
SciPy Reference Guide
Release 0.16.0

Written by the SciPy community

July 24, 2015

CONTENTS

1 SciPy Tutorial 3
1.1 Introduction . 3
1.2 Basic functions . 5
1.3 Special functions (scipy.special) . 9
1.4 Integration (scipy.integrate) . 10
1.5 Optimization (scipy.optimize) . 17
1.6 Interpolation (scipy.interpolate) . 31
1.7 Fourier Transforms (scipy.fftpack) . 42
1.8 Signal Processing (scipy.signal) . 51
1.9 Linear Algebra (scipy.linalg) . 69
1.10 Sparse Eigenvalue Problems with ARPACK . 82
1.11 Compressed Sparse Graph Routines (scipy.sparse.csgraph) 85
1.12 Spatial data structures and algorithms (scipy.spatial) . 88
1.13 Statistics (scipy.stats) . 94
1.14 Multidimensional image processing (scipy.ndimage) . 113
1.15 File IO (scipy.io) . 134
1.16 Weave (scipy.weave) . 140

2 Contributing to SciPy 175
2.1 Contributing new code . 175
2.2 Contributing by helping maintain existing code . 176
2.3 Other ways to contribute . 176
2.4 Recommended development setup . 177
2.5 SciPy structure . 177
2.6 Useful links, FAQ, checklist . 178

3 API - importing from Scipy 181
3.1 Guidelines for importing functions from Scipy . 181
3.2 API definition . 182

4 Release Notes 185
4.1 SciPy 0.16.0 Release Notes . 185
4.2 SciPy 0.15.0 Release Notes . 201
4.3 SciPy 0.14.0 Release Notes . 216
4.4 SciPy 0.13.2 Release Notes . 227
4.5 SciPy 0.13.1 Release Notes . 227
4.6 SciPy 0.13.0 Release Notes . 227
4.7 SciPy 0.12.1 Release Notes . 234
4.8 SciPy 0.12.0 Release Notes . 234
4.9 SciPy 0.11.0 Release Notes . 240
4.10 SciPy 0.10.1 Release Notes . 245

i

4.11 SciPy 0.10.0 Release Notes . 246
4.12 SciPy 0.9.0 Release Notes . 250
4.13 SciPy 0.8.0 Release Notes . 253
4.14 SciPy 0.7.2 Release Notes . 258
4.15 SciPy 0.7.1 Release Notes . 258
4.16 SciPy 0.7.0 Release Notes . 260

5 Reference 267
5.1 Clustering package (scipy.cluster) . 267
5.2 K-means clustering and vector quantization (scipy.cluster.vq) 267
5.3 Hierarchical clustering (scipy.cluster.hierarchy) . 271
5.4 Constants (scipy.constants) . 286
5.5 Discrete Fourier transforms (scipy.fftpack) . 302
5.6 Integration and ODEs (scipy.integrate) . 318
5.7 Interpolation (scipy.interpolate) . 337
5.8 Input and output (scipy.io) . 407
5.9 Linear algebra (scipy.linalg) . 419
5.10 Low-level BLAS functions . 478
5.11 Finding functions . 478
5.12 BLAS Level 1 functions . 479
5.13 BLAS Level 2 functions . 494
5.14 BLAS Level 3 functions . 506
5.15 Low-level LAPACK functions . 513
5.16 Finding functions . 513
5.17 All functions . 513
5.18 BLAS Functions for Cython . 592
5.19 LAPACK functions for Cython . 596
5.20 Interpolative matrix decomposition (scipy.linalg.interpolative) 634
5.21 Miscellaneous routines (scipy.misc) . 643
5.22 Multi-dimensional image processing (scipy.ndimage) . 654
5.23 Orthogonal distance regression (scipy.odr) . 709
5.24 Optimization and root finding (scipy.optimize) . 718
5.25 Routines . 799
5.26 Examples . 800
5.27 Signal processing (scipy.signal) . 801
5.28 Sparse matrices (scipy.sparse) . 949
5.29 Sparse linear algebra (scipy.sparse.linalg) . 1051
5.30 Compressed Sparse Graph Routines (scipy.sparse.csgraph) 1081
5.31 Spatial algorithms and data structures (scipy.spatial) . 1093
5.32 Distance computations (scipy.spatial.distance) . 1128
5.33 Special functions (scipy.special) . 1143
5.34 Statistical functions (scipy.stats) . 1200
5.35 Statistical functions for masked arrays (scipy.stats.mstats) 1525
5.36 C/C++ integration (scipy.weave) . 1552

Bibliography 1557

Python Module Index 1573

Index 1575

ii

SciPy Reference Guide, Release 0.16.0

Release 0.16.0
Date July 24, 2015

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering.

CONTENTS 1

SciPy Reference Guide, Release 0.16.0

2 CONTENTS

CHAPTER

ONE

SCIPY TUTORIAL

1.1 Introduction

Contents

• Introduction
– SciPy Organization
– Finding Documentation

SciPy is a collection of mathematical algorithms and convenience functions built on the Numpy extension of Python. It
adds significant power to the interactive Python session by providing the user with high-level commands and classes for
manipulating and visualizing data. With SciPy an interactive Python session becomes a data-processing and system-
prototyping environment rivaling sytems such as MATLAB, IDL, Octave, R-Lab, and SciLab.

The additional benefit of basing SciPy on Python is that this also makes a powerful programming language available
for use in developing sophisticated programs and specialized applications. Scientific applications using SciPy benefit
from the development of additional modules in numerous niche’s of the software landscape by developers across the
world. Everything from parallel programming to web and data-base subroutines and classes have been made available
to the Python programmer. All of this power is available in addition to the mathematical libraries in SciPy.

This tutorial will acquaint the first-time user of SciPy with some of its most important features. It assumes that the
user has already installed the SciPy package. Some general Python facility is also assumed, such as could be acquired
by working through the Python distribution’s Tutorial. For further introductory help the user is directed to the Numpy
documentation.

For brevity and convenience, we will often assume that the main packages (numpy, scipy, and matplotlib) have been
imported as:

>>> import numpy as np
>>> import matplotlib as mpl
>>> import matplotlib.pyplot as plt

These are the import conventions that our community has adopted after discussion on public mailing lists. You will
see these conventions used throughout NumPy and SciPy source code and documentation. While we obviously don’t
require you to follow these conventions in your own code, it is highly recommended.

1.1.1 SciPy Organization

SciPy is organized into subpackages covering different scientific computing domains. These are summarized in the
following table:

3

SciPy Reference Guide, Release 0.16.0

Subpackage Description
cluster Clustering algorithms
constants Physical and mathematical constants
fftpack Fast Fourier Transform routines
integrate Integration and ordinary differential equation solvers
interpolate Interpolation and smoothing splines
io Input and Output
linalg Linear algebra
ndimage N-dimensional image processing
odr Orthogonal distance regression
optimize Optimization and root-finding routines
signal Signal processing
sparse Sparse matrices and associated routines
spatial Spatial data structures and algorithms
special Special functions
stats Statistical distributions and functions
weave C/C++ integration

Scipy sub-packages need to be imported separately, for example:

>>> from scipy import linalg, optimize

Because of their ubiquitousness, some of the functions in these subpackages are also made available in the scipy
namespace to ease their use in interactive sessions and programs. In addition, many basic array functions from numpy
are also available at the top-level of the scipy package. Before looking at the sub-packages individually, we will first
look at some of these common functions.

1.1.2 Finding Documentation

SciPy and NumPy have documentation versions in both HTML and PDF format available at http://docs.scipy.org/, that
cover nearly all available functionality. However, this documentation is still work-in-progress and some parts may be
incomplete or sparse. As we are a volunteer organization and depend on the community for growth, your participation
- everything from providing feedback to improving the documentation and code - is welcome and actively encouraged.

Python’s documentation strings are used in SciPy for on-line documentation. There are two methods for reading
them and getting help. One is Python’s command help in the pydoc module. Entering this command with no
arguments (i.e. >>> help) launches an interactive help session that allows searching through the keywords and
modules available to all of Python. Secondly, running the command help(obj) with an object as the argument displays
that object’s calling signature, and documentation string.

The pydoc method of help is sophisticated but uses a pager to display the text. Sometimes this can interfere with the
terminal you are running the interactive session within. A numpy/scipy-specific help system is also available under
the command numpy.info. The signature and documentation string for the object passed to the help command
are printed to standard output (or to a writeable object passed as the third argument). The second keyword argument
of numpy.info defines the maximum width of the line for printing. If a module is passed as the argument to help
than a list of the functions and classes defined in that module is printed. For example:

>>> np.info(optimize.fmin)
fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None,

full_output=0, disp=1, retall=0, callback=None)

Minimize a function using the downhill simplex algorithm.

Parameters

func : callable func(x,*args)

4 Chapter 1. SciPy Tutorial

http://docs.python.org/dev/library/io.html#module-io
http://docs.python.org/dev/library/signal.html#module-signal
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.scipy.org/
http://docs.python.org/dev/library/functions.html#help
http://docs.python.org/dev/library/pydoc.html#module-pydoc

SciPy Reference Guide, Release 0.16.0

The objective function to be minimized.
x0 : ndarray

Initial guess.
args : tuple

Extra arguments passed to func, i.e. ``f(x,*args)``.
callback : callable

Called after each iteration, as callback(xk), where xk is the
current parameter vector.

Returns

xopt : ndarray

Parameter that minimizes function.
fopt : float

Value of function at minimum: ``fopt = func(xopt)``.
iter : int

Number of iterations performed.
funcalls : int

Number of function calls made.
warnflag : int

1 : Maximum number of function evaluations made.
2 : Maximum number of iterations reached.

allvecs : list
Solution at each iteration.

Other parameters

xtol : float

Relative error in xopt acceptable for convergence.
ftol : number

Relative error in func(xopt) acceptable for convergence.
maxiter : int

Maximum number of iterations to perform.
maxfun : number

Maximum number of function evaluations to make.
full_output : bool

Set to True if fopt and warnflag outputs are desired.
disp : bool

Set to True to print convergence messages.
retall : bool

Set to True to return list of solutions at each iteration.

Notes

Uses a Nelder-Mead simplex algorithm to find the minimum of function of
one or more variables.

Another useful command is source. When given a function written in Python as an argument, it prints out a listing
of the source code for that function. This can be helpful in learning about an algorithm or understanding exactly what
a function is doing with its arguments. Also don’t forget about the Python command dir which can be used to look
at the namespace of a module or package.

1.2 Basic functions

1.2. Basic functions 5

SciPy Reference Guide, Release 0.16.0

Contents

• Basic functions
– Interaction with Numpy

* Index Tricks
* Shape manipulation
* Polynomials
* Vectorizing functions (vectorize)
* Type handling
* Other useful functions

1.2.1 Interaction with Numpy

Scipy builds on Numpy, and for all basic array handling needs you can use Numpy functions:

>>> import numpy as np
>>> np.some_function()

Rather than giving a detailed description of each of these functions (which is available in the Numpy Reference Guide
or by using the help, info and source commands), this tutorial will discuss some of the more useful commands
which require a little introduction to use to their full potential.

To use functions from some of the Scipy modules, you can do:

>>> from scipy import some_module
>>> some_module.some_function()

The top level of scipy also contains functions from numpy and numpy.lib.scimath. However, it is better to
use them directly from the numpy module instead.

Index Tricks

There are some class instances that make special use of the slicing functionality to provide efficient means for array
construction. This part will discuss the operation of np.mgrid , np.ogrid , np.r_ , and np.c_ for quickly
constructing arrays.

For example, rather than writing something like the following

>>> concatenate(([3],[0]*5,arange(-1,1.002,2/9.0)))

with the r_ command one can enter this as

>>> r_[3,[0]*5,-1:1:10j]

which can ease typing and make for more readable code. Notice how objects are concatenated, and the slicing syntax
is (ab)used to construct ranges. The other term that deserves a little explanation is the use of the complex number
10j as the step size in the slicing syntax. This non-standard use allows the number to be interpreted as the number of
points to produce in the range rather than as a step size (note we would have used the long integer notation, 10L, but
this notation may go away in Python as the integers become unified). This non-standard usage may be unsightly to
some, but it gives the user the ability to quickly construct complicated vectors in a very readable fashion. When the
number of points is specified in this way, the end- point is inclusive.

The “r” stands for row concatenation because if the objects between commas are 2 dimensional arrays, they are stacked
by rows (and thus must have commensurate columns). There is an equivalent command c_ that stacks 2d arrays by
columns but works identically to r_ for 1d arrays.

6 Chapter 1. SciPy Tutorial

http://docs.python.org/dev/library/functions.html#help
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.scipy.org/doc/numpy/reference/routines.emath.html#module-numpy.lib.scimath
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

SciPy Reference Guide, Release 0.16.0

Another very useful class instance which makes use of extended slicing notation is the function mgrid. In the simplest
case, this function can be used to construct 1d ranges as a convenient substitute for arange. It also allows the use of
complex-numbers in the step-size to indicate the number of points to place between the (inclusive) end-points. The real
purpose of this function however is to produce N, N-d arrays which provide coordinate arrays for an N-dimensional
volume. The easiest way to understand this is with an example of its usage:

>>> mgrid[0:5,0:5]
array([[[0, 0, 0, 0, 0],

[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4]],

[[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]]])

>>> mgrid[0:5:4j,0:5:4j]
array([[[0. , 0. , 0. , 0.],

[1.6667, 1.6667, 1.6667, 1.6667],
[3.3333, 3.3333, 3.3333, 3.3333],
[5. , 5. , 5. , 5.]],

[[0. , 1.6667, 3.3333, 5.],
[0. , 1.6667, 3.3333, 5.],
[0. , 1.6667, 3.3333, 5.],
[0. , 1.6667, 3.3333, 5.]]])

Having meshed arrays like this is sometimes very useful. However, it is not always needed just to evaluate some N-
dimensional function over a grid due to the array-broadcasting rules of Numpy and SciPy. If this is the only purpose for
generating a meshgrid, you should instead use the function ogrid which generates an “open” grid using newaxis
judiciously to create N, N-d arrays where only one dimension in each array has length greater than 1. This will save
memory and create the same result if the only purpose for the meshgrid is to generate sample points for evaluation of
an N-d function.

Shape manipulation

In this category of functions are routines for squeezing out length- one dimensions from N-dimensional arrays, ensur-
ing that an array is at least 1-, 2-, or 3-dimensional, and stacking (concatenating) arrays by rows, columns, and “pages
“(in the third dimension). Routines for splitting arrays (roughly the opposite of stacking arrays) are also available.

Polynomials

There are two (interchangeable) ways to deal with 1-d polynomials in SciPy. The first is to use the poly1d class from
Numpy. This class accepts coefficients or polynomial roots to initialize a polynomial. The polynomial object can then
be manipulated in algebraic expressions, integrated, differentiated, and evaluated. It even prints like a polynomial:

>>> p = poly1d([3,4,5])
>>> print p

2
3 x + 4 x + 5
>>> print p*p

4 3 2
9 x + 24 x + 46 x + 40 x + 25
>>> print p.integ(k=6)
3 2

x + 2 x + 5 x + 6

1.2. Basic functions 7

SciPy Reference Guide, Release 0.16.0

>>> print p.deriv()
6 x + 4
>>> p([4,5])
array([69, 100])

The other way to handle polynomials is as an array of coefficients with the first element of the array giving the
coefficient of the highest power. There are explicit functions to add, subtract, multiply, divide, integrate, differentiate,
and evaluate polynomials represented as sequences of coefficients.

Vectorizing functions (vectorize)

One of the features that NumPy provides is a class vectorize to convert an ordinary Python function which accepts
scalars and returns scalars into a “vectorized-function” with the same broadcasting rules as other Numpy functions
(i.e. the Universal functions, or ufuncs). For example, suppose you have a Python function named addsubtract
defined as:

>>> def addsubtract(a,b):
... if a > b:
... return a - b
... else:
... return a + b

which defines a function of two scalar variables and returns a scalar result. The class vectorize can be used to “vectorize
“this function so that

>>> vec_addsubtract = vectorize(addsubtract)

returns a function which takes array arguments and returns an array result:

>>> vec_addsubtract([0,3,6,9],[1,3,5,7])
array([1, 6, 1, 2])

This particular function could have been written in vector form without the use of vectorize . But, what if the
function you have written is the result of some optimization or integration routine. Such functions can likely only be
vectorized using vectorize.

Type handling

Note the difference between np.iscomplex/np.isreal and np.iscomplexobj/np.isrealobj. The for-
mer command is array based and returns byte arrays of ones and zeros providing the result of the element-wise test.
The latter command is object based and returns a scalar describing the result of the test on the entire object.

Often it is required to get just the real and/or imaginary part of a complex number. While complex numbers and arrays
have attributes that return those values, if one is not sure whether or not the object will be complex-valued, it is better
to use the functional forms np.real and np.imag . These functions succeed for anything that can be turned into
a Numpy array. Consider also the function np.real_if_close which transforms a complex-valued number with
tiny imaginary part into a real number.

Occasionally the need to check whether or not a number is a scalar (Python (long)int, Python float, Python complex,
or rank-0 array) occurs in coding. This functionality is provided in the convenient function np.isscalar which
returns a 1 or a 0.

Finally, ensuring that objects are a certain Numpy type occurs often enough that it has been given a convenient interface
in SciPy through the use of the np.cast dictionary. The dictionary is keyed by the type it is desired to cast to and
the dictionary stores functions to perform the casting. Thus, np.cast[’f’](d) returns an array of np.float32
from d. This function is also useful as an easy way to get a scalar of a certain type:

8 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> np.cast['f'](np.pi)
array(3.1415927410125732, dtype=float32)

Other useful functions

There are also several other useful functions which should be mentioned. For doing phase processing, the functions
angle, and unwrap are useful. Also, the linspace and logspace functions return equally spaced samples in a
linear or log scale. Finally, it’s useful to be aware of the indexing capabilities of Numpy. Mention should be made of
the function select which extends the functionality of where to include multiple conditions and multiple choices.
The calling convention is select(condlist,choicelist,default=0). select is a vectorized form of
the multiple if-statement. It allows rapid construction of a function which returns an array of results based on a list
of conditions. Each element of the return array is taken from the array in a choicelist corresponding to the first
condition in condlist that is true. For example

>>> x = r_[-2:3]
>>> x
array([-2, -1, 0, 1, 2])
>>> np.select([x > 3, x >= 0],[0,x+2])
array([0, 0, 2, 3, 4])

Some additional useful functions can also be found in the module scipy.misc. For example the factorial and
comb functions compute 𝑛! and 𝑛!/𝑘!(𝑛 − 𝑘)! using either exact integer arithmetic (thanks to Python’s Long integer
object), or by using floating-point precision and the gamma function. Another function returns a common image used
in image processing: lena.

Finally, two functions are provided that are useful for approximating derivatives of functions using discrete-differences.
The function central_diff_weights returns weighting coefficients for an equally-spaced 𝑁 -point approxima-
tion to the derivative of order o. These weights must be multiplied by the function corresponding to these points and
the results added to obtain the derivative approximation. This function is intended for use when only samples of the
function are avaiable. When the function is an object that can be handed to a routine and evaluated, the function
derivative can be used to automatically evaluate the object at the correct points to obtain an N-point approxima-
tion to the o-th derivative at a given point.

1.3 Special functions (scipy.special)

The main feature of the scipy.special package is the definition of numerous special functions of mathematical
physics. Available functions include airy, elliptic, bessel, gamma, beta, hypergeometric, parabolic cylinder, mathieu,
spheroidal wave, struve, and kelvin. There are also some low-level stats functions that are not intended for general
use as an easier interface to these functions is provided by the stats module. Most of these functions can take array
arguments and return array results following the same broadcasting rules as other math functions in Numerical Python.
Many of these functions also accept complex numbers as input. For a complete list of the available functions with a
one-line description type >>> help(special). Each function also has its own documentation accessible using
help. If you don’t see a function you need, consider writing it and contributing it to the library. You can write the
function in either C, Fortran, or Python. Look in the source code of the library for examples of each of these kinds of
functions.

1.3.1 Bessel functions of real order(jn, jn_zeros)

Bessel functions are a family of solutions to Bessel’s differential equation with real or complex order alpha:

𝑥2 𝑑
2𝑦

𝑑𝑥2
+ 𝑥

𝑑𝑦

𝑑𝑥
+ (𝑥2 − 𝛼2)𝑦 = 0

1.3. Special functions (scipy.special) 9

http://docs.python.org/dev/library/select.html#module-select
http://docs.python.org/dev/library/select.html#module-select

SciPy Reference Guide, Release 0.16.0

Among other uses, these functions arise in wave propagation problems such as the vibrational modes of a thin drum
head. Here is an example of a circular drum head anchored at the edge:

>>> from scipy import special
>>> def drumhead_height(n, k, distance, angle, t):
... kth_zero = special.jn_zeros(n, k)[-1]
... return np.cos(t) * np.cos(n*angle) * special.jn(n, distance*kth_zero)
>>> theta = np.r_[0:2*np.pi:50j]
>>> radius = np.r_[0:1:50j]
>>> x = np.array([r * np.cos(theta) for r in radius])
>>> y = np.array([r * np.sin(theta) for r in radius])
>>> z = np.array([drumhead_height(1, 1, r, theta, 0.5) for r in radius])

>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.mplot3d import Axes3D
>>> from matplotlib import cm
>>> fig = plt.figure()
>>> ax = Axes3D(fig)
>>> ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap=cm.jet)
>>> ax.set_xlabel('X')
>>> ax.set_ylabel('Y')
>>> ax.set_zlabel('Z')
>>> plt.show()

X

1.0
0.5

0.0
0.5

1.0

Y

1.0
0.5

0.0
0.5

1.0

Z

0.6
0.4
0.2
0.0
0.2
0.4
0.6

1.4 Integration (scipy.integrate)

The scipy.integrate sub-package provides several integration techniques including an ordinary differential
equation integrator. An overview of the module is provided by the help command:

>>> help(integrate)
Methods for Integrating Functions given function object.

quad -- General purpose integration.
dblquad -- General purpose double integration.
tplquad -- General purpose triple integration.
fixed_quad -- Integrate func(x) using Gaussian quadrature of order n.

10 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

quadrature -- Integrate with given tolerance using Gaussian quadrature.
romberg -- Integrate func using Romberg integration.

Methods for Integrating Functions given fixed samples.

trapz -- Use trapezoidal rule to compute integral from samples.
cumtrapz -- Use trapezoidal rule to cumulatively compute integral.
simps -- Use Simpson's rule to compute integral from samples.
romb -- Use Romberg Integration to compute integral from

(2**k + 1) evenly-spaced samples.

See the special module's orthogonal polynomials (special) for Gaussian
quadrature roots and weights for other weighting factors and regions.

Interface to numerical integrators of ODE systems.

odeint -- General integration of ordinary differential equations.
ode -- Integrate ODE using VODE and ZVODE routines.

1.4.1 General integration (quad)

The function quad is provided to integrate a function of one variable between two points. The points can be ±∞ (±
inf) to indicate infinite limits. For example, suppose you wish to integrate a bessel function jv(2.5,x) along the
interval [0, 4.5].

𝐼 =

∫︁ 4.5

0

𝐽2.5 (𝑥) 𝑑𝑥.

This could be computed using quad:

>>> result = integrate.quad(lambda x: special.jv(2.5,x), 0, 4.5)
>>> print result
(1.1178179380783249, 7.8663172481899801e-09)

>>> I = sqrt(2/pi)*(18.0/27*sqrt(2)*cos(4.5)-4.0/27*sqrt(2)*sin(4.5)+
sqrt(2*pi)*special.fresnel(3/sqrt(pi))[0])

>>> print I
1.117817938088701

>>> print abs(result[0]-I)
1.03761443881e-11

The first argument to quad is a “callable” Python object (i.e a function, method, or class instance). Notice the use of a
lambda- function in this case as the argument. The next two arguments are the limits of integration. The return value
is a tuple, with the first element holding the estimated value of the integral and the second element holding an upper
bound on the error. Notice, that in this case, the true value of this integral is

𝐼 =

√︂
2

𝜋

(︂
18

27

√
2 cos (4.5) − 4

27

√
2 sin (4.5) +

√
2𝜋Si

(︂
3√
𝜋

)︂)︂
,

where

Si (𝑥) =

∫︁ 𝑥

0

sin
(︁𝜋

2
𝑡2
)︁
𝑑𝑡.

is the Fresnel sine integral. Note that the numerically-computed integral is within 1.04 × 10−11 of the exact result —
well below the reported error bound.

