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Abstract

This document gives a rough and brief overview of the PowerGAMA software tool for optimal
power flow analysis of large power systems, taking into account variability of demand and power
generation from renewable sources.
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1 Introduction

PowerGAMA is open source software created by SINTEF Energy Research. The expanded name is
Power Grid And Market Analysis. This is a Python-based lightweight simulation tool for high level
analyses of renewable energy integration in large power systems.

The simulation tool optimises the generation dispatch, i.e. the power output from all generators in
the power system, based on marginal costs for each timestep for a given duration. It takes into account
the variable power available for solar, hydro and wind power generators. It also takes into account
the variability of demand. Moreover, it is flow-based meaning that the power flow in the AC grid is
determined by physical power flow eqautions.

Since some generators may have an energy storage (hydro power with reservoir and consentrated solar
power with thermal storage) the optimal solution in one timestep depends on the previous timestep, and
the problem is therefore be solved sequentially. A realistic utilisation of energy storage is ensured through
the use of storage values.

PowerGAMA does not include any power market subtleties (such as start-up costs, limited ramp rates,
forecast errors, unit commitments) and as such will tend to overestimate the ability to accomodate large
amounts of variable renewable energy. Essentially it assumes a perfect market based on nodal pricing
without barriers between different countries. This is naturally a gross oversimplification of the real power
system, but gives nontheless very useful information to guide the planning of grid developments and to
assess broadly the impacts of new generation and new interconnections.

PowerGAMA is largely inspired by SINTEF’s Power System Simulation Tool (PSST) [1, 2].

PowerGAMA source code and a wiki is found on this web address:
https://bitbucket.org/harald_g_svendsen/powergama.

1.1 Licence

PowerGAMA is open source software distributed under the following licence:

• The MIT License (MIT) (http://opensource.org/licenses/MIT)

1.2 Dependencies

PowerGAMA is written with Python, and is executed via a Python interpreter. It has the following
dependencies, all of which are freely available:

• Python 3 or 2.7

• Python packages: numpy, scipy, matplotlib, mpl toolkits, PuLP

1.3 Installation

The above dependencies must be installed before PowerGAMA can be executed. Convenient Python
packages that includes the numpy, scipy and matplotlib packages and the Matlab-like development en-
vironment Spyder are Anaconda () and Python(x,y). Installing additional python packages is generally
straightforward, using e.g. pip or the ”python setup.py install” command. This includes the installation
of PowerGAMA itself.

2 Physical description

This section gives a brief overview of the physical description of the power system grid and market. This
description includes a number of implicit assumptions and is the basis for the PowerGAMA software
tool.

https://bitbucket.org/harald_g_svendsen/powergama
http://opensource.org/licenses/MIT


Figure 1: Illustration of typical storage values with dependence on filling level (left) and time variation
for solar power with small storage (middle) and hydro with large storage (right)

Figure 2: Power generation model model.

2.1 Electricity market

The market is considered perfect such that generators with the lowest marginal costs are always favoured.
That is, power is assumed traded such that the overall cost of generation is always minimised.

The cost of generation is assumed to be the marginal cost times power output for all generators.
Start-up costs and ramp rates are not considered.

For generators with a storage, the marginal cost is given by storage values, which depends on filling
level. Storage values are inspired by watervalues used for modelling and planning of production for
hydro power generators with storage [3, 4]. Storage values reflect the value of adding power inflow to
the storage. The generator will therefore produce if the cost of alternative generation is higher than the
storage value at any given time. This is identical to saying that a generator with storage will produce
powr if the nodal price is higher than the storage value.

Storage values curves are given as input, as functions of storage filling level and time. If the storage
is nearly full, the storage value is low, since adding to the storage may lead to energy spillage. If the
storage is nearly empty, the storage value is high. For predictable seasonal or daily inflow patterns, the
storage value is low just before a peak in the inflow, and high before a dip. An illustration of how the
storage values may vary with filling level and time is given in Figure 1 for solar consentrated power with
small storage (hours) and for hydro power with large reservoir for seasonal storage.

2.2 Power generation

Power generators are described by the same universal model, illustrated in Figure 2. Different types of
power plants are simply distinguished by their different parameters, as indicated in Table 1. PowerGAMA
assumes that the power inflow (average value and time profile) is given as input, and so the resource and
primary energy converter parts included in Figure 2 are not directly relevant.

