
SalesAgent: An agent submitted to the ANAC

2022 SCM league

Shunya Hibino1, Takanobu Otsuka2

Nagoya Institute of Technology, Aichi, Japan
1hibino.shunya@otsukalab.nitech.ac.jp

2otsuka.takanobu@otsukalab.nitech.ac.jp

June 16, 2022

Abstract

The main concept of SalesAgent is to sell off products by changing
the trading price based on the current number of steps. In SCML 2022,
the products in the factory’s inventory at the end of the game are valued
at only half of the trading price. This means that if products are not
sold, a loss is incurred. Therefore we change the trading price or limit the
purchase of input products based on the current number of steps.

1 Introduction

The SCM world simulates a supply chain consisting of multiple factories that
buy and sell products from one another. The factories are represented by au-
tonomous agents that act as factory managers. Each agent decides which other
agents to buy and sell from, and then negotiates with them. Their goal is to
turn a profit, and the agent with the highest profit (averaged over multiple sim-
ulations) wins. According to the game description, in SCML2022, the profit
(score) is calculated as follows:

Profit =

∑
a∈F BN (f) + ϵIN (f)−B0∑

a∈F B0(f)
(1)

where, ϵ is the fraction of trading price at which to value the inventory at the
end of the game. F is the set of all factories controlled by instantiations of the
agent, B0(f) and BN (f) are the factory’s balances at the beginning and end
of the simulation, respectively, and IN (f) is the value of the products in the
factory’s inventory at the end of the game. This value is based on the trading
price, but to incentive trade, inventory is valued at only half the trading price;
that way, it is more profitable on average to sell products rather than hoard

1



them. Considering this, it is more profitable to sell product at more than half
the trading price than to have the product at the end of the game. We focused
on this and created an agent that doesn’t finish the game with products in their
possession.

2 The Design of SalesAgent

In this section, we explain our agent’s strategy. SalesAgent consists of the
following strategies:

• Supply Driven Production Strategy

• Trading Strategy

• Negotiation Manager

This agent was created based on the DecentralizingAgent, but the ”Trading
Strategy” and ”Negotiation Manager” have been replaced with ours.

2.1 Supply Driven Production Strategy

In this game, having inputs at the end of the game is not profitable. Therefore,
we thought that the Supply Driven Production Strategy, which converts all
inputs into outputs, would work well. However, due to limitations imposed by
the number of production lines, it is impossible to always convert all inputs into
outputs. Considering this, we need to limit the number of products purchased
in the TradingStrategy so as not to leave any inputs that are not converted.

2.2 Trading Strategy

Our Trading Strategy is based on Prediction Based Trading Strategy that uses
prediction strategies to manage inputs/outputs needed. As mentioned in section
2.1, since we cannot convert all inputs to outputs, we have changed the rules so
that we do not make a contract to buy products at more than half the number
of steps. Furthermore, as mentioned in Chapter 1 and 2.1, it is more profitable
to sell products at more than half the trading price than to have products at
the end of the game. Therefore, below half of the number of steps, we do not
allow selling contracts for less than the transaction price, but above half of the
number of steps, we allow selling contracts for more than half of the transaction
price. Also, to prevent bankrupts, we will not make a contract to purchase
products that will reduce our balance to less than half of the balance. In SCML
2022, the number of steps is predetermined. However, in the real world, the
time period to be negotiated is indeterminate. Therefore, our Trading Strategy,
which currently changes the trading price based on the number of steps, is
unstable in the real world. In order to improve our Trading Strategy, we believe
that changing the trading price based on the sales of the commodity will work
in the real world.

2



2.3 Negotiation Manager

Our Negotiation Manager is based on Step Negotiation Manager that controls
a controller and another for selling for every timestep. We have changed urange
function and acceptable unit price function. Urange function specifies a price
range for negotiation. By default, urange function uses the catalog price, but
we used the acceptable unit price, which is described below. Acceptable unit
price was set to be above the output price for the seller and below the input
cost for the buyer. In this way, when the products are sold, there will always
be a profit.

3 Evaluation

To evaluate SalesAgent’s performance, we ran five starter track tournaments (n
steps=50, n configs=5) using the run() method included in the template. We
added DecentralizingAgent and MarketAwareIndDecentralizingAgent as com-
petitors. The parameters are as follows:

• competiton : std

• reveal_names : True

• n_steps : 50

• n_configs : 2

The results of the tournaments are shown in Table 1.

Table 1: Score of the execution result in the tournament
Tournament SalesAgent DecentralizingAgent MarketAwareIndDecentralizingAgent

1 0.0600813 -0.187964 -1.48095
2 -0.104573 -0.364984 -1.82433
3 -0.067404 -0.226425 -0.350431
4 -0.0110029 -0.144158 -2.99742
5 0.0710587 -0.0422016 -1.58619

Average -0.01036798 -0.19314652 -1.6478642

This table shows that our agent, SalesAgent had the best score all 5 times.
Comparing the average scores, our agent outperformed the other two agents.
Also, DecentralizingAgent had negative score values all the time, while our
agent was positive twice.

3



Conclusions

In this report we have described SalesAgent. We also showed through exper-
imentation that SalesAgent was superior to the DecentralizingAgent on which
our agent was based. However, our agent did not gain enough profit and could
not make its score consistently positive. The reason for this is that SalesAgent’s
strategy is to use the current step position to reduce losses. In other words, it
focuses on reducing losses rather than gaining profits. In the future, by tak-
ing into account the state of the transaction in addition to the step position,
we intend to be flexible in changing the trading price and sell as much of the
manufactured product as possible in order to make a profit.

4


