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Chapter 1

Introduction

1.1 Overview

fuss consists of a few iraf routines written in iraf cl, and a python 2.7 package.

1.2 Dependencies

The following packages are required: numpy, math, scipy (stats and odr), matplotlib (pyplot and gridspec), pylab,
astropy, mpl toolkits, pysynphot

To use datred.lin specpol() you also need the chromatic zeror-angles for FORS2 whcih can be foud on the website1.
In my computer I’ve put it in /home/heloise/FUSS/theta fors2.txt. The location can be changed at the top of the
datred.py file.

1http://www.eso.org/sci/facilities/paranal/instruments/fors/img/eps theta 2000-01-25.txt
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Chapter 2

Data Reduction

The actual data reduction is expected to be done in iraf, and a few iraf cl scripts have been written to make
this process less tedious. A few functions are defined in datred.py to help set up the data reduction and to calculate
the spectropolarimetry from the data exctracted in iraf. They can be used interactively from a standard (not iraf
xgterm) terminal. The arguments in bold are compulsory and the other are optional. All input files have their
columns delimited by a space

2.1 IRAF Routines and associated PYTHON scripts

The data reduction is principally performed in iraf and routines have been written in iraf cl to eliminate some of
the tedium. Additionally some of the iraf scripts call python scripts which perform tasks that are much more easily
automated in python than in iraf. Those scripts are also written in python 2.7 and are expected to be in the same
location as the .cl files. You should check in the .cl files that the path to the python scripts is correct. Note that
most of these scripts rely on the naming convention adopted by the datred.sort red() script.

• first calibs.cl: This script performs the first basic calibrations by removing biases and flats from the science
images and arcs. It also combines all arcs images into one.

Creating the Master Flat in iraf is interactive. You need to select an aperture or apertures that will cover your
science spectra. Then the response function is fitted; the default function for the fit is spline3 and the order is
35. Change the order if needed but best results werre obtained with spline3 (legendre has caused some trouble).

Another version, called first calib no flat.cl is available. Specrtropolarimetry does not absolutely require flat
field removal since polarimetry is a differential effect. I tend to do it because most of the time I’m going to
combine the polarised spectra into a flux spectrum eventually. If not then doing flats is just an extra step which
can introduce oddities if the response function is not well fitted.

• arc apertures.cl: After defining the apertures on all the science frames (using apall) this creates calibration arc
images for each science frame by cutting out the same apertures in the combined arc created by first calib.cl. It
also adds to the headers of the SCIENCE ##.ms.fits images which is the calibration arc image. This imformation
will be used by the task identify.

Uses edit list.py to update the filenames in one of the lists used by IRAF.

• create id.cl: Its actually just calls the python script create idcal.py, which copies a template idcal file and
modifies it to create idcal files for each science frame.

• disp2.cl: This just removes dSCIENCE* files and calls dispcor again.

• auto calibrate.cl: GET BACK TO THAT WHEN I’VE USED IT PROPERLY Uses airmass.py

• toascii pol.cl: Takes data from the dSCIENCE* files and creates text files containing the flux of all individual
apertures (2 per science frame), and seperate files for their errors. These can then be used by lin specpol() to
obtain Stokes parameters. MAKE SURE YOU HAVE CREATED A 1D spectra FOLDER BEFORE USING.
Nothing terrible will happen if you don’t, just keeps the working folder neats.

Uses rename txt.py to rename the text files.

• toascii flux.cl: Same but for the data reduced to produce the flux spectrum. These should be in c dSCIENCE*
files. They should be flux calibrated (unlike the data used for polarisation) and their wavelength bins are smaller
(we bin the data used for polarisation to increase S/N)

Uses rename flux txt.py to rename the text files.
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You can create permanent tasks by updating the login.cl file: under ”package user” define your own tasks e.g:
task $firstcal = myraf$first calibs.cl
task $firstcal noflat = myraf$first calibs no flat.cl
task $arc aps = myraf$arc apertures.cl
task $idfiles = myraf$create id.cl
task $disp2 = myraf$disp2.cl
task $ascii pol = myraf$toascii pol.cl
task $auto calib = myraf$auto calibrate.cl
task $ascii f = myraf$toascii flux.cl

Here ”myraf” is my environment variabe leading to the location of my iraf scripts.

