
Designing and Implementing a Negotiating Factory
Manager

Group 1 Project Report
Cem Ata Baykara

Department of Computer Science
Ozyegin University
Istanbul, Turkey

ata.baykara@ozu.edu.tr

Alp Demirezen
Department of Computer Science

Ozyegin University
Yalova, Turkey

alp.demirezen@ozu.edu.tr

Abstract—This report includes the implementation details and
strategies on the project of CS 551 Introduction to Artificial
Intelligence course. The aim of the project is to design and
implement a negotiating factory manager agent on the Supply
Chain Management League (SCML) environment [1] which is
an automated negotiating agents competition. In this project we
aim to implement novel approaches which includes acceptance,
production, trade prediction strategies. We discuss how these
ideas, when implemented, can affect the performance of the agent
and provide their implementation details.

I. INTRODUCTION

In this report, we will be designing our own agent to com-
pete in Supply Chain Management League (SCML). SCML is
an environment that provides a healthy world for negotiation
agents to compete in. To compete in this environment the
agents in the SCML world need to perform a variety of
complex tasks and take important decisions autonomously.
These actions and decision of the agents are governed by their
respective strategies which will be discussed further in Section
III. The novel contributions and ideas proposed in this paper
are as follows:

1) A market aware production strategy which improves
on the existing supply and demand driven production
strategies. The proposed production strategy can al-
ternate between supply and demand based production
strategies based on the trading price of its input and
output products as well as its production cost.

2) A machine learning based trade prediction strategy in
which the agent predicts it expected input and output
products for each step using a pre-trained regressor.

3) A novel signing strategy which evaluates the value of
each contract to be signed at a given time step. And
after ordering these contracts based on their calculated
value, starts signing contracts starting with the highest
valued contract until the agent satisfies its current needs.

The rest of this report is structured as follows. Section
II will provide the background information about the SCML
world and competition environment. Section III will present
the anatomy of a SCML agent, mainly how the agent performs

autonomous tasks required to compete in the environment.
Section IV will discuss and present the novel ideas proposed in
this paper and Section V will talk about their implementation
details. Section VI will present the experimental setup we
used to test the performance of our agent with the proposed
improvements and present the results and performance of our
agent. And finally Section VII will include our conclusions
and possible future scope of our agent.

II. NOVEL IDEAS

The novel ideas proposed in this report are threefold, which
include the following strategies:

• Production Strategy
• Trade Prediction Strategy
• Signing Strategy
This section will describe the ideas proposed in detail.

A. Market Aware Production Strategy

There are three different production strategies available in
the SCML environment by default. These are the supply,
demand and trade based production strategies as presented in
section III. We believe that Using only one of these production
strategies at all times is not an optimal production strategy
which optimizes the performance of the agent.

The supply based production strategy may make the agent
lose value if the price of its output product is lower than
the sum of the price of its input product and its production
cost. In such cases the agent will still produce if it is using a
supply based production strategy making the agent lose value.
Of course this strategy may be preferred depending on the
other strategies employed by the agent, however we consider
production strategy individually in this section.

Similarly, the demand based production strategy is also not
an optimal production strategy which can be adapted at all
time steps. In this case, if the output trading price of the
agent is actually higher than the sum of its input product
price and production cost, the agent can generate value by
producing. However if the agent is employing a demand based
production strategy, the agent will only produce based on its



signed contracts and therefore may miss the opportunity to
generate this value by just producing.

We believe that a more optimal production strategy is a
hybrid production strategy, alternating between supply and
demand based production strategy based on the market prices.
The proposed production strategy normally employs a demand
based production strategy if the price of the agents output
product is lower than the sum of its input product price and
production cost. In such a case producing may make the agent
lose value and therefore the agent only produces if it needs
to sell based on its ongoing contracts. If however the price
of the agents output product is higher than the sum of its
input product price and production cost the agent switches to
a supply based production approach since it can generate value
by just producing its inputs. Since this strategy includes the
available market information to switch between the production
strategies in the form of input trading prices and output catalog
prices for a specific agent, we named this strategy as the
market aware production strategy.

