugging and validation 
of the tool, as well as a useful input to aggregate demand models such as trip 
generation models. Thus while not strictly a use case, the tool could be used as a 
replacement for household cross-classification models in the Oregon trip-based 
modeling frameworks including Jointly-estimated Models in R (JEMnR) and the 
Oregon Small Urban Model (OSUM). 

 
7) The PopSyn III algorithm allocates households in order from smallest to largest 

zone according to the target number of households in each zone. This is done so 
that the error resulting from integerizing the household weights is allocated to the 
largest zone, in the expectation that the largest zone can ‘absorb’ the most error. 
However, this can result in cases where the last zone has significant error for certain 
attributes. For example, the application of PopSyn III for the Corvallis-Albany-
Lebanon model resulted in a large suburban zone in Albany with a significant over-
estimate of Oregon State University students. The Oregon population synthesizer 
should reduce or eliminate this ‘garbage zone’ problem. 

 
8) The population synthesizer built for Atlanta Regional Commission had an attractive 

feature where the user could specify a list of PUMAs for any given PUMA 
geography, so that the tool could utilize households from other PUMA geographies 
in order to better fit control variables. The motivation for this feature is that as 
regions grow and change, PUMAs from other regions may be more appropriate 
sources of households than the PUMS sample from the last Census for the region. 
This should be a feature of the population synthesizer developed for this project. 

 
9) One potential application of the population synthesis tool is to generate synthetic 

populations for traffic impact studies. In this type of application, a synthetic 
population would need to be generated for small geographies (one or a handful of 
MAZs or TAZs) without perturbing the synthetic population for the rest of the 
region. Typically only limited control variables are available for the new population 
(household type, perhaps stratified by cost). For example, San Diego Association of 
Governments regularly performs traffic impact analysis as a fee-based service for 
member agencies and the private sector.  

 
10) There must be sufficient debugging in the code to ensure that it is working properly 

and to track errors in unknown future use cases. The debugging must be clear 
enough that the average user with a good working knowledge of population 
synthesis can interpret the outputs. For example, the tool might produce 
intermediate files of household weights at mid-level geographies to determine the 
extent of error in the balanced household weights. It could also produce the 
integerized weights so that error introduced in the integerization process can be 
evaluated for any given geographies.  
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3.0 POPULATION SYNTHESIZER ALGORITHM 

3.1  | POPSYN II I  ALGORITHM 

This section summarizes the current PopSyn III algorithm as per the details from Vovsha et 
al, 20141 and the source code from software implementation. PopSyn III operates at four 
geographic levels – lower, middle, seed and meta. For a typical implementation, these would 
translate to MAZ, TAZ, PUMA and County. Seed level is the geography at which the seed 
sample is available which normally is the PUMA geography. Controls are specified at lower, 
middle and meta geographic level. At present, PopSyn III requires at least one control to be 
specified at lower and meta geography as an algorithmic requirement. However, in cases 
where controls are not available for those geographies, data can be arranged in a smart way 
to make PopSyn III work with the available data. 

PopSyn III is built around the traditional list balancing procedure which is applied at 
multiple geographic levels.  While the balancing procedure can work independently for 
different geographic level, the challenge is to maintain correspondence between different 
geographic levels. This is achieved by following an aggregation approach for the controls 
where in the controls from the lower geographies are aggregated to the upper geographies. 
The list balancing implementation follows an allocation approach where in the results from 
an upper geography are distributed or allocated to a lower geography within the upper 
geography. 

Two core and independent steps in the PopSyn III pseudocode can be mainly grouped as – 
core list balancing and integerizing. The following sub-sections first describe these 
components and then provide details of how these are stitched together in the full 
implementation. 

