
Author’s Accepted Manuscript

A heuristic algorithm for a single vehicle static bike
sharing rebalancing problem

Fábio Cruz, Anand Subramanian, Bruno P. Bruck,
Manuel Iori

PII: S0305-0548(16)30248-9
DOI: http://dx.doi.org/10.1016/j.cor.2016.09.025
Reference: CAOR4098

To appear in: Computers and Operation Research

Received date: 20 April 2016
Revised date: 13 September 2016
Accepted date: 30 September 2016

Cite this article as: Fábio Cruz, Anand Subramanian, Bruno P. Bruck and Manuel
Iori, A heuristic algorithm for a single vehicle static bike sharing rebalancing
p r o b l e m , Computers and Operation Research,
http://dx.doi.org/10.1016/j.cor.2016.09.025

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/caor

http://www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2016.09.025
http://dx.doi.org/10.1016/j.cor.2016.09.025


A heuristic algorithm for a single vehicle static bike sharing

rebalancing problem

Fábio Cruza,∗, Anand Subramaniana, Bruno P. Bruckb, Manuel Iorib

aCentro de Informática, Universidade Federal da Paráıba, CEP 58059-900, João Pessoa, Brazil.
bDISMI, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy.

Abstract

The static bike rebalancing problem (SBRP) concerns the task of repositioning bikes among

stations in self-service bike-sharing systems. This problem can be seen as a variant of

the one-commodity pickup and delivery vehicle routing problem, where multiple visits are

allowed to be performed at each station, i.e., the demand of a station is allowed to be split.

Moreover, a vehicle may temporarily drop its load at a station, leaving it in excess or,

alternatively, collect more bikes from a station (even all of them), thus leaving it in default.

Both cases require further visits in order to meet the actual demands of such station. This

paper deals with a particular case of the SBRP, in which only a single vehicle is available

and the objective is to find a least-cost route that meets the demand of all stations and

does not violate the minimum (zero) and maximum (vehicle capacity) load limits along

the tour. Therefore, the number of bikes to be collected or delivered at each station must

be appropriately determined in order to respect such constraints. We propose an iterated

local search (ILS) based heuristic to solve the problem. The ILS algorithm was tested on

980 benchmark instances from the literature and the results obtained are competitive when

compared to other existing methods. Moreover, our heuristic was capable of finding most of

the known optimal solutions and also of improving the results on a number of open instances.

Keywords: Bike-sharing, Vehicle Routing, Split pickup and delivery, Iterated local search.

1. Introduction

The task of repositioning a commodity from one location to another is a well-known

problem arising in different contexts such as logistics, transportation, and various disciplines,

notably industrial engineering and operations management. A practical application arises in

∗Corresponding author
Email addresses: fabiocba@di.ufpb.br (Fábio Cruz), anand@ct.ufpb.br (Anand Subramanian),

bruno.p.bruck@gmail.com (Bruno P. Bruck), manuel.iori@unimore.it (Manuel Iori)

Preprint submitted to Computers & Operations Research October 1, 2016



self-service bike sharing systems (BSS), which are becoming increasingly popular in recent

years. Users rent bikes and return them at stations distributed over a region. In such

systems, each station has an inventory with a load capacity, an initial number of bikes, and

consequently a number of free slots where users can return bikes to the system. Throughout

the day, some stations may have no bike to be rented or free slots to store returned bikes.

Therefore, an attempt to avoid this scenario, which is unpleasant for users, is to determine

an initial acceptable number of bikes (and free slots) at each station. This task can be done

based on demand history and peaks at each station [1, 4, 34, 43]. A vehicle with limited

load capacity then periodically collects and delivers bikes across different stations so as to

rebalance the system.

Alternatives to the street traffic are important not only because of its impact in urban

congestion, but also in the environment, commuting, and so on. The emerging worldwide

BSS are proving to be an effective solution to mitigate the effects of traffic issues in large

urban centers Detailed information on several bike sharing systems worldwide can be found

on the interactive bike sharing world map available at http://bikesharingmap.com. By

August of 2016, there were approximately 1, 392, 170 bikes and pedelecs (bikes assisted by

a small electric motor) being used worldwide. According to the website, in 2015 there were

at least 1005 cities with an operating BSS and 324 cities with programs under planning or

construction. One of the most famous systems is the Vélib’ in Paris, with 1800 stations and

more than 20, 000 bikes.

The activity of repositioning bikes among stations on a regular basis is called rebalancing,

and this is done by one or more vehicles that move bikes from one station to another in

order to restore its inventory to the initial desired configuration. As per DeMaio [10], good

rebalancing systems are present in successful bike sharing programs, and since the vehicles

move back and forth across an urban area, a vehicle routing optimization can be utilized.

The rebalancing is either static, performed when nearly no bikes are being used, or

dynamic, which is done while the system is still in use. The static bike rebalancing problem

(SBRP) is motivated by the fact that very few bikes are being used at night.

In this work we consider the single vehicle SBRP, which is clearly NP-hard, because it

includes, among others, the classical traveling salesman problem (TSP) as a special case.

The SBRP can be seen as a variant of the one-commodity pickup and delivery TSP [20, 21],

with the difference that multiple visits are allowed to be performed at each station, i.e., the

demand of a station is allowed to be split. Moreover, a vehicle may arbitrarily drop its load

at a station, leaving it in excess or, alternatively, collect more bikes from a station (even all

of them), thus leaving it in default. Both cases require further visits in order to meet the

2

http://bikesharingmap.com


actual demands of such station. This strategy of allowing a station to act as a buffer or a

temporary depot is denoted as temporary operation (i.e., temporary pickup and temporary

dropoff). Finally, visits to balanced stations are optional for the SBRP. Salazar-González

and Santos-Hernández [36] considered a similar yet different problem, in which an upper

limit is imposed on the number of visits to the customers and to the depot, and the single

vehicle that performs the rebalancing is not forced to leave the depot with an empty load.

An increasing number of works regarding bike sharing systems and related issues, such

as the balancing of their stations, has been published over the last years. Exact approaches

for multiple vehicle SBRPs were suggested by Dell’Amico et al. [8], Di Gaspero et al. [11, 12,

13], Kloimüllner et al. [24], Raviv et al. [35]. Moreover, Alvarez-Valdes et al. [1], Dell’Amico

et al. [9], Forma et al. [16], Papazek et al. [28, 29], Raidl et al. [31], Rainer-Harbach et al.

[32, 33] also addressed different types of multiple vehicle SBRPs, but with heuristics.

Several exact [2, 6, 14, 15, 36] and heuristic [22, 27] algorithms were proposed for single

vehicle SBRPs. Furthermore, in contrast to static rebalancing, there are relatively few works

related to dynamic rebalancing [4, 5, 7, 23, 37].

The works of Chemla et al. [6] and Erdoğan et al. [14] were the only ones to consider the

same variant dealt in the present paper. Chemla et al. [6] proposed a mathematical formu-

lation over an extended graph, where each station is replicated according to an upper bound

on the number of visits. Due to its visible intractability, two relaxations were developed.

The authors also presented among other contributions, a polynomial algorithm to compute

optimal bike displacements for a given sequence of vertices, which is useful to determine if

a route is feasible or not, as well as tabu search heuristics and a branch-and-cut algorithm

that solves a relaxation of the problem. Erdoğan et al. [14] proposed the first exact method

for the problem, which consists of a branch-and-cut algorithm that makes use of no-good

cuts (also known as Benders combinatorial cuts), and they reported optimal solutions for

instances with up to 60 stations.

Despite the advances on the development of efficient exact approaches for SBRPs, heuris-

tic methods still appear to be more suitable for dealing with medium and large size instances

of this challenging class of problems. This work proposes a hybrid iterated local search (ILS)

based heuristic for the single vehicle SBRP considered in Chemla et al. [6] and Erdoğan et al.

[14]. Hybridized ILS algorithms, especially when combined with randomized variable neigh-

borhood descent (RVND), revealed to be very effective when solving a large variety of vehicle

routing problems [9, 30, 39, 40, 44], including those involving only a single vehicle [3, 41].

The algorithm that was developed combines successful ingredients from previous works

with some problem-specific procedures suggested in Chemla et al. [6] to improve the solution

3



quality, as well as to check if a solution is infeasible. We also implemented several perturba-

tion mechanisms and the impact of each possible combination on the solution quality and

CPU time are measured by extensive computational experiments on a subset of challenging

test-problems. The results obtained on 980 benchmark instances from the literature show

that our algorithm is competitive when compared to other methods, and a number of new

best known solutions is reported. We also conduct an analysis on how the performance of

the algorithms in terms of solution quality and CPU time varies according to the number

of stations and the vehicle capacity.

The remainder of the paper is organized as follows. Section 2 presents a formal problem

definition. Section 3 describes the proposed heuristic algorithm. Section 4 reports and

discusses the computational results, and Section 5 contains the concluding remarks.

2. Problem description

Let n be the number of stations, V = {1, ..., n} be the set of vertices representing their

locations (station 0 represents the depot), and A be the set of arcs in a complete and directed

graph G = (V ∪ {0}, A). For each arc a(i,j) ∈ A, there is a cost ca, satisfying the triangular

inequality (c(i,j) + c(j,k) ≥ c(i,k),∀i, j, k ∈ V ).

For each i ∈ V , let pi ∈ Z be the amount of bikes initially stored, p′i ∈ Z be the

number of bikes requested by i after the service is performed, and di = p′i − pi be the total

demand. When di > 0 and di < 0, we assume that i ∈ V is a delivery and a pickup station,

respectively. A station i ∈ V may have no demand (pi = p′i) and in this case the visit

becomes optional. Each station i ∈ V has a capacity qi ∈ Z and the depot is assumed to

have no bikes, i.e., q0 = p0 = p′0 = 0. Finally, let Q ∈ Z be the vehicle capacity.

