MilkyWay@home Python Package
Documentation
(mwahpy v1.4.0)

Tom Donlon

Department of Physics, Applied Physics and Astronomy
Rensselaer Polytechnic Institute

Contents

1

Introduction
1.1 What is MilkyWay@home?
1.2 What is mwahpy? e

Installing mwahpy

Core Functionality

3.1 The Timestep Class o o v i it e e e e e e e e
3.1.1 Initializing a Timestep oL
3.1.2 Reading In & Writing Out Data o
3.1.3 Manipulating Data

3.2 The Nbody Class o o i i e e e e
3.2.1 Reading In & Writing Out Data o
3.2.2 Functionality of Nbody Objects

3.3 Plotting L

Auxiliary Subpackages

4.1 Coordinate Transformations L

4.2 Orbit Fitting o e
4.2.1 orbit_fitter e
4.2.2 orbit_fitter_gc e e e

Flags & Settings

5.1 flags e
5.2 mwahpy-glob L e e
0.3 POT . o e

Functions & Methods
6.1 coords e
6.2 orbil_fitter e e e e e
6.3 orbit_fitter_gc e
6.4 mbody e
6.4.1 Imitialization e
6.4.2 Methods e
6.5 orbit_fitter e
6.6 orbit_fitter_gc e e
6.7 output_handler e
6.7.1 Functions e e e e e e e e e
6.8 plot . . . e
6.9 timestepo e e
6.9.1 Initialization e e e
6.9.2 Attributes
6.9.3 Methods e
6.9.4 Functions e e e e e e e e e e e e e e e e

1 Introduction

1.1 What is MilkyWay@home?

At best, “MilkyWay@home” is a nebulous term that can refer to several different projects, softwares, and/or
groups of people. At its core, MilkyWay@home is a crowd-sourced supercomputer that takes volunteer
computing time to perform complex and time-consuming calculations that are designed to improve our un-
derstanding of the Milky Way Galaxy. At the moment, this includes both the MilkyWay@home Separation
application and the MilkyWay@home N-body application. The MilkyWay@home project was developed
at Rensselaer Polytechnic Institute under the direction of Dr. Heidi Jo Newberg, and has utilized count-
less hours of work from many graduate students and researchers. For more information regarding Milky-
Way@home, I direct the user to the MilkyWay forums at https://milkyway.cs.rpi.edu/milkyway/. All of
the MilkyWay@home code is publicly available at https://github.com/Milkyway-at-home.

While the Separation application is an important part of MilkyWay@home, the Separation application
is difficult to apply to other projects. Additionally, the tools that I have developed for the Separation appli-
cation are quite situation specific and not designed with user friendliness/adaptability in mind. For this rea-
son, mwahpy does not include functionality for the Separation application. For Separation application tools
and documentation, see the Separation application github page at https://github.com/Milkyway-at-home/
milkywayathome_client/tree/master/separation.

What I refer to as “Milky Way@home” in this document is actually the Milky Way@home N-body software.
This software was originally designed to generate model dwarf galaxies in the Milky Way gravitational
potential and integrate them forwards in time. This evolved dwarf galaxy would then be compared to
observations of stellar streams in the sky in order to determine a quality of fit. By optimizing over the
parameters that were used to generate the dwarf galaxy, one could in theory determine the parameters of
the progenitor dwarf galaxy. This could even be done for streams with no obvious progenitor (e.g. the
Orphan Stream).

It was realized shortly thereafter that the N-body application could be used to integrate the orbits of
any bodies in the Milky Way, not just those that were generated as part of a dwarf galaxy. The ability to
insert list of bodies to integrate forwards in time was provided. Additionally, the ability to control the size
of the timestep of the simulation, the orbit of a dwarf galaxy progenitor, the timescale of the simulation, the
dwarf galaxy parameters, the underlying gravitational potential, and other MilkyWay@home functionality
made it a versatile and robust tool for N-body integration.

While the MilkyWay@home N-body application is currently used by many graduate and undergraduate
students at Rensselaer Polytechnic Institute, the MilkyWay@home team is making an effort to encourage
more widespread usage of the MilkyWay@home N-body software. Our goal is to provide a user-friendly,
comprehensive experience for N-body integration. This will decrease the time needed to get new students and
researchers up to speed with N-body software, which has become commonplace in the dynamical astrophysics
community.

We expect that the MilkyWay@home N-body application will become more widely used, and that proper
documentation and accompanying tools will quickly become necessary. Additionally, new applications of the
N-body software have expanded simulations for upwards of one million bodies. Analysis of these large
simulations requires quick, robust software. It is for these reasons that mwahpy was developed.

1.2 What is mwahpy?

The Milky Way@home N-body software has been used by the Galactic dynamics research group at Rensselaer
Polytechnic Institute for years. As each new student comes into contact with the software, each one has had
to develop their own tools for analyzing the outputs of the software. Each individual software has its own set
of bugs, sets the student back a few weeks while developing their own tools, and by not using a standardized
set of analysis software we open up the group to problems with sharing data and code. Additionally,
MilkyWay@home is written in C, a language which can be daunting to the typical undergraduate student
(and is often unecessarily unwieldly if you are just trying to cut data or make a plot). My goal to alleviate
these issues was a compilation of the tools that I had built in python and tested over my tenure as an
undergraduate (and improved during my time as a graduate student) in the MilkyWay@home dynamics
group. This became the mwahpy package.

Before we talk about what mwahpy is, it is good to clarify what mwahpy is not. This package is not
able to do N-body integration. Things like generating dwarf galaxies, running simulations, and performing
routines on the Milky Way@home supercomputer are to be delegated to the proper Milky Way@home software.
Additionally, I would like to express that because the Separation application is interacted with by many fewer
people than the N-body application, mwahpy will not support Separation application functionality.

There is plenty that mwahpy is meant to be used for, though. At its very base, mwahpy is a python
package that is designed to easily and quickly read in N-body data ouput from the Milky Way@home N-body
software. Once read in, it is fairly simple to cut the data, plot the data, and save the data in a variety of
formats. This package is also able to output data in a format that is readable by the MilkyWay@home
N-body software. The software will automatically calculate complicated values such as proper motion and
energies as needed, instead of computing everything up front. The major benefit of these routines is that
new users can be confident that the values that are produced by mwahpy have been tested over several years
and are known to be accurate.

There are several associated auxiliary packages in mwahpy as well, such as the coordinate transformation
subpackage and the orbit fitting subpackages. These are provided in the package because while working with
N-body simulations, I often ran into situations where I used the functionality provided in the auxiliary sub-
packages. The auxiliary subpackages are less streamlined and complete compared to the main subpackages,
but are still fairly well tested and can be trusted.

The code for mwahpy is publically available and can be found at https://github.com/thomasdonlon/
mwahpy. Not only is collaboration on the code allowed, it is encouraged! If you would like functionality added
to mwahpy or if you find any bugs in the code, you can either leave a comment on the github page or you
can write the code yourself and make a pull request. This code is still being actively maintained, and I plan
on eventually getting around to any bug fixes or desired functionality that are brought to my attention.

1.3 What can mwahpy do?

The following functionality is provided in mwahpy:

e Easily & quickly read in data from a Milky Way@home N-body .out file

e MilkyWay@home N-body output only provides 3D Cartesian positions and velocities, as well as mass
(in MilkyWay@home structural units). The mwahpy package converts this data into many other useful
forms, such as R.A. & Dec., Galactic longitude and latitude, angular momenta about the Galactic
center, line-of-sight velocity, proper motions, and others.

e Make cuts based on any of mwahpy’s supported values, cut the data based on individual components
of the data, or subsample the data randomly or symmetrically.

e Quickly plot N-body data in any of the supported values
e A variety of coordinate transformations for typical coordinate systems used in Galactic astronomy

e Two separate orbit fitting routines that have been used in publications

The proper syntax, usage, and details of each of the above capabilities will be outlined in the following
sections.

1.4 Citing mwahpy

If mwahpy or any of its related code is used in a publication or project, I simply ask that you state
that mwahpy was used in your work and provide the link for the mwahpy github repository located at
https://github.com/thomasdonlon/mwahpy. There is currently no publication that should be cited for this
package. In the future, the requirements for proper citation may change, so please check again before final
publication. Thank you for using mwahpy!

2 Installing mwahpy

Installing mwahpy is as simple as installing any other python package. For linux machines, go to your ter-
minal and type

Code Block 1: Installing mwahpy

>>> pip3 install mwahpy

Alternatively, you can also install mwahpy using

Code Block 2: Installing mwahpy

>>> python3 -m pip install mwahpy

It may be necessary to install mwahpy only in your user directory due to user access restrictions. It
is strongly recommended you do not use sudo to install python packages. Using sudo makes
it difficult to track who has the permissions to use what package on your machine, and on machines with
multiple users, it can mean you have to install it for each user individually anyways. Misuse of sudo can
also result in accidentally using a different version of mwahpy than intended, particularly after updates. To
install mwahpy for only the active user, you can instead type

Code Block 3: Installing mwahpy

>>> pip3 install mwahpy --user

or

Code Block 4: Installing mwahpy

>>> python3 -m pip install mwahpy --user

Any of these lines of code will install mwahpy on your machine, as well as install all of the prerequisite
packages needed for mwahpy to work.

If you use Anaconda as a package manager (as is becoming more and more common these days), it is
recommended that you still use pip to install mwahpy as is shown above. Hoewever, this can have a couple
disadvantages: For starters, the Conda package manager will not manage mwahpy. However, mwahpy will
still be managed by the Anaconda environment. Additionally, you can run into some problems if your default
installation of python is different than your Anaconda installation of python (a more common problem than
it should be). If your default python installation is different than your Anaconda installation,
I strongly suggest that you go through and fix your python configuration, as you will almost
certainly run into other problems eventually. However, if you don’t want to do that (or have your
python installation purposefully configured that way for some reason), you can use

Code Block 5: Installing mwahpy

>>> conda skeleton pypi mwahpy
>>> conda build mwahpy
>>> conda install --use-local mwahpy

This will install mwahpy and avoid issues with a misconfigured Anaconda/python installation. Addition-
ally, if mwahpy is installed this way, the Conda package manager will be responsible for managing mwahpy
instead of pip. Be aware that this method may not automatically update mwahpy when a new
vrsion of the package is released.

In order to use mwahpy after it is installed, simply import the subpackages as you would any other other
package in your python script. For example, the following lines are all syntactically acceptable imports:

Code Block 6: Importing mwahpy

import mwahpy.output_handler
from mwahpy.timestep import Timestep
from mwahpy.coords import =

It should be noted that mwahpy is only built for and maintained for python v3.2.3 and above. You
should get an error when installing if your python installation is not recent enough for mwahpy . Depending
on your installation, you may instead have to type >>> python -m pip install mwahpy instead of python3,
or use pip3 instead of pip. If you are experiencing errors, asking questions on the mwahpy github page or
trying different permutations of these installation methods are recommended.

If you wish to install mwahpy for development, then you should clone the most recent mwahpy github
repository (found at https://github.com/thomasdonlon/mwahpy). Feel free to make your own fork of the
master branch if that’s what you would prefer. Then, you should download the source code wherever you wish
on your machine. You will then need to build the mwahpy package on your machine so that you can test any
changes you make to the code. Navigate to the directory where mwahpy is stored and then type in a terminal:

Code Block 7: Using mwahpy as a developer

>>> pip3 uninstall mwahpy
>>> python3 setup.py develop

Whenever you make a change to the mwahpy source code, you will have to run the python3 setup.py develop
line again in a terminal to rebuild the package on your machine. Any changes that you feel are beneficial to
the package should be sent as a pull request to the master branch. When you are done making changes, you
should return to your terminal and run

Code Block 8: Using mwahpy as a developer

>>> python3 setup.py develop --uninstall
>>> pip3 install mwahpy

This will return your system to a configuration where it is using the most recent stable release of the
mwahpy package. If you intend on running code using the changes you have made to mwahpy, you will have
to run that code before returning your mwahpy build to the current PyPi version.

3 Core Functionality

WARNING:

MilkyWay@home uses a right-handed Galactic Cartesian coordinate system. This is defined as
positive X being in the direction of the Sun towards the Galactic center, positive Y being in the
direction of the disk spin at the location of the Sun, and positive Z being in the direction of the
right-handed cross product XxY (often called the “Galactic north”). In our coordinate system,
the Sun is located at the position (X,Y,Z) = (-8,0,0).

This is in contrast to many other Galactic scientists, who prefer a left-handed coordinate system
where the X-axis is flipped and the Sun is located at (X,Y,Z) = (8,0,0). Most notably, the galpy
package is left-handed. In a left-handed coordinate system the physical interpretation of certain
quantities are not always clear (such as the right-handed angular momentum cross product).
Many coordinate transformations in mwahpy allow for left-handed coordinates. However, be
aware that by default, mwahpy (and Milky Way@home) output is right-handed.

3.1 The Timestep Class

The Timestep class is the heart of mwahpy, and it’s where the majority of the important and useful calcu-
lations in the package are performed. An instance of the Timestep class represents a single timestep of an
N-body simulation. In other words, a Timestep instance is the data from a single MilkyWay@home .out
file. The code for the Timestep class can be found in mwahpy’s timestep.py file.

