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Rapid Calculation of Terrain Parameters For
Radiation Modeling From Digital Elevation
Data

JEFF DOZIER, ASSOCIATE, IEEE, AND JAMES FREW, MEMBER, IEEE

Abstract—Digital elevation models are now widely used to calculate
terrain parameters to determine incoming solar and longwave radia-
tion for use in surface climate models, interpretation of remote-sensing
data, and parameters in hydrologic models. Because of the large num-
ber of points in an elevation grid, fast algorithms are useful to save
computation time. We describe rapid metheds for calculating slope and
azimuth, solar illumination angle, horizons, and view factors for ra-
diation from sky and terrain. Calculation time is reduced by fast al-
gorithms and lookup tables.

I. Use oF DiGiTAL ELEVATION MODELS IN RADIATION
CALCULATIONS

IN ALL but very gentle terrain, significant variation in
the surface climate and in remote-sensing images re-
sults from local topographic effects. The major contribu-
tors to this variation are solar and longwave (thermal) ir-
radiance, although there are also important topographic
variations in wind speed and soil moisture. The topo-
graphic effects on solar irradiance are mainly variation in
illumination angle and shadowing from local horizons. In
the thermal part of the electromagnetic spectrum, the
emission from surrounding slopes usually causes valley
bottoms to receive more thermal irradiance than unob-
structed areas. Problems in calculating radiation over
mountainous areas have been addressed by many papers
in the last two decades [1], [2].

Most radiation calculations over terrain are made with
the aid of digital elevation grids, whereby elevation data
are represented by a matrix. In the United States, these
are available as Digital Elevation Models (DEM’s) from
the U.S. Geological Survey [3]. The 1:250 000 quadran-
gles for the entire U.S. are available at a grid resolution
of 63.5 m (0.01 in. at map scale), and the 1:24 000
quadrangles are available at 30-m resolution. Several
commercial firms sell software which will derive digital
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elevation models from digital stereophotography from air-
craft or satellite.

The rationale for addressing the problem of rapidly cal-
culating the necessary terrain parameters stems from the
large size of the DEM’s used in some current applica-
tions. The earlier investigations cited above used either
coarse grid spacings or small areas, with the resulting
grids containing only 10° to 10° points. Even in these ap-
plications [1], [4], computer time for generating terrain
parameters accounted for a significant part of the total
computer resources used. In our current application—in-
vestigation of the snow surface radiation balance in the
southern Sierra Nevada—we often use terrain grids of 10°
to 10° points.

It is possible to reduce the computation time required
to calculate some terrain parameters through the use of
better algorithms, lookup tables to replace calculations,
and integer instead of floating-point arithmetic. In this pa-
per, we describe rapid methods for calculating: (i) Slope
and azimuth; (ii) illumination angle; (iii) horizons; and
(iv) view factors for radiation from sky and terrain. This
list includes all necessary variables used in radiation
models. The drainage basin algorithm used to prepare
some of the figures is described in detail elsewhere [5].
We also hope that the techniques described can be ex-
tended or generalized to other calculations with DEM’s

[6]-[8].

II. DATA REPRESENTATION

We avoid the use of floating-point numbers in storing
large data sets, such as satellite images, digital elevation
models, and any parameters derived from them, even
though the values represented are real rather than integer
quantities. The reasons for this are to reduce the size of
the data set and make it portable between machines with
different internal floating-point representation.

The common strategy adopted here is data representa-
tion by “‘piecewise linear quantization.”” Q, (x, N) is the
N-bit linear quantization of a real number x, whereby an
unsigned N-bit integer in the range [0, 2V — 1] is mapped
to the range [Xin, Xmae]. Within the range [0, 2V — 1]
there are break-points, b = 0, - -+ |, B — 1, where B >
2, with a value x, corresponding to each b. Between break-
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points, the mapping between Q, and x is linear:

0u(x. N) = {Q,, (O - 0) R o.s],

—x,
forx, < x < x4,. (1)
Its inverse is
QL(X’N)
X = (x —Xp) —————— + x;,
(x5 41 b)Qb+1_Qb b
for Q, = Qi1(x, N) < Qp41. (2)

The ‘‘floor’” notation in (1) means that we take the largest
integer not greater than the quantity within. We need store
only the quantized integer values, the break-points, and
the floating-point values corresponding to each break-
point. Normally, x, ., > x, for all b, but the definitions
given above do not require this and we sometimes reverse
the quantization. The relationship between b and x;, must
be monotonic, however.