2.2 Data Reduction Submodule: datred.py

• sort red():

Description: Sorts and uncompresses the observation files (which MUST end in ”.Z”, which they should if they
are FORS2 datafiles downloaded from the ESO website). Requires astropy.fits to read the headers of the fits
files. It also renames files using the naming convention required for use with my .cl and python scripts used for
data reduction in IRAF.

Input format : None.

Returns: None.

• info():

Description: Creates table containing useful information on the images (taken from the headers). Use in folder
containing the uncompressed FITS files.

Input format : None.

Output File Format : Filename, ESO label, Retarder Plate Angle, Exposure time,Airmass, Grism, Bin, umber
of Pixels, 1/Gain, Read Out Noise, Date.

Returns: None.

• hwrpangles():

Description: Creates the hwrpangles file required by the lin specpol and circ specpol functions to function.

Requirements: Needs to be called in the directory where the ”SCIENCE ##.fits” images are (where ## is a 2
digit number).

Note: To know what unique string to use to isolate to SN, polarised standard and zero polarisation standard
images, have a look in the second column of the info file created by info().

Optional parameters:

Argument Type Description Default

sn name string String uniue to the ESO name of the SN images ’CCSN’
zeropol name string String uniue to the ESO name of the zero polarisation standard images ’Zero ’
polstd name string String uniue to the ESO name of the polarised standard images. This is

the most suseptible to change.
’NGC2024’

return output name + ” created”

Output :
Linear polarisation: 4 columns (0◦, 22.5◦, 45◦, 67.5◦) each containing the number in the name of files corre-
sponding the those angles.
Circular polarisation: 2 columns (45◦, 315◦) each containing the number in the name of files corresponding the
those angles.

• lin specpol():

Description: Creates files containing: wl, p, ∆p, q, ∆q, u, ∆u, θ, ∆θ

Requirements: Need the file created by hwrpangles in the working directory as well as the text files of the
extracted apertures at all retarder plate angles and their assoiated error files.

Optional parameters:
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Argument Type Description Default

oray string Aperture correspnding to the ordinary ray: Either ’ap1’ or ’ap2’. ’ap2’
hwrpafile string file listing image numbers corresponding to sets of HWRP angles ’hwrpangles.txt’
e min wl int Lower Wavelength cut-off for ∆ε calculations. 3375
return Arrays Wavelengths, p, ∆p, q, ∆q, u, ∆u, θ, ∆θ, ∆ε (2D array - One set of

values per data set)

• circ specpol():

Description: Creates files containing: wl, v, ∆v

Requirements: Need the file created by hwrpangles in the working directory as well as the text files of the
extracted apertures at all retarder plate angles and their assoiated error files.

Optional parameters:

Argument Type Description Default

oray string Aperture correspnding to the ordinary ray: Either ’ap1’ or ’ap2’. ’ap2’
hwrpafile string file listing image numbers corresponding to sets of HWRP angles ’hwrpangles v.txt’
e min wl int Lower Wavelength cut-off for ε calculations. 3375
return Arrays Wavelengths, v, ∆v, εv (2D array - One set of values per data set)

• lin vband():

Description: Creates synthetic V band linear polarimetry data from spectropolarimetric data.

