
ANAC 2020 BIUDODY agent report

When started working on ANAC we firstly tried to see which of the built-in agent is
having the best performance and found that the Decentralized Agent is the winner in
this case. Therefore, we focused on improving the component that the Decentralized
agent is using and after multiple version and tests, we managed to win against this
agent in 75% of the cases. We did win against all other built-in agent in much higher
percentages and tried to test our code with other components but decided, based on
the result, to improve the components that the Decentralized Agent is using.

The Agent is using an enhanced version of the MeanERPStrategy predicts the
execution rate per buyer or seller, meaning for every buyer or seller at the world we
will maintain a structure that is holding his average execution rate and quantity.
These parameters will then go to our controller as the mean of all expected quantities
and in this way if negotiation were made with one agent it will affect accordingly and
not fairly distributed. This also gives our agent to maintain different parameters per
buy or sell.
We also used gradient descend in order to learn the best parameter for the
production_cost_factor argument which is needed in order to decide what is the
acceptable unit price.

We didn't implement a collusive version of our Agent and therefore it doesn’t play
well in this version of the tournament.

Simultaneous negotiations coordination.

At Controller level: the final agent acts according to DecentralizingAgent's
coordination strategy, which is performing independent negotiations with
AspirationNegotiator and declining negotiations when target quantity is reached. It is
worth mentioning that we did try some novel approaches: we implemented a step-
sync controller that waits before accepting a negotiation and after a while selects the
best outcomes from the waiting list. Another controller we tried estimated a "fair
price" with respect to previous agreements and declined new offers that were too far
from the fair price. Unfortunately, none of our attempts shoed any improvement, thus
they were not used in the final agent.

Utility function.

The agent's utility function calculates an initial utility value u, a trustworthiness factor
t, and then the final utility is set to:

u – |u * (1 – t)|

The initial utility is calculated by the DecentralizingAgent's utility function, which is the
LinearUtilityFunction with (1, 1, 10) parameters for seller, and (1, -1, -10) parameters
for buyer.

In a negotiation with agent A, the trustworthiness factor represents how much we
trust agent A, in percentage. It is calculated by:

0.2 * (1 - breach level) + 0.8 * (1 - breach probability)

When breach level and breach probability are taken from the last published financial
report of agent A.

Production Strategy

At every step an agent signs on several buy and sell agreements. Our goal was to
create a strategy that minimizes the difference between buy and sell quantities. To
achieve that we first based our Agent on the Demand-Driven-Production-Strategy.
Doing that promised that the agent will always have minimal quantity it needs for the
sell agreements that were already signed. Secondly, we created a model that tries to
predict if there is a need to increase production for future deals.

To create a production-classifier we created hundreds of simulations and for each of
one, we collected information from the environment throughout the whole game. The
final classifier was trained as a binary classifier. Given the information collected from
the last 3 steps it predicts if there is a need to increase production with respect to the
Demand-driven-Strategy. Since the feature space was limited, we used a linear SVM
model. We split the simulation-data to train and test with ration of 80/20 respectively
and got 82% accuracy over the test set.

To apply the model an agent loads the model at initialization time. At each step the
Agent collects information from the environment, commits production according to
the Demand-Driven-Strategy and then it produces K more items if the production-
classifier returns a positive answer.