CORE LIST BALANCING 

The list balancing procedure in the context of population synthesis takes a list of households 
with an initial weight attached to each record. The objective is to update these weights in 
order to match marginal distributions of different variables, referred to as control variables. 
The output of the list balancing procedure is a list of weights which satisfies the marginal 
distribution of control variables for the given input list of households. The list balancing 
procedure is generally applied for a geographic zone for which the marginal controls are 
available. The very first step in implementation of list balancing procedure is formation of 
the incidence matrix for the given list of households. The incidence table determines which 
household contributes to which control. Table 1 presents an example of an incidence table 
where,  

Ii ...2,1  = household and person controls, 
 ,௜  = values of controls to be met for the given zoneܣ

                                                      
1 Vovsha, Peter, J Hicks, B Paul, V Livshits, K Jeon, P Maneva, New Features of Population 
Synthesis, Presented at the 2014 Annual Meeting, Transportation Research Board, 
Washington, D.C. 
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Nn   = seed set of households in the PUMA (or any other sample), 

nw   = a priori household weighs assigned to the PUMS household, 

ܽ௜௡ ൒ 0  = household attributes, i.e. coefficients of contribution to each 
control. 

TABLE 1: INCIDENCE TABLE 

HH ID HH size Person age HH initial 
weight 1 2 3 4+ 0-15 16-35 36-64 65+ 

1i  2i  3i  4i  5i  6i  7i  8i nw  

1n  1       1 20 
2n   1   1 1   20 
3n    1   1 2  20 
4n     1  2 2  20 
5n     1 1 3 2  20 

Current values  20 20 20 40 40 140 120 20  

Control (A୧) 100 200 250 300 400 400 650 250  

As such, there are multiple set of weights (ݔ௡ሻ	that would satisfy the given marginal 
distributions. However, ideally these weights are desired to be as uniform as possible across 
all households. In order to achieve this, the list balancing procedure can be formulated as a 
convex entropy maximization problem as shown below: 

min
ሼ௫೙ሽ

∑ ௡ݔ ln
௫೙
௪೙

௡ ,         

  

Subject to constraints: 

∑ ܽ௜௡ൈݔ௡ ൌ ,௜ܣ ሺߙ௜ሻ௡ ,          

௡ݔ ൒ 0 ,           

where ߙ௜ represents dual variables that give rise to the balancing factors. 

The solution for the above problem is as follows: 

௡ݔ ൌ ݇ൈݓ௡ൈ݁݌ݔሺ∑ ܽ௜௡௜ ௜ሻߙ ൌ ∏௡ൈݓ ሾ݁݌ݔሺߙ௜ሻሿ௔೔೙ ൌ௜ ∏௡ൈݓ ሺߙො௜ሻ௔೔೙௜ ,  

where ߙො௜ represents balancing factors that have to be calculated iteratively. 

Control relaxations 

The constrained optimization problem described above would yield a solution only if the 
controls allow for a solution to exist. In reality, the controls may not always be perfectly 
consistent, in which case the problem may not yield a solution. Relaxation factors can be 
introduced in the above problem to yield a solution even when the controls are not perfect. 
The modified specification is shown below: 

min
ሼ௫೙,௭೔ሽ

∑ ௡ݔ ln
௫೙
௪೙

௡ ൅ ∑ ௜ݖ ln ௜௜ݖ ,     
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Subject to constraints: 

∑ ܽ௜௡ൈݔ௡ ൌ ,௜ݖ௜ൈܣ ሺߙ௜ሻ௡ ,        

௡ݔ ൒ ௜ݖ ,0 ൒ 0,  

Where ݖ௜ represent relaxation factors  

Importance weights 

It may not be desirable to allow for all the controls to be relaxed. This important feature is 
incorporated by addition of importance factors in the objective function. In the specification 
below, ߤ௜ represent importance weights for the controls. Since this is a minimization 
problem, a higher importance weight would result in a lower relaxation factor for the 
corresponding control. 

min
ሼ௫೙,௭೔ሽ

∑ ௡ݔ ln
௫೙
௪೙

௡ ൅ ∑ ௜ݖ௜ߤ ln ௜௜ݖ ,       

Subject to constraints: 

∑ ܽ௜௡ൈݔ௡ ൌ ,௜ݖ௜ൈܣ ሺߙ௜ሻ௡ ,        

௡ݔ ൒ ௜ݖ ,0 ൒ 0,   

Upper and lower bounds 

Another important desired feature which becomes very useful in implementation is having 
upper and lower bounds on weights. This would prevent extreme solutions. 

