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INTRODUCTION

comptSort is a Python library designed to sort sequences of data with one of 5 different sorting 
algorithms: Bubble Sort, Insertion Sort, Binary Insertion Sort, Merge Sort and Quicksort. It requires
Python >=3.9.

USAGE

The public API mainly consists of two functions, one that sorts a list in place, and one that returns a 
sorted copy of a list.

To import:

from comptSort import compSort
from comptSort import compSortInPlace

def comptSort(uData, sort, asc = True):
Return a sorted copy of a list.

def comptSortInPlace(uData, sort, asc = True):
Sort a list in place.

 
Arguments

    uData: list
The original, unsorted data.

    sort: str
A string specifying the sorting algorithm to be used.

    asc: bool
If true, sort will be performed in ascending order, otherwise, in descending order.

sort  can be one of the following: "bubble", "insertion", "bin_insertion", "merge", "quick". 
Additionally, the SortingAlgorithm enum can be used instead of a string, which can be 
imported like so:

from comptSort import SortingAlgorithm as Sorting
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COMMAND LINE INTERFACE

The library includes a command line interface that can be invoked with

$ python -m comptSort.cli

usage: comptSort [-h] [-a {bubble,insertion,bin_insertion,merge,quick}] [-d] [-
i] [-o OUTPUT] file 

Test the comptSort library by sorting lines of files. 

positional arguments: 
 file file containing items to sort 

options: 
-h, --help

show this help message and exit 
 
-a, --algorithm

algorithm to sort with 

-d, --descending, --reverse
order sequence in descending order 

 
-i, --force-integers

parse lines from files as integers (by default strings)

-o, --output
write sorted lines to file (otherwise printed to console)

This interface allows any user to quickly sort files containing unsorted strings/characters or 
integers (with the -i flag) into sorted files.

EXAMPLES

Additionally, some sample files are included in the examples/ directory. To test the library with 
them, use the CLI, or use the examples.py script, which will run through all sorting algorithms in 
both asc/desc order, with only the 10 integers / characters examples, since fitting all the data on 
screen is otherwise difficult. Additionally, there a timing.py script is also included which can be 
used for a quick timing test on every algorithm, using a random shuffle of numbers.

COMPATIBLE DATA TYPES

The comptSort and comptSortInPlace as well  as all  the sorting algorithms implemented are in
theory compatible with any data type that can be compared with < (less-than). The reason for this
is that Python is dynamically-typed. Furthermore, all sorting algorithms included in this library are
comparison sorts.

On the other hand, the CLI is only compatible with strings and integers (using the -i flag).
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ASYMPTOTIC NOTATION

Generally speaking, the time an algorithm takes to complete is dependant on the size of its input. 
Therefore it is common to describe this running time in relation to the input size (Cormen et al., 
2022). A useful notation to express these relationships is known as asymptotic notation (Cormen et
al., 2022, p. 3). Usually, an algorithm with a lower asymptotic time will be faster except in small 
inputs (Cormen et al., 2022, p. 43). However, asymptotic notation does not only describe time 
complexity of algorithms, as it "actually applies to functions" (Cormen et al., 2022, p. 44), and thus 
can describe just about any other aspect of algorithms, such as their space complexity (Cormen et 
al., 2022, p. 44).

Asymptotic notation for the most part is only concerned about the most siginificant terms in a 
mathematical expression (Sedgewick, 1997, p. 45). It suppresses detail, allowing to focus on the 
most important terms. Even though, as Sedgewick explains, asymptotic notation is not all that 
matters, it does provide accurate approximations that allow to make informed choices and draw 
comparisons between algorithms.

Some asymptotic notations which are appropiate to study the running times of algorithms include 
£ (Big Theta), O (Big O), and ¬ (Big Omega) notations (Cormen et al., 2022, p. 44).

£ notation can be used to bound a function within constant factors, both above and below, for a 
sufficiently large n. If the time taken by an algorithm to run is £(g(n)), it means that for a large 
enough input, the running time of the algorithm only differ from g(n) by a constant factor (Cormen 
et al., 2022, p. 47).