The objective is to find a least-cost route that starts and ends at the depot, visits each

station with non-zero demand at least once, meets the demands of all stations (i.e., the initial

load pi is changed to the target demand p′i,∀i ∈ V ), and does not violate the minimum

(zero) and maximum (Q) load limits. Therefore, the number of bikes to be collected or

delivered at each visit to a station should be appropriately determined in order to respect

such constraints.

Finally, stations may serve to perform temporary operations, either as a temporary

depot or a temporary buffer, i.e., supply more bikes than their initial demand or hold more

bikes (without exceeding its inventory load capacity), and in both cases have their demand

satisfied in later visits.

Figure 1 shows a graphical representation of an optimal solution for the benchmark

instance n20q10D (n = 20 and Q = 10). The nodes are distributed according to the spatial

4



coordinates of the stations. The positive and negative values next to the nodes are the

number of bikes collected and delivered, respectively. The arcs and their associated values

represent the vehicle traveling to the next station in the sequence and the vehicle load,

respectively. For example, the vehicle delivers 2 bikes in the first visit to station 12, collects

10 at station 10, returns to 12 to deliver 6 more (meeting the demand of 8) and then travels

to station 14 with a load of 4 bikes.

0

1

−5;+1

2

−1

3

−2

4+7

5 −8

6

+1

7

+7

8

+9

9+7

10
+10

12 −6;−2

13

+4

14

+6

15 −5

16 −9

17

−9

18

−5

19

+8

20

−8

1

10

2
0

7

6

10

2

0

10

4

10

1

29
0

7

2

10

5

Figure 1: Representation of optimal solution with value 5989 for instance n20q10D

3. Proposed heuristic

ILS iteratively alternates between local search (intensification) and perturbation (diver-

sification) mechanisms with a view of finding high quality solutions. In our case, we embed

a variable neighborhood descent (VND) [26] based procedure in the local search phase of the

metaheuristic. As in previous works (e.g., 30, and 39), the neighborhoods of our algorithm

are examined in a random manner during the search (RVND).

5



As opposed to most of the former ILS implementations cited in Section 1, infeasible

solutions are temporary accepted after the application of perturbation moves, not only for

the sake of diversification, but also as an attempt to escape from local optimal solutions.

This modification, sometimes referred to as strategic oscillation (see, e.g., Gendreau et al.

[17], Glover [18], Glover and Hao [19]), was crucial for the favorable performance of the

heuristic when dealing with the single vehicle SBRP considered here, which appears to be

more challenging to solve than other VRPs where ILS was successfully applied to obtain

high quality solutions by only considering the feasible search space.

The proposed hybrid heuristic, called ILSSBRP, combines multiple restarts, local search,

perturbations mechanisms, and a repair phase. Figure 2 illustrates the flowchart of ILSSBRP.

For each of the IR restarts, a feasible initial solution is generated using a simple greedy ran-

domized constructive algorithm (see Section 3.3). Next, local search, perturbation and

repair procedures are successively applied until the stopping criterion is met, that is, when

the number of consecutive attempts to escape from a local optimal solution reaches IILS

trials. Because perturbation moves are allowed to produce infeasible solutions, we imple-

mented a procedure called AddUnbalancedVertex (see [6] and Section 3.2 below for details),

which includes additional visits to stations whose demands are not exactly met, with the

aim of repairing such solutions. Nevertheless, there is no guarantee that a solution will be

feasible after applying this procedure. When an infeasible solution is not totally repaired

and the local search does not find a move that leads to a feasible solution, then the infeasible

solution is disregarded and the perturbation procedure is called. Note that perturbation is

always applied over the best solution of the current multi-start iteration. Finally, ILSSBRP

returns the best solution found among all restarts.

3.1. Solution representation

A solution for the single vehicle SBRP considered in the present work can be represented

as a sequence of visits to stations, starting and ending at the depot, along with the amount

of bikes collected or delivered at each visit.

Three vectors are used as data structures to store: (i) the route, where the first and last

element are fixed at 0, i.e., the depot; (ii) the operation performed by the vehicle during a

visit, where negative and positive values indicate the amount of bikes delivered and collected,

respectively; and (iii) the vehicle load during the route.

As in Chemla et al. [6], a flow network is used to check in polynomial time whether or

not a solution is feasible, with respect to bike displacements and vehicle capacity, given a

sequence of vertices representing visits to stations. A detailed explanation can be found in

Appendix A.

6



ILSSBRP

iterR = 0

iterR < IR ?

iterILS = 0

Stop

Generate initial solution s

iterILS < IILS ?

Is s feasible?f (s′) < f? ?

s = RVND(s)

s = AddUnbalanced(s)

f (s) < f (s′) ?

s′ = s

s = Perturb(s′)

iterILS = 0

iterILS = iterILS + 1

s? = s′

iterR = iterR + 1

No

Yes

YesNo

No

Yes

Yes

No

Yes

No

Figure 2: ILSSBRP flowchart

We also use another data structure which consists of a key-value map composed by

n+ 1 elements that store the number of visits performed at each station. This is useful, for

example, to check whether a solution includes all stations with non-zero demand. Note that

7



information held in (ii) is extracted from the computed bike displacements when solving the

max-flow problem (see Appendix A). From such, it is possible to derive, in linear time, the

vehicle loads in (iii) by the adding or subtracting the bike displacements at each visit.

3.2. Repairing infeasible solutions

As already mentioned, infeasible solutions are allowed after perturbations. We therefore

re-implemented the procedure called AddUnbalancedVertex in [6], which tries to repair a

solution by adding stations to the route. More precisely, both the most unbalanced station

in excess and in default, i and j, respectively, are selected and three moves are possible: (i)

adding arcs (j, i) and (i, j) after the existing visit to j; (ii) adding arcs (i, j) and (j, i) after

the existing visit to i; (iii) if both i and j are not in the sequence, adding (i, j) at the end

of the sequence, before returning to the depot.

For example, let us consider a scenario where stations i = 12 and j = 14 are the most

unbalanced. More precisely i has initially 20 bikes and a demand of −10, i.e., a pickup

station, while j is initially holding 3 out of 10 (target) bikes, i.e., a delivery station with

demand 7. An infeasible solution is presented in Figure 3a, where the referred stations

are not balanced, that is, their demands are not met, since only 4 bikes were collected in

station 12 and 4 bikes were delivered at station 14. Figure 3b shows a modified solution,

where after the addition of arcs (14, 12) and (12, 14), a new and feasible configuration of

bike displacements were determined by means of the maximum flow check (see Appendix

A). We can observe that the second visit complements the first one, meeting the demand of

both stations: the vehicle deliveries 1 bike at station 14, collects the remaining 7 at station

12, now balanced, and finally meets the demand of station 14 by delivering 6 more bikes.

It is worth emphasizing that the AddUnbalancedVertex procedure does not necessary

lead to a feasible solution. However, in general, experimental results showed that such

procedure has a high level of success in fully repairing infeasible solutions.

3.3. Constructive Procedure

The pseudocode of the greedy randomized constructive procedure is presented in Alg. 1.

The algorithm stores and maintains a list of open vertices (OV ) corresponding to stations

whose demands are still not fully met. Stations without demand are also included in this

list. In order to ensure a level of diversity during the process of generating an initial solution,

OV is randomly shuffled (line 4).

The algorithm follows a greedy procedure by selecting the first vertex to be inserted at

the end of the route (before the depot) whose demand is completely met by a single visit

8



3

+8

6

+8

...

11 −2

12

+4

14−4

15

−5

...

20 −9

0

4 2

10

1

9
4

0

(a) Infeasible solution

3+8

6

+8

...

11 −2

12

+3;+7

14 −1;−6

15

−5

...

20

−9

0

3
1

9

0

8

3

2

9

3

(b) Feasible solution after additional visits to unbalanced stations 12 and 14

Figure 3: Handling an infeasible solution by considering additional visits to unbalanced stations

without violating the load limits ([0, Q]). Next, the vehicle load is updated and the station

that was inserted into the partial solution is removed from OV (lines 8-12).

However, it may come to a point where no station can be fully served in a single visit,

either because the vehicle has not enough bikes to deliver, or the residual capacity is not

sufficient to collect the required bikes at once. Hence, a split becomes necessary. The

second part of the constructive procedure (lines 13-17) iterates over OV searching for a

station whose demand maximizes the number of bikes that can be delivered or collected.

Ties are broken according to the nearest insertion criterion. The station demand and vehicle

load are updated after the insertion. Next, the algorithm restarts from line 5 and the entire

insertion procedure is repeated until OV becomes empty. Note that the generated initial

solution is always feasible.

9



Algorithm 1 Initial Solution Constructive Procedure

1: Procedure GenerateInitialSolution
2: Q′ ← Q
3: Solution← ∅
4: OV ← List randomly shuffled with stations where di 6= 0 + random ones with di = 0
5: repeat
6: inserted ← false
7: for all i ∈ OV do
8: if di ≤ Q′ or Q−Q′ ≥ di then
9: Solution← Solution ∪ i

10: Update vehicle capacity and remove i from OV
11: inserted ← true
12: break
13: if not inserted then
14: for all j ∈ OV do
15: compute exchangej
16: i← max{exchangej | j ∈ exchange}
17: Solution← Solution ∪ i
18: update OV
19: update Q′

20: until OV 6= ∅
21: return Solution
22: end GenerateInitialSolution.

3.4. Local search

Initial and perturbed solutions are possibly improved by means of an RVND based pro-

cedure during the local search. RVND consists of systematically examining different types

of neighborhoods in a random manner. In particular, if the best neighbor consists of an

improving move, then the search may continue from any of the existing neighborhoods (in-

cluding the last one that has been explored) at random. Otherwise, a different neighborhood

other than those that did not succeed in finding an improving move is randomly selected.

The procedure ends when all neighborhoods fail to refine the current solution. Only feasible

moves are accepted.

The following six neighborhood structures were implemented.