III. BouNDARY CONDITIONS FOR RADIATION MODELS

The radiative transfer equation [9] for plane-parallel
atmospheres is usually expressed as

dL(7,0, ¢) _
dr h

where L is the radiance at optical depth 7 in direction 6,
¢; ¢ is the azimuth; and 0 is the angle from zenith. J is
the source function; it results from the scattering of both
direct and diffuse radiation or, at thermal wavelengths,
emission.

The solution of (3) requires that we specify upper and
lower boundary conditions. At the top of the atmosphere
the boundary condition is simple, L I (0) = 0. At the
bottom of the atmosphere over rugged terrain, however,
the boundary condition is more complicated. In the solar
spectrum, irradiance has three sources: (i) Direct irradi-
ance from the sun; (ii) diffuse irradiance from the sky,
where a portion of the overlying hemisphere is obscured
by terrain; and (iii) direct and diffuse irradiance, on nearby
terrain, that is reflected toward the point whose boundary
condition we want to specify. In the thermal portion of
the spectrum the solar contribution is absent, the diffuse
irradiance results from atmospheric emissions, and the
contribution from the surrounding terrrain is from emis-
sion instead of reflection. For remote-sensing interpreta-
tion, the upwelling radiation normal to a slope § must be
normalized to a horizontal plane by multiplying by cos S.

The direct irradiance on a slope is

—L(r, 6, ) +J(7,0,¢) (3)

cos 6

—1o/cost

(4)
where Ej is the exoatmospheric solar irradiance perpen-
dicular to the sun’s rays; 7, is the optical depth of the
atmosphere; and 6, is the solar illumination angle on a
horizontal surface. Further, 6 is the solar illumination an-
gle on the slope.

ES = COS OsEoe
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The effect of earth and atmosphere curvature on the path
length is less than 1% for 6, < 72°; for larger solar zenith
angles, Kasten’s [10] empirical equations for the optical
path length can be used.

Diffuse irradiance from the sky, either scattered or
emitted, is

E;, = WVdL_d (5)

As L, is the mean downward radiance on an unobstructed
horizontal surface, 7rL_,j is the diffuse irradiance. The sky-
view factor V is the ratio of the diffuse sky irradiance at
a point to that on an unobstructed horizontal surface; i.e.,
0 < V; < 1. It accounts for the slope and orientation of
the point, the portion of the overlying hemisphere visible
to the point, and the anisotropy of the diffuse irradiance.
We define n, (0, ¢) as an anisotropy factor such that 7, (0,
d))ITd = L(8, ¢). Therefore, 5, is normalized such that
its hemispheric integral projected onto a horizontal sur-
face is 7; i.e.,

2 pm/2
S S n4(0, ¢)sinfcos0dbdp =x. (6)

0 Jo
V, on slope S with azimuth A is found by projecting each
element of 7, onto the slope and integrating over the
unobstructed hemisphere (i.e., from the zenith downward
to the local horizon) through angle H,, for each direction
¢. For an unobstructed horizontal surface Hy, = « /2 (Fig.
1). The horizon can result either from ‘‘self-shadowing’’
by the slope itself or from adjacent ridges. In the isotropic
case, where 5, = 1, the inner integral in (7a) below, for
a given azimuth, can be evaluated analytically, leading to
the approximation in (7b):

