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1 Introduction

The Godfather agent is Brown’s University’s entrant in the Au-
tomated Negotiating Agents Competition (ANAC) Supply Chain
Management 2021 OneShot League (SCML OneShot). As the name
suggests, all ANAC leagues concern automated negotiation. SCML
in particular is characterized by simultaneous negotiations. Thus,
the main challenge in SCML is to design an agent that can negotiate
effectively with multiple other agents simultaneously. Godfather is
expressly designed to tackle this challenge.

Godfather’s negotiation strategy is built upon a negotiation
heuristic that has been shown to be very effective in ANAC over the
years, namely the time-based aspiration strategy [1]. This strat-
egy, which aspires to achieve an agreement with a desired utility
value, was designed for 1-on-1 negotiations, not simultaneous ne-
gotiations. Moreover, it is not possible to use an aspiration nego-
tiator directly, because utility in a 1-on-1 negotiation in SCML is
undefined—it depends on the outcomes of not just one but all nego-
tiations! The Godfather agent addresses this challenge by reinter-
preting the SCML utility function as multiple dependent marginal
utility functions, one per negotiation. It can then apply an aspira-
tion negotiation strategy.

2 Marginal Utility Functions

At the heart of the Godfather agent’s strategy is a method for find-
ing a set of marginal utility functions, one per negotiation, which
together represent the SCML utility function. This method relies
on an oracle which, for each negotiation x, predicts the outcomes
Ω¬x in all other negotiations ¬x. With such an oracle, the marginal
utility of agreeing to a contract ωx in negotiation x is simply the
utility of Ω¬x ∪ {ωx} less the utility of Ω¬x. More formally, if we
assume an oracle P¬x : Ω→ [0, 1] that makes probabilistic predic-
tions over outcomes in other negotiations, the expected marginal
utility µ of an outcome ωx in negotiation x is:

µ(ωx;P ) = E
Ω∼P¬x

[u({ωx} ∪ Ω)− u(Ω)] (1)

where u is a utility function, such as the SCML utility function,
which in general depends on a set of outcomes. We estimate the
expected marginal utility of an outcome ωx in negotiation x using
a sample average, as described in Algorithm 1 (see Appendix A.1).
Further, we estimate the expected marginal utility function for all
possible outcomes: i.e., in SCML, for all price–quantity pairs.

We consider three types of outcome predictors, when predict-
ing the outcome of a negotiation, which vary in the amount of in-
formation they use to form their predictions. Our first and most
basic—the static predictor—uses only information about the world
(e.g., our agent’s exogenous contract) and about previous days of
the simulation (e.g., the outcomes of past negotiations with this
opponent). The second—the dynamic predictor—also uses infor-
mation about the current negotiation trace. Our third and most
sophisticated—the introspective predictor—also uses information
about the marginal utility functions in the other negotiations.

A static outcome predictor takes as input some information
about the world (e.g., our agent’s exogenous contract) and about
previous days of the simulation (e.g., the outcomes of past negoti-
ations with this opponent), but no information about the current
state of the negotiation or about the agent’s marginal utility func-
tions in the other negotiations. With a static model, we need only

compute marginal utility functions once, at the beginning of each
negotiation, as nothing changes as the negotiation proceeds.

Figure 1 (see Appendix A.1) illustrates the outcome predictions
and expected marginal utility functions generated by our empiri-
cal model, which is mostly static (see Section 4 for details). Our
agent, a buyer, is negotiating with three sellers: LearningAgent
(00Lea@0), GreedyOneShotAgent (01Gre@0), and another Godfa-
ther Agent (02GPE@0). The Godfather agent under discussion
learns that it is likely to secure valuable contracts when negotiating
the other Godfather agent, and is unlikely to reach any agreement
when negotiating with any other agent types. Its marginal utility
functions reflect this information, as they ascribe very high value to
high-quantity, high-price outcomes, and to low-quantity and espe-
cially low-price outcomes, all with the other Godfather agent, and
much less value to outcomes with the other agent types.

