
SolidAgent: An agent submitted to the ANAC

2021 SCM league

Soma Maeda1, Takanobu Otsuka2

Nagoya Institute of Technology, Aichi, Japan
1maeda.soma@otsukalab.nitech.ac.jp

2otsuka.takanobu@otsukalab.nitech.ac.jp

August 10, 2021

Abstract

We created an agent named SolidAgent that limits the timing of nego-
tiations to maximize profits. In my production strategy, the factory pro-
duces the products only when a contract is secured. My trading strategy
uses a forecasting strategy, managing inputs and outputs using predic-
tions in advance. My negotiation manager is a component that provides
negotiation control functionality. SolidAgent only performs input nego-
tiations in the first half. In the second half, my agent performs output
negotiations. SolidAgent can secure materials in the first half and sell
products in the second half.Therefore when negotiations are more active,
it maximize profits.

1 Introduction

The SCM world simulates a supply chain consisting of multiple factories that
buy and sell products from one another. The factories are represented by au-
tonomous agents that act as factory managers. Each agent decides which other
agents to buy and sell from, and then negotiates with them. Their goal is to
turn a profit. The SCM world is very different from the real world. For exam-
ple, the game is intended to further research on agent negotiation; as such the
design emphasizes negotiation and de-emphasizes operations (e.g., scheduling).
According to the game description, in the SCM world, profit is calculated as
follows:

Profit =
BN + 1

2IN −B0

B0
, · · · (1)

where B0 and BN are the factory’s balances at the beginning and end of the
simulation, and IN is the value of the products in the factory’s inventory at
the end of the game. This value is based on the trading price, but to incentive
trade, inventory is valued at only half the trading price. Therefore, we can

1



maximize profits by buying products cheaply and selling them at high prices,
but we should not buy too many materials that we cannot sell because the price
of surplus products is low. So we created SolidAgent by improving Negotiation-
Manager, PredictionBasedTradingStrategy, DemandDrivenProductionStrategy.
When SolidAgent is the buyer, it does not sign a contract with a very high
price in order to maximize BN . It also forecasts to ensure that it doesn’t create
surplus products.

2 Agent Strategy

SolidAgent limits the timing of the contract and signs a contract not to go
bankrupt. Also it does not make high input contracts at a high price like a
gamble, and make steady profits.

2.1 Agent Configuration

SolidAgent consists of the following four classes.

• SCML2020Agent

• MyNegotiationManager

• MyTradingStrategy

• MyProductionStrategy

”SCML2020Agent” is required class. ”MyNegotiationManager” is based on ”Ne-
gotiationManager”. This negotiation manager is a component that provides ne-
gotiation control functionality to an agent. Based on this negotiation manager
, SolidAgent limits the timing of the contract. ”MyTradingStrategy” is based
on ”PredictionBasedTradingStrategy”. This trading strategy uses a forecasting
strategy, managing inputs and outputs using predictions in advance. ”MyPro-
ductionStrategy” is based on ”DemandDrivenProductionStrategy”. This pro-
duction strategy produces only when a contract is secured.

2.2 MyNegotiationManager

”MyNegotiationManager” is based on ”NegotiationManager”. It manages ”MyNe-
gotiator”. ”MyNegotiationManager” returns ”MyNegotiator” when it offers or
is offered negotiation requests and ”MyNegotiator” manages the negotiation.
”MyNegotiator” uses utility function to calculate the utility of the negotiation
from the information like ”price,” ”delivery date,” and ”quantity” related to the
negotiation. It allows ”MyNegotiator” to reject offer with late delivery time or
more products than necessary, and try to make contracts higher prices when it is
the seller and lower prices when it is the buyer. Also, ”MyNegotiationManager”
limits the timing of the contract. In the first half, it mainly performs input
negotiations and collects materials. After that, it starts output negotiations.

2



It rejects output negotiations if it doesn’t have enough input products in its
inventry.

2.3 MyTradingStrategy

”MyTradingStrategy” is based on ”PredictionBasedTradingStrategy”. This trad-
ing strategy uses a forecasting strategy, managing inputs and outputs using pre-
dictions in advance. It predicts the price and quantity to buy and sell at each
step. Given these two quantities, it maintains the amounts of inputs and outputs
that it needs. It then employs a controller to manage negotiations and update
the amounts secured. It also sets a threshold to avoid running out of money.
Therefore, it prevents product shortages or bankruptcy due to over-contracting.

2.4 MyProductionStrategy

”MyProductionStrategy” is based on ”DemandDrivenProductionStrategy”. This
production strategy produces only when a contract is secured. If we want to
turn all materials into products, we should use ”SupplyDrivenProductionStrat-
egy”. However, there are production costs when we produce products. So if we
want to reduce the risk, we should use ”DemandDrivenProductionStrategy”.

3 Evaluation

We experimented with the run() function in the template to evaluate SolidA-
gent’s performance. In addition to SolidAgent, DecentralizingAgent and Buy-
CheapSellExpensiveAgent are participating in this experiment, and we compare
and evaluate their scores. The parameters are follows:

• competition = std,

• reveal names = True,

• n steps = 50,

• n configs = 3,

and the scores of each agent are shown in the following table.

3



Table 1: Scores of each agent
Experiments SolidAgent DecentralizingAgent BuyCheapSellExpensiveAgent

1 -0.06812 -0.125917 -0.18620
2 -0.0752474 -0.0741237 -0.30363
3 -0.0776338 -0.0836226 -0.42248
4 -0.0390445 -0.140561 -0.217341
5 -0.0738393 -0.092114 -0.368081

Average -0.067977 -0.1032677 -0.299546

These results show that SolidAgent is the best of the three agents four out of
five times. Comparing the average scores, we can see that SolidAgent is better
than the others.

Conclusions

In this report, we explained SolidAgent’s strategy. Also we showed that Sol-
idAgent is better than some prepared agents by experiments. SolidAgent signs
contracts based on timing and balance, but SolidAgent would score even higher
if it could flexibly change prices for every situation. Also even if SolidAgent
succeeds in signing a contract, it doesn’t mean making profits. Because the
signed contracts will be cancelled if other agent goes bankrupt. In the future,
we would like to predict which agents are likely to go bankrupt, and improve
the accuracy of predictions. We can create even better agents by using the
prediction to optimize their behavior.

4