Optional parameters:

Argument Type Description Default

oray string Aperture correspnding to the ordinary ray: Either ’ap1’ or ’ap2’. ’ap2’
hwrpafile string file listing image numbers corresponding to sets of HWRP angles ’hwrpangles v.txt’

return float pV, ∆pV, qV, ∆qV, uV, ∆uV, θV, ∆θV

• flux spectrum():

Description: Takes text files ouput by iraf data reduction which contain the calibrated flux spectra and creates
file containing: wl, flux, ∆flux

2.3 Data Reduction Procedure

2.3.1 Pre-reduction steps

• Download the data and calibration frames from the FORS2 archive.

• In folder containing the compressed data files use sort red(). Can use interactive python, if you do your working
directory at the end of the task will be [start]/FITS/Data reduction/ where the images are located.

• Use info(). Get rid of the calibration frame that don’t fit with the data (e.g gain and RON not consistent with
the SCIENCE frames).

• In IRAF, check exposure of the calibration, standard and science frames and remove poorly exposed images.

• Make a note of where the spectra are located on the chip (need to know where to place the apertures when doing
flats).

• Use hwrpangles() to create the necessary files. Create a seperate file for the supernova, zero poalrisation
standard and polarised standard.

2.3.2 Data Reduction Steps

General

• firstcal or firstcal noflat

• noao, imred, specred, epar apall (@list obj)
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• arc aps

• idfiles. Have template file in database folder already can do from folder above and just use as file name the path:
databasidcal SCIENCE ## (will have to make the python code better so I don’t have to move template file to
/database).

• identify (@list cal)

• epar dispcor

• mkdir 1D spectra

For Flux Spectrum

• epar dispcor (or disp2?) Change w1 but not dw.

• epar sensfunc (can I automate that a bit?)

• auto calib

• ascii f

• Need to add rmv tell to FUSS

For Polarisation Data

• disp2. Change w1 and dw.

• ascii pol

• In folder use lin specpol()
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Chapter 3

Utility Functions and Routines

3.1 Functions

• get spctr(filename, wlmin=0, wlmax=100000, err=False, scale=True)

Description: Imports flux spectrum from an ASCII file. Allows easy cropping (with wlmin and wlmax) and
rescaling (using scale).

File format : Wavelength(Å ), Flux, Optional: Flux Error. Each column should be separated by a space and the
file should not contain strings because get spctr() uses numpy.loadtxt() which does not support strings.

Argument Type Description Default

filename string Name of the ASCII file where the spectrum is
wlmin int/float Lower wavelength cutoff 0
wlmax int/float Upper wavelength cutoff 100,000
err boolean If there is an error column, set to True False
scale boolean Multiplies the spectrum (and error) by the median values of the flux. True

return arrays Wavelength, Flux , (optional: Flux error)

• get pol(filename, wlmin=0, wlmax=100000):

Description: Imports values from polarisation files (best suited to those given by my specpol routine).

File format : Required File format: 9 columns, delimited by spaces. First column must be wavelength (Å ).
Other 8 columns for stokes parameters, degree of pol and P.A, and associated errors. (See output format of data
reduction script).

Argument Type Description Default

filename string Name of the ASCII file where the spectrum is
wlmin int/float Lower wavelength cutoff 0
wlmax int/float Upper wavelength cutoff 100,000

return arrays Nine 1D arrays containing the data. First array contains wavelengths
bins, the others contain the stokes parameters, degree of pol and P.A,
and associated errors in the order of the columns in the input ASCII file.

• dopcor(val, z):

Description: Applies Doppler correction.

Input format : val must be an array containing at least 2 columns, with val[0] being the wavelength.

Argument Type Description Default

val array Array containing the data. val[0] MUST be the column containing the
wavelength bins

-

z float Redshift -

return array Array of same size as val but with val[0] being Doppler Corrected.
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• dopcorFile(filename, z):

Description: Applies Doppler correction on data from a file and creates a new file with the doppler corrected
data.

Input format : The first column of the input file must contain the wavelength bins.

