1 ConsIndShockModel.py

Defines consumption-saving models whose agents have CRRA utility over a unitary con-
sumption good, geometric discounting, and who face idiosyncratic shocks to income.

1.1 Perfect Foresight

Consider an agent with CRRA utility over consumption, who discounts future utility at a
constant rate per period and has no bequest motive. His problem can be written as:

Vi(My) = mcaxu(C’t) + BB 1 E[Vig1 (Mig1)],
Ay = M;— Gy,

My = RA +Y,

}/t—l-l — Ft—‘rl}/;H
Ccl-r
1—p
The model can be normalized by current income (which is also permanent income in this
model) by defining lower case variables as their upper case version divided by Y;:

vi(mg) = max u(cy) + BB E[vig (mega)],
g = My — Cy,
mi1 = (R/T)ar + 1,
cl=r
u(c) = T
p

An individual agent’s model is thus characterized by values of p, 3, and R along with
sequences {I}X; and {B;}L,, with T' = oo possible.

The one period problem for this model is solved by the function solveConsPerfForesight,
which creates an instance of the class ConsPerfForesightSolver. The class
PerfForesightConsumerType extends AgentType to represent agents in this model.
The concordance between model variables and their code equivalents is as follows.

Var Description Code
p Coeflicient of relative risk aversion CRRA
I6] Intertemporal discount factor DiscFac
R Risk free interest factor Rfree
)z} Survival probability LivPrb
r Permanent income growth factor PermGroFac
(none) Number of agents of this type Nagents

These are the only six parameters that an instance of PerfForesightConsumerType

must have in order to create an instance and its solve method.! Note that LivPrb and
PermGroFac are assumed to be time-varying, so they should be input as a list. Each
element of the solution attribute will be an instance of ConsumerSolution with the
following attributes:

Var Description Code
c(+) Noramlized consumption function cFunc
v(+) Normalized value function vFunc
v'(+) Normalized marginal value function vPfunc
m Mininum normalized market resources mNrmMin
h Normalized human wealth hNrm
®k Maximum marginal propensity to consume MPCmax
K Minimum marginal propensity to consume MPCmin

In the perfect foresight model, the consumption function is linear, so the maximum and
minimum MPC are equal. Each of the functions takes normalized market resources m as
an argument, and they only defined on the domain m > m = —h.

1.2 Permanent and Transitory Idiosyncratic Shocks

Consider an agent with CRRA utility over consumption, who discounts future utility at a
constant rate per period and has no bequest motive. He foresees that he will experience
shocks to his income that are fully transitory or fully permanent. Using the normalization
above, his problem can be written as:

vilmy) = maxu(c) + P B[V (men)),
Qy = my — Cg,
ag Z Qa
myr = R/(Teatg)ar + 0,
0 ~ Fy, Yy ~ Fyy, E[Fy] =1,
cl=r
u(c) = -

That is, this agent is identical to the perfect foresight agent except that his income is
subject to permanent (¢)) and transitory (6) shocks to income, and he might have an
artificial borrowing constraint a.

The one period problem for this model is solved by the function solveConsIndShock,
which creates an instance of the class ConsIndShockSolver. The class IndShockConsumerType

!The attribute Nagents is not needed to solve this type, but is instead used during simulation.
However, this attribute is used by the constructor method for this class (to set the attributes a_init and
p-init), so it must be passed when a new instance is created.

extends PerfForesightConsumerType to represent agents in this model. To construct an
instance of this class, several additional parameters must be passed to the constructor.
Note that most of these parameters are indirect inputs to the consumer’s model: they are
used to construct direct inputs to the one period problem. The concordance between the
model and code is as follows:

Var Description Code
(none) Minimum of “assets above minimum” grid aXtraMin
(none) Maximum of “assets above minimum” grid aXtraMax
(none) Number of points in “assets above minimum” grid aXtraCount
(none) Additional values for the “assets above minimum” grid aXtraExtra
(none) Degree of exponential nesting for assets grid exp_nest

