
Report of UcOneshotAgent for SCML 2021 competition

By Yuchen Liu

July-28-2021

Introduction
The UcOneshotAgent is developed for the SCML 2021 competition Oneshot track, it was developed for

scml.oneshot.SCML2020OneShotWorld, therefore it should not run in other simulators (worlds). This

agent is developed by myself under the instruction of professor Rafik Hadfi and professor Ito Takayuki.

In this report I will mainly introduce performance, developing process and the strategies used in the

agent.

Performance
Since this year is the first year of oneshot

competition, there is no agents from past

competition available at scml package.

However, I could borrow the example agents

from scml documentation website, there are

four agents in the tutorial section:

SimpleAgent, BetterAgent, AdaptiveAgent

and LearningAgent, running a 100-day(step)

SCML2020OneShotWorld simulation for 300

times with UcOneshotAgent and these four

agents, and the average scores show in right

diagram.

UcOneshotAgent looks just a bit better than other four agents. But as UcOneshotAgent is able to adjust

its concession policy for different partners, it performs better in complex situations. According to 10

online tournaments from 27th June to 2nd July, UcOneshotAgent’s score is not bad, with the ranking

hovered between first and third place.

0.8

0.85

0.9

0.95

1

1.05

average scores

Structure and working flow
SCML2020OneShotWorld simulates oneshot games by calling agents’ different methods at different

simulation stage. The figure below (from official oneshot game documentation) shows the execution

order of methods in an agent.

Thus, it is essential that UcOneshotAgent’s structure and working flow fit the execution order shows

above. The figure on the right shows the

working flow and each function’s duty of

UcOneshotAgent. The overall structure of

UcOneshotAgent is creating a negotiation

plan (negotiation plan means offer price and

acceptable price) at the end of each day,

and follow the plan when negotiating with

partner agents at the next day. At the end of

each day, the negotiation plan will be

updated based on the negotiation results of

this turn. The before_step() function do

nothing in UcOneshotAgent, this is because

before_step() function was added to

OneshotAgent at later version of scml, and it

is not necessary to separate step() function

into two functions.

Among these functions, step() function is

the most important one, it adjust

negotiation strategy at the end of each turn. How to adjust negotiation strategy will significantly

influence the performance of our agent.

Developing and optimizing process
The developing process was inspired by the process of reinforcement learning. The initial agent is

nothing but a basic concession strategy agent, then different strategies were added to the agent. When

a new strategy was added to the agent, I will run competitions between new agents with different

coefficient, old agents (agents without new strategy) and agents from scml tutorial to see if the new

strategy casts positive effects to the performance, if the new strategy casts positive effects, it will be

remained and best score agent’s coefficient will be adopted, but if the new strategy casts negative

effects, it will be dropped. Adding agents from scml tutorial can provide uncertainty to the simulation

process, which makes it close to real competition environment.

Strategies
• Strategy #1: rapid reaction strategy

Based on the results of world simulation, I found out that an important factor that influences agent’s

performance is the timeliness. If you can reach an agreement before your competitors (agents in the

same production level), your agent is likely to earn more money. Thus, to reduce the reaction time of

propose() and response() function, UcOneshotAgent build a negotiation plan at step() function and

follow that plan at next simulation day to save reaction time.

• Strategy #2: concession rate adjusts strategy

Different partners have different strategy, some partners are easier to compromise, for these partners

we should be more aggressive to gain more profit; Other partners are stubborn, and it is our turn to

make some compromise. The concession rate adjust strategy adjusts the rate of concession at the end

of every step, based on the negotiation results. The basic idea is to be more aggressive if the negotiation

success, and more defensive if negotiation failed. Adjust will continue through the whole game, since

the strategy of partners towards our agent are also keep changing throughout the game.

The agent also adjusts the offer’s price towards category price, since it is nearly impossible for partner

agents to accept an offer that maximize our utility value. And it is also not wise to accept such offer

given by partners. Figure on

the right shows a normal

concession curve and the

concession curve after applying

upper (0.8) and lower (0.2)

limit.