Argument Type Description Default

filename string File with data to doppler correct. First column MUST contain the wave-
length bins

-

z float Redshift -

return

• ylim def(wl, f, wlmin, wlmax):

Description: Finds approriate limits for a plot

Argument Type Description Default

wl array Array containing the wavelength bins -
f array Array containing the flux valeus conrresponding to wavelength bins.

Must have the same dimensions as wl.
-

wlmin float/int Start of wavelength range where min and max are found 4500-
wlmax float/int End of wavelength range where min and max are found 9500-

return float ymin and ymax

• rot data(q, u, θrot)

Description: Rotates the data by θrot. Input in RADIANS.

return: Rotated q and u, i.e Pd and Po.

Note: Obviously this can be used to rotate any 2D data set, not limited to Stokes parameters.

• norm ellipse(xc, yc, a, b, θrot, n)

Description: Creates ellipsoidal data set normally distributed around (xc,yc). The ellipse is described by 2
normal distributions N (xc, a2) and N (yc,b2). It is then rotated by θrot (in RADIANS). The number of data
points created is n.

return: Two arrays containg the x and y values of the created data.

3.2 Interactive Routines

• ep date()

Description: This allows you to find the epoch with respect a given date (e.g + or - X days with respect to
V-band maximum) or a date given an epoch.

Options in interactive mode:Just type the number corresponding to what you want to do.
1 - Get epoch in days. Inputs: Date of epoch
2 - Get date for an epoch in days. Inputs: Epoch in days (can be negative)
3 - Update the V-band max date
4 - Exit

• vel()

Description: This routine give you the velocity of an element given the observed wavelength and the rest
wavelength.

Note: When asked whether to continue or not (Continue?(y/n):) you can continue by either pressing ’y’ then
’Enter’ or simply ’Enter’. Any other input will exit the routine.
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Chapter 4

The PolData() class

In fuss each set of polarisation data is treated as one entity. One set of data (e.g for each epoch) must contain the
following quantities: the wavelength bins, the stokes parameters, the degree of polarisation, the angle of polarisation,
and the errors associated with each of those quantities. Additionally, one can add the flux spectrum (and corresponding
wavelength bins, which will probably be different from those associated with the polarisation) and the values for the
ISP. Alternatively PolData contains a method (i.e function) to quantify and initialise the ISP, and another the remove
the ISP that has been found using find isp() or given with add isp(). Other functions allow you to create q − u
plots.

4.1 Core Attributes and Initialisation

Not all attributes are initialised with a values when creating a new instance of PolData. The ”core” attributes that
make a set of sepctropolarimetric data are given a value when initialising a new instance of PolData. THey are:

• The wavelength bins (self.wlp) – in Å

• The degree of polarisation p (self.p) and the error on p (self.pr) – in %

• The normalised Stokes vector q (self.q) and the error on q (self.qr) – in %

• The normalised Stokes vector u (self.u) and the error on u (self.ur) – in %

• The polarisation angle (self.a) and the associated error (self.ar) – in degrees

There are 9 necessary quantities, which should all be contained within the text files produced by the data reduction
process described earlier. You must specify the name of the instance you are creating and the name of the file containing
those quantities when initialising. You can also define a wavelength range using wlmin and wlmax. The filename and
wavelength limit are passed on to the get pol() function (see 3.1) during initialisation.

If you are using a file that was not created using fuss to initialise PolData it must have the following format (if
you don’t kwo errors just fill the error columns with zeros).

wavelength p ∆p q ∆q u ∆u θ ∆θ

So to initialise a new instance of PolData just do:

example = PolData(’example’, ’filename’, wlmin, wlmax data)

4.2 Optional attributes and related methods

There are additional aspects of the data that can be considered: The flux spectrum corresponding to a particular data
set for example, or the ISP (especially if it needs to be removed).

4.2.1 Flux Spectrum

• add flux data(self, flux, err = False):

• flu n pol( self, save = False)

Description: Creates plots of p, q, u, θ and f. If the flux spectrum has not been added to a particular instance
of PolData the flux spectrum subplot will be plotted, albeit empty.

