
DoSomething: Try and Failure in Making

Dynamic Utility Function

Masanori HIRANO, The University of Tokyo
hirano@g.ecc.u-tokyo.ac.jp

July 14, 2020

Abstract

As my agent’s strategy, I employed a new dynamic utility function.
But, it was too challenging to perform well in the league. I also found
some issues in my agent and confirm my agent doesn’t performed well.

1 Introduction

In my agent, I employed a new method to deal with negotiations using dynamic
utility function based on the opposite negotiation of my factory. However, un-
fortunately, this method is not working well due to algorithmic failure and
incompatible with negotiation flow. I think my agent cannot win this league,
but, in this report, I will explain what I intended as the agent’s strategy and
what was the problem of my agent.

2 The Design of MyAgent

2.1 Negotiation Choices & Utility Function & Concurrent
Negotiation

In my agent, I employed “dynamic utility function” based on opposite nego-
tiations. Each negotiation offer is evaluated by what percentage of opposite
ongoing negotiation can be covered.

In the following, I refer “negotiations” as the sequence of negotiation and “of-
fer” as each shot of offering to negotiation partners. Moreover, “offer” is noted
by o and its quantity, delivery time and unit price po is noted by (qo, to, po). On
the other hand, “negotiation” has a possible range of negotiation which is consist
of offers. This is noted by ni = ([qminni

, qmaxni
], [tminni

, tmaxni
], [pminni

, pmaxni
]).

For example, (5, 4, 10) means an offer whose quantity, delivery time, and unit
price are 5, 4, 10 respectively. And, ([1, 5], [4, 6], [10, 12]) means a negotiation
whose possible quantity, delivery time, and unit price are from 1 to 5, from 4
to 6, from 10 to 12, respectively. Although this range was usually defined by

1



CFP before starting negotiations, which is published by some factories, here,
I employed an estimated possible range which is estimated by negotiation his-
tory. This estimation is held based on rejection for my past proposing offer. For
example, when the current possible negotiation range is ([1, 5], [20, 25], [10, 20])
and my last proposing sell offer was (4, 24, 19) and rejected by opponents, the
possible range will be changed to ([1, 4], [20, 24], [10, 19]). This estimation is
based on two assumptions. One is the opponent’s utility for my proposing offer
will be decreasing according to negotiation steps because the earlier proposing
of my factory is usually good only for my factory. The other assumption is the
opponents’ utility function is monotonicity.

Moreover, in the following, “the opposite ongoing negotiations“ means on-
going buying negotiations if the offer which is begin evaluated is sell offer, or
ongoing selling negotiations if the offer is buy offer.

My dynamic utility function for offers is calculate by the current contracts/agreements
and the ongoing opposite negotiations. At first, comparing selling and buying
contracts/agreements, my factory calculate these differences on each step. Then,
my factory manager calculate how percentages of the difference and the ongoing
opposite negotiations will be covered by the offer. If the offer will cover the differ-
ential contracts/agreements, the number of these covered contracts/agreements
are counted. Then, the percentages of coverage of each opposite ongoing nego-
tiation will be also added to the number, and the number will be divided by
the total number of contracts/agreements and the ongoing opposite negotiations
and turned into the final evaluation percentage. The coverage will be calculated
by what percentage of the possible range of one opposite ongoing negotiation
is compatible with the offer. Here, the possible range employed only the deliv-
ery time and price, and compatibility is defined by whether the delivery time of
selling contracts/agreements will be possible and the factory doesn’t lose money
(the profits is not less than 0). If the quantity of an offer is more than 1, the
percentage will be calculated for possible negotiations. That is, if the quantity is
N , the contracts/agreements and opposite ongoing negotiations whose quantity
is equal or more than N will be targetted and the final evaluation percentage
is calculated by the sum of the final evaluation percentage for 1, 2, · · · , N th
quantities. This value is the utility for the offer.

Then, as the next step, my factory manager calculate the possible best utility
among all possible offer.

Using the best utility, the relative utility scaled to [0, 1] is calculated. In
addition, the threshold of relative utility is also calculated by (1 − t) ∗ (0.9 −
0.3) + 0.3 where t means the relative negotiation step. Then, using this value,
my factory manager decide offering and responding. It offers the worst offer
whose utility is better than the threshold, and accepts opponents’ offer if the
utility is better than the threshold.

2



3 Evaluation

I haven’t evaluated enough but the results were almost the same or less than
the built-in decentralized agent. But sometimes our agents win the agent.

4 Lessons and Suggestions

I think there are there reason of my agents didn’t work well. One is an algorith-
mic failure. For the processing for multiple numbers of quantity is inappropriate.
Usually, the more quantity is better. However, sometimes this algorithm is not.
If the utility for the second material of buy offers is not good, my agents decide
not to buy.

The second reason is compatibility for NegMas Negotiation flow. The ar-
chitecture of my dynamic utility function is made for concurrent negotiation.
Of course, the negotiation in negmas is partially concurrent. However, the con-
current negotiation is limited to the negotiations whose CFP is published by
my agents. My dynamic utility function is assumed to work well under the
condition that all negotiations proceed on the same negotiation time step. This
problem was found after my coding. So, I couldn’t avoid and fix this problem.

The third problem is the calculation limit. In my dynamic utility function,
a big amount of calculation is necessary for calculate for all possible range of
offers and its opposite ongoing negotiations. In my submitted code, I employed
sampling for the range, but it also affects the performance of searching the best
offering and strategy.

Conclusions

As my agent’s strategy, I employed a new dynamic utility function. But, it was
too challenging to perform well in the league. I also found some issues in my
agent and confirm my agent doesn’t performed well. I thank the organizers for
their efforts and would like to work better next year.

3


