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ABSTRACT 1 

Synthetic population generation is the first step to an Activity Based Model (ABM). Most 2 

population synthesizers are limited when it comes to multi-level data, modifying an existing 3 

synthetic population and avoiding algorithmic errors. Monte Carlo variance resulting from 4 

drawing discrete households and persons from a probability distribution is a common source of 5 

error. In algorithms where zones are processed sequentially, errors can propagate through the list 6 

of zones resulting in large errors for the last zone processed. To the extent that these errors are 7 

higher for smaller population segments, they can adversely impact the accuracy of forecasts 8 

dependent upon these markets; for example, transit ridership estimates may be inaccurate due to 9 

errors in the location of university students.  10 

This paper presents an entropy maximization based population synthesizer 11 

(PopulationSim) which handles multiple geographies and avoids algorithmic errors. It is 12 

implemented as part of Oregon Department of Transportation’s (ODOT) effort to develop an 13 

open source population synthesis platform. PopulationSim has been implemented in the Python-14 

based ActivitySim framework, an open-source collaborative framework for model development.  15 

PopulationSim uses a simultaneous list balancer and a Linear Programming based simultaneous 16 

integerizer to eliminate error due to the sequential processing of zones.  17 

A working version of PopulationSim was implemented for a test case and compared to a 18 

widely-used population synthesizer. PopulationSim eliminates the errors due to sequential 19 

processing of zones and results in a reasonable match to controls. Besides these major 20 

algorithmic enhancements, PopulationSim includes provision to specify flexible number of 21 

geographies and options to modify an existing synthetic population. 22 

 23 

 24 

 25 

 26 

Keywords: Activity-based model, population synthesizer, population synthesis, list balancing, 27 

entropy maximization 28 

  29 
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INTRODUCTION & MOTIVATION 1 

In the past few years, travel demand forecasting has witnessed tremendous growth in the 2 

development of activity-based models (ABM). There are many fully-functional ABMs in 3 

practice, some examples are CT-RAMP (1), DaySim (2), CEMDAP (3) and FAMOS (4).  ABMs 4 

predict activity and travel choices of persons and households considering space and time 5 

constraints as well as individual characteristics. ABMs operate in a micro-simulation framework, 6 

wherein the choices of each decision-making agents are predicted by applying Monte Carlo 7 

methods to behavioral models. This requires person and household level attributes of the entire 8 

population in the modeling region. Moreover, designing a forecasting scenario requires a process 9 

to synthesize a population fitting the scenario’s demographic assumptions.  Disaggregate 10 

population samples can be obtained from sources like American Community Survey (ACS) 11 

Public Use Microdata Sample (PUMS) or a household travel survey. Marginal distributions of 12 

person and household-level attributes of interest are also available from Census. The challenge is 13 

to generate a synthetic population using the population sample and marginal distributions by 14 

applying a data fusion technique. This population sample is commonly referred to as the seed or 15 

reference sample and the marginal distributions are referred to as controls or targets. The 16 

process of expanding the seed sample to match the marginal distribution is termed population 17 

synthesis. With the advancement of ABMs in recent years, synthetic population generation has 18 

also received research attention. Most of the population synthesis methods in literature involve 19 

two steps – first, a fitting step and then a generation step. At the end of the fitting step, an 20 

expansion factor is assigned to each record in the seed sample. The generation step involves 21 

expanding the sample using Monte Carlo drawing, bucket rounding or an optimization-based 22 

method. 23 

The most common fitting technique used by various population synthesizers is the 24 

Iterative Proportional Fitting (IPF) procedure (5). Beckman et al. (6) used the IPF procedure to 25 

obtain joint distributions of demographic variables and random sampling from PUMS to generate 26 

baseline synthetic population. One of the limitations of the IPF method is that it does not 27 

incorporate person level attributes while generating the joint distributions. Many studies have 28 

refined this method to incorporate both household and person level attributes (7, 8, 9, 10, 11). Ye 29 

et al. (12) proposed a heuristic algorithm called the Iterative Proportional Updating Algorithm 30 

(IPU) to incorporate both person and household-level variables in the fitting procedure. Besides 31 