A dynamic outcome predictor also takes as input the cur-
rent negotiation trace. With a dynamic model, outcome predictions
change every time the trace changes: i.e., after each round of the ne-
gotiation. Thus, it is necessary to recompute marginal utility func-
tions after each round of the negotiation. Moreover, to the extent
that there is error in the model’s predictions, the agent’s marginal
utility functions change from one round to the next. Thus, the
agent executes its negotiation strategy with respect to a changing
utility function.

An introspective outcome predictor takes an additional in-
put as well, namely the agent’s marginal utility functions in the
other negotiations. The marginal utility function in a negotiation
affects our agent’s behavior in that negotiation, which in turn affects
the outcome, which in an introspective model affects the outcome
predictions in other negotiations. Hence, an introspective model
creates a circular dependence (Figure 2; see Appendix A.1).

We call a set of marginal utility functions consistent with an
introspective outcome predictor if the outcome predictor, given the
marginal utility functions, produces a set of predictions which in
turn generates the same marginal utility functions per Algorithm 1.
Given an outcome predictor, there may be many sets of marginal
utility functions with which it is consistent. Our agent aims to
identify just one such set, by iterating to convergence. Although
convergence is not guaranteed, when eyeballing the marginal util-
ity functions and outcome predictions, it seemed they usually con-
verged in just a few iterations.

3 Pareto Aspiration Negotiation Strategy

Our bilateral negotiation strategy is a variant of the classic time-
based aspiration strategy [1]. It makes offers that it believes will
be favorable to its opponent as well as itself by aspiring along
the Pareto frontier towards the Nash bargaining solution (see Ap-
pendix A.2 for formal definitions of these concepts). Note that this
strategy requires a prediction of the opponent’s utility function, as
well as knowledge of its own.

Aspiration Strategy Our agent calculates the Pareto frontier
and the Nash bargaining solution in a single negotiation using
its marginal utility function and an estimate of the opponent’s
marginal utility function. It then calculates an aspiration value,
which serves as a threshold indicating how much utility the agent
aspires to achieve at this point in the negotiation. The aspiration
value ranges from the maximum possible utility (on the first negoti-
ation round) down toward the utility of the Nash bargaining point
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(on the last negotiation round). Specifically, it approaches a tar-
get utility X% of the way between the disagreement utility and the
utility of the Nash bargaining point. Experiments led us to choose
X = 75.

The agent only accepts offers above its target utility. When
proposing, it makes the offer along the estimated Pareto frontier
that minimally surpasses that target. That is, among all offers that
achieve its aspiration value, our agent attempts to maximize its
opponent’s utility.

Opponent’s Utility Function We ran experiments to deter-
mine which inputs to the SCML utility function had the greatest
impact on its value. These experiments confirmed our hypothesis
that “desired quantity,” which we defined as the difference between
the exogenous quantity and the total quantity of contracts already
secured, is the most important factor. The second most important
factor was production cost; all other factors were negligible.

In light of this, as an estimate of the opponent’s marginal util-
ity function, we use the SCML utility function with the following
parameters: the agent’s level is set exactly; contracts secured in
other negotiations are set to none; exogenous quantity is set to the
quantity of the opponent’s most recent offer (hence the “Goldfish”
moniker, due to a goldfish’s short memory); all other parameters are
set to the means of the distributions from which they are drawn.

When inspecting negotiation traces (see, for example, Figure 3;
Appendix A.2), we found that this method of estimation usually
resulted in offers much closer to the actual Pareto frontier, as in-
tended, as compared to offers made by a basic linear aspiration
agent, which does not attempt to estimate the opponent’s utility
function or remain on the Pareto frontier.

4 Outcome Prediction

We built two outcome predictors to train and test our agent, one
static and the other introspective. Both make the (false) assump-
tion that the outcomes across the simultaneous negotiations are in-
dependent. The first, the empirical model, is a simple baseline pre-
dictor based on historical data. The second, the gradient boostng
machine (GBM), makes its predictions using information about the
current environment, the current negotiation trace, and the current
iteration of estimated marginal utility functions.