1.4. Integration (scipy.integrate) 11

SciPy Reference Guide, Release 0.16.0

If the function to integrate takes additional parameters, the can be provided in the args argument. Suppose that the
following integral shall be calculated:

𝐼(𝑎, 𝑏) =

∫︁ 1

0

𝑎𝑥2 + 𝑏 𝑑𝑥.

This integral can be evaluated by using the following code:

>>> from scipy.integrate import quad
>>> def integrand(x, a, b):
... return a * x + b
>>> a = 2
>>> b = 1
>>> I = quad(integrand, 0, 1, args=(a,b))
>>> I = (2.0, 2.220446049250313e-14)

Infinite inputs are also allowed in quad by using ± inf as one of the arguments. For example, suppose that a
numerical value for the exponential integral:

𝐸𝑛 (𝑥) =

∫︁ ∞

1

𝑒−𝑥𝑡

𝑡𝑛
𝑑𝑡.

is desired (and the fact that this integral can be computed as special.expn(n,x) is forgotten). The functionality
of the function special.expn can be replicated by defining a new function vec_expint based on the routine
quad:

>>> from scipy.integrate import quad
>>> def integrand(t, n, x):
... return exp(-x*t) / t**n

>>> def expint(n, x):
... return quad(integrand, 1, Inf, args=(n, x))[0]

>>> vec_expint = vectorize(expint)

>>> vec_expint(3,arange(1.0,4.0,0.5))
array([0.1097, 0.0567, 0.0301, 0.0163, 0.0089, 0.0049])
>>> special.expn(3,arange(1.0,4.0,0.5))
array([0.1097, 0.0567, 0.0301, 0.0163, 0.0089, 0.0049])

The function which is integrated can even use the quad argument (though the error bound may underestimate the error
due to possible numerical error in the integrand from the use of quad). The integral in this case is

𝐼𝑛 =

∫︁ ∞

0

∫︁ ∞

1

𝑒−𝑥𝑡

𝑡𝑛
𝑑𝑡 𝑑𝑥 =

1

𝑛
.

>>> result = quad(lambda x: expint(3, x), 0, inf)
>>> print result
(0.33333333324560266, 2.8548934485373678e-09)

>>> I3 = 1.0/3.0
>>> print I3
0.333333333333

>>> print I3 - result[0]
8.77306560731e-11

This last example shows that multiple integration can be handled using repeated calls to quad.

12 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

1.4.2 General multiple integration (dblquad, tplquad, nquad)

The mechanics for double and triple integration have been wrapped up into the functions dblquad and tplquad.
These functions take the function to integrate and four, or six arguments, respecively. The limits of all inner integrals
need to be defined as functions.

An example of using double integration to compute several values of 𝐼𝑛 is shown below:

>>> from scipy.integrate import quad, dblquad
>>> def I(n):
... return dblquad(lambda t, x: exp(-x*t)/t**n, 0, Inf, lambda x: 1, lambda x: Inf)

>>> print I(4)
(0.25000000000435768, 1.0518245707751597e-09)
>>> print I(3)
(0.33333333325010883, 2.8604069919261191e-09)
>>> print I(2)
(0.49999999999857514, 1.8855523253868967e-09)

As example for non-constant limits consider the integral

𝐼 =

∫︁ 1/2

𝑦=0

∫︁ 1−2𝑦

𝑥=0

𝑥𝑦 𝑑𝑥 𝑑𝑦 =
1

96
.

This integral can be evaluated using the expression below (Note the use of the non-constant lambda functions for the
upper limit of the inner integral):

>>> from scipy.integrate import dblquad
>>> area = dblquad(lambda x, y: x*y, 0, 0.5, lambda x: 0, lambda x: 1-2*x)
>>> area
(0.010416666666666668, 1.1564823173178715e-16)

For n-fold integration, scipy provides the function nquad. The integration bounds are an iterable object: either a
list of constant bounds, or a list of functions for the non-constant integration bounds. The order of integration (and
therefore the bounds) is from the innermost integral to the outermost one.

The integral from above

𝐼𝑛 =

∫︁ ∞

0

∫︁ ∞

1

𝑒−𝑥𝑡

𝑡𝑛
𝑑𝑡 𝑑𝑥 =

1

𝑛

can be calculated as

>>> from scipy import integrate
>>> N = 5
>>> def f(t, x):
>>> return np.exp(-x*t) / t**N
>>> integrate.nquad(f, [[1, np.inf],[0, np.inf]])
(0.20000000000002294, 1.2239614263187945e-08)

Note that the order of arguments for f must match the order of the integration bounds; i.e. the inner integral with
respect to 𝑡 is on the interval [1,∞] and the outer integral with respect to 𝑥 is on the interval [0,∞].

Non-constant integration bounds can be treated in a similar manner; the example from above

𝐼 =

∫︁ 1/2

𝑦=0

∫︁ 1−2𝑦

𝑥=0

𝑥𝑦 𝑑𝑥 𝑑𝑦 =
1

96
.

can be evaluated by means of

1.4. Integration (scipy.integrate) 13

SciPy Reference Guide, Release 0.16.0

>>> from scipy import integrate
>>> def f(x, y):
>>> return x*y
>>> def bounds_y():
>>> return [0, 0.5]
>>> def bounds_x(y):
>>> return [0, 1-2*y]
>>> integrate.nquad(f, [bounds_x, bounds_y])
(0.010416666666666668, 4.101620128472366e-16)

which is the same result as before.

1.4.3 Gaussian quadrature

A few functions are also provided in order to perform simple Gaussian quadrature over a fixed interval. The first
is fixed_quad which performs fixed-order Gaussian quadrature. The second function is quadrature which
performs Gaussian quadrature of multiple orders until the difference in the integral estimate is beneath some tolerance
supplied by the user. These functions both use the module special.orthogonal which can calculate the roots
and quadrature weights of a large variety of orthogonal polynomials (the polynomials themselves are available as
special functions returning instances of the polynomial class — e.g. special.legendre).

1.4.4 Romberg Integration

Romberg’s method [WPR] is another method for numerically evaluating an integral. See the help function for
romberg for further details.

1.4.5 Integrating using Samples

If the samples are equally-spaced and the number of samples available is 2𝑘 + 1 for some integer 𝑘, then Romberg
romb integration can be used to obtain high-precision estimates of the integral using the available samples. Romberg
integration uses the trapezoid rule at step-sizes related by a power of two and then performs Richardson extrapolation
on these estimates to approximate the integral with a higher-degree of accuracy.

In case of arbitrary spaced samples, the two functions trapz (defined in numpy [NPT]) and simps are available.
They are using Newton-Coates formulas of order 1 and 2 respectively to perform integration. The trapezoidal rule
approximates the function as a straight line between adjacent points, while Simpson’s rule approximates the function
between three adjacent points as a parabola.

For an odd number of samples that are equally spaced Simpson’s rule is exact if the function is a polynomial of order
3 or less. If the samples are not equally spaced, then the result is exact only if the function is a polynomial of order 2
or less.

>>> from scipy.integrate import simps
>>> import numpy as np
>>> def f(x):
... return x**2
>>> def f2(x):
... return x**3
>>> x = np.array([1,3,4])
>>> y1 = f1(x)
>>> I1 = integrate.simps(y1, x)
>>> print(I1)
21.0

14 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

This corresponds exactly to ∫︁ 4

1

𝑥2 𝑑𝑥 = 21,

whereas integrating the second function

>>> y2 = f2(x)
>>> I2 = integrate.simps(y2, x)
>>> print(I2)
61.5

does not correspond to ∫︁ 4

1

𝑥3 𝑑𝑥 = 63.75

because the order of the polynomial in f2 is larger than two.

1.4.6 Faster integration using Ctypes

A user desiring reduced integration times may pass a C function pointer through ctypes to quad, dblquad,
tplquad or nquad and it will be integrated and return a result in Python. The performance increase here arises from
two factors. The primary improvement is faster function evaluation, which is provided by compilation. This can also
be achieved using a library like Cython or F2Py that compiles Python. Additionally we have a speedup provided by
the removal of function calls between C and Python in quad - this cannot be achieved through Cython or F2Py. This
method will provide a speed increase of ~2x for trivial functions such as sine but can produce a much more noticeable
increase (10x+) for more complex functions. This feature then, is geared towards a user with numerically intensive
integrations willing to write a little C to reduce computation time significantly.

ctypes integration can be done in a few simple steps:

1.) Write an integrand function in C with the function signature double f(int n, double args[n]), where
args is an array containing the arguments of the function f.

//testlib.c
double f(int n, double args[n]){

return args[0] - args[1] * args[2]; //corresponds to x0 - x1 * x2
}

2.) Now compile this file to a shared/dynamic library (a quick search will help with this as it is OS-dependent). The
user must link any math libraries, etc. used. On linux this looks like:

$ gcc -shared -o testlib.so -fPIC testlib.c

The output library will be referred to as testlib.so, but it may have a different file extension. A library has now
been created that can be loaded into Python with ctypes.

3.) Load shared library into Python using ctypes and set restypes and argtypes - this allows Scipy to interpret
the function correctly:

>>> import ctypes
>>> from scipy import integrate
>>> lib = ctypes.CDLL('/**/testlib.so') # Use absolute path to testlib
>>> func = lib.f # Assign specific function to name func (for simplicity)
>>> func.restype = ctypes.c_double
>>> func.argtypes = (ctypes.c_int, ctypes.c_double)

1.4. Integration (scipy.integrate) 15

http://docs.python.org/dev/library/ctypes.html#module-ctypes
http://docs.python.org/dev/library/ctypes.html#module-ctypes
http://docs.python.org/dev/library/ctypes.html#module-ctypes
http://docs.python.org/dev/library/ctypes.html#module-ctypes

SciPy Reference Guide, Release 0.16.0

Note that the argtypes will always be (ctypes.c_int, ctypes.c_double) regardless of the number of
parameters, and restype will always be ctypes.c_double.

4.) Now integrate the library function as normally, here using nquad:

>>> integrate.nquad(func, [[0,10],[-10,0],[-1,1]])
(1000.0, 1.1102230246251565e-11)

And the Python tuple is returned as expected in a reduced amount of time. All optional parameters can be used with
this method including specifying singularities, infinite bounds, etc.

1.4.7 Ordinary differential equations (odeint)

Integrating a set of ordinary differential equations (ODEs) given initial conditions is another useful example. The
function odeint is available in SciPy for integrating a first-order vector differential equation:

𝑑y

𝑑𝑡
= f (y, 𝑡) ,

given initial conditions y (0) = 𝑦0, where y is a length 𝑁 vector and f is a mapping from ℛ𝑁 to ℛ𝑁 . A higher-order
ordinary differential equation can always be reduced to a differential equation of this type by introducing intermediate
derivatives into the y vector.

For example suppose it is desired to find the solution to the following second-order differential equation:

𝑑2𝑤

𝑑𝑧2
− 𝑧𝑤(𝑧) = 0

with initial conditions 𝑤 (0) = 1
3√
32Γ(2

3)
and 𝑑𝑤

𝑑𝑧

⃒⃒
𝑧=0

= − 1
3√3Γ(1

3)
. It is known that the solution to this differential

equation with these boundary conditions is the Airy function

𝑤 = Ai (𝑧) ,

which gives a means to check the integrator using special.airy.

First, convert this ODE into standard form by setting y =
[︀
𝑑𝑤
𝑑𝑧 , 𝑤

]︀
and 𝑡 = 𝑧. Thus, the differential equation becomes

𝑑y

𝑑𝑡
=

[︂
𝑡𝑦1
𝑦0

]︂
=

[︂
0 𝑡
1 0

]︂ [︂
𝑦0
𝑦1

]︂
=

[︂
0 𝑡
1 0

]︂
y.

In other words,

f (y, 𝑡) = A (𝑡)y.

As an interesting reminder, if A (𝑡) commutes with
∫︀ 𝑡

0
A (𝜏) 𝑑𝜏 under matrix multiplication, then this linear differen-

tial equation has an exact solution using the matrix exponential:

y (𝑡) = exp

(︂∫︁ 𝑡

0

A (𝜏) 𝑑𝜏

)︂
y (0) ,

However, in this case, A (𝑡) and its integral do not commute.

There are many optional inputs and outputs available when using odeint which can help tune the solver. These ad-
ditional inputs and outputs are not needed much of the time, however, and the three required input arguments and
the output solution suffice. The required inputs are the function defining the derivative, fprime, the initial conditions
vector, y0, and the time points to obtain a solution, t, (with the initial value point as the first element of this sequence).
The output to odeint is a matrix where each row contains the solution vector at each requested time point (thus, the
initial conditions are given in the first output row).

The following example illustrates the use of odeint including the usage of the Dfun option which allows the user to
specify a gradient (with respect to y) of the function, f (y, 𝑡).

16 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> from scipy.integrate import odeint
>>> from scipy.special import gamma, airy
>>> y1_0 = 1.0 / 3**(2.0/3.0) / gamma(2.0/3.0)
>>> y0_0 = -1.0 / 3**(1.0/3.0) / gamma(1.0/3.0)
>>> y0 = [y0_0, y1_0]
>>> def func(y, t):
... return [t*y[1],y[0]]

>>> def gradient(y, t):
... return [[0,t], [1,0]]

>>> x = arange(0, 4.0, 0.01)
>>> t = x
>>> ychk = airy(x)[0]
>>> y = odeint(func, y0, t)
>>> y2 = odeint(func, y0, t, Dfun=gradient)

>>> print ychk[:36:6]
[0.355028 0.339511 0.324068 0.308763 0.293658 0.278806]

>>> print y[:36:6,1]
[0.355028 0.339511 0.324067 0.308763 0.293658 0.278806]

>>> print y2[:36:6,1]
[0.355028 0.339511 0.324067 0.308763 0.293658 0.278806]

References

1.5 Optimization (scipy.optimize)

The scipy.optimize package provides several commonly used optimization algorithms. A detailed listing is
available: scipy.optimize (can also be found by help(scipy.optimize)).

The module contains:

1. Unconstrained and constrained minimization of multivariate scalar functions (minimize) using a variety of
algorithms (e.g. BFGS, Nelder-Mead simplex, Newton Conjugate Gradient, COBYLA or SLSQP)

2. Global (brute-force) optimization routines (e.g. basinhopping, differential_evolution)

3. Least-squares minimization (leastsq) and curve fitting (curve_fit) algorithms

4. Scalar univariate functions minimizers (minimize_scalar) and root finders (newton)

5. Multivariate equation system solvers (root) using a variety of algorithms (e.g. hybrid Powell, Levenberg-
Marquardt or large-scale methods such as Newton-Krylov).

Below, several examples demonstrate their basic usage.

1.5.1 Unconstrained minimization of multivariate scalar functions (minimize)

The minimize function provides a common interface to unconstrained and constrained minimization algo-
rithms for multivariate scalar functions in scipy.optimize. To demonstrate the minimization function con-
sider the problem of minimizing the Rosenbrock function of 𝑁 variables: f(x) =

∑︀𝑁−1
𝑖=1 100

(︀
𝑥𝑖 − 𝑥2

𝑖−1

)︀2
+

(1 − 𝑥𝑖−1)
2
.𝑇ℎ𝑒𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑣𝑎𝑙𝑢𝑒𝑜𝑓𝑡ℎ𝑖𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑠0𝑤ℎ𝑖𝑐ℎ𝑖𝑠𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑𝑤ℎ𝑒𝑛𝑥𝑖 = 1.

1.5. Optimization (scipy.optimize) 17

SciPy Reference Guide, Release 0.16.0

Note that the Rosenbrock function and its derivatives are included in scipy.optimize. The implementations
shown in the following sections provide examples of how to define an objective function as well as its jacobian and
hessian functions.

Nelder-Mead Simplex algorithm (method=’Nelder-Mead’)

In the example below, the minimize routine is used with the Nelder-Mead simplex algorithm (selected through the
method parameter):

>>> import numpy as np
>>> from scipy.optimize import minimize

>>> def rosen(x):
... """The Rosenbrock function"""
... return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)

>>> x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])
>>> res = minimize(rosen, x0, method='nelder-mead',
... options={'xtol': 1e-8, 'disp': True})
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 339
Function evaluations: 571

>>> print(res.x)
[1. 1. 1. 1. 1.]

The simplex algorithm is probably the simplest way to minimize a fairly well-behaved function. It requires only
function evaluations and is a good choice for simple minimization problems. However, because it does not use any
gradient evaluations, it may take longer to find the minimum.

Another optimization algorithm that needs only function calls to find the minimum is Powell‘s method available by
setting method=’powell’ in minimize.

Broyden-Fletcher-Goldfarb-Shanno algorithm (method=’BFGS’)

In order to converge more quickly to the solution, this routine uses the gradient of the objective function. If the gradient
is not given by the user, then it is estimated using first-differences. The Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method typically requires fewer function calls than the simplex algorithm even when the gradient must be estimated.

To demonstrate this algorithm, the Rosenbrock function is again used. The gradient of the Rosenbrock function is the
vector:

𝜕𝑓

𝜕𝑥𝑗
=

𝑁∑︁
𝑖=1

200
(︀
𝑥𝑖 − 𝑥2

𝑖−1

)︀
(𝛿𝑖,𝑗 − 2𝑥𝑖−1𝛿𝑖−1,𝑗) − 2 (1 − 𝑥𝑖−1) 𝛿𝑖−1,𝑗 .

= 200
(︀
𝑥𝑗 − 𝑥2

𝑗−1

)︀
− 400𝑥𝑗

(︀
𝑥𝑗+1 − 𝑥2

𝑗

)︀
− 2 (1 − 𝑥𝑗) .

This expression is valid for the interior derivatives. Special cases are

𝜕𝑓

𝜕𝑥0
= −400𝑥0

(︀
𝑥1 − 𝑥2

0

)︀
− 2 (1 − 𝑥0) ,

𝜕𝑓

𝜕𝑥𝑁−1
= 200

(︀
𝑥𝑁−1 − 𝑥2

𝑁−2

)︀
.

A Python function which computes this gradient is constructed by the code-segment:

18 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> def rosen_der(x):
... xm = x[1:-1]
... xm_m1 = x[:-2]
... xm_p1 = x[2:]
... der = np.zeros_like(x)
... der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)
... der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])
... der[-1] = 200*(x[-1]-x[-2]**2)
... return der

This gradient information is specified in the minimize function through the jac parameter as illustrated below.

>>> res = minimize(rosen, x0, method='BFGS', jac=rosen_der,
... options={'disp': True})
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 51
Function evaluations: 63
Gradient evaluations: 63

>>> print(res.x)
[1. 1. 1. 1. 1.]

Newton-Conjugate-Gradient algorithm (method=’Newton-CG’)

The method which requires the fewest function calls and is therefore often the fastest method to minimize
functions of many variables uses the Newton-Conjugate Gradient algorithm. This method is a modified New-
ton’s method and uses a conjugate gradient algorithm to (approximately) invert the local Hessian. Newton’s
method is based on fitting the function locally to a quadratic form: f(x) ≈ 𝑓 (x0) + ∇𝑓 (x0) · (x− x0) +
1
2 (x− x0)

𝑇
H (x0) (x− x0) .𝑤ℎ𝑒𝑟𝑒H (x0) is a matrix of second-derivatives (the Hessian). If the Hessian is

positive definite then the local minimum of this function can be found by setting the gradient of the quadratic
form to zero, resulting in xopt = x0 − H−1∇𝑓.𝑇ℎ𝑒𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑜𝑓𝑡ℎ𝑒𝐻𝑒𝑠𝑠𝑖𝑎𝑛𝑖𝑠𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑𝑢𝑠𝑖𝑛𝑔𝑡ℎ𝑒𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 −
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑚𝑒𝑡ℎ𝑜𝑑.𝐴𝑛𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑜𝑓𝑒𝑚𝑝𝑙𝑜𝑦𝑖𝑛𝑔𝑡ℎ𝑖𝑠𝑚𝑒𝑡ℎ𝑜𝑑𝑡𝑜𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔𝑡ℎ𝑒𝑅𝑜𝑠𝑒𝑛𝑏𝑟𝑜𝑐𝑘𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑠𝑔𝑖𝑣𝑒𝑛𝑏𝑒𝑙𝑜𝑤.𝑇𝑜𝑡𝑎𝑘𝑒𝑓𝑢𝑙𝑙𝑎𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒𝑜𝑓𝑡ℎ𝑒𝑁𝑒𝑤𝑡𝑜𝑛−
𝐶𝐺𝑚𝑒𝑡ℎ𝑜𝑑, 𝑎𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑤ℎ𝑖𝑐ℎ𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑠𝑡ℎ𝑒𝐻𝑒𝑠𝑠𝑖𝑎𝑛𝑚𝑢𝑠𝑡𝑏𝑒𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑.𝑇ℎ𝑒𝐻𝑒𝑠𝑠𝑖𝑎𝑛𝑚𝑎𝑡𝑟𝑖𝑥𝑖𝑡𝑠𝑒𝑙𝑓𝑑𝑜𝑒𝑠𝑛𝑜𝑡𝑛𝑒𝑒𝑑𝑡𝑜𝑏𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑, 𝑜𝑛𝑙𝑦𝑎𝑣𝑒𝑐𝑡𝑜𝑟𝑤ℎ𝑖𝑐ℎ𝑖𝑠𝑡ℎ𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑜𝑓𝑡ℎ𝑒𝐻𝑒𝑠𝑠𝑖𝑎𝑛𝑤𝑖𝑡ℎ𝑎𝑛𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑣𝑒𝑐𝑡𝑜𝑟𝑛𝑒𝑒𝑑𝑠𝑡𝑜𝑏𝑒𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑡𝑜𝑡ℎ𝑒𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑟𝑜𝑢𝑡𝑖𝑛𝑒.𝐴𝑠𝑎𝑟𝑒𝑠𝑢𝑙𝑡, 𝑡ℎ𝑒𝑢𝑠𝑒𝑟𝑐𝑎𝑛𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑒𝑖𝑡ℎ𝑒𝑟𝑎𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑡𝑜𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑡ℎ𝑒𝐻𝑒𝑠𝑠𝑖𝑎𝑛𝑚𝑎𝑡𝑟𝑖𝑥, 𝑜𝑟𝑎𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑡𝑜𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑡ℎ𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑜𝑓𝑡ℎ𝑒𝐻𝑒𝑠𝑠𝑖𝑎𝑛𝑤𝑖𝑡ℎ𝑎𝑛𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑣𝑒𝑐𝑡𝑜𝑟.

Full Hessian example:

The Hessian of the Rosenbrock function is

𝐻𝑖𝑗 =
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
= 200 (𝛿𝑖,𝑗 − 2𝑥𝑖−1𝛿𝑖−1,𝑗) − 400𝑥𝑖 (𝛿𝑖+1,𝑗 − 2𝑥𝑖𝛿𝑖,𝑗) − 400𝛿𝑖,𝑗

(︀
𝑥𝑖+1 − 𝑥2

𝑖

)︀
+ 2𝛿𝑖,𝑗 ,

=
(︀
202 + 1200𝑥2

𝑖 − 400𝑥𝑖+1

)︀
𝛿𝑖,𝑗 − 400𝑥𝑖𝛿𝑖+1,𝑗 − 400𝑥𝑖−1𝛿𝑖−1,𝑗 ,

if 𝑖, 𝑗 ∈ [1, 𝑁 − 2] with 𝑖, 𝑗 ∈ [0, 𝑁 − 1] defining the 𝑁 ×𝑁 matrix. Other non-zero entries of the matrix are

𝜕2𝑓

𝜕𝑥2
0

= 1200𝑥2
0 − 400𝑥1 + 2,

𝜕2𝑓

𝜕𝑥0𝜕𝑥1
=

𝜕2𝑓

𝜕𝑥1𝜕𝑥0
= −400𝑥0,

𝜕2𝑓

𝜕𝑥𝑁−1𝜕𝑥𝑁−2
=

𝜕2𝑓

𝜕𝑥𝑁−2𝜕𝑥𝑁−1
= −400𝑥𝑁−2,

𝜕2𝑓

𝜕𝑥2
𝑁−1

= 200.