On the other hand, Big O notation (O) will only give an upper bound to a function. This means that 
while the running time of an algorithm may not necessarily be proportionate to the function 
denoted by O, it will never exceed it by more than a constant factor (Cormen et al., 2022, p. 48).

Finally, ¬ provides an asymptotic lower bound, which translates to the running time of an 
algorithm never being lower than the function inside the notation by more than a constant factor 
(Cormen et al., 2022, p. 48).

Often, an algorithm will have a different time complexity depending on its input. By analysing the 
worst case input for an algorithm, it is possible to provide an upper bound for any given input 
(Cormen et al., 2022, p. 27).
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SORTING ALGORITHMS

BUBBLE SORT

Time complexity
Best case O(n) (Min, 2010)
When elements are already in order

Worst case O(n2) (Min, 2010)
When sequence in reverse order

Average case O(n2) (Min, 2010)

Space complexity O(1) (Min, 2010)
Since it operates in place.
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Bubble sort consists in repeatedly passing through the sequence, swapping neighbouring elements
that are not in the right order, until no elements are swapped in a single pass (Sedgewick, 1997). It
is considered popular and simple to implement (Sedgewick, 1997), but quite inefficient (Cormen et
al., 2022) and not best practice (Astrachan, 2003). It works in place.

The name bubble sort is owing to the fact that large elements "bubble up" until they have reached
the right position. However, it has also been known as exchange selection or propagation (Knuth,
1997).

Walkthrough

This will be the list to sort (ascending order).

First pass
Compare first element (-1) with second (3). As they are in order nothing happens.
Compare second element (3) with third (4). As they are in order nothing happens.
Compare third element (4) with fourth (-4). Since -4 is less than 4, swap them.

Compare element 4 with 2. Since 2 is less than 4, swap them.

Continue this process until the end of the sequence is reached.

This will be the array at the start of the second pass. Notice how 4 bubbled up to the last index in
the array.  An efficient  implementation of  bubble sort  will  not  go over  the  elements  that  have
settled in the last position after each pass. A more efficient one will also store the index where the
last swap ocurred, and stop comparing elements after that, since they have already been compared
(Knuth, 1997).

After the second iteration, element 3 has also bubbled up to the right position.
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On the second to last iteration, the last swap will be made.

In the last pass, no swaps will be made and thus, the algorithm will terminate.

Analysis

According to Knuth (1997), there are three numbers affecting the timing of bubble sort. These are
the number of passes, swaps, and comparisons. The minimum values for these properties are 1, 0,
and N-1, respectively, while the maximum are N, ((N2 - N) / 2), and ((N2 - N) / 2). The maximum
of all  three happens if the sequence is in reverse order, while the minimum only if the input is
already sorted.  Using asymptotic  notation,  this  means bubble sort  will  make  O(n2) swaps and
comparisons in the worst case, while in the best case, it will make  O(n) comparisons, and  O(1)

swaps. The average case also has an asymptotic time of  O(n2) for both swaps and comparisons
(Knuth, 1997).

Efficiency

One of the weaknesses of this algorithm is the fact that elements can only move to the left one step
per iteration. Using an optimisation called "cocktail shaker sort", which alternates the direction of
traversal between passes, slightly reduces the number of comparisons compared to regular bubble
sort (Knuth, 1997). However, even after some optimisations, bubble sort is still not as efficient as
regular insertion (Knuth, 1997), which is why its inclusion in academic curriculums is often seen as
controversial.  Indeed, Astrachan  (2003) found bubble sort  to be as much as 3 times slower as
Insertion sort, even though they have the same time complexity in the worst case.
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INSERTION SORT

Time complexity
Best case O(n) (Cormen et al., 2022, p. 26)

Worst case O(n2) (Cormen et al., 2022, p. 27)

Average case O(n2) (Cormen et al., 2022, p. 28)

Space complexity O(1) (Cormen et al., 2022, p. 148)
Since it operates in place.

Insertion sort works in a similar fashion to how a hand of cards is usually sorted  (Cormen et al.,
2022). The input sequence will have a sorted and an unsorted section. The unsorted section starts
by being empty. Then, one element at a time, elements are moved from the unsorted section to the
right position in the sorted section. This position is found by comparing the new element to each
one of the sorted ones, starting from the right. Insertion sort works in place (Cormen et al., 2022).
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Walkthrough

This will be the list to sort (ascending order).