IPF, entropy maximization algorithms have been used as a fitting technique (13, 14, 15). In most 32 

of the entropy based methods, the relative entropy is used as the objective function. The relative 33 

entropy based optimization ensures that the least amount of new information is introduced in 34 

finding a feasible solution. The base entropy is defined by the initial weights in the seed sample. 35 

The weights generated by the entropy maximization algorithm preserves the distribution of initial 36 

weights while matching the marginal controls. This is an advantage of the entropy maximization 37 

based procedures over the IPF based procedures. The other major group is the combinatorial 38 

optimization based techniques (16, 17, 18, 19). Besides these, optimization and simulation based 39 

methods have been developed (20, 21, 22). While much research has been done towards finding 40 

innovative solutions to incorporate controls at multiple levels, little has been done to include 41 

controls at multiple geographic levels. Vovsha et al. (15) presented an entropy maximization-42 

based algorithm (PopSynIII, developed for Maricopa Association of Governments) which 43 

permits specification of controls at multiple geographic levels. Konduri et al. (23) presented an 44 

extension of the IPU algorithm which allows for specification of controls at multiple 45 

geographies. 46 
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PopSynIII operates across three geographic levels and uses a Linear Programming (LP) 1 

based generation procedure. However, PopSynIII traverses sequentially through geographies 2 

while allocating population from an upper to lower geography (e.g., PUMS to Traffic Analysis 3 

Zones). This sequential processing at each geographic level results in a big error for the last zone 4 

to be processed. These errors can be significant for minority population segments like university 5 

students, low income households, and so on, whose travel behavior can be very different from 6 

the general population. For example, university students tend to be a small segment of the overall 7 

regional population but are the majority users of transit services (24, 25, 26, 27). Therefore, it is 8 

critical for a population synthesizer to accurately predict the residential location of specific travel 9 

markets in a modeling region.  10 

Another potential application of the population synthesis tool is to generate a synthetic 11 

population for traffic impact studies. In this type of application, a synthetic population must be 12 

generated for small geographies (only one or a few zones) without perturbing the synthetic 13 

population for the rest of the region. Population synthesizers with sequential zone processing 14 

makes it difficult to generate a synthetic population for such applications.  Finally, all population 15 

synthesizers that the authors are aware of prescribe a certain number of geographies (two in the 16 

case of PopGen2 (23) and three in the case of PopSynIII (15)). For many applications (statewide 17 

population synthesis, future forecasts, etc.), analysts may wish to specify control data at fewer or 18 

more geographic levels.  19 

 This paper describes a new population synthesizer, PopulationSim. It has been 20 

implemented as part of Oregon Department of Transportation’s (ODOT) on-going effort to 21 

develop a standardized population synthesis tool in the ActivitySim (28) framework, an open-22 

source collaborative framework for model development. PopulationSim is based upon the 23 

maximum-entropy list-based approach developed as part of PopSynIII. However, PopulationSim 24 

eliminates sequential processing of zones, allows for specification of controls at any number of 25 

geographies, and generates synthetic populations for small geographies.  26 

The next section presents the PopSynIII algorithm, PopulationSim enhancements and 27 

PopulationSim implementation. After this, the test environment and results are described and 28 

finally, conclusions and directions for future work are listed. 29 

 30 

POPSYNIII ALGORITHM 31 

PopSynIII is built around a list balancing procedure which is applied at three geographic levels.  32 

The balancing procedure maintains correspondence between different geographic levels by 33 

following an aggregation approach for the controls where in the controls from the lower 34 

geographies are aggregated to the upper geographies. The list balancing implementation follows 35 

an allocation approach where in the results from an upper geography are distributed or allocated 36 

to a lower geography within the upper geography. Two basic components of PopSynIII 37 

algorithm can be grouped as list balancing and integerizing. 38 

 39 

List Balancing 40 

Input to this procedure is a list of household records with an initial weight attached to each 41 

record, typically obtained from Census Public Use Microdata Sample (PUMS). The objective is 42 

to find weights that match the given marginal control distributions. Table 1 presents a tabular 43 

representation of the list balancing problem. Where, Wn are the initial weights of each household 44 

record and Xn are the final weights which satisfy the marginal controls (Ai).  45 

 46 
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TABLE 1 List Balancing Example 1 

