WTAgent: An agent submitted to the ANAC
2021 SCM league

Shuto Kawakita!, Takanobu Otsuka?
L2Nagoya Institute of Technology, Aichi, Japan
Tkawakita.shuto@otsukalab.nitech.ac.jp
2otsuka.takanobu@nitech.ac.jp

August 11, 2021

Abstract

WTAgent maximizes profits by making the purchase price of inputs
cheaper and the sale price of outputs more expensive. WTAgent’s produc-
tion strategy converts all input products to output products. WTAgent
schedules as much production as possible to produce the required quantity
before the time it is needed at. WTAgent’s trading strategy uses predic-
tion strategies to manage input products and output products that are
needed. WTAgent’s negotiation strategy is to buy a product for prices
between 0 and half catalog prices, and sell a product for prices between
catalog prices and double catalog prices.

1 Introduction

The SCM world simulates a supply chain consisting of multiple factories that
buy and sell products from one another. The factories are represented by au-
tonomous agents that act as factory managers. Each agent decides which other
agents to buy and sell from, and then negotiates with them. The goal is to turn
a profit, and the agent that turn the highest profit wins.

According to the game description in SCML2021, an agent’s performance
will be measured by its score. An agent’s score will be the turncated mean of
its profits in all simulations.

The profit is calculated as follows:

Y ower BN (f) +eln(f) — Bo(f)
ZaeF By

where, € is the fraction of trading price at which to value the inventory at the
end of the game. F is the set of all factories controlled by instantiations of
the agent, Bo(f) and By(f) are the factory’s balances at the beginning and
end of the simulation, respectively, and In(f) is the value of the products in

Profit =

(1)

the factory’s inventory at the end of the game. So, the agent has to buy input
products cheaper and sell output products more expensive.

2 The Design of WTAgent

WTAgent has three classes we created and one required class as follows:
e MyNegotiationManager
e MyTradingStrategy
e MyProductionStrategy
e SCML2020Agent

2.1 My Negotiation Manager

MyNegotiationManager consists of two steps.

First, We create our controller based on SAOSyncController. The main
idea of our controller is that the controller will define a utility function for any
possible outcome. It will collect offers from all controllers and responds in this
way:

1. If the best offer is invalid, the controller rejects everything and offer the
best offer.

2. If the best offer is within threshold, the controller accepts it.

3. Otherwise, the controller sends the best offer to all controllers else and
tries to improve this offer until the end of the negotiation.

Our controller defines a utility function which is a linear combination of the
price and difference between the quantity and WTAgent’s needs at the delivery
time.

Second, we use this controller in our negotiation strategy. Our negotiation
control strategy will work as follows:

1. It will instantiate two SyncController objects. One is for selling. The
other is for buying.

2. It will start negotiations to satisfy the needs that it gets from the trading
strategy using these controllers every simulation step.

When negotiating, WTAgent buy a product between 0 and half catalog prices,
and sell a product between catalog prices and double catalog prices.

2.2 OurTradingStrategy

MyTradingStrategy is based on PredictionBased TradingStrategy. This strategy
uses a trade prediction internally to predict how many inputs are expected to
be available and how many outputs are expected to be sold by WTAgent at
every time-step. Given these two quantities, it maintains the amounts of in-
puts/outputs that it needs. It then employs a controller to manage negotiations
and update the amounts secured.

2.3 OurProductionStrategy

OurProductionStrategy is based on SupplyDrivenProductionStrategy that is
converting all inputs to outputs. OurProductionStrategy is not only converting
all inputs to outputs, but also prioritizing the production. For each signed
contract, WTAgent schedules as much production as possible to produce the
required quantity before the time it is needed at.

3 Evaluation

To evaluate the WTAgent’s performance, we experimented with the run() func-
tionpresent in the template. The parameters are as follows:

e competition=std
e nsteps=15
e nconfigs=3

The competitors of WTAgent were DecentralizingAgent, BuyCheapSellExpen-
siveAgent. The scores of each agent for the five experiments are shown in
Tablel.

Table 1: Score of 5 Starndard truck tournaments
Tournament \ WTAgent \ DecentralizingAgent \ BuyCheapSellExpensiveAgent ‘

1 -0.0641059 -0.238763 -0.939725

2 -0.160228 -0.632556 -0.908415

3 0.014639 -0.227615 -1.24358

4 0.0387795 -0.262767 -0.863824

5 -0.12575 -0.261178 -0.631781
| Average | -0.05933308 -0.3245758 -0.9174642
Conclusions

In this report, we explained WTAgent’s strategy. We thought buying inputs
cheaper and selling more expensive were efficient way to turn profits. WTA-

gent’s main strategy is buying inputs cheaper and selling outputs more expen-
sive. At a glance, WTAgent is similar to BuyCheapSellExpensiveAgent, but
WTAgent won BuyCheapSellExpensiveAgent. We think the cause of this is
Negotiation Manager. Not only by buying inputs cheaper and selling more ex-
pensive, but also by scheduling as much production as possible to produce the
required quantity before the time it is needed at, WTAgent could sign more
contracts. Therefore, WTAgent won BuyCheapSellExpensiveAgent.