Ny Number of discrete values in transitory shock distribution TranShkCount

Ny, Number of discrete values in permanent shock distribution PermShkCount

o) Standard deviation of log transitory shocks TranShkStd

o Standard deviation of log permanent shocks PermShkStd

O Unemployment probability in working period UnempPrb
Opet “Unemployment” probability in retirement period UnempPrbRet
0 Transitory income when unemployed in working period IncUnemp
0, Transitory income when “unemployed” in retired period IncUnempRet
T Marginal income tax rate tax_rate
Tt Period of retirement; number of working periods T_retire

a Artificial borrowing constraint BoroCnstArt
(none) Indicator for whether cFunc should use cubic splines CubicBool
(none) Indicator for whether vFunc should be computed vFuncBool

T Total number of (non-terminal) periods in sequence T_total
(none) Number of agents of this type Nagents

The first five attributes in the table above are used to construct the “assets above
minimum” grid aXtraGrid, an input for solveConsIndShock.? The next ten attributes
specify an assumed form for the income distribution (Fy, Fy:). Both permanent and
transitory shocks are lognormally distributed, and with a point mass in the transitory
distribution representing unemployment. Further, the sequence of periods is broken into
two parts, “working” and “retired” to allow for a different income process in retirement.?
The attributes PermShkStd and TranShkStd are thus lists of the (log) standard deviation
of shocks period-by-period.

Like the assets grid, the specification of the income process can be changed with little

2In the current configuration, the grid is multi-exponentially spaced given minimum, maximum,
number of gridpoints, and degree of exponential nesting (with additional values to force into the grid with
aXtraExtra). It is simple to replace this grid with another by changing the function makeAssetsGrid.

3Permanent and transitory shocks are turned off during retirement, other than the possibility of
“unemployment”, representing (say) a temporary failure of the retirement benefit system.

difficulty. No matter what form is used, the relevant direct input to solveConsIndShock
is IncomeDstn, a finite discrete approximation to the true income process. This attribute
is specified as a list with three elements: an array of probabilities (that sum to 1), an array
of permanent income shocks, and an array of transitory income shocks.

The artificial borrowing constraint imposes a restriction on assets at the end of the
period; it can be set to None to turn off the constraint (i.e. only the “natural” borrowing
constraint will be used). The attributes CubicBool and vFuncBool should be set to True or
False, as their name implies. The solver can construct a linear or cubic spline interpolation
of the consumption function; cubic interpolation is slower but more accurate at any number
of gridpoints. The value function is not strictly necessary to compute during solution and
carries a computational burden, so it can be turned off with vFuncBool=False. The
number of agents of this type Nagents is irrelevant during solution and is only used during
simulation (when ez-post heterogeneity emerges within the ez-ante homogeneous type).

The solve method of IndShockConsumerType will populate the solution attribute
with a list containing instances of ConsumerSolution. Each of these instances has all the
elements listed above in the perfect foresight section plus the attribute vPPfunc (represent-
ing v”(m)) if CubicBool=True.* The problem is solved using the method of endogenous
gridpoints, which is explained for this model in section 5.8 of this set of lecture notes.

1.3 Different Interest Rate on Borrowing vs Saving

Consider an agent identical to the “idiosyncratic shocks” model above, except that his
interest factor differs depending on whether he borrows or saves on net. His problem is
the same as the one above, with a simple addition:

R= RbOTO lf = 0) Rboro Z Rsave-
Rsave if a; > 0

The one period problem for this model is solved by solveConsKinkedR, which
creates an instance of ConsKinkedRsolver. The class KinkedRconsumerType extends
IndShockConsumerType to represent agents in this model. The attributes required to
specify an instance of KinkedRconsumerType are the same as IndShockConsumerType
except that Rfree should not be included, instead replaced by values of Rboro and Rsave.
The “kinked R” solver is not yet compatible with cubic spline interpolation for cFunc; if
the solve method is run with CubicBool=True, it will throw an exception.’