 2 

HH ID 

HH size Person age 
Initial 

weights 
weights 

Example 

Final 

weights 
1 2 3 4+ 

0-

15 

16-

35 

36-

64 
65+ 

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 Wn Xn  

n=1 1             1 20 x1 250 

n=2   1     1 1     20 x2 250 

n=3     1     1 2   20 x3 250 

n=4       1   2 2   20 x4 150 

n=5       1 1 3 2   20 x5 150 

Control(Ai) 250 250 250 300 400 1250 1100 250      

 3 

There can be multiple solutions (��) to this problem.  However, an ideal solution would match 4 

the distribution of the initial weights as closely as possible. This is achieved by formulating the 5 

list balancing procedure as a convex entropy maximization problem. The mathematical 6 

formulation of list balancing as an entropy maximization problem is presented below: 7 

 8 

min�	
� ∑ �� ln 	

�
� , 9 

Subject to constraints: 10 

 11 

∑ ���×�� = �� , ���)� , 12 

�� ≥ 0 , 13 

 14 

Where, �� represents dual variables that give rise to the balancing factors. ��� are the incidence 15 

table value relating each record to controls. The solution for the above problem is as follows: 16 

 17 

�� = �×��×����∑ ���� ��) = ��× ∏ �������)� !
 =� ��× ∏ ��"�) !
� , 18 

 19 

where �"� represents balancing factors that must be calculated iteratively. 20 

This basic formulation is modified to allow for control relaxations, setting relative 21 

importance of controls and upper and lower bounds on weight variables. These modifications do 22 

not change the basic form of the optimization problem and this convex optimization with linear 23 

constraints is solved iteratively using the Newton-Raphson method (15).  24 

 25 

Integerizing 26 

The final output from the list balancing procedure are fractional weights corresponding to each 27 

household record in the seed sample. Simple rounding techniques or Monte Carlo drawing can 28 

introduce significant errors, especially when summed across large number of geographies. 29 

PopSynIII uses an LP based procedure to covert fractional weights to integers. First, the integer 30 

part of the fractional weights is separated and the residual controls are computed as: 31 

 32 

�� = �� − $ ���×%&' ���)
�

 33 
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 1 

The residual weights range from 0 to 1 and can be assumed to be binary (0 or 1). With 2 

these, a maximum entropy problem can be formulated for binary weights ((�) as follows: 3 

 4 
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   6 

Subject to constraints: 7 

i

n

nin Aya∑ =× , 8 

1,0=ny  9 

 Here too, slack variables or relaxation factors can be introduced to handle cases when no 10 

solution exists (15). 11 

 12 

Algorithm 13 

PopSynIII algorithm starts at the “seed” level (usually Public Use Microdata Areas) and 14 

implements list balancing for each seed geography independently. A simple methodology is used 15 

to apply regional, or meta, controls to each seed geography, wherein the final seed weights from 16 

the initial seed balancing are used to compute the seed-level values of meta controls as suggested 17 

by the initial seed weights. A final seed balancing is implemented adding the factored meta 18 

controls. The final step involves allocation of households from the seed geography to mid and 19 

low-level geographies. The allocation is implemented sequentially from smallest to biggest lower 20 

geography based on number of households in each zone. The last zone is not processed whilst 21 

the remaining upper geography weights are allocated to the last zone. 22 

 23 

POPULATIONSIM ENHANCEMENTS 24 

While PopSynIII algorithm is very efficient and incorporates various innovative features, there 25 

are some issues which can lead to errors in the generated synthetic population. The list balancer 26 

needs to be applied once for each zone when multiple zones are nested below an upper level 27 

zone. Allocation is implemented for one sub-geography at a time without replacement. 28 