Maximum expansion factor 

The upper and lower bounds on weights could be tagged to the initial weight of each 
household. This is achieved by introducing a maximum expansion factor (ܧ) which bounds 
the households weights as follows: 

0 ൌ ௡ݓ ൑ ௡ݔ ൑ ௡ݓ ൌ  ௡ݓൈܧ

Newton-Raphson Method 

This convex optimization with linear constraints can be solved iteratively using the Newton-
Raphson method. The pseudocode for solving this problem using the Newton-Raphson 
method is shown below: 
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INTEGERIZING 

The final output from the list balancing procedure are fractional weights corresponding to 
each household in the seed sample. Fractional weights cannot be used for expansion of the 
seed sample, therefore, weights need to be integerized, or converted to whole numbers. 
Simple rounding can result in violation of total household and/or person controls, so an 
optimization problem is formulated for the fractional part of the household weights. The 
residual controls are defined as: 

௜ܣ ൌ ௜ܣ െ෍ܽ௜௡ൈ݅݊ݐ	ሺݔ௡ሻ
௡

 

The residual weights range from 0 to 1 and can be assumed to be binary (0 or 1). With these, 
a maximum entropy problem can be formulated for binary weights (ݕ௡) as follows: 

 




























n
nn

n
n

n
n

n

n xy

yif

yif
x

y
y lnmax

00

1,ln
min ,     

Subject to constraints: 

i
n

nin Aya  ,          

1,0ny           

Here too, slack variables or relaxation factors can be introduced to handle cases when no 
solution exists as follows: 

max൛∑ ௡ൈݕ ln ௡௡ݔ െ 999ൈ∑ ௜ܷ௜ െ 999ൈ∑ ௜ܸ௜ ൟ,      

Subject to constraints: 

∑ ܽ௜௡ൈݕ௡௡ ൑ ௜ܣ ൅ ௜ܷ ,         

∑ ܽ௜௡ൈݕ௡௡ ൒ ௜ܣ െ ௜ܸ ,          

1,0ny ,          

 ௜ܷ ൒ 0, ௜ܸ ൒ 0.   

  

POPSYN III PSEUDOCODE 

As stated earlier, the main challenge in PopSyn III implementation is handling of multiple 
geographies. Controls from lower geography can be aggregated to an upper geography but it 
is not easy to disaggregate controls from an upper geography to a lower geography. 
Therefore, a two-step approach is followed under which the controls are aggregated upwards 
while the balancing is implemented from upper to lower geography. This ensures that at 
each step the controls are being satisfied for the current geographic level without violating 
the controls for an upper geography. However, list balancing at the meta level with all the 
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controls and for the entire seed sample can be quite complex. Therefore, a much simpler 
approach has been adopted for balancing at meta level. Step 2 and 3 in the pseudocode 
below comprise this approach termed as “meta balancing”. 

Step wise details of the entire PopSyn III algorithm are presented below: 

STEP 1: PROCESS INPUTS 

The inputs to PopSyn III include the following: 

1. Geographic correspondence between lower, middle, seed (PUMA) and meta 
geographies. 

2. Seed sample for each seed geography: 

HH[seed][n] 

Where seed is the seed geography index and n is the household index. 

Number of households in each seed zone in seed sample: 

numberOfHouseholds[seed] 

Initial sample weights in the seed sample. These are summed for each seed zone: 

totalSampleWeights[seed]= 
SumOverN(totalSampleWeights[seed][n]) 

3. Control set for each geography  

lowControls[low][i_low],    
medControls[med][i_med],  
metaControls[meta][i_meta] 

Where low, med and meta are geography indices and i_low, i_med and 
i_meta are the controls indices corresponding to each geography. 

In addition to control values, control definitions are also an input: 

controlDefinitions[i] 

4. Importance weights for each control: 

importance[i] 

Where i is the control index. 

5. Max expansion factor: 

maxExpansionFactor 

6. Mid-level geography promotion field name: field in the seed sample which tells if a 
household record should be promoted for any mid-level geography zone. 