The solve method of KinkedRconsumerType populates the solution attribute with a
list of ConsumerSolution instances, in the same format as the idiosyncratic shocks model.
The problem is solved using the method of endogenous gridpoints with two copies of a; = 0
in the grid of end-of-period states— one for Ry, and the other for R,,,.. This generates the

4yFunc will be a placeholder function of the class NullFunc if vFuncBool=False.
5This is an item that is ripe for development by an outside contributor.

http://www.econ2.jhu.edu/people/ccarroll/SolvingMicroDSOPs/

“kinked” portion of the resulting consumption function, where the consumer is unwilling
to borrow and insufficiently motivated to save, so he consumes at ¢; = m;.

2 ConsPrefShockModel.py

Defines consumption-saving models whose agents have CRRA utility over a unitary con-
sumption good, geometric discounting, who face idiosyncratic shocks to income and to
their utility or preferences.

2.1 Multiplicative Shocks to Utility

Consider an agent with a very similar problem to that of the “idiosyncratic shocks” model
in the preceding section, except that he receives an iid multiplicative shock to his utility
at the beginning of each period, before making the consumption decision. This model can
be written in Bellman form as:

vi(me,) = max) - u(er) + BB BVeg1 (Mg, i),
Qg = my — G,
Qg > a,
mep1 = R/(Teabea)ae + Opia,
et ~ F0t> ¢t ~ F¢t, E[Fwt] = 1>
cl=r

) Ty ~ Lyt

u(c) -

The one period problem for this model is solved by the function solveConsPrefShock,
which creates an instance of ConsPrefShockSolver. The class PrefShockConsumerType
is used to represent agents in this model. The attributes required to construct an instance
of this class are the same as for IndShockConsumerType above, but with three additions:

Var Description Code

N, Number of discrete points in “body” of preference shock distribution = PrefShkCount
Nf]““ Number of discrete points in “tails” of preference shock distribution PrefShk_tail_N
o Log standard deviation of multiplicative utility shocks PrefShkStd

These attributes are indirect inputs to the problem, used during instantiation to con-
struct the PrefShkDstn, an input to solveConsPrefShock. The tails of the preference
shock distribution matter a great deal for the accuracy of the solution and are underrep-
resented by the default equiprobable discrete approximation (unless a very large number
of points are used). To fix this issue, the attribute PrefShk_tail_N specifies the number

of points in each “augmented tail” section of the preference shock discrete approximation.®
The standard deviation of preference shocks might vary by period, so PrefShkStd should
be input as a list. The “preference shock” solver is not yet compatible with cubic spline
interpolation for the consumption function and will throw an exception if CubicBool=True.

The solve method of PrefShockConsumerType populates the solution attribute with
a list of ConsumerSolution instaces. These single-period-solution objects have the same
attributes as the “idiosyncratic shocks” models above, but the attribute cFunc is defined
over the space of (my,n;) rather than just m;. The value function vFunc and marginal
value vPfunc, however, are defined only over m;, as they represent expected (marginal)
value just before the preference shock 7, is realized:”

Va(me) = / " v(me m)dF(n),

vi(my) = /OOO v (m, n)dFy ().

2.2 Utility Shocks and Different Interest Rates

Consider an agent with idiosyncratic shocks to permanent and transitory income and
multiplicative shocks to utility and faces a different interest rate on borrowing vs saving.
This agent’s model is identical to that of the “preference shock” consumer in section 2.1,
with the addition of the interest rate rule from the “kinked R” consumer in section 1.3.

The one period problem of this combination model is solved by the function
solveConsKinkyPref, which creates an instance of ConsKinkyPrefSolver. The
class KinkyPrefConsumerType represents agents in this model. As you will see in
ConsPrefShockModel.py, there is very little new code required to program this model:
the solver and consumer classes each inherit from both KinkedR and PrefShock and
only need a trivial constructor function to rectify the differences between the two. This
is a good demonstration of the benefit of HARK’s object-oriented approach to solution
methods: it is sometimes trivial to combine two models to make a new one.