3.1.1 Initializing a Timestep

The most basic usage of Timestep object is a blank instance, to which you can then manually add data:

Code Block 9: Blank Timestep

import numpy as np
from mwahpy.timestep import Timestep

t = Timestep ()

.typ = np.array([o, o, 11)

.id = np.array ([0, 1, 21)

.x = np.array([1e, 50, 100])
.y = np.array([12, 15, 171)

.z np.array([1, 2, 31)

.vXx = np.array([13, 183, 102])
.vy = np.array ([0, 50, 180])
.vz = np.array([23, 69, 12])
.mass = np.array([1, 1, 11)

+ &+ &+ &+ & &+ &+ &+ +

These 9 values are all that you need to specify for the Timestep class to do its job. These 9 values (typ,
id, x, y, 2, vx, vy, vz, and mass) will be referred to as “provided values”. This is in contrast to the “supported
values”, which are any values that mwahpy can calculate for you (a full list of the supported values is
provided in Section 6.9). I will also often refer to supported values as “calculated” values. In the Timestep
implementation, all of the particle IDs, x positions, etc. are stored in order as a numpy array of those values.
As such, the mwahpy package heavily utilizes features of the numpy package, and some knowledge of numpy
can be helpful for those working with mwahpy.

If you wish to print the information of a single particle, you can do so with print_particle() by speci-
fying the ID of the particle you are interested in:

Code Block 10: Printing data for a single particle

>>> t.printParticle (1)
Printing data for Particle 1:
(typ: @, id:1, x:50, y:15, z:2, vx:183, vy:50, vz:1, mass:1,)

WARNING:

The provided values should always be numpy arrays of identical length. Attempting to calculate
values, plot data, or write out data when the provided values have mismatched length or are not
numpy arrays will typically result in an error. It is strongly recommended that the user uses the
built-in Timestep methods for cutting or adding data instead of doing it manually.

From this point forward, the user can ask for any mwahpy supported value, and it will be calculated for
them. For example, if you wanted the line-of-sight velocities of the particles, you could type:

Code Block 11: Calculating supported values

>>> t.vlos
array ([7.894394 |, 235.8965911 , 128.909745891])

Note that if you call t.print_particle() again (this time using the optional dec argument to shorten
the output), it now shows more data for the particle!

Code Block 12: Printing data for a single particle

>>> t.print_particle(1, dec=2)

Printing data for Particle 1:

(typ:0, id:1, x:50, y:15, z:2, vx:183, vy:50, vz:69, mass:1, msol:222288.47
1:0.29, b:0.04, ra:266.54, dec:-28.67, dist:59.94, 1x:935, ly:3084,
1z:-245, lperp:3222.62, 1ltot:3231.92, r:52.24, R:52.2, vlos:235.9,
vgsr:247.14, rad:192.15, rot:-4.69, distFromCOM:52.24,)

This was all calculated in the background when you asked the package to calculate vlos for this Timestep.
Due to the overhead on some calculations, the more computationally complex calculations are avoided until
the user requests those values.

The Timestep class has one very unique property: attributes of a Timestep instance can be accessed via
the usual method, or as the key to a dictionary. In fact, comparing the two methods shows that these two
actions produce equivalent results.

Code Block 13: Accessing Timestep attributes

>>> t.x #accessing data as an attribute
array ([10, 50, 100])

>>> t[’x’] #accessing data as a dict key
array ([10, 50, 100])

>>> np.all(t.x == t[’x’])
True
>>> t.x[@0] = 1 #changing the value for Particle ©’s x position

>>> t.x[0] #the same value is accessed by both methods
1

>>> t[’x’][0]

1

>>> t.x[0] == t[’x’][0]

True

At first this property may seem confusing and not particularly useful. What is the point of being able to
access the same data in two different ways? It turns out that adding this functionality to Timestep allows
for some rather powerful behavior. Of the greatest importance to the typical user is the implementation of
the iterator for Timestep, which iterates over the keys of the class. In this case, that has been implemented
as the names of all of the supported values (that have been calculated so far!).

Code Block 14: Iterating over a Timestep

>>> outstr = 7’

>>> for key in t:

. outstr += (key + 7 ,.7)

>>> print(outstr)

id, x, y, z, vx, vy, vz, mass, msol, 1, b, ra, dec, dist, 1x, ly,

1z, lperp, 1ltot, r, R, vlos, vgsr, rad, rot, distFromCOM,

>>> outstr = 7’

>>> for key in t:

R outstr += (str(round(tl[keyl[0],2)) + ’,.")

>>> print(outstr)

o, 1@, 12, 1, 13, @, 23, 1, 222288.47, ©.88, 0.06, 266.86, -28.15, 21.66,
276, 217, -156, 351.09, 384.19, 15.65, 15.62, 7.89, 21.43, 9.77, -9.99,
15.65,

This may not seem like a big deal at first. However, if one tries to reproduce this behavior for a class that
doesn’t have the property c.x == c['x"'], then you will quickly run into several problems. I expect that the
typical reader would try to iterate over the class’ built-in attribute dictionary, which is what I initially tried.
What happens if you want to add attributes to the class that cannot be iterated over at the same time as
your arrays, such as a single identifying string c.name? I suggest that the reader play around with this idea
on their own if they are so inclined.

3.1.2 Reading In & Writing Out Data

So far, we know how to initialize a Timestep, how to add data to it manually, and how to access this data.
This is all fine and good, but most of the time a user will be interested in using data that has already
been generated by the MilkyWay@hoe N-body application. Conveniently, there is a mwahpy function built
specifically for this in the mwahpy.output_handler subpackage

Code Block 15: Reading in a Timestep

>>> import mwahpy.output_handler as oh
>>> t = oh.read_output(’<path/to/mwahpy>/test/test.out’)
Reading in data from ../test/test.out...

e > 1 73%

10 objects read in

Converting data...done

>>> t.x

array ([4.53813066, -0.59395581, -1.41000385, -0.00613003, ©.11393187,
0.38487162, ©.35803147, 0.3565866 , ©.52268562, 3.57179938])

The oh.read_output function takes in the path to a MilkyWay@home .out file and outputs a Timestep
instance of the data from that file. In the above code block, we read in the test ,out file, which is provided
in .../mwahpy/test/. The oh.read_output function provides you with a progress bar, which is useful for
large files. In this case, the progress bar finished almost instantly since the file was small. Typically, the
progress bar will reach 100%. The oh.read_output function also provides you with the number of particles
that were read in from the file, and a brief update on when it is converting the data (again, useful for very
large files). From this point forward, you can perform any normal Timestep operations on the new Timestep
object.

The oh. read_output function has been heavily optimized, and operates extremely quickly. Even for files
with millions of values, reading in the data only takes a few seconds on most machines. If you are working
with N-body output, it is strongly recommended that you use this function to initialize your Timestep
instances.

The mwahpy package also offers a few different options for printing out Timestep data to a file. Notably,
mwahpy can print out the data to a .csv file,

Code Block 16: Writing out a Timestep

>>> oh.make_csv(t, ’/path/to/my/file.csv’)
Writing header...

Printing data...

Timestep output to /path/to/my/file.csv

Saving the data to a .csv saves all of the supported values that has been calculated so far. Alternatively,
you can write out data from a Timestep to a MilkyWay@home . in file,

Code Block 17: Writing out a Timestep

>>> oh.make_nbody_input(t, ’/path/to/my/file.in’)
Writing Timestep as N-body input to /path/to/my/file.in...
done

Note that a MilkyWay@home .1in file will only include the data about the 8 provided values, and not
any of the other supported values. This is due to the format that MilkyWay@home requires readable files
to be in. Any file that you generate with make_nbody_input is immediately ready to be used as the manual
body input for a MilkyWay@home N-body simulation.

WARNING:

The MilkyWay@home N-body client has a bug that will cause crashes if it tries to read in a .in
file that includes any baryonic (typ == @) particles. If you plan on using a .in file as a manual
body file for the N-body client, you should run

tltyp] = np.array([1]xlen(t))

before writing that timestep out to a .in file. This will not change the physics of the simulation,
although it is annoying for tracking certain types of particles.

If a user wishes to suspend a Timestep object for later use, I recommend the pickle package (https:
//docs.python.org/3/1library/pickle.html). The pickle package allows for object serialization and saving
out/reading in arbitrary objects as binary code.

3.1.3 Manipulating Data

Aftet N-body data has been read in, it is useful to be able to only select the data that you are interested
in. There are a few different routines for this, namely subset_rect() and subset_circ(). These methods
are n-dimensional cutting routines. For example, say that you took the test data and only wanted particles
with a positive X value.

Code Block 18: Cutting data in a Timestep

>>> tcopy = t.copy()

>>> tcopy.subset_rect([’x’], [(0,1000)]1) #[axes], [(lower lim, upper lim)]

>>> tcopy.Xx

array([4.53813066, ©0.11393187, 0.38487162, ©.35803147, 0.3565866 ,
0.52268562, 3.571799381])

>>> tcopy.y

array ([-0.05701174, 0.39540971, -0.43899208, 0.14577695, 0.0082146 ,
-0.34261058, 0.539084041])

Note that subset_rect() has cut along all axes, not only the axis that we instructed it to cut along.
As such, it is easy to see that tcopy.y has the same length as tcopy.x. It is also important to note that
we made a copy of t before using subset_rect(), because the subset methods treat the Timestep object as
directly mutable.

While cutting the data, we provided 1000 as an upper value for X. This was because subset_rect()
requires both a lower and upper limit for each axis when cutting the data. To get around this, we just chose
some arbitrarily large value that would not cut any data off at the high end of X values.

You can also cut on multiple axes with subset_rect(). Say that you wanted to only include particles
with positive X and negative Y values:

Code Block 19: Cutting data in a Timestep

>>> tcopy = t.copy()

>>> tcopy.subset_rect([’x’,’y’]1, [(0,1000),(-1000,0)1)
>>> tcopy.Xx

array ([4.53813066, ©0.38487162, 0.52268562])

>>> tcopy.y

array ([-0.05701174, -0.43899208, -0.34261058])

10

As all methods in Timestep, these routines can be performed on any supported values after they have
been calculated. Attempting to cut on line-of-sight velocity before it has been calculated, for example,
would result in a KeyError.

Similar results can be obtained from subset_circ(). If we wanted all particles with X values within 1
kpc of the Galactic center:

Code Block 20:

Cutting data in a Timestep

>>> tcopy = t.copy()

>>> tcopy.subset_circ([’x’]1,[1]1,[0])

>>> tcopy.Xx

array ([-0.59395581,
0.3565866 |,

-0.00613003,
0.52268562])

©0.11393187, ©.38487162, 0.35803147,

Or if we wanted all particles with X and Y values within 1 kpc of the Galactic center:

Code Block 21: Cutting data in a Timestep

>>> tcopy =
>>> tcopy

t.copy ()

.subset_circ([’x’, ’y’1,[1,11,[0,0]1)

0
>>> tcopy

>>> tcopy.
array ([-0.

X
00613003,
.522685621)

-y

0.11393187, ©0.38487162,

0.35803147,

0.3565866

array ([©.43348783,
-0.342610581])

0.39540971, -0.43899208, ©0.14577695, ©0.0082146 ,

This routine is a bit of a misnomer, as it can be extended to any n-dimensional spheroidal volume of your
value space. For example, say that we wanted particles located within a spheroid defined with an semiaxis
of length 1 on the X-axis, a semiaxis of length 2 on the Y-axis, and a semiaxis of length 5 on the Z-axis,
centered at (X, Y, Z) = (0, 1, 3). This can be done with

Code Block 22: Cutting data in a Timestep

>>> tcopy = t.copy()
>>> tcopy.subset_circ([’x’, ’y’,
>>> tcopy.Xx

'z’1,01,2,51,00,1,31)

array ([-0.59395581, -0.00613003, ©.11393187, ©.35803147, ©.3565866 1)
>>> tcopy.y

array ([0.87634781, ©.43348783, ©0.39540971, ©.14577695, 0.0082146 1)

>>> tcopy.z

array ([©.55739028, -0.18463063, ©.32116868, ©.17315727, -0.096000291])

Unlike subset_rect(), this routine becomes somewhat unclear when you begin mixing values with dif-
ferent units. In that case, it is suggested that you either make multiple circular cuts where the units of each
value match, or make rectangular cuts instead.

Other data manipulation routines include sampling and splitting Timesteps. There are three types of
sampling that mwahpy supports: manual, incremental, and random sampling, shown below.