7. Mid-level zone promotion factor: factor by which a household tagged to be promoted 
should be factored - midZonePromotionFactor 
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Aggregate controls 

Low and mid-level controls are aggregated to seed level for initial balancing at the seed-level 
geography. 

seedControls[seed] = Aggregate(lowControls[low][i_low], 
medControls[med][i_med]) 

Incidence table creation 

An incidence table is created separately for each seed geography for all controls [low, med 
and meta]: 

incidence[seed][n][i] = createIncidence(HH[seed][n], 
controlDefinitions[i]) 

STEP 2: INITIAL SEED BALANCING 

After initial processing of inputs, the next step is to balance the household records at the 
seed-level using the low and mid-level controls aggregated to the seed-level. 

Balancing 

for (seed in seedList) { 
doListBalancing{ 
# with following inputs 
initialSampleWeights 
incidence[seed] 
seedControls[seed] 
 
#lower bound on weights 
lower_bound = 0 
 
#upper bound on weights     
upper_bound = max{(int)(maxExpansionFactor * 

initialSampleWeights * 
numberOfHouseholds[seed]/totalSampleWeights[s
eed] + 0.5), 1} 

#output 
initialSeedWeights[seed][n] 
} 

} 

The output of initial seed balancing is a set of initial seed balancing weights for each seed 
geography: 

initialSeedWeights[seed][n] 

Meta control factoring 

As stated earlier, balancing at the meta level for the entire sample can be quite complex. 
Therefore, the meta level controls are distributed to form seed level controls. This is 
achieved by distributing the meta level controls to each seed zone proportional to the sum of 
initial seed balancing weights for that seed zone. In this regard, the first step is to sum the 
initial seed balancing weights for each seed zone for each meta control:  
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totalFactoredSeedWeights[seed][i_meta] = 

SumOverN(incidence[seed][n][i_meta] * 
initialSeedWeights[seed][n]) 

Next, weights are summed over all the seed zones within each meta zone to get meta-level 
totals of initial seed balancing weights for each meta-level control. 

totalFactoredMetaWeights[meta][i_meta] = 

SumOverSeed(incidence[seed][n][i_meta] * 
initialSeedWeights[seed][n]) 

Now, the meta-level totals and controls are used to compute the scaling factors to be applied 
to the seed-level totals: 

factor = metaControls[meta][i_meta]/ 
totalFactoredMetaWeights[meta][i_meta] 

New seed-level controls from meta-level controls are computed as follows: 

newMetaControls[seed][i_meta] = 
int(totalFactoredSeedWeights[seed][i_meta] * factor + 0.5) 

Create final balancing controls 

The newly created meta-to-seed level are added to the existing set of seed level controls 
(aggregated from low and mid-level controls) 

finalSeedControls[seed] = Concat(lowControls[seed][i_low], 
medControls[seed][i_med], newMetaControls[seed][i_meta]) 

 

The final output from Step 2 is the final seed-level controls for each seed zone: 

finalSeedControls[seed] 

STEP 3: FINAL SEED BALANCING 

A final balancing exercise needs to be done for each seed zone with aggregated low and mid-
level controls and distributed meta-level controls. 

for (seed in seedList) { 

doListBalancing{ 
# with following inputs 
initialSampleWeights 
incidence[seed] 
finalSeedControls[seed] 
#lower bound on weights 
lower_bound = 0 
#upper bound on weights     
upper_bound = max{(int)(maxExpansionFactor * 

initialSampleWeights * 
numberOfHouseholds[seed]/totalSampleWeights[s
eed] + 0.5), 1} 

#output 
finalSeedWeights [seed][n] 
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} 

} 

The final output from Step 3 are household weights for each seed zone 

finalSeedWeights[seed][n] 

STEP 4: MID & LOW-LEVEL ALLOCATION 

From this point forward, the total weight for each seed zone does not change. In other 
words, the sum total of weight on a household record would not change. However, a 
household record in a seed zone can be allocated to multiple mid-level zone within the seed 
zone, thereby splitting the weight received by this record at the end of step 3. Similarly, the 
split weight received by a household record allocated to a mid-level zone can be further split 
to allocate the household record to multiple low-level zones within the mid-level zone. This 
splitting of weights from the seed zone to mid and low-level zone is termed as mid and low-
level allocation. Algorithmically, this is achieved by performing a list balancing on each mid-
level zone within a seed zone and setting the upper bound on weights to the starting weights 
of seed sample at end of Step 3. Zones are currently processed in order of increasing 
number of households (as determined by number of HHs control). After each iteration, the 
starting weights are updated by subtracting the resulting weights of the mid-level zone from 
the starting weight of the seed zone. Records with zero weights are removed from the seed 
sample after each iteration. The last mid zone is not processed whilst the remaining seed 
weights are allocated to the last mid-zone. The same procedure is repeated for each low zone 
within each mid zone. The pseudocode is presented below: 

