
SteadyMgr: An agent submitted to the ANAC

2020 SCM league

Masahito Okuno1, Takanobu Otsuka2

Nagoya Institute of Technology, Aichi, Japan
1okuno.masahito@otsukalab.nitech.ac.jp, 2otsuka.takanobu@nitech.ac.jp

July 13, 2020

Abstract

Our Agent purchases the maximum number of materials available for
production and produces as much as possible. And by actively trading, it
is possible to make a lot of profit. It is also possible to make profits in any
environment, as the trade price is changed based on the success or failure
of the transaction. Experiments showed that our agent got high scores at
all times, and outperformed the default agents.

1 Introduction

According to the game description, in SCML2020, the profit (score) is calculated
as follows:

Profit =
BN + 1

2IN −B0

B0
, (1)

where B0 and BN represent the first and last balance, and IN represents the
value of the product as calculated from the trading price. The important thing
here is that the IN has been halved. Therefore, to make a larger profit, the
product needs to be sold as well as manufactured. We focused on this and
created an agent that doesn’t finish the game with products in their possession.

And, of course, it’s also important to buy materials cheaply and sell products
at a higher price to make a big profit. However, the optimal price will vary from
simulation to simulation, as trading prices are constantly fluctuating. This made
it difficult to use the results of past transactions and we found it less desirable
to fix the price. Therefore, we have created an agent that can perform well in
any simulation by implementing the function to flexibly change the trade price.

1

2 Agent Strategy

2.1 Agent Configuration

The SteadyMgr class consists of the following four classes:

• MyTradingStrategy

• MyNegotiationManager

• SupplyDrivenProductionStrategy

• SCML2020Agent

This agent was created based on the DecentralizingAgent, but the ”Trading
Strategy” and ”Negotiation Manager” have been replaced with ours. We will
discuss MyTradingStratedy in chapters 2.2 and 2.3. Most of MyNegotiation-
Manager is the same as StepNegotiationManager, but we have changed the
urange, acceptable unit price, and target quantity.

The urange used the catalog price to specify a range of prices for negoti-
ations but has been changed to use the trade price, which is updated by the
function described below. Also, the acceptable unit price was subtracting the
production cost from the trade price in the function, but we removed it because
it is considered in the function to update the price. Then, target quantity is
capped at twice the number of production lines. As we’ll discuss below, our
agent tries to gather many materials in a hurry to produce as much product as
possible. However, transactions in which quantity too much could be rejected,
thus we set a cap.

2.2 Trade and Production Management

One way to make more profit is to sell more products. This requires us to
actively purchase materials and manufacture products. However, buying more
material than you need will rather reduce your profits. In SCML2020, the
number of production lines is predetermined and each of them can produce one
product in one step. Therefore, the maximum number of products that can be
produced is (number of production lines) × (number of steps). Also, for each
step of the simulation, the maximum number decreases by the number of lines.
My agents count the number of materials purchased and do not sign contracts
that exceed this maximum.

The agent uses an already-prepared strategy, the SuppleyDrivenProduction-
Strategy, as its production strategy. As we mentioned earlier, this agent moves
to buy the maximum number of parts to manufacture and sell more products.
In this game, it should also be noted that the materials do not count as profit.
This means that the production line needs to be running at maximum capacity
at all times. This strategy meets the requirements because it is a strategy that
seeks to turn all the materials in one’s possession into a product.

2

Figure 1: Example of changes in trade price (seller)

In terms of product sales, my agent determines whether it will be able to
carry out or not based on the number of products it can manufacture before
the delivery date, the number of products in stock, and the number of sales
contracts it has already signed, and it only signs reliably viable contracts. There
are penalties for breach of contract, and this agent tries to avoid them.

2.3 Trade Price Management

Trade pricing is very important in this game. However, trade prices vary greatly
depending on the products you are responsible for and the people you are dealing
with, and they change differently in each simulation. Therefore, pre-setting the
trade price is not considered to be stable. My agent changes the trade price
during the simulation depending on the success or failure of the trade, allowing
it to make high profits in any environment.

An example is shown in Figure 1. Here the initial price of the product is
set at $10. If the product sold, the price of the next step is raised to $12,
and if it doesn’t sell, the price will be reduced to $8 (if the agent is a buyer,
the ups and downs are reversing). This will be repeated in the next step and
beyond. Varying the trading price in this way and my agent can always make a
larger profit. In practice, the initial price is calculated from catalog prices and
production costs. The increase or decrease is set at 10 percent of the current
price and limited to varying between the initial price and twice the catalog
price when selling, and between half the catalog price and the initial price when
buying.

3

3 Experiments

To evaluate the agent’s performance, we experimented with the run() function
present in the template. The parameters are as follows:

• competition=std,

• reveal names=True,

• n steps=50,

• n configs=2,

• max n worlds per config=None,

• n runs per world=1,

and DecentralizingAgent and BuyCheapSellExpensiveAgent were specified as
competitors. The scores of each agent for the five experiments and their means
are shown in Table 1. This table shows that my agent has the best score all five
times. The flexibility to change the trading price allows for high performance in
different simulations. Also, DecentralizingAgent has both positive and negative
values for scores, but my agents are all positive and the results are stable. This
has been contributed to by limiting the number of purchases and moving to
prevent violations.

Experiments SteadyMgr(MyAgent) DecentralizingAgent BuyCheapSellExpensiveAgent
1 0.15262 -0.01194 -1.70316
2 0.38456 0.12701 -1.75007
3 0.14949 -0.22764 -1.57793
4 0.14062 -0.26910 -1.51617
5 0.25419 0.17639 -1.85530

Average 0.21629 -0.04106 -1.68053

Table 1: Scores of experimental results

4 Conclusions

In this report, we described our agent, SteadyMgr. SteadyMgr trades aggres-
sively but its performance is stable because it doesn’t cause any breaches. Also,
it flexibly changes the trade price and gets a big profit in any environment. Its
current live-competition score is high and it is considered a strong agent. Im-
provements include optimizing the increase or decrease in trade prices. Varying
the width and upper limits of the changes depending on the simulation could
yield greater profits.

4