• Reinsertion — N (1): A station is removed and then reinserted in another position of

the sequence.

• Or-opt2 — N (2): Two consecutive stations are removed and then inserted in another

position.

10



• Or-opt3 — N (3): Three consecutive stations are removed and then inserted in another

position.

• 2-opt — N (4): Two non-adjacent arcs are removed from the sequence and then two

new ones are inserted. In other words, a subsequence of the tour is reversed.

• Swap — N (5): Permutation of two stations.

• Suppression — N (6): Given a sequence L = i0, i1, ..., ik, a suppression list is composed

of visits to stations ij, ∀j ∈ {1, . . . , k − 1}, such that p′ij = pij (zero demand) or

p′ij 6= pij and ij is visited more than once in the tour. The best move, if any, consists

in selecting one station to be removed from L so that the solution cost is minimized

and the resulting new sequence L′ is feasible. For example, Figure 4b shows the

removal of an additional visit to station 2, thus modifying the subsequence 2, 6, 2, 9, 0

to 2, 6, 9, 0. This neighborhood was originally proposed by Chemla et al. [6], but the

authors considered all stations.

The first five are well-known TSP neighborhood structures, while the last is a problem-

specific neighborhood. Figure 4a depicts an initial solution and Figures 4b to 4g illustrate

modified solutions that were obtained after changing the previous one by means of one of the

neighborhoods described above. For example, Figure 4d shows a solution in which a 2-opt

move was applied over the solution shown in Figure 4c. For ease of presentation, values of

pickup/delivery operations as well as the vehicle load are omitted.

3.5. Perturbation mechanisms

One of the four mechanisms described below is selected at random whenever the algo-

rithm enters the perturbation phase.

• AddBuffer — P (1): An additional visit to a station is included, expecting to act as

buffer, using the cheapest insertion criterion. Unrouted stations are inserted twice

using the same criterion [6].

• AddStations — P (2): This perturbation mechanism generalizes the previous one in

the sense of allowing multiple visits to be added in the solution, but with a different

insertion criterion. More precisely, an additional visit (or two, in the case of unrouted

stations) to up to three random stations are included towards the end of the route.

Here we only consider stations that are visited at most once. Adjacent visits to the

same station are forbidden.

11



0
1

2

3

4

5

6

7

89

(a) Initial solution

0
1

2

3

4

5

6

7

89

(b) Suppression of second visit
to station 2 after visiting 6

0
1

2

3

4

5

6

7

89

(c) Or-Opt3 of three consecu-
tive stations 8 ,7 and 1

0
1

2

3

4

5

6

7

89

(d) 2-opt on subsequence
5, 8, 7, 1, 3

0
1

2

3

4

5

6

7

89

(e) Swap between station 1
and station 3

0
1

2

3

4

5

6

7

89

(f) Or-Opt2 of two consecutive
stations 1 and 3

0
1

2

3

4

5

6

7

89

(g) Reinsertion of station 9 be-
fore station 7

Figure 4: Example regarding the application of neighborhood structures

• Double-Bridge — P (3): Introduced by Martin et al. [25] for the TSP, this perturbation

consists of a permutation of two subsequences. As a result, four arcs are removed and

four new ones are added so as to generate a new sequence.

12



• Suppression — P (4): A suppression move (see Section 3.4) is applied at random, but

in this case the resulting modified sequence is allowed to be infeasible.

Figure 5 shows an example of perturbations applied over a (supposedly) local optimal

solution (Figure 5a). Figure 5b shows the AddBuffer perturbation, when an additional visit

to station 7 is performed expecting it to act as a buffer. In Figure 5c, the perturbation

AddStations is applied by adding two random visits: one to station 8 and another one to

station 6. In Figure 5d, a Double-Bridge move is applied by interchanging subsequence

6, 4, 1 with subsequence 7, 9.

0
1

2

3

4

5

6

7

89

(a) Solution before perturba-
tion

0
1

2

3

4

5

6

7

89

(b) AddBuffer

0
1

2

3

4

5

6

7

89

(c) AddStations

0
1

2

3

4

5

6

7

89

(d) Double-Bridge

Figure 5: Example regarding the application of perturbation mechanisms

4. Computational experiments

The ILSSBRP algorithm was coded in C++ (g++ 4.6.4) and the computational tests were

carried on an Intel R©CoreTM i7-3770 with 3.40 GHz and 16 GB of RAM running Ubuntu

14.04. Only a a single thread was used during the experiments.

13



4.1. Instances

The benchmark instances used to test the proposed algorithm are those suggested by

Hernández-Pérez and Salazar-González [20], which were originally created for the one-

commodity pickup and delivery traveling salesman problem. The benchmark contains in-

stances ranging from 20 to 500 customers (stations), and vehicle capacities ranging from 10

to 1000. For each pair of problem size and vehicle capacity, there are 10 instances named

from A to J and, for each vertex i, there is a demand di ∈ [−10, 10]. Chemla et al. [6] and

Erdoğan et al. [14] only reported results for a subset of instances of the referred benchmark.

Therefore, in order to compare our results with theirs, we tested ILSSBRP for all instances

considered in at least one of the two works (see Section 4.4). Furthermore, to compute the

initial and final targets as well as the load capacity for each station, the same procedures

adopted by such authors were employed: for each vertex i, pi = α× 10, p′i = α× (10 + di),

qi = α×20, where α is an input parameter, and experiments were conducted with α = 1 and

α = 3. In order to properly compare our results with those in Chemla et al. [6] and Erdoğan

et al. [14], we adopted their same convention of rounding down the values of the cost matrix

to the nearest integer (floor), although we noticed that this can cause slight violations of

the triangle inequality. As a consequence of such violations, some stations might be visited

an additional time with no pickup nor delivery services being performed, serving only as a

shortcut to arrive to another station.

4.2. Impact of the perturbation mechanisms

In this section we are interested in evaluating the impact of the perturbation mechanisms

described in Section 3.5, that is, AddBuffer (P (1)), AddStations (P (2)), Double-Bridge (P (3)),

and Suppression (P (4)). In view of this, we selected a subset of 30 challenging instances for

performing the experiments. These instances were chosen according to the largest gap

values between the upper bounds obtained by our method on preliminary experiments and

the lower bounds reported in Erdoğan et al. [14]. We ran ILSSBRP 10 times for each of

the 30 instances considering all possible combinations of perturbations. For this testing we

arbitrarily adopted IR = 10 and IILS = n.

Table 1 shows the impact of each combination over the average gaps (computed as

(UB − LB)/LB, where UB is the solution found by ILSSBRP and LB is the lower bound

computed by Erdoğan et al. [14]) and CPU times required by ILSSBRP to run to completion.

From the results presented in such table, we were capable of deriving the Pareto efficient

frontier from each combination that is not dominated by any other in neither solution quality

nor computational time, as shown in Figure 6. We can see that the combination P (2) +

14



P (3) + P (4) belongs to the frontier and has a good compromise between solution quality and

CPU time. Therefore, we herein decided to adopt this configuration for the perturbation

mechanisms.

Table 1: Impact of different combinations of the perturbation mechanisms

Perturbations Avg. Time
used gap (%) (s)

P (1) 2.43 244.40
P (2) 1.08 773.49
P (3) 1.04 498.24
P (4) 1.56 249.88

P (1) + P (2) 1.27 506.45
P (1) + P (2) + P (3) 1.05 514.41

P (1) + P (2) + P (3) + P (4) 1.11 431.43
P (1) + P (2) + P (4) 1.25 417.30

P (1) + P (3) 1.21 371.44
P (1) + P (3) + P (4) 1.30 331.70

P (1) + P (4) 1.78 248.69
P (2) + P (3) 0.91 630.29

P (2) + P (3) + P (4) 0.99 505.70
P (2) + P (4) 1.08 503.75
P (3) + P (4) 1.29 341.32

300

400

500

600

700

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

A
ve

ra
ge

 ti
m

e 
(s

)

Average gap (%)

P(2)+P(3)

P(2)+P(3)+P(4)

P(3)

P (1)+P(2)+P(3)+P(4)

P(1)+P(3)
P(3)+P(4)

P(1)+P(3)+P(4)

P(4) P(1)+P(4)
P(1)

P(2)

P(1)+P(2)

P(1)+P(2)+P(3)

P(2)+P(4)

P(1)+P(2)+P(4)

Pareto frontier
non dominated

dominated

Figure 6: Pareto efficient frontier

15



4.3. Parameter tuning

The main ILSSBRP parameters to be calibrated are the number of restarts (IR) and the

maximum number of consecutive ILS iterations without improvement over the current local

optimal solution (IILS). Here we set IR = 10, as in Silva et al. [39], where the authors

put forward a multi-start ILS that was capable of obtaining state-of-the-art results for the

split-delivery VRP.

In previous works, such as those mentioned in Section 1, the value of IILS was tuned

based on the instance size. In VRPs (e.g., [30, 39, 40], and [44]), this parameter is usually

set as a function of the number of customers and vehicles. In TSPs (e.g., [38], and [41]),

IILS was set only as a function of the number of customers (or jobs). We decided to use the

same rationale as in Silva et al. [38], by setting IILS = max{Imin, β × n}, where Imin and

β are input parameters. For the latter we set β = 4, as in Subramanian et al. [42]. Note

that Imin is more important for small size instances and its role is to prevent low values for

IILS, which in this case may lead to an insufficient number of ILS iterations required for

obtaining high quality solutions. We then tested several values for Imin, more specifically,

100, 120, 140, 160, and 180. For each of them, we ran ILSSBRP 10 times for all instances

containing 20 and 30 stations. The average results obtained suggest that Imin = 160 seems

to provide a good compromise between solution quality and CPU time, since the algorithm

managed to find almost all best known solutions in a relatively short amount of time when

using this value. Therefore, we set IILS = max{160, 4× n}.