The attributes required to properly construct an instance of KinkyPrefConsumerType
are the same as for PrefShockConsumerType except that (like the “kinked R” parent model)
Rfree should not be replaced with Rboro and Rsave. Like both of its parents, KinkyPref
is not yet compatible with cubic spline interpolation of the consumption function.

6See documentation for HARK.utilities.approxLognormal for more details.
"Particularly in the case of vPfunc, this is the object of interest for solving the preceding period.

3 ConsMarkovModel.py

Defines consumption-saving models with a discrete state that evolves according to an
exogenous Markov process.

3.1 Markov States and Idiosyncratic Shocks

Consider an agent with CRRA utility over consumption who geometrically discounts future
utility flows and expects to experience transitory and permanent shocks to his income.
Moreover, in any given period he finds himself in exactly one of several discrete states;
this state evolves from period to period according to a Markov process. The individual’s
income distribution, permanent income growth rate, and interest factor might vary across
states. This agent’s problem can be written in Bellman form as:

vi(me,s)) = mc?XU(Ct) + BB E[Vi (Mg, si41)],
Qg = Ny — G,
ag > a,
R(st41)
T = Lipa(se41) P A+ B,
O ~ Fyi(s1), Ve~ Fy(se), E[Fy(s)] =1,
Probls;.1 =jlsy =1 = Ay,
cl=r

u(c) = —
The Markov matrix is A, giving transition probabilities from current state ¢ to future state
j. This model is the same as the “idiosyncratic shocks” model of section 2.1 but for the
presence of the Markov state s;, so that the interest factor R, income distribution (Fy., Fy:),
and permanent income growth factor I';,; are all functions of the Markov state, having a
value for each state.

The function solveConsMarkov solves the one period problem of this model, creating an
instance of ConsMarkovSolver. The class MarkovConsumerType is used to represent agents
in this model, extending IndShockConsumerType. The attributes required to specify an
instance of this class are the same as for IndShockConsumerType but for one addition:

Var Description Code
A Discrete state transition probability matrix MrkvArray

The attribute MrkvArray is a numpy . array of size (NN, Ny) corresponding to the number
of discrete states.® The attributes Rfree, PermGroFac, and IncomeDstn should be specified

8As is, MrkvArray is an element of time_inv, so the same transition probabilities are used for each
period. However, it can be moved to time_vary and specified as a list of arrays instead.

as lists? with N, elements for each period. Note that MarkovConsumerType currently has
no method to automatically construct a valid IncomeDstn; as seen in the examples in
ConsMarkovModel.py, the IncomeDstn is manually constructed in each case.'” All other
attributes are specified the same as in the “idiosyncratic shocks” model.

When the solve method of a MarkovConsumerType is invoked, the solution attribute
is populated with a list of ConsumerSolution objects, which each have the same attributes
as the “idiosyncratic shocks” model. However, each attribute is now a list (or array) whose
elements are state-conditional values of that object. For example, in a model with four
discrete states, each the cFunc attribute of each element of solution is a length-4 list whose
elements are state-conditional consumption functions (e.g. cFunc[2] is the consumption
function when s; = 2). The “Markov model” is compatible with cubic spline interpolation
for the consumption functions, so CubicBool=True will not generate an exception. The
problem is solved using the method of endogenous gridpoints, which is moderately more
complicated than in the basic “idiosyncratic shocks” model.

4 ConsAggShockModel.py

Defines consumption-saving models with idiosyncratic and aggregate shocks to income.

