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Introduction 
The SCM world simulates a supply chain consisting of multiple factories that buy and sell products from 

one another. The factories are represented by autonomous agents that act as factory managers, and the 

challenge is to submit an agent that is the most profitable. 

Solution Design and Overview 
The agent We have developed is built component-wise. This enables programming different tasks of the 
agent separately, and by doing so we can also evaluate each component independently. In addition, this 
kind of object-oriented design is more elegant and easier to debug. My final agent consists of 3 (+1) 
main components: 

1. Trading Strategy 

This component is responsible for deciding the quantity and price for buy and sell at every time-step. 

It specifies some goal which later the other components will try to fulfill. We divide this component 

further into 2 sub-components: 

• Trade prediction strategy – a pre-negotiation component that decides the quantities and prices 

to negotiate about based on prediction of future market behavior. My implementation of this 

component is based on a learned deep network for prediction. The specification will be described 

in the implementation details section. 

• Signing strategy – a post-negotiation component that decides what agreements to sign as 

contracts. We simply sign all the contracts for two reasons: 

o Firstly, empirically, learning a signing strategy wasn’t helpful, perhaps because most 

concluded contracts are also signed. 

o Secondly, we count on the negotiation component to accept and offer only contracts that my 

agent can handle. Thus, once a contract is concluded, there is no reason for not signing it. 

We believe the signing strategy is important only if in the negotiation strategy you purposefully 

make offers you cannot execute in hope that the other agent will respond by making a 

counteroffer that is more beneficial. 

2. Negotiation Control Strategy 

This component is responsible for proactively request negotiations, responding to negotiation 

requests and conducting concurrent negotiations. We divide this component further into 4 

subcomponents: 

• Negotiation manager – a pre negotiation component that decides which negotiations to accept 

and which to engage in. Our negotiator manager consists of 2 sync controllers, one that handles 

the selling contracts and one for buying contracts. 

Note that this means that the negotiation manager doesn’t synchronize selling and buying. As an 

example, if there was a great sell deal that the seller sync controller made, maybe it is okay to 

buy at a higher price than what the initial trading strategy has demanded. Such a logical step is 

not possible in our negotiation manager, and can be considered for a further optimization of our 

submitted agent. 

• Sell/buy sync controller – A controller is a class that manages multiple negotiations. Both of our 

controllers use the above trading component to set the goal of the negotiation – how much 

products to buy/sell and at what maximal/minimal cost/price. The SAOSyncController in addition 



synchronizes the process of offering and responding to offers. By inheriting from this controller 

class, our controllers are used for syncing multiple contracts on the same time. 

Our controllers find the best offer currently received. If the negotiation is about to end or this 

offer has a utility above some threshold, it is accepted. Otherwise, it is sent to all other 

negotiators as our new offer. We respond to the partner that gave us the best offer with the 

offer with the maximum predicted utility. 

• Negotiation Algorithm – Our negotiation algorithm uses 2 utility functions: 

o The first utility function is used for evaluating an offer. This is a simple linear function of the 

price (positive for selling and negative for buying) and the quantity. We need this utility 

function in order to decide which offer is best. 

o The second utility function is used for predicting the response of the opponent negotiator. 

Given this function, we can predict the opponent response for several offers, and decide 

which one to take (according to the first utility function which evaluates offers). 

In the implementation details section, we will describe the implementation of the negotiation 

algorithm based on these 2 functions. 

3. Production Strategy 

Decides what to produce at every time step. We use SupplyDrivenProductionStrategy, which 

basically converts all inputs possible into outputs. The reason to do so is that We count on the 

trading strategy and negotiation mechanism to buy only necessary inputs. 

Furthermore, this incentivizes the agent to have more negotiations and therefore earn more money. 

This works better than DemandDrivenProductionStrategy which produces only the products that are 

needed for the next day, because in this scenario we are less ready in advance for making additional 

negotiations or to handle unexpected offered negotiations from the opponent agents. 

4. Save History 

This component is used for saving the history or view of an agent in the SCML world. This helpful 

“plugin” is useful for mainly 2 reasons: 

• Data gathering – the history wrapper enables us to record everything that an agent saw in the 

simulation. The information and experience he gained can be used for learning and training 

afterwards. 

• On runtime, the agent can use the data he saw in the past in order to predict future behavior. 

This applies both for the predicting future market behavior for the trading strategy, and for 

predicting the opponent’s reaction to offers best on the contract bargaining so far. 