Wind and solar PV power are similar. The inflow represents the available electrical power in the
wind or solar radiation. Zero storage implies that power not used is lost. The cost is zero, such that



Table 1: Generator parameters: Inflow, storage capacity and marginal cost for different types of gener-
ators

Generator type Inflow Storage Price
Fuel based (alt 1) 0 Infinity Constant cost
Fuel based (alt 2) Available capacity 0 Constant cost
Wind Available power 0 0
Photovoltaic Available power 0 0
CSP Available power Thermal storage Storage value
Hydro Water inflow Reservoir capacity Storage value

unless restricted by grid constraints, available power will always be output. solar CSP and hydro power
without any storage can also be modelled in this way.

CSP and hydro with storage will have a non-zero storage and a price set such as to ensure a sensible
scheduling of the power output. If the storage is close to its upper limit, the price will be low and if it
is low, the price will be high. This dependence on the storage filling level is exactly what the storage
value provides. It gives the threshold price value for when the generator should produce power at a given
storage filling level. The use of storage value is well established for scheduling of hydro power production.
Storage values also depend on the time: The value of stored water is less just before the spring floods
than in the autumn, and the value of stored CSP energy is less in the late morning (around 9am) than
in the evening. However, this dependence will be ignored in this software.

For fuel based generators, such as coal, gas, oil, nuclear and biomass, there are two alternative ways
to specify the inflow and storage parameters. Alternative One is to set inflow to zero and storage to
infinity with an initial value also to infinity. Then there is always fuel available in the storage and output
is restricted by generator output limits only. With this approach there is no spilled energy, but storage is
updated each time step. Alternative Two is to set inflow equal to available capacity and storage to zero.
This allows available capacity to vary throughout the year, which may be relevant at least for nuclear
power and perhaps biomass. But it will wrongly indicate spilled energy whenever actual output is less
than the available capacity.

For generators with a storage, a pump, or more generally, an energy storage charger, may be included
in the model. Technically, a pump is represented as a generator with zero or negative output that takes
energy from the grid and adds to the storage, with a certain amount of loss.

The generator model is described by the following parameters:

• Power inflow (Pinflow)

• Energy storage capacity (Emax)

• Energy in storage (E)

• Generator capacity (Pmax)

• Generator minimum production (Pmin). Normally, this is value is zero.

• Generator output (Poutput)

• Generator available power (Pavail)

• Pumping capacity (Ppump,max). In most cases, this value is zero (no pumping)

• Pumping demand (Ppump)

• Pumping efficiency (ηpump)

Available power is determined by the power inflow and the amount of stored energy, and is given by

Pavail = Pinflow +
E

∆t
, (1)

where ∆t is the time interval considered.



Figure 3: Generator with storage and pumping. The red dots represent three different situations with
different nodal price at the generator associated node. The solid line is the storage value curve, and the
dotted line is the same curve offset by a dead-band.

Generator output is limited both by the available power and by the generator capacity, as well as
the minimum production. Regarding the upper limit, there is a difference depending on generator type.
From the definition of power capacity for PV panels, it may occur in good conditions that the power
output is higher than the nominal capacity. In this case output power should not be constrained by
the nominal capacity, but only by the available power. In fact, this is true for all generators with zero
storage. In general, therefore, the upper limit on generator output is given as

No storage generators: Plimit = Pavail, (2)

Non-zero storage generators: Plimit = min[Pavail, Pmax], (3)

Infinite storage generators: Plimit = Pmax. (4)

The constraint on generator power output can then be written

Pmin ≤ Poutput ≤ Plimit. (5)

2.2.1 Power inflow

Power inflow is important for renewable energy sources such as wind, sun and rain. In general the
energy resource may be converted by a primary energy converter (e.g. wind turbine) into a more readily
exploitable energy form. The available power for electricity generation is generally less than the power
in the primary resource. PowerGAMA assumes that power inflow data is provided by the user. For wind
power, the inflow depends on the wind speed and characteristics of the wind turbines. Similarly, for
solar power the inflow depends on solar radiation and characteristics of the PV or CSP units. For hydro
power, the inflow depends on precipitation, temperature, topography and soil conditions.

2.2.2 Pumping

The implementation of pumping is illustrated in Figure 3. If the price is high, the generator will produce
power, reducing the storage filling level. If the price is below the storage value the generator will be idle,
allowing the storage to fill up (due to inflow). If the price is also lower than the storage value minus a
certain dead-band value, the pump will add energy to the storage, increasing the filling level.