2m pHe
— S S n4(0, @) sin [cos 6 cos S

Vd =
T Jo Jo
+ sin 8 sin S cos (¢ — A)] db do (7a)
27
1
= — S [cos S sin® H, + sin S cos (¢ — A)
27 Jo
X (Hy — sin H, cos Hy)] do. (7b)
Contribution from the surrounding terrain is

E, = nCL,. (8)

The average irradiance reflected or emitted from the sur-
rounding terrain is 7L,. The terrain configuration factor C,
includes both the anisotropy of the radiation and the geo-
metric effects between that point and each point in the
surrounding terrain with which it is mutually visible. The
contribution of each of these terrain elements to the con-
figuration factor could be computed [11], but this is a for-
midable computational problem. Instead, we use the fol-
lowing approximation:

21 oYy
C =- S S 7,(0, ¢) sin 6 [cos 6 cos S
T JO Hg

+ sin 6 sin S cos (¢ — A)] db do (9a)
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zenith

He

South

Fig. 1. Horizon angle H, for direction ¢.

~1+cosS
N 2

The value of 5, accounts for the anisotropy of the reflected
or emitted radiance from the surrounding terrain, includ-
ing geometric effects. The limits of integration for the in-
ner integral are from the horizon downward to where a
ray is parallel to the slope:

—v, (9b)

-1

tan S cos (¢ —A)}' (10)
In the upslope direction cos (¢ — A) is negative, so Y
< w /2. In the downslope direction cos (¢ — A) is pos-
itive, so ¥, > w /2. Across the slope, ¥, = 7/2.

Rigorous calculation of C; is difficult because it is nec-
essary to consider every terrain facet visible from a point
to calculate #,. In contrast to the sky radiation, the iso-
tropic assumption is unrealistic because considerable an-
isotropy results from geometric effects, even if the sur-
rounding terrain is a Lambertian reflector or a blackbody
emitter. We therefore note that ¥V, for an infinitely long
slope is (1 + cos §) /2, which leads to the approximation
in (9b).

¥y = arctan [

IV. ALGORITHMS FOR RAPID CALCULATION

The terrain grid is oriented as shown in Fig. 2. Spacing
between grid points is Ak in both the x and y directions,
although the algorithms presented here could be modified
for rectangular spacing, if desired. Elevations z are stored
as N-bit linear quantizations Q; (z, N) in the range [z,
Zmax]- The grid is oriented with the rows from west to east
and the columns from north to south, so that x increases
southward and y increases eastward. Fig. 3 is an image
of such a grid for the southern Sierra Nevada.

Implementations of the algorithms are presented in the
C programming language [12]. Some of the more esoteric
features of C, such as the use of register variables and
some arcane but speedy pointer operations, have been
omitted for simplicity. The function POW2 (n) returns 2"

+ + + +
|
x
+ + + +
ak
+ + + +
+ + + +

Fig. 2. Orientation of digital elevation model, showing direction of x and

y coordinates and spacing Ah.

Fig. 3. Digital elevation image around the Emerald Lake basin in the
southern Sierra Nevada, made by stereophotogrammetry from low alti-
tude aerial photographs. Grid spacing is 5 m. The image shown covers
1.45 x 2.40 km.

for positive integer values of n and is usually imple-
mented as a macro:

#define POW2(n) (1 << (n)).

The constant PI is assumed to be the value of =, to the
precision of the host machine.

A. Slope and Azimuth

The sine of the slope angle S with the range [0, 1] is
represented by an M-bit linearly quantized value @, (sin
S, M) with two break-points. We use the sine instead of
the cosine because the greatest precision is then for the
lowest slopes. The azimuth (or aspect) A is represented
by Q; (A, M)intherange [ — 7, w (1 — 2' ™)1, also with
two break-points. A = 0 is toward the south, and positive
azimuths are toward the east; note that —« and 7 are the
same azimuth.

