
Using geodesic Levenberg-Marquardt

Colin Clement & Mark K. Transtrum

April 2, 2015

1 General strategy:
The first thing to do is examine the document string in the geodesiclm subrou-
tine found in geodesiclm.f90, and make sure you provide at least the function
which computes the residuals (func). Be careful to use the form specified in the
code’s documentation.

The strategy for use we suggest is to start by turning everything fancy off, so
that this algorithm functions as a standard Levenberg-Marquardt (LM) algorithm.
I.e. start with iaccel=0, ibold=0 and ibroyden=0. When you do this, you
should pay most attention to factoraccept and factorreject. I recom-
mend starting with 5 and 2, respectively. Standard LM algorithms set both of these
parameters to 10. The problem with making them equal is that the optimizer can
get stuck in cycles. For more nuanced reasons (we call it ‘delayed gratification’
[1]) we also recommend that the accept factor be larger than the reject factor. Play
around with these until you are satisfied with the convergence rate.

You might find at first that the default convergence criterion (tolerances and
goals, see the list below) are causing the algorithm to give up before true conver-
gence. The procedure for diagnosing and ameliorating this is as follows: After the
algorithm gives up, read the convergence message. The integer provided will rep-
resent a specific convergence criterion being hit (the list in is geodesiclm.f90),
and you should decrease the offending condition to force the algorithm to work
harder. Do so until the algorithm hits a different convergence criterion, and repeat
until either you are satisfied with the minimum, or the speed of convergence be-
comes your principal concern. If you are faced with the latter problem, read on
for useful options for speeding convergence.

Once you get things working reasonably well with standard LM settings, try
turning on geodesic acceleration by setting iaccel=1. If you are not providing

1



a routine to calculate the second directional derivative (see [1, 2, 3] for details),
then you need to set analytic avv = .false. so that finite differences are
used to estimate it. You will need to pay attention to the finite difference step size
h2 to make sure your calculation is stable. We suggest using h2=0.1. Since the
acceleration should be a correction to standard LM, the parameter avmax limits
the length of the acceleration vector in proportion to the proposed LM step size.
As such, avmax< 1. are recommended.

If you are satisfied with the behavior at this point, experiment with allowing
uphill steps by setting ibold from 1 (least ‘bold’ uphill allowances) to 4 (most
‘bold’ uphill allowances). You can also play with setting ibroyden=1, which
will employ an estimate of the Jacobian to speed up some iterations, sacrificing
some accuracy.

For more details on why least-squares fitting is so challenging, and for intu-
ition on how various parts of this algorithm work, see [4, 3]. See [1] for details
specific to implementation and benchmarked performance of the algorithm.

2 Parameter defaults and details:
These parameters are ordered by their relative importance. A lot of this informa-
tion is a repeat of what can be found in the documentation to the source code in
geodesiclm.f90.

Format:

• parameter name = <suggested default> : Some words you might find
useful.

Basic Levenberg-Marquardt (LM) Parameters:

• factoraccept = 5 : This is the factor by which the LM parameter (often
denoted λ) is decreased after a step is accepted.

• factorreject = 2 : This is the factor by which the LM parameter is
increased after a step is rejected.

• maxlam = 1.E7 : The routine will never let λ become larger than this.

• imethod = 0 : This is an integer which specifies the exact way λ is up-
dated. See geodesiclm.f90 and [1] for more details.

2



• initialfactor = 1 : The initial λ.

• mode = 0 : 0 or 1. Chooses between the ‘Levenberg’ and ‘Marquardt’ style
of matrix added to JTJ geodesiclm.f90.

Basic convergence criterion:

• maxiter = 500 : The total number of steps the algorithm will attempt.
This should depend on how long a function and Jacobian evaluation takes,
and how long you are willing to wait.

• maxfev = 0 : The maximum number of allowed residual function (func)
evaluations. 0 indicates no limit.

• Cgoal = 1 : The goal for the minimum squared error.

• maxjev = 0 : The maximum number of allowed Jacobian (jacobian)
evaluations. 0 indicates no limit.

Geodesic acceleration parameters:

• iaccel = 1 : 1 or 0 for geodesic acceleration on or off.

• h2 = 0.1 : Finite-difference step size for second-directional derivative esti-
mation.

• avmax = 0.75 : The ‘acceleration’ should be a correction to the ‘velocity’
and this enforces that.

• maxaev = 0 : Maximum number of analytic second directional derivative
(avv) evaluations. 0 indicates no limit.

Extra flags:

• print level = 5 : 0-1, how much information to print to print unit.

• print unit = 6 : The integer representing the place to print messages.
Either open a file or set to 6 for standard out.

• analytic jac = .true. : True if you supply a routine to compute the
Jacobian (jacobian).

3



• analytic avv = .false. : True if you supply a routine to compute
the second directional-derivative (avv).

• center diff = .true. : True if you want to use centered-difference.
More accurate but slower than forward-difference.

Advanced Jacobian update and convergence criterion:

• ibold = 0 : (0-4) If nonzero this allows some uphill steps which can speed
convergence.

• ibroyden = 0 : If nonzero this employs Broyden approximate Jacobian
updates. Can speed up algorithm with cost of accuracy.

• eps = 1.5E-6 : Precision of evaluation of residuals in func.

• h1 = 1.0E-5 : Step size for finite-difference Jacobian estimate.

• artol = 1.E-3 : See geodesiclm.f90 for details on these convergence
tolerances.

• gtol = 1.5E-8

• xtol = 1.E-10

• xrtol = 1.5E-8

• frtol = 1.5E-8

References
[1] Mark K Transtrum and James P Sethna. Improvements to the levenberg-

marquardt algorithm for nonlinear least-squares minimization. arXiv preprint
arXiv:1201.5885, 2012.

[2] Mark K Transtrum and James P Sethna. Geodesic acceleration and the
small-curvature approximation for nonlinear least squares. arXiv preprint
arXiv:1207.4999, 2012.

[3] Mark K. Transtrum, Benjamin B. Machta, and James P. Sethna. Geometry of
nonlinear least squares with applications to sloppy models and optimization.
Phys. Rev. E, 83:036701, Mar 2011.

4



[4] Mark K. Transtrum, Benjamin B. Machta, and James P. Sethna. Why are
nonlinear fits to data so challenging? Phys. Rev. Lett., 104:060201, Feb 2010.

5