4.4. Comparison with the literature

ILSSBRP was executed 10 times for each instance with a time limit of 1 hour. The upper

bounds (best heuristic solution values) found by our algorithm are compared with those

determined by two versions of the tabu search heuristic of Chemla et al. [6]. The first one

(TS1) starts from an initial solution generated by a greedy procedure, while the second

version (TS2) receives the solution produced by their branch-and-cut algorithm (over a

relaxation of the problem) as initial solution. Detailed results of TS1 and TS2 are available at

http://cermics.enpc.fr/~meuniefr/SVOCPDP.html. We use the same notation adopted

in [6], and hence we call UB1 the best solution value found by TS1 and UB2 the best solution

value found considering both TS1 and TS2. A comparison is also performed with the lower

and upper bounds obtained by the exact Branch-and-cut algorithm of Erdoğan et al. [14].

Regarding the benchmark instances, Chemla et al. [6] considered n ∈ {20, 40, 60, 100} and

Q ∈ {10, 30, 45, 1000}, whereas Erdoğan et al. [14] considered n ∈ {20, 30, 40, 50, 60} and

Q ∈ {10, 15, 20, 25, 30, 35, 40, 45, 1000}.

16

http://cermics.enpc.fr/~meuniefr/SVOCPDP.html


Chemla et al. [6] ran their experiments on an AMD Athlon 5600+ 2.8 GHz with 16 GB

of RAM, while Erdoğan et al. [14] performed their testing on an Intel i7 3.60 GHz and 8

GB of RAM. On the one hand, because the hardware performance of the first appears to

be quite inferior to the second, as well as to our intel i7 3.40 GHz, we decided to estimate

an approximation factor based on the single thread rating values reported in https://

www.cpubenchmark.net/compare.php?cmp[]=86&cmp[]=896, so as to better compare the

runtime performance of the methods. According to the referred website, the AMD Athlon

5600+ 2.8 GHz is roughly 2.43 times slower than our processor. We thus report the original

CPU time values of Chemla et al. [6] divided by a factor of 2.43. On the other hand, since

the machine used in [14] is rather equivalent to ours, perhaps even slightly faster, we decided

to consider the original runtime values reported by the authors.

4.4.1. Results for instances with up to 60 stations

The aggregate average results for instances containing 20, 30, 40, 50, and 60 stations

are reported in Tables 2 and 3, where Instance group denotes the set of 10 instances of a

particular group (for example, group n20q10 contains 10 instances with n = 20 and Q = 10);

UB1 Gap (%), UB2 Gap (%), and Gap (%) correspond to the gap between UB1, UB2,

and the upper bound found by Erdoğan et al. [14], respectively, and the lower bound reported

in [14]; Time (s), UB1 Time (s), and UB2 Time (s) indicate, respectively, the CPU

time in seconds spent by Erdoğan et al. [14], TS1, and TS2, where the last two are scaled

to our processor as mentioned above; Avg. Gap (%) and Best Gap (%) are the gaps

of the average solution and the best solution, respectively, found by ILSSBRP over the 10

runs with respect to the lower bounds in [14]; Avg. Time (s) is the average CPU time in

seconds spent by ILSSBRP to completion over the 10 runs; Avg. TTUB2 (s) denotes the

average time over the 10 runs to find or improve the best heuristic solution found in Chemla

et al. [6] (UB2); and Avg. NV is the average number of visits of the final solutions found

by ILSSBRP. Detailed results are available at http://arxiv.org/pdf/1605.00702v2.pdf,

including the best solution found when considering all experiments.

From Table 2, it can be observed that the quality of the solutions found by ILSSBRP, as

well as those obtained by the algorithm of Erdoğan et al. [14], are visibly superior than the

ones determined by the tabu searches of Chemla et al. [6], especially TS1. Such superiority

becomes even more prominent for α = 3, as presented in Table 3. Also, the average CPU

times spent by ILSSBRP to find or improve the best solutions reported by Chemla et al. [6]

(UB2) are rather small in most cases, sometimes only a matter of relatively few seconds,

except for the instance group n40q10 when α = 3, where the proposed algorithm required

17

https://www.cpubenchmark.net/compare.php?cmp[]=86&cmp[]=896
https://www.cpubenchmark.net/compare.php?cmp[]=86&cmp[]=896
http://arxiv.org/pdf/1605.00702v2.pdf


Table 2: Aggregate average results per instance group for n ∈ {20, 30, 40, 50, 60} and α = 1

Erdoǧan Chemla
et al. 2015 et al. 2013b

ILSSBRP

Instance UB1 UB1 UB2 UB2 Avg. Best Avg. Avg.
group

Gap Time
Gap Time Gap Time Gap Gap Time TTUB2

Avg.
(%) (s)

(%) (s) (%) (s) (%) (%) (s) (s)
NV

n20q10 0.00 0.35 2.57 2.75 0.00 3.53 0.06 0.00 5.84 0.38 20.10
n20q15 0.00 0.30 - - - - 0.00 0.00 2.13 - 19.19
n20q20 0.00 0.13 - - - - 0.00 0.00 0.94 - 18.65
n20q25 0.00 0.15 - - - - 0.00 0.00 0.63 - 18.62
n20q30 0.00 1.96 2.47 2.22 0.39 2.38 0.00 0.00 0.62 0.01 18.66
n20q35 0.00 1.12 - - - - 0.00 0.00 0.46 - 18.70
n20q40 0.00 1.22 - - - - 0.00 0.00 0.46 - 18.65
n20q45 0.00 1.13 1.52 2.71 0.01 2.83 0.00 0.00 0.45 0.01 18.62
n20q1000 0.00 0.83 2.43 2.92 0.00 3.04 0.00 0.00 0.45 0.01 18.62

Avg. 0.00 0.80 2.25 2.65 0.10 2.95 0.01 0.00 1.33 0.10 18.87
n30q10 0.00 6.22 - - - - 0.02 0.00 28.08 - 30.14
n30q15 0.00 3.87 - - - - 0.12 0.00 10.29 - 28.49
n30q20 0.00 163.59 - - - - 0.02 0.02 5.06 - 27.84
n30q25 0.00 5.61 - - - - 0.00 0.00 2.36 - 27.53
n30q30 0.00 82.20 - - - - 0.00 0.00 1.85 - 27.53
n30q35 0.00 293.27 - - - - 0.02 0.00 1.89 - 27.70
n30q40 0.00 584.62 - - - - 0.00 0.00 1.61 - 27.62
n30q45 0.00 221.69 - - - - 0.01 0.00 1.47 - 27.62
n30q1000 0.00 190.20 - - - - 0.00 0.00 1.42 - 27.64

Avg. 0.00 172.36 - - - - 0.02 0.00 6.00 - 28.01
n40q10 0.00 124.80 3.56 151.92 0.09 1752.75 0.09 0.04 56.89 14.02 39.76
n40q15 0.00 25.55 - - - - 0.01 0.00 21.78 - 37.53
n40q20 0.00 14.72 - - - - 0.01 0.00 9.33 - 37.01
n40q25 0.03 723.88 - - - - 0.04 0.03 5.79 - 36.83
n40q30 0.00 36.56 4.05 92.72 0.00 93.87 0.00 0.00 4.43 0.06 36.79
n40q35 0.00 38.66 - - - - 0.00 0.00 3.36 - 36.77
n40q40 0.00 70.65 - - - - 0.00 0.00 3.13 - 36.79
n40q45 0.00 74.28 4.69 93.63 0.61 94.82 0.00 0.00 2.99 0.04 36.83
n40q1000 0.00 70.17 5.07 112.48 0.77 114.54 0.00 0.00 2.95 0.03 36.82

Avg. 0.00 131.03 4.34 112.69 0.37 514.00 0.02 0.01 12.29 3.54 37.24
n50q10 0.79 1198.48 - - - - 0.30 0.23 210.98 - 49.64
n50q15 0.43 1970.12 - - - - 0.29 0.23 75.07 - 46.71
n50q20 0.00 295.45 - - - - 0.05 0.00 35.85 - 46.11
n50q25 0.00 272.82 - - - - 0.00 0.00 25.52 - 45.71
n50q30 0.00 177.40 - - - - 0.00 0.00 13.18 - 45.47
n50q35 0.24 1461.09 - - - - 0.16 0.16 10.61 - 45.63
n50q40 0.01 1408.94 - - - - 0.01 0.01 8.83 - 45.48
n50q45 0.00 1221.33 - - - - 0.00 0.00 8.35 - 45.41
n50q1000 0.11 1909.76 - - - - 0.09 0.09 6.70 - 45.44

Avg. 0.18 1101.71 - - - - 0.10 0.08 43.90 - 46.18
n60q10 1.24 3924.62 13.62 412.18 2.57 4533.96 0.67 0.57 419.95 35.15 60.21
n60q15 0.51 1957.50 - - - - 0.30 0.27 140.29 - 56.48
n60q20 0.00 1285.03 - - - - 0.00 0.00 72.99 - 55.65
n60q25 0.07 943.42 - - - - 0.07 0.07 44.32 - 55.13
n60q30 0.13 1252.65 7.17 416.50 0.57 911.58 0.08 0.07 29.63 2.46 55.22
n60q35 0.13 1096.98 - - - - 0.06 0.05 22.52 - 55.01
n60q40 0.22 2607.91 - - - - 0.19 0.19 21.10 - 55.33
n60q45 0.15 2795.20 7.11 410.29 1.78 427.01 0.16 0.15 19.85 0.43 55.42
n60q1000 0.18 2816.42 7.14 413.87 1.76 515.42 0.18 0.18 16.28 0.49 55.31

Avg. 0.29 2075.52 8.76 413.21 1.67 1596.99 0.19 0.17 87.44 9.63 55.97

18



more CPU time.

In addition, assuming the same values for the demands, the smaller the vehicle capacity,

the larger the relative number of visits. This increases the size of the tour, thus affecting

the number of operations performed during the local search, and possibly the number of

ILS iterations, as more moves are required to be evaluated.