Empirical Model Our empirical model takes as input the out-
comes of past negotiations with a given opponent, and outputs a
probability distribution over the possible outcomes of the current
negotiation. Specifically, it outputs the empirical distribution over
those outcomes, with a constant prior weight on the disagreement
outcome. Because its predictions do not change with the state of
the negotiation, our empirical model is a static model.

GBM Model We simulated a large number of worlds consisting
of multiple instances of our agent playing against itself using the
aforementioned empirical model so that we could collect data to
train a more advanced model. The data we collected fell into three
broad categories:

• Information about the world: the day, our level, the size of the
different layers, the “competitiveness” of the market, as de-
termined by the exogenous contract quantities (e.g., the com-

petitiveness of a world with total exogenous input contracts
of 12 and total exogenous output contracts of 15 is −3)

• Information about the current negotiation: what price and
quantity was offered at each step

• Information our agent generates: the distribution over quan-
tity and a point estimate for price from the empirical model
and the marginal utility function, compactly represented as a
polynomial of degree 3

Using this information, we created 80 different models: one to
generate a distribution over quantities and one to generate a point
estimate for price, for each of the 40 possible rounds of a negotia-
tion. The models were built using xgboost in order to keep train/s-
core time as low as possible (using our intuition/experience that
tree-based models generally outperform neural networks on tabular
data). The price model had an average RMSE of approximately
3 and the quantity models had an average AUC of around 0.95.
The quantity model outputs were then normalized to produce a
probability distribution.

Model Hacks We apply two adjustments to make our models
more accurate. The first is that when a negotiation ends, we assign
probability 1 to its outcome. The second is that if if is our turn,
and if our agent plans to respond in such a way as to end the nego-
tiation immediately, then we assign probability 1 to the imminent
outcome. These adjustments effectively convert any static model
into a dynamic model.

Future Work The main weakness of our models is that they
are based on play against ourselves, so the accuracy against agents
with different negotiation strategies will most likely be significantly
lower. We had planned to mix the output of our two prediction
models, weighing each according to its accuracy, but did not have
time to test this idea. In future work, we might also improve our
model by adding time-series indexing over the negotiation traces,
so that we can classify each of our opponent’s individual behaviors
and then use a model specifically for them.

5 Experiments

We ran experiments to test Godfather’s performance against the
baseline SCML OneShot agents. In an environment full of baseline
agents, Godfather performs very well against the weaker baselines
and nearly as well as BetterAgent and LearningAgent. Here are
the final scores from a comprehensive experiment facing Godfather
agents off against the baseline agents:

Agent Score
GodfatherEmpirical 1.072

GodfatherGBM 1.126
Better 1.397

Learning 1.241
Sync 0.568

SimpleSingle 0.662
SimpleAgent 0.713

Adaptive 1.011
GreedyInd 0.727
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A Appendix

A.1 Marginal Utility Functions

Algorithm 1 Estimate the expected marginal utility of the outcome ωx of negotiation x

Input: ωx, u, n, P¬x

Output: marginal utility µx
.
= µ(ωx) of outcome ωx

1: µx ← 0
2: for i ∈ {1, . . . , n} do
3: sample outcomes Ω¬x from P¬x

4: compute u(ωx ∪ Ω¬x)
5: compute u(Ω¬x)
6: add u(ωx ∪ Ω¬x)− u(Ω¬x) to µx

7: end for
8: divide µx by n (in place)
9: return µx

Figure 1: Outcome predictions (right) and corresponding marginal utility functions (left) for each of three opponents, generated by our
empirical model. All plots show price on the x-axis and quantity on the y-axis, ranging from 1 to 10. On the left, color represents utility;
on the right, probability. In both cases, yellow denotes the highest values, and purple, the lowest.

Algorithm 2 Find marginal utility functions consistent with an introspective outcome predictor

Input: An introspective outcome predictor
1: Initialize outcome predictions (for example, using a non-introspective predictor)
2: for i ∈ {1, . . . , n} do
3: Estimate expected marginal utility functions per Algorithm 1
4: Update outcome predictions per the introspective predictor
5: end for
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Figure 2: Outcome predictions ω and estimated marginal utility functions û for three bilateral negotiations (i, j, and k). Arrows indicate
dependencies in the computations.

