
Agent Merchant for SCML, ANAC 2020

Ayan Sengupta
a-sengupta@nec.com

NEC corporation

July 2020

1. Introduction
The SCM world simulates a supply chain consist-
ing of multiple factories that buy and sell products
from one another in a simulated market [3]. The
factories are represented by autonomous agents
from participants in SCML that act as factory man-
agers. Each agent decides which other agents
to buy and sell from, and then negotiates with
them. The goal is to have the highest median
score across all simulations. The score calculated
in SCML is based on a percentage of profit and
remnant unsold products. The simulation proceeds
in discrete time steps during which multiple simul-
taneous negotiations take place. There are two
separate tracks in SCML, 2020: standard track and
collusion track. In the standard track, at most one
instantiation of each team’s agent will run in each
simulation whereas, in the collusion track, multiple
instantiations of the same team’s agent will run dur-
ing a single simulation.

This report describes the strategy of Agent Mer-
chant in the following sections. Section 2 describes
the basic strategy and algorithm. Section 2.1 and
Section 2.2 describes the algorithm for standard
track and collusion track respectively. Section 3
shows the result of Agent Merchant against builtin
agents.

2. Strategy and Algorithm
For an agent to be profitable in the SCML world,
it needs to buy input materials through negotia-
tion, manufacture them, then sell output products
through negotiation. The tutorial by the organis-
ers in [2] broke the overall strategies into following
components

1. Trading Strategy: This component decides the
quantity and price to buy and sell at every
time-step. A trading strategy can be based on
future market prediction or partner behaviour
prediction.

2. Negotiation Control Strategy: This component
is responsible for proactively request negotia-
tions, responding to negotiation requests and

actually conducting concurrent negotiations.

3. Production Strategy: This component decides
what to produce at every time-step.

Agent Merchant comprises of similar components.
Along with these components, more stress will be
given to signing strategy. It is a post-negotiation
component that decides what agreements to sign
as contracts.

Since SCML involves a lot of negotiation, one
can assume that an appropriate negotiator and a
complicated utility function is required to be suc-
cessful in the market. But on the contrary, we use
very basic negotiator and utility function for this
agent. The negotiator used here is a modified Aspi-
ration type negotiator (Boulware) [1]. The negotia-
tor behaves as an aspiration Negotiator for certain
conditions and as a tough negotiator for other con-
ditions and it switches dynamically within a nego-
tiation session depending upon a threshold value
as shown in Algorithm 1. The algorithm takes the
type of opponent and a threshold value as input.
Moreover, if the opponent is an instance of the mer-
chant agent it will always behave as an Aspiration
type agent. Utility function used is a linear utility
function. Negotiator and utility function are kept the
same for both tracks. The rest of the algorithm for
agent Merchant can be divided into two separate
categories, one for standard track and another for
collusion track.

2.1. Algorithm for Standard track
The basic algorithm for the standard track is di-
vided into four components as mentioned in Sec-
tion 2.

1. Trading Strategy: No special trading strategy
is used. Most of the functionalities are in sign-
ing strategy.

2. Negotiation Control Strategy: The agent re-
quests multiple negotiations with all its cus-
tomers and suppliers at every time step with
different issues as shown in Algorithm 2. If
the agent fails to get any agreement from the

1

Algorithm 1: Merchant Negotiator
input : threshold, opponent
output: Negotiator
Negotiator = Aspiration Negotiator;
if opponent != Merchant type then

if aspiration value < threshold then
Negotiator = ToughNegotiator(utility
value = threshold);

else
Negotiator = Aspiration Negotiator;

end
end

customers or the suppliers in a certain time
step, the issue space is dynamically increased
in the next time step for possible agreements.
Certain abnormal offers are sent to customers
and suppliers to check if those agents are ex-
ploitable. Abnormal offers include a buying of-
fers of large quantity at a very low unit price or
a selling offer of small quantity with large unit
prices. Note here that if the offers are too ab-
normal that causes the exploitable agents to
go bankrupt on a single contract, then it is not
profitable due to bankruptcy rules. As men-
tioned in Section 2 the negotiator itself is a
dynamic entity. If the agent fails to get any
agreement in each time step the negotiation
strategy becomes more conceding in the next
time step. In the same way, if the agent re-
ceives successful agreements, it will behave
more like a tough negotiator in the next time
step. Moreover, the agent declines all ne-
gotiation requests from other agents to avoid
exploitation. Negotiation control strategy also
decides the threshold value for the negotiator
in Algorithm 1.

3. Production Strategy: The agent produces
whenever input products are available.

4. Signing Strategy: Most of the decisions are
made by this component. Once a number of
successful negotiations have been conducted,
we have a pool of agreements. This com-
ponent signs strategically to make profits in
the long term and is described in Algorithm 3.
Signing strategy has four sub-components:

• A greedy signing policy that signs pairs
of contract if available at each time step,
one from buying side and one from sell-
ing side that ensures sure profit.

• An inventory price based signing compo-
nent signs any agreement that has the to-
tal cost of the input product and the pro-
duction cost less than half of the catalog

Algorithm 2: Negotiation Control Strategy
for Standard Track
input : list of opponents o, acceleration

factor a, deceleration factor d, list of
small issue spaces is, list of large
issue spaces il, boolean variable
stating if any buy contract signed in
last step buy, boolean variable
stating if any sell contract signed in
last step sell

if track == standard track then
Cancel all negotiation requests;
for (items in o) {

for (issue space i in is) {
Request negotiation with i issue
space;

}
Send abnormal offers;
if not buy then

for (issue space i in il) {
Request buy negotiation with i
issue space;

}
threshold = max(0.4, threshold -
0.05 * d);

else
threshold = min(0.9, threshold +
0.05 * a);

end
if not sell then

for (issue space i in il) {
Request sell negotiation with i
issue space;

}
threshold = max(0.4, threshold -
0.05 * d);

else
threshold = min(0.9, threshold +
0.05 * a);

end
}

end

2

price of the output product. Since rem-
nant products are valued at half the value
of trading price for that product, this com-
ponent ensures profit for any such agree-
ment.