The first element can be skipped, and considered part of the sorted part of the list.

Start with the second element, and find its right position by comparing with the sorted elements 
one by one from the right, in this case, since 3 is greater than -1, no swaps are needed.

Compare the third element with the last element of the sorted list, since 4 is greater than 3, no 
swapping is needed.

Compare the fourth element (-4) with the last element of the sorted list. Since -4 is less than 4,
swap them. Next, compare to the second last element of the sorted list (3). Swap them too.
Elements are swapped until the new element is in the right position.

Elements keep getting inserted in the right position, until no unsorted elements are left.
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A slightly  more efficient  version of  Insertion sort,  as  described in Cormen et  al.  (2022) simply
moves values to the left instead of swapping, and stores the new value in a temporary variable.
This reduces assignments by half.

Analysis

For Insertion Sort, the best case occurs when the input is already sorted state, while the worst case
happens when the sequence is sorted backwards  (Cormen et al.,  2022).  For the best case,  the
running time is linear, or using asymptotic notation O(n). On the other hand, in the worst case, the
algorithm has to compare each element with every every element in the sorted subarray.  This
means the time complexity is quadratic, or O(n2). In the average case, this latter time complexity
holds true (Knuth, 1997).

Efficiency

Knuth (1997) concluded that straight Insertion sort was the simplest algorithm to implement, and
is efficient for sequences with up to 25 elements. For large inputs, on the other hand, he found it
"unbearably slow", unless the sequence was already almost sorted.

Variants of insertion sort that aim to improve timing include Binary Insertion, which uses binary
search to located the insertion index of every new element, Two-way Insertion, which builds upon
binary search and cuts the running time in half by being able to move elements in two directions to
make space for new elements, and more.
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BINARY INSERTION SORT

Time complexity

Moving elements (swapping) takes more time than comparisons (Knuth, 1970).

Best case O(n lg n) (Cormen et al., 2022, p. 26)
Since in the best case, binary search still has to make lg n comparisons.

O(n lg n) comparisons, O(n) swaps

Worst case O(n2) (Cormen et al., 2022, p. 27)

O(n lg n) comparisons, O(n2) swaps

Average case O(n2) (Cormen et al., 2022, p. 28)

O(n lg n) comparisons, O(n2) swaps

Space complexity O(1) (Cormen et al., 2022, p. 17)
Since it operates in place.

University of Central Lancashire, School of Psychology and Computer Science 10



Binary Insertion sort is a variant of Insertion sort that uses binary search to find the position of each
new element (Knuth, 1970). This brings the number of comparisons made for each element close
to the theoretical minimum. However, although this reduces the running time of the algorithm,
moving  elements  in  memory  still  takes  O(n) time,  which  means  the  overall  time  complexity
remains the same. (Knuth, 1970).

Binary search walkthrough

Binary search is an algorithm to find the index of an element within a sorted sequence. It is also
known as bisection or logarithmic search (Knuth, 1997). To understand Binary Insertion Sort, it is a
good idea to first understand binary search.

In this example, it is necessary to find the position of the element with value 2 in this sorted array.
A sorted sequence is necessary to use binary search.

Binary search starts by storing the lowest index (0) in a variable, named lo in this example, and the
highest index in another variable, named  hi. Then, the middle point is found by averaging both
indexes.

Then, the value to find (2) is compared to the value in the middle. As 2 is greater than 0, the  lo
variable is assigned the index that previously was in the middle. Had the value to find been smaller
than the middle value, the hi variable would have to be changed instead. Next, the middle point is
calculated again.

University of Central Lancashire, School of Psychology and Computer Science 11



Since the value to find matches the one in the middle, the algorithm returns this index.

The algorithm for finding the insertion point for a new element works slightly different, and halts
when the lo and hi variables cross each other.

With  this  in  mind,  the  Binary  Insertion  Sort  algorithm  is  one  that  simply  replaces  the  linear
comparison  of  regular  Insertion  Sort  with  a  binary  search.  However,  as  mentioned  previously,
elements still have to be swapped linearly.