The dead-band ensures that the generator–pumping system doesn’t continuously alternate between
generating and pumping, and indirectly takes into account the losses associated with pumping.



Figure 4: Power consumption model.

2.2.3 Storage dynamics

The energy in the storage E is given by the differential equation

dE

dt
= Pinflow − Poutput + ηpumpPpump, 0 ≤ E ≤ Emax, (6)

where Emax is the maximum capacity of the storage. Discretised, this equation is written

E(t+ ∆t) = max[min[E(t) + ∆t(Pinflow − Poutput + Ppump), Emax)], 0] (7)

2.3 Power consumption

Power consumption is modelled as loads connected to different nodes with a given average power demand
and a certain profile which describes the time dependent variation, i.e. how the power consumptions
varies from time step to time step. Any number of demand profiles can be specified and any number of
loads can be connected to each node.

The full consumption model is illustrated in Figure 4, with futher explanaitions in the following.

2.3.1 Load shedding

Power demand that for some reason cannot be supplied is handled by adding high cost generators at
all nodes with loads attached. This ensures that the optimisation has a solution. The high cost further
ensures that these are used only when strictly necessary. Output from these “generators” is interpreted
as load shedding.

2.3.2 Flexible load

Flexible loads are represented in a similar way to flexible generation, by means of a storage and storage
value curves.

The main parameters specifying a flexible load are:

• The ratio of flexible energy to total energy demand (P avg
flex /P

avg)

• The flexibility on/off ratio, i.e. ratio of average load relative to the maximum load (xflex =
P avg

flex /P
max
flex )

• The maximum energy flexibility/storage (Emax
flex ), given in MWh

• The storage value curve (normalised shape)

• The storage base value (absolute value), given in e/MWh

The amount of power served to the flexible load, Pflex is determined by the optimisation. Given this
value, the energy in the storage Eflex for the flexible load is computed according to

Eflex(t+ ∆t) = Eflex(t) + ∆t(Pflex − P avg
flex ), (8)



Figure 5: Storage value curve for flexible load. The red dots represent nodal prices in two different
operating points

where ∆t is one time step. The storage filling level fflex is the relative value of energy in the storage
compared to the maximum flexible energy (storage capacity),

fflex =
Eflex

Emax
flex

. (9)

If fflex > 0.5 then the load is “over-served”, and if fflex < 0.5 then it is “under-served”. It is assumed
that the initial value of the filling level is 0.5.

Flexibility value curves specify flexibility values as functions of flexibility status. This is akin to
storage values versus filling level for storage generators. An example of such a curve is shown in Figure 5.
If the associated nodal price is lower than the flexibility value, then the load is served. This in turn
increases the flexibility status.

2.4 Grid power flow

The power balance at each node requires that all generation minus all consumption equals the net power
flow out of the node. Additionally, AC power flow in the grid obeys power flow equations, and is moreover
constrained by capacity limits. These physical relationships and constraints can be formulated by a set
of equations and inequalities. Together with a cost function which describes the total cost of generation,
the problem of minimising the cost becomes an optimal power flow (OPF) problem. In our case we
apply approximate this problem using only linear relationships, which gives a linear programming (LP)
problem formulation. This must be solved time step by time step, where time steps are coupled due to
the presence of storage.

DC branches (i.e. HVDC connections) are considered fully controllable such that powr flow is a free
variable only constrained by the branch capacity.

The linearised power flow equations are obtained as follows.
Assume there are N buses, enumerated from 1 to N . Denote branches by double indices referring

to endpoint buses. The impedance on the branch between node i and j is thus written zij = rij + jxij ,
where i, j ∈ {1, 2, . . . , N}. From these impedances , the bus admittance matrix Y may be constructed:

Yij = Gij + jBij =

{
yii +

∑
n 6=i yni i = j,

−yij i 6= j,
(10)

where yij = gij + jbij = 1
zij

is the admittance of the branch between i and j.



The AC power flow equations are

Pk =

N∑
J=1

|vk||vj |
(
Gkj cos(θk − θj) +Bkj sin(θk − θj)

)
,

Qk =

N∑
J=1

|vk||vj |
(
Gkj sin(θk − θj)−Bkj cos(θk − θj)

)
.