Implementation Details and Results 
Learning a trade prediction network – we are interested in predicting the amount of inputs needed and 
outputs needed on each time step in the future. These predictions will be used as explained by the 
negotiation mechanism. We should discuss about both feature extraction and learning phase. 
Fortunately, the feature extraction in this case is mainly done by the save history wrapper component. 
The main problem is that this is allegedly not a tagged data, so it is not clear how supervised learning 
can be used. 
However, using offline learning here works quite well. The main idea is that, after a run of the SCML 
world is finished, we know in retrospect, on each time-step, how many resources were needed on each 



time step. We can use this data for learning, and then the prediction used on the learned model can be 
done online. 
We therefore chose to learn a recurrent network, suitable for propagating memory from the past for 
future prediction. We trained 2 separate networks, one for predicting the inputs needed and one for 
predicting the outputs needed. The deep network design consisted of a 2 layered LSTM network, and an 
MLP squeezing layer. We now present the graphs of loss vs number of epochs. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Opponent Modeling - Learning an opponent prediction network 

We are now interested in learning a function that predicts the behavior of an arbitrary opponent. This 

function should naturally depend on the history of the current negotiation. This is done by an additional 

save history component. Furthermore, this function should depend on the goal specified by the trading 

component, and the current SAOState (negotiation step, relative time and so on). 

Similarly, using offline learning we can reduce to a supervised learning task. Indeed, after a simulation of 

the SCML world is complete, we know the retroactively the responses of the agents to all offers. We can 

thus try to learn the above deep network prediction function. 

The structure of the deep network used here is the same, except for one key mitigation. The trading 

goal, is used as an auxiliary feature that is appended in time-step of the contract agreement. In this way, 

we can effectively train multiple networks in parallel. 

Train Input Needed Prediction 

Network 
Train Output Needed Prediction 

Network 



Even more importantly, this is a natural way of transfer learning. Indeed, learning how to bargain when 
the goal is to buy 𝑋 resources at maximal price of 𝑌 for (𝑋, 𝑌) ∈ {(𝑋1, 𝑌1), (𝑋2, 𝑌2)}, our network can 
generalize and deduce how to work for (𝑋1, 𝑌2) even if there was no such data in the train set. . We now 
present the graphs of loss vs number of epochs for these networks. 
 

 

 

 

 

 

 

 

 

 

Evaluating an offer 

As for the utility function for evaluating offers, a simple linear network does the job. All that this utility 

function should supply is encouraging the buyer to buy as much resources as possible, a the lowest price 

possible. Similarly, we can define a utility function for a seller by changing the sign of the price. The main 

observation or heuristic is that if we considered all the data carefully in order to predict the opponents 

behavior, the only thing left to consider, roughly speaking, is the offer itself. Note that we don’t consider 

the offer’s time, which is a place for improvement. 

Bidding Strategy - How to make an offer? 

We view the 𝑝𝑟𝑜𝑝𝑜𝑠𝑒 method as an optimization problem. We would want to find offer, that maximizes 

the utility of the offer the opponent agent will respond. Clearly, we need both functions mentioned 

earlier in order to do so. We will now discuss how to smartly scan the space of optional offers. 

The most naïve approach is to go over all the possible triplets of time, quantity, price, and offer the one 

that gives the best predicted utility. However, this is not a feasible solution. The first observation one 

could take is the following: when all the rest of the parameters is fixed, if the opponent buyer didn’t 

agree to buy our product in price 𝑝, he probably won’t agree to buy our product in price higher than 𝑝. 

Furthermore, we as sellers would prefer to sell in the highest price the opponent would accept. Thus, 

instead of going over all triplets, we can use binary search for the price component. 

The second observation to take is that we shouldn’t consider all possible times for negotiations, but only 

a finite horizon we can specify. This horizon is a hyperparameter for our agent, currently set to 5. In any 

case, early contracts are less risky, in the sense that we are more certain of our abilities in the near 

future. As for the quantity, we go over all possible configurations, from 1 to the predicted amount 

needed. 

Train Seller Negotiation Model Train Buyer Negotiation Model 



Acceptance Strategy – How to respond to an offer? 

The 𝑟𝑒𝑠𝑝𝑜𝑛𝑑 routine is implemented as follows: given a SAOState and an offer, we call propose routine, 

and if we get a higher utility, we reject, and otherwise we accept. 

Elicitation Method – How the agent deals with preference uncertainty? 

There are two sections where the agent should have an elicitation method. 

The first is the propose routine, where our agent simulates the response of the opponent in his head for 

several proposals. The utility function is used for elicitation. Since it returns a float number, equalities 

should not occur, and even if they had, they are equivalently good for the agent (we may try to further 

improve our utility function, but equalities in general may always occur). 

The second place is the sync controller, that should decide which offers to accept and which to continue 

negotiate. Our sync controller takes the best offer he got (decided by the utility function) and passes it 

as a response to the rest of the agents. Here again, equivalence in the utility should not occur, but if it 

does, we decide arbitrarily (basically, the way Python 3 decides which argmax to return, probably the 

first one on the list). 

Evaluation 
The evaluation of the agent was done by running small tournament of the agent against built-in agents 

such as the DecentralizedAgent and the BuyCheapSellExpensiveAgent. Moreover, the online leader 

board was used to test the performance of our agent against the rest of the competitors. At some point, 

our agent was at the top of the standard leader board! 

 

 

 

 

 

 

 

 

 

 

Fortunately, since our agent was built component-wise, we could test the effectiveness of each 

mechanism independently. This allows us to test the contribution of each mechanism by itself. Here are 

some tests we ran of our negotiation mechanism contribution to our agent: 



 

Here are some tests we ran for our trading mechanism contribution to our agent: 

 