Analysis

Using  binary  search  to  find  the  right  position  for  a  new  jth element  brings  the  number  of
comparisons per element to  lg j  . Therefore, the total number of comparisons is around  N lg N,
which represents a significant improvement over the comparisons made in regular insertion, which
is around (N2)/4 (Knuth, 1997).

Unfortunately, regardless of how quickly the position for the new element is found, the bigger
issue is moving it to that position in memory. As half of the sorted elements have to be moved on
average, the running time remains O(n2).

Efficiency

Binary Insertion improves the comparisons made by regular insertion and it does not require a
much more complicated program to achieve so. However, due to limitations inherent to moving
elements  in  memory,  its  time  complexity  remains  quadratic  (Knuth,  1997).  There  are  ways  to
mitigate this limitation, such as "two-way" insertion (Knuth, 1997). This means it is not suitable for
large inputs, as there are algorithms that can make as few comparisons without having to move as
many elements in memory, such as Merge sort (Knuth, 1970).
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MERGE SORT

Time complexity
Best case ¬(n lg n) (Cormen et al., 2022, p. 125)

Worst case £(n lg n) (Cormen et al., 2022, p. 150)

Average case £(n lg n) (Cormen et al., 2022, p. 150)

Space complexity O(n) (Sedgewick, 1997)

The merge sort algorithm is based on the  divide-and-conquer approach (Cormen et al., 2022, p.
30). This approach consists of breaking down a problem into smaller ones using recursion, solving
these, and then combining them to build the full solution to the original problem. 

The merge sort algorithm follows this by first dividing an array into smaller ones, splitting it in half.
Next, it sorts these using merge sort. Finally, these sorted arrays are combined into one, single
sorted array (Cormen et al., 2022, p. 30).

Merge sort
0. If length is 1, return. 
1. Split array in half.
2. Sort both arrays using merge sort, using recursion.
3. Merge both arrays into a single one.
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The algorithm eventually splits the array into single elements, at which point they are sorted (since 
they only have one element), and can be merged (Cormen et al., 2022, p. 30).

Walkthrough

The initial array is divided in two.

Merge sort is called on each of these. Therefore, they, too, are divided in two.

Merge sort is called on each of these four. Again, they are divided in two.

This recursive splitting continues until an array cannot be split any further, that is, it has reached 
the size of a single element and is already sorted. In that case, merge sort returns immediately.

Once merge sort returns for unit-sized arrays, it can start merging back up. The way this is 
achieved is by comparing the first element of both arrays and copying the smaller one to the new 
array, until both arrays are empty.
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Arrays are merged back up until the first call to merge sort terminates.

Analysis

The merge operation, where two sorted sublists are merged into a single one, has a time 
complexity of O(n), since at most n comparisons are made (Cormen et al., 2022). Since the 
algorithm is recursive, its running time is best described with a recurrence (Cormen et al., 2022). 
For a small enough input, the solution takes constant time (O(1)), which in the case of Merge sort, 
this small input corresponds to the single-element array. However, for all other cases, the timing 
will be dictated by the times taken to split the sequence, sort the sub-arrays, and merge them. 
Dividing the array takes constant time (O(1)), merging the sub-arrays takes O(n) time (Cormen et 
al., 2022). If the recurrence describing the time complexity of merge sort is T, it will take 2T(n/2) to 
sort the sub-arrays. The recurrence can be solved to reveal an overall running time of O(n lg n). 

A comparison sort has to make at least ¬(n lg n) comparisons. Therefore, merge sort is 
asymptotically optimal (Cormen et al., 2022).

Efficiency

Merge sort is an optimal comparison sort. It is guaranteed to be fast even in the worst case (Knuth, 
1997). However, the constant factors in Merge sort can mean that other sorting algorithms with a 
greater time complexity can outperform it in a small enough input. One such algorithm is Insertion 
sort (Cormen et al., 2022, p. 39). This is the reason some implementations of Merge sort switch to 
a different sorting algorithm for a small enough input (Cormen et al., 2022, p. 39). Furthermore, it 
is often slower than Quicksort due to their constant factors.
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QUICK SORT

Time complexity
Best case ¬(n lg n) (Cormen et al., 2022, p. 125)

Worst case £(n2) (Cormen et al., 2022, p. 150)

Average case £(n lg n) (Cormen et al., 2022, p. 150)

Space complexity

Average case O(lg n) (Sedgewick, 1997)

Worst case O(n) (Sedgewick, 1997)

Invented by Antony Hoare in 1960 (Sedgewick, 1997), Quicksort is an in-place, divide-and-conquer
sorting algorithm with little overhead and an optimal average case running time (Cormen et al., 
2022, p. 170).