(11)

Here, Pk and Qk are the net active and reactive power flow into node i. To arrive at the linearised
equations, the following approximations are made:

• phase angle differences are small, so sin(θi − θj) ≈ θi − θj , and cos(θi − θj) ≈ 1

• voltage deviations are small, so |v| ≈ 1 in per units system

• branch resistance is small compared to reactance, so zij ≈ jxij

• shunt reactances are small, so ignoring self-admittance yii ≈ 0

The last two approximations imply that Yij ≈ jBij . The reactive power flow equation becomes trivial,
and the power flow equations reduce to

Pk =

N∑
j=1

Bkj(θk − θj). (12)

This is the linearised power flow equation. On matrix form it can be written

∆P = B′∆θ, (13)

where ∆P is the net power into a node (i.e. production minus consumption), and ∆θ is the angle relative
to the angle of a chosen reference node. The B′ matrix is related to the B matrix.

The net power flow into a node ∆P = [Pk] is the sum of generation, demand, load shedding and hvdc
power inflow:

Pk =

Ngen∑
j=1

P gen
j −

Npump∑
j=1

P pump
j + P shed +

Ndc∑
j=1

P dc
j −

Ncons∑
j=1

P cons
j , (14)

where P gen
j is generator output, Ngen is number of generators at the given node, P pump

j is pump demand,

Npump is number of pumps at the given node, P shed is amount of load shedding (unfulfilled demand),
P dc
j is inflow on DC branches (positive or negative), Ndc is number of DC branches connected to the

given node, P cons
j is consumer demand, and Ncons is number of consumers at the given node.

Power flow PB on each branch is computed by the matrix equation

PB = (DA)∆θ, (15)

where D is a diagonal matrix with elements given by the branch susceptance Dmm = −bm, and A is the
node–arc incidence matrix.

3 Optimisation problem

A linear objective function is used in order to ensure fast optimisation that converges, with the practical
benefit that it also requires fewer input parameters.

The set of variables to be determined by the optimisation are

X = {P gen
g , P pump

p , P flex
f , P shed

n , θn, Pj}, (16)

where g ∈ G, the set of generators; p ∈ P, the set of pumps; f ∈ F , the set of flexible loads; n ∈ N , the
set of nodes. j ∈ B, the set of AC and DC branches.



The objective of the optimisation is expressed in terms of an objective function, which in our case is

F =
∑
g∈G

cgen
g P gen

g −
∑
p∈P

cpump
p P pump

p

−
∑
f∈F

cflex
f P flex

c +
∑
n∈N

cshedP shed
n ,

(17)

where cg is the cost of generator g, cpump
p is the cost of pump p, cflex

f is the cost of flexible load p, and cshed

is the fixed cost of load shedding. As discussed in Section ??, these cost parameters are determined by
the fuel price for generators without storage, and by storage values in the other cases. The negative sign
in front of pumping and flexible load means that increasing their value reduces the objective function.
However, the energy balance constraint (see below) implies that power for pumping or flexible load must
be compensated by generation elsewhere. So whether it is beneficial therefore depends on the cost of
that alternative generation.

The variables (16) are not free, but constrained through upper and lower bounds, and through
equations expressing relationships between them. Referring to these constraints as Cm, the optimisation
problem is formulated in the standard Linear Programming (LP) form

minF = min
∑

ciXi such that {C1, . . . C6}. (18)

This must be solved time step by time step, where time steps are coupled due to the presence of storage.
The various constraints are now described in more detail.

The first set of constraints state that power flow on branches is constrained by their capacity limits:

C1 : −Pmax
j ≤ Pj ≤ Pmax

j (19)

where j refers to AC and DC branches with limited capacity.
The second set of constraints state that the power generation at generators is limited by lower and

upper bounds, most notably the generation capacity and available power as described in Section ??:

C2 : Pmin
g ≤ P gen

g ≤ P limit
g , (20)

where g refers to all generators.
The third set of constraints state that the pumping is limited by the pump capacity

C3 : 0 ≤ P pump
p ≤ P pump,max

p , (21)

where p refers to all pumps.
The fourth set of constraints state that the flexible load is limited by the maximum demand

