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Abstract

We present a trading agent dedicated for the OneShot track. Our
agent’s strategy combines learning, for predicting future market condi-
tions, and dynamical programming for optimal selection of concurrent
offers. We show that our agent gains the highest score among the builtin
OneShot agents.

1 Introduction

This year, OneShot, a new simulation track in the SCM environment was in-
troduced. In this track an agent’s inventory and balance play a much smaller
role, as they are reset at every step of the simulation. Such settings gives more
emphasis on the negotiation part of the agent since production strategies and
other components, present in the ’Standard’ and ’Collusion” tracks, are irrele-
vant. Thus, we chose to develop the negotiation strategy of the agent based on
two key components of the OneShot simulated world:

• Exogenous contracts

• Concurrency of negotiations

both aspects are treated in our agent’s design.
Utilizing the fact that the trading prices are public information this year,

we use learning algorithms to predict future prices. The concurrency aspect is
exploited by improving the GreedySyncAgent via dynamical programming ap-
proach. Combining the two elements together we get a ’Predicting-Dynamical-
Programming-Synchronous’ agent, or in short: PDPS agent.
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2 The Design of PDPSAgent

2.1 Negotiation Choices

Relying on IDEA 11 from the SCML tutorial [2] we decided to try and predict
future market conditions, in particular, the future exogenous contract prices
based on past information. Since trading prices are public information this year
we are be able to extrapolate future market conditions and use this to adapt the
agent’s behavior. Even though our profits in every step are independent from
the future, our concession strategy may depend on our expectation about the
future of the market.

We used linear regression algorithm in order to predict future contract prices.
If the exogenous price will be greater, and we are on the buying side of the
exogenous contract, then we would want to be more flexible in our negotiations.
This is implemented by lowering the threshold parameter. On the other hand,
if we are a selling to the exogenous buyer, and we predict we will get a higher
price tomorrow, we would rather be stiffer in our negotiations today, and vice
versa.

The learning was implemented via sklearn.py package [3]. The features that
we used are exogenous price of yesterday, exogenous price of today and the day
number. the labels were 0 - for a prediction of a greater (or even) exogenous
price for tomorrow and 1 for smaller. we reached 93% of accuracy with this
algorithm.

2.2 Utility Function

We used the default builtin utility function provided by the SCML environment.

2.3 Concurrent Negotiation

As described in the tutorial [2] the utility function is defined for a complete set of
negotiation agreements and not for any single negotiation by itself. Therefore, it
makes sense to try to make decisions centrally by collecting offers from partners
then responding to all of them at once. This way one can think about all
negotiations ’together’. Knowing this advantage we decided to build our agent
upon the GreedySyncAgent class.

All the concurrent negotiations, each with its quantity and unit price, can be
represented an the widely-known Knapsack problem [1]. In this case, quantity
represents an item’s weight, unit price times quantity represents an item’s value,
and an agent’s needs represents knapsack’s maximal weight. The greedy agent
solves it naively by sorting the items by their values and then accepting all
offers until its needs are satisfied or surpassed. In the later case the last offer is
rejected, which in turn causes agent’s needs to be not fully satisfied.

We propose solving the knapsack problem less naively, by employing DP
methods. The original problem is subdivided into sub-problems where in each
case the optimal
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3 Evaluation

We ran our agent against the following builtin agents: GreedySyncAgent, Ran-
domOneShotAgent, OneshotDoNothingAgent, SyncRandomOneShotAgent. Our
agent, denoted in Fig. 1 as DPSyncAgent, got the highest score among the
agents he was simulated against.

Figure 1: Scores of tournament result. Our agent is denoted as DPSyncAgent

4 Lessons and Suggestions

In order to improve our agent, our suggestion is to improve the linear regression
model. we can add more features, search hyper parameters that will maximize
the accuracy etc. In addition, we can implement our own ufun.

Conclusions

Looking at the results shown in Section 3, we have managed to create an agent
that wins over all of the other builtin OneShot agents. We have used both
machine learning technique to maximize our knowledge about the world, and
dynamic programming for choosing which offers to accept among the concurrent
negotiations. This allowed our agent to gain better results, in particular against
the GreedySyncAgent.
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