• A over selling balancer component sign
agreements to buy early in the case that
the agent signs more contracts for sell-
ing. This minimises the risk of breaches.

• A over buying balancer component sign
agreements to sell in the case that the
agent signs more product for buying. This
minimises the risk of a large quantity of
unsold products.

• Finally a profit estimate component that
estimates the agent profit at the end from
the current signed contracts. If the profit
estimated is greater than 0.8, no more
contracts are signed throughout the sim-
ulation. So in the early time steps if an
agent makes some profit it will backout
from further negotiations to minimise risk.

• A dead lock breaker component that
signs a few buy and sell contract to get
the signing strategy work in case no buy
agreements and sell agreements have
been signed.

2.2. Algorithm for Collusion track
Agent Merchant is able to collude in a market
where more than one instance of the same agent
is present. We have introduced collusive behaviour
algorithm for any configuration where multiple in-
stances of agents are present in two or more con-
secutive levels as shown in Figure 1 and Figure
2. For all other cases agent uses algorithm for
standard track. Figure 3 shows two such collu-
sion cases where each agent will behave indepen-
dently.

An agent’s final score is the median of the profits
accrued by all the factories it is assigned to man-
age across all simulations. So the idea is to im-
prove the median as much as possible. So in a
collusion track simulation if one instance of agent
sustains losses while providing profits to more than
one instance of same agent, it ensures that the me-
dian score will increase. One thing to notice here
is factories at a higher level has more starting bal-
ance than the factories at a lower level. This will
be leveraged in the collusion algorithm. The con-
figurations(positions of agents in a single world) in
a collusion track can be divided into four case as
follows:

1. If there are instances of agents in two or more
consecutive levels as shown in Figure 1 (Top),

Algorithm 3: Signing strategy for Standard
Track
input : List of agreements A, cost of

production cp, catalog price of
output product po, variable stating
total buy contract signed bought,
variable stating total sell contract
signed sold

if track == Standard track then
if bought==0 and sold == 0 then

sign few cheap buy agreement and
few expensive sell agreement

end
for agreement in A and profit estimate()
< 0.8 do

greedy signing policy();
if agreement[”price”] + cp < po/2 then

sign agreement;
end
if over sold then

over selling balancer();
end
if over bought then

over buying balancer();
end

end
end

then the agent in the highest level (k + 1)
buys a single quantity of product at a very
high price like 80% of initial balance. These
agents do not participate in any further nego-
tiations. If there are more than two consecu-
tive instances of agent this ensures that me-
dian score goes up as only one agent incurs
losses while the other agent earn some profit.
The profit margins depends on the initial dis-
tribution of balance. Since the distribution of
prices increases proportionally with level, the
profit percentages are high for each agent.

2. If there are two or more instance of an agent
in the same level and a single instance of the
agent at an adjacent higher level as shown in
Figure 1 (Bottom), then the agent at the high-
est level buys a single product from each of the
instance of the same agent in the lower level
at a high price. Similar to the last case, only
one agent incurs loss where as other agents
gains a profit thereby increasing the median
profit. These agents do not participate in any
further negotiations.

3. The third case occurs when there are more
than one instance of agent in each of the two
consecutive levels as shown in Figure 2. In

3

Figure 1: Top: Collusion strategy for two or more instances of
same agent in consecutive levels namely k − 1, k and k + 1 .
Bottom: Collusion strategy for two or more agents in a lower
level m and one agent in the next higher level m+ 1

Figure 2: Top: Collusion strategy when there are more than
one instance of agent in each of two consecutive levels k and
k + 1. In the initial step B is the ideal agent.

this case the algorithm works in two parts. In
first part one or more agent in the highest level
stays idle (agent B) and the problem becomes
similar to case 2. After the initial transaction,
agents in the lower level (level k) buy from
market and sell it at a cheap price to the idle
agent(s) (agent B) at the higher level. From
next step these agents negotiate in the market
like standard track and try to sell the output
product.

4. All configurations where there are no two in-
stances of agents in consecutive levels are
treated as standard track problem.

3. Results against in built agents
Table 1 shows the result against the two inbuilt
agents Decentralized agent and BuyCheapSellEx-
pensive (BCSE) Agent for the standard track and
collusion track. The configuration for competition
are n steps: 60, n configs: 50, n runs per world:

Figure 3: Top and Bottom: Not considered in collusion strat-
egy. Each agent independently will behave according to stan-
dard track.

Table 1: Median score against inbuilt agents

Track Merchant Decentralized BCSE
Standard 0.227 -0.049 -1.535
Collusion 0.005 -0.068 -0.527

2. As per the last live competition, agent Merchant
stands at 12th position in standard track and at 2nd

position in collusion track.

References
[1] P. Faratin, C. Sierra, and N. R. Jennings. Ne-

gotiation decision functions for autonomous
agents. Robotics and Autonomous Systems,
24(3-4):159–182, 1998.

[2] Y. Mohammed. Supply Chain
Management League Tutorial.
http://www.yasserm.com/scml/scml2020docs/

(July 2020).

[3] Y. Mohammed, A. Greenwald, K. Fu-
jita, M. Klein, S. Morinaga, S. Nakadai.
Supply Chain Management League.
http://www.yasserm.com/scml/scml2020.pdf

(July 2020).

4