Code Block 23: Sampling a Timestep

>>> #manual sampling

>>> tcopy = t.copy()

>>> tcopy.take([0,2,3,6,9]) #take particles at indices @, 2, 3, 6, and 9
>>> tcopy.x

array ([4.53813066, -1.41000385, -0.00613003, 0.35803147, 3.57179938])

>>> #incremental sampling

>>> tcopy = t.copy()

>>> tcopy.subsample(2) #take every 2nd particle, starting at 0

>>> tcopy.Xx

array ([4.53813066, -1.41000385, ©.11393187, ©.35803147, ©0.52268562])

>>> #random sampling

>>> tcopy = t.copy()

>>> tcopy.rand_sample (5) #randomly take 5 particles from the data

>>> tcopy.Xx

array ([4.53813066, -0.59395581, ©.38487162, -0.00613003, ©.35803147])
>>> #run again to demonstrate randomness

>>> tcopy = t.copy()

>>> tcopy.rand_sample (5)

>>> tcopy.x

array ([©.52268562, -0.59395581, ©.3565866 , -0.00613003, ©.113931871])

It is easy to split a Timestep by providing the index at which you want to split:

Code Block 24: Splitting a Timestep

>>> tcopy, tcopy2 = t.split(4) #split at index 4

>>> tcopy.Xx

array ([4.53813066, -0.59395581, -1.41000385, -0.00613003])

>>> tcopy2.x

array([©.11393187, ©.38487162, ©.35803147, ©0.3565866, 0.52268562,
3.571799381])

Finally, if you would like to add two Timestep instances together, use the append_timestep() or append_point()
methods:

12

Code Block 25: Adding Timesteps together

>>> tcopy.append_timestep(tcopy2) #append two Timesteps

>>> tcopy.Xx

array ([4.53813066, -0.59395581, -1.41000385, -0.00613003, ©.11393187,
0.38487162, ©.35803147, 0.3565866 , ©.52268562, 3.571799381])

>>> tcopy, tcopy2 = t.split(4)

>>> tcopy.append_point(tcopy2, n=5) #add tcopy2 index 5 to tcopy

>>> tcopy.Xx

array ([4.53813066, -0.59395581, -1.41000385, -0.00613003, 3.57179938])

Note that actions like just replacing a single x value in a Timestep does not update the rest of the calcu-
lated values in the Timestep. That Timestep will need to be updated manually using Timestep.update().
This method will update all values associated with the Timestep in order to keep them in sync with the
provided values.

WARNING:

Note that if the auto_update flag is turned on (it is on by default), mwahpy functions will
automatically keep the provided and calculated values in sync. However, if you manually up-
date the provided values after the calculated values have been computed, you will need to run
Timestep.update().

Code Block 26: Updating a Timestep

>>> t = oh.readOutput(’../test/test.out’)

Reading in data from ../test/test.out...

[cecceccccmca=s > 1 73%
10 objects read in
Converting data...done

>>> t.x

array ([4.53813066, -0.59395581, -1.41000385, -0.00613003, ©0.11393187,
0.38487162, ©.35803147, ©0.3565866 , ©.52268562, 3.571799381])

>>> t.dist_from_com

Calculating basic values...

array ([4.53771154, 1.20665236, 2.01267674, ©0.48791978, 0.51046082,
0.99322694, 0.39540509, .34974823, .85795412, 3.738186361])

>>> t.x[0] = ©

>>> t.dist_from_com

array ([4.53771154, 1.20665236, 2.01267674, ©0.48791978, 0.51046082,
0.99322694, 0.39540509, 0.34974823, 0.85795412, 3.738186361])

>>> t.update ()

>>> t.dist_from_com

array ([0.80324921, 1.29094239, 2.05506687, 0.36725208, ©0.51176956,
0.99371407, 0.34057982, 0.29000981, 0.81102414, 3.37390626])

(S}
S

S
S
w

S
S
w

You should now have a fundamental undertsanding of how to use the Timestep class. The rest of the
methods that were not covered in this section can be found in Section 6.9. Continue reading for information
about handling entire simulations with multiple timesteps and plotting timesteps and simulations.

13

3.2 The Nbody Class

The Nbody class is one rung above the Timestep class in the mwahpy hierarchy; one Nbody instance is com-
posed of many individual Timestep instances. This is useful when you need to compare many timesteps from
a single MilkyWay@home simulation. The simplest example of a Nbody instance is the default instance:

Code Block 27: Initializing an Nbody

>>> from mwahpy.nbody import Nbody
>>> n = Nbody ()

From here, you can add a Timestep to the dictionary in the Nbody instance:

Code Block 28: Initializing an Nbody

>>> import mwahpy.output_handler as oh
>>> t = oh.read_output(’<path/to/mwahpy>/test/test.out’)
Reading in data from ../test/test.out...

[c=csososososas > 1 73%
10 objects read in
Converting data...done

>>> n[1] =t

>>> n[1].x

array ([4.53813066, -0.59395581, -1.41000385, -0.00613003, ©.11393187,
0.38487162, ©.35803147, ©0.3565866 , ©.52268562, 3.571799381])

Note that the Nbody instance itself does not store the Timestep data, but just points to it.

Code Block 29: An Nbody does not store simulation data

>>> n.x
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: ’Nbody’ object has no attribute ’x’

In this case, the Timestep t still exists on its own, but the Nbody instance forms a nice functional con-
tainer for it. This can be seen by altering t, as the change is also present when accessing the data through
the Nbody. Thus, the Nbody structure does not copy the Timestep data, it just references it.

Code Block 30: An Nbody points to Timestep data

>>> t.x[0] = @

>>> t.x

array ([o. , —0.59395581, -1.41000385, -0.00613003, ©.11393187,
0.38487162, ©.35803147, ©0.3565866 , ©.52268562, 3.571799381])

>>> n[1].x

array ([o. , —0.59395581, -1.41000385, -0.00613003, ©.11393187,
0.38487162, ©.35803147, ©0.3565866 , ©.52268562, .571799381])

w

The Timestep does recognize that it belongs to an Nbody class however, and it remembers its designated
time and the Nbody object which it belongs to:

Code Block 31: Accessing an Nbody

>>> t.time

1

>>> t.nbody

<mwahpy.nbody.Nbody object at ox[...]>

WARNING:

Currently, Timestep instances only weakly retain information about parent Nbody instances. If a
Timestep is added to a second Nbody, it will replace its self.time and self.nbody from the first
Nbody instance with the new information from the second Nbody. This is made more confusing
by the fact that multiple Nbody instances can point to the same Timestep, or a single Nbody can
point to the same Timestep more than once. In these cases, the data can be properly accessed
through the Nbody objects, but is not guaranteed to refer back to the desired information when
accessed from the Timestep object.

3.2.1 Reading In & Writing Out Data

As with the Timestep class, the Nbody class is typically not created manually, but is initialized by reading
in data. This is also done through the mwahpy.output_handler subpackage by providing a folder with the
oh.read_folder() function.

15

Code Block 32: Reading data into an Nbody

>>> n = oh.read_folder(’<...path/to/mwahpy>/mwahpy/test/nbody_test/’)
Reading in data from directory ../test/nbody_test/...

Reading in data from ../test/nbody_test/1...

[coscosoosossas > 1 73%
10 objects read in
Converting data...done

Reading in data from ../test/nbody_test/2...

[eoccocoonosons > 1 73%
10 objects read in
Converting data...done

Reading in data from ../test/nbody_test/3...

[cocmocoonosons > 1 73%
10 objects read in
Converting data...done

>>> n[1].x

array ([4.53813066, -0.59395581, -1.41000385, -0.00613003, ©.11393187,
0.38487162, ©.35803147, ©0.3565866 , ©.52268562, 3.571799381])

>>> n[2].x

array ([21.51019042, 17.97537383, 15.99136357, 12.30622142, 10.80896895,
10.56226125, 12.94243578, 11.16187291, 11.17781449, 8.040427071)

This data has been read in from the ../mwahpy/test/nbody_test/ folder that is included in mwahpy .

WARNING:

When reading in a Nbody from simulation data, the only files in the provided folder must be
MilkyWay@home .out files, and must be named only their time without the .out extension.
This is the default output scheme of Milky Way@home N-body.

Currently, there is not support for writing out Nbody data. This can be done fairly simply by iterating over
the Nbody (see the next subsection for details) and writing out each Timestep. It is also not recommended
that a user writes out Nbody data using the pickle package.

3.2.2 Functionality of Nbody Objects

Nbody objects have a few nice capabilities that allow for robust treatment of simulation data. To begin,
iterating over an Nbody object returns its component Timestep objects sorted by time.

Code Block 33: Iterating over an Nbody

>>> for ts in n:
print(ts.time)

16

Being able to read in and iterate over large groups of Timestep instances from the same simulation is
much easier than going through each one individually, not to mention it is often faster.

The times of each timestep can be scaled in order to reflect the actual physical simulation time of each
timestep using the scale_times() method. For example, if one timestep is equal to 0.5 Myr in physical time,
then we can scale the corresponding timesteps. We see that the original information is retained, although
renamed:

Code Block 34: Scaling Nbody times

>>> n.scale_times (0.5)

>>> for ts in n:

.. print(ts.time)

0.5

1.0

1.5

>>> n[0.5].x

array ([4.53813066, -0.59395581, -1.41000385, -0.00613003, 0.11393187,
0.38487162, ©.35803147, ©.3565866 , ©.52268562, 3.571799381)

3.3 Plotting

This section will be added at a later date. The plotting capabilities of mwahpy are not very developed at
this time. I suggest using pyplot if you want to make plots of Milky Way@home data.

17

4 Auxiliary Subpackages

The mwahpy package comes with a few auxiliary subpackages with additional content that the typical user
might find useful. The mwahpy.orbit_fitter and the mwahpy.orbit_fitter_gc subpackages have been used
in academic contexts, and are refactored for general use. The mwahpy.coords subpackage contains a number
of useful coordinate transforms that one might find handy when working with MilkyWay@home N-body
data.

4.1 Coordinate Transformations

The coordinate transformation package mwahpy.coords is made up of many first and second-order transfor-
mations for position, velocity, and other values. A complete list of the routines and functions provided in
this package is given in Section 6.1.

This subpackage contains most of the coordinate transformations that a typical person will need to
do Galactic astronomy, excluding some common transformations (such as R.A., Dec. to [, b) that are
implemented in the astropy python package, among others.

4.2 Orbit Fitting

At many times in studies of Galactic dynamics, given a collection of points in phase space, one may want to
fit an orbit to them. Luckily, mwahpy comes with two different orbit fitting routines to do just that. The
first, mwahpy.orbit_fitter, fits an orbit in a heliocentric frame, while the second, mwahpy.orbit_fitter_gc,
fits an orbit in a “naturalized” Galactocentric frame. They both have their uses: for many simple or-
bits mwahpy.orbit_fitter will achieve a better goodness-of-fit in a shorter amount of time compared to
mwahpy.orbit_fitter_gc, but for complicated orbits the opposite is often true.

The math behind these routines was used in Donlon et al. (2019) to fit orbits to structures, and is
discussed therein. For more information, I also refer the reader to Willett et al. (2009).

Remember — orbit fitting is as much of an art as it is a science. Tweaking your “errors”, timesteps,
evolve times, and other parameters may all be necessary for you to obtain good orbit fits. Additionally,
since differential evolution is a non-deterministic algorithm, it may be desirable to run several orbit fits of
the same observed data in order to get a variety of fit orbits that you can choose your favorite from. This
will also provide a good idea of the limitations of the orbit fitting algorithm and the errors in its fits for your
data.

4.2.1 orbit_fitter

Given some observed data for a group of stars, one can calculate a naive orbit by simply taking the average
of their positions and velocities. However, if these stars are at substantially different positions in their orbits
(say, for example, in a stellar stream) then the velcoities of these stars also will vary as a function of position
along the stream, and the average velocity is no longer expected to give a good estimate for the orbit of the
stream at any given position.

In order to fit an orbit to this collection of stars, one can imagine generating a model orbit with your
best guess of parameters. This orbit will differ from the actual positions and velocities of the star data by
some measurable amount. In mwahpy we use a goodness-of-fit (GoF') adapted from Willett et al. (2009) to
compute the difference between the model orbit and the observed data,

GoF = i i ((ei,j,model - ei,j,obs))Q ,

i=1 j=1 04,j5,0bs

where ¢ spans the n number of data dimensions in the observed data (I,b, d, vz, vy, v, vGsR), J spans the m
number of datapoints (stars) observed, ¢; ; corresponds to the ith dimension of the jth observed datapoint,
and o; ; corresponds to the error measured in 6; ;. For example, 04 7 moder corresponds to the heliocentric
distance data in the model at the location of the observed 7th star. This approach generalizes the GoF' so
that the orbit fitting routine can still measure a GoF even if some or all of the velocity dimensions of the
observed data are unavailable.

18

This GoF' is then minimized using the scipy.optimize.differential_evolution() routine. Without
going too deep into the math behind this algorithm, here are the basics: a population of possible orbits is
generated, and their GoF's are measured. New “child” possible orbits are generated by randomly crossing the
current population of possible orbits, and then their GoF's are evaluated. If any of the children’s GoF's are
improvements over their parents, then those improved child possible orbits are inserted into the population.
The process is repeated until either a tolerance bound is reached or the maximum number of iterations has
been achieved. The best orbit fit is the possible orbit model with the lowest GoF' value at the end of this
process, which is then reported to the user as the optimized orbit.

This algorithm uses Galactic longitude as its orbital position parameter, which is why it does not ask for
error in [, which is assumed to be zero. If [does not work well as your orbital parameter (for example, if
your stars are all located in a tidal stream that is perpendicular to the Galactic plane from our line of sight,
or is oriented radially away or towards our line of sight) then the orbit_fitter_gc routine will probably do
a better job fitting your orbit.

The GoF also includes a cost based on orbital position and timestep resolution. Each degree separating
an orbit in galactic longitude and a data point adds 1000 to the GoF'. This is to prevent orbit fits that do
not actually span the data, or that pass the data with poor timestep resolution.

