ACDC 2019 Naturalist |
Analysis 28 : Details |
Study type: Point transect, Radial distance, No clustering.
Units used: Meter for distances, Sq. Kilometer for areas.
Note: Most figures have been rounded for readability, but 'CoefVar Density' have been further modified : converted to %
Echant | Espèce | Passage | Adulte | Durée | NTot Obs | Max Dist | Analyse | Mod Key Fn | Mod Adj Ser | Left Trunc Dist | Right Trunc Dist | Fit Dist Cuts | ExCod | Effort | NObs | Obs Rate | NumPars AdjSer | Delta AIC | Chi2 P | KS P | CvM Uw P | CvM Cw P | CoefVar Density | Qual Bal 3 | Qual Bal 2 | Qual Bal 1 | Qual Chi2+ | Qual KS+ | Qual DCv+ | Density | Min Density | Max Density | Number | Min Number | Max Number | EDR/ESW | Min EDR/ESW | Max EDR/ESW | PDetec | Min PDetec | Max PDetec | RunFolder | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
28 | 1 | Sylvia atricapilla | a+b | m | 10mn | 403 | 511.41 | 49 | HAZARD | POLY | 5 | 492 | 13 | 1 | 190 | 401 | 99.5 | 0 | 0 | 0.25 | 0.55 | 0.6 | 0.7 | 10 | 0.65 | 0.64 | 0.65 | 0.58 | 0.64 | 0.67 | 37.58 | 30.87 | 45.75 | 902 | 741 | 1098 | 133.7 | 124.4 | 143.6 | 0.074 | 0.064 | 0.085 | SylvAtri-ab-10mn-m-haz-pol-la-ra-ma-90vq_6nr |
Study type: Point transect, Radial distance, No clustering.
Units used: Meter for distances, Sq. Kilometer for areas.
Note: All values have been left untouched, as output by MCDS (no rounding, no conversion)
Analyse | Echant | Espèce | Passage | Adulte | Durée | FonctionClé | SérieAjust | TrGche | TrDrte | NbTrchMod | Abrev. Analyse | OptimTrunc | NTot Obs | Min Dist | Max Dist | Mod Key Fn | Mod Adj Ser | Mod Chc Crit | Conf Interv | Left Trunc Dist | Right Trunc Dist | Fit Dist Cuts | ExCod | StartTime | ElapsedTime | RunFolder | NObs | NSamp | Effort | EncRate | CoefVar EncRate | Min EncRate | Max EncRate | DoF EncRate | Left Trunc | Right Trunc | Obs Rate | TotNum Pars | Delta AIC | AIC | Chi2 P | Chi2 P 1 | Chi2 P 2 | Chi2 P 3 | f/h(0) | CoefVar f/h(0) | Min f/h(0) | Max f/h(0) | DoF f/h(0) | PDetec | CoefVar PDetec | Min PDetec | Max PDetec | DoF PDetec | EDR/ESW | CoefVar EDR/ESW | Min EDR/ESW | Max EDR/ESW | DoF EDR/ESW | AICc | BIC | LogLhood | KS P | CvM Uw P | CvM Cw P | Key Fn | Adj Ser | NumPars KeyFn | NumPars AdjSer | Num Covars | EstA(1) | EstA(2) | EstA(3) | DensClu | CoefVar DensClu | Min DensClu | Max DensClu | DoF DensClu | Density | Delta CoefVar Density | CoefVar Density | Min Density | Max Density | DoF Density | Number | CoefVar Number | Min Number | Max Number | DoF Number | Qual Bal 1 | Qual Bal 2 | Qual Bal 3 | Qual Chi2+ | Qual KS+ | Qual DCv+ | Group Left Trunc | Group Right Trunc | Order Same Trunc AIC | Order Close Trunc Chi2 KS DCv | Order Close Trunc DCv | Order Close Trunc Bal 1 Qual | Order Close Trunc Bal 2 Qual | Order Close Trunc Bal 3 Qual | Order Close Trunc Bal Chi2+ Qual | Order Close Trunc Bal KS+ Qual | Order Close Trunc Bal DCv+ Qual | Order Global Chi2 KS DCv | Order Global Bal 1 Qual | Order Global Bal 2 Qual | Order Global Bal 3 Qual | Order Global Bal Chi2+ Qual | Order Global Bal KS+ Qual | Order Global Bal DCv+ Qual | Order Global DeltaAIC Chi2 KS DCv | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
28 | 49 | 1 | Sylvia atricapilla | a+b | m | 10mn | HAZARD | POLY | 4.553960 | 492.328316 | 13.000000 | SylvAtri-ab-10mn-m-haz-pol-la-ra-ma | 1 | 403 | 1.212094 | 511.409745 | HAZARD | POLY | AIC | 95 | 4.553960 | 492.328316 | 13.000000 | 1 | 2023-04-30 15:55:03.377000 | 1.300000 | SylvAtri-ab-10mn-m-haz-pol-la-ra-ma-90vq_6nr | 401 | 96 | 190 | 2.110526 | 0.068677 | 1.841824 | 2.418429 | 95 | 4.553960 | 492.328000 | 99.503722 | 2.000000 | 0.000000 | 4488.174000 | 0.250081 | 0.250081 | nan | nan | 0.000112 | 0.073005 | 0.000097 | 0.000129 | 399.000000 | 0.073743 | 0.073005 | 0.063896 | 0.085108 | 399.000000 | 133.695000 | 0.036502 | 124.440000 | 143.638200 | 399.000000 | 4488.205000 | 4496.162000 | -2242.087000 | 0.550075 | 0.600000 | 0.700000 | HAZARD | POLY | 2.000000 | 0.000000 | 0.000000 | 99.033550 | 3.760158 | nan | 37.584680 | 0.100231 | 30.874110 | 45.753800 | 330.520400 | 37.584680 | 0.000000 | 0.100231 | 30.874110 | 45.753800 | 330.520400 | 902 | 0.100231 | 741 | 1098 | 330.520400 | 0.653611 | 0.640192 | 0.648279 | 0.583173 | 0.636554 | 0.672710 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 13 |