4.1 Idiosyncratic and Aggregate Shocks to Income

Consider an agent with CRRA preferences over consumption who discounts future utility
flows and expects to experience permanent and transitory shocks to his income. He also
believes that the market to which he supplies (a fixed amount of) labor will experience
aggregate permanent and transitory shocks to the effective productivity of labor. The wage
rate in the market is the marginal product of labor in the aggregate production function,
and the interest factor is one plus the (net) marginal product of capital; assume that
the ratio of aggregate capital-to-labor is a sufficient statistic for these marginal products.
Further, the agent believes that the capital-to-labor ratio evolves as a function of its current
value. This model can be written in Bellman form as:

vi(me, k) = mc?x u(cr) + BB B[V (Mg, ki),
ag = My — G,
Qg > 0,
mer1 = L cay + W01,
Li1thi 1 Vi
Rit1 = R(kt+1/@t+1)a Wi = W<kt+1/@t+1)u

9PermGroFac and Rfree can be arrays or lists.
1%Writing a method to supersede IndShockConsumerType.updateIncomeProcess for the “Markov
model” would be a welcome contribution.

ko = k(k),

et ~ F@ta ?/ft ~ Fl/)t;]E[Fd)t] == 17
O, ~ Fo, U, ~ Fy, E[Fy] =E[Fg] =1,
cl=r
u(c) = —

The objects R(-) and W(-), are functions of the (effective) capital-to-labor ratio that
yield the (net) interest factor and wage rate respectively. As noted above, these are
determined by the aggregate production function and the degree of capital depreciation.
The k(-) function represents the agent’s beliefs about the evolution of the capital-to-labor
ratio k;. As with idiosyncratic shocks, there is an aggregate shock process (Fg, Fy).

The one period problem of this model is solved by the function solveConsAggShock, the
default value of solveOnePeriod for AggShockConsumerType. The attributes required to
specify an instance of this class are listed in the concordance below.

Var Description Code
p Coeflicient of relative risk aversion CRRA
6] Intertemporal discount factor DiscFac
%3 Survival probability LivPrb
r Permanent income growth factor PermGroFac
(none) Minimum of “assets above minimum” grid aXtraMin
(none) Maximum of “assets above minimum” grid aXtraMax
(none) Number of points in “assets above minimum” grid aXtraCount
(none) Additional values for the “assets above minimum” grid aXtraExtra
(none) Degree of exponential nesting for assets grid exp_nest
{/%} Array of scaling factors for capital ratio (around SS) kGridBase
Ny Number of discrete values in transitory shock distribution TranShkCount
Ny Number of discrete values in permanent shock distribution PermShkCount
o) Standard deviation of log transitory shocks TranShkStd
oy Standard deviation of log permanent shocks PermShkStd
O Unemployment probability in working period UnempPrb
Opet “Unemployment” probability in retirement period UnempPrbRet
[Transitory income when unemployed in working period IncUnemp
0, et Transitory income when “unemployed” in retired period IncUnempRet
T Marginal income tax rate tax_rate
Tret Period of retirement; number of working periods T_retire
T Total number of (non-terminal) periods in sequence T_total
(none) Number of agents of this type Nagents

This list is very similar to the one for IndShockConsumerType, but several attributes have

been removed: Rfree is endogenous here, while CubicBool, vFuncBool, and BoroCnstArt

are not yet supported in the “aggregate shocks” model. The only new attribute is
kGridBase, an array of scaling factors for the (perfect foresight equivalent) steady state
capital ratio; it is used to construct kGrid, a direct input for solveConsAggShock.

A new AggShockConsumerType with these attributes is not yet ready to solve its micro
model, as it lacks several features. After creating a valid CobbDouglasEconomy instance
(see section 4.2), the agent type must get “macro” level objects from this by invoking its
getEconomyData method with the CobbDouglasEconomy as the input. This gives the agent
type its interest, wage, and next-capital-ratio functions as the attributes Rfunc, Wfunc,
and kNextFunc, its capital ratio grid kGrid, and reformats the IncomeDstn attribute as a
discrete joint distribution across all four types of shocks."

After obtaining “macro™level inputs to its model, an AggShockConsumerType’s solve
method will populate the solution attribute with a list of ConsumerSolution instances.
Unlike the models with only idiosyncratic shocks, the one-period-solution objects have only
two attributes, cFunc and vPfunc; both of these functions are defined over the space of
(my, k). The model is solved using the method of endogenous gridpoints, following Kiichi
Tokuoka’s Mathematica code for the “cstwMPC” project.

