pyFresnel

Robert Steed
06/04/13

pyFresnel is a collection of python modules for modelling the reflectivities and transmissions of
dielectric interfaces. Increasingly, there are two parts for the library, those modules for modelling a
simple interface or an etalon, and the modules for modelling a series of dielectric layers (also known as
a thin film coating). The reflectivities and transmittances of thin film structures can be found using a
transfer matrix calculation which represents the interfaces and layers as a series of 2x2 matrices. Many
such codes exist already but this one was developped for modelling uniaxial layers (layers with a bi-
refringent or uniaxial refractive index) which have an extraordinary axis along the growth direction of
the stack. This is useful for certain types of semiconductor structures and in my case, optical transitions
in semiconductor quantum well structures.

Usage

Since there is no GUI interface, this library requires some knowledge of python in order to be used
effectively. The library depends upon the python libraries numpy, matplotlib and scipy.

Each module contains example code that demonstrates the modules in action. There are more ex-
amples in the examples directory, they use the module init.py to find the pyFresnel modules in case you
have chosen not to install the package into your python site-packages directory or include it on your
system path. The classes rely on python’s flexibility with regard to types and so the inputs are not rig-
orously checked for correctness (this is not a good example of rigorous programming). Despite that, the
code works pretty well and I have striven instead to write code that can be easily understood.

There are many possible choices of spectral units (Hz,THz,meV,nm,cm™) but here I have chosen to
use natural frequency which is 27t times the real frequency and normally uses a symbol w. The natural
frequency is useful theoretically but will normally need to be converted to something else for comparison
with measurements. Different communities use different spectral units and I decided to stick to one unit
rather than try to make the code aware of different spectral scales.

The codes can normally be called w.r.t. to a range of frequencies or a range of incident angles but not
both at the same time.

The complex refractive index is defined by n + ix rather than n — ix or n (1 + ix). I have also several
times written duplicate code that uses dielectric constants instead of refractive indices and so it is up to
the user which he/she uses. Since the relation between the two is trivially n = /¢ maybe it is not really
necessary but many theoretical models of the dielectrics yield dielectric constants.

Finally, there should shortly be a separate document which gives the theoretical notes behind the
code.



Modules

Modules to model the optics of simple dielectric interfaces:

fresnel.py - contains the class Interface for modelling dielectric interfaces. We can instantiate this
class using Interface(n1=1.0,n2=1.0,theta=0.0) where n1 is the initial refractive index, n2 is the final
refractive index and theta is the angle of incidence in radians.

fresnel_uniaxial.py - contains a class to model an interface with a uniaxial medium which has its
extraordinary axis perpendicular to the interface.

materials.py - classes to model dielectric constants/refractive indices of materials. The main class
is Material which contains the methods to convert between the dielectric constant or the refractive
index, but this shouldn’t be directly instantiated. There is a subtle issue regarding whether to use
natural or real frequencies. Natural frequencies are 2*pi* real frequency and they crop up all of the
time in physics. In some of the models, one or other may be implicitly assumed but I will try to
have left some comments when this happens. Look at the file to see the materials defined.

optical_plate.py - contatins the Plate class for modelling a slab of dielectric (also known as an
etalon). We can create an object of this class using Plate(n1,d,w,theta,n0=1.0,n2=1.0) where n0 is
the refractive index before, n1 is the refractive index of the plate/slab/layer, n2 is the refractive
index after the plate, d is the thickness of the plate, w is the natural frequency and theta is the
angle in radians.

effective_medium.py - contains two classes for calculating an effective dielectric for a stack of thin
layers under the assumption that the layer thicknesses are all much less than the wavelength of the
light considered. The main class is EffectiveMedium(layers) where layers is a tuple of tuples like
(n,thickness (m)) or tuples like (nzz,nxx,thickness (m)) or Layer objects from transfer_matrix.py.
The other class is EffectiveMedium_eps(layers) where layers is a tuple of tuples like (epszz, epsxx,
thickness (m)).