1.5. Optimization (scipy.optimize) 19

SciPy Reference Guide, Release 0.16.0

For example, the Hessian when 𝑁 = 5 is H=

⎡⎢⎢⎢⎢⎣
1200𝑥2

0 − 400𝑥1 + 2 −400𝑥0 0 0 0
−400𝑥0 202 + 1200𝑥2

1 − 400𝑥2 −400𝑥1 0 0
0 −400𝑥1 202 + 1200𝑥2

2 − 400𝑥3 −400𝑥2 0
0 −400𝑥2 202 + 1200𝑥2

3 − 400𝑥4 −400𝑥3

0 0 0 −400𝑥3 200

⎤⎥⎥⎥⎥⎦ .𝑇ℎ𝑒𝑐𝑜𝑑𝑒𝑤ℎ𝑖𝑐ℎ𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑠𝑡ℎ𝑖𝑠𝐻𝑒𝑠𝑠𝑖𝑎𝑛𝑎𝑙𝑜𝑛𝑔𝑤𝑖𝑡ℎ𝑡ℎ𝑒𝑐𝑜𝑑𝑒𝑡𝑜𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑡ℎ𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑢𝑠𝑖𝑛𝑔𝑁𝑒𝑤𝑡𝑜𝑛−

𝐶𝐺𝑚𝑒𝑡ℎ𝑜𝑑𝑖𝑠𝑠ℎ𝑜𝑤𝑛𝑖𝑛𝑡ℎ𝑒𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔𝑒𝑥𝑎𝑚𝑝𝑙𝑒 :

>>> def rosen_hess(x):
... x = np.asarray(x)
... H = np.diag(-400*x[:-1],1) - np.diag(400*x[:-1],-1)
... diagonal = np.zeros_like(x)
... diagonal[0] = 1200*x[0]**2-400*x[1]+2
... diagonal[-1] = 200
... diagonal[1:-1] = 202 + 1200*x[1:-1]**2 - 400*x[2:]
... H = H + np.diag(diagonal)
... return H

>>> res = minimize(rosen, x0, method='Newton-CG',
... jac=rosen_der, hess=rosen_hess,
... options={'xtol': 1e-8, 'disp': True})
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 19
Function evaluations: 22
Gradient evaluations: 19
Hessian evaluations: 19

>>> print(res.x)
[1. 1. 1. 1. 1.]

Hessian product example:

For larger minimization problems, storing the entire Hessian matrix can consume considerable time and memory. The
Newton-CG algorithm only needs the product of the Hessian times an arbitrary vector. As a result, the user can supply
code to compute this product rather than the full Hessian by giving a hess function which take the minimization
vector as the first argument and the arbitrary vector as the second argument (along with extra arguments passed to the
function to be minimized). If possible, using Newton-CG with the Hessian product option is probably the fastest way
to minimize the function.

In this case, the product of the Rosenbrock Hessian with an arbitrary vector is not dif-
ficult to compute. If p is the arbitrary vector, then H (x)p has elements: H(x)p =⎡⎢⎢⎢⎢⎢⎢⎣

(︀
1200𝑥2

0 − 400𝑥1 + 2
)︀
𝑝0 − 400𝑥0𝑝1

...
−400𝑥𝑖−1𝑝𝑖−1 +

(︀
202 + 1200𝑥2

𝑖 − 400𝑥𝑖+1

)︀
𝑝𝑖 − 400𝑥𝑖𝑝𝑖+1

...
−400𝑥𝑁−2𝑝𝑁−2 + 200𝑝𝑁−1

⎤⎥⎥⎥⎥⎥⎥⎦ .𝐶𝑜𝑑𝑒𝑤ℎ𝑖𝑐ℎ𝑚𝑎𝑘𝑒𝑠𝑢𝑠𝑒𝑜𝑓𝑡ℎ𝑖𝑠𝐻𝑒𝑠𝑠𝑖𝑎𝑛𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑡𝑜𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑡ℎ𝑒𝑅𝑜𝑠𝑒𝑛𝑏𝑟𝑜𝑐𝑘𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑢𝑠𝑖𝑛𝑔minimize𝑓𝑜𝑙𝑙𝑜𝑤𝑠 :

>>> def rosen_hess_p(x, p):
... x = np.asarray(x)
... Hp = np.zeros_like(x)
... Hp[0] = (1200*x[0]**2 - 400*x[1] + 2)*p[0] - 400*x[0]*p[1]
... Hp[1:-1] = -400*x[:-2]*p[:-2]+(202+1200*x[1:-1]**2-400*x[2:])*p[1:-1] \
... -400*x[1:-1]*p[2:]
... Hp[-1] = -400*x[-2]*p[-2] + 200*p[-1]
... return Hp

>>> res = minimize(rosen, x0, method='Newton-CG',
... jac=rosen_der, hessp=rosen_hess_p,

20 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

... options={'xtol': 1e-8, 'disp': True})
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 20
Function evaluations: 23
Gradient evaluations: 20
Hessian evaluations: 44

>>> print(res.x)
[1. 1. 1. 1. 1.]

1.5.2 Constrained minimization of multivariate scalar functions (minimize)

The minimize function also provides an interface to several constrained minimization algorithm. As an example,
the Sequential Least SQuares Programming optimization algorithm (SLSQP) will be considered here. This algorithm
allows to deal with constrained minimization problems of the form:

min𝐹 (𝑥)

subject to 𝐶𝑗(𝑋) = 0, 𝑗 = 1, ...,MEQ
𝐶𝑗(𝑥) ≥ 0, 𝑗 = MEQ + 1, ...,𝑀

𝑋𝐿 ≤ 𝑥 ≤ 𝑋𝑈, 𝐼 = 1, ..., 𝑁.

As an example, let us consider the problem of maximizing the function: f(x, y) = 2 x y + 2 x - x2 −
2𝑦2𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜𝑎𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑎𝑛𝑑𝑎𝑛𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝑎𝑠 :𝑡𝑜 𝑥3 − 𝑦 = 0
𝑦 − 1 ≥ 0The objective function and its derivative are defined as follows.

>>> def func(x, sign=1.0):
... """ Objective function """
... return sign*(2*x[0]*x[1] + 2*x[0] - x[0]**2 - 2*x[1]**2)

>>> def func_deriv(x, sign=1.0):
... """ Derivative of objective function """
... dfdx0 = sign*(-2*x[0] + 2*x[1] + 2)
... dfdx1 = sign*(2*x[0] - 4*x[1])
... return np.array([dfdx0, dfdx1])

Note that since minimize only minimizes functions, the sign parameter is introduced to multiply the objective
function (and its derivative) by -1 in order to perform a maximization.

Then constraints are defined as a sequence of dictionaries, with keys type, fun and jac.

>>> cons = ({'type': 'eq',
... 'fun' : lambda x: np.array([x[0]**3 - x[1]]),
... 'jac' : lambda x: np.array([3.0*(x[0]**2.0), -1.0])},
... {'type': 'ineq',
... 'fun' : lambda x: np.array([x[1] - 1]),
... 'jac' : lambda x: np.array([0.0, 1.0])})

Now an unconstrained optimization can be performed as:

>>> res = minimize(func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,
... method='SLSQP', options={'disp': True})
Optimization terminated successfully. (Exit mode 0)

Current function value: -2.0
Iterations: 4
Function evaluations: 5
Gradient evaluations: 4

1.5. Optimization (scipy.optimize) 21

SciPy Reference Guide, Release 0.16.0

>>> print(res.x)
[2. 1.]

and a constrained optimization as:

>>> res = minimize(func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,
... constraints=cons, method='SLSQP', options={'disp': True})
Optimization terminated successfully. (Exit mode 0)

Current function value: -1.00000018311
Iterations: 9
Function evaluations: 14
Gradient evaluations: 9

>>> print(res.x)
[1.00000009 1.]

1.5.3 Least-square fitting (leastsq)

All of the previously-explained minimization procedures can be used to solve a least-squares problem provided
the appropriate objective function is constructed. For example, suppose it is desired to fit a set of data {x𝑖,y𝑖}
to a known model, y = f (x,p) where p is a vector of parameters for the model that need to be found. A
common method for determining which parameter vector gives the best fit to the data is to minimize the sum
of squares of the residuals. The residual is usually defined for each observed data-point as e𝑖 (p,y𝑖,x𝑖) =
‖y𝑖 − f (x𝑖,p)‖𝐴𝑛𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑡𝑜𝑝𝑎𝑠𝑠𝑡𝑜𝑎𝑛𝑦𝑜𝑓𝑡ℎ𝑒𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑚𝑖𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠𝑡𝑜𝑜𝑏𝑡𝑎𝑖𝑛𝑎𝑙𝑒𝑎𝑠𝑡 −
𝑠𝑞𝑢𝑎𝑟𝑒𝑠𝑓𝑖𝑡𝑖𝑠.𝐽 (p) =

∑︀𝑁−1
𝑖=0 𝑒2𝑖 (p) .𝑇ℎ𝑒leastsq𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑠𝑡ℎ𝑖𝑠𝑠𝑞𝑢𝑎𝑟𝑖𝑛𝑔𝑎𝑛𝑑𝑠𝑢𝑚𝑚𝑖𝑛𝑔𝑜𝑓𝑡ℎ𝑒𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐𝑎𝑙𝑙𝑦.𝐼𝑡𝑡𝑎𝑘𝑒𝑠𝑎𝑠𝑎𝑛𝑖𝑛𝑝𝑢𝑡𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑡ℎ𝑒𝑣𝑒𝑐𝑡𝑜𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛e (p)

and returns the value of p which minimizes 𝐽 (p) = e𝑇e directly. The user is also encouraged to provide the Jacobian
matrix of the function (with derivatives down the columns or across the rows). If the Jacobian is not provided, it is
estimated.

An example should clarify the usage. Suppose it is believed some measured data follow a sinusoidal pat-
tern y𝑖 = 𝐴 sin (2𝜋𝑘𝑥𝑖 + 𝜃)𝑤ℎ𝑒𝑟𝑒𝑡ℎ𝑒𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝐴, 𝑘 , and 𝜃 are unknown. The residual vector is e𝑖 =
|𝑦𝑖 −𝐴 sin (2𝜋𝑘𝑥𝑖 + 𝜃)| .𝐵𝑦𝑑𝑒𝑓𝑖𝑛𝑖𝑛𝑔𝑎𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑡𝑜𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑡ℎ𝑒𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠𝑎𝑛𝑑(𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔𝑎𝑛𝑎𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛), 𝑡ℎ𝑒𝑙𝑒𝑎𝑠𝑡−
𝑠𝑞𝑢𝑎𝑟𝑒𝑠𝑓𝑖𝑡𝑟𝑜𝑢𝑡𝑖𝑛𝑒𝑐𝑎𝑛𝑏𝑒𝑢𝑠𝑒𝑑𝑡𝑜𝑓𝑖𝑛𝑑𝑡ℎ𝑒𝑏𝑒𝑠𝑡− 𝑓𝑖𝑡𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝐴, 𝑘, 𝜃. This is shown in the following example:

>>> from numpy import arange, sin, pi, random, array
>>> x = arange(0, 6e-2, 6e-2 / 30)
>>> A, k, theta = 10, 1.0 / 3e-2, pi / 6
>>> y_true = A * sin(2 * pi * k * x + theta)
>>> y_meas = y_true + 2*random.randn(len(x))

>>> def residuals(p, y, x):
... A, k, theta = p
... err = y - A * sin(2 * pi * k * x + theta)
... return err

>>> def peval(x, p):
... return p[0] * sin(2 * pi * p[1] * x + p[2])

>>> p0 = [8, 1 / 2.3e-2, pi / 3]
>>> print(array(p0))
[8. 43.4783 1.0472]

>>> from scipy.optimize import leastsq
>>> plsq = leastsq(residuals, p0, args=(y_meas, x))
>>> print(plsq[0])
[10.9437 33.3605 0.5834]

22 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> print(array([A, k, theta]))
[10. 33.3333 0.5236]

>>> import matplotlib.pyplot as plt
>>> plt.plot(x, peval(x, plsq[0]),x,y_meas,'o',x,y_true)
>>> plt.title('Least-squares fit to noisy data')
>>> plt.legend(['Fit', 'Noisy', 'True'])
>>> plt.show()

0.00 0.01 0.02 0.03 0.04 0.05 0.06
15

10

5

0

5

10

15
Least-squares fit to noisy data

Fit
Noisy
True

1.5.4 Univariate function minimizers (minimize_scalar)

Often only the minimum of an univariate function (i.e. a function that takes a scalar as input) is needed. In these
circumstances, other optimization techniques have been developed that can work faster. These are accessible from the
minimize_scalar function which proposes several algorithms.

Unconstrained minimization (method=’brent’)

There are actually two methods that can be used to minimize an univariate function: brent and golden, but
golden is included only for academic purposes and should rarely be used. These can be respectively selected through
the method parameter in minimize_scalar. The brent method uses Brent’s algorithm for locating a minimum.
Optimally a bracket (the bs parameter) should be given which contains the minimum desired. A bracket is a triple
(𝑎, 𝑏, 𝑐) such that 𝑓 (𝑎) > 𝑓 (𝑏) < 𝑓 (𝑐) and 𝑎 < 𝑏 < 𝑐 . If this is not given, then alternatively two starting points can
be chosen and a bracket will be found from these points using a simple marching algorithm. If these two starting points
are not provided 0 and 1 will be used (this may not be the right choice for your function and result in an unexpected
minimum being returned).

Here is an example:

>>> from scipy.optimize import minimize_scalar
>>> f = lambda x: (x - 2) * (x + 1)**2
>>> res = minimize_scalar(f, method='brent')
>>> print(res.x)
1.0

1.5. Optimization (scipy.optimize) 23

SciPy Reference Guide, Release 0.16.0

Bounded minimization (method=’bounded’)

Very often, there are constraints that can be placed on the solution space before minimization occurs. The bounded
method in minimize_scalar is an example of a constrained minimization procedure that provides a rudimentary
interval constraint for scalar functions. The interval constraint allows the minimization to occur only between two
fixed endpoints, specified using the mandatory bs parameter.

For example, to find the minimum of 𝐽1 (𝑥) near 𝑥 = 5 , minimize_scalar can be called using the interval [4, 7]
as a constraint. The result is 𝑥min = 5.3314 :

>>> from scipy.special import j1
>>> res = minimize_scalar(j1, bs=(4, 7), method='bounded')
>>> print(res.x)
5.33144184241

1.5.5 Custom minimizers

Sometimes, it may be useful to use a custom method as a (multivariate or univariate) minimizer, for example when
using some library wrappers of minimize (e.g. basinhopping).

We can achieve that by, instead of passing a method name, we pass a callable (either a function or an object imple-
menting a __call__ method) as the method parameter.

Let us consider an (admittedly rather virtual) need to use a trivial custom multivariate minimization method that will
just search the neighborhood in each dimension independently with a fixed step size:

>>> def custmin(fun, x0, args=(), maxfev=None, stepsize=0.1,
... maxiter=100, callback=None, **options):
... bestx = x0
... besty = fun(x0)
... funcalls = 1
... niter = 0
... improved = True
... stop = False
...
... while improved and not stop and niter < maxiter:
... improved = False
... niter += 1
... for dim in range(np.size(x0)):
... for s in [bestx[dim] - stepsize, bestx[dim] + stepsize]:
... testx = np.copy(bestx)
... testx[dim] = s
... testy = fun(testx, *args)
... funcalls += 1
... if testy < besty:
... besty = testy
... bestx = testx
... improved = True
... if callback is not None:
... callback(bestx)
... if maxfev is not None and funcalls >= maxfev:
... stop = True
... break
...
... return OptimizeResult(fun=besty, x=bestx, nit=niter,
... nfev=funcalls, success=(niter > 1))
>>> x0 = [1.35, 0.9, 0.8, 1.1, 1.2]
>>> res = minimize(rosen, x0, method=custmin, options=dict(stepsize=0.05))

24 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> res.x
[1. 1. 1. 1. 1.]

This will work just as well in case of univariate optimization:

>>> def custmin(fun, bracket, args=(), maxfev=None, stepsize=0.1,
... maxiter=100, callback=None, **options):
... bestx = (bracket[1] + bracket[0]) / 2.0
... besty = fun(bestx)
... funcalls = 1
... niter = 0
... improved = True
... stop = False
...
... while improved and not stop and niter < maxiter:
... improved = False
... niter += 1
... for testx in [bestx - stepsize, bestx + stepsize]:
... testy = fun(testx, *args)
... funcalls += 1
... if testy < besty:
... besty = testy
... bestx = testx
... improved = True
... if callback is not None:
... callback(bestx)
... if maxfev is not None and funcalls >= maxfev:
... stop = True
... break
...
... return OptimizeResult(fun=besty, x=bestx, nit=niter,
... nfev=funcalls, success=(niter > 1))
>>> res = minimize_scalar(f, bracket=(-3.5, 0), method=custmin,
... options=dict(stepsize = 0.05))
>>> res.x
-2.0

1.5.6 Root finding

Scalar functions

If one has a single-variable equation, there are four different root finding algorithms that can be tried. Each of these
algorithms requires the endpoints of an interval in which a root is expected (because the function changes signs). In
general brentq is the best choice, but the other methods may be useful in certain circumstances or for academic
purposes.

Fixed-point solving

A problem closely related to finding the zeros of a function is the problem of finding a fixed-point of a function. A
fixed point of a function is the point at which evaluation of the function returns the point: 𝑔 (𝑥) = 𝑥. Clearly the fixed
point of 𝑔 is the root of 𝑓 (𝑥) = 𝑔 (𝑥) − 𝑥. Equivalently, the root of 𝑓 is the fixed_point of 𝑔 (𝑥) = 𝑓 (𝑥) + 𝑥. The
routine fixed_point provides a simple iterative method using Aitkens sequence acceleration to estimate the fixed
point of 𝑔 given a starting point.

1.5. Optimization (scipy.optimize) 25

SciPy Reference Guide, Release 0.16.0

Sets of equations

Finding a root of a set of non-linear equations can be achieve using the root function. Several methods are available,
amongst which hybr (the default) and lm which respectively use the hybrid method of Powell and the Levenberg-
Marquardt method from MINPACK.

The following example considers the single-variable transcendental equation x+2cos (𝑥) =
0, 𝑎𝑟𝑜𝑜𝑡𝑜𝑓𝑤ℎ𝑖𝑐ℎ𝑐𝑎𝑛𝑏𝑒𝑓𝑜𝑢𝑛𝑑𝑎𝑠𝑓𝑜𝑙𝑙𝑜𝑤𝑠 :

>>> import numpy as np
>>> from scipy.optimize import root
>>> def func(x):
... return x + 2 * np.cos(x)
>>> sol = root(func, 0.3)
>>> sol.x
array([-1.02986653])
>>> sol.fun
array([-6.66133815e-16])

Consider now a set of non-linear equations

𝑥0 cos (𝑥1) = 4,

𝑥0𝑥1 − 𝑥1 = 5.

We define the objective function so that it also returns the Jacobian and indicate this by setting the jac parameter to
True. Also, the Levenberg-Marquardt solver is used here.

>>> def func2(x):
... f = [x[0] * np.cos(x[1]) - 4,
... x[1]*x[0] - x[1] - 5]
... df = np.array([[np.cos(x[1]), -x[0] * np.sin(x[1])],
... [x[1], x[0] - 1]])
... return f, df
>>> sol = root(func2, [1, 1], jac=True, method='lm')
>>> sol.x
array([6.50409711, 0.90841421])

Root finding for large problems

Methods hybr and lm in root cannot deal with a very large number of variables (N), as they need to calculate and
invert a dense N x N Jacobian matrix on every Newton step. This becomes rather inefficient when N grows.

Consider for instance the following problem: we need to solve the following integrodifferential equation on the square
[0, 1] × [0, 1]:

(𝜕2
𝑥 + 𝜕2

𝑦)𝑃 + 5

(︂∫︁ 1

0

∫︁ 1

0

cosh(𝑃) 𝑑𝑥 𝑑𝑦

)︂2

= 0

with the boundary condition 𝑃 (𝑥, 1) = 1 on the upper edge and 𝑃 = 0 elsewhere on the boundary of the square. This
can be done by approximating the continuous function P by its values on a grid, 𝑃𝑛,𝑚 ≈ 𝑃 (𝑛ℎ,𝑚ℎ), with a small
grid spacing h. The derivatives and integrals can then be approximated; for instance 𝜕2

𝑥𝑃 (𝑥, 𝑦) ≈ (𝑃 (𝑥 + ℎ, 𝑦) −
2𝑃 (𝑥, 𝑦) + 𝑃 (𝑥 − ℎ, 𝑦))/ℎ2. The problem is then equivalent to finding the root of some function residual(P),
where P is a vector of length 𝑁𝑥𝑁𝑦 .

Now, because 𝑁𝑥𝑁𝑦 can be large, methods hybr or lm in root will take a long time to solve this problem. The
solution can however be found using one of the large-scale solvers, for example krylov, broyden2, or anderson.
These use what is known as the inexact Newton method, which instead of computing the Jacobian matrix exactly, forms
an approximation for it.

26 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

The problem we have can now be solved as follows:

import numpy as np
from scipy.optimize import root
from numpy import cosh, zeros_like, mgrid, zeros

parameters
nx, ny = 75, 75
hx, hy = 1./(nx-1), 1./(ny-1)

P_left, P_right = 0, 0
P_top, P_bottom = 1, 0

def residual(P):
d2x = zeros_like(P)
d2y = zeros_like(P)

d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2]) / hx/hx
d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx
d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx

d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy
d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy
d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy

return d2x + d2y + 5*cosh(P).mean()**2

solve
guess = zeros((nx, ny), float)
sol = root(residual, guess, method='krylov', options={'disp': True})
#sol = root(residual, guess, method='broyden2', options={'disp': True, 'max_rank': 50})
#sol = root(residual, guess, method='anderson', options={'disp': True, 'M': 10})
print('Residual: %g' % abs(residual(sol.x)).max())

visualize
import matplotlib.pyplot as plt
x, y = mgrid[0:1:(nx*1j), 0:1:(ny*1j)]
plt.pcolor(x, y, sol.x)
plt.colorbar()
plt.show()

1.5. Optimization (scipy.optimize) 27

SciPy Reference Guide, Release 0.16.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.15

0.30

0.45

0.60

0.75

0.90

Still too slow? Preconditioning.

When looking for the zero of the functions 𝑓𝑖(x) = 0, i = 1, 2, ..., N, the krylov solver spends most of its time
inverting the Jacobian matrix,

𝐽𝑖𝑗 =
𝜕𝑓𝑖
𝜕𝑥𝑗

.

If you have an approximation for the inverse matrix 𝑀 ≈ 𝐽−1, you can use it for preconditioning the linear inversion
problem. The idea is that instead of solving 𝐽s = y one solves 𝑀𝐽s = 𝑀y: since matrix 𝑀𝐽 is “closer” to the
identity matrix than 𝐽 is, the equation should be easier for the Krylov method to deal with.

The matrix M can be passed to root with method krylov as an op-
tion options[’jac_options’][’inner_M’]. It can be a (sparse) matrix or a
scipy.sparse.linalg.LinearOperator instance.