Household records available for allocation to each subsequent zone are updated by subtracting 29 

the allocated records to the current zone from the list of records at the upper geography. Thus, 30 

the last zone to be processed is allocated all the remaining household records in the upper 31 

geography without any optimization. Since households are not allocated to the last zone via list 32 

balancing, it is probable that the controls are not matched for this zone. For a small zone, the 33 

resulting error can be significant. To avoid this, mid and low zones are sorted in an increasing 34 

order of total number of households and processed in the same order. This assumes that bigger 35 

zones can easily absorb the resulting error in control matching. This however may not always 36 

work as desired, especially for controls relating to a minority segment of the population (e.g., 37 

university students), where small errors accumulate over zones, resulting in a large error in the 38 

last zone processed. This problem in the context of this paper will be referred to as the “large-39 

zone-error-problem”. 40 

Traditionally, travel demand models have ignored such minority segments like university 41 

students, but their activity and trip making behavior can be quite different from the general 42 
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population (24, 25, 26, 27). Even though these university students represent a minority segment 1 

of the population, they are one of the majority users of transit services. Therefore, it is critical to 2 

accurately predict such minority groups in the synthetic population for successfully evaluating 3 

various policies aimed at improving transit ridership, etc. It is also important to allocate the 4 

generated minority groups to the right zone. For example, university students tend to live close to 5 

the transit corridors for easy access to transit lines. Therefore, it is very important that a 6 

population synthesizer not just generate accurate number of minority individuals but also allocate 7 

them to the right location in the modeling region.  8 

The key to solving the large-zone-error-problem is to replace sequential list balancing 9 

with a simultaneous list balancer whose objective function is to calculate weights for each 10 

household record which match the marginal controls for each zone simultaneously. A tabular 11 

representation of this problem is presented in Table 2. Where, Wn are the final weights assigned 12 

to the household records at the upper geography. W1n, W2n and W3n are the weight variables for 13 

each household record corresponding to each zone. A1i, A2i, A3i are the marginal control totals 14 

for the three zones in this example.  15 

 16 

TABLE 2 Simultaneous List Balancing 17 

 18 

HH ID 

HH size Person age 
Final 

weight 

Zone 

1 

weight 

Zone 

2 

weight 

Zone 

3 

weight 
1 2 3 4+ 

0-

15 

16-

35 

36-

64 
65+ 

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 Wn W1n W2n W3n 

n=1 1             1 250 w11 w21 w31 

n=2   1     1 1     250 w12 w22 w32 

n=3     1     1 2   250 w13 w23 w33 

n=4       1   2 2   150 w14 w24 w34 

n=5       1 1 3 2   150 w15 w25 w35 

Control(Ai) 250 250 250 300 400 1250 1100 250         

Control(A1i) 50 50 50 60 80 250 220 50         

Control(A2i) 75 75 75 90 120 375 330 75         

Control(A3i) 125 125 125 150 200 625 550 125         

 19 

The simultaneous list balancer formulates a convex entropy maximization problem for 20 

each zone which is solved using the iterative Newton-Raphson method. The upper limit on W1n, 21 

W2n and W3n is set to Wn, the final assigned weights at the upper geography. The Newton-22 

Raphson iterations are completed for all zones simultaneously. This allows for shifting weights 23 

across zones to achieve a system optimal solution as the iterations progresses. Having a weight 24 

variable for each household record-zone combination results in much higher degrees of freedom 25 

for this optimization problem. This higher flexibility gives every zone a fair access to some hard 26 

to find household records, for e.g., university students.  27 

The simultaneous list balancer does not attempt to resolve the inconsistencies in the 28 

control data but tries to minimize the error per zone. The higher flexibility in simultaneous 29 

balancing allows for errors resulting from inconsistent controls to be distributed across all zones 30 

instead of being concentrated among few zones. 31 
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In PopSynIII, the upper limit on weights is strictly enforced during sequential list 1 

balancing. This ensures that the final weights at the lower geographies would not violate the 2 

matching of controls at the upper geography. This is not applicable in case of simultaneous list 3 

balancing and the sum of final weights for a given household record across all zones may exceed 4 

or fall below the final weight assigned to that record at the upper geography. Therefore, to 5 

enforce this constraint, the weights are scaled at the end of each iteration to match the weights at 6 

the upper geography. Mathematically, this scaling can be expressed as: 7 

 8 

)� = )*� + ),� + )-� 9 

 10 

The final output from the simultaneous list balancing procedure is a list of weights (�.�) for each 11 

household record (n) corresponding to each zone (z). The next step is to discretize these floating-12 

point weights. Discretization is implemented at the end of the simultaneous balancing based 13 

allocation and can be sequential or simultaneous. Under sequential discretization, an LP problem 14 

is formulated for each zone as described earlier. In case of simultaneous discretization, a single 15 