Figures 7 and 8 show how the average gaps and CPU times of each method vary according

to the value of Q. We omit the results of TS1 because the associated gaps are quite inferior

when compared to those obtained by the other algorithms. While the average gaps of

ILSSBRP tend to be larger for very small values of Q, the average CPU time decreases as

the value of Q increases, both for α = 1 and α = 3. A similar behavior regarding the CPU

time performance can be observed for the heuristic of Chemla et al. [6], as opposed to the

algorithm of Erdoğan et al. [14], which does not seem to have a consistent pattern when

considering this aspect.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

10 15 20 25 30 35 40 45 1000

Av
er

ag
e 

ga
p 

(%
)

Q

Erdogan et al.
Chemla et al. (UB2)

ILSSBRP

(a) Average gap (%)

 0

 500

 1000

 1500

 2000

10 15 20 25 30 35 40 45 1000

Av
er

ag
e 

C
PU

 ti
m

e 
(s

)

Q

Erdogan et al.
Chemla et al. (UB2)

ILSSBRP

(b) Average CPU time (s)

Figure 7: Average gap (%) and average CPU time (s) per Q and α = 1

 0

 0.5

 1

 1.5

 2

10 15 20 25 30 35 40 45 1000

Av
er

ag
e 

ga
p 

(%
)

Q

Erdogan et al.
Chemla et al. (UB2)

ILSSBRP

(a) Average gap (%)

 0

 500

 1000

 1500

 2000

 2500

10 15 20 25 30 35 40 45 1000

Av
er

ag
e 

C
PU

 ti
m

e 
(s

)

Q

Erdogan et al.
Chemla et al. (UB2)

ILSSBRP

(b) Average CPU time (s)

Figure 8: Average gap (%) and average CPU time (s) per Q and α = 3

Figures 9 and 10 illustrate the behavior of the average gaps and CPU times of the

19



Table 3: Aggregate average results per instance group for n ∈ {20, 30, 40, 50, 60} and α = 3

Erdoǧan Chemla
et al. 2015 et al. 2013b

ILSSBRP

Instance UB1 UB1 UB2 UB2 Avg. Best Avg. Avg.
group

Gap Time
Gap Time Gap Time Gap Gap Time TTUB2

Avg.
(%) (s)

(%) (s) (%) (s) (%) (%) (s) (s)
NV

n20q10 0.00 0.48 0.73 40.71 0.00 51.72 0.02 0.00 219.94 18.77 39.38
n20q15 0.00 0.32 - - - - 0.01 0.00 46.86 - 29.27
n20q20 0.00 0.37 - - - - 0.01 0.00 32.96 - 27.16
n20q25 0.00 0.39 - - - - 0.00 0.00 12.10 - 22.29
n20q30 0.00 0.35 3.93 3.29 0.00 4.44 0.07 0.00 5.69 0.28 20.03
n20q35 0.00 0.33 - - - - 0.16 0.05 4.46 - 19.71
n20q40 0.00 0.28 - - - - 0.00 0.00 2.72 - 19.34
n20q45 0.00 0.31 3.39 2.67 0.00 3.62 0.00 0.00 2.12 0.05 19.17
n20q1000 0.00 0.93 3.47 2.63 0.00 2.63 0.00 0.00 0.45 0.01 18.60

Avg. 0.00 0.42 2.88 12.33 0.00 15.60 0.03 0.01 36.37 4.78 23.88
n30q10 0.00 153.85 - - - - 0.04 0.00 1115.36 - 57.39
n30q15 0.00 65.36 - - - - 0.03 0.00 206.32 - 42.47
n30q20 0.00 8.16 - - - - 0.03 0.00 133.46 - 39.38
n30q25 0.00 10.27 - - - - 0.10 0.03 65.47 - 33.97
n30q30 0.00 9.91 - - - - 0.02 0.00 28.78 - 30.12
n30q35 0.00 9.37 - - - - 0.22 0.00 24.29 - 29.83
n30q40 0.00 5.92 - - - - 0.08 0.05 11.85 - 28.32
n30q45 0.00 2.96 - - - - 0.14 0.00 9.96 - 28.49
n30q1000 0.00 221.30 - - - - 0.02 0.00 1.39 - 27.59

Avg. 0.00 54.12 - - - - 0.08 0.01 177.43 - 35.28
n40q10 0.00 235.42 4.76 408.07 0.39 3983.91 0.07 0.00 2619.68 457.03 73.67
n40q15 0.00 28.83 - - - - 0.05 0.01 390.64 - 53.45
n40q20 0.00 62.22 - - - - 0.01 0.00 331.38 - 50.29
n40q25 0.00 177.39 - - - - 0.06 0.01 136.27 - 43.57
n40q30 0.00 108.31 4.64 101.43 0.00 1524.21 0.10 0.04 57.86 19.28 39.63
n40q35 0.00 304.70 - - - - 0.13 0.03 55.48 - 39.35
n40q40 0.00 21.68 - - - - 0.01 0.00 34.54 - 38.30
n40q45 0.00 25.74 5.14 113.43 0.00 219.71 0.01 0.00 21.41 3.29 37.49
n40q1000 0.00 80.91 4.58 91.08 0.30 95.60 0.00 0.00 2.97 0.03 36.81

Avg. 0.00 116.13 4.78 178.50 0.17 1455.86 0.05 0.01 405.58 119.91 45.84
n50q10 0.99 2693.41 - - - - 0.33 0.19 3579.49 - 95.30
n50q15 0.00 1702.17 - - - - 0.06 0.03 1503.56 - 69.44
n50q20 0.89 3085.39 - - - - 0.53 0.42 1374.12 - 64.04
n50q25 0.59 2024.55 - - - - 0.34 0.24 544.63 - 54.96
n50q30 0.46 1345.21 - - - - 0.38 0.29 215.59 - 49.75
n50q35 1.27 4212.45 - - - - 0.79 0.59 201.46 - 49.60
n50q40 0.45 3545.41 - - - - 0.45 0.39 143.50 - 48.49
n50q45 0.23 2057.76 - - - - 0.23 0.18 74.94 - 46.75
n50q1000 0.10 1938.98 - - - - 0.09 0.09 6.66 - 45.41

Avg. 0.55 2511.70 - - - - 0.36 0.27 849.33 - 58.19
n60q10 2.83 3718.02 46.25 401.91 5.97 4524.10 0.63 0.30 3602.77 39.70 115.50
n60q15 2.73 2932.58 - - - - 0.41 0.36 2613.02 - 85.09
n60q20 0.39 3772.60 - - - - 0.26 0.19 2619.83 - 78.76
n60q25 2.63 3636.12 - - - - 0.59 0.46 1153.57 - 67.26
n60q30 2.88 4702.35 13.48 412.35 5.06 4533.51 0.74 0.57 430.87 5.75 60.34
n60q35 2.42 4795.69 - - - - 0.87 0.66 418.48 - 60.05
n60q40 0.46 3829.99 - - - - 0.37 0.31 244.74 - 57.60
n60q45 0.26 2223.52 15.14 413.41 2.04 3840.61 0.26 0.23 136.54 7.77 56.44
n60q1000 0.18 2940.39 7.47 414.81 1.94 483.46 0.18 0.17 15.97 0.11 55.26

Avg. 1.64 3616.81 20.59 410.62 3.75 3345.42 0.48 0.36 1248.42 13.33 70.70

20



algorithms as the number of stations increases. Overall, the quality of the solutions found

by ILSSBRP and by the algorithm of Erdoğan et al. [14] are equivalent except for n = 60 and

α = 3, where the former clearly outperforms the latter. Moreover, there is a considerable

increase on the CPU time for both methods from the literature for n > 40, in contrast

to ILSSBRP, whose increase appears to be more moderate. However, this was somewhat

expected since the CPU effort of the algorithms of Erdoğan et al. [14] and of Chemla et al.

[6] tend to increase exponentially with increasing values of n.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

20 30 40 50 60

Av
er

ag
e 

ga
p 

(%
)

n

Erdogan et al.
Chemla et al. (UB2)

ILSSBRP

(a) Average gap (%)

 0

 500

 1000

 1500

 2000

20 30 40 50 60

Av
er

ag
e 

C
PU

 ti
m

e 
(s

)

n

Erdogan et al.
Chemla et al. (UB2)

ILSSBRP

(b) Average CPU time (s)

Figure 9: Average gap (%) and average CPU time (s) per n and α = 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

20 30 40 50 60

Av
er

ag
e 

ga
p 

(%
)

n

Erdogan et al.
Chemla et al. (UB2)

ILSSBRP

(a) Average gap (%)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

20 30 40 50 60

Av
er

ag
e 

C
PU

 ti
m

e 
(s

)

n

Erdogan et al.
Chemla et al. (UB2)

ILSSBRP

(b) Average CPU time (s)

Figure 10: Average gap (%) and average CPU time (s) per n and α = 3

Finally, Table 4 shows a summary of the best solutions found by the proposed algorithm,

where #Opt denotes the number of optimal solutions, #Impr. corresponds to the number

of improved solutions, #Equal indicates the number of equal solutions, and #Worse is

the number of worse solutions. The results of Chemla et al. [6] were not included in these

tables because they are dominated by those obtained by our heuristic for all instances. For

α = 1, ILSSBRP found 419 of the 424 known optimal solutions and improved the result of 17

21



of the 26 instances that remain open. As for α = 3, ILSSBRP achieved 377 out of 399 proven

optimal solutions and improved the best known solution of 44 out of 51 open instances.