B. Modified Signing Strategy

We propose a novel approach on the signing strategy.
Currently, the default sign all contracts function orders all
the contracts for the agent based on the contract times before
considering which contracts to sign. This essentially allows
the agent to consider the contracts which are closer to the
present time step. Even though this is a nice approach, since
as the contract time increases farther into the future, it makes
it difficult for the agent to forecast its expected income and
needs and plan beforehand effectively. However we believe
that just considering time for the ordering of the contracts
before deciding on which ones to sign is not the most optimal
approach. There may be a highly valuable and promising
contract in the future and since the contracts are ordered by
time in default, the agent may already have satisfied its needs
with sub optimal contracts and miss the opportunity to sign
high value contracts.

We propose an evaluation function for the contracts which
evaluates the expected value based on the available informa-
tion of the contracts. And instead of ordering the contracts
based on their times for signing, our proposed method orders
them based on their values for the agent. By doing this we
essentially force the agent to consider high valued contracts
first to satisfy its needs. And after the agent satisfies its current
needs from the available contracts the agent stops signing.

The challenging part of this approach was to came up with
an accurate formula to calculate the value of each contract. We
implemented this function differently for buy and sell contracts
as follows where PU denotes the unit price of the contract,
TC and TS denotes the contract time and current time step
respectively, and PO and PI denotes the output trading price
and input trading prices respectively.

V (C | s) = PU

(TC − TS + 1)PO

The formula above is used to calculate the value of the
contract given that the agent is the seller. The time of the
contract with respect to the current time has a negative
correlation with the value of a contract as one might expect.
And the fraction of PU and POT gives an estimation of how
much extra profit we are getting by selling from this unit price
with respect to the current trading price of our output product.

V (C | b) = PI

(TC − TS + 1)PU

The formula above is used for calculating the value of a
contract where the agent is the buyer. The formula is quite
similar other than the fact that the unit price on the contract
and its respective trading price has changed places. Now the
agent values how much cheaper it can actually buy from the
contracts. The time of the contract still has a negative effect
on the value of its value.

C. Machine Learning Based Trade Prediction Strategy

We propose a trade prediction strategy based on machine
learning for estimating the amount of input and output prod-
ucts to expect in the future based on available information to
the agent. We have collected data from many worlds which
include a random pool of agents to help sample data from
agents which behave differently. Our agent collected its own
data during the training phase using the final version of all
other modification which we have implemented to help make
the collected data as accurate and as unique to our agents
behaviour as possible. Using the pre-trained regressor, our
agent performs trade predictions in real-time.

III. IMPLEMENTATION DETAILS

A. The Anatomy of our Agent

As mentioned in Section III, agents need to employ some
components to perform better in the SCML environment.
In this section, We will be providing information about the
components and strategies that our agent employs. Either the
ones that we implemented ourselves, or the ones that we used
from default components.

Our agent utilizes a machine learning based trade predic-
tion strategy, a market aware production strategy, a machine
learning based trading strategy, an execution rate prediction
strategy and a step negotiation manager. We have modified
all of these components, however some of the changes are
minor ones which makes the default strategies we have used
compatible with our modified strategies. Therefore we would
like to introduce them to you before we start presenting the
implementations of the novel ideas.

Execution rate prediction strategy(ERP), is a component that
specifies a ratio for a contract to be signed between two agents.
There are two types of ERP strategies that are provided by the
SCM environment. We have implemented minor changes on
Mean ERP strategy. The default ERP strategy uses a static
execution rate of 0.5 for all opponents. We have modified this
to be able to calculate our expected quantities from different
opponents better. Our modified ERP strategy keeps separate



execution rates for each of our opponents dynamically, and
updates these rates based on the behaviour of its opponents.

A negotiation manager is an essential component of any
agent since deciding how to negotiate and under what con-
ditions is important for agents to be successful. There are
a variety of negotiation managers provided by default in
the SCM environment. Step negotiation manager is one of
them. Two controllers, one for selling and another one for
buying, are created at each step, and these controllers manage
the negotiations for each time step. While doing so, the
controllers use an average execution fraction rate. Since we
have individualized execution rates for each of our opponents
we implemented an algorithm that takes the mean of these
execution rates, rather than having a static average execution
fraction rate for every opponent.