A.2 Pareto Aspiration Strategy Details

A.2.1 Aspiration Framework

• Relative time estimate: Assume the agents’ “turns” (propose and respond) are equally spaced, and that the first propose step
(of either agent) happens at t = 0 while the last respond step (of either agent) happens at t = 1. Our agent computes the expected
time elapsed t̄ as

t̄ = max

{
0,

2k − 0.5

n

}
(2)

Here k is the number of offers our agent made so far in the negotiation, and n is the total number of rounds (40, in SCML 2021).
For example, when our agent is pondering its first proposal, t̄ = 0. While pondering its first response, t̄ = 1.5, because either two
or three turns may have already transpired, and just before its last response, t̄ = 39.5.

Note: SCML 2021 limits negotiations both by total number of turns (40) and by total time (120 seconds). An improved relative
time estimate would take both of these measures into account.

• Concession rate: Our agent calculates its concession rate as follows: ρ = 1.0− t̄λ. This function is strictly decreasing for λ > 0.
Additionally, 0 ≤ t̄λ ≤ 1 for λ > 0, since 0 ≤ t̄ ≤ 1. Therefore, 0 ≤ ρ ≤ 1.

• Target utility: The utility our agent aspires to is a weighted average uasp = ρumax + (1 − ρ)utol, where umax is the maximum
possible utility our agent can achieve, and utol is the minimum utility our agent is willing to accept.

A.2.2 Pareto definitions

Let ui and uj represent the agent’s and its opponent’s utility functions, respectively, and let ωd denote the disagreement outcome, so
that ui(ωd) and uj(ωd) represent the agents’ reservation values, respectively.

Definition 1 (Pareto Frontier). Given two agents with utility functions ui and uj , respectively, the Pareto frontier Π∗ is the set of
outcomes s.t. neither agent can be made better off without making the other agent worse off. Formally,

Π∗ =
{
ω ∈ Ω | There does not exist an ω′ ∈ Ω s.t. ui(ω

′) ≥ ui(ω) and uj(ω
′) > uj(ω) or vice versa

}
(3)

Definition 2 (Nash Bargaining Solution). Given a Pareto frontier Π∗, the Nash bargaining solution N∗ is defined as follows[2]:

N∗ = arg max
ω∈Π∗

(ui(ω)− ui(ωd)) (uj(ω)− uj(ωd)) (4)

A.2.3 Parameter Settings

We chose to set λ = 0.5, which means that our agent concedes more quickly at the start of a negotiation and more slowly near the end.
With this value, our agent concedes fast enough to be able to make quick agreements in some negotiations, eliminating uncertainty sooner
and avoiding a last-minute scramble, and slow enough as to not trade away potential value and reach undesirable agreements early in a
negotiation.

As our agent’s minimum acceptable utility, we interpolated between its utility at the Nash bargaining point ωn∗ and its utility at the
disagreement point ωd: i.e., we set utol = (0.75)u(ωn∗ ) + (0.25)u(ωd).

A.2.4 Negotiation Traces

Figure 3 depicts two visualizations of a single negotiation between an agent using our negotiation strategy and one using classic linear
aspiration. In this negotiation, our agent’s strategy is more stable/predictable than the opponent’s, and the agents reach agreement very
close to the Nash bargaining point.
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Figure 3: A single negotiation during which the buyer, depicted in red, is using our Pareto aspiration strategy, while the seller, depicted in
blue, is using a classic linear aspiration strategy. Both figures show the Pareto frontier in orange circles, as well as the agents’ progression
of offers, the final agreement, in green, the Nash bargaining point, in black, and the disagreement point, in pink. On the left, the axes
are the agents’ utilities, while on the right, they are price and quantity.

5


	Introduction
	Marginal Utility Functions
	Pareto Aspiration Negotiation Strategy
	Outcome Prediction
	Experiments
	Appendix
	Marginal Utility Functions
	Pareto Aspiration Strategy Details
	Aspiration Framework
	Pareto definitions
	Parameter Settings
	Negotiation Traces