Below is an example of an orbit fit using points generated from an actual orbit:

19

Code Block 35: Fitting a Mock Orbit

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import mwahpy.orbit_fitter as of

>>> #parameters for the mock orbit
>>> test_o_1 = 90

>>> test_o_b = 20

>>> test_o_d 25

>>> test_o_vx = 150

>>> test_o_vy = -200

>>> test_o_vz 100

>>> #sample the mock orbit

>>> ts = np.linspace(@, 0.25, 1000)*u.Gyr

>>> sample = np.array([100, 250, 400, 500, 600, 750, 8501])

>>> o = of.make_orbit([test_o_1, test_o_b, test_o_d, test_o_vx, test_o_vy,
test_o_vz])

>>> 1 = np.take(o.11(ts), sample)
>>> np.take(o.bb(ts), sample)
>>> d = np.take(o.dist(ts), sample)

o
1

>>> plt.scatter(l, b, s=5) #plot the mock sky position data
>>> plt.scatter(o.11(ts), o.bb(ts), s=1)
>>> plt.show()

>>> plt.scatter(l, d, s=5) #plot the mock position/dist data
>>> plt.scatter(o.1l1(ts), o.dist(ts), s=1)
>>> plt.show()

>>> print (’Goodness-of-Fit_of_actual_values:’)
>>> print(chi_squared([test_o_1, test_o_b, test_o_d, test_o_vx, test_o_vy,
test_o_vz], data=test_orbit_data))

>>> params, x2 = of.fit_orbit(l, b, b_err, d, d_err) #the orbit fitting

>>> of .plot_orbit_gal(l, b, d, params) #plots of the orbit fit
>>> of.plot_orbit_icrs(l, b, d, params)

If you aren’t interested in typing all this code in and running it yourself, that’s fine. It’s implemented
as mwahpy.orbit_fitter.test(), and computes a pretty good orbit fit in roughly 5 min on my machines.
Depending on the number of cores available on your machine, this may take longer or shorter for you.

4.2.2 orbit_fitter_gc

Theoretically, all orbiting structures should lie along an orbital plane that passes through the Galactic center.
This means that if one were to look out at something like a tidal stream from the Galactic center, that tidal
stream would approximately trace out a great circle on the sky.

This orbit fitter takes advantage of that fact by performing the same process as mwahpy.orbit_fitter,
except instead of using Galactic longitude as the orbital position parameter (and therefore a heliocentric
frame), this routine attempts to compute the orbital plane of the data, and then uses the longitudinal angle

20

within that plane as its orbital parameter. This means that we are fitting the orbits in a Galactocentric
frame, which is a more “natural” choice of coordinates for structures such as tidal streams.

The plane fitting is done via ordinary least squares (OLS, see the appendix of Newby et al. 2013);
however, unlike in that work, we constrain our plane to pass through the Galactic center. This is done by
finding an approximate solution to the system

At =0,

where, in a slight abuse of notation, A = [7,7]7, and b = zT. This approximate solution is found via the
pseudo-inverse of A,

i~ ((ATA) ' A)E=(4, B, C).
This solution minimizes the sum of the squares of distances between the data and a plane with equation

A+ Bj+Cz =0,

The OLS plane has a unit normal vector 7,
fL =

which determines the direction of the new Z’ axis. We also choose an orthogonal “point” unit vector that is
constrained to lie in the X — Z plane, p. This vector is defined as

p= < ((ﬁw/ﬁz) + 1)_1/2a 0, _ﬁwﬁw/ﬁz >a

and corresponds to the direction of the new X’ axis. Finally we define a third unit vector 6 = . x p, which
corresponds to the direction of the Y’-axis. Then, the data is rotated into a new coordinate frame where
the X’-Y’ plane lies coincident with the OLS plane, and the Z’-axis is aligned along the normal vector to
the OLS plane. This can be done easily through a change-of-basis matrix, which is how it is implemented in
mwahpy :

x Pz Py Dz x
' « « ~

Yy = Ox Oy O Yy

2 Ny Ty Ty z

Then, the new longitude and latitude for each star are defined as
A = arctan(y’ /')

B = arcsin(2’/r),

where r is the spherical Galactocentric radius of that star.

Then, the same procedure as in the previous section is used to optimize an orbit to the data, except the
values of (A, 8) are used instead of (I,b). Similar to the above section, mwahpy.orbit_fitter_gc also has a
test() routine that you can use to ensure that the orbit fitter works.

21

5 Flags & Settings

5.1 flags

The flags and settings for mwahpy can be found in flags.py. Currently, there are only a few options, but
more may be added in the future.

e mwahpy.flags.auto_update (default value = 1)

This flag determines whether or not to automatically update an entire Timestep whenever the provided
values for that Timestep change due to a mwahpy method or function. Having this flag turned
on will keep things like the center of mass and momentum accurate even after changing the constituent
data, and will keep all of the calculated values in sync with the provided values throughout mwahpy
functions.

If you are frequently updating certain values in a Timestep, this flag can occasionally cause performance
issues (if this flag is causing performance issues, that’s probably a sign that there’s a better way to
do what you are trying to do). It is strongly recommended that this flag is only turned off if the
user understands what updating means, how to update the data manually, and what data needs to be
updated.

e mwahpy.flags.progress_bars (default value = 1)

If this flag is turned on, mwahpy will use progress bars when performing certain actions (such as
reading in files) in order to avoid long wait times without updating the terminal. If turned off, mwahpy
functionality will not be changed; however, be aware that you may occasionally experience long periods
of time where your terminal is silent.

e mwahpy.flags.verbose (default value = 1)

This flag dictates how much is printed out into the terminal when mwahpy code is running. If turned
on, functions are much noisier, and will update you on their current activity. If this is turned off, the
overall functionality of mwahpy will remain unchanged, but the terminal will be less informative.

5.2 mwahpy_glob

Constants and functions that are universally accessed in mwahpy are stored in mwahpy_glob.py.

e mwahpy.mwahpy_glob.file_len(f)

Given a file, this function will determine the number of lines in that file. Useful for implementing
mwahpy .mwahpy_glob.progress_bar() while reading in files.

Parameters:

— f (str) : The filename (should be a path).
Returns:

— len (int) : The number of lines in the file.

e mwahpy.mwahpy_glob.G

Newton’s gravitational constant is provided in astropy units of m3/kg s2.

e mwahpy.mwahpy_glob.kms_to_kpcgyr
The conversion factor from km/s to kpc/Gyr. Roughly equal to unity (1.023).

e mwahpy.mwahpy_glob.kpcgyr_to_kms
The conversion factor from kpc/Gyr to km/s. Roughly equal to unity (0.978).

22

e mwahpy.mwahpy_glob.progress_bar(value, endvalue, bar_length=20)

Adapted from https://stackoverflow.com/questions/6169217/replace-console-output-in-python.
This function can be placed inside a loop and will output a nice progress bar in the terminal, provided
you know the end value that the loop should terminate on.

Parameters:
— value (int) : The value that is being iterated. Does not need to be increased by 1 each time —
can be any amount.
— endvalue (int) : The value at which the loop terminates .

— bar_length (int, optional) : How many characters long the progress bar is in the terminal output.
Returns:

e mwahpy.mwahpy_glob.struct_to_sol

This is the conversion factor between MilkyWay@home structural masses and solar masses. Equal to
222,288.47 solar masses/structure unit.

5.3 pot

Constants and functions related to the Milky Way’s gravitational potential are found in mwahpy.pot.py. The
default potential that is used in mwahpy is the Orphan Stream Fit #5 Potential from Newberg et al. (2010).
This potential is very similar to Law et al. (2005).

e mwahpy.pot.energy_offset

Due to the logarithmic halo potential term in our gravitational potential for the Milky Way, the
potential does not disappear as one travels infinitely far from the center of the potential. A side effect
of this type of halo potential is that it is not clear what structures are bound or unbound to the
potential, as the zero-point of the energy is not representative of the escape velocity. This adjusts the
calculated potential energy so that it is consistent with Donlon et al. (2019), and so that clearly bound
structures will not have positive energy values. The default value is -60,000 km?/s?. Changing this
value does not change the physics of the system, it just changes the energy of a particle at infinity.
e mwahpy.pot.m_bulge

The mass of the bulge in solar mass astropy units. Equal to 3.4x10'° Mg

e mwahpy.pot.m_disk

The mass of the disk in solar mass astropy units. Equal to 1.0x10"" M,
e mwahpy.pot.v_halo

The Milky Way halo dispersion in astropy km/s. Equal to 74.61 km/s.
e mwahpy.pot.plot_potential(potential, Rrange=[0.01,10.])

This method will generate and show a figure with the rotation curve of the potential in the plane of
the Milky Way.

Parameters:

— potential (galpy potential object) : the potential that you wish to graph

— Rrange (list of floats) : the Galactocentric cylindrical radius of the points at which you want to
evaluate the potential

Returns:

e mwahpy.pot.pot
The total gravitational potential of the Milky Way. Given as a galpy potential object.

23

e mwahpy.pot.pot_bulge
The gravitational potential of the Milky Way due to the bulge. Given as a galpy potential object.

e mwahpy.pot.pot_disk
The gravitational potential of the Milky Way due to the disk. Given as a galpy potential object.

e mwahpy.pot.pot_halo
The gravitational potential of the Milky Way due to the halo. Given as a galpy potential object.

24

6 Functions & Methods

Below is a complete list of functions and methods implemented in the files of mwahpy that perform actual
routines. Note that only the functions and methods that are meant for the typical end user are provided in
detail here, and therefore some helper functions/methods that are present in the code are not gone over in
this document. For a tutorial of using the main parts of mwahpy, one should look at Section 3.

6.1

coords

e mwahpy.coords.cart_to_cyl(x, y, z)

Takes in Cartesian coordinates and returns cylindrical coordinates. Supports array-like inputs.

Parameters:

— x (float or array-like floats) : The Cartesian X coordinate(s) of the data.
— y (float or array-like floats) : The Cartesian Y coordinate(s) of the data.
— z (float or array-like floats) : The Cartesian Z coordinate(s) of the data.

Returns:

— R (float or array-like floats) : The cylindrical radius coordinate(s) of the data.
— z (float or array-like floats) : The Cartesian Z coordinate(s) of the data.
— phi (float or array-like floats) : The azimuthal angle(s) of the data, in degrees.

mwahpy.coords.cart_to_gal(x, y, z, left_handed=False)

Takes in Galactocentric Cartesian coordinates and returns Galactic coordinates. Supports array-like
inputs. Uses a right-handed system by default.

Parameters:

— x (float or array-like floats) : The Galactocentric Cartesian X coordinate(s) of the data.

y (float or array-like floats) : The Galactocentric Cartesian Y coordinate(s) of the data.

z (float or array-like floats) : The Galactocentric Cartesian Z coordinate(s) of the data.

— left_handed (bool, optional) : If True, a left-handed Galactocentric Cartesian system is used.
Returns:

— 1 (float or array-like floats) : The Galactic longitude coordinate(s) of the data, in degrees.
— b (float or array-like floats) : The Galactic latitude coordinate(s) of the data, in degrees.
— r (float or array-like floats) : The heliocentric distance(s) of the data in whatever units of distance
the inputs were in.
mwahpy.coords.cart_to_lambet(x, y, z, normal, point)

Takes in Galactocentric Cartesian coordinates, the normal vector to a plane, and a point to suggest the
new X-axis and returns longitude and latitude coordinates with the X-Y plane orthogonal to the normal
vector and the Z-axis along the normal vector. The longitude (Lambda) increases counter-clockwise
as viewed looking on the plane from along the positive Z-axis, and the latitude (Beta) increases in the
direction of the normal vector and is zero in the plane.

Parameters:

— x (float or array-like floats) : The Galactocentric Cartesian X coordinate(s) of the data.
— y (float or array-like floats) : The Galactocentric Cartesian Y coordinate(s) of the data.

— z (float or array-like floats) : The Galactocentric Cartesian Z coordinate(s) of the data.

25

— normal (array-like of floats) : The three-vector Cartesian coordinates for the normal vector of the
plane.

— point (array-like of floats) : The three-vector Cartesian coordinates for the vector that suggests
the new X-axis of the plane. Does not need to be orthogonal to the normal vector.
Returns:
— Lam (float or array-like floats) : The longitude coordinates of the points in the new planar coor-
dinates.
— Bet (float or array-like floats) : The latitude coordinates of the points in the new planar coordi-
nates.
mwahpy.coords.cart_to_lonlat(x, y, z)

Takes in arbitrary Cartesian coordinates and returns longitude and latitude coordinates for that Carte-
sian coordinate system. The longitude (Lambda) increases counter-clockwise as viewed looking down-
wards on the plane from along the positive Z-axis, and the latitude (Beta) increases in the direction
of the Z-axis and is zero in the plane.

Parameters:

— x (float or array-like floats) : The Cartesian X coordinate(s) of the data.
— y (float or array-like floats) : The Cartesian Y coordinate(s) of the data.
— z (float or array-like floats) : The Cartesian Z coordinate(s) of the data.

Returns:

— Lam (float or array-like floats) : The longitude coordinates of the points.

— Bet (float or array-like floats) : The latitude coordinates of the points.

mwahpy.coords.cart_to_plane(x, y, z, normal, point)

Takes in Galactocentric Cartesian coordinates, the normal vector to a plane, and a point to suggest
the new X-axis and returns shifted Cartesian coordinates with the X-Y plane orthogonal to the normal
vector and the Z-axis along the normal vector.

Parameters:

— x (float or array-like floats) : The Galactocentric Cartesian X coordinate(s) of the data.
The Galactocentric Cartesian Y coordinate(s) of the data.
(s) of the data.

— normal (array-like of floats) : The three-vector Cartesian coordinates for the normal vector of the
plane.

