ASMASH

Assaf Marsha, Matanya Freiman, Shmuel Amar
Bar-Ilan University, Israel
assafmarsha@gmail.com, mfreiman97@Qgmail.com, shmulikamar@gmail.com

July 13, 2020

1 Introduction

For this year’s competition our team tried to present an improved version of the DecentralizingAgent.
The DecentralizingAgent composed of the following configuration:

e PredictionBasedTradingStrategy - predict inputs/outputs needed assuming a fixed execution rate
that does not change for all partners

e SupplyDrivenProductionStrategy - A production strategy that converts all inputs to outputs
assuming that there was no excessive purchasing of inputs

e StepNegotiationManager - Two negotiators for each step, one for buying and another for selling.

To improve the existing agent we analyzed the various agent components. Analyzing the behavior of
the Step Negotiation Manager motivated us to look in to several possible improvements. In the start of
the competition the Negotiation Manager is generating a requests of negotiations for the next ”horizon”
steps as we can see in figure 1.

Current Step

Figure 1: Requests for negotiations in the beginning of the competition

Each another step, the Negotiation manager is generating negotiation to the next CurrentStep +
horizon + 1 step.
When StartNegotiations function From the StepNegotiationManager is called a controller is created
and get a step as an input. For this given step, the controller is trying to negotiate with the active
partners to achieve the given target according to the utility function. That means that the controller
that responsible to find the best partner for contract, get as an input the partners that ”relevant”
for negotiations horizon steps before. This way, we actually allow signing a contract with partners that
declared bankruptcy few steps before. Furthermore, we are highly wanted to prevent to arrive to situation
of “compensated contracts”!.

1The contracts of a partners that transferred to the system for compensation of the agents, because of the bankruptcy of
the partner. Some of those contracts is partially executed and the rests is nullified.(The contracts honored by their delivery
dates)



In this paper, we are proposing our solution Called ASMASH (The first chars of our names, Assaf,
Matanya and Shmuel). We used the usual Decentralizing agent and added an improvement trying to
minimize the period of time between the agent declared bankruptcy and the last step the agent considered
as a legitimate partner for negotiation. In this paper we are described our solution and the algorithm we

devel()ped.
: Filtering the

partners that prone

Decentralizing Agent
949 to bankrupt

ASMASH

Figure 2: The Idea

2 The Design of ASMASH

As described earlier, ASMASH is actually based on a decentralization agent but the difference is in the
motivation to reduce the legitimacy of the partner after declaring bankruptcy. Note that we actually
want to get partners to declare bankruptcy by negotiating with them. But, we do not want to negotiate
and engage with these partners after the bankruptcy declaration.

ASMASH

Decentralizing
Agent Tries to negotiate
with all the
relevant agents.

Step Prediction Supply Driven
Negotiation Based Trading Production
Manager Strategy Strategy

Elaborated
Step
Negotiation
Manager

Filtering of suspect
partners- reducing The
partners that are prone
to bankrupt.

Tries to negotiate Ste:p ' Prediction Supply Driven
with all the Negotiation Based Trading Production
relevant agents. Manager Strategy Strategy

(a) Decentralizing Agent Design (b) ASMASH design

Figure 3: The Designs

We strive to minimize the length of time between the partner declaring bankruptcy and the last step
that this partner is considered as a legitimate partner in negotiations.

As showed in figure 3b, By creating the class FElaborated Step Negotiation Manager we successfully
filter out those suspicious partners.

2.1 Negotiation Choices

For choice of what to negotiate about we used Mean Execution Rate Prediction Strategy trying to predict
the inputs/outputs needed. As a negation partner we choose to approach agents that obey the following
roll: Agent must have less then thresh number of breaches in the last N steps.

