
ArtisanKangaroo: An agent submitted to the

ANAC 2021 SCM league

Koki Katagiri1, Takanobu Otsuka2

Nagoya Institute of Technology, Aichi, Japan
1katagiri.koki@otsukalab.nitech.ac.jp

2otsuka.takanobu@nitech.ac.jp

August 4, 2021

Abstract

The Main concept of ArtisanKangaroo is not using utility function in
negotiations. Even if one selling offer has a very high utility value, it
will end up with a breach unless the agent has enough input products
and production capacity before its delivery time. ArtisanKangaroo also
keeps track of every signed contract to prevent the agent from commiting
breaches. With these features, we tried to minimize loss and outperform
agents using utility function.

1 Introduction

In the real supply chain, suppliers and consumers negotiate with each other
about how many products they trade, how much they cost, and when the con-
tract is going to be executed. While they are negotiating in person, they both
often compromise to some extent based on patners’ response because companies
and factories have periodic fixed cost such as personnel expenses and mainte-
nance cost, and they need to make contracts continuously so that they won’t
be in the red.

However, in the SCML World, there are some differences from the real. First
of all, one agent doesn’t have to pay at all if it doesn’t sign any agreements.
This means that there is no incetive for agents to compromise and sign con-
tracts regularly. Secondly, negotiations may end suddenly and the agent can’t
know the reason. If the unitprice of an offer is too expensive, its partner may
terminate the negotiation rather than giving a counter offer. Finally, using lin-
ear utility function in negotiations can result in the agent’s loss. Since linear
utility function adds up a quantity, unitprice, and delivery time with multiply-
ing weights, there are some possible combinations of those three factors which
have the same utility value. However, agents’ production capacity, balance, and
products in the inventory are limited during a simulation. Therefore, the offer
whose properties are far from the agent’s asset should be less valued. This can
be the problem if one’s agent depends on utility function.

1



2 The Design of ArtisanKangaroo

From perspectives described in introduction, We made the agent ArtisanKan-
garoo which doesn’t use utility function in negotiations or compromise to make
contracts.
ArtisanKangaroo consists of two main components:

• MyTradingStrategy

• MyNegotiator

It also inherits SupplyDrivenProductionStrategy and SCML2020Agent. We
chose SupplyDrivenProductionStrategy for the production strategy because sign-
ing output contracts after making output products hardly causes breaches.

2.1 MyTradingStrategy

MyTradingStrategy is responsible for managing contract correspondence: which
input contracts will be used for an output contract and which contracts don’t
have corresponding contracts yet. During this process, it also considers whether
it is possible to produce enough output products from the input contracts until
output contracts’ deadline. Thanks to this tracking, it is possible to detect how
many input products are available and how many output products are required
in a specific step.

Figure 1 shows a example of correspondence. The quantity of the input
contract is equal to the total quantity of two output contracts, and there is
enough production capacity to produce 10 output products before the delivery
time of the output contracts. Therefore, it will make correspondence between
the input contract and two output contracts.

Figure 1: Making correspondence between input and output contracts

2



2.2 MyNegotiator

When ArtisanKangaroo requests negotiations or accepts other agents’ negotia-
tion requests, it returns MyNegotiator which is a marionette of ArtisanKanga-
roo. In the response phase, MyNegotiator simply checks if properties of received
offer fulfill all of the predefined profitable conditions and accepts it. The condi-
tions are intended to filter out disadvantageous offers like too large a quantity or
late delivery time. In the propose phase, MyNegotiator proposes a offer whose
property values were all passed from ArtisanKangaroo. Regarding those values,
the quantity is fixed to n lines because a contract to trade too many products at
one time is more likely to cause a breach. The delivery time will be dynamically
changed according to the partner agent’s offer, and the unitprice depends on the
catalog price and the number of previous successful contracts. Though the value
of the unitprice which MyNegotiator proposes changes through a simulation, it
does not change during a negotiation. Therefore, MyNegotiator proposes offers
with the same unitprice in one negotiation, which means MyNegotiator doesn’t
compromise. This is how ArtisanKangaroo negotiates with other agents without
utility function.

2.3 Risk Management

To minimize loss ArtisanKangaroo may receive, we dealt with three major risks;

• a surplus of input products

• a shortage of output products

• other agent’s bankrupt

Two Former risks are related to negotiation and sign tasks. In the nego-
tiation phase, MyNegotiator accepts offers which satisfy all of constraints to
make profit, but it doesn’t consider the execution possibility because there is
no penalty for not signing agreements in the sign phase. At this point, one of
the most important part of ArtisanKangaroo is sign all contracts(). Basically,
ArtisanKangaroo signs input contracts whose delivery time is within first 40%
steps, and signs output contracts only if it has already made input contracts
which can be applied to them. In other words, it tries to buy input products
first, then sell output products produced from them, and keep track of corre-
spondence between input and output contracts. This trick prevents the agent
from signing too much output contracts and commiting breaches. In addition,
we introduced the maximum numbers of products in stock, which is helpful to
avoid excess stock and leads to reduce loss.

Successfully making contracts don’t always mean making profit. This is be-
cause the signed contracts can be cancelled if the partner agents go bankrupt.
Since ArtisanKangaroo knows contracts correspondence, it can find which con-
tracts will be affected in those cases. Accordingly, it tries to buy or sell products
to compensate the cancellation.

3



2.4 Collusion Strategy

Our collusion strategy is eliminating negotiations between two ArtisanKanga-
roo. If ArtisanKangaroo receives negotiation requests from other ArtisanKan-
garoo, MyNegotiator will be switched to collusion mode. In collusion mode,
one MyNegotiator proposes the offer whose unitprice is the same as the cata-
log price, and the other MyNegotiator accepts it with no check. At the same
time, ArtisanKangaroo also negotiates with other agents, and choose contracts
to sign out of all agreed contracts. This process allows ArtisanKangaroo to have
guaranteed contracts and making profit stably.　

3 Evaluation

We ran 5 starndard track tournaments(n steps=50, n configs=5) using run()
method included in the template to evaluate ArtisanKangaroo’s perfomance.
We added DecentralizingAgent and MarketAwareIndDecentralizingAgent as com-
petitors. The results of the tournaments are shown in Table 1. It shows that all
of ArtisanKangaroo’s scores are positive and around 0.05 and all of two com-
petitors’ scores are negative. ArtisanKangaroo’s Average score is much higher
than two competitors’ as well. From these results, it can be said that Arti-
sanKangaroo which doesn’t use utility function performed better than agents
using utility function.

Table 1: Scores of 5 starndard track tournaments

Tournament ArtisanKangaroo MarketAwareInd DecentralizingAgent

DecentralizingAgent

1 0.0572293 -0.316561 -0.648157
2 0.0525736 -0.0602493 -0.355871
3 0.0345108 -0.122012 -0.342691
4 0.0457349 -0.218503 -0.385981
5 0.0680915 -0.0690787 -0.240927

Average 0.05162802 -0.1572808 -0.3947254

Conclusions

We considered differences between the real supply chain and SCML World,
then described ArtisanKangaroo. Our evaluation result suggests that agents
do not necessarily use utility function to make profit and the strategy that
the agent doesn’t compromise is effective in SCML. However, we limited the
agent’s flexibility such as negotiation quantity and delivery time, so there is a
possibility that the agent misses opportunities to buy or sell more products.
If these parameters are changed adaptively in the simulation, more profit is
expected.

4