— vy (float or array-like floats) :
— z (float or array-like floats) : The Galactocentric Cartesian Z coordinate

— point (array-like of floats) : The three-vector Cartesian coordinates for the vector that suggests
the new X-axis of the plane. Does not need to be orthogonal to the normal vector.

Returns:
— x (float or array-like floats) : The Cartesian X coordinates of the points in the new planar
coordinates.

— y (float or array-like floats) : The Cartesian Y coordinates of the points in the new planar
coordinates.

— z (float or array-like floats) : The Cartesian Z coordinates of the points in the new planar coor-
dinates.

26

e mwahpy.coords.cart_to_sgr(x, y, z)

Takes in Galactocentric Cartesian coordinates and returns Sagittarius Tidal Stream longitude and
latitude coordinates. See Majewski et al. (2003) for more info about the coordinate system.

Parameters:

— x (float or array-like floats) : The Galactocentric Cartesian X coordinate(s) of the data.
— y (float or array-like floats) : The Galactocentric Cartesian Y coordinate(s) of the data.

— z (float or array-like floats) : The Galactocentric Cartesian Z coordinate(s) of the data.
Returns:

— Lam (float or array-like floats) : The longitude coordinates of the points in Sgr coordinates.

— Bet (float or array-like floats) : The latitude coordinates of the points in Sgr coordinates.

e mwahpy.coords.cart_to_sph(x, y, z)
Takes in Cartesian coordinates and returns spherical coordinates. Supports array-like inputs.

Parameters:

— x (float or array-like floats) : The Cartesian X coordinate(s) of the data.
— y (float or array-like floats) : The Cartesian Y coordinate(s) of the data.
— z (float or array-like floats) : The Cartesian Z coordinate(s) of the data.

Returns:

— phi (float or array-like floats) : The azimuthal angle(s) of the data, in degrees.
— theta (float or array-like floats) : The polar angle(s) of the data, in degrees.

— r (float or array-like floats) : The spherical radius coordinate(s) of the data.

e mwahpy.coords.cyl_to_cart(R, z, phi)
Takes in cylindrical coordinates and returns Cartesian coordinates. Supports array-like inputs.

Parameters:

— R (float or array-like floats) : The cylindrical radius coordinate(s) of the data.
— z (float or array-like floats) : The Cartesian Z coordinate(s) of the data.
— phi (float or array-like floats) : The azimuthal angle(s) of the data, in degrees.

Returns:

— x (float or array-like floats) : The Cartesian X coordinate(s) of the data.
— y (float or array-like floats) : The Cartesian Y coordinate(s) of the data.
— z (float or array-like floats) : The Cartesian Z coordinate(s) of the data.

e mwahpy.coords.cyl_to_gal(R, z, phi)

Takes in Galactocentric cylindrical coordinates and returns Galactic coordinates. Supports array-like
inputs.

Parameters:

— R (float or array-like floats) : The cylindrical radius coordinate(s) of the data.
— z (float or array-like floats) : The Cartesian Z coordinate(s) of the data.
— phi (float or array-like floats) : The azimuthal angle(s) of the data, in degrees.

Returns:

27

— 1 (float or array-like floats) : The Galactic longitude coordinate(s) of the data, in degrees.
— b (float or array-like floats) : The Galactic latitude coordinate(s) of the data, in degrees.
— r (float or array-like floats) : The heliocentric distance(s) of the data in whatever units of distance
the inputs were in.
e mwahpy.coords.gal_to_cart(l, b, r, left_handed=False, rad=False)

Takes in Galactic coordinates and returns Galactocentric Cartesian coordinates. Supports array-like
inputs. Uses a right-handed system by default.

Parameters:

— 1 (float or array-like floats) : The Galactic longitude coordinate(s) of the data, in degrees by
default.

b (float or array-like floats) : The Galactic latitude coordinate(s) of the data, in degrees by default.

r (float or array-like floats) : The heliocentric distance(s) of the data.

left_handed (bool, optional) : If True, a left-handed Galactocentric Cartesian system is used.

— rad (bool, optional) : If True, input is given in radians. Otherwise, input should be in degrees.
Returns:

— x (float or array-like floats) : The Galactocentric Cartesian X coordinate(s) of the data. In
whatever units of distance the input was in.

— y (float or array-like floats) : The Galactocentric Cartesian Y coordinate(s) of the data. In
whatever units of distance the input was in.

— z (float or array-like floats) : The Galactocentric Cartesian Z coordinate(s) of the data. In
whatever units of distance the input was in.
e mwahpy.coords.gal_to_cyl(l, b, r)

Takes in Galactic coordinates and returns Galactocentric cylindrical coordinates. Supports array-like
inputs.

Parameters:

— 1 (float or array-like floats) : The Galactic longitude coordinate(s) of the data, in degrees.
— b (float or array-like floats) : The Galactic latitude coordinate(s) of the data, in degrees.

— r (float or array-like floats) : The heliocentric distance(s) of the data.
Returns:
— R (float or array-like floats) : The cylindrical radius coordinate(s) of the data, in whatever units
the input distance was in.

— z (float or array-like floats) : The Cartesian Z coordinate(s) of the data, in whatever unit the
input distance was in.

— phi (float or array-like floats) : The azimuthal angle(s) of the data, in degrees.

e mwahpy.coords.gal_to_lambet(l, b, r, normal, point)

Takes in Galactic coordinates, the normal vector to a plane, and a point to suggest the new X-axis and
returns longitude and latitude coordinates with the X-Y plane orthogonal to the normal vector and
the Z-axis along the normal vector. The longitude (Lambda) increases counter-clockwise as viewed
looking on the plane from along the positive Z-axis, and the latitude (Beta) increases in the direction
of the normal vector and is zero in the plane. WARNING: This is heliocentric.

Parameters:

— 1 (float or array-like floats) : The Galactic longitude coordinate(s) of the data, in degrees.

28

b (float or array-like floats) : The Galactic latitude coordinate(s) of the data, in degrees.

r (float or array-like floats) : The heliocentric distance(s) of the data.

— normal (array-like of floats) : The three-vector Cartesian coordinates for the normal vector of the
plane.

point (array-like of floats) : The three-vector Cartesian coordinates for the vector that suggests
the new X-axis of the plane. Does not need to be orthogonal to the normal vector.

Returns:
— Lam (float or array-like floats) : The longitude coordinates of the points in the new planar coor-
dinates.
— Bet (float or array-like floats) : The latitude coordinates of the points in the new planar coordi-
nates.
mwahpy.coords.gal_to_lambet_galcentric(l, b, r, normal, point)

Takes in Galactic coordinates, the normal vector to a plane, and a point to suggest the new X-axis
and returns longitude and latitude coordinates with the X-Y plane orthogonal to the normal vector
and the Z-axis along the normal vector. This explicitly transforms [, b, » into Galactocentric Cartesian
coordinates before transforming it into longitude and latitude, which coords.gal_to_lambet does not
do. The longitude (Lambda) increases counter-clockwise as viewed looking on the plane from along
the positive Z-axis, and the latitude (Beta) increases in the direction of the normal vector and is zero
in the plane.

Parameters:

— 1 (float or array-like floats) : The Galactic longitude coordinate(s) of the data, in degrees.

)

— b (float or array-like floats) : The Galactic latitude coordinate(s) of the data, in degrees.

— r (float or array-like floats) : The heliocentric distance(s) of the data.
) :

— normal (array-like of floats) : The three-vector Cartesian coordinates for the normal vector of the

plane.
— point (array-like of floats) : The three-vector Cartesian coordinates for the vector that suggests
the new X-axis of the plane. Does not need to be orthogonal to the normal vector.
Returns:
— Lam (float or array-like floats) : The longitude coordinates of the points in the new planar coor-
dinates.
— Bet (float or array-like floats) : The latitude coordinates of the points in the new planar coordi-
nates.
mwahpy.coords.gal_to_plane(l, b, r, normal, point)

Takes in Galactic coordinates, the normal vector to a plane, and a point to suggest the new X-axis
and returns shifted Cartesian coordinates with the X-Y plane orthogonal to the normal vector and the
Z-axis along the normal vector.

Parameters:

The Galactic longitude coordinate(s) of the data.
The Galactic latitude coordinate(s) of the data.

— 1 (float or array-like floats) :
)

r (float or array-like floats) : The heliocentric distance(s) of the data.
):

b (float or array-like floats

— normal (array-like of floats) : The three-vector Cartesian coordinates for the normal vector of the

plane.

point (array-like of floats) : The three-vector Cartesian coordinates for the vector that suggests
the new X-axis of the plane. Does not need to be orthogonal to the normal vector.

29

Returns:
— x (float or array-like floats) : The Cartesian X coordinates of the points in the new planar
coordinates.

— y (float or array-like floats) : The Cartesian Y coordinates of the points in the new planar
coordinates.

— z (float or array-like floats) : The Cartesian Z coordinates of the points in the new planar coor-
dinates.
e mwahpy.coords.gal_to_sgr(1l, b, r)

Takes in Galactic coordinates and returns Sagittarius Tidal Stream longitude and latitude coordinates.
See Majewski et al. (2003) for more info about the coordinate system.

Parameters:

— 1 (float or array-like floats) : The Galactic longitude coordinate(s) of the data.
— b (float or array-like floats) : The Galactic latitude coordinate(s) of the data.

— r (float or array-like floats) : The heliocentric distance(s) of the data.
Returns:

— Lam (float or array-like floats) : The longitude coordinates of the points in Sgr coordinates.

— Bet (float or array-like floats) : The latitude coordinates of the points in Sgr coordinates.

e mwahpy.coords.get_plane_normal (params)

Given normalized parameters [a, b, c, d] for a plane with the equation ax + by 4+ cz 4+ d = 0, returns
a normal vector for that plane.

Parameters:

— params (array-like of floats) : The normalized parameters [a, b, ¢, d] for a plane with the
equation ax + by + cz +d = 0.

Returns:

— normal (list of floats) : The normal vector to the given plane, as a three-vector in Galactocentric
Cartesian coordinates.
e mwahpy.coords.get_rvpm(ra, dec, dist, U, V, W)

This function uses an adaptation of the routine from Johnson & Soderblom (1987) to compute the
radial velocity and proper motions of an object given its 3D position and velocities. If the velocities
are input in the LSR frame (U, V, W), then the output will include solar reflex motion. If the velocities
are input in the GSR (vx, vy, vz) frame, then the output will have the solar reflex motion removed.

Parameters:

— ra (float or numpy array of floats) : The right ascension(s) of the data (deg).

— dec (float or numpy array of floats) : The declination(s) of the data (deg).

— dist (float or numpy array of floats) : The heliocentric distance coordinate(s) of the data (kpc).
— U (float or numpy array of floats) : The X component of the Cartesian velocity(ies) of the data

(km/s).

— V (float or numpy array of floats) : The Y component of the Cartesian velocity(ies) of the data
(km/s).

— W (float or numpy array of floats) : The Z component of the Cartesian velocity(ies) of the data
(km/s).

30

Returns:

— rv (float or array-like floats) : The radial velocity(ies) of the data (km/s).
— pmra (float or array-like floats) : The right ascension (cos(dec)) proper motion(s) of the data
(mas/yr).
— pmde (float or array-like floats) : The declination proper motion(s) of the data (mas/yr)
mwahpy . coords.get_uvw(ra, dec, dist, rv, pmra, pmde)

Given observational data, this function uses the routine from Johnson & Soderblom (1987) to compute
each object’s 3D Cartesian velocity in the local standard of rest (LSR) frame.

Parameters:

— ra (float or numpy array of floats) : The right ascension(s) of the data (deg).
— dec (float or numpy array of floats) : The declination(s) of the data (deg).
— dist (float or numpy array of floats) : The heliocentric distance(s) of the data (kpc).

— rv (float or numpy array of floats) : The heliocentric (including solar reflex motion) radial veloc-
ity(ies) of the data (km/s).

— pmra (float or numpy array of floats) : The proper motion(s) in right ascension of the data. NOTE:
This should be already multiplied by a cos(dec) factor (mas/yr).

— pmdec (float or numpy array of floats) : The proper motion(s) in declination of the data (mas/yr).
Returns:

— U (float or array-like floats) : The velocity in the X direction in the LSR frame (km/s).
— V (float or array-like floats) : The velocity in the Y direction in the LSR frame (km/s).
— W (float or array-like floats) : The velocity in the Z direction in the LSR frame (km/s).

mwahpy.coords.get_uvw_errors(ra, dec, dist, rv, pmra, pmde, err_pmra, err_pmdec, err_rv, err_dist)

Given observational data, this function uses the routine from Johnson & Soderblom (1987) to compute
the uncertainty in each object’s 3D Cartesian velocity in the local standard of rest (LSR) frame. This
function assumes that the uncertainties in position on the sky are negligible, or at least much smaller
than the uncertainties in the other parameters. Unlike get_uvw(), this function does not work for
arrays.

Parameters:

— ra (float) : The right ascension of the data (deg).

— dec (float) : The declination of the data (deg).

— dist (float) : The heliocentric distance of the data (kpc).

— rv (float) : The heliocentric (including solar reflex motion) radial velocity of the data (km/s).

— pmra (float) : The proper motion in right ascension of the data. NOTE: This should be already
multiplied by a cos(dec) factor (mas/yr).

— pmdec (float) : The proper motion in declination of the data (mas/yr).
— err_pmra (float) : The uncertainty in proper motion in right ascension of the data.
— err_pmdec (float) : The uncertainty in proper motion in declination of the data (mas/yr).