Option: The ’save’ option is Boolean and determines whether the plot will be saved. By default it is False. If it
is set to True the name of the plot will be [self.name] fnp.png
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Argument Type Description Default

flux Array Contains 2 or 3 columns separated by a space: [Wavelengths, F, Op-
tional: ∆F]

-

err Boolean If True, read in the error on the flux (i.e third) column False
return None

4.2.2 Interstellar Polarisation: finding, adding and/or removing the ISP.

• find isp(self, wlmin, wlmax):

Description: To find the ISP using the data in the current instance of PolData. It’s just an average of q and u
within a range given as input which shoud correspond to the region of line blanketting. The associated errors are
the standard dev within that range. From q and u, p an θ are then derived as well as their errors. It initialises
the values of qisp,∆qisp, uisp,∆uisp for this particular instance of PolData.

Input format : The wavelength range limits should be given in Å .

Argument Type Description Default

wlmin int/float Lower limit -
wlmax int/float Upper limit -

return floats qisp,∆qisp, uisp,∆uisp

• add isp(self, qisp, qispr, uisp, uispr):

Description: Initialises qisp,∆qisp, uisp,∆uisp from given values.

Argument Type Description Default

qisp int/float Normalised Stokes Q contribution from ISP -
∆qisp int/float Uncertainty on q -
uisp int/float Normalised Stokes U contribution from ISP -
∆uisp int/float Uncertainty on u -

return None

• rmv isp(self):

Description: Removes ISP from the polarisation data stores in the present isntance of PolData. The previous
attributes are updated and new attributes containing the original non ISP corected values are created (p0, p0r,
q0, q0r, u0, u0r, a0, a0r). Returns None

Prerequisite: Optional attributes qisp,∆qisp, uisp,∆uisp MUST have been initialised, either through add isp()
or find isp().

4.3 Creating q− u plots

Before using the following methods it is good to pre-define a figure in matplotlib (e.g f = plt.figure (figsize = (12,10)).
One can also use GridSpec (e.g gs1 = gridspec.GridSpec(2,2)). Also you must call plt.show() after using the following
methods as, although they create the plots, they do not show them automatically (maybe should add an option to do
that...). Side note: Even when using hspace = 0 or wspace = 0, the size of the graph has a strong influence ono how
much space there will be between the pot, it is just a matter of fine tuning.

The plot-making method is qu plt(). It returns the axis it is plotting on so that you can use that outside of the
QUplot instance if you want to add something to the q − u plot (e.g an elipse if you’ve done principal component
analysis and want to show the result).

• qu plt(self, *options*)

Description: Creates a q − u plot with a color scale either representing wavelength or velocity.

Argument Type Description Default

subplot loc ? 3 number integer representing ubplot location OR gridspec locator (e.g
gs1[0] if we take the same example given above)

111

wlmin int/float Start of wavelength range (Blue cut off) None
wlmax int/float End of wavelength range (Red cut off) 100000
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qlim array limits of the q axis [-3, 3]
ulim array limits of the u axis [-3, 3]
textloc array location of the text (which is the ’name’ given to the QUplot instance

when initialising)
[-2.7,-2.7]

cisp string Color of the ISP marker ’k’
fs int fontsize of the text 16
ls int (short for labelsize) size of the numbers on the axis ticks 14
isp Boolean Whether to plot ISP or not. qisp,∆qisp, uisp,∆uisp should have been

initialised preamptively.
-

colorbar Boolean If True the colorbar is plotted True
wlrest int Rest wavelength of spectral feature of interest. Will change the colour

scale from wwavelength to velocity
None

size clbar float Changes the size of the colorbar. Oddly enough seems to sometimes
change the size of the plot too??

0.05

line color string If want a solid colour for the lines between the markers. Default gives
lines cycling through rainbow colors to match the color of the point they
are associated with.