LP problem is formulated to convert decimal portions of the final weights for all household 16 

records across all zones in each geographic level. First, residual controls are computed for each 17 

zone in a geographical level as: 18 

 19 

�.� = �.� − $ ���×%&' ��.�)
�

 20 

 21 

The residual weights can again be assumed binary and must be computed for each 22 

household record (n) and zone (z) combination. With these, a maximum entropy problem can be 23 

formulated for binary weights ((.�) as follows: 24 

 25 
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   27 

Subject to constraints: 28 

zi

n

znin Aya∑ =× , 29 

1,0=zny  30 

These constraints will match the zonal controls but might perturb the upper geography 31 

control distribution. This is handled by imputing the upper geography controls for current 32 

geographic level using the balanced weights. The imputed upper geography controls (j) are 33 

expressed as: 34 

zj

n

znjn Aya∑ =×  35 

Where, �./ = ∑ �/�×��.�)� − ∑ �/�×%&' ��.�)�  36 

 This LP problem is solved using a standard LP solver. The current version of 37 

PopulationSim uses CVXPY (28) for simultaneous integerization and can use CVXPY or 38 

ORTOOLS (29) for sequential integerization. 39 
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POPULATIONSIM IMPLEMENTATION 1 

PopulationSim has been implemented in the open-source ActivitySim (30) framework, an ABM 2 

software platform sponsored by a consortium of transportation planning agencies. As illustrated 3 

below, the framework is quite flexible and is being used by the Federal Highway Administration 4 

(FHWA) and the Oregon Metro benefit cost analysis toolkit (31). The framework is implemented 5 

in Python and makes heavy use of the Pandas and Numpy libraries (32,33), which allow for 6 

vectorization of operations to reduce overall runtime.  7 

Controls for a PopulationSim run are specified via a Comma Separated Values (CSV) 8 

expression file of Python expressions. User can specify Pandas and Numpy expressions in the 9 

expressions file to operate on the input data tables. This makes the control specification very 10 

intuitive and flexible. Table 3 shows a portion of an expressions file. The seed table can be 11 

households or persons and if persons, then the expressions calculator counts the persons fitting 12 

the expression to households. 13 

 14 

TABLE 3 Example Control Expression File 15 

 16 

Description Geography Seed Table Importance 
Control 

Field 
Expression 

HH Size 1 MAZ households 5000 HHSIZE1 NP == 1 

HH Size 2 MAZ households 5000 HHSIZE2 NP == 2 

HH Size 3+ MAZ households 5000 HHSIZE3 NP >= 3 

OSU students in 

family 
TAZ Persons 10000 OSUfam OSUTag==1 

OSU students in non-

family 
TAZ Persons 10000 OSUnfam OSUTag==0 

Workers in occupation 

category 1 
County Persons 100 OCCP1 occp==1 

 17 

Models implemented in the framework are run by a data pipeliner that reads the list of 18 

model steps and executes the steps in order. All tables are stored in an intermediate Hierarchical 19 

Data Format (HDF5) binary file that is used for data input and output throughout the model. This 20 

allows for restarting of a PopulationSim run from any point. The final output from a 21 

PopulationSim run include the final synthetic population (expanded household and persons file), 22 

HDF5 data pipeline, a household-level weights summary from each step in the algorithm and a 23 

final control vs synthesized totals comparison.  24 

PopulationSim framework was developed keeping in mind some of the desired use-cases 25 

in travel demand modeling. Traffic impact study is one such use-case where the user would want 26 

to update or add to the synthetic population of a subset of zones. Another desired feature is 27 

flexible number of geographies for control specification. The current working version of 28 

PopulationSim includes both features.  29 

 30 

RESULTS & VALIDATION 31 

To evaluate PopulationSim’s performance, PopSynIII has been used as the base case. To make a 32 

fair comparison, both PopSynIII and PopulationSim were run on the same input dataset. The 33 



Paul, Doyle, Stabler, Freedman, Bettinardi 10 
 

following sub-sections describe the test environment, the used validation procedures and finally, 1 

the test results. 2 

 3 

Test Environment 4 

The Corvallis-Albany-Lebanon Modeling (CALM) region in Oregon, USA was selected as a test 5 

region to validate PopulationSim against PopSynIII. The CALM region consists of a single 6 