B. Market Aware Production Strategy

As mentioned in Section IV, we have implemented a dy-
namic production strategy, which means agent will adopt a
supply driven production strategy if it is worth to produce.
And a demand driven strategy if producing is not logical. Our
agent decides on how to act based on the trading price of the
input product and the catalog price of the output product. The
pseudo code can be seen below.

Algorithm 1: Market Aware Production Strategy
PC : Production cost
if output price/2 > input price/2 + PC then

Adopt a supply driven strategy.
else

Adopt a demand driven strategy.

C. Machine Learning Based Trade Prediction Strategy

We have trained a random forest regressor for our proposed
machine learning based trade prediction strategy. We use the
default set of hyper-parameters while training our regressor
and did not performed hyper-parameter tuning to achieve
the best results and therefore there is a lot of room for
improvement. Using the pre-trained regressor, the agent tries
to predict its expected input and output products for the
given horizon. In our implementations we took the horizon as
current step+1, so the agent just tries to predict its expected
products for the immediate next step. We have used the random
forest regressor available in scikit-learn [3] library. For the
input features of our regressor we have used the following
information available to the agent.

1) my input
2) my output
3) relative time
4) n competitors
5) n processes
6) n products
7) current balance
8) current input inventory

9) current output inventory
We generated our own data to train our regressor model.

The data we have generated includes many SCML world runs
where a our agent collected its own data to make the collected
data as unique and accurate for our agent as possible.

D. Modified Signing Strategy

The implementation of the modified signing strategy pro-
posed in Section IV in details was rather simple. The only
function which we have changed is the sign all contracts
function in the trading strategy. The pseudo code of the
modified signing strategy can be seen below.

Algorithm 2: Modified Sign All Contracts
Input : CN : Contracts to be signed
Output: SN : Signed contracts
PI = input trading price
PO = output trading price
VN = dict()
s = currentstep
for Ci in CN do

is seller = annotation of Ci

u = unit price of Ci

t = time of Ci

if is seller then
value = u/((t− s+ 1)PO)

else
value = PI/((t− s+ 1)u)

end
VN [Ci] = value

end
sort VN based on values in descending order
sign until needs are satisfied using sorted VN return
SN

After ordering the current contracts to be signed based on
their values, the proposed signing strategy proceeds like the
default sign all contracts function. The agent starts consid-
ering the contracts starting from the highest valued contract
currently available and keeps signing until it satisfies its
current input and output needs.

IV. RESULTS

This section will present our results and experimental setup
which we have used to measure the performance of our agent
implemented with the proposed ideas.

A. Experimental Setup

To measure the performance of our agent we have generated
an environment which includes two of the most powerful
agents available by default in the SCML environment namely;
the market aware decentralizing agent and the market aware
independent decentralizing agent. The world also include the
winner agent of the ANAC 2020 SCM League, the SteadyMgr
agent [2] which is a very powerful agent. Using these three
powerful agents and our agent we have made a simulation



run which includes 30 SCM worlds to measure the average
performance of our agent.

B. Performance of the Agent

Fig. 1. The average score of our agent throughout each simulation step.

The average score of our agent throughout each simulation
step can be observed from Fig. 1. As expected the score of
the agent steadily decreases at each step, however this is an
expected behaviour of a SCM agent. Thus, a score of about
0.85 against strong agents is quite promising.

Fig. 2. The average balance of our agent throughout each simulation step.

The average balance of our agent in the experiment we
performed can be seen from Fig 2. Since the score of an agent
has an extremely high correlation with the agents score, the
Fig.’s 1 and 2 are quite similar.

The average assets of our agent throughout each simulation
step can be observed from Fig. 4. It is clear to see that
our agent has a problem with selling the output products it
produces as its assets appear to increase steadily at each step.
Currently we believe that this may be due to the fact that we
made only minor modifications for the negotiation strategy and
we are using the default step negotiations manager. Another
reason for this behaviour is that the proposed agent may be

Fig. 3. The average balance of our agent throughout each simulation step.

Fig. 4. The average assets of our agent throughout each simulation step.

unable to come to an agreement when negotiating to sell its
output product, because due to our modified signing strategy
we know that the agent should sign contracts even if it needs
to sign sub optimal contracts to be able to always satisfy
its needs. Nonetheless, this is also an aspect which needs
improving for our proposed agent.