For the problem in the previous section, we note that the function to solve consists of two parts: the first one is
application of the Laplace operator, [𝜕2

𝑥 + 𝜕2
𝑦]𝑃 , and the second is the integral. We can actually easily compute the

Jacobian corresponding to the Laplace operator part: we know that in one dimension

𝜕2
𝑥 ≈ 1

ℎ2
𝑥

⎛⎜⎜⎝
−2 1 0 0 · · ·
1 −2 1 0 · · ·
0 1 −2 1 · · ·
. . .

⎞⎟⎟⎠ = ℎ−2
𝑥 𝐿

so that the whole 2-D operator is represented by

𝐽1 = 𝜕2
𝑥 + 𝜕2

𝑦 ≃ ℎ−2
𝑥 𝐿⊗ 𝐼 + ℎ−2

𝑦 𝐼 ⊗ 𝐿

The matrix 𝐽2 of the Jacobian corresponding to the integral is more difficult to calculate, and since all of it entries
are nonzero, it will be difficult to invert. 𝐽1 on the other hand is a relatively simple matrix, and can be inverted by
scipy.sparse.linalg.splu (or the inverse can be approximated by scipy.sparse.linalg.spilu).
So we are content to take 𝑀 ≈ 𝐽−1

1 and hope for the best.

In the example below, we use the preconditioner 𝑀 = 𝐽−1
1 .

28 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

import numpy as np
from scipy.optimize import root
from scipy.sparse import spdiags, kron
from scipy.sparse.linalg import spilu, LinearOperator
from numpy import cosh, zeros_like, mgrid, zeros, eye

parameters
nx, ny = 75, 75
hx, hy = 1./(nx-1), 1./(ny-1)

P_left, P_right = 0, 0
P_top, P_bottom = 1, 0

def get_preconditioner():
"""Compute the preconditioner M"""
diags_x = zeros((3, nx))
diags_x[0,:] = 1/hx/hx
diags_x[1,:] = -2/hx/hx
diags_x[2,:] = 1/hx/hx
Lx = spdiags(diags_x, [-1,0,1], nx, nx)

diags_y = zeros((3, ny))
diags_y[0,:] = 1/hy/hy
diags_y[1,:] = -2/hy/hy
diags_y[2,:] = 1/hy/hy
Ly = spdiags(diags_y, [-1,0,1], ny, ny)

J1 = kron(Lx, eye(ny)) + kron(eye(nx), Ly)

Now we have the matrix `J_1`. We need to find its inverse `M` --
however, since an approximate inverse is enough, we can use
the *incomplete LU* decomposition

J1_ilu = spilu(J1)

This returns an object with a method .solve() that evaluates
the corresponding matrix-vector product. We need to wrap it into
a LinearOperator before it can be passed to the Krylov methods:

M = LinearOperator(shape=(nx*ny, nx*ny), matvec=J1_ilu.solve)
return M

def solve(preconditioning=True):
"""Compute the solution"""
count = [0]

def residual(P):
count[0] += 1

d2x = zeros_like(P)
d2y = zeros_like(P)

d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2])/hx/hx
d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx
d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx

d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy
d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy

1.5. Optimization (scipy.optimize) 29

SciPy Reference Guide, Release 0.16.0

d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy

return d2x + d2y + 5*cosh(P).mean()**2

preconditioner
if preconditioning:

M = get_preconditioner()
else:

M = None

solve
guess = zeros((nx, ny), float)

sol = root(residual, guess, method='krylov',
options={'disp': True,

'jac_options': {'inner_M': M}})
print 'Residual', abs(residual(sol.x)).max()
print 'Evaluations', count[0]

return sol.x

def main():
sol = solve(preconditioning=True)

visualize
import matplotlib.pyplot as plt
x, y = mgrid[0:1:(nx*1j), 0:1:(ny*1j)]
plt.clf()
plt.pcolor(x, y, sol)
plt.clim(0, 1)
plt.colorbar()
plt.show()

if __name__ == "__main__":
main()

Resulting run, first without preconditioning:

0: |F(x)| = 803.614; step 1; tol 0.000257947
1: |F(x)| = 345.912; step 1; tol 0.166755
2: |F(x)| = 139.159; step 1; tol 0.145657
3: |F(x)| = 27.3682; step 1; tol 0.0348109
4: |F(x)| = 1.03303; step 1; tol 0.00128227
5: |F(x)| = 0.0406634; step 1; tol 0.00139451
6: |F(x)| = 0.00344341; step 1; tol 0.00645373
7: |F(x)| = 0.000153671; step 1; tol 0.00179246
8: |F(x)| = 6.7424e-06; step 1; tol 0.00173256
Residual 3.57078908664e-07
Evaluations 317

and then with preconditioning:

0: |F(x)| = 136.993; step 1; tol 7.49599e-06
1: |F(x)| = 4.80983; step 1; tol 0.00110945
2: |F(x)| = 0.195942; step 1; tol 0.00149362
3: |F(x)| = 0.000563597; step 1; tol 7.44604e-06
4: |F(x)| = 1.00698e-09; step 1; tol 2.87308e-12
Residual 9.29603061195e-11
Evaluations 77

30 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Using a preconditioner reduced the number of evaluations of the residual function by a factor of 4. For problems
where the residual is expensive to compute, good preconditioning can be crucial — it can even decide whether the
problem is solvable in practice or not.

Preconditioning is an art, science, and industry. Here, we were lucky in making a simple choice that worked reasonably
well, but there is a lot more depth to this topic than is shown here.

References

Some further reading and related software:

1.6 Interpolation (scipy.interpolate)

Contents

• Interpolation (scipy.interpolate)
– 1-D interpolation (interp1d)
– Multivariate data interpolation (griddata)
– Spline interpolation

* Spline interpolation in 1-d: Procedural (interpolate.splXXX)
* Spline interpolation in 1-d: Object-oriented (UnivariateSpline)
* Two-dimensional spline representation: Procedural (bisplrep)
* Two-dimensional spline representation: Object-oriented (BivariateSpline)

– Using radial basis functions for smoothing/interpolation
* 1-d Example
* 2-d Example

There are several general interpolation facilities available in SciPy, for data in 1, 2, and higher dimensions:

• A class representing an interpolant (interp1d) in 1-D, offering several interpolation methods.

• Convenience function griddata offering a simple interface to interpolation in N dimensions (N = 1, 2, 3, 4,
...). Object-oriented interface for the underlying routines is also available.

• Functions for 1- and 2-dimensional (smoothed) cubic-spline interpolation, based on the FORTRAN library
FITPACK. There are both procedural and object-oriented interfaces for the FITPACK library.

• Interpolation using Radial Basis Functions.

1.6.1 1-D interpolation (interp1d)

The interp1d class in scipy.interpolate is a convenient method to create a function based on fixed data
points which can be evaluated anywhere within the domain defined by the given data using linear interpolation. An
instance of this class is created by passing the 1-d vectors comprising the data. The instance of this class defines a
__call__ method and can therefore by treated like a function which interpolates between known data values to obtain
unknown values (it also has a docstring for help). Behavior at the boundary can be specified at instantiation time. The
following example demonstrates its use, for linear and cubic spline interpolation:

>>> from scipy.interpolate import interp1d

>>> x = np.linspace(0, 10, num=11, endpoint=True)
>>> y = np.cos(-x**2/9.0)
>>> f = interp1d(x, y)
>>> f2 = interp1d(x, y, kind='cubic')

1.6. Interpolation (scipy.interpolate) 31

SciPy Reference Guide, Release 0.16.0

>>> xnew = np.linspace(0, 10, num=41, endpoint=True)
>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o', xnew, f(xnew), '-', xnew, f2(xnew), '--')
>>> plt.legend(['data', 'linear', 'cubic'], loc='best')
>>> plt.show()

0 2 4 6 8 10
1.5

1.0

0.5

0.0

0.5

1.0

data
linear
cubic

1.6.2 Multivariate data interpolation (griddata)

Suppose you have multidimensional data, for instance for an underlying function f(x, y) you only know the values at
points (x[i], y[i]) that do not form a regular grid.

Suppose we want to interpolate the 2-D function

>>> def func(x, y):
>>> return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2

on a grid in [0, 1]x[0, 1]

>>> grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j]

but we only know its values at 1000 data points:

>>> points = np.random.rand(1000, 2)
>>> values = func(points[:,0], points[:,1])

This can be done with griddata – below we try out all of the interpolation methods:

>>> from scipy.interpolate import griddata
>>> grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest')
>>> grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear')
>>> grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic')

One can see that the exact result is reproduced by all of the methods to some degree, but for this smooth function the
piecewise cubic interpolant gives the best results:

>>> import matplotlib.pyplot as plt
>>> plt.subplot(221)
>>> plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower')

32 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> plt.plot(points[:,0], points[:,1], 'k.', ms=1)
>>> plt.title('Original')
>>> plt.subplot(222)
>>> plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Nearest')
>>> plt.subplot(223)
>>> plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Linear')
>>> plt.subplot(224)
>>> plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Cubic')
>>> plt.gcf().set_size_inches(6, 6)
>>> plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Original

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Nearest

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Linear

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Cubic

1.6. Interpolation (scipy.interpolate) 33

SciPy Reference Guide, Release 0.16.0

1.6.3 Spline interpolation

Spline interpolation in 1-d: Procedural (interpolate.splXXX)

Spline interpolation requires two essential steps: (1) a spline representation of the curve is computed, and (2) the spline
is evaluated at the desired points. In order to find the spline representation, there are two different ways to represent
a curve and obtain (smoothing) spline coefficients: directly and parametrically. The direct method finds the spline
representation of a curve in a two- dimensional plane using the function splrep. The first two arguments are the
only ones required, and these provide the 𝑥 and 𝑦 components of the curve. The normal output is a 3-tuple, (𝑡, 𝑐, 𝑘) ,
containing the knot-points, 𝑡 , the coefficients 𝑐 and the order 𝑘 of the spline. The default spline order is cubic, but this
can be changed with the input keyword, k.

For curves in 𝑁 -dimensional space the function splprep allows defining the curve parametrically. For this function
only 1 input argument is required. This input is a list of 𝑁 -arrays representing the curve in 𝑁 -dimensional space. The
length of each array is the number of curve points, and each array provides one component of the 𝑁 -dimensional data
point. The parameter variable is given with the keword argument, u, which defaults to an equally-spaced monotonic
sequence between 0 and 1 . The default output consists of two objects: a 3-tuple, (𝑡, 𝑐, 𝑘) , containing the spline
representation and the parameter variable 𝑢.

The keyword argument, s , is used to specify the amount of smoothing to perform during the spline fit. The default
value of 𝑠 is 𝑠 = 𝑚−

√
2𝑚 where 𝑚 is the number of data-points being fit. Therefore, if no smoothing is desired a

value of s = 0 should be passed to the routines.

Once the spline representation of the data has been determined, functions are available for evaluating the spline
(splev) and its derivatives (splev, spalde) at any point and the integral of the spline between any two points
(splint). In addition, for cubic splines (𝑘 = 3) with 8 or more knots, the roots of the spline can be estimated (
sproot). These functions are demonstrated in the example that follows.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate

Cubic-spline

>>> x = np.arange(0, 2*np.pi+np.pi/4, 2*np.pi/8)
>>> y = np.sin(x)
>>> tck = interpolate.splrep(x, y, s=0)
>>> xnew = np.arange(0,2*np.pi,np.pi/50)
>>> ynew = interpolate.splev(xnew, tck, der=0)

>>> plt.figure()
>>> plt.plot(x, y, 'x', xnew, ynew, xnew, np.sin(xnew), x, y, 'b')
>>> plt.legend(['Linear', 'Cubic Spline', 'True'])
>>> plt.axis([-0.05, 6.33, -1.05, 1.05])
>>> plt.title('Cubic-spline interpolation')
>>> plt.show()

34 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

0 1 2 3 4 5 6
1.0

0.5

0.0

0.5

1.0
Cubic-spline interpolation

Linear
Cubic Spline
True

Derivative of spline

>>> yder = interpolate.splev(xnew, tck, der=1)
>>> plt.figure()
>>> plt.plot(xnew,yder,xnew,np.cos(xnew),'--')
>>> plt.legend(['Cubic Spline', 'True'])
>>> plt.axis([-0.05, 6.33, -1.05, 1.05])
>>> plt.title('Derivative estimation from spline')
>>> plt.show()

0 1 2 3 4 5 6
1.0

0.5

0.0

0.5

1.0
Derivative estimation from spline

Cubic Spline
True

Integral of spline

>>> def integ(x, tck, constant=-1):
>>> x = np.atleast_1d(x)
>>> out = np.zeros(x.shape, dtype=x.dtype)
>>> for n in xrange(len(out)):
>>> out[n] = interpolate.splint(0, x[n], tck)
>>> out += constant

1.6. Interpolation (scipy.interpolate) 35

SciPy Reference Guide, Release 0.16.0

>>> return out
>>>
>>> yint = integ(xnew, tck)
>>> plt.figure()
>>> plt.plot(xnew, yint, xnew, -np.cos(xnew), '--')
>>> plt.legend(['Cubic Spline', 'True'])
>>> plt.axis([-0.05, 6.33, -1.05, 1.05])
>>> plt.title('Integral estimation from spline')
>>> plt.show()

0 1 2 3 4 5 6
1.0

0.5

0.0

0.5

1.0
Integral estimation from spline

Cubic Spline
True

Roots of spline

>>> print(interpolate.sproot(tck))
[0. 3.1416]

Parametric spline

>>> t = np.arange(0, 1.1, .1)
>>> x = np.sin(2*np.pi*t)
>>> y = np.cos(2*np.pi*t)
>>> tck,u = interpolate.splprep([x,y], s=0)
>>> unew = np.arange(0, 1.01, 0.01)
>>> out = interpolate.splev(unew, tck)
>>> plt.figure()
>>> plt.plot(x, y, 'x', out[0], out[1], np.sin(2*np.pi*unew), np.cos(2*np.pi*unew), x, y, 'b')
>>> plt.legend(['Linear', 'Cubic Spline', 'True'])
>>> plt.axis([-1.05, 1.05, -1.05, 1.05])
>>> plt.title('Spline of parametrically-defined curve')
>>> plt.show()

36 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
Spline of parametrically-defined curve

Linear
Cubic Spline
True

Spline interpolation in 1-d: Object-oriented (UnivariateSpline)

The spline-fitting capabilities described above are also available via an objected-oriented interface. The one dimen-
sional splines are objects of the UnivariateSpline class, and are created with the 𝑥 and 𝑦 components of the
curve provided as arguments to the constructor. The class defines __call__, allowing the object to be called with
the x-axis values at which the spline should be evaluated, returning the interpolated y-values. This is shown in the
example below for the subclass InterpolatedUnivariateSpline. The integral, derivatives, and
roots methods are also available on UnivariateSpline objects, allowing definite integrals, derivatives, and
roots to be computed for the spline.

The UnivariateSpline class can also be used to smooth data by providing a non-zero value of the smoothing parameter
s, with the same meaning as the s keyword of the splrep function described above. This results in a spline that
has fewer knots than the number of data points, and hence is no longer strictly an interpolating spline, but rather a
smoothing spline. If this is not desired, the InterpolatedUnivariateSpline class is available. It is a subclass
of UnivariateSpline that always passes through all points (equivalent to forcing the smoothing parameter to 0).
This class is demonstrated in the example below.

The LSQUnivariateSpline class is the other subclass of UnivariateSpline. It allows the user to specify
the number and location of internal knots explicitly with the parameter t. This allows creation of customized splines
with non-linear spacing, to interpolate in some domains and smooth in others, or change the character of the spline.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate

InterpolatedUnivariateSpline

>>> x = np.arange(0, 2*np.pi+np.pi/4, 2*np.pi/8)
>>> y = np.sin(x)
>>> s = interpolate.InterpolatedUnivariateSpline(x, y)
>>> xnew = np.arange(0, 2*np.pi, np.pi/50)
>>> ynew = s(xnew)

>>> plt.figure()
>>> plt.plot(x, y, 'x', xnew, ynew, xnew, np.sin(xnew), x, y, 'b')
>>> plt.legend(['Linear', 'InterpolatedUnivariateSpline', 'True'])
>>> plt.axis([-0.05, 6.33, -1.05, 1.05])

1.6. Interpolation (scipy.interpolate) 37

SciPy Reference Guide, Release 0.16.0

>>> plt.title('InterpolatedUnivariateSpline')
>>> plt.show()

0 1 2 3 4 5 6
1.0

0.5

0.0

0.5

1.0
InterpolatedUnivariateSpline

Linear
InterpolatedUnivariateSpline
True

LSQUnivarateSpline with non-uniform knots

>>> t = [np.pi/2-.1, np.pi/2+.1, 3*np.pi/2-.1, 3*np.pi/2+.1]
>>> s = interpolate.LSQUnivariateSpline(x, y, t, k=2)
>>> ynew = s(xnew)

>>> plt.figure()
>>> plt.plot(x, y, 'x', xnew, ynew, xnew, np.sin(xnew), x, y, 'b')
>>> plt.legend(['Linear', 'LSQUnivariateSpline', 'True'])
>>> plt.axis([-0.05, 6.33, -1.05, 1.05])
>>> plt.title('Spline with Specified Interior Knots')
>>> plt.show()

0 1 2 3 4 5 6
1.0

0.5

0.0

0.5

1.0
Spline with Specified Interior Knots

Linear
LSQUnivariateSpline
True

38 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Two-dimensional spline representation: Procedural (bisplrep)

For (smooth) spline-fitting to a two dimensional surface, the function bisplrep is available. This function takes as
required inputs the 1-D arrays x, y, and z which represent points on the surface 𝑧 = 𝑓 (𝑥, 𝑦) . The default output is a
list [𝑡𝑥, 𝑡𝑦, 𝑐, 𝑘𝑥, 𝑘𝑦] whose entries represent respectively, the components of the knot positions, the coefficients of the
spline, and the order of the spline in each coordinate. It is convenient to hold this list in a single object, tck, so that
it can be passed easily to the function bisplev. The keyword, s , can be used to change the amount of smoothing
performed on the data while determining the appropriate spline. The default value is 𝑠 = 𝑚 −

√
2𝑚 where 𝑚 is the

number of data points in the x, y, and z vectors. As a result, if no smoothing is desired, then 𝑠 = 0 should be passed to
bisplrep .

To evaluate the two-dimensional spline and it’s partial derivatives (up to the order of the spline), the function bisplev
is required. This function takes as the first two arguments two 1-D arrays whose cross-product specifies the domain
over which to evaluate the spline. The third argument is the tck list returned from bisplrep. If desired, the fourth
and fifth arguments provide the orders of the partial derivative in the 𝑥 and 𝑦 direction respectively.

It is important to note that two dimensional interpolation should not be used to find the spline representation of images.
The algorithm used is not amenable to large numbers of input points. The signal processing toolbox contains more
appropriate algorithms for finding the spline representation of an image. The two dimensional interpolation commands
are intended for use when interpolating a two dimensional function as shown in the example that follows. This example
uses the mgrid command in NumPy which is useful for defining a “mesh-grid” in many dimensions. (See also the
ogrid command if the full-mesh is not needed). The number of output arguments and the number of dimensions of
each argument is determined by the number of indexing objects passed in mgrid.

>>> import numpy as np
>>> from scipy import interpolate
>>> import matplotlib.pyplot as plt

Define function over sparse 20x20 grid

>>> x, y = np.mgrid[-1:1:20j, -1:1:20j]
>>> z = (x+y) * np.exp(-6.0*(x*x+y*y))

>>> plt.figure()
>>> plt.pcolor(x, y, z)
>>> plt.colorbar()
>>> plt.title("Sparsely sampled function.")
>>> plt.show()

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
Sparsely sampled function.

0.20
0.15
0.10
0.05

0.00
0.05
0.10
0.15
0.20

1.6. Interpolation (scipy.interpolate) 39

http://docs.scipy.org/doc/numpy/reference/generated/numpy.mgrid.html#numpy.mgrid
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ogrid.html#numpy.ogrid
http://docs.scipy.org/doc/numpy/reference/generated/numpy.mgrid.html#numpy.mgrid

SciPy Reference Guide, Release 0.16.0

Interpolate function over new 70x70 grid

>>> xnew, ynew = np.mgrid[-1:1:70j, -1:1:70j]
>>> tck = interpolate.bisplrep(x, y, z, s=0)
>>> znew = interpolate.bisplev(xnew[:,0], ynew[0,:], tck)

>>> plt.figure()
>>> plt.pcolor(xnew, ynew, znew)
>>> plt.colorbar()
>>> plt.title("Interpolated function.")
>>> plt.show()

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
Interpolated function.

0.20
0.15
0.10
0.05

0.00
0.05
0.10
0.15
0.20

Two-dimensional spline representation: Object-oriented (BivariateSpline)

The BivariateSpline class is the 2-dimensional analog of the UnivariateSpline class. It and its subclasses
implement the FITPACK functions described above in an object oriented fashion, allowing objects to be instantiated
that can be called to compute the spline value by passing in the two coordinates as the two arguments.

1.6.4 Using radial basis functions for smoothing/interpolation

Radial basis functions can be used for smoothing/interpolating scattered data in n-dimensions, but should be used with
caution for extrapolation outside of the observed data range.

1-d Example

This example compares the usage of the Rbf and UnivariateSpline classes from the scipy.interpolate module.

>>> import numpy as np
>>> from scipy.interpolate import Rbf, InterpolatedUnivariateSpline
>>> import matplotlib.pyplot as plt

>>> # setup data
>>> x = np.linspace(0, 10, 9)
>>> y = np.sin(x)
>>> xi = np.linspace(0, 10, 101)

40 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> # use fitpack2 method
>>> ius = InterpolatedUnivariateSpline(x, y)
>>> yi = ius(xi)

>>> plt.subplot(2, 1, 1)
>>> plt.plot(x, y, 'bo')
>>> plt.plot(xi, yi, 'g')
>>> plt.plot(xi, np.sin(xi), 'r')
>>> plt.title('Interpolation using univariate spline')

>>> # use RBF method
>>> rbf = Rbf(x, y)
>>> fi = rbf(xi)

>>> plt.subplot(2, 1, 2)
>>> plt.plot(x, y, 'bo')
>>> plt.plot(xi, fi, 'g')
>>> plt.plot(xi, np.sin(xi), 'r')
>>> plt.title('Interpolation using RBF - multiquadrics')
>>> plt.show()

0 2 4 6 8 10
1.0
0.5
0.0
0.5
1.0

Interpolation using univariate spline

0 2 4 6 8 10
1.0
0.5
0.0
0.5
1.0
1.5

Interpolation using RBF - multiquadrics

2-d Example

This example shows how to interpolate scattered 2d data.