4.2 Cobb-Douglas Economy

A model with “aggregate shocks” only makes sense if there is some market-level object that
experiences these shocks. The CobbDouglasEconomy class extends Market to represent an
economy with a Cobb-Douglas production function over aggregate capital and aggregate
labor'” and permanent and transitory shocks to labor productivity. The basic model for
the Cobb-Douglas economy is:

Y = K°L'™ k=K/L,

oYy ar—a __ «
W_@_L = (1-—a)K*L " = (1 — a)k*,
_aY _ a—1lrl—a __ a—1
r_a_K = O{K L —O{k: 5
R = 1+4+r—0.

A new instance of CobbDouglasEconomy must have attributes listed in the table below.
The constructor for the class uses these attributes to calculate the perfect foresight steady
state of the capital-to-labor ratio, wage rate, and interest rate; the interest and wage

11 As of the beta release, this method is only compatible with one period infinite horizon micro models,
but this can be fixed with minimal difficulty.

2 As the microeconomic model in section 4.1 assumes a fixed per capita labor supply, aggregate labor
for this class is assumed constant and disappears into the background. The HARK team welcomes
contributions that extend both the micro and macro models to account for endogenous labor supply.

13]f the economy were populated with perfect foresight agents with preferences given by 37F and pP’F',

the steady state level of capital is where k;11 = k; (when aggregate shocks are turned off as well).

10

http://www.econ2.jhu.edu/people/ccarroll/papers/cstwMPC/

functions; a discretization of the aggregate shock process, and an initial guess of the next-
capital-ratio function. Following Krusell and Smith (1998), we assume that the log of next
period’s capital ratio is a linear function of the log of this period’s capital ratio.

Var Description Code

Q@ Capital’s share of output CapShare

0 Capital depreciation rate DeprFac

oy Standard deviation of log permanent aggregate shocks PermShkAggStd
oo Standard deviation of log transitory aggregate shocks TranShkAggStd

Ny Number of discrete values in permanent agg shock distribution PermShkAggCount
Ng Number of discrete values in transitory agg shock distribution TranShkAggCount
P Perfect foresight coefficient of relative risk aversion CRRAPF

BEE Perfect foresight intertemporal discount factor DiscFacPF

After a well-formed CobbDouglasEconomy has been created, its agents attribute can be
populated with one or more instances of AggShockConsumerType (who have taken “macro”
level information from the CobbDouglasEconomy). A history of aggregate shocks can be cre-
ated by invoking the makeAggShkHist method. If each element of AggShockConsumerType
has run its makeIncShkHist method to create a history of idiosyncratic income shocks (for
many agents in each type), then the CobbDouglasEconomy can invoke its solve method.
This will search for a general equilibrium of the model, defined as a “dynamic rule” for the
capital ratio k(k;) that is consistent: when agents believe this k(k;) in their microeconomic
problem, and the model is simulated for many periods, the resulting history of the capital
ratio is consistent with that same dynamic rule.

In the Market framework, the millRule for CobbDouglasEconomy gathers each agent’s
end-of-period normalized assets a; and permanent income p;. It aggregates wealth across
all consumers into total capital, which it transforms into the capital-to-labor ratio. It then
uses the next aggregate shock values to calculate R, and W;, which are distributed back
to the consumers along with the aggregate shocks and new capital ratio, so that they can
simulated another period.

After generating a history of several thousand periods, the CobbDouglasEconomy can
calculate a new dynamic rule for the capital ratio with its calcDynamics method. The
dynamics calculator simply throws out the first 200 periods of the history and runs a
one-period-lag autoregression on the log capital ratio. This generates a new function for
kNextFunc, which is distributed to the consumer types in agents to re-solve their micro
models. This process continues until successive kNextFuncs are sufficiently close to consider
the process converged (as determined by the tolerance attribute).