uniaxial_plate.py - contains 2 classes, Anisolnterface and AnisoPlate. These allow us to model
an interface or a plate which has an uniaxial medium under the rather limiting condition that
the uniaxial medium has its optical axis perpendicular to the interface. We call these classes using
Anisolnterface(nlo,nle,n20,n2e,theta) AnisoPlate(nlo,nle,d,w,theta,n0=1.0,n2=1.0) wherenlo and
n2o are the ordinary refractive indices, nle and n2e are the extraordinary refractive indices and the
other quantities are as before. For AnisoPlate, the refractive indices are the media before and after
the layer\slab\plate are assumed to isotropic.

uniaxial_plate2.py - contains a class AnisoPlate that is very similar to the class in uniaxial_plate
but comes from a different derivation. It is called using AnisoPlate(n_xx,n_zz,d,w,theta,n_b=1.0)
or AnisoPlate_eps(eps_xx,eps_zz,d,w,theta,eps_b=1.0) eps_zz is the dielectric constant perpendic-
ular to plate’s sides, equivalent to the extraordinary refractive index squared, while eps_xx is the
dielectric constant for electric fields parallel to the plate’s sides which is equivalent to the ordinary
refractive index squared. This code doesn’t allow us to separately set the properties of the medium
either side of the plate, instead we use eps_b to set the dielectric constant of media either side of
the plate.

Tranfer matrix modules

transfer_matrix.py - Contains 6 classes Layer, LayerUniaxial, Layer_eps, LayerUniaxial eps, Fil-
ter_base and Filter. This is an Optical Transfer Matrix code. It takes a description of the layers and
calculates the transmission and reflection. Unusually it include a very special anisotropic/uniaxial



case where the dielectric is different along the perpendicular/ layer stack axis than to the in-plane
directions; this is so we can describe quantum well intersubband absorptions. It can also plot the
electric field and the absorptivity versus depth within the structure. There is also the possibility to
model partially coherent layers (see the transfer matrix examples folder for details).

incoherent_transfer_matrix.py - Contains IncoherentFilter (based on Filter_base) - to module a
structure with coherent and incoherent layers use this as the top class, although it has less fea-
tures than the Filter class in transfer_matrix.

layer_types.py - contains material types (basically materials.py adjusted for transfer_matrix com-
patability). There is also a class for loading Sopra refractive index data files (which can be down-
loaded from http:/ /www.sspectra.com/sopra.html).

Other modules

constants.py - physical constants library by Herman ].C. Berendsen, <www.hjcb.nl/python> (re-
leased under GPL and so compatible with this library)

finite_well.py - Calculates the conduction band levels of a finite AlGaAs-GaAs quantum well and
the associated dielectric constant.

Examples

Tranfer Matrix Examples

There are examples for the transfer matrix code in the folder "transfer_matrix examples’. These include
replications of the results in various articles and the examples from the freesnell program. Therefore we
can be relatively sure of the program for isotropic layers.

Isotropic_dielectric_filters.py - dielectric thin film filter examples from freesnell
Isotropic_metallic_filters.py - metallic thin film filter examples from freesnell
Isotropic_incoherent_filters.py - incoherent effects example from freesnell.

testing_Transfer_Matrix.py - models an absorbing layer using a Lorentz oscillator (compares with
optical_plate.py)

testing_Transfer_Matrix2.py - models a simple interface (compares with fresnel.py)

testing_Transfer_Matrix3.py - models a uniaxial absorbing layer using a Lorentz oscillator (com-
pares with uniaxial_plate.py)

Anisotropic_ThinFilm_example.py - as it says.
TIR.py - model total internal reflection

Pettersson1999.py - Replicate some graphs from Pettersson’s 1999 paper "Modeling photocurrent
action spectra of photovoltaic devices based on organic thin films. Nb. resize the figures to get a
better fit, I couldn’t get the overlayed scales to work properly...