>>> import numpy as np
>>> from scipy.interpolate import Rbf
>>> import matplotlib.pyplot as plt
>>> from matplotlib import cm

>>> # 2-d tests - setup scattered data
>>> x = np.random.rand(100)*4.0-2.0
>>> y = np.random.rand(100)*4.0-2.0
>>> z = x*np.exp(-x**2-y**2)
>>> ti = np.linspace(-2.0, 2.0, 100)
>>> XI, YI = np.meshgrid(ti, ti)

1.6. Interpolation (scipy.interpolate) 41

SciPy Reference Guide, Release 0.16.0

>>> # use RBF
>>> rbf = Rbf(x, y, z, epsilon=2)
>>> ZI = rbf(XI, YI)

>>> # plot the result
>>> n = plt.normalize(-2., 2.)
>>> plt.subplot(1, 1, 1)
>>> plt.pcolor(XI, YI, ZI, cmap=cm.jet)
>>> plt.scatter(x, y, 100, z, cmap=cm.jet)
>>> plt.title('RBF interpolation - multiquadrics')
>>> plt.xlim(-2, 2)
>>> plt.ylim(-2, 2)
>>> plt.colorbar()

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

RBF interpolation - multiquadrics

0.4
0.3
0.2
0.1

0.0
0.1
0.2
0.3
0.4

1.7 Fourier Transforms (scipy.fftpack)

42 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Contents

• Fourier Transforms (scipy.fftpack)
– Fast Fourier transforms

* One dimensional discrete Fourier transforms
* Two and n-dimensional discrete Fourier transforms
* FFT convolution

– Discrete Cosine Transforms
* Type I DCT
* Type II DCT
* Type III DCT
* DCT and IDCT
* Example

– Discrete Sine Transforms
* Type I DST
* Type II DST
* Type III DST
* DST and IDST

– Cache Destruction
– References

Fourier analysis is a method for expressing a function as a sum of periodic components, and for recovering the signal
from those components. When both the function and its Fourier transform are replaced with discretized counterparts,
it is called the discrete Fourier transform (DFT). The DFT has become a mainstay of numerical computing in part
because of a very fast algorithm for computing it, called the Fast Fourier Transform (FFT), which was known to
Gauss (1805) and was brought to light in its current form by Cooley and Tukey [CT65]. Press et al. [NR] provide an
accessible introduction to Fourier analysis and its applications.

1.7.1 Fast Fourier transforms

One dimensional discrete Fourier transforms

The FFT y[k] of length 𝑁 of the length-𝑁 sequence x[n] is defined as

𝑦[𝑘] =

𝑁−1∑︁
𝑛=0

𝑒−2𝜋𝑗 𝑘𝑛
𝑁 𝑥[𝑛] ,

and the inverse transform is defined as follows

𝑥[𝑛] =
1

𝑁

𝑁−1∑︁
𝑛=0

𝑒2𝜋𝑗
𝑘𝑛
𝑁 𝑦[𝑘] .

These transforms can be calculated by means of fft and ifft, respectively as shown in the following example.

>>> from scipy.fftpack import fft, ifft
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])
>>> y = fft(x)
>>> y
[4.50000000+0.j 2.08155948-1.65109876j -1.83155948+1.60822041j
-1.83155948-1.60822041j 2.08155948+1.65109876j]

>>> yinv = ifft(y)
>>> yinv
[1.0+0.j 2.0+0.j 1.0+0.j -1.0+0.j 1.5+0.j]

1.7. Fourier Transforms (scipy.fftpack) 43

SciPy Reference Guide, Release 0.16.0

From the definition of the FFT it can be seen that

𝑦[0] =

𝑁−1∑︁
𝑛=0

𝑥[𝑛] .

In the example

>>> np.sum(x)
4.5

which corresponds to 𝑦[0]. For N even, the elements 𝑦[1]...𝑦[𝑁/2 − 1] contain the positive-frequency terms, and the
elements 𝑦[𝑁/2]...𝑦[𝑁 − 1] contain the negative-frequency terms, in order of decreasingly negative frequency. For N
odd, the elements 𝑦[1]...𝑦[(𝑁 −1)/2] contain the positive- frequency terms, and the elements 𝑦[(𝑁 +1)/2]...𝑦[𝑁 −1]
contain the negative- frequency terms, in order of decreasingly negative frequency.

In case the sequence x is real-valued, the values of 𝑦[𝑛] for positive frequencies is the conjugate of the values 𝑦[𝑛]
for negative frequencies (because the spectrum is symmetric). Typically, only the FFT corresponding to positive
frequencies is plotted.

The example plots the FFT of the sum of two sines.

>>> from scipy.fftpack import fft
>>> # Number of samplepoints
>>> N = 600
>>> # sample spacing
>>> T = 1.0 / 800.0
>>> x = np.linspace(0.0, N*T, N)
>>> y = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)
>>> yf = fft(y)
>>> xf = np.linspace(0.0, 1.0/(2.0*T), N/2)
>>> import matplotlib.pyplot as plt
>>> plt.plot(xf, 2.0/N * np.abs(yf[0:N/2]))
>>> plt.grid()
>>> plt.show()

0 50 100 150 200 250 300 350 400
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

The FFT input signal is inherently truncated. This truncation can be modelled as multiplication of an inifinte signal
with a rectangular window function. In the spectral domain this multiplication becomes convolution of the signal
spectrum with the window function spectrum, being of form 𝑠𝑖𝑛(𝑥)/𝑥. This convolution is the cause of an effect
called spectral leakage (see [WPW]). Windowing the signal with a dedicated window function helps mitigate spectral

44 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

leakage. The example below uses a Blackman window from scipy.signal and shows the effect of windowing (the zero
component of the FFT has been truncated illustrative purposes).

>>> from scipy.fftpack import fft
>>> # Number of samplepoints
>>> N = 600
>>> # sample spacing
>>> T = 1.0 / 800.0
>>> x = np.linspace(0.0, N*T, N)
>>> y = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)
>>> yf = fft(y)
>>> from scipy.signal import blackman
>>> w = blackman(N)
>>> ywf = fft(y*w)
>>> xf = np.linspace(0.0, 1.0/(2.0*T), N/2)
>>> import matplotlib.pyplot as plt
>>> plt.semilogy(xf[1:N/2], 2.0/N * np.abs(yf[1:N/2]), '-b')
>>> plt.semilogy(xf[1:N/2], 2.0/N * np.abs(ywf[1:N/2]), '-r')
>>> plt.legend(['FFT', 'FFT w. window'])
>>> plt.grid()
>>> plt.show()

0 50 100 150 200 250 300 350 400
10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100

FFT
FFT w. window

In case the sequence x is complex-valued, the spectrum is no longer symmetric. To simplify working wit the FFT
functions, scipy provides the following two helper functions.

The function fftfreq returns the FFT sample frequency points.

>>> from scipy.fftpack import fftfreq
>>> freq = fftfreq(np.arange(8), 0.125)
[0. 1. 2. 3. -4. -3. -2. -1.]

In a similar spirit, the function fftshift allows swapping the lower and upper halves of a vector, so that it becomes
suitable for display.

>>> from scipy.fftpack import fftfreq
>>> x = np.arange(8)
>>> sf.fftshift(x)
[4 5 6 7 0 1 2 3]

The example below plots the FFT of two complex exponentials; note the asymmetric spectrum.

1.7. Fourier Transforms (scipy.fftpack) 45

SciPy Reference Guide, Release 0.16.0

>>> from scipy.fftpack import fft, fftfreq, fftshift
>>> # number of signal points
>>> N = 400
>>> # sample spacing
>>> T = 1.0 / 800.0
>>> x = np.linspace(0.0, N*T, N)
>>> y = np.exp(50.0 * 1.j * 2.0*np.pi*x) + 0.5*np.exp(-80.0 * 1.j * 2.0*np.pi*x)
>>> yf = fft(y)
>>> xf = fftfreq(N, T)
>>> xf = fftshift(xf)
>>> yplot = fftshift(yf)
>>> import matplotlib.pyplot as plt
>>> plt.plot(xf, 1.0/N * np.abs(yplot))
>>> plt.grid()
>>> plt.show()

400 300 200 100 0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

The function rfft calculates the FFT of a real sequence and outputs the FFT coefficients 𝑦[𝑛] with separate real
and imaginary parts. In case of N being even: [𝑦[0], 𝑅𝑒(𝑦[1]), 𝐼𝑚(𝑦[1]), ..., 𝑅𝑒(𝑦[𝑁/2])]; in case N being odd
[𝑦[0], 𝑅𝑒(𝑦[1]), 𝐼𝑚(𝑦[1]), ..., 𝑅𝑒(𝑦[𝑁/2]), 𝐼𝑚(𝑦[𝑁/2])].

The corresponding function irfft calculates the IFFT of the FFT coefficients with this special ordering.

>>> from scipy.fftpack import fft, rfft, irfft
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5, 1.0])
>>> fft(x)
[5.50+0.j 2.25-0.4330127j -2.75-1.29903811j 1.50+0.j
-2.75+1.29903811j 2.25+0.4330127j]

>>> yr = rfft(x)
[5.5 2.25 -0.4330127 -2.75 -1.29903811 1.5]
>>> irfft(yr)
[1. 2. 1. -1. 1.5 1.]
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])
>>> fft(x)
[4.50000000+0.j 2.08155948-1.65109876j -1.83155948+1.60822041j
-1.83155948-1.60822041j 2.08155948+1.65109876j]

>>> yr = rfft(x)
[4.5 2.08155948 -1.65109876 -1.83155948 1.60822041]

46 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Two and n-dimensional discrete Fourier transforms

The functions fft2 and ifft2 provide 2-dimensional FFT, and IFFT, respectively. Similar, fftn and ifftn
provide n-dimensional FFT, and IFFT, respectively.

The example below demonstrates a 2-dimensional IFFT and plots the resulting (2-dimensional) time-domain signals.

>>> from scipy.fftpack import ifftn
>>> import matplotlib.pyplot as plt
>>> import matplotlib.cm as cm
>>> N = 30
>>> f, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2, 3, sharex='col', sharey='row')
>>> xf = np.zeros((N,N))
>>> xf[0, 5] = 1
>>> xf[0, N-5] = 1
>>> Z = ifftn(xf)
>>> ax1.imshow(xf, cmap=cm.Reds)
>>> ax4.imshow(np.real(Z), cmap=cm.binary)
>>> xf = np.zeros((N, N))
>>> xf[5, 0] = 1
>>> xf[N-5, 0] = 1
>>> Z = ifftn(xf)
>>> ax2.imshow(xf, cmap=cm.Reds)
>>> ax5.imshow(np.real(Z), cmap=cm.binary)
>>> xf = np.zeros((N, N))
>>> xf[5, 10] = 1
>>> xf[N-5, N-10] = 1
>>> Z = ifftn(xf)
>>> ax3.imshow(xf, cmap=cm.Reds)
>>> ax6.imshow(np.real(Z), cmap=cm.binary)
>>> plt.show()

0
5

10
15
20
25

0 5 10152025

0
5

10
15
20
25

0 5 10152025 0 5 10152025

FFT convolution

scipy.fftpack.convolve performs a convolution of two one-dimensional arrays in frequency domain.

1.7. Fourier Transforms (scipy.fftpack) 47

SciPy Reference Guide, Release 0.16.0

1.7.2 Discrete Cosine Transforms

Scipy provides a DCT with the function dct and a corresponding IDCT with the function idct. There are 8 types of
the DCT [WPC], [Mak]; however, only the first 3 types are implemented in scipy. “The” DCT generally refers to DCT
type 2, and “the” Inverse DCT generally refers to DCT type 3. In addition, the DCT coefficients can be normalized
differently (for most types, scipy provides None and ortho). Two parameters of the dct/idct function calls allow
setting the DCT type and coefficient normalization.

For a single dimension array x, dct(x, norm=’ortho’) is equal to MATLAB dct(x).

Type I DCT

Scipy uses the following definition of the unnormalized DCT-I (norm=’None’):

𝑦[𝑘] = 𝑥0 + (−1)𝑘𝑥𝑁−1 + 2

𝑁−2∑︁
𝑛=1

𝑥[𝑛] cos

(︂
𝜋𝑛𝑘

𝑁 − 1

)︂
, 0 ≤ 𝑘 < 𝑁.

Only None is supported as normalization mode for DCT-I. Note also that the DCT-I is only supported for input size >
1

Type II DCT

Scipy uses the following definition of the unnormalized DCT-II (norm=’None’):

𝑦[𝑘] = 2

𝑁−1∑︁
𝑛=0

𝑥[𝑛] cos

(︂
𝜋(2𝑛 + 1)𝑘

2𝑁

)︂
0 ≤ 𝑘 < 𝑁.

In case of the normalized DCT (norm=’ortho’), the DCT coefficients 𝑦[𝑘] are multiplied by a scaling factor f :

𝑓 =

{︃√︀
1/(4𝑁), if 𝑘 = 0√︀
1/(2𝑁), otherwise

.

In this case, the DCT “base functions” 𝜑𝑘[𝑛] = 2𝑓 cos
(︁

𝜋(2𝑛+1)𝑘
2𝑁

)︁
become orthonormal:

𝑁−1∑︁
𝑛=0

𝜑𝑘[𝑛]𝜑𝑙[𝑛] = 𝛿𝑙𝑘

Type III DCT

Scipy uses the following definition of the unnormalized DCT-III (norm=’None’):

𝑦[𝑘] = 𝑥0 + 2

𝑁−1∑︁
𝑛=1

𝑥[𝑛] cos

(︂
𝜋𝑛(2𝑘 + 1)

2𝑁

)︂
0 ≤ 𝑘 < 𝑁,

or, for norm=’ortho’:

𝑦[𝑘] =
𝑥0√
𝑁

+
2√
𝑁

𝑁−1∑︁
𝑛=1

𝑥[𝑛] cos

(︂
𝜋𝑛(2𝑘 + 1)

2𝑁

)︂
0 ≤ 𝑘 < 𝑁.

48 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

DCT and IDCT

The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up to a factor 2N. The orthonormalized
DCT-III is exactly the inverse of the orthonormalized DCT- II. The function idct performs the mappings between
the DCT and IDCT types.

The example below shows the relation between DCT and IDCT for different types and normalizations.

>>> from scipy.fftpack import dct, idct
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])
>>> dct(dct(x, type=2, norm='ortho'), type=3, norm='ortho')
[1.0, 2.0, 1.0, -1.0, 1.5]
>>> # scaling factor 2*N = 10
>>> idct(dct(x, type=2), type=2)
[10. 20. 10. -10. 15.]
>>> # no scaling factor
>>> idct(dct(x, type=2, norm='ortho'), type=2, norm='ortho')
[1. 2. 1. -1. 1.5]
>>> # scaling factor 2*N = 10
>>> idct(dct(x, type=3), type=3)
[10. 20. 10. -10. 15.]
>>> # no scaling factor
>>> idct(dct(x, type=3, norm='ortho'), type=3, norm='ortho')
[1. 2. 1. -1. 1.5]
>>> # scaling factor 2*(N-1) = 8
>>> idct(dct(x, type=1), type=1)
[8. 16. 8. -8. 12.]

Example

The DCT exhibits the “energy compaction property”, meaning that for many signals only the first few DCT coefficients
have significant magnitude. Zeroing out the other coefficients leads to a small reconstruction error, a fact which is
exploited in lossy signal compression (e.g. JPEG compression).

The example below shows a signal x and two reconstructions (𝑥20 and 𝑥15)from the signal’s DCT coefficients. The
signal 𝑥20 is reconstructed from the first 20 DCT coefficients, 𝑥15 is reconstructed from the first 15 DCT coefficients.
It can be seen that the relative error of using 20 coefficients is still very small (~0.1%), but provides a five-fold
compression rate.

>>> from scipy.fftpack import dct, idct
>>> import matplotlib.pyplot as plt
>>> N = 100
>>> t = np.linspace(0,20,N)
>>> x = np.exp(-t/3)*np.cos(2*t)
>>> y = dct(x, norm='ortho')
>>> window = np.zeros(N)
>>> window[:20] = 1
>>> yr = idct(y*window, norm='ortho')
>>> sum(abs(x-yr)**2) / sum(abs(x)**2)
0.0010901402257
>>> plt.plot(t, x, '-bx')
>>> plt.plot(t, yr, 'ro')
>>> window = np.zeros(N)
>>> window[:15] = 1
>>> yr = idct(y*window, norm='ortho')
>>> sum(abs(x-yr)**2) / sum(abs(x)**2)
0.0718818065008
>>> plt.plot(t, yr, 'g+')

1.7. Fourier Transforms (scipy.fftpack) 49

SciPy Reference Guide, Release 0.16.0

>>> plt.legend(['x', 'x_{20}', 'x_{15}'])
>>> plt.grid()
>>> plt.show()

0 5 10 15 20
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

x
x20

x15

1.7.3 Discrete Sine Transforms

Scipy provides a DST [Mak] with the function dst and a corresponding IDST with the function idst.

There are theoretically 8 types of the DST for different combinations of even/odd boundary conditions and boundary
off sets [WPS], only the first 3 types are implemented in scipy.

Type I DST

DST-I assumes the input is odd around n=-1 and n=N. Scipy uses the following definition of the unnormalized DST-I
(norm=’None’):

𝑦[𝑘] = 2

𝑁−1∑︁
𝑛=0

𝑥[𝑛] sin

(︂
𝜋(𝑛 + 1)(𝑘 + 1)

𝑁 + 1

)︂
, 0 ≤ 𝑘 < 𝑁.

Only None is supported as normalization mode for DST-I. Note also that the DST-I is only supported for input size >
1. The (unnormalized) DST-I is its own inverse, up to a factor 2(N+1).

Type II DST

DST-II assumes the input is odd around n=-1/2 and even around n=N. Scipy uses the following definition of the
unnormalized DST-II (norm=’None’):

𝑦[𝑘] = 2

𝑁−1∑︁
𝑛=0

𝑥[𝑛] sin

(︂
𝜋(𝑛 + 1/2)(𝑘 + 1)

𝑁

)︂
, 0 ≤ 𝑘 < 𝑁.

50 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Type III DST

DST-III assumes the input is odd around n=-1 and even around n=N-1. Scipy uses the following definition of the
unnormalized DST-III (norm=’None’):

𝑦[𝑘] = (−1)𝑘𝑥[𝑁 − 1] + 2

𝑁−2∑︁
𝑛=0

𝑥[𝑛] sin

(︂
𝜋(𝑛 + 1)(𝑘 + 1/2)

𝑁

)︂
, 0 ≤ 𝑘 < 𝑁.

DST and IDST

The example below shows the relation between DST and IDST for different types and normalizations.

>>> from scipy.fftpack import dst, idst
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])
>>> # scaling factor 2*N = 10
>>> idst(dst(x, type=2), type=2)
[10. 20. 10. -10. 15.]
>>> # no scaling factor
>>> idst(dst(x, type=2, norm='ortho'), type=2, norm='ortho')
[1. 2. 1. -1. 1.5]
>>> # scaling factor 2*N = 10
>>> idst(dst(x, type=3), type=3)
[10. 20. 10. -10. 15.]
>>> # no scaling factor
>>> idst(dst(x, type=3, norm='ortho'), type=3, norm='ortho')
[1. 2. 1. -1. 1.5]
>>> # scaling factor 2*(N+1) = 8
>>> idst(dst(x, type=1), type=1)
[8. 16. 8. -8. 12.]

1.7.4 Cache Destruction

To accelerate repeat transforms on arrays of the same shape and dtype, scipy.fftpack keeps a cache of the prime
factorization of length of the array and pre-computed trigonometric functions. These caches can be destroyed by
calling the appropriate function in scipy.fftpack._fftpack. dst(type=1) and idst(type=1) share a cache
(*dst1_cache). As do dst(type=2), dst(type=3), idst(type=3), and idst(type=3) (*dst2_cache).

1.7.5 References

1.8 Signal Processing (scipy.signal)

The signal processing toolbox currently contains some filtering functions, a limited set of filter design tools, and a few
B-spline interpolation algorithms for one- and two-dimensional data. While the B-spline algorithms could technically
be placed under the interpolation category, they are included here because they only work with equally-spaced data and
make heavy use of filter-theory and transfer-function formalism to provide a fast B-spline transform. To understand
this section you will need to understand that a signal in SciPy is an array of real or complex numbers.

1.8.1 B-splines

A B-spline is an approximation of a continuous function over a finite- domain in terms of B-spline coefficients and knot
points. If the knot- points are equally spaced with spacing ∆𝑥 , then the B-spline approximation to a 1-dimensional

1.8. Signal Processing (scipy.signal) 51

SciPy Reference Guide, Release 0.16.0

function is the finite-basis expansion.

𝑦 (𝑥) ≈
∑︁
𝑗

𝑐𝑗𝛽
𝑜
(︁ 𝑥

∆𝑥
− 𝑗
)︁
.

In two dimensions with knot-spacing ∆𝑥 and ∆𝑦 , the function representation is

𝑧 (𝑥, 𝑦) ≈
∑︁
𝑗

∑︁
𝑘

𝑐𝑗𝑘𝛽
𝑜
(︁ 𝑥

∆𝑥
− 𝑗
)︁
𝛽𝑜

(︂
𝑦

∆𝑦
− 𝑘

)︂
.

In these expressions, 𝛽𝑜 (·) is the space-limited B-spline basis function of order, 𝑜 . The requirement of equally-
spaced knot-points and equally-spaced data points, allows the development of fast (inverse-filtering) algorithms for
determining the coefficients, 𝑐𝑗 , from sample-values, 𝑦𝑛 . Unlike the general spline interpolation algorithms, these
algorithms can quickly find the spline coefficients for large images.

The advantage of representing a set of samples via B-spline basis functions is that continuous-domain operators
(derivatives, re- sampling, integral, etc.) which assume that the data samples are drawn from an underlying con-
tinuous function can be computed with relative ease from the spline coefficients. For example, the second-derivative
of a spline is

𝑦′′ (𝑥) =
1

∆𝑥2

∑︁
𝑗

𝑐𝑗𝛽
𝑜′′
(︁ 𝑥

∆𝑥
− 𝑗
)︁
.

Using the property of B-splines that

𝑑2𝛽𝑜 (𝑤)

𝑑𝑤2
= 𝛽𝑜−2 (𝑤 + 1) − 2𝛽𝑜−2 (𝑤) + 𝛽𝑜−2 (𝑤 − 1)

it can be seen that

𝑦′′ (𝑥) =
1

∆𝑥2

∑︁
𝑗

𝑐𝑗

[︁
𝛽𝑜−2

(︁ 𝑥

∆𝑥
− 𝑗 + 1

)︁
− 2𝛽𝑜−2

(︁ 𝑥

∆𝑥
− 𝑗
)︁

+ 𝛽𝑜−2
(︁ 𝑥

∆𝑥
− 𝑗 − 1

)︁]︁
.

If 𝑜 = 3 , then at the sample points,

∆𝑥2 𝑦′ (𝑥)|𝑥=𝑛Δ𝑥 =
∑︁
𝑗

𝑐𝑗𝛿𝑛−𝑗+1 − 2𝑐𝑗𝛿𝑛−𝑗 + 𝑐𝑗𝛿𝑛−𝑗−1,

= 𝑐𝑛+1 − 2𝑐𝑛 + 𝑐𝑛−1.

Thus, the second-derivative signal can be easily calculated from the spline fit. if desired, smoothing splines can be
found to make the second-derivative less sensitive to random-errors.

The savvy reader will have already noticed that the data samples are related to the knot coefficients via a convolution
operator, so that simple convolution with the sampled B-spline function recovers the original data from the spline coef-
ficients. The output of convolutions can change depending on how boundaries are handled (this becomes increasingly
more important as the number of dimensions in the data- set increases). The algorithms relating to B-splines in the
signal- processing sub package assume mirror-symmetric boundary conditions. Thus, spline coefficients are computed
based on that assumption, and data-samples can be recovered exactly from the spline coefficients by assuming them
to be mirror-symmetric also.

Currently the package provides functions for determining second- and third- order cubic spline coefficients from
equally spaced samples in one- and two- dimensions (qspline1d, qspline2d, cspline1d, cspline2d). The
package also supplies a function (bspline) for evaluating the bspline basis function, 𝛽𝑜 (𝑥) for arbitrary order
and 𝑥. For large 𝑜 , the B-spline basis function can be approximated well by a zero-mean Gaussian function with
standard-deviation equal to 𝜎𝑜 = (𝑜 + 1) /12 :

𝛽𝑜 (𝑥) ≈ 1√︀
2𝜋𝜎2

𝑜

exp

(︂
− 𝑥2

2𝜎𝑜

)︂
.

52 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

A function to compute this Gaussian for arbitrary 𝑥 and 𝑜 is also available (gauss_spline). The following code
and Figure uses spline-filtering to compute an edge-image (the second-derivative of a smoothed spline) of Lena’s face
which is an array returned by the command misc.lena. The command sepfir2d was used to apply a separable
two-dimensional FIR filter with mirror- symmetric boundary conditions to the spline coefficients. This function is
ideally suited for reconstructing samples from spline coefficients and is faster than convolve2d which convolves
arbitrary two-dimensional filters and allows for choosing mirror-symmetric boundary conditions.