 

for (seed in seedList) { 

finalSeedIntegerWeights = DoIntegerizing(incidence[seed], 
seedInitialWeights[seed], finalSeedControls[seed]) 

rd1 = midZoneAllocation () 
rd2 = lowZoneAllocation() 

} 

midZoneAllocation (){ 

# sort mid geography zones by number of HHs in increasing order 
sortedIndices = getSortedIndexArray() 
 
if(sortedIndices.length == 1){ 
    # Allocate all HHs to available mid-level geography 
}else{ 
    # loop over all mid-level geography 
    for (int p=0; p < sortedIndices.length; p++) {    

if (the zone with non-zero HHs is the last zone) 
  allocate all HHs to that zone, break 
 
# for all zones but the last zone 
initialWeights = finalSeedIntegerWeights 
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# Factor initial weights with promotion factor for records 
with the current zone marked as promotion zone 
initialWeights = initialWeights * tazPromotionFactor 
 
doListBalancing{ 
# with following inputs 
# filter records in seed by >0 initial weight 
initialWeights 
incidence[seed] 
medControls[med] 
lower_bound = 0    #lower bound on weights 
upper_bound = initialWeights  #upper bound on weights 
 
#output 
finalMidZoneWeights 
} 
 
finalMidZoneIntegerWeights = doIntegerizing() 
 
#Update initial weights 
initialWeights = initialWeights - 
finalMidZoneIntegerWeights 
 

    } 
} 
} 
 
lowZoneAllocation(){ 
 
# sort low-zones by number of HHs in increasing order 
sortedIndices = getSortedIndexArray() 
 
if(sortedIndices.length == 1){ 
    # Allocate all HHs to available low-zone 
}else{ 
    # loop over all low-level geography 
    for (int p=0; p < sortedIndices.length; p++) {    

if (the zone with non-zero HHs is the last zone) 
  allocate all HHs to that zone, break 
 
# for all zones but the last zone 
initialWeights = finalMidZoneIntegerWeights  
 
doListBalancing{ 
# with following inputs 
# filter records in seed by >0 initial weight 
initialWeights 
incidence[seed] 
lowControls[low] 
lower_bound = 0    #lower bound on weights 
upper_bound = initialWeights  #upper bound on weights 
 
#output 
finalLowZoneWeights 
} 
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finalLowZoneIntegerWeights = doIntegerizing() 
 
#Update initial weights 
initialWeights = initialWeights - 
finalLowZoneIntegerWeights 
 

    } 
} 
} 
 
 

OUTPUT FILE CREATION 

PopSyn III is written in Java and for all the data processing needs, it interfaces with MySQL 
or SQL server. The idea behind using a SQL database was that most of the data structures 
used in PopSyn III are tables, and SQL can come in handy for handling tables. However, 
since most of the operations are limited to SELECT and INSERT queries, other solutions 
can be employed for data handling. In the current version of PopSyn III, all raw input data 
files are required to be in CSV format. A pre-processing SQL script formats the data and 
loads them into a SQL server database. The core PopSyn III program in Java accesses these 
inputs via SQL queries. Intermediate temporary tables are also stored in the SQL database 
and final output tables are also written to SQL server, which can be exported in CSV format 
using a post-processing SQL script. 

The seed input data consists of list of households and persons for each seed geography. 
Using seed data and controls specifications, PopSyn III builds incidence tables (Table 1) for 
each seed geography. The seed incidence table is used for Initial & Final Seed Balancing at 
the seed geography level. For low and mid-level geography balancing (or allocation), an 
incidence table for the corresponding upper seed geography is used. At the end of Final Seed 
Balancing, a final integer weight is added to each household record in the seed table. 