This is mcds.exe version 6.2.0 Options; Type=Point; Distance=Radial /Measure='Meter'; Area /Units='Sq. Kilometer'; Object=Single; SF=1; Selection=Sequential; Lookahead=1; Maxterms=5; Confidence=95; print=Selection; End; Data /Structure=Flat; Fields=STR_LABEL,STR_AREA,SMP_LABEL,SMP_EFFORT,DISTANCE; Infile=anlys\230430-153402\SylvAtri-ab-10mn-m-haz-pol-la-ra-ma-90vq_6nr\data.txt /NoEcho; Data will be input from file - [...]POL-LA-RA-MA-90VQ_6NR\DATA.TXT End; Dataset has been stored. Estimate; Distance /Left=4.55396 /Width=492.328; Density=All; Encounter=All; Detection=All; Size=All; Estimator /Key=HAZARD /Adjust=POLY /Criterion=AIC; Monotone=Strict; Pick=AIC; GOF /NClass=13; Cluster /Bias=GXLOG; VarN=Empirical; End;
Parameter Estimation Specification ---------------------------------- Encounter rate for all data combined Detection probability for all data combined Density for all data combined Distances: ---------- Analysis based on exact distances Width specified as: 492.3280 Left most value set at: 4.553960 Estimators: ----------- Estimator 1 Key: Hazard Rate Adjustments - Function : Simple polynomials - Term selection mode : Sequential - Term selection criterion : Akaike Information Criterion (AIC) - Distances scaled by : W (right truncation distance) Estimator selection: Choose estimator with minimum AIC Estimation functions: constrained to be nearly monotone non-increasing Variances: ---------- Variance of n: Empirical estimate from sample (design-derived estimator R2/P2) Variance of f(0): MLE estimate Goodness of fit: ---------------- Based on user defined cut points Glossary of terms ----------------- Data items: n - number of observed objects (single or clusters of animals) L - total length of transect line(s) k - number of samples K - point transect effort, typically K=k T - length of time searched in cue counting ER - encounter rate (n/L or n/K or n/T) W - width of line transect or radius of point transect x(i) - distance to i-th observation s(i) - cluster size of i-th observation r-p - probability for regression test chi-p- probability for chi-square goodness-of-fit test Parameters or functions of parameters: m - number of parameters in the model A(I) - i-th parameter in the estimated probability density function(pdf) f(0) - 1/u = value of pdf at zero for line transects u - W*p = ESW, effective detection area for line transects h(0) - 2*PI/v v - PI*W*W*p, is the effective detection area for point transects p - probability of observing an object in defined area ESW - for line transects, effective strip width = W*p EDR - for point transects, effective detection radius = W*sqrt(p) rho - for cue counts, the cue rate DS - estimate of density of clusters E(S) - estimate of expected value of cluster size D - estimate of density of animals N - estimate of number of animals in specified area