— err_rv (float) : The uncertainty in heliocentric (including solar reflex motion) radial velocity of
the data (km/s).

— err_dist (float) : The uncertainty in heliocentric distance of the data (kpc).

Returns:

31

— err_U (float or array-like floats) : The uncertainty in the velocity in the X direction in the LSR
frame (km/s).

(
(
— err_V (float or array-like floats) : The uncertainty in the velocity in the Y direction in the LSR
frame (km/s).
(
(

— err_W (float or array-like floats) : The uncertainty in the velocity in the Z direction in the LSR
frame (km/s).
e mwahpy.coords.get_vxvyvz(ra, dec, dist, rv, pmra, pmdec)

Given observational data, this function uses the routine from Johnson & Soderblom (1987) to com-
pute the 3D Galactic Cartesian coordinates for each object’s velocity in the Galactic standard of rest
([VIGSR) frame (e.g. with solar reflex motions removed).

Parameters:

— ra (float or numpy array of floats) : The right ascension(s) of the data (deg).
— dec (float or numpy array of floats) : The declination(s) of the data (deg).
— dist (float or numpy array of floats) : The heliocentric distance(s) of the data (kpc).

— rv (float or numpy array of floats) : The heliocentric (including solar reflex motion) radial veloc-
ity(ies) of the data (km/s).

— pmra (float or numpy array of floats) : The proper motion(s) in right ascension of the data. NOTE:
This should be already multiplied by a cos(dec) factor (mas/yr).

— pmdec (float or numpy array of floats) : The proper motion(s) in declination of the data (mas/yr).
Returns:

— vx (float or array-like floats) : The velocity in the X direction in the GSR frame (km/s).
— vy (float or array-like floats) : The velocity in the Y direction in the GSR frame (km/s).
— vz (float or array-like floats) : The velocity in the Z direction in the GSR frame (km/s).

e mwahpy.coords.plane_OLS(x, y, z, print_distances=False)

Takes in Galactocentric Cartesian coordinates of data and computes a best ordinary least-squares
(OLS) fit for a plane through the data that minimizes the total distances between each point and the
plane. Returns normalized parameters [a, b, c] for a plane with the equation ax + by + cz = 0. The
plane is constrained to be required to go through the Galactic center.

Parameters:

— x (numpy array of floats) : The X Cartesian positions of the data.

— y (numpy array of floats) : The Y Cartesian positions of the data.
z (numpy array of floats) : The Z Cartesian positions of the data.

— print_distances (bool, optional: default=False) : If True, prints out the distances from each
point from the fit plane.

Returns:

— params (list of floats) : The parameters [a, b, c] for the fit plane, which prescribe a plane with
the equation ax + by + cz = 0.

e mwahpy.coords.remove_sol_mot_from_pm(ra, dec, dist, pmra, pmdec)
Removes the solar reflex motion from the given proper motions. This assumes that pmra is pmraxcos(dec).

Parameters:

— ra (float or numpy array of floats) : The right ascension(s) of the data (deg).
— dec (float or numpy array of floats) : The declination(s) of the data (deg).

32

— dist (float or numpy array of floats) : The heliocentric distance coordinate(s) of the data (kpc).

— pmra (float or numpy array of floats) : The right ascension proper motion (multiplied by cos(dec))
(mas.yr).

— pmdec (float or numpy array of floats) : The declination proper motion (mas/yr).
Returns:
— pmra (float or array-like floats) : The right ascension (cos(dec)) proper motion(s) of the data
with solar reflex motion removed (mas/yr).
— pmde (float or array-like floats) : The declination proper motion(s) of the data with solar reflex
motion removed (mas/yr)
mwahpy.coords.rot_around_arb_axis(x, y, z, ux, uy, uz, theta)

Rotates a given point (z,y,z) about a given axis determined by 4 = (ugz,uy,u.) by a given angle
theta. The axis must pass through the origin, and points in the direction of 4. The data is rotated
in a counterclockwise direction if viewed so that @ is pointing towards you (out of the “page”). This
function is not guaranteed to work for array-like values of x, y, z. To rotate systems into a frame
determined by a pole and a longitudinal origin, see mwahpy . coords. sky_to_pole(), which does support
array-like inputs.

Parameters:

— x (float) : The X coordinate of the data.
— vy (float) : The Y coordinate of the data.
z (float) : The Z coordinate of the data.

— ux (float) : The X component of the axis vector 4. The components of & do not need to be
normalized prior to input.

— uy (float) : The Y component of the axis vector &. The components of @ do not need to be
normalized prior to input.

— uz (float) : The Z component of the axis vector 4. The components of @ do not need to be
normalized prior to input.

— theta (float) : The angle in radians that the data is rotated around the axis.
Returns:

— x (float) : The new rotated X coordinate of the data.
— vy (float) : The new rotated Y coordinate of the data.
— z (float) : The new rotated Z coordinate of the data.

mwahpy.coords.rv_to_vgsr(l, b, rv)

Takes in Galactic coordinates and a radial velocity returns the corresponding line-of-sight vleocity in
the Galactic standard of rest. Supports array-like inputs.

Parameters:

— 1 (float or array-like floats) : The Galactic longitude coordinate(s) of the data, in degrees.
— b (float or array-like floats) : The Galactic latitude coordinate(s) of the data, in degrees.
— rv (float or array-like floats) : The heliocentric radial velocity(ies) of the data (km/s).

Returns:

— vgsr (float or array-like floats) : The line-of-sight velocity(ies) of the data (km/s).

33

e mwahpy.coords.sgr_to_gal(Lam, Bet)

Takes in Sagittarius Tidal Stream longitude and latitude coordinates and returns Galactic coordinates.
See Majewski et al. (2003) for more info about the coordinate system.

Parameters:

— Lam (float or array-like floats) : The longitude coordinates of the points in Sgr coordinates.

— Bet (float or array-like floats) : The latitude coordinates of the points in Sgr coordinates.
Returns:

— 1 (float or array-like floats) : The Galactic longitude coordinate(s) of the data.
— b (float or array-like floats) : The Galactic latitude coordinate(s) of the data.

— r (float or array-like floats) : The heliocentric distance(s) of the data.

e mwahpy.coords.sky_to_pole(skyl, sky2, pole, origin, wrap=False, rad=False)

Rotates on-sky coordinates into a new spherical coordinate system given by the new north pole position
and a new origin position. Any spherical coordinate system will work as long as all inputs are in the
same coordinates.

Parameters:

— sky1 (float or array-like floats) : The longitude coordinates of the points.
— sky2 (float or array-like floats) : The latitude coordinates of the points.

— pole (2-tuple-like of floats) : The longitude and latitude coordinates of the new pole, must be
indexable.

— origin (float or array-like floats) : The longitude and latitude coordinates of the new origin, must
be indexable.

— wrap (bool, optional: default=False) : If true, give the new longitude values as only positive
values. Otherwse, the new longitude values span [-180, 180].

— rad (bool, optional: default=False) : If true, inputs and outputs are in radians.
Returns:

— Lam (float or array-like floats) : The longitude coordinate(s) of the data in the rotated system.
— Bet (float or array-like floats) : The latitude coordinate(s) of the data in the rotated system.

e mwahpy.coords.spher_to_cart(phi, theta, r)
Takes in spherical coordinates and returns Cartesian coordinates. Supports array-like inputs.

Parameters:

— phi (float or array-like floats) : The azimuthal angle(s) of the data, in degrees.
— theta (float or array-like floats) : The polar angle(s) of the data, in degrees.

— r (float or array-like floats) : The spherical radius coordinate(s) of the data.
Returns:

— x (float or array-like floats) : The Cartesian X coordinate(s) of the data.
— y (float or array-like floats) : The Cartesian Y coordinate(s) of the data.
— z (float or array-like floats) : The Cartesian Z coordinate(s) of the data.

e mwahpy.coords.wrap_long(long, rad=False)

Takes in a longitude or array-like collection of longitudes and returns it in the interval [0,360]. If rad
is set to True, then the longitude is instead returned in the interval [0, 27].

Parameters:

34

6.2

— long (float or array-like floats) : The value(s) that will be cast into the interval. Should be in
degrees by default, unless rad is set as True.

— rad (bool, optional) : If True, the input should be in radians and the output will be in radians.
Otherwise, input should be in degrees and output will be in degrees.

Returns:

— long (float or array-like floats) : The value(s) that were passed in, cast into the interval [0, 360]
(or the equivalent in radians).

orbit_fitter

mwahpy.orbit_fitter.fit_orbit(l, b, b_err, d, d_err, vx=None, vy=None, vz=None, vgsr=None,
vx_err=None, vy_err=None, vz_err=None, vgsr_err=None, max_it=100,

bounds=[(@, 360), (-90, 90), (0, 100), (-500, 500), (-500, 500), (-500, 500)], t_len=None,
*xkwargs) :

Given observed particle data, will fit an orbit to that data by minimizing a chi-squared-like sum of
squares parameter between the orbit and the data. Minimization is done using the
scipy.optimize.differential_evolution() routine. Returns the best orbit fit parameters (a list of
galactocentric longitude and latitude, heliocentric distance, and Galactocentric Cartesian velocities).
Since differential evolution is not deterministic, a better idea of the best orbit fit may be obtained by
running this routine several times on the dame data. Angles should be in degrees, distances in kpc,
and velocities in km/s. The output is in these units.

Parameters:

— 1 (array-like of floats) : The Galactic longitudes of the observed data.
— b (array-like of floats) : The Galactic latitudes of the observed data.
— b_err (array-like of floats) : The errors in Galactic latitudes of the observed data.

— d (array-like of floats) : The heliocentric distances of the observed data.

d_err (array-like of floats) : The errors in heliocentric distances of the observed data.

— vx (optional, array-like of floats) : The galactocentric X velocities of the observed data. If not
None, it is used for fitting.

— vy (optional, array-like of floats) : The galactocentric Y velocities of the observed data. If not
None, it is used for fitting.

— vz (optional, array-like of floats) : The galactocentric Z velocities of the observed data. If not
None, it is used for fitting.

— vgsr (optional, array-like of floats) : The galactic standard of rest line-of-sight velocities of the
observed data. If not None, it is used for fitting.

— vx_err (optional, array-like of floats) : The errors in galactocentric X velocity of the observed
data. If not None, it is used for fitting. Must be included if vx is included.

— vy_err (optional, array-like of floats) : The errors in galactocentric Y velocity of the observed
data. If not None, it is used for fitting. Must be included if vy is included.

— vz (optional, array-like of floats) : The errors in galactocentric Z velocity of the observed data.
If not None, it is used for fitting. Must be included if vz is included.

— vgsr_err (optional, array-like of floats) : The errors in galactic standard of rest line-of-sight
velocity of the observed data. If not None, it is used for fitting. Must be included if vgsr is
included.

— max_it (optional, int) : The maximum number of iterations that the differential evolution algo-
rithm will run.

35

6.3

— bounds (optional, list of tuples of floats) : The bounds for the parameters (1, b, d, vx, vy, vz)
of the data.

— t_len (optional, float) : The length that the test orbit will get evolved forwards and backwards
in time, in Gyr.

— xxkwargs (optional, keyword arguments) : Any additional keyword arguments will get passed to
the scipy.optimize.differential_evolution routine.

Returns:

— params (list of floats) : The [1, b, d, vx, vy, vz] parameters for the calculated best orbit fit to
the data.

— x2 (float) : The goodness-of-fit of the calculated best orbit fit to the data.

mwahpy.orbit_fitter.make_orbit(params, int_ts=None)

Makes a corrected galpy orbit (vx is negated). Useful if one doesn’t want to remember all the syntax
for setting up an orbit with the proper right-handed velocities and the solar motion corrections to place
the orbit in a Galactocentric frame.

Parameters:
— params (array-like of floats) : An array-like containing exactly six values: 1, b, d, vx, vy, vz

These are the phase space parameters for the orbit in a right-handed heliocentric coordinate
system, and should be in units of [deg, deg, kpc, km/s, km/s, km/s].

— int_ts (array-like of quantities) : The list of times that the orbit should be integrated forwards
in time. Need to be quantities (preferably Gyr).

Returns:

— o (galpy.orbit.Orbit object) : The orbit (integrated for 0.5 Gyr forwards in time)

orbit_fitter_gc

mwahpy.orbit_fitter_gc.fit_orbit(l, b, b_err, d, d_err, vx=None, vy=None, vz=None, vgsr=None,
vx_err=None, vy_err=None, vz_err=None, vgsr_err=None, max_it=100,

bounds=[(0, 360), (-90, 90), (@, 100), (-500, 500), (-500, 500), (-500, 500)1, t_len=None,
*xkwargs) :

Given observed particle data, will fit an orbit to that data by minimizing a chi-squared-like sum of
squares parameter between the orbit and the data. Minimization is done using the
scipy.optimize.differential_evolution() routine. Returns the best orbit fit parameters (a list of
galactocentric longitude and latitude, heliocentric distance, and Galactocentric Cartesian velocities).
Since differential evolution is not deterministic, a better idea of the best orbit fit may be obtained by
running this routine several times on the dame data. Angles should be in degrees, distances in kpc,
and velocities in km/s. The output is in these units.

The difference between this routine and the routine from mwahpy.orbit_fitter of the same name is
that this routine places the data in a Galactocentric frame, computes a best ordinary least squares fit
of a plane to the data (to approximate the orbital plane of the data in the Galaxy), and then fits using
the new longitude and latitude of that rotated planar coordinate system.