The final outputs from PopSyn III are a household and person table. The household table 
attributes include a final household ID, original ID in the seed sample, initial weights, meta 
geography ID, seed ID, mid-geography ID, low-geography ID and final seed weights on the 
record. The formation of output table begins only at the Mid & Low-Level Allocation step 
in the PopSyn III algorithm. First a temporary household table with these fields is created 
and then rows are added as the algorithm progresses. The input to Mid & Low-Level 
Allocation step is a list of households for each seed geography with final integer weights. 
Mid and low-level allocation is implemented for each seed geography separately. The 
incidence table, household IDs and final seed integer weights are passed to each mid-level 
allocation subroutine call (for each mid-zone). Mid-level allocation returns a list of 
households for each mid-level geography with their mid-level geography weights. PopSyn III 
algorithm ensures that the sum of mid-geography weights across all mid-zones is equal to the 
total seed integer weights for the seed geography. Next, the outputs from mid-level 
allocation are passed to each low-level allocation subroutine call (for each low-zone). Low-
level allocation returns a list of households for each low-level geography with their low-level 
geography weights. A low-zone ID and corresponding mid-zone, seed and meta IDs are 
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attached to the list of households for each low-level geography. This final list of households 
for each low-zone is appended to the temporary household table.  

Figure 1 shows how tables are created at each step of the allocation process. For an 
implementation with S seed zones, allocation process starts with S input seed household 
tables. Each seed table multiplies into M number of tables after mid-level allocation, where 
M is the number of mid-zones within the seed geography. However, a multiplied table for a 
mid-zone would contain only records which were allocated to that mid-zone. Similarly, a 
mid-level table gets multiplied into low-level household tables for each low-zone within a 
mid-zone. For a region with S seed zones, M mid-zones and L low-zones, a total of S * M * 
L tables are produced. Each of these tables are appended to the temporary household table 
at the end of each iteration in the allocation process. Some of these tables can contain zero 
records if no households were allocated to a mid or low-zone. A record in the seed sample 
can appear in any mid or low-zone within the seed zone but cannot be shared across seeds. 
While records can be duplicated across geographies, the total weight across all geographies 
within each seed remains equal to the sum of final integer weights at the end of the final seed 
balancing. At the end, household attributes are added to the temporary household table by 
joining to the original seed sample table. The resulting table is the final household table. The 
final person table is also created by joining the seed person sample to the final household 
table. A post processing script converts the final outputs to a fully expanded household and 
person table. This is achieved by duplicating each record W times, where W is the final 
integer weight on each record. 
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FIGURE 1: TABLE MULTIPLICATION IN ALLOCATION PROCESS 
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3.2  | ENHANCEMENTS TO EXISTING ALGORITHM 

While PopSyn III includes various innovative features and controls, there are some issues 
which can lead to errors. Once such issue with PopSyn III algorithm is the way in which the 
mid and low-level allocation is implemented. In the current implementation, the allocation 
step iterates through mid and low zones sequentially, allocating households without 
replacement. However, a direct implication of this sequential processing is that the last zone 
is allocated all the remaining household records. Since households are not allocated to the 
last zone via list balancing, it’s hard to match the controls for this zone. For a zone with less 
number of household the resulting error can be big. In order to avoid this, mid and low 
zones are sorted in increasing order of total number of households and processed in the 
same order. The idea being that the last zone, which has the most number of households, 
can easily absorb the resulting error in control matching. This however may not work always 
as desired especially for controls specified for a minority segment of the population (e.g., 
university students). A new methodology is proposed below which avoids the sequential 
processing of mid and low zones in the allocation process. 

TABLE 2: INCIDENCE TABLE 

 Mid Zone X Mid Zone Y Mid Zone Z Weight
s HHID 1i  2i 3i 1i 2i 3i 1i 2i  3i

1n  

I 0 0 

xଵ 

2n  xଶ 

3n  xଷ 

4n  xସ 

5n  xହ 

1n  

0 I 0 

yଵ 

2n  yଶ 

3n  yଷ 

4n  yସ 

5n  yହ 

1n  

0 0 I 

zଵ 

2n  zଶ 

3n  zଷ 

4n  zସ 

5n  ହݖ 
Control
s 

Aଵଵ Aଵଶ Aଵଷ Aଶଵ Aଶଶ Aଶଷ Aଷଵ Aଷଶ Aଷଷ  

 

At the heart of the allocation process is List Balancing with lower and upper bounds on 
household weights. This new methodology proposes applying list balancing on all mid and 
low zones simultaneously. As a result, no single zone would end up collecting the cumulative 
error which was the case with sequential processing. Simultaneous list balancing requires 
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creation of a super incidence table. Table 1 presents an incidence table for a single seed 
zone. Table 2 presents a super incidence table for a seed zone with three mid zones, where I 
is the incidence table for the given seed zone and 0 is a matrix of same size but contains all 
zeros. 