>>> import numpy as np
>>> from scipy import signal, misc
>>> import matplotlib.pyplot as plt

>>> image = misc.lena().astype(np.float32)
>>> derfilt = np.array([1.0, -2, 1.0], dtype=np.float32)
>>> ck = signal.cspline2d(image, 8.0)
>>> deriv = (signal.sepfir2d(ck, derfilt, [1]) +
... signal.sepfir2d(ck, [1], derfilt))

Alternatively we could have done:

laplacian = np.array([[0,1,0], [1,-4,1], [0,1,0]], dtype=np.float32)
deriv2 = signal.convolve2d(ck,laplacian,mode='same',boundary='symm')

>>> plt.figure()
>>> plt.imshow(image)
>>> plt.gray()
>>> plt.title('Original image')
>>> plt.show()

0 100 200 300 400 500

0

100

200

300

400

500

Original image

>>> plt.figure()
>>> plt.imshow(deriv)
>>> plt.gray()
>>> plt.title('Output of spline edge filter')
>>> plt.show()

1.8. Signal Processing (scipy.signal) 53

SciPy Reference Guide, Release 0.16.0

0 100 200 300 400 500

0

100

200

300

400

500

Output of spline edge filter

1.8.2 Filtering

Filtering is a generic name for any system that modifies an input signal in some way. In SciPy a signal can be thought
of as a Numpy array. There are different kinds of filters for different kinds of operations. There are two broad kinds
of filtering operations: linear and non-linear. Linear filters can always be reduced to multiplication of the flattened
Numpy array by an appropriate matrix resulting in another flattened Numpy array. Of course, this is not usually the
best way to compute the filter as the matrices and vectors involved may be huge. For example filtering a 512 × 512
image with this method would require multiplication of a 5122×5122 matrix with a 5122 vector. Just trying to store the
5122 × 5122 matrix using a standard Numpy array would require 68, 719, 476, 736 elements. At 4 bytes per element
this would require 256GB of memory. In most applications most of the elements of this matrix are zero and a different
method for computing the output of the filter is employed.

Convolution/Correlation

Many linear filters also have the property of shift-invariance. This means that the filtering operation is the same at
different locations in the signal and it implies that the filtering matrix can be constructed from knowledge of one row
(or column) of the matrix alone. In this case, the matrix multiplication can be accomplished using Fourier transforms.

Let 𝑥 [𝑛] define a one-dimensional signal indexed by the integer 𝑛. Full convolution of two one-dimensional signals
can be expressed as

𝑦 [𝑛] =

∞∑︁
𝑘=−∞

𝑥 [𝑘]ℎ [𝑛− 𝑘] .

This equation can only be implemented directly if we limit the sequences to finite support sequences that can be stored
in a computer, choose 𝑛 = 0 to be the starting point of both sequences, let 𝐾 + 1 be that value for which 𝑦 [𝑛] = 0
for all 𝑛 > 𝐾 + 1 and 𝑀 + 1 be that value for which 𝑥 [𝑛] = 0 for all 𝑛 > 𝑀 + 1 , then the discrete convolution
expression is

𝑦 [𝑛] =

min(𝑛,𝐾)∑︁
𝑘=max(𝑛−𝑀,0)

𝑥 [𝑘]ℎ [𝑛− 𝑘] .

54 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

For convenience assume 𝐾 ≥ 𝑀. Then, more explicitly the output of this operation is

𝑦 [0] = 𝑥 [0]ℎ [0]

𝑦 [1] = 𝑥 [0]ℎ [1] + 𝑥 [1]ℎ [0]

𝑦 [2] = 𝑥 [0]ℎ [2] + 𝑥 [1]ℎ [1] + 𝑥 [2]ℎ [0]

...
...

...
𝑦 [𝑀] = 𝑥 [0]ℎ [𝑀] + 𝑥 [1]ℎ [𝑀 − 1] + · · · + 𝑥 [𝑀]ℎ [0]

𝑦 [𝑀 + 1] = 𝑥 [1]ℎ [𝑀] + 𝑥 [2]ℎ [𝑀 − 1] + · · · + 𝑥 [𝑀 + 1]ℎ [0]

...
...

...
𝑦 [𝐾] = 𝑥 [𝐾 −𝑀]ℎ [𝑀] + · · · + 𝑥 [𝐾]ℎ [0]

𝑦 [𝐾 + 1] = 𝑥 [𝐾 + 1 −𝑀]ℎ [𝑀] + · · · + 𝑥 [𝐾]ℎ [1]

...
...

...
𝑦 [𝐾 + 𝑀 − 1] = 𝑥 [𝐾 − 1]ℎ [𝑀] + 𝑥 [𝐾]ℎ [𝑀 − 1]

𝑦 [𝐾 + 𝑀] = 𝑥 [𝐾]ℎ [𝑀] .

Thus, the full discrete convolution of two finite sequences of lengths 𝐾 + 1 and 𝑀 + 1 respectively results in a finite
sequence of length 𝐾 + 𝑀 + 1 = (𝐾 + 1) + (𝑀 + 1) − 1.

One dimensional convolution is implemented in SciPy with the function convolve. This function takes as inputs
the signals 𝑥, ℎ , and an optional flag and returns the signal 𝑦. The optional flag allows for specification of which part
of the output signal to return. The default value of ‘full’ returns the entire signal. If the flag has a value of ‘same’ then
only the middle 𝐾 values are returned starting at 𝑦

[︀⌊︀
𝑀−1

2

⌋︀]︀
so that the output has the same length as the first input. If

the flag has a value of ‘valid’ then only the middle 𝐾 −𝑀 + 1 = (𝐾 + 1) − (𝑀 + 1) + 1 output values are returned
where 𝑧 depends on all of the values of the smallest input from ℎ [0] to ℎ [𝑀] . In other words only the values 𝑦 [𝑀] to
𝑦 [𝐾] inclusive are returned.

The code below shows a simple example for convolution of 2 sequences

>>> x = np.array([1.0, 2.0, 3.0])
>>> h = np.array([0.0, 1.0, 0.0, 0.0, 0.0])
>>> signal.convolve(x, h)
[0. 1. 2. 3. 0. 0. 0.]
>>> signal.convolve(x, h, 'same')
[2. 3. 0.]

This same function convolve can actually take 𝑁 -dimensional arrays as inputs and will return the 𝑁 -dimensional
convolution of the two arrays as is shown in the code example below. The same input flags are available for that case
as well.

>>> x = np.array([[1., 1., 0., 0.],[1., 1., 0., 0.],[0., 0., 0., 0.],[0., 0., 0., 0.]])
>>> h = np.array([[1., 0., 0., 0.],[0., 0., 0., 0.],[0., 0., 1., 0.],[0., 0., 0., 0.]])
>>> signal.convolve(x, h)
[[1. 1. 0. 0. 0. 0. 0.]
[1. 1. 0. 0. 0. 0. 0.]
[0. 0. 1. 1. 0. 0. 0.]
[0. 0. 1. 1. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0.]]

Correlation is very similar to convolution except for the minus sign becomes a plus sign. Thus

𝑤 [𝑛] =

∞∑︁
𝑘=−∞

𝑦 [𝑘]𝑥 [𝑛 + 𝑘]

1.8. Signal Processing (scipy.signal) 55

SciPy Reference Guide, Release 0.16.0

is the (cross) correlation of the signals 𝑦 and 𝑥. For finite-length signals with 𝑦 [𝑛] = 0 outside of the range [0,𝐾] and
𝑥 [𝑛] = 0 outside of the range [0,𝑀] , the summation can simplify to

𝑤 [𝑛] =

min(𝐾,𝑀−𝑛)∑︁
𝑘=max(0,−𝑛)

𝑦 [𝑘]𝑥 [𝑛 + 𝑘] .

Assuming again that 𝐾 ≥ 𝑀 this is

𝑤 [−𝐾] = 𝑦 [𝐾]𝑥 [0]

𝑤 [−𝐾 + 1] = 𝑦 [𝐾 − 1]𝑥 [0] + 𝑦 [𝐾]𝑥 [1]

...
...

...
𝑤 [𝑀 −𝐾] = 𝑦 [𝐾 −𝑀]𝑥 [0] + 𝑦 [𝐾 −𝑀 + 1]𝑥 [1] + · · · + 𝑦 [𝐾]𝑥 [𝑀]

𝑤 [𝑀 −𝐾 + 1] = 𝑦 [𝐾 −𝑀 − 1]𝑥 [0] + · · · + 𝑦 [𝐾 − 1]𝑥 [𝑀]

...
...

...
𝑤 [−1] = 𝑦 [1]𝑥 [0] + 𝑦 [2]𝑥 [1] + · · · + 𝑦 [𝑀 + 1]𝑥 [𝑀]

𝑤 [0] = 𝑦 [0]𝑥 [0] + 𝑦 [1]𝑥 [1] + · · · + 𝑦 [𝑀]𝑥 [𝑀]

𝑤 [1] = 𝑦 [0]𝑥 [1] + 𝑦 [1]𝑥 [2] + · · · + 𝑦 [𝑀 − 1]𝑥 [𝑀]

𝑤 [2] = 𝑦 [0]𝑥 [2] + 𝑦 [1]𝑥 [3] + · · · + 𝑦 [𝑀 − 2]𝑥 [𝑀]

...
...

...
𝑤 [𝑀 − 1] = 𝑦 [0]𝑥 [𝑀 − 1] + 𝑦 [1]𝑥 [𝑀]

𝑤 [𝑀] = 𝑦 [0]𝑥 [𝑀] .

The SciPy function correlate implements this operation. Equivalent flags are available for this operation to return
the full 𝐾 + 𝑀 + 1 length sequence (‘full’) or a sequence with the same size as the largest sequence starting at
𝑤
[︀
−𝐾 +

⌊︀
𝑀−1

2

⌋︀]︀
(‘same’) or a sequence where the values depend on all the values of the smallest sequence (‘valid’).

This final option returns the 𝐾 −𝑀 + 1 values 𝑤 [𝑀 −𝐾] to 𝑤 [0] inclusive.

The function correlate can also take arbitrary 𝑁 -dimensional arrays as input and return the 𝑁 -dimensional
convolution of the two arrays on output.

When 𝑁 = 2, correlate and/or convolve can be used to construct arbitrary image filters to perform actions
such as blurring, enhancing, and edge-detection for an image.

>>> import numpy as np
>>> from scipy import signal, misc
>>> import matplotlib.pyplot as plt

>>> image = misc.lena()
>>> w = np.zeros((50, 50))
>>> w[0][0] = 1.0
>>> w[49][25] = 1.0
>>> image_new = signal.fftconvolve(image, w)

>>> plt.figure()
>>> plt.imshow(image)
>>> plt.gray()
>>> plt.title('Original image')
>>> plt.show()

56 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

0 100 200 300 400 500

0

100

200

300

400

500

Original image

>>> plt.figure()
>>> plt.imshow(image_new)
>>> plt.gray()
>>> plt.title('Filtered image')
>>> plt.show()

0 100 200 300 400 500

0

100

200

300

400

500

Filtered image

Using convolve in the above example would take quite long to run. Calculating the convolution in the time domain
as above is mainly used for filtering when one of the signals is much smaller than the other (𝐾 ≫ 𝑀), otherwise
linear filtering is more efficiently calculated in the frequency domain provided by the function fftconvolve.

If the filter function 𝑤[𝑛,𝑚] can be factored according to

ℎ[𝑛,𝑚] = ℎ1[𝑛]ℎ2[𝑚],

convolution can be calculated by means of the function sepfir2d. As an example we consider a Gaussian filter
gaussian

ℎ[𝑛,𝑚] ∝ 𝑒−𝑥2−𝑦2

= 𝑒−𝑥2

𝑒−𝑦2

1.8. Signal Processing (scipy.signal) 57

SciPy Reference Guide, Release 0.16.0

which is often used for blurring.

>>> import numpy as np
>>> from scipy import signal, misc
>>> import matplotlib.pyplot as plt

>>> image = misc.lena()
>>> w = signal.gaussian(50, 5.0)
>>> image_new = signal.sepfir2d(image, w, w)

>>> plt.figure()
>>> plt.imshow(image)
>>> plt.gray()
>>> plt.title('Original image')
>>> plt.show()

0 100 200 300 400 500

0

100

200

300

400

500

Original image

>>> plt.figure()
>>> plt.imshow(image_new)
>>> plt.gray()
>>> plt.title('Filtered image')
>>> plt.show()

58 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

0 100 200 300 400 500

0

100

200

300

400

500

Filtered image

Difference-equation filtering

A general class of linear one-dimensional filters (that includes convolution filters) are filters described by the difference
equation

𝑁∑︁
𝑘=0

𝑎𝑘𝑦 [𝑛− 𝑘] =

𝑀∑︁
𝑘=0

𝑏𝑘𝑥 [𝑛− 𝑘]

where 𝑥 [𝑛] is the input sequence and 𝑦 [𝑛] is the output sequence. If we assume initial rest so that 𝑦 [𝑛] = 0 for 𝑛 < 0
, then this kind of filter can be implemented using convolution. However, the convolution filter sequence ℎ [𝑛] could
be infinite if 𝑎𝑘 ̸= 0 for 𝑘 ≥ 1. In addition, this general class of linear filter allows initial conditions to be placed on
𝑦 [𝑛] for 𝑛 < 0 resulting in a filter that cannot be expressed using convolution.

The difference equation filter can be thought of as finding 𝑦 [𝑛] recursively in terms of it’s previous values

𝑎0𝑦 [𝑛] = −𝑎1𝑦 [𝑛− 1] − · · · − 𝑎𝑁𝑦 [𝑛−𝑁] + · · · + 𝑏0𝑥 [𝑛] + · · · + 𝑏𝑀𝑥 [𝑛−𝑀] .

Often 𝑎0 = 1 is chosen for normalization. The implementation in SciPy of this general difference equation filter is
a little more complicated then would be implied by the previous equation. It is implemented so that only one signal
needs to be delayed. The actual implementation equations are (assuming 𝑎0 = 1).

𝑦 [𝑛] = 𝑏0𝑥 [𝑛] + 𝑧0 [𝑛− 1]

𝑧0 [𝑛] = 𝑏1𝑥 [𝑛] + 𝑧1 [𝑛− 1] − 𝑎1𝑦 [𝑛]

𝑧1 [𝑛] = 𝑏2𝑥 [𝑛] + 𝑧2 [𝑛− 1] − 𝑎2𝑦 [𝑛]

...
...

...
𝑧𝐾−2 [𝑛] = 𝑏𝐾−1𝑥 [𝑛] + 𝑧𝐾−1 [𝑛− 1] − 𝑎𝐾−1𝑦 [𝑛]

𝑧𝐾−1 [𝑛] = 𝑏𝐾𝑥 [𝑛] − 𝑎𝐾𝑦 [𝑛] ,

where 𝐾 = max (𝑁,𝑀) . Note that 𝑏𝐾 = 0 if 𝐾 > 𝑀 and 𝑎𝐾 = 0 if 𝐾 > 𝑁. In this way, the output at time 𝑛
depends only on the input at time 𝑛 and the value of 𝑧0 at the previous time. This can always be calculated as long as
the 𝐾 values 𝑧0 [𝑛− 1] . . . 𝑧𝐾−1 [𝑛− 1] are computed and stored at each time step.

The difference-equation filter is called using the command lfilter in SciPy. This command takes as inputs the
vector 𝑏, the vector, 𝑎, a signal 𝑥 and returns the vector 𝑦 (the same length as 𝑥) computed using the equation given

1.8. Signal Processing (scipy.signal) 59

SciPy Reference Guide, Release 0.16.0

above. If 𝑥 is 𝑁 -dimensional, then the filter is computed along the axis provided. If, desired, initial conditions
providing the values of 𝑧0 [−1] to 𝑧𝐾−1 [−1] can be provided or else it will be assumed that they are all zero. If initial
conditions are provided, then the final conditions on the intermediate variables are also returned. These could be used,
for example, to restart the calculation in the same state.

Sometimes it is more convenient to express the initial conditions in terms of the signals 𝑥 [𝑛] and 𝑦 [𝑛] . In other words,
perhaps you have the values of 𝑥 [−𝑀] to 𝑥 [−1] and the values of 𝑦 [−𝑁] to 𝑦 [−1] and would like to determine what
values of 𝑧𝑚 [−1] should be delivered as initial conditions to the difference-equation filter. It is not difficult to show
that for 0 ≤ 𝑚 < 𝐾,

𝑧𝑚 [𝑛] =

𝐾−𝑚−1∑︁
𝑝=0

(𝑏𝑚+𝑝+1𝑥 [𝑛− 𝑝] − 𝑎𝑚+𝑝+1𝑦 [𝑛− 𝑝]) .

Using this formula we can find the initial condition vector 𝑧0 [−1] to 𝑧𝐾−1 [−1] given initial conditions on 𝑦 (and 𝑥).
The command lfiltic performs this function.

As an example consider the following system:

𝑦[𝑛] =
1

2
𝑥[𝑛] +

1

4
𝑥[𝑛− 1] +

1

3
𝑦[𝑛− 1]

The code calculates the signal 𝑦[𝑛] for a given signal 𝑥[𝑛]; first for initial condiditions 𝑦[−1] = 0 (default case), then
for 𝑦[−1] = 2 by means of lfiltic.

>>> import numpy as np
>>> from scipy import signal

>>> x = np.array([1., 0., 0., 0.])
>>> b = np.array([1.0/2, 1.0/4])
>>> a = np.array([1.0, -1.0/3])
>>> signal.lfilter(b, a, x)
[0.5 0.41666667 0.13888889 0.0462963]
>>> zi = signal.lfiltic(b, a, y=[2.])
>>> signal.lfilter(b, a, x, zi=zi)
[1.16666667, 0.63888889, 0.21296296, 0.07098765]

Note that the output signal 𝑦[𝑛] has the same length as the length as the input signal 𝑥[𝑛].

Analysis of Linear Systems

Linear system described a linear difference equation can be fully described by the coefficient vectors a and b as was
done above; an alternative representation is to provide a factor 𝑘, 𝑁𝑧 zeros 𝑧𝑘 and 𝑁𝑝 poles 𝑝𝑘, respectively, to describe
the system by means of its transfer function 𝐻(𝑧) according to

𝐻(𝑧) = 𝑘
(𝑧 − 𝑧1)(𝑧 − 𝑧2)...(𝑧 − 𝑧𝑁𝑧

)

(𝑧 − 𝑝1)(𝑧 − 𝑝2)...(𝑧 − 𝑝𝑁𝑝)

This alternative representation can be obtain wit hthe scipy function tf2zpk; the inverse is provided by zpk2tf.

For the example from above we have

>>> b = np.array([1.0/2, 1.0/4])
>>> a = np.array([1.0, -1.0/3])
>>> signal.tf2zpk(b, a)
[-0.5] [0.33333333] 0.5

i.e. the system has a zero at 𝑧 = −1/2 and a pole at 𝑧 = 1/3.

The scipy function freqz allows calculation of the frequency response of a system described by the coeffcients 𝑎𝑘
and 𝑏𝑘. See the help of the freqz function of a comprehensive example.

60 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Filter Design

Time-discrete filters can be classified into finite response (FIR) filters and infinite response (IIR) filters. FIR filters pro-
vide a linear phase response, whereas IIR filters do not exhibit this behaviour. Scipy provides functions for designing
both types of filters.

FIR Filter

The function firwin designs filters according to the window method. Depending on the provided arguments, the
function returns different filter types (e.g. low-pass, band-pass...).

The example below designs a low-pass and a band-stop filter, respectively.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b1 = signal.firwin(40, 0.5)
>>> b2 = signal.firwin(41, [0.3, 0.8])
>>> w1, h1 = signal.freqz(b1)
>>> w2, h2 = signal.freqz(b2)

>>> plt.title('Digital filter frequency response')
>>> plt.plot(w1, 20*np.log10(np.abs(h1)), 'b')
>>> plt.plot(w2, 20*np.log10(np.abs(h2)), 'r')
>>> plt.ylabel('Amplitude Response (dB)')
>>> plt.xlabel('Frequency (rad/sample)')
>>> plt.grid()
>>> plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Frequency (rad/sample)

140
120
100
80
60
40
20
0

20

Am
pl

itu
de

 R
es

po
ns

e (
dB

)

Digital filter frequency response

Note that firwin uses per default a normalized frequency defined such that the value 1 corresponds to the Nyquist
frequency, whereas the function freqz is defined such that the value 𝜋 corresponds to the Nyquist frequency.

The function firwin2 allows design of almost arbitrary frequency responses by specifying an array of corner fre-
quencies and corresponding gains, respectively.

The example below designs a filter with such an arbitrary amplitude response.

1.8. Signal Processing (scipy.signal) 61

SciPy Reference Guide, Release 0.16.0

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b = signal.firwin2(150, [0.0, 0.3, 0.6, 1.0], [1.0, 2.0, 0.5, 0.0])
>>> w, h = signal.freqz(b)

>>> plt.title('Digital filter frequency response')
>>> plt.plot(w, np.abs(h))
>>> plt.title('Digital filter frequency response')
>>> plt.ylabel('Amplitude Response')
>>> plt.xlabel('Frequency (rad/sample)')
>>> plt.grid()
>>> plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Frequency (rad/sample)

0.0

0.5

1.0

1.5

2.0

Am
pl

itu
de

 R
es

po
ns

e

Digital filter frequency response

Note the linear scaling of the y-axis and the different definition of the Nyquist frequency in firwin2 and freqz (as
explained above).

IIR Filter

Scipy provides two functions to directly design IIR iirdesign and iirfilter where the filter type (e.g. elliptic)
is passed as an argument and several more filter design functions for specific filter types; e.g. ellip.

The example below designs an elliptic low-pass filter with defined passband and stopband ripple, respectively. Note
the much lower filter order (order 4) compared with the FIR filters from the examples above in order to reach the same
stop-band attenuation of ≈ 60 dB.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.iirfilter(4, Wn=0.2, rp=5, rs=60, btype='lowpass', ftype='ellip')
>>> w, h = signal.freqz(b, a)

>>> plt.title('Digital filter frequency response')
>>> plt.plot(w, 20*np.log10(np.abs(h)))
>>> plt.title('Digital filter frequency response')
>>> plt.ylabel('Amplitude Response [dB]')

62 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> plt.xlabel('Frequency (rad/sample)')
>>> plt.grid()
>>> plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Frequency (rad/sample)

120

100

80

60

40

20

0

20

Am
pl

itu
de

 R
es

po
ns

e [
dB

]

Digital filter frequency response

Other filters

The signal processing package provides many more filters as well.

Median Filter

A median filter is commonly applied when noise is markedly non-Gaussian or when it is desired to preserve edges. The
median filter works by sorting all of the array pixel values in a rectangular region surrounding the point of interest.
The sample median of this list of neighborhood pixel values is used as the value for the output array. The sample
median is the middle array value in a sorted list of neighborhood values. If there are an even number of elements in
the neighborhood, then the average of the middle two values is used as the median. A general purpose median filter
that works on N-dimensional arrays is medfilt . A specialized version that works only for two-dimensional arrays
is available as medfilt2d .

Order Filter

A median filter is a specific example of a more general class of filters called order filters. To compute the output at a
particular pixel, all order filters use the array values in a region surrounding that pixel. These array values are sorted
and then one of them is selected as the output value. For the median filter, the sample median of the list of array values
is used as the output. A general order filter allows the user to select which of the sorted values will be used as the
output. So, for example one could choose to pick the maximum in the list or the minimum. The order filter takes an
additional argument besides the input array and the region mask that specifies which of the elements in the sorted list
of neighbor array values should be used as the output. The command to perform an order filter is order_filter.