11

5 TractableBufferStockModel.py

Defines the “tractable buffer stock” model from Chris Carroll’s lecture notes.

5.1 Tractable Buffer Stock

Consider a consumer with CRRA utility who faces only a single, very specific risk: that
he will become permanently unemployed and receive no income until the end of time.
Otherwise, he faces an infinite horizon problem with a steady stream of income that grows
by a fixed factor each period, and earns a constant rate of return on assets retained betweed
periods. His model when still employed can be written in Bellman form as:**

vi(me) = maxu(c) + B (1= B)v"(mi,) +Ov(miy))
ag = My — G
miy = R/Ma+1, T=T/1-0)
miy = (R/Tar.
His model while unemployed is simply:
vi(m) = maxu(e) + 5v(miy)
. = My — G
mt, = (R/Da.

This model is solved by the class TractableConsumerType when its solve () method is
invoked. An instance of this class is specified by the five parameters in the table below:

Var Description Code
p Coefficient of relative risk aversion CRRA
I6] Intertemporal discount factor DiscFac
R Interest factor on assets Rfree
r Permanent income growth factor PermGroFac
U Probability of becoming unemployed UnempPrb

Unlike other models in HARK, tractable buffer stock is not solved by backward induction
beginning from an initial guess of the solution. Because of the very specific form of risk faced
by the agent, it is possible to calculate'® analytical values of the steady state (my, ¢;) and
to find several derivatives of the consumption function at this point (i.e. the MPC, MMPC,
etc). Further, the Euler and transition equations can be inverted to yield (m;_1,¢;—1) as
a function of (my,¢;) conditional on being employed in both periods. Beginning from a

!For technical / teaching reasons, permanent income growth while employed is “risk compensated” so
that human wealth does not vary with the unemployment probability.

15As long as the consumer is both “return impatient” and “growth impatient”, else there is no steady
state or no solution at all.

12

http://www.econ2.jhu.edu/people/ccarroll/public/LectureNotes/Consumption/TractableBufferStock.pdf

small perturbation along a Taylor approximation of the consumption function around the
steady state, the solution method generates a sequence of “stable arm points” along the
consumption function. After reaching specified bounds (and appending the lower bound at
(0,0)), the (employed) consumption function is constructed as a cubic spline interpolation.

After running the solve method, the solution attribute of a TractableConsumerType
will have a list with a single instance of TractableConsumerSolution. This object has
the following attributes:

Var Description Code
{m;} List of market resources values on the stable arm mNrm_list

{a1} List of consumption values on the stable arm cNrm_list
{ki} List of MPCs at points on the stable arm MPC_list
c®(my) Consumption function when employed cFunc
c*(my) Consumption function when unemployed cFunc_U
(none) Number of stable arm points included PointCount

5.2 Tractable Buffer Stock as Markov

The tractable buffer stock model can also be solved by the standard backward induction
approach if it is framed in terms of the Markov model in section 3. There are two discrete
state, employed and unemployed; transition probabilities from the former are (1—U, U) and
the latter is an absorbing state. The interest factor and permanent income growth rate are
identical in the two states, and both have degenerate income distributions: ¢, = 6, = 1,
while 1, = 1 and 6, = 0 for sure. The model takes about 300 times longer to solve using
the “Markov formulation” as the backshooting method, yielding a nearly identical solution.

13

	ConsIndShockModel.py
	Perfect Foresight
	Permanent and Transitory Idiosyncratic Shocks
	Different Interest Rate on Borrowing vs Saving

	ConsPrefShockModel.py
	Multiplicative Shocks to Utility
	Utility Shocks and Different Interest Rates

	ConsMarkovModel.py
	Markov States and Idiosyncratic Shocks

	ConsAggShockModel.py
	Idiosyncratic and Aggregate Shocks to Income
	Cobb-Douglas Economy

	TractableBufferStockModel.py
	Tractable Buffer Stock
	Tractable Buffer Stock as Markov

