AgentNeko23

Ryota Arakawa*

1 Negotiation Strategy

The behavior of our agent is mainly based on the negotiation environment. We
define a boolean a as Eq.(1). Here, Q°*™, Q*°“! are the total quantity of exogenous
input/output contracts. EM is a constant and we use EM = 1.05. If a is true and
our agent is a seller, it means that partners should concede to fulfill their exogenous
contracts because the quantity of supply is less than the quantity of demand. Thus,
our agent can adopt a bullish strategy. On the contrary, if a is false and our agent is
a seller, it means that our agent has to concede to fulfill its exogenous contract for
the same reason. Thus, our agent should adopt a bearish strategy. The same can be
said if our agent is a buyer. We found that our agent works better when it is a bit
bullish, so we set EM = 1.05 to make it more bullish.

true (seller, Q™ < Q"' EM)
false (seller,Q°™™ > Q*°“E M)
true (buyer, Qexout < QemnEM)
false (buyer,Q°*** > Q" EM)

(1)

a =

We use a to switch the behavior of our agent. At the beginning of each day, our
agent updates a based on Q¢**" and Q*°u,

Our agent inherits OneShotSyncAgent and uses the default OneShot utility func-
tion.

1.1 Offering Strategy

Quantity
We implemented two strategies: Random Quantity Strategy (RQS) and Expected
Quantity Strategy(EQS). Based on the result of the evaluation shown in Section 2,
the submitted agent uses EQS.

We use Algorithm 1 to decide the offer quantities Q. Q]i] is the offer quantity from
our agent to agent .. RQS and EQS use the same procedure, but the functions (Egs.(2)

* Tokyo University of Agriculture and Technology, arakawa@katfuji.lab.tuat.ac.jp

1

and (4)) are different. Here, F'V, FN, RM is a constant. We set F'V = 0.7, FN = 3,
and RM = 0.3.

Algorithm 1 Algorithm to decide the offer quantities

Require: Negotiation partners P, needed quantity n, Environment flag a
1: Q]+ 1forallie P
2: Let A ={i|li € P}
3: while n > f(Q,a) do
4: Sample an agent i from A with weights w(a, 1)
5: Q[l] (—Q[i]—i-l
6: if Q[i] > n then
7 Remove i from A
8 end if
9: end while

10: return @

> QI (RQS)

f@o= Z::Q[i]g(s[a,i],d[a,i],a) (EQS) 2
FV (d[a,i] < FN)
9 da) =1 (RM, 2[[32) (d[a,i] > FN))
1
e) = @s[a,ﬂ,d[a,m Ezzz W
>, gsla. 1 dla, J)

We use s[a, i] and d[a, i] to calculate the agreement rate of agent i in the environment
a. At the beginning of a simulation, our agent initializes s|a,i| and d[a,i] with all
zeros. At the end of the day, our agent updates sla,i] and d[a, i| using Algorithm 2.

Algorithm 2 Algorithm to update s[a,i| and d[a, i

Require: Environment flag a, Negotiation partners P
1: for allz € P do

2 if failed to make a contract with ¢ then

3 dla,] < d[a,i] + 1

4 else if i agreed to my proposal then

5: dla,i] + d[a,i] + 1

6 sla,] < s[a,i] + 1

7 end if

8: end for

There are two differences between RQS and EQS. The first is the total offer quantity
determined by Eq.(2). With RQS, the total offer quantity is equal to n. With EQS,
on the other hand, our agent takes the agreement rates into account, and offers more
than n to avoid the risk of shortfall. The second is the sampling weights determined by
Eq.(4). RQS distributes the offer quantity uniform-randomly. In contrast, EQS also
distributes it randomly, but gives more weight to agents with high agreement rates.
This trick makes our agent to make contracts with stable quantity by prioritizing
friendly agents.

Unit Price
If a is true, our agent offers at the bullish unit price. Otherwise, it offers at the bearish
unit price.

1.2 Responding Strategy

Responding Strategy has three modes: Last Response Mode, Advantageous Mode,
Disadvantageous Mode.

Last Response Mode

This mode is used when our agent is unable to present counter-offers to partners after
creating a response. Our agent chooses proposals to maximize the utility, and accepts
them.

Advantageous Mode

This mode is used when a is true. First, our agent selects proposals whose price is
favorable to it and makes them P,. Next, it selects proposals from P, so that the total
quantity of proposals is equal to the needed quantity. If such a combination exists, it
accepts them. Otherwise, it rejects all proposals and makes counter-offers.

Disadvantageous Mode
This mode is used when a is false. Our agent chooses proposals so that the total
quantity of proposals gsu.,m, and the needed quantity ¢,eeq satisfy the condition Eq.(5).

Here, QT is a constant. We set QT = 0.7. It accepts or rejects proposals the same
way as Advantageous Mode.

QT X Qneed S qsum S Qneed (5)

2 Evaluation

We tested AgentNeko23 by running a tournament. We use following agents in the
tournament. The number of worlds is 50, the number of runs per world is 1, and the
number of days in each run is 100.

e AgentNeko23: the agent which we implemented. This variant uses EQS.

e AgentNeko23Random: almost as same as AgentNeko23, but this variant uses
RQS.

e SimpleAgent[1]: one of the tutorial agent.

e Neko[2]: the agent which we submitted last year.

Table 1 shows the result. The result shows that AgentNeko23 outperforms other
agents.

Table 1: The test result

agent_type mean min 25% median 75% max
AgentNeko23 1.109 0.670 0.998 1.095 1.216 1.534
SimpleAgent 1.103 0.828 0.998 1.093 1.200 1.466
AgentNeko23Random | 1.085 0.555 0.988 1.084 1.185 1.516
Neko 1.031 0.102 0.923 1.051 1.149 1.613
References
[1] Developing an agent for scml2023 (oneshot) — scml 0.5.6 documentation.
http://www.yasserm.com/scml/scml12020docs/tutorials/02.develop_
agent_scml2020_oneshot.html#simple-oneshotagent. Accessed on
04/28/2023.
[2] Ryota Arakawa. AgentNeko. https://github.com/yasserfarouk/

scml-agents/blob/master/scml_agents/scml2022/oneshot/team_123/
report.pdf, 2022. Accessed on 04/28/2023.