The toughness of each partner

is not the only concern, if the

number of partner agents is

large, we do not need to concede to tough partners but try to reach agreements with other partners. In

short, a connection can be built between number of partners and concession rate.

Another factor we can put into concern is the negotiation results of previous turns. We can adjust our

concession rate based on the ratio of agreement reached quantity and exotic quantity of previous turns,

the perfect condition is that the ration equals to 1, which means we do not to make further

modifications of our concession rate. If the ratio is lower than 1, our agent should reduce concession

rate and vice versa.

Finally, I want to mention a

global coefficient adjust

strategy, at early version of

scml package, there are fixed

three agents at each level in

SCML2020OneShotWorld. But

the number of L0 and L1

agents are not fixed anymore

at current version, in this

case, “buyer’s market and seller’s market” can be put into concern, which means our agent should be

more aggressive if the number of competitors is less than the number of partners, and if the number of

partners is less than the number of competitors, our agent should be more defensive.

• Strategy #3: over quantity strategy

This strategy is relatively simple, I think most of the agents should already include it. This mechanism’s

main idea is agent should accept offers that exceed required quantity but still offer a positive utility

value (profit is larger than deposit cost or shortfall penalty).

Shortages and future improvement plans
• Noise of concession rate adjustment strategy

There are many sub-strategies of concession rate adjusts strategy in previous section. All these sub-

strategies make modifications to concession rate. Thus, they will influence each other and produce noise

which will cause the overall performance to drop. Thus, it will be helpful if those strategies could

combine in a reasonable way, and there are several ways to do so:

o Linear combination:

𝐸 = 𝑘1𝑀1 + 𝑘2𝑀2 + 𝑘3𝑀3 + ⋯

 E: overall effect towards concession rate

 k: coefficients

 M: concession rate adjustment by a strategy’s mechanism

o Polynomial (assume there are 2 mechanisms):

𝐸 = 𝑘1𝑀1 + 𝑘2𝑀2 + 𝑘3𝑀1𝑀2 + 𝑘4𝑀1
2 + 𝑘5𝑀2

2

o ANN:

Construct an ANN network for regression task, with mechanism adjustments (M) as input

neurons and overall adjustment (E) as output.

To implement these three methods, we need a huge amount of test runs to adjust coefficients in linear

functions and polynomial functions, ANN training process also requires test runs as training materials.

Unfortunately, the simulating process is very time-consuming, a 100-day simulation run takes around

150 to 400 seconds to finish with scml v_0.4.5. But scml version 0.4.6 has a huge performance boost,

same simulation only takes about 20 to 40 seconds. So, I think I could implement these methods on next

year’s competition.

• No sync algorithms

Another shortage of UcOneshotAgent is it does not contain any sync algorithm other than “required

quantity”, dynamic price adjustments always play negative effects to the overall performance according

to my test results. Take the test run in Performance section as an example, the score of AdaptiveAgent is

lower than the score of BetterAgent, where AdaptiveAgent just added sync price adjustment algorithm

based on BetterAgent.

But refer to real world, it is important to compare the price of different offers offered by different

clients/suppliers. So, the key point is to figure out the reasons that cause score to drop and see if those

can be recovered.

Reference
1. Developing an agent for SCML2021 (OneShot)

http://www.yasserm.com/scml/scml2020docs/tutorials/02.develop_agent_scml2020_oneshot.html

2. SCML 2021 League

https://scml.cs.brown.edu/

3. Y. Mohammed, E. Areyan Viqueira, A. Greenwald, K. Fujita, M. Klein, S. Morinaga, S. Nakadai (July 5,

2021) Supply Chain Management League (OneShot)

http://www.yasserm.com/scml/scml2021oneshot.pdf

http://www.yasserm.com/scml/scml2020docs/tutorials/02.develop_agent_scml2020_oneshot.html
https://scml.cs.brown.edu/
http://www.yasserm.com/scml/scml2021oneshot.pdf