None

marker string Type of marker to be used ’.’
lambda xshift float That is to help the placement of the colorbar label. The x position of

the label will be qmax + lambda xshift, where qmax is the upper limit
given by qlim.

1.7

fit Boolean Whether to plot the dominant axis fit to the data or not. The fit wil
always be calculated and the best values returned even if fit is False.

True

qlab vis Boolean Whether to make the q axis label visible True
ulab vis Boolean Whether to make the u axis label visible True
qticks vis Boolean Whether to make the q ticks labels visible True
uticks vis Boolean Whether to make the u ticks labels visible True

return The Axis the plot is being plotted on
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Chapter 5

Other Submodules

5.1 Some Statistics: stat.py

This submodule contains a few functions required for routines that are not used as often as the ones previously
described. As its name indicates it provides statistics related methods. At present it only contains Principal Component
Analyis (PCA) and the Pearson’s Test (PT).

5.1.1 Variance, Covariance and Covariance Matrix

PCA and PT willmost likely be performed on the Stokes parameters, so for any point (q, u) on the q − u plane the
covariance matrix has the form:

C(q, u) =

(
var(q) cov(q, u)
cov(q, u) var(u)

)
(5.1)

• cov el(j, k, q, u, ∆q, ∆u)

Description: Creates the elements of C(q, u). j and k are indicies of the columns and rows, respectively, so that
for example var(q) ≡ C(j = 0, k = 0).

return: Covariance matrix element C(j, k).

• cov mat(q, u, ∆q, ∆u))

Description: Creates the covariance matrix of the Stokes parameters (or any 2D data-set I guess but that’s what
I’m using it for).

return: Covariance matrix

5.1.2 Principal Components Analysis

• pca(q, u, ∆q, ∆u)

Description: Performs PCA on data provided.

return: Axis ration (b/a), rot. angle of major axis (θmajor axis - degrees), rot. angle of minor axis (degrees)

• draw ellipse(q, u, a, axis ratio, θmajor axis)

description: Creates ellipse that best fits the data to be drawn onto the q − u plane.

Note: a is the length of the major axis. Just pick a number that makes the ellipse look nice on top of your data.
The axis ratio and θmajor axis come from doing pca().

return: The ellipse. To be used as input of the function add artist() from matplotlib.axes.

5.1.3 Pearson Correlation

Pearson correlation allows you to determine whether a linear correlation is likely to exists in a given data set. Pearson’s
coefficient ρ is close to 1 or -1 if there is linear dependence and close to 0 when if there isn’t. It is defined as:

ρ =
cov(q, u)

σqσu
(5.2)

Where σ is the standard deviation. So from 5.1:

ρ =
C(0, 1)√

C(0, 0)C(1, 1)
(5.3)
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• pearson(q, u, ∆q, ∆u)

Description: Calculates the Pearson’s coefficient ρ for the given data set.

return ρ

5.2 Making Polar Plots: polplot.py

This submodule contains the functions that will help you create polar plots to represent the SN ejecta.

5.2.1 Creating the polar axis: polplot.axis()

This function creates and returns the polar axis where the data will be plotted.
Pre-requiste: You need to define a figure using matplotlib.pyplot before calling this function as the first argument

of axis() is the figure on which you will be plotting the axes.

Argument Type Description Default

fig matplotlib.
figure.Figure

The figure to plot the axis. -

loc 3 digit int Location of the subplot (add subplot() argument) 111
num ticks int Scales the number of ticks. Actual number of ticks is:

int(maximum velocity/10000)*num ticks
1

phot vel int/float Absolute value of the photospheric velocity None
vel lim Array Velocity limits [0, max] [0, 30000]
ang grid string How many lines on angular grid. ’h’ for heavy, ’l’ for light, ’ul’

for ultra-light
’ul’

rad grid string How many lines on radial grid. ’h’ for heavy, ’l’ for light, ’ul’ for
ultra-light, or specify where want the velocity grid using a list
of velocities (again give absolute values, no negative numbers)