Table 4: Summary of the performance of the best solutions aggregated by n

Erdoǧan
et al. 2015

ILSSBRP

n
#Opt #Opt #Impr. #Equal #Worse

α = 1

20 90 90 0 90 0
30 90 89 0 89 1
40 89 87 0 88 2
50 83 83 5 85 0
60 72 70 12 76 2

Total 424 419 17 428 5

α = 3

20 90 89 0 89 1
30 90 87 0 87 3
40 90 83 0 83 7
50 69 63 17 67 6
60 60 55 27 58 5

Total 399 377 44 384 22

4.4.2. Results for instances with 100 stations

Tables 5 and 6 illustrate the detailed results found by our algorithm and the tabu searches

of Chemla et al. [6] for every instance containing 100 stations. In this case, the gaps are

computed with respect to the lower bound reported in [6]. The results obtained show that

ILSSBRP clearly outperforms the methods from the literature, both in terms of solution

quality and CPU time. In general, the proposed heuristic was capable of significantly

improving the best known solution of all instances.

In addition, when considering α = 1, ILSSBRP required, on average, at most 8 seconds to

find or improve the best results of Chemla et al. [6]. In some cases, such as those involving

Q ≥ 30, our algorithm spent, on average, only a fraction of a second to achieve a superior

solution than the best one from the literature. For α = 3, more time was required, on

average, to accomplish the same purpose, but mostly for Q = 10.

4.5. Impact of not using stations as buffers

In this section we evaluate the impact on the solution quality of forbidding the use of

temporary operations, i.e., forbidding stations to serve as buffers along the route. Figures

11a–11e show the average gaps between the values of best solutions found by ILSSBRP on

the new problem variant and on the original one. For brevity, we have only considered the

instances with α = 1. As somewhat expected, we can observe that the fact of not allowing

22



Table 5: Detailed results for n = 100 and α = 1

Chemla

et al. 2013b
ILSSBRP

Instance UB1 UB1 UB2 UB2 Avg. Best Avg. Avg.

UB1 Gap Time UB2 Gap Time
Avg.

Gap
Best

Gap Time TTUB2
Avg.

(%) (s) (%) (s)
Sol.

(%)
Sol.

(%) (s) (s)
NV

n100q10A 14921 45.58 681.15 13273 29.50 4805.44 11283.20 10.09 11258 9.84 3558.39 3.23 97.30

n100q10B 17658 59.29 470.81 14981 35.14 4588.93 12669.20 14.29 12609 13.75 3600.31 5.28 102.20

n100q10C 17138 44.75 617.06 15636 32.07 4758.60 13251.00 11.92 13224 11.69 3600.47 4.72 100.70

n100q10D 19278 57.05 489.29 16586 35.12 4620.98 13832.80 12.69 13783 12.29 3600.54 3.23 98.40

n100q10E 16867 69.73 368.51 12513 25.91 4485.81 10974.90 10.44 10954 10.23 3385.98 6.10 105.70

n100q10F 14759 46.88 486.42 12621 25.60 4603.72 11226.20 11.72 11191 11.37 3600.31 5.26 101.30

n100q10G 16772 63.48 380.01 13820 34.71 4498.96 11186.60 9.04 11160 8.78 3347.66 2.40 100.10

n100q10H 15941 45.21 393.16 14863 35.39 4511.70 12339.70 12.41 12308 12.12 3600.40 4.02 106.70

n100q10I 17799 50.46 485.19 16602 40.34 4603.72 13540.70 14.46 13469 13.86 3600.81 4.15 104.60

n100q10J 20044 75.98 459.71 14988 31.59 4578.66 12491.30 9.67 12462 9.41 3600.54 3.72 96.90

Avg. - 55.84 483.13 - 32.54 4605.65 - 11.67 - 11.33 3549.54 4.21 101.39

n100q30A 12175 62.41 518.46 8033 7.16 4634.94 7820.00 4.31 7820 4.31 225.57 1.47 91.00

n100q30B 11066 48.70 537.77 10223 37.37 4657.54 8094.50 8.77 8094 8.76 570.56 0.26 93.50

n100q30C 12106 50.14 430.96 9149 13.47 4549.08 8505.70 5.49 8503 5.46 480.66 0.70 91.80

n100q30D 11317 45.52 589.95 9690 24.60 4706.43 8339.90 7.24 8336 7.19 602.54 0.52 91.10

n100q30E 10446 35.42 451.91 8479 9.92 4569.21 7992.90 3.62 7986 3.53 403.74 1.03 95.90

n100q30F 11960 61.14 373.85 8281 11.57 4497.73 8028.60 8.17 8020 8.05 316.18 1.24 93.40

n100q30G 11290 46.31 490.94 8872 14.97 4609.88 8075.00 4.64 8075 4.64 246.69 0.24 90.00

n100q30H 11144 42.19 387.82 8944 14.12 4503.89 8257.00 5.35 8257 5.35 630.06 0.52 97.00

n100q30I 12112 45.32 450.68 9189 10.25 4568.80 8674.60 4.08 8652 3.81 547.99 1.61 96.50

n100q30J 10636 44.70 560.37 9014 22.63 4678.90 7923.00 7.79 7923 7.79 475.18 0.36 90.40

Avg. - 48.19 479.27 - 16.61 4597.64 - 5.95 - 5.89 449.92 0.80 93.06

n100q45A 8494 18.12 757.56 8103 12.69 4876.10 7632.00 6.14 7632 6.14 179.88 0.12 91.00

n100q45B 8838 27.33 391.93 8020 15.54 4508.82 7660.00 10.36 7660 10.36 260.68 0.36 92.50

n100q45C 10056 30.21 435.07 8270 7.09 4551.96 7993.00 3.50 7993 3.50 189.28 0.97 90.40

n100q45D 9442 27.15 614.19 8535 14.94 4729.85 7914.70 6.58 7900 6.38 318.62 0.27 88.20

n100q45E 10258 39.47 613.77 7864 6.92 4729.85 7835.00 6.53 7835 6.53 171.33 7.82 94.10

n100q45F 10348 37.36 485.60 7817 3.76 4602.90 7731.00 2.62 7731 2.62 175.23 1.07 93.30

n100q45G 9856 31.59 668.00 8286 10.63 4791.88 7864.00 4.99 7864 4.99 139.25 0.10 90.00

n100q45H 9506 25.94 481.49 7796 3.28 4597.56 7740.00 2.54 7740 2.54 266.65 5.06 94.00

n100q45I 10334 32.23 426.85 8667 10.90 4543.33 8042.20 2.90 8037 2.84 288.97 0.21 96.10

n100q45J 9021 27.53 536.95 7860 11.12 4656.31 7588.50 7.28 7566 6.96 260.60 0.41 89.70

Avg. - 29.69 541.14 - 9.69 4658.86 - 5.34 - 5.29 225.05 1.64 91.93

n100q1000A 8447 18.81 682.38 8199 15.32 4803.38 7453.00 4.83 7453 4.83 132.76 0.10 92.00

n100q1000B 8669 22.76 543.52 8183 15.88 4664.11 7491.00 6.08 7491 6.08 172.13 0.09 93.30

n100q1000C 8692 15.81 647.05 8673 15.56 4766.82 7898.50 5.24 7895 5.19 118.31 0.09 90.10

n100q1000D 10116 41.08 489.71 8363 16.63 4605.78 7572.80 5.61 7565 5.50 163.68 0.11 88.80

n100q1000E 8922 17.62 355.78 8071 6.40 4472.26 7771.00 2.44 7771 2.44 125.79 0.09 94.30

n100q1000F 10348 42.47 483.54 8053 10.87 4602.49 7648.00 5.30 7648 5.30 129.92 0.17 93.10

n100q1000G 10954 45.12 432.19 8516 12.82 4549.49 7817.50 3.57 7813 3.51 96.81 0.06 90.10

n100q1000H 9275 22.86 397.68 7786 3.14 3374.94 7593.00 0.58 7593 0.58 185.62 0.36 94.00

n100q1000I 10145 31.58 399.32 8461 9.74 4517.45 7975.00 3.44 7975 3.44 118.25 0.13 96.00

n100q1000J 9178 30.27 446.57 8655 22.84 4565.93 7315.00 3.82 7315 3.82 117.66 0.06 89.40

Avg. - 28.84 487.77 - 12.92 4492.27 - 4.09 - 4.07 136.09 0.13 92.11

temporary operations leads to worse solutions, with average gaps ranging from 0.38% for

n = 30 and Q = 15 to 3.87% for n = 60 and Q = 10.

23



Table 6: Detailed results for n = 100 and α = 3

Chemla

et al. 2013b
ILSSBRP

Instance UB1 UB1 UB2 UB2 Avg. Best Avg. Avg.

UB1 Gap Time UB2 Gap Time
Avg.

Gap
Best

Gap Time TTUB2
Avg.

(%) (s) (%) (s)
Sol.

(%)
Sol.