The fundamental equations are given below. The signs
of the numerator and denominator allow 4 to be uniquely
specified over [ — 7, 7]:

= [(8z/0x)" + (3z/dy)’]

—dz/dy
—dz/0x

()

tan S

|V

tan A =

(12)
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where 9z/0x and dz/dy are calculated by finite differ-
ences. At point i, j:

0z Zi+1j T -1

ax 24k (13a)

0z Zij+1 T Zij-1

= 13b

dy 2Ah (13b)
The elevations are stored in the terrain grid as N-bit lin-
early quantized integers, where N is usually greater than
M.

B. IHlumination Angle

The most important variable controlling the incident ra-
diation on a slope in mountainous terrain is the local solar
illumination angle. If the sun is not hidden by a local ho-
rizon (a problem addressed in the next section), the local
illumination angle 8 on a slope S with azimuth A is given
by:

cos fs = cos fp cos S + sin f; sin S cos (¢ — A)
(14)

where 6, is the illumination angle on a horizontal surface
and ¢ is the azimuth of illumination.

As in the previous section, the quantities sin S and A4
are stored as M-bit linear quantizations. We achieve speed
in the calculation of Q; (cos 5, M ) by the following steps.

1) We ignore variations in latitude and longitude over
the terrain grid, or at least over portions of it. Therefore,
6y and ¢, are constants.

2) Because § and A are stored as linear quantizations,
there are only M possible values for cos S, sin S, and cos
(o — A). We, therefore, build lookup tables to avoid
computing trigonometric functions at each point Table 1.

3) Moreover, although there are 2** possible S, A pairs,
not all combinations occur in a typical terrain grid. There-
fore the algorithm can keep track of which S, A pairs have
already been encountered (Table II). Fig. 4 shows a
shaded-relief image of the elevation data in Fig. 2, using
the slopes and azimuths in Fig. 3, a solar zenith angle of
60°, and a solar azimuth of 42° east of south. These cor-
respond to the solar position at the time of the Landsat
overpass in mid-February.

C. Horizons

The cosine of the angle from the zenith to the horizon
in a given azimuth ¢ is represented by an M-bit linear
quantization in the range [0, 1]. The algorithm described
in this section was previously published [13], but we have
implemented many changes to make it clearer and faster.

By rotating a grid in direction ¢, we reduce the horizon
problem to its one-dimensional equivalent. Along each
row of the rotated grid (Fig. 5) we want to calculate the
horizon angle in the forward (or backward) direction for
each point; then we rotate the solution back to the original
orientation. We [13] showed that this can be solved in

TABLE 1
FUNCTION 1: TRIGONOMETRIC FUNCTION LooKuP TABLES

Function 1. Trigonometric Function Lookup Tables

extern double cos(), sqgrt():

void
trigtbl(nSlopeBits, nAzmBits, solarAzm, sinSlope, cosSlope,
cosAzmDiff)
int nSlopeBits, nAzmBits;
float solarAzm, *sinSlope, *cosSlope, *cosAzmDiff;
{
int slope, azm;
float slopeMax, azmCoef;
/*

* Compute sines and cosines for each possible slope.
* Start with maximum slope and work backwards.
*/

slope = POW2(nSlopeBits) - 1;

slopeMax = (float) slope;

do {
float temp = (float) slope / slopeMax;
sinSlope(slope] = temp;
cosSlopelslope] = sqrt((1 - temp) * (1 + temp)):
} while (--slope >= 0);
/*
* Compute cosine(solar azimuth - azimuth) for each possible
* azimuth. Start with maximum azimuth and work backwards.
*/
azm = POW2(nAzmBits) - 1;
azmCoef = 2.0 * PI / (float) azm;
solarAzm += PI;

do {
cosAzmDiff [azm] =
cos (solarAzm - azmCoef * (float) azm):
} while (--azm >= 0):

TABLE 11
FUNCTION 2: VECTOR OF COSINES OF LOCAL ILLUMINATION ANGLE

Function 2. Vector of Cosines of Local Illumination Angle

unsigned
cosine(slope, azm, cosSclarZ, sinSolarZ, sinSlope,
cosSlope, cosAzmDiff, already, savedCosZ, nCosZBits

unsigned slope, azm, **savedCosZ;
float cosSolarZ, sinSolarz, *sinSlope, *cosSlope,
*cosAzmDiff;
int **already, nCosZBits;
{
float cosZ;
/*