In the Table 2 example, there are three controls at the mid-zone level. The last row contains 
the control totals for each control in each mid-zone. The household weights assigned to 
each record for each mid-zone are represented by x, y and z variables. For this incidence 
table, the list balancing problem can be formulated as:  

min
ሼ௫೙,௬೙,௭೙ሽ

∑ ௡ݔ ln
௫೙
௪೙

௡ ൅	ݕ௡ ln
௬೙
௪೙

൅	ݖ௡ ln
௭೙
௪೙

,      

     

Subject to constraints: 

∑ ܽ௜௡ൈሼݔ௡, ,௡ݕ ௡ሽݖ 	ൌ ,௜ܣ ሺߙ௜ሻ௡ ,         

ሼݔ௡, ,௡ݕ ௡ሽݖ ൒ 0, 

௡ݔ ൅ ௡ݕ ൅ ௡ݖ ൌ ܵ௡ 

Where ܵ௡ is the final integer seed weight on a household record. 

The above formulation can be solved using the same iterative Newton Raphson method 
described in Section 1.1. ݔ௡, ,௡ݕ  ௡ weights at the end of each iteration will need to be scaledݖ
to satisfy the (ݔ௡ ൅ ௡ݕ ൅ ௡ݖ ൌ ܵ௡ሻ constraint. The original list balancing procedure had just 
one control defined as the total households control which is constrained to be satisfied 
without any relaxations. Under this methodology, total household controls for all mid zones 
will have to be constrained to satisfy the total households for each mid zone. Finally, 
integerizing can be applied to obtain integer weights. The same procedure will be applied to 
allocate households records from mid to low zones. 
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4.0 SOFTWARE IMPLEMENTATION 

4.1  | OVERVIEW 

PopulationSim will be implemented in the ActivitySim framework. As summarized here, 
being implemented in the ActivitySim framework means: 

• Design 

– Implemented in Python, making heavy use of the vectorized backend C/C++ 
libraries in pandas and numpy. 

– Vectorization instead of for loops when possible 

– Runs sub-models that solve Python expression files that operate on data tables 

• Data Handling 

– Inputs are in CSV format, with the exception of settings 

– CSVs are read-in as pandas tables and stored in an intermediate HDF5 binary 
file that is used for data I/O throughout the model run 

– Key outputs are written to CSV files 

• Key Data Structures 

– pandas.DataFrame - A data table with rows and columns, similar to an R data 
frame, Excel worksheet, or database table 

– pandas.Series - a vector of data, a column in a DataFrame table or a 1D array 

– numpy.array - an N-dimensional array of items of the same type, such as a 
matrix 

• Model Orchestrator 

– ORCA is used for running the overall model system and for defining dynamic 
data tables, columns, and injectables (functions). Model steps are executed as 
steps registered with ORCA. 

• Expressions 

– Model expressions are in CSV files and contain Python expressions, mainly 
pandas/numpy expression that operate on the input data tables. This helps to 
avoid modifying Python code when making changes to the model calculations. 

• Code Documentation 

– Python code according to pep8 style guide 

– Written in reStructuredText markup, built with Sphinx and docstrings written 
in numpydoc 

• Testing 
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– A protected master branch that can only be written to after tests have passed 

– pytest for tests 

– TravisCI for building and testing with each commit 

4.2  | MODEL STEPS (I .E. PROCESSORS) 

The model steps are likely to be: 

• orca.run(['input_pre_processor']) - read input tables, processes with pandas 
expressions, and creates tables in the datastore. 