’l’

return The Axis the plot is being plotted on

5.2.2 Creating the data to plot: polplot.data()

This functions creates the data points that can then be plotted on the polar axis created using polplot.axis()

Argument Type Description Default

pa start int Angle at start of range (in DEGREES) -
pa end int Angle at end of range (in DEGREES) -
vel int Velocity -

return Two 1D arrays of the same length containing the angular com-
ponent and radial component to be plotted.
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Appendix A

Reducing Spectropolarimetry

Polarisation is characterised by 4 Stokes parameters: The intensity I and two quasi-vectors which describe the orienta-
tion of the electric field, Q, U and V. They are measured using a spectropolarimeter which is composed of: a half-wave
or quarter-wave retarder (with retardance δ = π and δ = π/2, respectively) plate with optical axis θ which can be
rotated to make θ vary; a Wollaston prism which splits the beam into the 2 orthogonal components of polarisation –
the ordinary and extraordinary ray (fo,i and fe,i).

In order to derive the expressions for fo,i and fe,i as functions of the Stokes parameters, one must consider what
happens to an incoming beam of light passing through both the retarder plate and then the Wollaston prism. The
changes in the polarisation of the beam as it travels through the optical train are described by combining the Mueller
matrices of the individual components. Generally speaking, if there are n elements in an optical train in the order 1,
2, .., n-1, n, then the Mueller matrix of the system is :

M = Mn ×Mn−1 × ...×M2 ×M1 (A.1)

So if the original Stokes parameters are S = (I,Q,U,V)T, the retarder plate Mueller matrix is R(θ, δ) and the
Wollaston prism Mueller matrix is Wo and We, for the ordinary and the extra-ordinary ray respectively, then the
Stokes parameters of the light reaching the detector are S′o,e such that:

S′o,e = Wo,e ×R(θ, δ)× S (A.2)

Additionally, as given by [?], the general Mueller matrix of the linear retarder plate is:

R(θ, δ) =


1 0 0 0
0 c22 + s22 cos δ c2s2(1− cos δ) −s2
0 c2s2(1− cos δ) s22 + c22 cos δ c2
0 s2 −c2 0

 (A.3)

Where c2 = cos 2θ and s2 = sin 2θ. And the Mueller matrices of the Wollaston prism for the ordinary and extra-
ordinary rays are:

Wo =
1

2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 (A.4)

We =
1

2


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 (A.5)

A.1 Linear Polarisation

To measure linear polarisation we only consider Stokes I, Q and U, and we use a half-wave retarder plate (with
retardance δ = π). Consequently, the Mueller matrix of the retarder plate becomes:

R(θ, δ = π) =

1 0 0
0 cos 4θ sin 4θ
0 sin 4θ − cos 4θ

 (A.6)
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Hence, for a beam with initial Stokes parameters S = (I,Q,U) and final Stokes parameters S′ = (I′,Q′,U′), the
ordinary ray has Stokes vectors:

S′o =

 I′o
Q′o
U′o

 =
1

2

1 1 0
1 1 0
0 0 0

1 0 0
0 cos 4θ sin 4θ
0 sin 4θ − cos 4θ

 I
Q
U

 (A.7)

Yielding:

I′o =
1

2

[
I + Q cos 4θ + U sin 4θ

]
(A.8)

And similarly, for the extra-ordinary ray:

I′e =
1

2

[
I−Q cos 4θ −U sin 4θ

]
(A.9)

Where I′o and I′e are the fluxes measured on the detector fo and fe, respectively. So if we define the normalised flux
difference at a given half-wave plate angle θi as:

Fi ≡
fo,i − fe,i
fo,i + fe,i

(A.10)

Then:

Fi =
I + Q cos 4θi + U sin 4θi − I + Q cos 4θi + U sin 4θi
I + Q cos 4θi + U sin 4θi + I−Q cos 4θi −U sin 4θi

=
Q cos 4θi + U sin 4θi

I
(A.11)

And if we define the normalised Stokes parameters as q = Q/I and u = U/I, then:

Fi = q cos 4θi + u sin 4θi (A.12)

And when we consider the instrumental signature ε as in [?], the normalised flux becomes:

Fi = q cos 4θi + u sin 4θi + ε (A.13)

From Equation A.13, it is easily seen that for θi = {0◦, 22.5◦, 45◦, 67, 5◦}, Fi = {q + ε, u+ ε,−q + ε,−u+ ε}. And
consequently we can combine F0 with F2, and F1 with F3 to cancel out the instrumental signature and obtain the
normalised Stokes parameters:

q =
1

2
F0 −

1

2
F2 (A.14)

u =
1

2
F1 −

1

2
F3 (A.15)

Once q and u are known, the degree of polarisation p and the polarisation angle χ can be calculated:

p =
√
q2 + u2 (A.16)

χ =
1

2
arctan

(
u

q

)
(A.17)

The measured q and u also need to be corrected for wave plate chromatism (i.e the polarisation zero-angle varies with
wavelength). In our case this is done by interpolating the zero-angles provided on the European Southern Observatory
(ESO) web-page1 to our set of wavelengths, subtracting the zero-angles from our initial χ, and then re-calculating q
and u:

qcorr = p cos
(
2× (χ− χzero angle)

)
; ucorr = p sin

(
2× (χ− χzero angle)

)
(A.18)

The degree of polarisation and the poalrisation angle can then be calculated again using the new values of the
normalised Stokes parameters and Equations A.16 and A.17.

Lastly since the degree of polarisation p is found by adding q and u in quadrature, for low values of p and high
levels of noise p will be biased towards values greater than the true degree of polarisation. We correct for this effect
as in [?]:

pcorr = p−
σ2
p

p
× h(p− σp) (A.19)

Where σp is the uncertainty in p, and h(p− σp) is the Heaviside function, defined as:

h(p− σp) =

{
1 if p− σp > 0

0 if p− σp < 0

1http://www.eso.org/sci/facilities/paranal/instruments/fors/inst/pola.html
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A.2 Circular Polarisation

Circular polarisation is characterised by the Stokes parameters I and V (with positive values of V corresponding to
left-handed circular polarisation and negative values corresponding to right-hand circular polarisation). The set up
is practically the same as in the case of linear polarisation, but a quarter-wave retarder plate (i.e with retardance
δ = π/2). Consequently A.3 becomes: 

1 0 0 0
0 c22 c2s2 −s2
0 c2s2 s22 c2
0 s2 −c2 0

 (A.20)

Considering a beam with initial Stokes parameters S = (I,Q,U,V) and final Stokes parameters S′ = (I′,Q′,U′,V′),
the ordinary ray will have polarisation characterised by S′o:

S′o =


I′o
Q′o
U′o
V′o

 =
1

2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0




1 0 0 0
0 c22 c2s2 −s2
0 c2s2 s22 c2
0 s2 −c2 0




I
Q
U
V

 (A.21)

Yielding:

I′o =
1

2

[
I + Q cos2 2θ + U cos 2θ sin 2θ −V sin 2θ

]
≡ fo (A.22)

And similarly for the extra-ordinary ray:

I′e =
1

2

[
I−Q cos2 2θ −U cos 2θ sin 2θ + V sin 2θ

]
≡ fe (A.23)

So for θi = {45◦, -45◦} and a normalised flux Fi (A.10) is:

F0 = v + ε and F1 = −v + ε (A.24)

Where v is the normalised V Stokes parameters and ε is the ensemble of instrumental signature. We therefore obtain:

v =
1

2
[F0 + F1] (A.25)
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