C4 : 0 ≤ P flex
f ≤ P flex,max

f , (22)

where f refers to all flexible loads.
The fifth set of constraints express the condition of power balance at each node, which requires that

net power injection at a node equals the net AC power flow out of the node. Net power injection is given
as generated power minus demand, pumping and load shed plus power inflow via DC connections, which
are controllable and free variables in the optimisation. Flow in the AC grid, however is determined by
grid impedances by means of non-linear power flow equations. In order to formulate the problem as
a linear optimisation problem, an approximate version of these equations is applied. To arrive at the
linearised equations, often referred to as the DC power flow equations, the following assumptions are
made: 1) phase angle differences are small; 2) voltage deviations are small; 3) branch resistance is small
compared to reactance; 4) shunt reactances are small, so self-admittances can be ignored. With these
assumptions the AC power flow equations reduce to the linear equations

C5 : Pnode = B′Θ, (23)

where Θ is a vector of voltage angles, B′ is the conductance matrix, and Pnode is a vector of net power
injections into all nodes. The conductance matrix B′ is the imaginary part of the bus admittance matrix,



which are the same with the approximations given above. The Pnode vector elements are given as

P node
k =

∑
j∈Gk

P gen
j −

∑
j∈Pk

P pump
j −

∑
j∈Ck

P cons
j

+ P shed
k +

∑
j∈Dk

P dc
j ,

(24)

where P gen
j is generator output, Gk is the set of generators at node k, P pump

j is pump demand, Pk is

the set of pumps at node k, P shed
k is amount of load shedding at node k, P dc

j is inflow on DC branches
(positive or negative), Dk is the set of DC branches connected to node k, P cons

j is consumer demand
(fixed and flexible), and Ck is the set of loads at node k.

The sixth set of constraints express the relationship between power flow on branches and nodal voltage
angle differences. In the linear approximation, power flow Pac on AC branches is related to nodal voltage
angles as expressed by the equation

C6 : Pac = DAΘ, (25)

where D is a diagonal matrix with elements given by the branch reactance Dmm = − 1
xm

, and A is the
node–branch incidence matrix describing the network topology.

The seventh constraint specifies the reference node and its voltage angle,

C7 : θ0 = 0. (26)

Since these are arbitrary and don’t influence the results, the reference is chosen such that the zeroth
node has zero voltage angle.

4 Scenario generation tool

In order to simplify the process of generating scenarios with differeng generation mix and demand, the
package includes a scenario module that can be used to save the loaded grid model to a scenario file. This
is a summary file that includes demand per area, generation capacities per type and area etc. Exporting
the grid model to a scenario file can be very useful for checking that the dataset is consistent with the
scenario being studied.

The key functions are :

• powergama.scenarios.saveScenario(...)

• powergama.scenarios.newScenario(...)

4.1 Saving grid model to scenario file

To load an existing grid model and export a scenario file (“scenario.csv”’), run code similar to the
following:

>>>import powergama

>>>import powergama.scenarios

>>>gridmodel = powergama.GridData ()

>>>gridmodel.readGridData(nodes="nodes.csv",

ac_branches="branches.csv",

dc_branches="hvdc.csv",

generators="generators.csv",

consumers="consumers.csv")

>>>gridmodel.readProfileData(filename="profiles.csv",

storagevalue_filling="profiles_storval_filling.csv",

storagevalue_time="profiles_storval_time.csv",

timerange=range (0 ,8760) ,

timedelta =1.0)



>>>powergama.scenarios.saveScenario(gridmodel ,

scenario_file= "scenario.csv")

4.2 Create modified dataset using scenario file

In order to create a scenario file, the simplest is to to save an existing grid model to scenario file as shown
above. Then, it can be open in a spreadsheet editor and modified according to the specifications of the
new scenario. Values that should not be modified should be left blank. Irrelevant rows can be removed.
In general, the newScenario function only modifies data where information is provided in the scenario
file.

Be careful with profile reference data, as the output created by saveScenario will join together all
references present for each country, and cannot be used directly when creating new scenarios. The
information may be useful in validating the dataset, but is not useful for creating new scenarios. If a
single reference is used for the country (e.g. all wind generators in a country), then it is ok to include this
(e.g. demand reference), but for generator inflow and storage value references, it may be necessary to
modify these values directly in the data file (if modification is required). If no modifications are required,
these rows should be removed. This concerns the following rows in the scenario file:

• demand ref

• inflow ref ¡gentype¿

• storval time ref ¡gentype¿

• storval filling ref ¡gentype¿

Once a modified scenario file has been created (“scenario new.csv”), run code similar to the following
in order to create new input data files:

>>>import powergama

>>>import powergama.scenarios

>>>gridmodel = powergama.GridData ()

>>>gridmodel.readGridData(nodes="nodes.csv",

ac_branches="branches.csv",

dc_branches="hvdc.csv",

generators="generators.csv",

consumers="consumers.csv")

>>>gridmodel.readProfileData(filename="profiles.csv",

storagevalue_filling="profiles_storval_filling.csv",

storagevalue_time="profiles_storval_time.csv",

timerange=range (0 ,8760) ,

timedelta =1.0)

>>>powergama.scenarios.newScenario(gridmodel ,

scenario\_file="scenario\_new.csv",

new_file_prefix="new_")

The new input files will have the same names as the original, but with the prefix “new ”, e.g. “new nodes..csv”.
Now, you can run a new simulation with these new input files instead of the original ones.

5 Input data formats

Input files are comma separated text files (CSV), with a comma as delimiter and period as the decimal
symbol. The first line in the files contains a header, with unique keys associated with each column. The
ordering of columns is arbitrary. Keys are case sensitive and should be all lower case.



5.1 Grid data

There are 5 input files associated with nodes, AC branches, DC branches, consumers and generators.
These files contains references to additional files which has information about normalised storage values,
energy inflow profiles and power demand profiles. The reference identifier (integer number or string) in
the generator and consumer files should match an identifier in the relevant storage value or profile files.

5.1.1 Nodes

Nodes need to have unique identifier string. Area information is used for scenario generation (preprosess-
ing), and for plotting and presentation of results. Latitude and longitude information is only used for
plotting the grid on a map.

column key description type units
“id” Unique string identifier string
“lat” Latitude float degrees
“lon” Longitude float degrees
“area” Area/country code string

5.1.2 AC Branches

Branches have from and to references that must match a node identifier in the list of nodes. Im-
pedance should be given as per unit system with the the base power being the global one (power-
gama.constants.baseS)

column key description type units
“node from” Node identifier string
“node to” Node identifier string
“reactance” Reactance float p.u
“resistance” Resistance (OPT) float p.u.
“capacity” Capacity float MW

5.1.3 DC Branches

DC branches have from and to references that must match a node identifier in the list of nodes.

column key description type units
“node from” Node identifier string
“node to” Node identifier string
“capacity” Capacity float MW

5.1.4 Consumers

Consumers are loads connected to nodes. There may be any number of consumers per node, although
zero or one is typical.

demand avg gives the average demand, which is easily computed from the annual demand if necessary.
demand ref gives the name of the demand profile which gives the variation over time. Demand profiles
should be normalised and have an annual average of 1.

column key description type units
“node” Node identifier string
“demand avg” Average demand float MW
“demand ref” Profile reference string
“flex fraction” Fraction of demand which is flexible (OPT) float
“flex on off” Flexibility on/off ratio (OPT) float
“flex storage” Maximum flexibility (OPT) float MWh
“flex storval filling” Profile ref, storage value filling dependence (OPT) string
“flex storval time” Profile ref, storage value time dependence (OPT) string
“flex basevalue” Base storage value (OPT) string



5.1.5 Generators

Generators are the most complex data structure and require the most input data. The three columns
related to pumping only need to be filled out if the pumping capacity is non-zero.

column key description type units
“node” Node identifier string
“desc” Description or name string
“type” Generator type string
“pmax” Maximum production float MW
“pmin” Minimum production float MW
“fuelcost” Cost of generation float e/MWh
“inflow fac” Inflow factor float
“inflow ref” Inflow profile reference string
“storage cap” Storage capacity float MWh
“storage price” Base for storage value float e/MWh
“storval filling ref” Profile ref, storage value filling level dependence string
“storval time ref” Profile ref, storage value time dependence string
“storage ini” Initial storage filling level float 1
“pump cap” Pumping capacity (OPT) float MW
“pump efficiency” Pumping efficiency (OPT) float
“pump deadband” Pumping price dead-band (OPT) float e/MWh

node is the string identifier of the node where the generator is connected. There may be any number
of generators per node. pmax is the maximum power production, i.e. the generator capacity pmin is
the minimum power production. This is normally zero, but may be nonzero for certain generator types
such as nuclear power generators. fuelcost is the cost of generation. For generators without storage,
the marginal cost is set equal to this value value. storage price is the the base value for storage gen-
erator’s storage values. It sets the absolute scale in the storage value calculation. storage capacity

is the capacity of the storage system. This is usually relevant only for hydro power and solar CSP.
storagevalue ref is the string identifier of the associated storage value table to be used for this gen-
erator/storage system storage init is the initial relative filling level of the storage. inflow fac is the
inflow factor. inflow ref is the string identifier of the associated inflow profile.