(%) (s) (s)
NV

n100q10A 36057 60.84 5133.28 28277 26.14 9301.11 24121.60 7.60 24014 7.12 3610.42 22.11 97.30

n100q10B 47107 71.99 7200.56 35199 28.51 11434.53 29709.60 8.47 29438 7.48 3631.88 49.10 102.20

n100q10C 50606 72.67 486.01 35779 22.08 4682.60 31802.50 8.51 31540 7.62 3623.25 67.37 100.70

n100q10D 47489 51.18 7768.73 37972 20.88 12010.51 33846.70 7.75 33654 7.14 3641.22 92.56 98.40

n100q10E 41002 75.89 776.05 30222 29.65 4938.55 25092.60 7.64 24917 6.89 3613.53 23.73 105.70

n100q10F 43544 86.70 459.30 28488 22.14 4660.42 25307.10 8.51 25176 7.94 3619.96 50.33 101.30

n100q10G 38539 69.26 454.37 28822 26.58 4629.19 24877.20 9.26 24642 8.23 3616.24 34.89 100.10

n100q10H 44411 67.69 587.89 33853 27.83 4816.94 29039.70 9.65 28794 8.72 3615.54 63.92 106.70

n100q10I 48727 65.76 5187.92 37199 26.54 9423.95 32380.00 10.15 32023 8.94 3643.19 62.52 104.60

n100q10J 45590 66.76 355.78 34086 24.68 4543.33 29373.50 7.44 29147 6.61 3630.50 71.32 96.90

Avg. - 68.87 2840.99 - 25.50 7044.11 - 8.50 - 7.67 3624.57 53.79 101.39

n100q30A 16110 55.73 441.64 13366 29.20 4560.58 11278.00 9.02 11258 8.83 3550.25 2.40 91.00

n100q30B 18739 68.61 346.74 15537 39.80 4464.04 12650.70 13.83 12605 13.41 3600.72 4.28 93.50

n100q30C 18871 61.46 437.53 16116 37.89 4577.84 13231.50 13.21 13224 13.14 3600.42 3.55 91.80

n100q30D 18262 49.67 722.23 16419 34.56 4865.01 13786.00 12.98 13783 12.96 3600.72 3.61 91.10

n100q30E 16867 69.83 368.10 13118 32.08 4486.23 10984.10 10.59 10954 10.29 3194.65 3.51 95.90

n100q30F 14838 46.49 453.55 13674 35.00 4569.62 11245.80 11.02 11191 10.48 3600.31 2.21 93.40

n100q30G 16772 69.37 381.66 13262 33.92 4505.12 11183.30 12.93 11160 12.70 3404.20 3.92 90.00

n100q30H 15609 40.53 543.52 14495 30.50 4660.00 12332.80 11.03 12296 10.70 3600.52 4.03 97.00

n100q30I 19159 57.85 266.63 16620 36.93 4410.22 13519.20 11.38 13469 10.97 3600.51 3.48 96.50

n100q30J 20044 78.22 459.71 15423 37.13 4578.66 12513.00 11.26 12462 10.81 3600.43 3.17 90.40

Avg. - 59.78 442.13 - 34.70 4567.73 - 11.73 - 11.43 3535.27 3.42 93.06

n100q45A 11372 36.43 717.71 10694 28.30 4833.78 9229.40 10.73 9192 10.28 1597.41 1.78 91.00

n100q45B 16114 74.68 409.59 14520 57.40 4526.08 10233.70 10.93 10209 10.67 2955.64 0.99 92.50

n100q45C 14817 50.09 516.00 13243 34.15 4633.30 10871.50 10.12 10815 9.55 3093.03 1.55 90.40

n100q45D 15845 62.58 424.79 15845 62.58 4540.87 11143.90 14.34 11103 13.92 3562.47 1.03 88.20

n100q45E 11628 32.52 602.68 11400 29.92 4718.34 9521.70 8.51 9498 8.24 1687.03 1.60 94.10

n100q45F 12821 50.90 446.16 12243 44.10 4742.17 9437.70 11.08 9398 10.62 1663.30 1.09 93.30

n100q45G 14829 71.60 436.30 10827 25.29 4553.60 9445.00 9.30 9445 9.30 1215.65 2.09 90.00

n100q45H 13072 42.35 652.80 12319 34.15 4768.87 10226.60 11.37 10206 11.14 2391.88 2.09 94.00

n100q45I 14366 46.89 387.00 14366 46.89 4503.07 10864.10 11.08 10841 10.85 3066.06 1.68 96.10

n100q45J 13989 53.75 494.64 11850 30.24 4611.12 10138.10 11.43 10131 11.35 2469.49 2.09 89.70

Avg. - 52.18 508.77 - 39.30 4643.12 - 10.89 - 10.59 2370.20 1.60 91.93

n100q1000A 9402 29.43 469.57 8017 10.36 4590.16 7457.20 2.66 7453 2.60 117.51 0.08 92.00

n100q1000B 8793 25.68 506.96 7595 8.55 4627.14 7491.00 7.07 7491 7.07 182.14 0.82 93.30

n100q1000C 9312 21.43 422.74 8554 11.55 4541.69 7904.30 3.08 7895 2.96 118.19 0.07 90.10

n100q1000D 9832 33.73 531.61 7595 3.31 4649.73 7574.00 3.02 7565 2.90 154.08 26.25 88.80

n100q1000E 8922 15.87 355.78 8071 4.82 707.85 7771.00 0.92 7771 0.92 119.50 0.30 94.30

n100q1000F 9371 28.57 721.41 8783 20.50 4838.30 7648.00 4.93 7648 4.93 124.09 0.06 93.10

n100q1000G 10954 46.16 431.78 8219 9.67 4549.08 7816.50 4.30 7813 4.25 103.84 0.18 90.10

n100q1000H 8829 20.19 549.28 8488 15.55 4666.17 7593.00 3.37 7593 3.37 174.74 0.08 94.00

n100q1000I 10664 40.10 306.07 8149 7.06 4421.73 7975.00 4.78 7975 4.78 124.87 0.38 96.00

n100q1000J 8311 20.04 534.49 7976 15.20 4650.56 7315.00 5.65 7315 5.65 111.68 0.12 89.40

Avg. - 28.12 482.97 - 10.66 4224.24 - 3.98 - 3.94 133.06 2.83 92.11

24



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

n20q10 n20q15 n20q20 n20q25 n20q30 n20q35 n20q40 n20q45 n20q1000

Av
er

ag
e 

ga
p 

(%
)

Q

(a) Average gaps for n = 20

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

n30q10 n30q15 n30q20 n30q25 n30q30 n30q35 n30q40 n30q45 n30q1000

Av
er

ag
e 

ga
p 

(%
)

Q

(b) Average gaps for n = 30

 0

 0.5

 1

 1.5

 2

 2.5

n40q10 n40q15 n40q20 n40q25 n40q30 n40q35 n40q40 n40q45 n40q1000

Av
er

ag
e 

ga
p 

(%
)

Q

(c) Average gaps for n = 40

 0

 0.5

 1

 1.5

 2

 2.5

 3

n50q10 n50q15 n50q20 n50q25 n50q30 n50q35 n50q40 n50q45 n50q1000

Av
er

ag
e 

ga
p 

(%
)

Q

(d) Average gaps for n = 50

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

n60q10 n60q15 n60q20 n60q25 n60q30 n60q35 n60q40 n60q45 n60q1000

Av
er

ag
e 

ga
p 

(%
)

Q

(e) Average gaps for n = 60

Figure 11: Average gaps between the original scenario and the one where temporary operations are forbid-
den, grouped by Q and α = 1

5. Concluding Remarks

In this work we proposed a hybrid ILS algorithm that was especially designed to solve

a challenging single-vehicle SBRP variant. Extensive computational experiments were con-

ducted on 980 instances from the literature ranging from 20 to 100 stations. The results

were compared with those reported in Chemla et al. [6] and Erdoğan et al. [14]. For the 900

instances containing up to 60 stations, the proposed heuristic, called ILSSBRP, was capable

of finding 796 out of 823 known optimal solutions (97%) and improving the result of 61

25



out of 77 open instances (79%). Our algorithm only failed to be at least equal to the best

known solution in 27 instances (3%). In addition, the average gap of the average solutions

found by ILSSBRP and the lower bound reported in [14], for each instance group, was always

smaller than 0.7%, thus ratifying the robustness of our heuristic. As for the 80 instances

involving 100 stations, ILSSBRP outperformed the best heuristics available for the problem

by considerably improving the best known solution for all instances.

Future work may include the development of an enhanced procedure to verify whether

or not the solution is feasible. Currently, this is the most time consuming part of the

algorithm, where we use a relatively costly max-flow based procedure [6] for performing this

task. Hence, any improvement on this procedure could possibly lead to an improvement on

the CPU time. One possible alternative is to devise cheaper heuristic procedures to identify

infeasible solutions so as to avoid unnecessary calls to the max-flow routine. Also, other

type of hybridizations could be experimented by combining, for example, efficient exact

algorithms with the heuristic suggested in this work. Finally, ILSSBRP could be extended to

tackle most realistic cases involving multiple vehicles and time constraints. We believe that

it would be also interesting to further investigate the impact of temporary pickups/drop-offs

of bikes, as these operations are quite disliked by the system operators.

Acknowledgments

This research was partially supported by the Conselho Nacional de Desenvolvimento

Cient́ıfico e Tecnológico (CNPq), grant 305223/2015-1, and by the Comissão de Aper-

feiçoamento de Pessoal de Nı́vel Superior (CAPES), grant PVE A007 2013.

26



[1] Alvarez-Valdes, R., Belenguer, J. M., Benavent, E., Bermúdez, J. D., Muñoz, F.,

Vercher, E., Verdejo, F., 2016. Optimizing the level of service quality of a bike-sharing

system. Omega 62, 163 – 175.

[2] Benchimol, M., Benchimol, P., Chappert, B., de la Taille, A., Laroche, F., Meunier, F.,

Robinet, L., 2011. Balancing the stations of a self service “bike hire” system. RAIRO

Operations Research 45 (1), 33–61.

[3] Blum, C., Roli, A., 2003. Metaheuristics in combinatorial optimization: Overview and

conceptual comparison. ACM Computing Systems 35, 268–308.

[4] Caggiani, L., Ottomanelli, M., 2013. A dynamic simulation based model for optimal

fleet repositioning in bike-sharing systems. Procedia-Social and Behavioral Sciences 87,

203–210.

[5] Chemla, D., Meunier, F., Pradeau, T., Wolfler Calvo, R., Yahiaoui, H., 2013. Self-

service bike sharing systems: simulation, repositioning, pricing, Working paper.

URL https://hal.archives-ouvertes.fr/hal-00824078

[6] Chemla, D., Meunier, F., Wolfer Calvo, R., 2013. Bike sharing systems: Solving the

static rebalancing problem. Discrete Optimization 10 (2), 120–146.

[7] Contardo, C., Morency, C., Rousseau, L.-M., 2012. Balancing a dynamic public bike-

sharing system. Tech. rep., CIRRELT-2012-09, CIRRELT, Montreal, Canada.