* If we’ve already encountered this (slope,azimuth) combination
* then use precomputed cosine,
*/
if (lalready[slope][azm]} {
cosZ = cosSolarZ * cosSlope(slope] +
sinSolarZ * sinSlope[slope]l * cosAzmDiff [azm];

if (cosz <= 0)
savedCosZ[slope] [azm] = 0;
else
savedCosZ[slope] [azm] =
cosZ * (POW2(nCosZBits) - 1) + 0.5;
already[slope] [azm] = 1;
}

return (savedCosZ[slope][azm]);

‘‘order N’’ iterations, where N is the number of points in
the profile and the computation time is linearly related to
N. All other methods for solving this problem [14], [1]
are apparently order N2, so computing times for larger
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(b)
Fig. 4. Slope (a) and azimuth (b) images of the elevation grid in Fig. 3,
masked for the Emerald Lake drainage basin.

Fig. 5. Shaded relief image of the Emerald Lake drainage basin, at a solar
zenith angle of 60° and a solar azimuth of 42° east of south, correspond-
ing to the solar position at the time of a mid-February Landsat overpass.

elevation grids become enormous. The fast solution is
achieved by casting the problem in a somewhat ill-posed
way. Instead of directly finding the horizon angle, we find
the point that forms the horizon.

This method has an additional advantage: While the an-
gles to the horizons will change with the vertical exag-
geration of the terrain grid, the coordinates of the points
forming the horizons do not. When computing ortho-
graphic views of satellite images registered to elevation
grids, the same horizon algorithm can be used to decide
a priori which points in the image are visible [15]. By
storing the points that form the horizons, one can easily
generate different vertical exaggerations of the same grid.
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TABLE III
FUNCTION 3: HORIZON IN FORWARD DIRECTION FOR EQUI-SPACED
ELEVATION VECTOR

Function 3. Horizon in Forward Direction for Equi-Spaced Elevation Vector

#define SLOPE(i, j, z) ( \
((z[3]) <= (z[i])) 2 O : \
((z[3D) - (z(i])) / (float) ((3) - (i)) \

)

horlf(elev, horzPt, nHorz)

int *horzPt, nHorz;
float *elev;
{
int i, j, currHorz;
float slopeltoHorzJ, slopeltod;

/* End point is its own horizon. */
horzPt [nHorz =~ 1] = nHorz - 1;
/* Loop from next-to-end backward to beginning. */

for (i = nHorz - 2; i >= 0; --i) {

*

Start with adjacent point in forward direction; loop
until slope from i to j is greater than or equal to
the slope from j to its horizon.

* o+

*/
currHorz = i + 1;

do {
j = currHorz;
currHorz = horzPt[j]:
slopeltoJ = SLOPE(i, j, elev);
slopeltoHorzJ = SLOPE(i, currHorz, elev):
} while (slopelItoJ < slopeltoHorzJ);

if (slopeltoJ > slopeltoHorzJ)
horzPt[i] = j:

else if (slopeltoJ == 0)
horzPt (i] = i;

else
horzPt [i) = curxrHorz;

For a grid row, define an elevation function z on the
pointsj =0, 1, - - - , N — 1. Since the points are evenly
spaced, the abscissa is specified by jAh. The horizon
function % in the forward direction satisfies, for all 0 < i
< N:

1) i < h;, hence hy_, = N — 1;

2) ifz; = z;foralli < j < N, then h; = i; i.e., if the
elevation is greater than or equal to any other point in the
forward direction, we say it is its own horizon; and

3) if k is the largest value greater than i and less than
N such that z; > z; and

=z + (g —2z)

j—i '
 — i
foralli < j < N, andj # k, then h; = k; that is, if two
points in the forward direction are equally suitable as ho-
rizon candidates, the farthest is chosen.