Parameters:

— 1 (array-like of floats) : The Galactic longitudes of the observed data.

— b (array-like of floats) : The Galactic latitudes of the observed data.

— b_err (array-like of floats) : The errors in Galactic latitudes of the observed data.
— d (array-like of floats) : The heliocentric distances of the observed data.

— d_err (array-like of floats) : The errors in heliocentric distances of the observed data.

36

vx (optional, array-like of floats) : The galactocentric X velocities of the observed data. If not
None, it is used for fitting.

vy (optional, array-like of floats) : The galactocentric Y velocities of the observed data. If not
None, it is used for fitting.

vz (optional, array-like of floats) : The galactocentric Z velocities of the observed data. If not
None, it is used for fitting.

vgsr (optional, array-like of floats) : The galactic standard of rest line-of-sight velocities of the
observed data. If not None, it is used for fitting.

vx_err (optional, array-like of floats) : The errors in galactocentric X velocity of the observed
data. If not None, it is used for fitting. Must be included if vx is included.

vy_err (optional, array-like of floats) : The errors in galactocentric Y velocity of the observed
data. If not None, it is used for fitting. Must be included if vy is included.

vz (optional, array-like of floats) : The errors in galactocentric Z velocity of the observed data.
If not None, it is used for fitting. Must be included if vz is included.

vgsr_err (optional, array-like of floats) : The errors in galactic standard of rest line-of-sight
velocity of the observed data. If not None, it is used for fitting. Must be included if vgsr is
included.

max_it (optional, int) : The maximum number of iterations that the differential evolution algo-
rithm will run.

bounds (optional, list of tuples of floats) : The bounds for the parameters (1, b, d, vx, vy, vz)
of the data.

t_len (optional, float) : The length that the test orbit will get evolved forwards and backwards
in time, in Gyr.

xxkwargs (optional, keyword arguments) : Any additional keyword arguments will get passed to
the scipy.optimize.differential_evolution routine.

Returns:

params (list of floats) : The [1, b, d, vx, vy, vz] parameters for the calculated best orbit fit to
the data.

normal (3-tuple of floats) : The components of the normal vector to the best-fit plane in Galac-
tocentric Cartesian coordinates.

point (3-tuple of floats) : The components of the point vector to the best-fit plane in Galacto-
centric Cartesian coordinates (Appriximately the new origin in the rotated frame).

x2 (float) : The goodness-of-fit of the calculated best orbit fit to the data.

6.4 mnbody

These functions and methods are all related to the Nbody class, and are located in the mwahpy/nbody. py file.
The Nbody class is meant to be used as a collection of Timestep instances, as in reading an entire folder of
MilkyWay@home .out files that are the data for different times in the same simulation.

6.4.1 Initialization

An instance of the Timestep class is initialized by
Nbody (ts={}, ts_scale=None).

e ts (dict of Timesteps) : The dictionary of Timestep instances that belong to the Nbody instance. The
keys in the dictionary should be the given timestep (99, 2099, 1799, etc) in the .out filename used to
read in each Timestep.

e ts_scale (float, optional: default=None) : If given, the keys of each Timestep in the ts dictionary are
scaledby this value to get the actual time in time units instead of timesteps.

37

6.4.2 Methods

e mwahpy.nbody.scale_times(1l)
Replaces each key in the Nbody. ts dictionary with a value multiplied by 1.

Parameters:

— 1 (float) : The time in physical units that is represented by a single timestep in the MW@h
N-body simulation.

Returns:

6.5 orbit_fitter

The subpackage mwahpy.orbit_fitting is still in development. Once the code has been refactored and
brought to an acceptable level of quality, the documentation for this subpackage will be provided.

6.6 orbit_fitter_gc
The subpackage mwahpy.orbit_fitting_gc is still in development. Once the code has been refactored and

brought to an acceptable level of quality, the documentation for this subpackage will be provided.

6.7 output_handler

The functions in this subpackage are meant for reading data in from files and printing data back out to files,
in several different filetypes and in different scenarios.

6.7.1 Functions

e mwahpy.output_handler.make_csv(t, f_name)
Writes out a .csv file given a Timestep instance.

Parameters:

— t (Timestep object) : The Timestep instance containing the data that you wish to write out.

— f_name (str) : The path to the .csv file you wish to write to.
Returns:

e mwahpy.output_handler.make_nbody_input(t, f, recenter=True)
Writes out a .in file given a Timestep instance.

Parameters:

— t (Timestep object) : The Timestep instance containing the data that you wish to write out.
— f (str) : The path to the .in file you wish to write to.

— recenter (bool, optional: default=True) : If True, the data is recentered (via Timestep.recenter())
before writing out.

Returns:

e mwahpy.output_handler.read_folder(f)
Reads a folder full of .out files and returns an Nbody instance.

Parameters:
— f (str) : The path to the directory containing the files you wish to read in.

Returns:

38

— n (Nbody object) : An Nbody instance with its internal dictionary of Timesteps containing the data
from the .out files in the folder.
e mwahpy.output_handler.read_input(f)
Reads a .in file and returns a Timestep instance.

Parameters:
— f (str) : The path to the .in file you wish to read in.
Returns:
— d (Timestep object) : A Timestep instance containing the data from the .in file.

e mwahpy.output_handler.read_output(f)
Reads a .out file and returns a Timestep instance.

Parameters:
— f (str) : The path to the .out file you wish to read in.
Returns:
— d (Timestep object) : A Timestep instance containing the data from the .out file.

e mwahpy.output_handler.remove_header(f)

Removes the header from an open MilkyWay@home .out file and returns the center of mass and
momentum information.

Parameters:
— f (open file) : An open .out file.
Returns:

— comass (list of floats) : The three-vector providing the center of mass of the system as per the
.out file header.

— comom (list of floats) : The three-vector providing the center of momentum of the system as per
the .out file header.

6.8 plot

The subpackage mwahpy.plot is still in development. Some methods are accessible through Timestep meth-
ods, such as Timestep.scatter(). Once novel, useful code has been added that is not accessible in other
ways, this section of the document will be fleshed out.

6.9 timestep

These functions and methods are all related to the Timestep class, and are located in the mwahpy/timestep.py
file. These functions and methods make up the main core of mwahpy functionality, and rely on a lot of the
other code in the package.

Additionally, a partial list of the many attributes of the timestep class are given below, and what they
store is described in detail. Note that many attributes will return empty lists, empty arrays, None, or 0
initially if accessed without actually reading in or supplying data.

There are several other flags, functions, and attributes that are implemented in the timestep.py file that
are not detailed below. These are not meant to be accessed by end users, and are explained by comments in
the code.

39

6.9.1 Initialization

An instance of the Timestep class is initialized by
Timestep(id_val=[], x=[1, y=[1, z=[1, vx =[], vy = [1, vz = [], mass=[], centerOfMass=[0, 0, 0],
centerOfMomentum=[0, @, @], potential=None, time=None, nbody=None).
Note that all of the provided values between id_val and mass must be arrays of the same length, or else
there will be errors.

e typ (list of ints, optional) : The types of each particle, where 0 represents a baryonic particle and 1
represents a dark matter particle (in order).

e id_val (list of ints, optional) : The id values of each particle (in order).
x (list of floats, optional) : The Galactocentric X positions of each particle in units of kpc (in order).
o y (list of floats, optional) : The Galactocentric Y positions of each particle in units of kpc (in order).
z (list of floats, optional) : The Galactocentric Z positions of each particle in units of kpc (in order).

o vx (list of floats, optional) : The Galactic standard of rest velocities of each particle in the X direction
in units of km/s (in order).

e vy (list of floats, optional) : The Galactic standard of rest velocities of each particle in the Y direction
in units of km/s (in order).

e vz (list of floats, optional) : The Galactic standard of rest velocities of each particle in the Z direction
in units of km/s (in order).

e mass (list of floats, optional) : The masses of each particle in units of MilkyWay@home structure
masses (in order).

e center_of_mass (list of floats, optional) : The 3D location of the center of mass of the system (all
particles in the Timestep instance) in units of kpc. The first element of the list is the Galactocentric
X position of the center of mass, while the second and third elements are the Y and Z positions,
respectively.

e center_of_momentum (list of floats, optional) : The 3D location of the center of momentum of the
system (all particles in the Timestep instance) in units of km/s. The first element of the list is the
Galactocentric vx position of the center of mass, while the second and third elements are the vy and
vz positions, respectively.

e potential (galpy potential object or list of galpy potential objects, optional) : Can be None. If not
None, the energy of each particle will be calculated with this potential instead of the default mwahpy
potential.

e time (float, optional) : The time in Gyr after the beginning of the simulation.

e nbody (Nbody object, optional) : The parent Nbody instance for this Timestep.

6.9.2 Attributes
e mwahpy.timestep.b

(numpy array of floats) : The Galactic latitude of each particle in degrees, in order. Calculated value.

e mwahpy.timestep.centerOfMass

(list of floats) : The 3D location of the center of mass of the system (all particles in the Timestep
instance) in units of kpc. The first element of the list is the Galactocentric X position of the center of
mass, while the second and third elements are the Y and Z positions, respectively.

40

mwahpy.timestep.centerOfMomentum

(list of floats) : The 3D location of the center of momentum of the system (all particles in the Timestep
instance) in units of km/s. The first element of the list is the Galactocentric vx position of the center
of mass, while the second and third elements are the vy and vz positions, respectively.
mwahpy.timestep.dec

(numpy array of floats) : The declination of each particle in degrees, in order. Calculated value.
Computed using astropy.

mwahpy.timestep.dist

(numpy array of floats) : The heliocentric spherical radius of each particle in units of kpe, in order.
Equal to /(X + 8)2 + Y2 + Z2. Calculated value.

mwahpy . timestep.distFromCOM

(numpy array of floats) : The distance of each particle from the center of mass of the Timestep instance,
in order. Calculated value.

mwahpy.timestep.energy

(numpy array of floats) : The total energy per unit mass of each particle based on the specified potential
in units of km?/s? (in order). If no potential is specified, this is calculated using the default mwahpy
potential. Calculated value as part of calc_energy().

mwahpy.timestep.id

(numpy array of ints) : The id of each particle (in order).

mwahpy.timestep.index_list

(list of strs) : A list of values that are currently calculated for the Timestep. This is automatically
updated as new values are calculated. Examples of list members are ’x’, 'mass’, 'vlos’, etc. This is
used by mwahpy to determine what values need to be calculated and/or iterated over, and therefore
it is strongly recommended to not alter this attribute manually.

mwahpy.timestep.KE

(numpy array of floats) : The kinetic energy per unit mass of each particle in units of km?/s? (in order).
Calculated value as part of calc_energy().

mwahpy.timestep.1

(numpy array of floats) : The Galactic longitude of each particle in degrees, in order. Calculated value.

mwahpy.timestep. lperp

(numpy array of floats) : The magnitude of the projection of the angular momentum of each particle
onto the X — Y plane, in order. Has units of kpc-km/s. Equal to /L2 + Lg. Calculated value.

mwahpy.timestep.ltot

(numpy array of floats) : The magnitude of the total angular momentum of each particle in units of
kpc-km/s, in order. Calculated value.

mwahpy.timestep.1lx

(numpy array of floats) : The X component of the angular momentum of each particle about the origin
in units of kpc-km/s, in order. Calculated value.

mwahpy.timestep.ly

(numpy array of floats) : The Y component of the angular momentum of each particle about the origin
in units of kpc-km/s, in order. Calculated value.

41

mwahpy.timestep.lz

(numpy array of floats) : The Z component of the angular momentum of each particle about the origin
in units of kpc-km/s, in order. Calculated value.

mwahpy.timestep.mass

(numpy array of floats) : The mass of each particle in units of MilkyWay@home structure masses (in
order).

mwahpy . timestep.msol

(numpy array of floats) : The mass of each particle in units of solar masses (in order). Calculated value.

mwahpy . timestep.nbody

(nbody object) : If the Timestep instance is part of an nbody instance, i.e. if you read in the Timestep
with mwahpy.output_handler.read_folder, then that information is saved here.

mwahpy.timestep.PE

(numpy array of floats) : The potential energy per unit mass of each particle based on the specified
potential in units of km?/s? (in order). If no potential is specified, this is calculated using the default
mwahpy potential. Calculated value as part of calc_energy().

mwahpy.timestep.phi

(numpy array of floats) : Galactocentric spherical aximuthal angle in degrees, where 0 lies along the
Galactic Cartesian X axis and increases in the same direction as Galactic longtitude [. Calculated
value.

mwahpy.timestep.pmdec

(numpy array of floats) : The proper motion of each particle in the direction of declination in units of
mas/yr (in order). Calculated value as part of calc_rvpm().

mwahpy . timestep.pmra

(numpy array of floats) : The proper motion of each particle in the direction of right ascension in units
of mas/yr (in order). Multiplied by cos d. Calculated value as part of calc_rvpm().
mwahpy.timestep.pmtot

(numpy array of floats) : The magnitude of the total proper motion of each particle in units of mas/yr
(in order). Calculated value as part of calc_rvpm().

mwahpy.timestep.potential

(galpy potential object or list of galpy potential objects) : If not None, the energy of each particle will
be calculated with this potential. If None, the mwahpy default potential will be used to calculate the
particle energies.

mwahpy.timestep.r

(numpy array of floats) : The Galactocentric spherical radius of each particle in units of kpe, in order.
Equal to vV X2 + Y2 + Z2. Calculated value.

mwahpy.timestep.R

(numpy array of floats) : The Galactocentric cylindrical radius of each particle in units of kpc, in order.
Equal to v X2 + Y2, Calculated value.

mwahpy.timestep.ra

(numpy array of floats) : The right ascension of each particle in degrees, in order. Calculated value.
Computed using astropy.