• orca.run(['setup_data_structures']) - setup geographic correspondence, seeds, control 
sets, weights, expansion factors, and incidence tables 

• orca.run(['initial_seed_balancing']) - seed (puma) balancing, meta level balancing, meta 
control factoring, and meta final balancing 

• orca.run(['final_seed_balancing']) - final balancing for each seed (puma) zone with 
aggregated low and mid-level controls and distributed meta-level controls 

• orca.run(['mid_and_low_level_allocation']) - iteratively loop through zones and list 
balance on each mid-level zone within a meta zone and then each low-level zone 
within a mid-level zone. This is the current procedure, which will likely be revised. 

• orca.run(['expand_population']) - expanded household and person records with final 
weights to one household and one person record per weight with unique IDs 

• orca.run(['write_results']) - write the household and person files to CSV files 

4.3  | FOLDER / FILE SETUP 

• run_populationsim.py - runs populationSim, which runs the model steps described 
above 

• configs folder - configuration settings 

– settings.yaml - settings such as input table names, table key fields, expression 
files, etc. An example settings file is below. 

 

seed_households: 
  filename : pums_hhs.csv      
  id : hhnum 
  seed_zone_id : puma 
  weight : wgtp 
seed_persons:  
  filename : pums_pers.csv 
  hh_id : SERIALNO 
geographic_crosswalk: 
  filename : geocwalk.csv 
  seed_id : puma 
  meta_id : district 
  mid_id : taz 
  low_id : maz 
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meta_control_data : 
  filename : districts.csv 
  id : district 
mid_control_data : 
  filename : tazs.csv 
  id : taz 
low_control_data : 
  filename :  mazs.csv 
  id : maz 
input_pre_processor:  
  seed_households : seed_households_expressions.csv  
  seed_persons : seed_persons_expressions.csv  
  meta_control_data : meta_control_data_expressions.csv  
  mid_control_data : mid_control_data_expressions.csv  
  low_control_data : low_control_data_expressions.csv  
controls : controls.csv 
maxExpansionFactor : 15 
expanded_households : 
  filename : households.csv 
  output_fields : serialno, np, nwrkrs_esr, hincp 
expanded_persons : 
  filename : persons.csv 
  output_fields : sporder, agep, relp, employed 

• data folder - scenario inputs 

– seed households records table 

– seed persons records table 

– meta zones data table (i.e. controls and other data) 

– mid level zones data table (i.e. controls and other data) 

– low level zones data table (i.e. controls and other data) 

– geographic crosswalk 

• outputs folder - key outputs 

– households.csv - expanded households 

– persons.csv - expanded persons 

– populationsim.hdf5 - HDF5 datastore 

4.4  | INPUTS PRE-PROCESSOR 

The inputs pre-processor reads each input table, runs pandas expressions (*_expressions.csv) 
against the table to create additional required table fields, and save the tables to the datastore. 
The inputs pre-processor exposes all five input tables to the expressions calculator so tables 
can be joined (such as households to persons for example). It reads the geographic crosswalk 
file in order to join meta, mid, and low level zone tables if needed. The format of the 
expressions file follows ActivitySim, as shown in the example seed_households 
expressions file below which operates on the NPF field: 

Description Target Expression 

HH is a family famTag pd.notnull( NPF ) * 1
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4.5  | CONTROL VARIABLES 

The control variables input file (controls.csv) specifies the controls used for expanding the 
population. Like ActivitySim, Python expressions are used for specifying control constraints. 
An example file is below. 

Description 

Total 
HH 
Control Geography Seed Table Importance

Control 
Field Expression 

Num HHs True low households 10000 HHBASE (WGTP > 0) 
& (WGTP < 
np.inf) 

Num HHs by 
persons per 
HH 

False low households 5000 HHSIZE1 NP==1 

Num HHs by 
persons per 
HH 

False low households 5000 HHSIZE1 NP==1 

Num HHs by 
persons per 
HH 

False low households 5000 HHSIZE1 NP >= 4 

Num 
students by 
housing type 

False low persons 10000 OSUfam OSUTag==1 

Num HH by 
household 
type 

False mid households 100 SF htype==1 

Num persons 
by 
occupation 
category 

False meta households 100 OCCP1 occp==1 

Where: 

• Geography can be meta, mid, and low 

• Seed Table can be households or persons and if persons, then it aggregates to 
household using the COUNT 

 