The idea behind Quicksort is taking an element and moving it to its final position within the sorted 
sequence. In the process of finding this position, every other record will be rearranged, such that 
no element to the right of it will be smaller, and no element to the left of it will be greater. After 
this, the problem is reduced to sorting both subarrays to the left and right of the element just 
inserted, which can be done using the same method (Knuth, 1997, p. 113). There exist multiple 
methods to achieve a partitioning into left and right sub-arrays (Knuth, 1997).

Quicksort
0. Check array limits are valid
1. Partition array, get pivot
2. Quicksort left subarray (before pivot)
3. Quicksort right subarray (after pivot)
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Walkthrough of Partition

The partition algorithm starts with an array, and its hi and lo indexes. The former will also be 
known as the pivot. Another variable (here called top) is created with the initial value of lo.

A simple optimisation to Quicksort is to select a random pivot every time, which can help increase 
the likelihood of  a balanced split on average (Cormen et al., 2022, p. 179). This can be achieved by 
selecting a random index in the array, and exchanging it with the rightmost element before 
partitioning. A further optimisation is to select the median of three randomly selected elements in 
the array, also called Median-of-3 partition (Cormen et al., 2022, p. 188). In this example the pivot 
was randomly selected and swapped before starting the partition.

The algorithm will iterate through elements lo...hi. It will create two partitions, one with elements 
lower than the pivot, the other one with elements which are greater than it. The former will span 
from 0 to top, the latter from top to the current i.

The first iteration starts and the element (-1) is compared with the pivot, as it is smaller, it swaps 
positions with top (since top is in the same position it remains in the same place) and top is 
increased by one.

Then, the next element (3) is compared to the pivot, as it is greater than it, nothing else happens.

The same happens on the next iteration.

The next element (-4) is smaller than the pivot, therefore the new element swaps positions with 
top and top is increased by one.
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This process continues until the end of the sequence is reached.

After this process two sub-arrays have been created, one with elements which are smaller than the
pivot, the other one with elements which are greater.

To complete the algorithm, the pivot exchanges positions with top, finally resting in its right place.

As mentioned above, Quicksort is simply calling partition recursively, settling elements one by one 
on their place, using divide-and-conquer.

There are different variants of this partition process, some more efficient than others.
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Analysis

The performance of Quicksort depends strongly on the partitioning being balanced or unbalanced, 
which can bring its time complexity down to that of merge sort, or up to that of insertion sort, 
respectively. According to Cormen et al. (2022), the worst case in partitioning presents itself when 
the routine causes one of the partitions to have 0 elements, with the other one having as many as 
the previous iteration (minus the element just inserted). If this is the case on every recursive level, 
the time complexity of Quicksort becomes £(n2). Moreover, this is the case on a sorted array on a 
non randomised Quicksort (Cormen et al., 2022). On the complete opposite case, the best 
partitioning occurs with a split as even as possible, which makes the time complexity £(n lg n).

Efficiency

Quicksort was described by Knuth (1997) as the "most useful general-purpose technique for 
internal sorting", for its efficient memory use and its low average running time. It is said to the 
"best practical choice for sorting" (Cormen et al., 2022, p. 170), and "probably" the most widely 
used (Sedgewick, 1997, p. 303). It has an extremely small inner loop (Sedgewick, 1997, p. 303).

A good implementation and version of Quicksort is probable to be faster than any other sorting 
algorithm on any given computer (Sedgewick, 1997, p. 304).
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APPENDIX A: TESTING THE LIBRARY

Pipenv is required, it can be installed with

$ pip install --user pipenv

Install the development dependencies with Pipenv.

$ pipenv install --dev

Then, simply run the pytest command.

$ pipenv run pytest

Alternatively, run the tox command to test with multiple python versions.

$ pipenv run tox
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