PUMA, which becomes both the seed and the meta geography for this region. The 35 Census 7 

Tracts form the mid geography and 930 TAZs form the lower geography, resulting in three 8 

geographies for specifying controls. The CALM modeling region represents 62,041 households 9 

and 156,452 persons. The CALM modeling region also houses the Oregon State University 10 

(OSU). Total university student population for the CALM region is about 17,510 students. The 11 

5% ACS PUMS data from 2007-2011 has been used as the seed sample. Table 4 presents the 12 

common set of controls across the two population synthesizers. Both PopulationSim and 13 

PopSynIII were run on the same machine with two 3.00 GHz processors and 160 Giga Bytes of 14 

installed Random Access Memory (RAM). PopSynIII runs in about 12 minutes and 30 seconds 15 

while PopulationSim takes about 16 minutes and 30 seconds to run with sequential integerization 16 

and around 40 minutes with simultaneous integerization. It should be noted that the current 17 

version of PopulationSim used for this test has not been optimized to use parallel processing to 18 

bring down the run time. 19 

 20 

TABLE 4 Control Specification 21 

 22 

Control Values Importance Geography 

        

Total number of households   Very high TAZ 

Household size 1, 2, 3, 4+ Med TAZ 

Age of householder 15-24, 25-54, 55-64, 65+ Low TAZ 

Household income quartiles   Med TAZ 

OSU students by housing type Family/non-family High TAZ 

Number of workers 0, 1, 2, 3+ Med Tract 

Housing type SF, MF, MH, Duplex Med Tract 

Number of workers by occupation  8 occupation groups Med Region 

 23 

Validation Statistics 24 

For each control, percentage difference between synthesized totals and control totals are 25 

computed at the geography at which the control was specified. A validation chart is created for 26 

both software which is a visualization of the disaggregate summary statistics – mean percentage 27 

difference and standard deviation (STDEV) of percentage differences. A form of dot and whisker 28 

plot is generated for each control where the dots are the mean percentage differences and 29 

horizontal bars are twice the STDEV centered around zero. Since the test environment has only 30 

one meta geography, STDEV is not computed for meta controls. For all other controls (TAZ and 31 

Tract level), means and STDEV of percentage differences are computed across the geographies 32 

at which the control was specified. 33 

 34 
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Test Results 1 

PopulationSim was run with both sequential and simultaneous integerization. Figure 1 presents 2 

the validation summary from the sequential integerization run. The TAZ-level total households 3 

control is matched perfectly. Most of the other TAZ-level controls are matched within reasonable 4 

ranges except for the OSU students control, which has a slightly higher relative variance. Tract 5 

level housing type controls is matched perfectly with almost no variance. There is a discrepancy 6 

between the number of workers specified at the regional level and the number of workers 7 

implied by the distribution of workers by workers per household specified at the Tract level. The 8 

meta level occupation controls were scaled down for the PopulationSim test runs.  9 

The sequential integerization procedure can match the Tract level controls while 10 

essentially over-riding the meta level controls matched by the simultaneous list balancer. This is 11 

avoided by imputing the upper geography controls using the balanced household weights and use 12 

those as additional constraints in discretization. The sequential discretization may still perform 13 

inefficiently for minority population segment. This was demonstrated by poor performance of 14 

the regional occupation type 7 (Military) control which applies to a minority population segment. 15 

Simultaneous integerization performs better for controls on minority population segments and 16 

leads to closer match of controls at lower geographies. Figure 2 presents the results from the 17 

PopulationSim run with simultaneous integerization. 18 

 19 
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 1 

FIGURE 1 PopulationSim Validation – Sequential Integerization 2 

 3 

It can be observed that simultaneous integerization leads to an improvement in the match 4 

to meta-level occupation type 7 control. Simultaneous integerization improves the performance 5 

across most controls. Figure 3 presents the comparison of PopulationSim and PopSynIII 6 

validation. The PopulationSim run is with scaled meta controls. Some controls perform better for 7 

PopulationSim especially the ones which performed poorly for PopSynIII (population aged 15 to 8 