42

mwahpy.timestep. theta

(numpy array of floats) : Galactocentric spherical inclination angle in degrees, where 0 lies in the
Galactic Cartesian X-Y plane and increases/decreases in the same directions as Galactic longtitude b.
Calculated value.

mwahpy.timestep.time

(float) : The time in Gyr for this Timestep instance. This will only be initialized if the Timestep was
read in as part of mwahpy.output_handler.read_folder() or if manually specified. Otherwise, will
return None by default.

mwahpy.timestep. typ

(numpy array of ints) : The types of each particle, where 0 corresponds to a baryonic particle and 1
corresponds to a dark matter particle, in order.

mwahpy.timestep.vgsr

(numpy array of floats) : The line-of-sight velocity of each particle in the Galactic standard of rest in
units of km/s, in order.

mwahpy . timestep.vlos

(numpy array of floats) : The heliocentric line-of-sight velocity of each particle in units of km/s, in
order.

mwahpy . timestep.vrad

(numpy array of floats) : The magnitude of the Galactic standard of rest line-of-sight velocity of each
particle as seen from the origin. Has units of km/s. Calculated value.

mwahpy.timestep.vrot

(numpy array of floats) : The magnitude of the Galactic standard of rest rotational velocity (projected
onto the X — Y plane) of each particle as seen from the origin. Has units of km/s. Calculated value.
mwahpy.timestep.vtan

(numpy array of floats) : The heliocentric, Galactic standard of rest tangential velocity of each particle
in units of km/s (in order). Calculated value as part of calc_rvpm().

mwahpy.timestep.vx

(numpy array of floats) : The Galactic standard of rest velocity in the X direction of each particle in
units of km/s (in order).

mwahpy.timestep.vy

(numpy array of floats) : The Galactic standard of rest velocity in the Y direction of each particle in
units of km/s (in order).

mwahpy.timestep.vz

(numpy array of floats) : The Galactic standard of rest velocity in the Z direction of each particle in
units of km/s (in order).

mwahpy.timestep.x

(numpy array of floats) : The Galactocentric X position of each particle in units of kpe (in order).

mwahpy.timestep.y

(numpy array of floats) : The Galactocentric Y position of each particle in units of kpc (in order).

mwahpy.timestep.z

(numpy array of floats) : The Galactocentric Z position of each particle in units of kpc (in order).

43

6.9.3 Methods

e mwahpy.timestep.append_timestep(t)

Combines two Timestep objects by appending the particles from the provided Timestep onto this
Timestep.

Parameters:
— t (Timestep object) : The Timestep object that you wish to combine with this one.
Returns:

e mwahpy.timestep.append_point(t, n=0, id=None)

Adds a specific particle from the provided Timestep to this Timestep. What particle you wish to
append can be specified by the id of the particle, or what position it is located at in the specified
Timestep object.

WARNING: This function is extremely time intensive if used repeatedly due to the overhead associated
with numpy arrays. One should always try to use combinations of cuts and mwahpy . timestep. append_timestep()
to append multiple particles whenever possible.

Parameters:
— t (Timestep object) : The Timestep object containing the particle that you wish to add to this
Timestep.

— n (int, optional) : The location of the particle in t that you wish to add to this Timestep. Ignored
if id is not None.

— 1id (int, optional) : If not None, this function locates the particle with id equal to this value and
adds it to this Timestep.

Returns:

e mwahpy.timestep.copy()

Creates a deep copy of the Timestep instance. No arrays or lists in the copy are aliased to the original
respective objects. Will not assign the corresponding “pointer” in a parent Nbody instance to the new

copy.
Parameters:

Returns:
— out (Timestep) : A deep copy of the Timestep instance.

e mwahpy.timestep.cut_first_n(n)
Removes the first n particles from the Timestep instance, based on the particle order.

Parameters:
— n (int) : The number of particles to remove from the front of the Timestep.
Returns:

e mwahpy.timestep.cut_last_n(n)
Removes the last n particles from the Timestep instance, based on the particle order.

Parameters:
— n (int) : The number of particles to remove from the back of the Timestep.

Returns:

44

e mwahpy.timestep.hist2d(x, y, show=False, *xkwargs)

Creates and optionally shows a 2D histogram plot of the particle data in the Timestep. See mwahpy.plot.hist2d()
for a more in-depth explanation of the plotting routine.

Parameters:

x (str) : The values that you want to plot on the horizontal axis. For example, if you want to
plot vlos on the horizontal axis, you would input 'vlos'.

— y (str) : The values that you want to plot on the vertical axis (see x above).

— show (optional, default = False) : If True, show the output plot. Otherwise, it is kept as the
active figure to draw on/over.

— *xkwargs (optional) : Keyword arguments that you want to pass to mwahpy.plot.hist2d() or
matplotlib.pyplot.hist2d. See the documentation for those functions for more information
about what keyword arguments are supported.

Returns:

e mwahpy.timestep.len()

Returns the length of the timestep’s values arrays. This is only calculated from the timestep.id array,
so if that is out of sync with the other arrays for some reason this will not return an accurate value.
Alternatively, one can use len(Timestep) for the same result.

Parameters:

Returns:
— len (int) : The length of the timestep’s values arrays.

e mwahpy.timestep.only_baryons()
Removes all dark matter (typ == 1) particles from the Timestep.
Parameters:

Returns:

e mwahpy.timestep.only_dark_matter()
Removes all baryonic (typ == @) particles from the Timestep.
Parameters:

Returns:

e mwahpy.timestep.print_particle(n, dec=8)
Prints information about all values corresponding to a single particle in the console.

Parameters:

— n (int) : The location of the particle in this Timestep that you want to print the information for.

— dec (int, optional) : The number of digits after the decimal point to display for each value.
Returns:

e mwahpy.timestep.rand_sample(n)

Randomly samples the Timestep down to exactly n particles selected at random from the Timestep.
Uses the reservoir theorem to sample the data.

Parameters:
— n (int) : The number of particles to include in the random sample.

Returns:

45

e mwahpy.timestep.recenter()

Shifts the positions and velocities of each particle by the same amount in order to make the center
of mass and center of momentum both be located at the origin. This function does not change any
physics, it just changes the frame in which the Timestep resides.

Parameters:

Returns:

e mwahpy.timestep.reset_ids()

Relabels the id of each particle, in order, starting from 0 and incrementing by 1 each particle. Retains
the current order of the particles.

Parameters:

Returns:

e mwahpy.timestep.rot_around_z_axis(theta)

Rotates the positions and velocities of each particle by theta radians counterclockwise (as viewed
“looking down” from positive z).

Parameters:
— theta (float) : The angle to rotate the data in radians.
Returns:

e mwahpy.timestep.scatter(x, y, *xkwargs)

Creates and optionally shows a scatter plot of the particle data in the Timestep. See mwahpy.plot.scatter()
for a more in-depth explanation of the plotting routine.

Parameters:
— x (str) : The values that you want to plot on the horizontal axis. For example, if you want to
plot vlos on the horizontal axis, you would input 'vlos'.
— y (str) : The values that you want to plot on the vertical axis (see x above).

— xxkwargs (optional) : Keyword arguments that you want to pass to mwahpy.plot.scatter() or
matplotlib.pyplot.scatter. See the documentation for those functions for more information
about what keyword arguments are supported.

Returns:

e mwahpy.timestep.split(n)

Splits the Timestep into two new Timestep instances at the nth particle. The first output Timestep
will contain the first n objects of the original Timestep, and the second output Timestep will contain
the rest of the particles. Does not alter the original Timestep.

Parameters:
— n (int) : The location at which to split the Timestep.
Returns:

— Timestepl (Timestep object) : A Timestep instance containing the first n particles from the
original Timestep.

— Timestep2 (Timestep object) : A Timestep instance containing the rest of the particles from the
original Timestep that are not included in Timestepl.

46

e mwahpy.timestep.split_at_id_wrap()

Splits the Timestep at each location where the id wraps back to 0. This is useful for simulations with
multiple components. See mwahpy.timestep.split() for more information about splitting Timestep
objects. The original Timestep object is not altered.

WARNING: Under some conditions, Milky Way@home can begin indexing particles in a Milky Way@home
generated dwarf (or dwarf component[s]) starting with 1, instead of 0. In this case, the particles will
have to be manually split. This is a known bug in Milky Way@home.

Parameters:
Returns:

— outlist (list of Timestep objects) : A list containing a new Timestep instance made up of each
component in the original Timestep object (in this case a component is defined by the particles
in between two ids that are 0 in a Timestep). Each particle from the original Timestep belongs
to exactly 1 component.

e mwahpy.timestep.subsample(n, offset=0)
Uniformly samples the Timestep by taking every nth particle starting from the offset.

Parameters:

— n (int) : The number of particles to skip between each sample particle.

— offset (int, optional) : The number of particles to initially skip.
Returns:

e mwahpy.timestep.subset_rect(axes, bounds)

Takes a multidimensional rectangular cut on the Timestep. The number of cuts made and their extents
are defined by axes and bounds. For each axis specified in axes, all particles with values outside the
respective bounds are removed from the Timestep. Axes may be reused (if, for example, one wanted
to remove all particles within some rectangular boundary instead of all particles outside it).

If you wish to only declare a minimum or maximum value for your data, then set the other bound as
None (see bounds).

Parameters:

— axes (list of strs) : Each axis that will be cut on. For example, if you want to make a cut in proper
motion, a cut in line-of-sight velocity, and a cut in distance, you would write ['pmra’, 'vlos', 'dist'].
Order does not matter, but the order of the boundaries in bounds and the axes in axes must be
the same.

— bounds (list of tuples of floats) : The boundaries for each cut. For the example above in
axes, if you wanted to include particles only with proper motions between -2 mas/yr and 2
mas/yr, line-of-sight velocity above 0 km/s, and distance less than 10 kpc, you would write
[(-2, 2), (@, None), (None, 10)]. The order of the boundaries must be the same as the order
of the axes specified in axes.

Returns:

e mwahpy.timestep.subset_circ(axes, rads, centers)

Takes a multidimensional “circular” cut on the Timestep. The number of cuts made and their extents
are defined by axes, rads, and centers. For each axis specified in axes, all particles with values outside
the specified region are removed from the Timestep. Axes may be reused.

For example, if one wanted all particles with position within 2 kpc of the point (X, Y) = (10, 15)
kpc, one could make axes equal to ['x", 'y'], make rads equal to [2, 2], and make centers equal to
[10, 15].

Parameters:

47

— axes (list of strs) : Each axis that will be cut on. Order does not matter, but the order of the
boundaries in rads and centers and the order of the axes given in axes must be the same.

— rads (list of floats) : The radii of each cut. The order of the radii must be the same as the order
of the axes specified in axes.

— centers (list of floats) : The centers of each cut. The order of the centers must be the same as
the order of the axes specified in axes.

Returns:

e mwahpy.timestep.take(indices)

Cuts the Timestep to only include the particles with indices equal to those of indices. WARNING: If
the first particle in the Timestep has an id of 1, then this will be off by 1 from the particle id. In that
case, Timestep. take_by_id() may have the desired behavior instead of this function.

Parameters:

— indices (list of ints) : The list of indices. Only particles with indices equal to a value in this list
will be in the cut Timestep.

Returns:

e mwahpy.timestep.take_by_id(ids)
Cuts the Timestep to only include the particles with the specified values of id.
Parameters:

— ids (list of ints) : The list of ids. Ounly particles with id equal to a value in this list will be in
the cut Timestep.

Returns:

e mwahpy.timestep.update(force=False)

Updates the center_of_mass and center_of_momentum attributes of the Timestep instance based on the
current positions and velocities of all particles in the Timestep. Also updates all calculated values. Can
be time intensive depending on how much needs to be updated, and whether the positions/velocities
of the particles were actually changed (this is tracked in the Timestep implementation, and items are
only updated if necessary).

If force is set to True, then a complete update of all attributes of the Timestep will happen even if no
positions or velocities have changed since the last update or initialization of the Timestep.

Parameters:

— force (bool, optional) : If true, force a complete update of the Timestep regardless of what has
changed since the last update.

Returns:

6.9.4 Functions

e mwahpy.timestep.get_self_energies(t)

Computes the energy of each particle based only on the self-gravity of the particles in the Timestep,
as well as their velocities with respect to their own centers of mass and momentum.

Parameters:
— t (Timestep) : The timestep that you are calculating the energies of.

Returns:

48

— energies (numpy array of floats) : The calculated energies for all of the particles in the Timestep.

e mwahpy.timestep.find_progenitor(t, ran=100.)

Identifies where the progenitor of a stream is. More accurately, it computes where the highest concen-
tration of baryons is in on-sky position in the Timestep instance.

Parameters:

— t (Timestep) : The timestep that contains the data you are analyzing.

— ran (float, optional: default=100.) : The maximum (heliocentric) distance range to search, in
kpc.

Returns:

— pos (list of floats) : The Galactic Cartesian coordinate positions of the progenitor. If none was
found, returns [0, 0, @].

49