A simple algorithm for determining the horizon func-
tions for each point would be to compute the slope from
each i to each j > i and choose the maxima. Unfortu-
nately, the number of comparisons in such an algorithm
is on the order of the number of points in the elevation
profile squared.

We achieve a much faster speed by comparing the slope
from i to j with the slope from j to k;. If the slope from i
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elevation

distance

Fig. 6. A single horizon profile showing the horizon angle H in the for-
ward direction for three points.

Fig. 7. Shadowed portions of the Emerald Lake drainage basin, for the
same solar orientation as Fig. 5. The black areas are ‘‘self-shadowed’’;
i.e., the orientation of the slope is such that it is hidden from the sun.
The grey areas are shadowed by local horizons.

to j is greater than from j to j’s horizon, then all points
forward of j are not visible from i and, therefore, Jjisi’s
horizon. Alternatively, if the slope from j to its horizon
is greater than the slope from i to j, then all points be-
tween j and j’s horizon need not be checked, because point
J’s horizon is visible from i. The number of comparisons
in the fast algorithm is only linearly related to the number
of points in the elevation profile.

Table III shows the one-dimensional horizon algo-
rithm. Once the coordinates of the horizon points are
found, the angles to the horizon are easily calculated.

The one-dimensional algorithm assumes that the ele-
vation profile is aligned with one of the axes of the terrain
grid. An arbitrarily aligned profile may be obtained by
rotating the terrain grid to applying the one-dimensional
algorithm. Actually, a full rotation is not necessary: It is
sufficient to shear the grid by the appropriate angle, then
adjust the value of Ah.

Fig. 6 shows those points that are shadowed for the
same solar position as in Fig. 4.

D. Sky-View Factor

The sky-view factor V,; (7b) accounts for the portion of
the overlying hemisphere visible to a grid point. To cal-
culate it, one needs to know the slope S and azimuth 4 of

Fig. 8. View factors for sky radiation. The bright areas, on ridges, see a

large portion of the 27 sky hemisphere; the dark areas have much of the
overlying hemisphere obscured by adjacent terrain.

TABLE 1V
FUNCTION 4: SKY VIEW FACTOR ¥V,

Function 4. Sky View Factor V4

unsigned
viewd(slope, azm, horz, nHorz, sinSlope, cosSlope,
cosAzmDiff, horzAngle, sinHorz, cosHorz, nViewBits

unsigned slope, azm, *horz;
int nHorz, nViewBits;:
float *sinSlope, *cosSlope, *cosAzmDiff, *horzAngle,
*sinHorz, *cosHorz;
{
int direction;
float kCosSlope, kSinSlopeCosAzmDiff, view;

/* These values are constant w.r.t. horizon direction. */

kCosSlope = cosSlope[slopel;

kSinSlopeCosAzmDiff = sinSlope[slope] * cosAzmDiff [azm];

/* Sum over all horizon directions. */
view = 0;
for (direction = nHorz; --direction >= 0;) {
unsigned kHorz;

float sinKHorz;

kHorz = horz[direction]:;
sinKHorz = sinHorz(kHorz];

view += kCosSlope * sinKHorz * sinKHorz +

kSinSlopeCosAzmDiff * (horzAngle[kHorz] -
sinKHorz * cosHorz([kHorz]):

}
/* Convert result to linear quantization. */

return (view * (POW2(nViewBits) - 1) / nHorz + 0.5);

the point, plus the horizon angle H, in a discrete set of
directions ¢. Usually 16 directions around the circle are
enough. Because there are only 2¥ possible values for S,
A, or H,, the values of the trigonometric functions in (7b)
can be stored in tables. Table IV shows the algorithm.
Fig. 7 shows view factors for the same terrain grid as the
previous figures.

V. CONCLUSION

The fast algorithms presented here save considerable
time in calculating terrain parameters for solar and long-
wave radiation, for purposes of surface climate modeling
or interpretation of remote-sensing images.
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