Wiener filter

The Wiener filter is a simple deblurring filter for denoising images. This is not the Wiener filter commonly described
in image reconstruction problems but instead it is a simple, local-mean filter. Let 𝑥 be the input signal, then the output
is

𝑦 =

{︃
𝜎2

𝜎2
𝑥
𝑚𝑥 +

(︁
1 − 𝜎2

𝜎2
𝑥

)︁
𝑥 𝜎2

𝑥 ≥ 𝜎2,

𝑚𝑥 𝜎2
𝑥 < 𝜎2,

1.8. Signal Processing (scipy.signal) 63

SciPy Reference Guide, Release 0.16.0

where 𝑚𝑥 is the local estimate of the mean and 𝜎2
𝑥 is the local estimate of the variance. The window for these estimates

is an optional input parameter (default is 3 × 3). The parameter 𝜎2 is a threshold noise parameter. If 𝜎 is not given
then it is estimated as the average of the local variances.

Hilbert filter

The Hilbert transform constructs the complex-valued analytic signal from a real signal. For example if 𝑥 = cos𝜔𝑛
then 𝑦 = hilbert (𝑥) would return (except near the edges) 𝑦 = exp (𝑗𝜔𝑛) . In the frequency domain, the hilbert
transform performs

𝑌 = 𝑋 ·𝐻

where 𝐻 is 2 for positive frequencies, 0 for negative frequencies and 1 for zero-frequencies.

Analog Filter Design

The functions iirdesign, iirfilter, and the filter design functions for specific filter types (e.g. ellip) all
have a flag analog which allows design of analog filters as well.

The example below designs an analog (IIR) filter, obtains via tf2zpk the poles and zeros and plots them in the
complex s-plane. The zeros at 𝜔 ≈ 150 and 𝜔 ≈ 300 can be clearly seen in the amplitude response.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.iirdesign(wp=100, ws=200, gpass=2.0, gstop=40., analog=True)
>>> w, h = signal.freqs(b, a)

>>> plt.title('Analog filter frequency response')
>>> plt.plot(w, 20*np.log10(np.abs(h)))
>>> plt.ylabel('Amplitude Response [dB]')
>>> plt.xlabel('Frequency')
>>> plt.grid()
>>> plt.show()

0 200 400 600 800 1000
Frequency

80
70
60
50
40
30
20
10
0

Am
pl

itu
de

 R
es

po
ns

e [
dB

]

Analog filter frequency response

64 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> z, p, k = signal.tf2zpk(b, a)

>>> plt.plot(np.real(z), np.imag(z), 'xb')
>>> plt.plot(np.real(p), np.imag(p), 'or')
>>> plt.legend(['Zeros', 'Poles'], loc=2)

>>> plt.title('Pole / Zero Plot')
>>> plt.ylabel('Real')
>>> plt.xlabel('Imaginary')
>>> plt.grid()
>>> plt.show()

30 25 20 15 10 5 0 5
Imaginary

400
300
200
100

0
100
200
300
400

Re
al

Pole / Zero Plot

Zeros
Poles

1.8.3 Spectral Analysis

Periodogram Measurements

The scipy function periodogram provides a method to estimate the spectral density using the periodogram method.

The example below calculates the periodogram of a sine signal in white Gaussian noise.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> fs = 10e3
>>> N = 1e5
>>> amp = 2*np.sqrt(2)
>>> freq = 1270.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> x = amp*np.sin(2*np.pi*freq*time)
>>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape)

>>> f, Pper_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum')

1.8. Signal Processing (scipy.signal) 65

SciPy Reference Guide, Release 0.16.0

>>> plt.semilogy(f, Pper_spec)
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('PSD')
>>> plt.grid()
>>> plt.show()

0 1000 2000 3000 4000 5000
frequency [Hz]

10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
101

PS
D

Spectral Analysis using Welch’s Method

An improved method, especially with respect to noise immunity, is Welch’s method which is implemented by the scipy
function welch.

The example below estimates the spectrum using Welch’s method and uses the same parameters as the example above.
Note the much smoother noise floor of the spectogram.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> fs = 10e3
>>> N = 1e5
>>> amp = 2*np.sqrt(2)
>>> freq = 1270.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> x = amp*np.sin(2*np.pi*freq*time)
>>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape)

>>> f, Pwelch_spec = signal.welch(x, fs, scaling='spectrum')

>>> plt.semilogy(f, Pwelch_spec)
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('PSD')
>>> plt.grid()
>>> plt.show()

66 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

0 1000 2000 3000 4000 5000
frequency [Hz]

10 2

10 1

100

101
PS

D

Lomb-Scargle Periodograms (lombscargle)

Least-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum, based on a least squares fit
of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science,
generally boosts long-periodic noise in long gapped records; LSSA mitigates such problems.

The Lomb-Scargle method performs spectral analysis on unevenly sampled data and is known to be a powerful way
to find, and test the significance of, weak periodic signals.

For a time series comprising 𝑁𝑡 measurements 𝑋𝑗 ≡ 𝑋(𝑡𝑗) sampled at times 𝑡𝑗 where (𝑗 = 1, . . . , 𝑁𝑡), assumed
to have been scaled and shifted such that its mean is zero and its variance is unity, the normalized Lomb-Scargle
periodogram at frequency 𝑓 is

𝑃𝑛(𝑓)
1

2

⎧⎪⎨⎪⎩
[︁∑︀𝑁𝑡

𝑗 𝑋𝑗 cos𝜔(𝑡𝑗 − 𝜏)
]︁2

∑︀𝑁𝑡

𝑗 cos2 𝜔(𝑡𝑗 − 𝜏)
+

[︁∑︀𝑁𝑡

𝑗 𝑋𝑗 sin𝜔(𝑡𝑗 − 𝜏)
]︁2

∑︀𝑁𝑡

𝑗 sin2 𝜔(𝑡𝑗 − 𝜏)

⎫⎪⎬⎪⎭ .

Here, 𝜔 ≡ 2𝜋𝑓 is the angular frequency. The frequency dependent time offset 𝜏 is given by

tan 2𝜔𝜏 =

∑︀𝑁𝑡

𝑗 sin 2𝜔𝑡𝑗∑︀𝑁𝑡

𝑗 cos 2𝜔𝑡𝑗
.

The lombscargle function calculates the periodogram using a slightly modified algorithm due to Townsend 1 which
allows the periodogram to be calculated using only a single pass through the input arrays for each frequency.

The equation is refactored as:

𝑃𝑛(𝑓) =
1

2

[︂
(𝑐𝜏𝑋𝐶 + 𝑠𝜏𝑋𝑆)2

𝑐2𝜏𝐶𝐶 + 2𝑐𝜏𝑠𝜏𝐶𝑆 + 𝑠2𝜏𝑆𝑆
+

(𝑐𝜏𝑋𝑆 − 𝑠𝜏𝑋𝐶)2

𝑐2𝜏𝑆𝑆 − 2𝑐𝜏𝑠𝜏𝐶𝑆 + 𝑠2𝜏𝐶𝐶

]︂
and

tan 2𝜔𝜏 =
2𝐶𝑆

𝐶𝐶 − 𝑆𝑆
.

1 R.H.D. Townsend, “Fast calculation of the Lomb-Scargle periodogram using graphics processing units.”, The Astrophysical Journal Supple-
ment Series, vol 191, pp. 247-253, 2010

1.8. Signal Processing (scipy.signal) 67

SciPy Reference Guide, Release 0.16.0

Here,

𝑐𝜏 = cos𝜔𝜏, 𝑠𝜏 = sin𝜔𝜏

while the sums are

𝑋𝐶 =

𝑁𝑡∑︁
𝑗

𝑋𝑗 cos𝜔𝑡𝑗

𝑋𝑆 =

𝑁𝑡∑︁
𝑗

𝑋𝑗 sin𝜔𝑡𝑗

𝐶𝐶 =

𝑁𝑡∑︁
𝑗

cos2 𝜔𝑡𝑗

𝑆𝑆 =

𝑁𝑡∑︁
𝑗

sin2 𝜔𝑡𝑗

𝐶𝑆 =

𝑁𝑡∑︁
𝑗

cos𝜔𝑡𝑗 sin𝜔𝑡𝑗 .

This requires 𝑁𝑓 (2𝑁𝑡 + 3) trigonometric function evaluations giving a factor of ∼ 2 speed increase over the straight-
forward implementation.

1.8.4 Detrend

Scipy provides the function detrend to remove a constant or linear trend in a data series in order to see effect of
higher order.

The example below removes the constant and linear trend of a 2-nd order polynomial time series and plots the remain-
ing signal components.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> t = np.linspace(-10, 10, 20)
>>> y = 1 + t + 0.01*t**2
>>> yconst = signal.detrend(y, type='constant')
>>> ylin = signal.detrend(y, type='linear')

>>> plt.plot(t, y, '-rx')
>>> plt.plot(t, yconst, '-bo')
>>> plt.plot(t, ylin, '-k+')
>>> plt.grid()
>>> plt.legend(['signal', 'const. detrend', 'linear detrend'])
>>> plt.show()

68 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

10 5 0 5 10
10

5

0

5

10

15
signal
const. detrend
linear detrend

References

Some further reading and related software:

1.9 Linear Algebra (scipy.linalg)

When SciPy is built using the optimized ATLAS LAPACK and BLAS libraries, it has very fast linear algebra capabil-
ities. If you dig deep enough, all of the raw lapack and blas libraries are available for your use for even more speed.
In this section, some easier-to-use interfaces to these routines are described.

All of these linear algebra routines expect an object that can be converted into a 2-dimensional array. The output of
these routines is also a two-dimensional array.

scipy.linalg contains all the functions in numpy.linalg. plus some other more advanced ones not contained
in numpy.linalg

Another advantage of using scipy.linalg over numpy.linalg is that it is always compiled with
BLAS/LAPACK support, while for numpy this is optional. Therefore, the scipy version might be faster depending
on how numpy was installed.

Therefore, unless you don’t want to add scipy as a dependency to your numpy program, use scipy.linalg
instead of numpy.linalg

1.9.1 numpy.matrix vs 2D numpy.ndarray

The classes that represent matrices, and basic operations such as matrix multiplications and transpose are a part of
numpy. For convenience, we summarize the differences between numpy.matrix and numpy.ndarray here.

numpy.matrix is matrix class that has a more convenient interface than numpy.ndarray for matrix operations.
This class supports for example MATLAB-like creation syntax via the, has matrix multiplication as default for the *
operator, and contains I and T members that serve as shortcuts for inverse and transpose:

>>> import numpy as np
>>> A = np.mat('[1 2;3 4]')
>>> A
matrix([[1, 2],

1.9. Linear Algebra (scipy.linalg) 69

SciPy Reference Guide, Release 0.16.0

[3, 4]])
>>> A.I
matrix([[-2. , 1.],

[1.5, -0.5]])
>>> b = np.mat('[5 6]')
>>> b
matrix([[5, 6]])
>>> b.T
matrix([[5],

[6]])
>>> A*b.T
matrix([[17],

[39]])

Despite its convenience, the use of the numpy.matrix class is discouraged, since it adds nothing that cannot be
accomplished with 2D numpy.ndarray objects, and may lead to a confusion of which class is being used. For
example, the above code can be rewritten as:

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2],[3,4]])
>>> A
array([[1, 2],

[3, 4]])
>>> linalg.inv(A)
array([[-2. , 1.],

[1.5, -0.5]])
>>> b = np.array([[5,6]]) #2D array
>>> b
array([[5, 6]])
>>> b.T
array([[5],

[6]])
>>> A*b #not matrix multiplication!
array([[5, 12],

[15, 24]])
>>> A.dot(b.T) #matrix multiplication
array([[17],

[39]])
>>> b = np.array([5,6]) #1D array
>>> b
array([5, 6])
>>> b.T #not matrix transpose!
array([5, 6])
>>> A.dot(b) #does not matter for multiplication
array([17, 39])

scipy.linalg operations can be applied equally to numpy.matrix or to 2D numpy.ndarray objects.

1.9.2 Basic routines

Finding Inverse

The inverse of a matrix A is the matrix B such that AB = I where I is the identity matrix consisting of ones down
the main diagonal. Usually B is denoted B = A−1 . In SciPy, the matrix inverse of the Numpy array, A, is obtained

70 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

using linalg.inv (A) , or using A.I if A is a Matrix. For example, let

A =

⎡⎣ 1 3 5
2 5 1
2 3 8

⎤⎦
then

A−1 =
1

25

⎡⎣ −37 9 22
14 2 −9
4 −3 1

⎤⎦ =

⎡⎣ −1.48 0.36 0.88
0.56 0.08 −0.36
0.16 −0.12 0.04

⎤⎦ .

The following example demonstrates this computation in SciPy

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2],[3,4]])
array([[1, 2],

[3, 4]])
>>> linalg.inv(A)
array([[-2. , 1.],

[1.5, -0.5]])
>>> A.dot(linalg.inv(A)) #double check
array([[1.00000000e+00, 0.00000000e+00],

[4.44089210e-16, 1.00000000e+00]])

Solving linear system

Solving linear systems of equations is straightforward using the scipy command linalg.solve. This command
expects an input matrix and a right-hand-side vector. The solution vector is then computed. An option for entering a
symmetrix matrix is offered which can speed up the processing when applicable. As an example, suppose it is desired
to solve the following simultaneous equations:

𝑥 + 3𝑦 + 5𝑧 = 10

2𝑥 + 5𝑦 + 𝑧 = 8

2𝑥 + 3𝑦 + 8𝑧 = 3

We could find the solution vector using a matrix inverse:⎡⎣ 𝑥
𝑦
𝑧

⎤⎦ =

⎡⎣ 1 3 5
2 5 1
2 3 8

⎤⎦−1 ⎡⎣ 10
8
3

⎤⎦ =
1

25

⎡⎣ −232
129
19

⎤⎦ =

⎡⎣ −9.28
5.16
0.76

⎤⎦ .

However, it is better to use the linalg.solve command which can be faster and more numerically stable. In this case it
however gives the same answer as shown in the following example:

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2],[3,4]])
>>> A
array([[1, 2],

[3, 4]])
>>> b = np.array([[5],[6]])
>>> b
array([[5],

[6]])
>>> linalg.inv(A).dot(b) #slow

1.9. Linear Algebra (scipy.linalg) 71

SciPy Reference Guide, Release 0.16.0

array([[-4.],
[4.5]]

>>> A.dot(linalg.inv(A).dot(b))-b #check
array([[8.88178420e-16],

[2.66453526e-15]])
>>> np.linalg.solve(A,b) #fast
array([[-4.],

[4.5]])
>>> A.dot(np.linalg.solve(A,b))-b #check
array([[0.],

[0.]])

Finding Determinant

The determinant of a square matrix A is often denoted |A| and is a quantity often used in linear algebra. Suppose 𝑎𝑖𝑗
are the elements of the matrix A and let 𝑀𝑖𝑗 = |A𝑖𝑗 | be the determinant of the matrix left by removing the 𝑖th row
and 𝑗th column from A . Then for any row 𝑖,

|A| =
∑︁
𝑗

(−1)
𝑖+𝑗

𝑎𝑖𝑗𝑀𝑖𝑗 .

This is a recursive way to define the determinant where the base case is defined by accepting that the determinant of a
1×1 matrix is the only matrix element. In SciPy the determinant can be calculated with linalg.det . For example,
the determinant of

A =

⎡⎣ 1 3 5
2 5 1
2 3 8

⎤⎦
is

|A| = 1

⃒⃒⃒⃒
5 1
3 8

⃒⃒⃒⃒
− 3

⃒⃒⃒⃒
2 1
2 8

⃒⃒⃒⃒
+ 5

⃒⃒⃒⃒
2 5
2 3

⃒⃒⃒⃒
= 1 (5 · 8 − 3 · 1) − 3 (2 · 8 − 2 · 1) + 5 (2 · 3 − 2 · 5) = −25.

In SciPy this is computed as shown in this example:

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2],[3,4]])
>>> A
array([[1, 2],

[3, 4]])
>>> linalg.det(A)
-2.0

Computing norms

Matrix and vector norms can also be computed with SciPy. A wide range of norm definitions are available using
different parameters to the order argument of linalg.norm . This function takes a rank-1 (vectors) or a rank-2
(matrices) array and an optional order argument (default is 2). Based on these inputs a vector or matrix norm of the
requested order is computed.

72 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

For vector x , the order parameter can be any real number including inf or -inf. The computed norm is

‖x‖ =

⎧⎪⎨⎪⎩
max |𝑥𝑖| ord = inf
min |𝑥𝑖| ord = −inf(︁∑︀
𝑖 |𝑥𝑖|ord

)︁1/ord
|ord| < ∞.

For matrix A the only valid values for norm are ±2,±1, ± inf, and ‘fro’ (or ‘f’) Thus,

‖A‖ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

max𝑖

∑︀
𝑗 |𝑎𝑖𝑗 | ord = inf

min𝑖

∑︀
𝑗 |𝑎𝑖𝑗 | ord = −inf

max𝑗

∑︀
𝑖 |𝑎𝑖𝑗 | ord = 1

min𝑗

∑︀
𝑖 |𝑎𝑖𝑗 | ord = −1

max𝜎𝑖 ord = 2
min𝜎𝑖 ord = −2√︀

trace (A𝐻A) ord = ’fro’

where 𝜎𝑖 are the singular values of A .

Examples:

>>> import numpy as np
>>> from scipy import linalg
>>> A=np.array([[1,2],[3,4]])
>>> A
array([[1, 2],

[3, 4]])
>>> linalg.norm(A)
5.4772255750516612
>>> linalg.norm(A,'fro') # frobenius norm is the default
5.4772255750516612
>>> linalg.norm(A,1) # L1 norm (max column sum)
6
>>> linalg.norm(A,-1)
4
>>> linalg.norm(A,inf) # L inf norm (max row sum)
7

Solving linear least-squares problems and pseudo-inverses

Linear least-squares problems occur in many branches of applied mathematics. In this problem a set of linear scaling
coefficients is sought that allow a model to fit data. In particular it is assumed that data 𝑦𝑖 is related to data x𝑖 through
a set of coefficients 𝑐𝑗 and model functions 𝑓𝑗 (x𝑖) via the model

𝑦𝑖 =
∑︁
𝑗

𝑐𝑗𝑓𝑗 (x𝑖) + 𝜖𝑖

where 𝜖𝑖 represents uncertainty in the data. The strategy of least squares is to pick the coefficients 𝑐𝑗 to minimize

𝐽 (c) =
∑︁
𝑖

⃒⃒⃒⃒
⃒⃒𝑦𝑖 −∑︁

𝑗

𝑐𝑗𝑓𝑗 (𝑥𝑖)

⃒⃒⃒⃒
⃒⃒
2

.

Theoretically, a global minimum will occur when

𝜕𝐽

𝜕𝑐*𝑛
= 0 =

∑︁
𝑖

⎛⎝𝑦𝑖 −
∑︁
𝑗

𝑐𝑗𝑓𝑗 (𝑥𝑖)

⎞⎠ (−𝑓*
𝑛 (𝑥𝑖))

1.9. Linear Algebra (scipy.linalg) 73

SciPy Reference Guide, Release 0.16.0

or ∑︁
𝑗

𝑐𝑗
∑︁
𝑖

𝑓𝑗 (𝑥𝑖) 𝑓
*
𝑛 (𝑥𝑖) =

∑︁
𝑖

𝑦𝑖𝑓
*
𝑛 (𝑥𝑖)

A𝐻Ac = A𝐻y

where

{A}𝑖𝑗 = 𝑓𝑗 (𝑥𝑖) .

When AHA is invertible, then

c =
(︀
A𝐻A

)︀−1
A𝐻y = A†y

where A† is called the pseudo-inverse of A. Notice that using this definition of A the model can be written

y = Ac + 𝜖.

The command linalg.lstsq will solve the linear least squares problem for c given A and y . In addition
linalg.pinv or linalg.pinv2 (uses a different method based on singular value decomposition) will find A†

given A.

The following example and figure demonstrate the use of linalg.lstsq and linalg.pinv for solving a data-
fitting problem. The data shown below were generated using the model:

𝑦𝑖 = 𝑐1𝑒
−𝑥𝑖 + 𝑐2𝑥𝑖

where 𝑥𝑖 = 0.1𝑖 for 𝑖 = 1 . . . 10 , 𝑐1 = 5 , and 𝑐2 = 4. Noise is added to 𝑦𝑖 and the coefficients 𝑐1 and 𝑐2 are estimated
using linear least squares.

>>> import numpy as np
>>> from scipy import linalg
>>> import matplotlib.pyplot as plt

>>> c1, c2 = 5.0, 2.0
>>> i = np.r_[1:11]
>>> xi = 0.1*i
>>> yi = c1*np.exp(-xi) + c2*xi
>>> zi = yi + 0.05 * np.max(yi) * np.random.randn(len(yi))

>>> A = np.c_[np.exp(-xi)[:, np.newaxis], xi[:, np.newaxis]]
>>> c, resid, rank, sigma = linalg.lstsq(A, zi)

>>> xi2 = np.r_[0.1:1.0:100j]
>>> yi2 = c[0]*np.exp(-xi2) + c[1]*xi2

>>> plt.plot(xi,zi,'x',xi2,yi2)
>>> plt.axis([0,1.1,3.0,5.5])
>>> plt.xlabel('x_i')
>>> plt.title('Data fitting with linalg.lstsq')
>>> plt.show()

74 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

0.0 0.2 0.4 0.6 0.8 1.0
xi

3.0

3.5

4.0

4.5

5.0

5.5
Data fitting with linalg.lstsq

Generalized inverse

The generalized inverse is calculated using the command linalg.pinv or linalg.pinv2. These two commands
differ in how they compute the generalized inverse. The first uses the linalg.lstsq algorithm while the second uses
singular value decomposition. Let A be an 𝑀 ×𝑁 matrix, then if 𝑀 > 𝑁 the generalized inverse is

A† =
(︀
A𝐻A

)︀−1
A𝐻

while if 𝑀 < 𝑁 matrix the generalized inverse is

A# = A𝐻
(︀
AA𝐻

)︀−1
.

In both cases for 𝑀 = 𝑁 , then

A† = A# = A−1

as long as A is invertible.

1.9.3 Decompositions

In many applications it is useful to decompose a matrix using other representations. There are several decompositions
supported by SciPy.

Eigenvalues and eigenvectors

The eigenvalue-eigenvector problem is one of the most commonly employed linear algebra operations. In one popular
form, the eigenvalue-eigenvector problem is to find for some square matrix A scalars 𝜆 and corresponding vectors v
such that

Av = 𝜆v.

For an 𝑁 ×𝑁 matrix, there are 𝑁 (not necessarily distinct) eigenvalues — roots of the (characteristic) polynomial

|A− 𝜆I| = 0.

1.9. Linear Algebra (scipy.linalg) 75

SciPy Reference Guide, Release 0.16.0

The eigenvectors, v , are also sometimes called right eigenvectors to distinguish them from another set of left eigen-
vectors that satisfy

v𝐻
𝐿 A = 𝜆v𝐻

𝐿

or

A𝐻v𝐿 = 𝜆*v𝐿.

With it’s default optional arguments, the command linalg.eig returns 𝜆 and v. However, it can also return v𝐿 and
just 𝜆 by itself (linalg.eigvals returns just 𝜆 as well).

In addition, linalg.eig can also solve the more general eigenvalue problem

Av = 𝜆Bv

A𝐻v𝐿 = 𝜆*B𝐻v𝐿

for square matrices A and B. The standard eigenvalue problem is an example of the general eigenvalue problem for
B = I. When a generalized eigenvalue problem can be solved, then it provides a decomposition of A as

A = BVΛV−1

where V is the collection of eigenvectors into columns and Λ is a diagonal matrix of eigenvalues.

By definition, eigenvectors are only defined up to a constant scale factor. In SciPy, the scaling factor for the eigenvec-
tors is chosen so that ‖v‖2 =

∑︀
𝑖 𝑣

2
𝑖 = 1.