We developed Finding Suspect Parters (FSP) algorithm to find the partners that are likely to declare
bankruptcy. We used FSP to filter out those suspect agents which we didn’t want to negotiate with in the
future. We saw empirically that agents that made few breaches over a small period of steps are expected
to bankrupt- We wanted to find those agents and don’t start a negotiation with them.



Algorithm 1: FSP - Finding Suspect Partners Algorithm
1: 5«0

2: B < N last steps breaches(N)

3: for (perpetrator, step) in B do

4. if Count(perpetrator) >= thresh then

5: S < S U perpetrator

6

7

8

end if
: end for
: RETURN S

FSP algorithm begins by finding the breaches that had been occurred in the last N steps. The partner
that made more than thresh breaches during the last N steps considered as a suspected partner. We saw
empirically that choosing thresh=3 and N=5 is effective choices?. The algorithm returns all the suspected
partners (lines 2-8)

2.2 Utility Function
Similar to Decentralizing agent, ASMASH uses a Linear utility function for multi-issue negotiations.

Noutcomes —1
u = Z w; - €;
i=0
e;- The value of the issue i
w;- The weight of the issue i

In the decentralizing agent documentation the utilities functions were defined for each controller (for
each step):

For seller controller:

e Issues
e1: Quantity- Range of quantity-[1,quantity]
eo: Time- Ranges of times - [step of the controller,step of the controller 4+ horizon]
es: Range of prices-[catalog price, (Catalog Price)-2]

e Weights
wi: 1.
wa: 1.
ws: 10.

For buyer controller:

e Issues
e1: Quantity- Range of quantity - [1,quantity]
eo: Time- Ranges of times - [Current step +1 , step of the controller -1]
es: Range of prices-[1, Catalog Price]

e Weights
wi: 1.
wa: -1.
ws: -10.

2The effectiveness of the choice N=5 is interesting since horizon is also equal to 5



3 Evaluation

As described earlier in this paper, in contrast to the Decentralizing agent, ASMASH helps to prevent
starting negotiations with partners that are expected to declared bankruptcy. ASMASH is trying to
minimize the period between the partner declared bankruptcy and the last time we are seeing the partner
as a legitimate to negotiate with.

In figure 4 , we are describing a common scenario of some partner. we assume that the partner made
more than 3 breaches between flag 1 and flag 2.

T E—)

Agent

Agent
9 Bankrupt

Current Step Suspect
23| The step when the agent was declared as a suspect 5 The last step when the agent considered as a legitimate to
negotiate when using the original algorithm

Y The step when the agent declared bankruptcy

The last step when the agent considered as a legitimate to
negotiate when using FSP algorithm

Figure 4: The Scenario

In this scenario, if we used decentralizing agent, our agent will stop to negotiate with this partner only
after he will declare bankruptcy + horizon time. This means that if the partner has declared bankruptcy
in flag 3, we are still negotiating with him until flag 5 and the contracts already signed in this period
changed to be a compensated contracts.

However, while using ASMASH, as a result of the sequence of the breaches for which the agent
was responsible, he was tagged as a bankruptcy suspect (Flag 2). This means that there has been no
negotiation with this partner since Flag 4. Thus, using ASMASH, we made the time between the partner’s
bankruptcy and the last step the agent was considered legitimate to negotiating, less compared to the
situation where the Decentralizing agent was used. The ”"gap” in figure 4 is reflecting the time between
the non legitimacy of the partner by using ASMASH in comparison to the time when using Decentralizing
agent used.

Conclusions

In this paper we introduce ASMASH, an agent based primarily on decentralized agent capabilities. We
have developed an algorithm that minimize the length of time between a partner’s bankruptcy and the
final stage in the legitimacy of this negotiating partner. Moreover, the algorithm significantly reduces
the number of compensated contracts. We have tried to resolve crucial flaws in the agent and by doing so
we have created an improved version of the decentralization agent, resolving crucial flaws of the agent.



	Introduction
	The Design of ASMASH
	Negotiation Choices
	Utility Function

	Evaluation