Ohtal990.py - Replicates some graphs from Ohta’s 1990 paper "Matrix Formulism for calculation
of electric field intensity of light in stratified multilayered films"



Links

There are many other thin-film modelling programs and libraries to be found; and if you are only inter-
ested in layers with isotropic layers, many are more developped than this one

Free/Open Source

(many from S Byrne’s manual)

Opentfilters- a userfriendly gui program with many advanced techniques for optimising optical
filter designs.

Freesnell- a command-line scheme program with many good examples of thin film filters.
slabs

TMMmode solver- matlab and python code.

http:/ /www.stanford.edu/group /mcgehee/transfermatrix/- matlab and python code

EMpy- An electromagnetism python library, also includes anistropic transfer matrices and rigorous
coupled wave analysis.

Multilayer thin film optics calculator by S Byrnes- python and matlab code. Has a very good
manual.

refFIT- transfer matrix and ellipsometry*

NKDstack

lightmachinery optical-calculations- a page of optical calculatorsightmachinery
openITMM- python module

FilmStar(free version)

Puma

Online

Thinfilm- thinfilm calculator

Luxpop- A very useful site of optical calculators and material refractive indices

Commercial

(many from Optalix - a very useful page of optical software)

Essential Macleod- Thin film design and analysis software. Macleod also wrote a very important
book on thin film filters.

TFCalc- Software for designing and manufacturing optical thin film coatings.
Optalix- Raytracing software with integrated thin film modelling.

Setfos- Models active devices such as detectors and emitters.


http://sjbyrnes.com/fresnel_manual.pdf
http://www.polymtl.ca/larfis/English_Version/OF/OF_English.htm
http://people.csail.mit.edu/jaffer/FreeSnell/
http://slabs.sourceforge.net/
http://www.freewebs.com/uranushp/freesoft.htm
http://www.stanford.edu/group/mcgehee/transfermatrix/
http://empy.sourceforge.net/
http://sjbyrnes.com/?page_id=12
http://optics.unige.ch/alexey/reffit.html
http://www.ub.edu/optmat/programs.html
http://www.lightmachinery.com/optical-calculations.php
http://pypi.python.org/pypi/openTMM
http://www.ftgsoftware.com/fsfree.htm
http://www.ime.usp.br/~egbirgin/puma/
http://thinfilm.hansteen.net/
http://www.luxpop.com/
http://www.optenso.com/links/links.html
http://www.thinfilmcenter.com/
http://www.sspectra.com/
http://www.optenso.com/
http://www.fluxim.com/Products.8.0.html 

e Film Wizard- Software for optimization and synthesis of optical thin film coatings. Other products
are Film Tec 2000, Film Monitor, Film Ellipse.

e FilmStar A suite of Windows programs
e Multilayer

e OptiLayer

e Woollam- Ellipsometry software

e SemiconSoft- TFCompanion software, thin-film data analysis for ellipsometry, reflectance and trans-
mittance measurements.

e RP coating- program from RPphotonics who also have an amazing and freely available encyclope-
dia on optics.

*Ellipsometry is a method of measuring a sample in order to analyse its structure. So it is almost the
reverse of what we have been proposing. A sample has measured it’s reflectivities in both polarisations
as well as the relative phase difference between the polarisations; this might be done for a range of
angles. Then starting from a guess of the sample’s structure, a fitting procedure is used to find the layer
thicknesses /refractive indices that best fit the measured data. As we might imagine, this is much harder
to do well than a simple application of the transfer matrix method to a designed structure.


http://www.sci-soft.com/
http://www.ftgsoftware.com/
http://mmresearch.com/
http://www.optilayer.com/
http://www.lot-oriel.com/uk/en/home/ellipsometers/software/
http://www.semiconsoft.com/html/welcome.htm
http://www.rp-photonics.com/coating.html