[8] Dell’Amico, M., Hadjicostantinou, E., Iori, M., Novellani, S., 2014. The bike sharing

rebalancing problem: Mathematical formulations and benchmark instances. Omega 45,

7–19.

[9] Dell’Amico, M., Iori, M., Novellani, S., Stützle, T., 2016. A Destroy and Repair Algo-

rithm for the Bike sharing Rebalancing Problem. Computers & Operations Research

71, 149 – 162.

[10] DeMaio, P., 2009. Bike-sharing: History, impacts, models of provision, and future.

Journal of Public Transportation 12 (4), 41–56.

[11] Di Gaspero, L., Rendl, A., Urli, T., 2013. Constraint-based approaches for balancing

bike sharing systems. In: Principles and Practice of Constraint Programming. Vol. 8124

of Lecture Notes in Computer Science. Springer, pp. 758–773.

27

https://hal.archives-ouvertes.fr/hal-00824078


[12] Di Gaspero, L., Rendl, A., Urli, T., 2013. A hybrid ACO+CP for balancing bicycle

sharing systems. In: Hybrid Metaheuristics. Vol. 7919 of Lecture Notes in Computer

Science. Springer, pp. 198–212.

[13] Di Gaspero, L., Rendl, A., Urli, T., 2015. Balancing bike sharing systems with con-

straint programming. Constraints 21, 1–31.

[14] Erdoğan, G., Battarra, M., Wolfler Calvo, R., 2015. An exact algorithm for the static

rebalancing problem arising in bicycle sharing systems. European Journal of Opera-

tional Research 245 (3), 667–679.

[15] Erdoğan, G., Laporte, G., Wolfler Calvo, R., 2014. The static bicycle relocation problem

with demand intervals. European Journal of Operational Research 238 (2), 451–457.

[16] Forma, I. A., Raviv, T., Tzur, M., 2015. A 3-step math heuristic for the static reposi-

tioning problem in bike-sharing systems. Transportation research part B: methodolog-

ical 71, 230–247.

[17] Gendreau, M., Hertz, A., Laporte, G., 1994. A tabu search heuristic for the vehicle

routing problem. Management Science 40 (10), 1276–1290.

[18] Glover, F., 2000. Multi-Start and Strategic Oscillation Methods — Principles to Exploit

Adaptive Memory. Springer US, Boston, MA, pp. 1–23.

[19] Glover, F., Hao, J.-K., 2011. The case for strategic oscillation. Annals of Operations

Research 183 (1), 163–173.

[20] Hernández-Pérez, H., Salazar-González, J.-J., 2004. A branch-and-cut algorithm for a

traveling salesman problem with pickup and delivery. Discrete Applied Mathematics

145, 126–139.

[21] Hernández-Pérez, H., Salazar-González, J.-J., 2004. Heuristics for the one-commodity

pickup-and-delivery traveling salesman problem. Transportation Science 38, 245–255.

[22] Ho, S. C., Szeto, W., 2014. Solving a static repositioning problem in bike-sharing

systems using iterated tabu search. Transportation Research Part E: Logistics and

Transportation Review 69, 180–198.

28



[23] Kloimüllner, C., Papazek, P., Hu, B., Raidl, G. R., 2014. Balancing bicycle sharing

systems: An approach for the dynamic case. In: Evolutionary Computation in Combi-

natorial Optimisation. Vol. 7832 of Lecture Notes in Computer Science. Springer, pp.

73–84.

[24] Kloimüllner, C., Papazek, P., Hu, B., Raidl, G. R., 2015. A cluster-first route-second

approach for balancing bicycle sharing systems. In: Computer Aided Systems Theory

— EUROCAST 2015. Vol. 9520 of Lecture Notes in Computer Science. Springer, pp.

439–446.

[25] Martin, O., Otto, S. W., Felten, E. W., 1991. Large-step markov chains for the traveling

salesman problem. Complex Systems 5, 299–326.

[26] Mladenović, N., Hansen, P., 1997. Variable neighborhood search. Computers & Oper-

ations Research 24 (11), 1097–1100.

[27] Pal, A., Zhang, Y., 2015. Free-floating bike sharing: Solving real-life large-scale static

rebalancing problems. Tech. rep., University of South Florida.

[28] Papazek, P., Kloimüllner, C., Hu, B., Raidl, G. R., 2014. Balancing bicycle sharing

systems: an analysis of path relinking and recombination within a grasp hybrid. In:

Parallel Problem Solving from Nature — PPSN XIII. Vol. 8672 of Lecture Notes in

Computer Science. Springer, pp. 792–801.

[29] Papazek, P., Raidl, G. R., Rainer-Harbach, M., Hu, B., 2013. A PILOT / VND /

GRASP hybrid for the static balancing of public bicycle sharing systems. In: Computer

Aided Systems Theory — EUROCAST 2013. Vol. 8111 of Lecture Notes in Computer

Science. Springer, pp. 372–379.

[30] Penna, P. H. V., Subramanian, A., Ochi, L. S., 2013. An iterated local search heuristic

for the heterogeneous fleet vehicle routing problem. Journal of Heuristics 19, 201–232.

[31] Raidl, G. R., Hu, B., Rainer-Harbach, M., Papazek, P., 2013. Balancing bicycle sharing

systems: Improving a vns by efficiently determining optimal loading operations. In:

Hybrid Metaheuristics. Vol. 7919 of Lecture Notes in Computer Science. Springer, pp.

130–143.

[32] Rainer-Harbach, M., Papazek, P., Hu, B., Raidl, G., 2013. Balancing bicycle sharing

systems: A variable neighborhood search approach. In: Evolutionary Computation in

29



Combinatorial Optimization. Vol. 7832 of Lecture Notes in Computer Science. Springer,

pp. 121–132.

[33] Rainer-Harbach, M., Papazek, P., Raidl, G. R., Hu, B., Kloimüllner, C., 2014. PILOT,

GRASP, and VNS approaches for the static balancing of bicycle sharing systems. Jour-

nal of Global Optimization 63 (3), 597–629.

[34] Raviv, T., Kolka, O., 2013. Optimal inventory management of a bike-sharing station.

IIE Transactions 45 (10), 1077–1093.

[35] Raviv, T., Tzur, M., Forma, I. A., 2013. Static repositioning in a bike-sharing system:

models and solution approaches. EURO Journal on Transportation and Logistics 2 (3),

187–229.

[36] Salazar-González, J.-J., Santos-Hernández, B., 2015. The split-demand one-commodity

pickup-and-delivery travelling salesman problem. Transportation Research Part B:

Methodological 75, 58–73.

[37] Schuijbroek, J., Hampshire, R., van Hoeve, W.-J., 2013. Inventory rebalancing and

vehicle routing in bike sharing systems. Tech. rep., Carnegie Mellon University.

[38] Silva, M., Subramanian, A., Vidal, T., Ochi, L. S., 2012. A simple and effective meta-

heuristic for the minimum latency problem. European Journal of Operational Research

221 (3), 513–520.

[39] Silva, M. M., Subramanian, A., Ochi, L. S., 2015. An iterated local search heuristic

for the split delivery vehicle routing problem. Computers & Operations Research 53,

234–249.

[40] Subramanian, A., 2012. Heuristic, exact and hybrid approaches for vehicle routing

problems. Ph.D. thesis, Universidade Federal Fluminense, Niterói, Brazil.

[41] Subramanian, A., Battarra, M., 2013. An iterated local search algorithm for the travel-

ling salesman problem with pickups and deliveries. Journal of the Operational Research

Society 64 (3), 402–409.

[42] Subramanian, A., Battarra, M., Potts, C. N., 2014. An iterated local search heuris-

tic for the single machine total weighted tardiness scheduling problem with sequence-

dependent setup times. International Journal of Production Research 52 (9), 2729–2742.

30



[43] ter Beek, M. H., Gnesi, S., Latella, D., Massink, M., 2015. Towards automatic deci-

sion support for bike-sharing system design. In: International Conference on Software

Engineering and Formal Methods. Springer, pp. 266–280.

[44] Vidal, T., Battarra, M., Subramanian, A., Erdoǧan, G., 2015. Hybrid metaheuristics

for the clustered vehicle routing problem. Computers & Operations Research. 58, 87 –

99.

31



Appendix A Checking feasibility

Let L = i1, i2, ..., ik be a sequence of vertices, where i1 = ik = 0. A directed graph can

be built using pi, p
′
i, and qi for each i in the sequence, as follows:

• Let s be the source of the flow network, and for each vertex i representing the first

occurrence of each station in the sequence let us define a set of arcs ui with capacity

pi;

• Let t be the sink of the flow network, and for each i′ representing the last occurrence

of each station in the sequence let us define a set of arcs wi′ with capacity p′i;

• For each j = 2, ..., k − 1 let us define an arc bj,j+1 with capacity Q; and

• If a station i is visited more than once, let us define an arc de,e+1 with capacity qi,

between the eth and (e+ 1)th visits to i.

By computing an s–t maximum flow, one can find optimal bike displacements along

the sequence L. For each station i, let us define p̂i and p̂′i, respectively, as the resulting

s–t flow on arcs ui and wi. Flow on arcs bj,j+1 indicates the number of bikes from ij to

ij+1 and flow on arcs de,e+1 denotes the quantity of bikes remaining in a station i after the

eth visit and before the (e + 1)th visit. Figure 12 depicts a flow network for a sequence

L = 0, 1, 4, 2, 3, 5, 2, 4, 1, 0, where s and t correspond to the depot.

s

1

4

5

3

2 2’

1’

4’

t

p1

p2

p3

p4

p5

Q

p1

q2

Q

Q

p′3

Q

q4

Q

p′2
Q

p′4

p′1

Q

p′5

Figure 12: Flow network for feasibility checking

Chemla et al. [6] states that sequence L induces a feasible solution when p̂i = pi, for

each station i in the sequence. Also, if a vertex i′ is not in L, then p̂i′ = p̂′i′ = 0.

32