You can observe the average productivity of our agent
throughout each simulation step from Fig. 5. From Fig 5. it
can be concluded that our agent produces at around 0.65 of
its production capacity during the middle of the simulations
and produces less at both the beginning and at the end of the
simulation.

The average spot market quantity bought by our agent
throughout each simulation step can be seen from Fig. 6. The
spot market usage of our agent appears to be approximately
0.48 based on our experiments, which is a good indication that
our agent is not using the spot market very much. We believe
that this may also be a good indication that our machine
learning based trade prediction strategy appears to be working
well. Similarly you can observe the average spot market loss of
our agent throughout each simulation step in our experiments



Fig. 5. The average productivity of our agent throughout each simulation
step.

Fig. 6. The average spot market quantity bought by our agent throughout
each simulation step.

from Fig. 7.

TABLE I
AVERAGE PERFORMANCE OF OUR AGENT AT THE END OF EACH GAME

MEASURED OVER 30 WORLD RUNS

Performance Metric Value
Average Score 0.8526

Average Balance 41379.58
Average Assets 8358.63

Average Productivity 0.1724
Average Spot Market Quantity 0.4855

Average Spot Market Loss 0.9562

The average performance metrics of our agent measured
against the powerful agents stated above and using the ex-
perimental setup presented above can be seen from Table 1.
Overall we are quite satisfied with how our agent performed
against strong opponents like step based and independent
market aware decentralizing agents, as well as the winner of
the last years ANAC SCM league. We believe that getting a
score of 0.85 is not a bad performance against such strong
opponents.

Fig. 7. The average spot market quantity bought by our agent throughout
each simulation step.

You can observe the performance of our random forest
regressor trained on our data generated over many world runs
from Table 2. Currently even though our R2 score is very high,
the MSE of our model is also quite high, this may be due to
the fact that the regressor over fitted to our data.

TABLE II
PERFORMANCE METRIC OF OUR RANDOM FOREST REGRESSOR USED FOR

THE PROPOSED MACHINE LEARNING BASED TRADE PREDICTION
STRATEGY

Performance Metric Value
R2 Score 0.9846

Mean Absolute Error 7.0932
Mean Squared Error 393.39

There are a variety of improvement which can be made to
our agent. Firstly, the machine learning based trade prediction
strategy can be improved to include a comprehensive research
to decide which regressor or model is best fit for this current
problem case. We decided to use the random forest regressor
without conducting such a deep experimental research. The
training can also be improved as we did not performed any
hyper-parameter tuning to increase the performance of our
model.

The proposed signing strategy can also be improved by
modifying the contract evaluation function which we have
proposed to include more data about the contract to make it
more accurate. This formula can also be improved and adapted
to agents differently, depending on their behaviour and what
the agent values more.

V. CONCLUSIONS

In this project, we implemented an agent capable of per-
forming in the SCM League environment. We presented three
different novel strategies, their implementation details, as well
as how they can improve the performance of an agent in the
SCM environment. We have employed some of the default
components that are provided in environment, as well as some
novel ideas we came up with to construct an agent that is



unique. We incrementally implemented our ideas observing
the performance of our agent throughout each step to see
how the modifications will affect its accuracy. We have also
presented an experimental setup which we have used to
measure the overall performance of our agents final version
against powerful agents available in the SCM environment
by default, as well as the winner agent from ANAC SCM
League 2020. The results show that our agent performs well
even against strong opponents but there are still a vast amount
of strategies and components that can be improved.

There are more features that must be implemented for our
agent to negotiate with a human-being. First of all we have
to utilize well-known negotiation strategies. Our negotiation
manager should be implemented thoroughly calculating best
negotiations properly for every step. We also need to train our
model with a bigger dataset. Fine tuning of our parameters is
also essential to maximize our agent’s performance. Last but
not least, our agent requires an interface to be able to interact
with people if we would like to perform human vs. machine
negotiations.

REFERENCES

[1] Y. Mohammed, A. Greenwald, K. Fujita, M. Klein, S. Morinaga, and
S. Nakadai. Supply chain management league, automated negotiating
agents competition, 2020.

[2] Masahito Okuno and Takanobu Otsuka. Steadymgr: An agent submitted
to the anac 2020 scm league, 2020.

[3] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.