Power inflow at a given timestep t is computed according to

Pinflow(t) = Pmax × inflow factor× profile value(t). (27)

In case the annual inflow is known, the inflow factor can be expressed by integrating the above equation,
giving

inflow factor =
annual inflow

8760 h× Pmax × avg(profile value)
. (28)

There are two typical ways to use inflow factor and inflow profile:

• Normalised inflow profile with maximum value = 1: profile gives power output per installed capa-
city, with average value equal to the capacity factor of the generator. In this case, inflow factor

should be approximately 1, larger for good sites and smaller for bad sites. If inflow factor is larger
than one, then at times Pinflow > Pmax.

• Normalised inflow profile with average value = 1: inflow factor is equal to capacity factor, i.e.
average inflow divided by generator capacity. Typical capacity factors are 0.5 for a large hydro
storage system, 0.25 for wind power, and 0.22 for solar PV.

It is important to keep in mind that if the generator capacity is upgraded without the energy inflow
changing (which may be relevant if there is storage), the inflow factor must be reduced correspondingly.

If fine resolution is not needed, many generators may use the same profile, but with different inflow
factors to get representative capacity factor.



5.2 Time dependence of power consumption, power inflow and storage values

The following quantities vary with time:

• Generator power inflow (wind, solar radiation, rain)

• Consumer load (power demand)

• Storage values

For these, there are two field in the input data, one parameter that gives the absolute scale, and
a reference to a normalised profile which entails the time profile. Multiplied together these give the
absolute variation over time, as expressed e.g. in Eq. (27) The reason for this splitting between absolute
scale and normalised profile is to enable multiple references to the same profile (e.g. normalised profile
for demand may be the same for all consumers within an area), and to simplify the task of creating
scenarios by scaling up or down the absolute scale without the need to change the profile time series.

Power inflow is given by weather conditions. Hydro has mainly a seasonal profile, whereas wind and
solar varies from hour to hour. Solar has a characteristic daily profile with no production in dark hours.
As stated previously, there are two alternative ways to specify inflow profile and absolute scale (inflow
factor) are used: 1) The profile is normalised to give power inflow per installed capacity (with average
value representing the capacity factor), and absolute scale is nominally equal to one; 2) The profile is
normalised to have an average value of unity, and absolute scale represents the capacity factor.

column key description type units
identifier1 values type 1 float MW
identifier2 values type 2 float MW
. . .

There is one row per time step.

5.3 Storage values

There are two dependencies:

• Filling level

• Time of year and time of day

All in all, the storage values are computed according to

storage value(f, t) = base value× filling level profile(f)× time profile(t), (29)

where f is the relative filling level, and t is the timestep.
Time dependence of storage values reflect the time dependence of the associated inflow, and is there-

fore quite different for hydro (seasonal variation) and CSP (daily variation). This depenency is given in
the same format as for inflow and consumption, see above.

Storage value dependence on filling level is specified as follows:

column key description type units
identifier1 values type 1 float e/MWh
identifier2 values type 2 float e/MWh
. . .

There is one row per percentile (filling level)

6 Output data

6.1 Optimal solution

The primary result are values for the cost function (total cost of generation) and values for all variables
for each timestep in the simulation. The variables are



• power generation for each generator

• voltage angles at nodes

• power flow on AC branches (actually derived from voltage angles)

• power flow on DC branches

• load shedding at each node

Derived quantities include

• storage level and marginal price for generators with storage

• spilled power inflow (e.g. constrained/curtailed wind power)

6.2 Sensitivities

Sensitivities are computed for the following variables:

• AC branch capacity

• DC branch capacity

• Power demand at each node

These sensitivities say how much the total generation cost would increase if branch capacity or power
demand at a given branch or node were to increase by one unit. This is useful for identifying grid
bottlenecks and nodal power prices.

6.3 Further analysis of results

Examples of interesting analyses that can be addressed using PowerGAMA are

• Identification of grid bottlenecks. This is relevant for existing bottlenecks, but even more so
with future scenarios with new generators installed, e.g. large amounts of renewable generation.
Assessment of ot benefits by reinforcing certain connections, or adding more lines.