24 years). PopulationSim has higher variability on students control. This might be a result of 9 

simultaneous balancing spreading the error across multiple zones instead of concentrating it over 10 

few zones. 11 
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 1 

 2 

FIGURE 2 PopulationSim Validation – Simultaneous Integerization3 
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  1 

FIGURE 3 PopulationSim (Simultaneous Integerization) vs. PopsynIII 2 
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Fixing the Large Zone Error Problem 1 

One of the major objectives of the PopulationSim algorithm is to solve the large zone error 2 

problem resulting from sequential list balancing, which is more evident with respect to minority 3 

population segments. One such control in the current test environment is Oregon State University 4 

(OSU) students by family type control. Table 5 shows the performance of this control for the 5 

biggest TAZs in each Tract in the CALM region for PopulationSim and PopSynIII (the TAZs 6 

that are processed last in the PopSynIII algorithm). It can be observed that the PopulationSim 7 

algorithm resolves the large zone error problem for all the zones shown.  8 

 9 

TABLE 5 Large Zone Error [OSU Student Control] 10 

 11 

Zone Number (TAZ) 
Control 

Value 

(Control – Predicted) 

PopSynIII PopulationSim 

        

OSU Students in Family Households 

302 69 11 0 

356 74 9 -1 

654 4 6 0 

563 13 6 -2 

241 18 6 1 

        

OSU Students in Non-Family Households 

121 250 -13 2 

722 236 13 4 

337 0 12 0 

822 219 11 -1 

302 312 -11 -1 

 12 

 13 

CONCLUSION & FUTURE WORK 14 

Generating a synthetic population is the first step in microsimulation-based disaggregated 15 

ABMs. The accuracy of a synthetic population in representing the true population can have a 16 

significant impact on the quality of forecasts from ABM and the resulting policy analysis. This 17 

becomes even more critical when the analysis is aimed at studying a smaller market in the 18 

modeling region (e.g., university students, low-income households, etc.). Most existing 19 

population synthesizers are limited when it comes to accurately predicting smaller markets 20 

within a general population. Algorithmic errors can add up across geographies resulting in 21 

inaccurate prediction of smaller markets of interest. Monte Carlo variance resulting from 22 

drawing discrete households and persons from a probability distribution is a common source of 23 

error. In algorithms, where zones are processed sequentially, errors can propagate through the list 24 

of zones resulting in large errors for the last zone processed.  25 

This work presented an entropy maximization based population synthesizer called 26 

PopulationSim. PopulationSim has been implemented in the Python-based ActivitySim 27 

framework and employs a simultaneous list balancer. A simultaneous list balancer avoids 28 

propagation of errors to the last zone which is the case with sequential list balancing of zones. A 29 
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Linear Programming based simultaneous integerizer in PopulationSim averts random noise from 1 

Monte Carlo drawing. PopulationSim was tested for the CALM region and the results were 2 

compared to PopSynIII implementation for the same region. Results show that PopulationSim 3 

eliminates the large zone error observed in PopSynIII and performs reasonably well in terms of 4 

match to controls at various geographies. Besides these major algorithmic enhancements, 5 

PopulationSim includes various desirable features. Once such feature is provision for specifying 6 

a flexible number of geographies. Certain applications like traffic impact studies require 7 

synthetic population to be generated for a subset of zones. PopulationSim allows the user to 8 

update the synthetic population for a subset of zones. 9 

Some other desirable features under development include an inputs pre-processor which 10 

exposes all the input tables to the user via expression files. These expressions files follow the 11 

ActivitySim framework format and allow the user to write Python expressions to create 12 

additional required data fields without changing the source code. The inputs pre-processor will 13 

perform standard consistency checks for all the inputs at the start of the run. A tracer is also 14 

under development which will enable the user to specify one zone at each desire geographic 15 

level to output trace / debug results. Another feature under development is the ability to share 16 

seed sample across geographies. The motivation for this feature is that as regions grow and 17 

change, PUMAs from other regions may be more appropriate sources of households than the 18 

PUMS sample from the last Census for the region. The next release version would also output 19 

aggregate multiway distributions which will be an input to aggregate demand models.  20 

  21 
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