Effort : 190.0000 # samples : 96 Width : 492.3280 Left : 4.553960 # observations: 401 Model 1 Hazard Rate key, k(y) = 1 - Exp(-(y/A(1))**-A(2)) Results: Convergence was achieved with 19 function evaluations. Final Ln(likelihood) value = -2242.0870 Akaike information criterion = 4488.1743 Bayesian information criterion = 4496.1621 AICc = 4488.2046 Final parameter values: 99.033556 3.7601583 Model 2 Hazard Rate key, k(y) = 1 - Exp(-(y/A(1))**-A(2)) Simple polynomial adjustments of order(s) : 4 Results: Convergence was achieved with 15 function evaluations. Final Ln(likelihood) value = -2241.4494 Akaike information criterion = 4488.8989 Bayesian information criterion = 4500.8809 AICc = 4488.9595 Final parameter values: 99.547349 3.6794809 -0.56949598 Likelihood ratio test between models 1 and 2 Likelihood ratio test value = 1.2753 Probability of a greater value = 0.258774 *** Model 1 selected over model 2 based on minimum AIC
Effort : 190.0000 # samples : 96 Width : 492.3280 Left : 4.553960 # observations: 401 Model Hazard Rate key, k(y) = 1 - Exp(-(y/A(1))**-A(2)) Point Standard Percent Coef. 95 Percent Parameter Estimate Error of Variation Confidence Interval --------- ----------- ----------- -------------- ---------------------- A( 1) 99.03 5.275 A( 2) 3.760 0.2116 h(0) 0.11189E-03 0.81687E-05 7.30 0.96951E-04 0.12914E-03 p 0.73743E-01 0.53836E-02 7.30 0.63896E-01 0.85108E-01 EDR 133.69 4.8802 3.65 124.44 143.64 --------- ----------- ----------- -------------- ---------------------- Sampling Correlation of Estimated Parameters A( 1) A( 2) A( 1) 1.000 0.762 A( 2) 0.762 1.000
Kolmogorov-Smirnov test ----------------------- D_n = 0.0398 p = 0.5501 Cramer-von Mises family tests ----------------------------- W-sq (uniform weighting) = 0.1107 0.500 < p <= 0.600 Relevant critical values: W-sq crit(alpha=0.600) = 0.0968 W-sq crit(alpha=0.500) = 0.1187 C-sq (cosine weighting) = 0.0619 0.600 < p <= 0.700 Relevant critical values: C-sq crit(alpha=0.700) = 0.0499 C-sq crit(alpha=0.600) = 0.0622
Cell Cut Observed Expected Chi-square i Points Values Values Values ----------------------------------------------------------------- 1 4.55 42.1 42 39.25 0.192 2 42.1 79.6 96 100.21 0.177 3 79.6 117. 102 104.55 0.062 4 117. 155. 61 61.01 0.000 5 155. 192. 41 33.99 1.447 6 192. 230. 22 20.35 0.134 7 230. 267. 18 13.08 1.847 8 267. 305. 6 8.91 0.952 9 305. 342. 1 6.35 4.512 10 342. 380. 6 4.70 0.361 11 380. 417. 4 3.58 0.050 12 417. 455. 0 2.79 2.791 13 455. 492. 2 2.22 0.022 ----------------------------------------------------------------- Total Chi-square value = 12.5475 Degrees of Freedom = 10.00 Probability of a greater chi-square value, P = 0.25008 The program has limited capability for pooling. The user should judge the necessity for pooling and if necessary, do pooling by hand.
Effort : 190.0000 # samples : 96 Width : 492.3280 Left : 4.553960 # observations: 401 Model 1 Hazard Rate key, k(y) = 1 - Exp(-(y/A(1))**-A(2)) Point Standard Percent Coef. 95% Percent Parameter Estimate Error of Variation Confidence Interval --------- ----------- ----------- -------------- ---------------------- D 37.585 3.7671 10.02 30.874 45.754 N 902.00 90.408 10.02 741.00 1098.0 --------- ----------- ----------- -------------- ---------------------- Measurement Units --------------------------------- Density: Numbers/Sq. kilometers EDR: meters Component Percentages of Var(D) ------------------------------- Detection probability : 53.1 Encounter rate : 46.9
Estimate %CV df 95% Confidence Interval ------------------------------------------------------ n 401.00 k 96.000 K 190.00 n/K 2.1105 6.87 95.00 1.8418 2.4184 Left 4.5540 Width 492.33
Estimate %CV df 95% Confidence Interval ------------------------------------------------------ Hazard/Polynomial m 2.0000 LnL -2242.1 AIC 4488.2 AICc 4488.2 BIC 4496.2 Chi-p 0.25008 h(0) 0.11189E-03 7.30 399.00 0.96951E-04 0.12914E-03 p 0.73743E-01 7.30 399.00 0.63896E-01 0.85108E-01 EDR 133.69 3.65 399.00 124.44 143.64
Estimate %CV df 95% Confidence Interval ------------------------------------------------------ Hazard/Polynomial D 37.585 10.02 330.52 30.874 45.754 N 902.00 10.02 330.52 741.00 1098.0