• Identification of the potential of the grid and power system to absorb large amounts of renewable
generation. How much new capacity of wind and solar power can be introduced without problems

• Estimation of generation mix

It should be noted that PowerGAMA does not include any power market subtleties (such as start-up
costs, forecast errors, unit commitments) and as such will tend to overestimate the ability to accomodate
large amounts of variable renewable energy. Essentially it assumes a perfect marking based on nodal
pricing without barriers between different countries. This is naturally a gross oversimplification of the real
power system, but gives nontheless very useful information to guide the planning of grid developments
and to assess broadly the impacts of new generation and new interconnections.

6.4 Included plots and other result analysis functions

See the online powergama source code documentation for a complete overview of plotting functions and
other functions to retreive simulation results for further analysis.

7 Power Grid Investment Module (PowerGIM)

The PowerGAMA includes a grid investment module for determining socio-economically beneficial grid
investments (connections and generators). This module is documented separately.

However, an overview of the input data format is provided in the following.



7.1 PowerGIM grid data input

PowerGIM input have the same format as PowerGAMA data (see above), but some fields (columns)
differ.

7.1.1 Nodes

Nodes need to have unique identifier string. Area information is used for scenario generation (preprosess-
ing), and for plotting and presentation of results. Latitude and longitude information is only used for
plotting the grid on a map.

column key description type units
“id” Unique string identifier string
“lat” Latitude float degrees
“lon” Longitude float degrees
“area” Area/country code string
“existing” Whether node already exists boolean (0/1)
“cost scaling” Cost scaling factor float
“type” Node (cost) type string

7.1.2 Branches

Branches have from and to references that must match a node identifier in the list of nodes.
expand is 0 if no expansion should be considered, 1 if expansion in stage 1 should be considered, and

2 if expansion in stage 2 should be considered. (If expansion in both stage 1 and 2 should be considered,
add a new branch with 0 existing capacity). distance may be left blank. Then distance is computed as
the shortest distance between the associated nodes (based on lat/lon coordinates) capacity2 is already
decided additional branch capacity that will be added at stage two (optional input). It may be relevant
to include this as an uncertain parameter in a stochastic optimisation.

column key description type units
“node from” Node identifier string
“node to” Node identifier string
“capacity” Existing capacity float MW
“capacity2” Capacity added stage 2 (OPT) float MW
“expand” Consider expansion int (0,1,2)
“distance” Branch length (OPT) float km
“max newCap” Max new capacity (OPT) float km
“cost scaling” Cost scaling factor float
“type” Branch (cost) type string

7.1.3 Consumers

Consumers are loads connected to nodes. There may be any number of consumers per node, although
zero or one is typical.

demand avg gives the average demand, which is easily computed from the annual demand if necessary.
demand ref gives the name of the demand profile which gives the variation over time. Demand profiles
should be normalised and have an annual average of 1.

column key description type units
“node” Node identifier string
“demand avg” Average demand float MW
“demand ref” Profile reference string
“emission cap” Maximum CO2 emission allowed (OPT) float kg

7.1.4 Generators

Generators are the most complex data structure and require the most input data.



An average power constraint (pavg) is used to represent generators with large storage. pavg=0 means
no constraint on average output is used (no storage constraint). Already decided increase in generator
capacity in stage 2 may be specified with pmax2 parameter.

column key description type units
“node” Node identifier string
“desc” Description or name (OPT) string
“type” Generator type string
“pmax” Generator capacity float MW
“pmax2” Generator capacity stage 2 (OPT) float MW
“pmin” Minimum production float MW
“expand” Consider capacity expansion int (0,1,2)
“fuelcost” Cost of generation float e/MWh
“fuelcost ref” Cost profile string
“inflow fac” Inflow factor float
“inflow ref” Inflow profile reference string
“pavg” Maximum average power (OPT) float MW
“p maxNew” Maximum new capacity (OPT) float MW
“cost scaling” Cost scaling factor (OPT) float

7.2 PowerGIM parameter data input

In addition to the network data, PowerGIM requires additional parameters (mostly cost parameters)
that are specified in a separate XML file.

The format of this file may be seen from the examples.

8 Examples

Examples are provided on the web site [5]:
https://bitbucket.org/harald_g_svendsen/powergama/wiki/Home
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