As an example, consider finding the eigenvalues and eigenvectors of the matrix

A =

⎡⎣ 1 5 2
2 4 1
3 6 2

⎤⎦ .

The characteristic polynomial is

|A− 𝜆I| = (1 − 𝜆) [(4 − 𝜆) (2 − 𝜆) − 6] −
5 [2 (2 − 𝜆) − 3] + 2 [12 − 3 (4 − 𝜆)]

= −𝜆3 + 7𝜆2 + 8𝜆− 3.

The roots of this polynomial are the eigenvalues of A :

𝜆1 = 7.9579

𝜆2 = −1.2577

𝜆3 = 0.2997.

The eigenvectors corresponding to each eigenvalue can be found using the original equation. The eigenvectors associ-
ated with these eigenvalues can then be found.

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2],[3,4]])
>>> la,v = linalg.eig(A)
>>> l1,l2 = la
>>> print l1, l2 #eigenvalues
(-0.372281323269+0j) (5.37228132327+0j)
>>> print v[:,0] #first eigenvector
[-0.82456484 0.56576746]
>>> print v[:,1] #second eigenvector

76 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

[-0.41597356 -0.90937671]
>>> print np.sum(abs(v**2),axis=0) #eigenvectors are unitary
[1. 1.]
>>> v1 = np.array(v[:,0]).T
>>> print linalg.norm(A.dot(v1)-l1*v1) #check the computation
3.23682852457e-16

Singular value decomposition

Singular Value Decomposition (SVD) can be thought of as an extension of the eigenvalue problem to matrices that are
not square. Let A be an 𝑀 ×𝑁 matrix with 𝑀 and 𝑁 arbitrary. The matrices A𝐻A and AA𝐻 are square hermitian
matrices 2 of size 𝑁 ×𝑁 and 𝑀 ×𝑀 respectively. It is known that the eigenvalues of square hermitian matrices are
real and non-negative. In addition, there are at most min (𝑀,𝑁) identical non-zero eigenvalues of A𝐻A and AA𝐻 .
Define these positive eigenvalues as 𝜎2

𝑖 . The square-root of these are called singular values of A. The eigenvectors of
A𝐻A are collected by columns into an 𝑁 × 𝑁 unitary 3 matrix V while the eigenvectors of AA𝐻 are collected by
columns in the unitary matrix U , the singular values are collected in an 𝑀 × 𝑁 zero matrix Σ with main diagonal
entries set to the singular values. Then

A = UΣV𝐻

is the singular-value decomposition of A. Every matrix has a singular value decomposition. Sometimes, the singular
values are called the spectrum of A. The command linalg.svd will return U , V𝐻 , and 𝜎𝑖 as an array of the
singular values. To obtain the matrix Σ use linalg.diagsvd. The following example illustrates the use of
linalg.svd .

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2,3],[4,5,6]])
>>> A
array([[1, 2, 3],

[4, 5, 6]])
>>> M,N = A.shape
>>> U,s,Vh = linalg.svd(A)
>>> Sig = linalg.diagsvd(s,M,N)
>>> U, Vh = U, Vh
>>> U
array([[-0.3863177 , -0.92236578],

[-0.92236578, 0.3863177]])
>>> Sig
array([[9.508032 , 0. , 0.],

[0. , 0.77286964, 0.]])
>>> Vh
array([[-0.42866713, -0.56630692, -0.7039467],

[0.80596391, 0.11238241, -0.58119908],
[0.40824829, -0.81649658, 0.40824829]])

>>> U.dot(Sig.dot(Vh)) #check computation
array([[1., 2., 3.],

[4., 5., 6.]])

LU decomposition

The LU decomposition finds a representation for the 𝑀 ×𝑁 matrix A as

A = PLU

2 A hermitian matrix D satisfies D𝐻 = D.
3 A unitary matrix D satisfies D𝐻D = I = DD𝐻 so that D−1 = D𝐻 .

1.9. Linear Algebra (scipy.linalg) 77

SciPy Reference Guide, Release 0.16.0

where P is an 𝑀 ×𝑀 permutation matrix (a permutation of the rows of the identity matrix), L is in 𝑀 ×𝐾 lower
triangular or trapezoidal matrix (𝐾 = min (𝑀,𝑁)) with unit-diagonal, and U is an upper triangular or trapezoidal
matrix. The SciPy command for this decomposition is linalg.lu .

Such a decomposition is often useful for solving many simultaneous equations where the left-hand-side does not
change but the right hand side does. For example, suppose we are going to solve

Ax𝑖 = b𝑖

for many different b𝑖 . The LU decomposition allows this to be written as

PLUx𝑖 = b𝑖.

Because L is lower-triangular, the equation can be solved for Ux𝑖 and finally x𝑖 very rapidly using forward- and
back-substitution. An initial time spent factoring A allows for very rapid solution of similar systems of equa-
tions in the future. If the intent for performing LU decomposition is for solving linear systems then the command
linalg.lu_factor should be used followed by repeated applications of the command linalg.lu_solve to
solve the system for each new right-hand-side.

Cholesky decomposition

Cholesky decomposition is a special case of LU decomposition applicable to Hermitian positive definite matrices.
When A = A𝐻 and x𝐻Ax ≥ 0 for all x , then decompositions of A can be found so that

A = U𝐻U

A = LL𝐻

where L is lower-triangular and U is upper triangular. Notice that L = U𝐻 . The command linalg.cholesky
computes the cholesky factorization. For using cholesky factorization to solve systems of equations there are also
linalg.cho_factor and linalg.cho_solve routines that work similarly to their LU decomposition coun-
terparts.

QR decomposition

The QR decomposition (sometimes called a polar decomposition) works for any 𝑀 ×𝑁 array and finds an 𝑀 ×𝑀
unitary matrix Q and an 𝑀 ×𝑁 upper-trapezoidal matrix R such that

A = QR.

Notice that if the SVD of A is known then the QR decomposition can be found

A = UΣV𝐻 = QR

implies that Q = U and R = ΣV𝐻 . Note, however, that in SciPy independent algorithms are used to find QR and
SVD decompositions. The command for QR decomposition is linalg.qr .

Schur decomposition

For a square 𝑁 ×𝑁 matrix, A , the Schur decomposition finds (not-necessarily unique) matrices T and Z such that

A = ZTZ𝐻

where Z is a unitary matrix and T is either upper-triangular or quasi-upper triangular depending on whether or not a
real schur form or complex schur form is requested. For a real schur form both T and Z are real-valued when A is
real-valued. When A is a real-valued matrix the real schur form is only quasi-upper triangular because 2 × 2 blocks

78 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

extrude from the main diagonal corresponding to any complex- valued eigenvalues. The command linalg.schur
finds the Schur decomposition while the command linalg.rsf2csf converts T and Z from a real Schur form to
a complex Schur form. The Schur form is especially useful in calculating functions of matrices.

The following example illustrates the schur decomposition:

>>> from scipy import linalg
>>> A = mat('[1 3 2; 1 4 5; 2 3 6]')
>>> T,Z = linalg.schur(A)
>>> T1,Z1 = linalg.schur(A,'complex')
>>> T2,Z2 = linalg.rsf2csf(T,Z)
>>> print T
[[9.90012467 1.78947961 -0.65498528]
[0. 0.54993766 -1.57754789]
[0. 0.51260928 0.54993766]]

>>> print T2
[[9.90012467 +0.00000000e+00j -0.32436598 +1.55463542e+00j

-0.88619748 +5.69027615e-01j]
[0.00000000 +0.00000000e+00j 0.54993766 +8.99258408e-01j
1.06493862 +1.37016050e-17j]

[0.00000000 +0.00000000e+00j 0.00000000 +0.00000000e+00j
0.54993766 -8.99258408e-01j]]

>>> print abs(T1-T2) # different
[[1.24357637e-14 2.09205364e+00 6.56028192e-01]
[0.00000000e+00 4.00296604e-16 1.83223097e+00]
[0.00000000e+00 0.00000000e+00 4.57756680e-16]]

>>> print abs(Z1-Z2) # different
[[0.06833781 1.10591375 0.23662249]
[0.11857169 0.5585604 0.29617525]
[0.12624999 0.75656818 0.22975038]]

>>> T,Z,T1,Z1,T2,Z2 = map(mat,(T,Z,T1,Z1,T2,Z2))
>>> print abs(A-Z*T*Z.H) # same
[[1.11022302e-16 4.44089210e-16 4.44089210e-16]
[4.44089210e-16 1.33226763e-15 8.88178420e-16]
[8.88178420e-16 4.44089210e-16 2.66453526e-15]]

>>> print abs(A-Z1*T1*Z1.H) # same
[[1.00043248e-15 2.22301403e-15 5.55749485e-15]
[2.88899660e-15 8.44927041e-15 9.77322008e-15]
[3.11291538e-15 1.15463228e-14 1.15464861e-14]]

>>> print abs(A-Z2*T2*Z2.H) # same
[[3.34058710e-16 8.88611201e-16 4.18773089e-18]
[1.48694940e-16 8.95109973e-16 8.92966151e-16]
[1.33228956e-15 1.33582317e-15 3.55373104e-15]]

Interpolative Decomposition

scipy.linalg.interpolative contains routines for computing the interpolative decomposition (ID) of a ma-
trix. For a matrix 𝐴 ∈ 𝐶𝑚×𝑛 of rank 𝑘 ≤ min{𝑚,𝑛} this is a factorization

𝐴Π =
[︀
𝐴Π1 𝐴Π2

]︀
= 𝐴Π1

[︀
𝐼 𝑇

]︀
,

where Π = [Π1,Π2] is a permutation matrix with Π1 ∈ {0, 1}𝑛×𝑘, i.e., 𝐴Π2 = 𝐴Π1𝑇 . This can equivalently be
written as 𝐴 = 𝐵𝑃 , where 𝐵 = 𝐴Π1 and 𝑃 = [𝐼, 𝑇]ΠT are the skeleton and interpolation matrices, respectively.

See also:

scipy.linalg.interpolative — for more information.

1.9. Linear Algebra (scipy.linalg) 79

SciPy Reference Guide, Release 0.16.0

1.9.4 Matrix Functions

Consider the function 𝑓 (𝑥) with Taylor series expansion

𝑓 (𝑥) =

∞∑︁
𝑘=0

𝑓 (𝑘) (0)

𝑘!
𝑥𝑘.

A matrix function can be defined using this Taylor series for the square matrix A as

𝑓 (A) =

∞∑︁
𝑘=0

𝑓 (𝑘) (0)

𝑘!
A𝑘.

While, this serves as a useful representation of a matrix function, it is rarely the best way to calculate a matrix function.

Exponential and logarithm functions

The matrix exponential is one of the more common matrix functions. It can be defined for square matrices as

𝑒A =

∞∑︁
𝑘=0

1

𝑘!
A𝑘.

The command linalg.expm3 uses this Taylor series definition to compute the matrix exponential. Due to poor
convergence properties it is not often used.

Another method to compute the matrix exponential is to find an eigenvalue decomposition of A :

A = VΛV−1

and note that

𝑒A = V𝑒ΛV−1

where the matrix exponential of the diagonal matrix Λ is just the exponential of its elements. This method is imple-
mented in linalg.expm2 .

The preferred method for implementing the matrix exponential is to use scaling and a Padé approximation for 𝑒𝑥 .
This algorithm is implemented as linalg.expm .

The inverse of the matrix exponential is the matrix logarithm defined as the inverse of the matrix exponential.

A ≡ exp (log (A)) .

The matrix logarithm can be obtained with linalg.logm .

Trigonometric functions

The trigonometric functions sin , cos , and tan are implemented for matrices in linalg.sinm, linalg.cosm,
and linalg.tanm respectively. The matrix sin and cosine can be defined using Euler’s identity as

sin (A) =
𝑒𝑗A − 𝑒−𝑗A

2𝑗

cos (A) =
𝑒𝑗A + 𝑒−𝑗A

2
.

The tangent is

tan (𝑥) =
sin (𝑥)

cos (𝑥)
= [cos (𝑥)]

−1
sin (𝑥)

and so the matrix tangent is defined as

[cos (A)]
−1

sin (A) .

80 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Hyperbolic trigonometric functions

The hyperbolic trigonemetric functions sinh , cosh , and tanh can also be defined for matrices using the familiar
definitions:

sinh (A) =
𝑒A − 𝑒−A

2

cosh (A) =
𝑒A + 𝑒−A

2

tanh (A) = [cosh (A)]
−1

sinh (A) .

These matrix functions can be found using linalg.sinhm, linalg.coshm , and linalg.tanhm.

Arbitrary function

Finally, any arbitrary function that takes one complex number and returns a complex number can be called as a matrix
function using the command linalg.funm. This command takes the matrix and an arbitrary Python function. It
then implements an algorithm from Golub and Van Loan’s book “Matrix Computations “to compute function applied
to the matrix using a Schur decomposition. Note that the function needs to accept complex numbers as input in order
to work with this algorithm. For example the following code computes the zeroth-order Bessel function applied to a
matrix.

>>> from scipy import special, random, linalg
>>> A = random.rand(3,3)
>>> B = linalg.funm(A,lambda x: special.jv(0,x))
>>> print A
[[0.72578091 0.34105276 0.79570345]
[0.65767207 0.73855618 0.541453]
[0.78397086 0.68043507 0.4837898]]

>>> print B
[[0.72599893 -0.20545711 -0.22721101]
[-0.27426769 0.77255139 -0.23422637]
[-0.27612103 -0.21754832 0.7556849]]

>>> print linalg.eigvals(A)
[1.91262611+0.j 0.21846476+0.j -0.18296399+0.j]
>>> print special.jv(0, linalg.eigvals(A))
[0.27448286+0.j 0.98810383+0.j 0.99164854+0.j]
>>> print linalg.eigvals(B)
[0.27448286+0.j 0.98810383+0.j 0.99164854+0.j]

Note how, by virtue of how matrix analytic functions are defined, the Bessel function has acted on the matrix eigen-
values.

1.9.5 Special matrices

SciPy and NumPy provide several functions for creating special matrices that are frequently used in engineering and
science.

1.9. Linear Algebra (scipy.linalg) 81

SciPy Reference Guide, Release 0.16.0

Type Function Description
block diagonal scipy.linalg.block_diag Create a block diagonal matrix from the provided arrays.
circulant scipy.linalg.circulant Construct a circulant matrix.
companion scipy.linalg.companion Create a companion matrix.
Hadamard scipy.linalg.hadamard Construct a Hadamard matrix.
Hankel scipy.linalg.hankel Construct a Hankel matrix.
Hilbert scipy.linalg.hilbert Construct a Hilbert matrix.
Inverse Hilbert scipy.linalg.invhilbert Construct the inverse of a Hilbert matrix.
Leslie scipy.linalg.leslie Create a Leslie matrix.
Pascal scipy.linalg.pascal Create a Pascal matrix.
Toeplitz scipy.linalg.toeplitz Construct a Toeplitz matrix.
Van der Monde numpy.vander Generate a Van der Monde matrix.

For examples of the use of these functions, see their respective docstrings.

1.10 Sparse Eigenvalue Problems with ARPACK

1.10.1 Introduction

ARPACK is a Fortran package which provides routines for quickly finding a few eigenvalues/eigenvectors of large
sparse matrices. In order to find these solutions, it requires only left-multiplication by the matrix in question. This
operation is performed through a reverse-communication interface. The result of this structure is that ARPACK is able
to find eigenvalues and eigenvectors of any linear function mapping a vector to a vector.

All of the functionality provided in ARPACK is contained within the two high-level interfaces
scipy.sparse.linalg.eigs and scipy.sparse.linalg.eigsh. eigs provides interfaces to
find the eigenvalues/vectors of real or complex nonsymmetric square matrices, while eigsh provides interfaces for
real-symmetric or complex-hermitian matrices.

1.10.2 Basic Functionality

ARPACK can solve either standard eigenvalue problems of the form

𝐴x = 𝜆x

or general eigenvalue problems of the form

𝐴x = 𝜆𝑀x

The power of ARPACK is that it can compute only a specified subset of eigenvalue/eigenvector pairs. This is accom-
plished through the keyword which. The following values of which are available:

• which = ’LM’ : Eigenvalues with largest magnitude (eigs, eigsh), that is, largest eigenvalues in the
euclidean norm of complex numbers.

• which = ’SM’ : Eigenvalues with smallest magnitude (eigs, eigsh), that is, smallest eigenvalues in the
euclidean norm of complex numbers.

• which = ’LR’ : Eigenvalues with largest real part (eigs)

• which = ’SR’ : Eigenvalues with smallest real part (eigs)

• which = ’LI’ : Eigenvalues with largest imaginary part (eigs)

• which = ’SI’ : Eigenvalues with smallest imaginary part (eigs)

82 Chapter 1. SciPy Tutorial

http://docs.scipy.org/doc/numpy/reference/generated/numpy.vander.html#numpy.vander

SciPy Reference Guide, Release 0.16.0

• which = ’LA’ : Eigenvalues with largest algebraic value (eigsh), that is, largest eigenvalues inclusive of
any negative sign.

• which = ’SA’ : Eigenvalues with smallest algebraic value (eigsh), that is, smallest eigenvalues inclusive
of any negative sign.

• which = ’BE’ : Eigenvalues from both ends of the spectrum (eigsh)

Note that ARPACK is generally better at finding extremal eigenvalues: that is, eigenvalues with large magnitudes. In
particular, using which = ’SM’ may lead to slow execution time and/or anomalous results. A better approach is to
use shift-invert mode.

1.10.3 Shift-Invert Mode

Shift invert mode relies on the following observation. For the generalized eigenvalue problem

𝐴x = 𝜆𝑀x

it can be shown that

(𝐴− 𝜎𝑀)−1𝑀x = 𝜈x

where

𝜈 =
1

𝜆− 𝜎

1.10.4 Examples

Imagine you’d like to find the smallest and largest eigenvalues and the corresponding eigenvectors for a
large matrix. ARPACK can handle many forms of input: dense matrices such as numpy.ndarray in-
stances, sparse matrices such as scipy.sparse.csr_matrix, or a general linear operator derived from
scipy.sparse.linalg.LinearOperator. For this example, for simplicity, we’ll construct a symmetric,
positive-definite matrix.

>>> import numpy as np
>>> from scipy.linalg import eigh
>>> from scipy.sparse.linalg import eigsh
>>> np.set_printoptions(suppress=True)
>>>
>>> np.random.seed(0)
>>> X = np.random.random((100,100)) - 0.5
>>> X = np.dot(X, X.T) #create a symmetric matrix

We now have a symmetric matrix Xwith which to test the routines. First compute a standard eigenvalue decomposition
using eigh:

>>> evals_all, evecs_all = eigh(X)

As the dimension of X grows, this routine becomes very slow. Especially if only a few eigenvectors and eigenvalues
are needed, ARPACK can be a better option. First let’s compute the largest eigenvalues (which = ’LM’) of X and
compare them to the known results:

>>> evals_large, evecs_large = eigsh(X, 3, which='LM')
>>> print evals_all[-3:]
[29.1446102 30.05821805 31.19467646]
>>> print evals_large
[29.1446102 30.05821805 31.19467646]

1.10. Sparse Eigenvalue Problems with ARPACK 83

SciPy Reference Guide, Release 0.16.0

>>> print np.dot(evecs_large.T, evecs_all[:,-3:])
[[-1. 0. 0.]
[0. 1. 0.]
[-0. 0. -1.]]

The results are as expected. ARPACK recovers the desired eigenvalues, and they match the previously known results.
Furthermore, the eigenvectors are orthogonal, as we’d expect. Now let’s attempt to solve for the eigenvalues with
smallest magnitude:

>>> evals_small, evecs_small = eigsh(X, 3, which='SM')
scipy.sparse.linalg.eigen.arpack.arpack.ArpackNoConvergence:
ARPACK error -1: No convergence (1001 iterations, 0/3 eigenvectors converged)

Oops. We see that as mentioned above, ARPACK is not quite as adept at finding small eigenvalues. There are a few
ways this problem can be addressed. We could increase the tolerance (tol) to lead to faster convergence:

>>> evals_small, evecs_small = eigsh(X, 3, which='SM', tol=1E-2)
>>> print evals_all[:3]
[0.0003783 0.00122714 0.00715878]
>>> print evals_small
[0.00037831 0.00122714 0.00715881]
>>> print np.dot(evecs_small.T, evecs_all[:,:3])
[[0.99999999 0.00000024 -0.00000049]
[-0.00000023 0.99999999 0.00000056]
[0.00000031 -0.00000037 0.99999852]]

This works, but we lose the precision in the results. Another option is to increase the maximum number of iterations
(maxiter) from 1000 to 5000:

>>> evals_small, evecs_small = eigsh(X, 3, which='SM', maxiter=5000)
>>> print evals_all[:3]
[0.0003783 0.00122714 0.00715878]
>>> print evals_small
[0.0003783 0.00122714 0.00715878]
>>> print np.dot(evecs_small.T, evecs_all[:,:3])
[[1. 0. 0.]
[-0. 1. 0.]
[0. 0. -1.]]

We get the results we’d hoped for, but the computation time is much longer. Fortunately, ARPACK contains a mode that
allows quick determination of non-external eigenvalues: shift-invert mode. As mentioned above, this mode involves
transforming the eigenvalue problem to an equivalent problem with different eigenvalues. In this case, we hope to find
eigenvalues near zero, so we’ll choose sigma = 0. The transformed eigenvalues will then satisfy 𝜈 = 1/(𝜎 − 𝜆) =
1/𝜆, so our small eigenvalues 𝜆 become large eigenvalues 𝜈.

>>> evals_small, evecs_small = eigsh(X, 3, sigma=0, which='LM')
>>> print evals_all[:3]
[0.0003783 0.00122714 0.00715878]
>>> print evals_small
[0.0003783 0.00122714 0.00715878]
>>> print np.dot(evecs_small.T, evecs_all[:,:3])
[[1. 0. 0.]
[0. -1. -0.]
[-0. -0. 1.]]

We get the results we were hoping for, with much less computational time. Note that the transformation from 𝜈 → 𝜆
takes place entirely in the background. The user need not worry about the details.

The shift-invert mode provides more than just a fast way to obtain a few small eigenvalues. Say you desire to find

84 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

internal eigenvalues and eigenvectors, e.g. those nearest to 𝜆 = 1. Simply set sigma = 1 and ARPACK takes care
of the rest:

>>> evals_mid, evecs_mid = eigsh(X, 3, sigma=1, which='LM')
>>> i_sort = np.argsort(abs(1. / (1 - evals_all)))[-3:]
>>> print evals_all[i_sort]
[1.16577199 0.85081388 1.06642272]
>>> print evals_mid
[0.85081388 1.06642272 1.16577199]
>>> print np.dot(evecs_mid.T, evecs_all[:,i_sort])
[[-0. 1. 0.]
[-0. -0. 1.]
[1. 0. 0.]]

The eigenvalues come out in a different order, but they’re all there. Note that the shift-invert mode requires
the internal solution of a matrix inverse. This is taken care of automatically by eigsh and eigs, but the
operation can also be specified by the user. See the docstring of scipy.sparse.linalg.eigsh and
scipy.sparse.linalg.eigs for details.

1.10.5 References

1.11 Compressed Sparse Graph Routines (scipy.sparse.csgraph)

1.11.1 Example: Word Ladders

A Word Ladder is a word game invented by Lewis Carroll in which players find paths between words by switching
one letter at a time. For example, one can link “ape” and “man” in the following way:

ape → apt → ait → bit → big → bag → mag → man

Note that each step involves changing just one letter of the word. This is just one possible path from “ape” to “man”,
but is it the shortest possible path? If we desire to find the shortest word ladder path between two given words, the
sparse graph submodule can help.

First we need a list of valid words. Many operating systems have such a list built-in. For example, on linux, a word
list can often be found at one of the following locations:

/usr/share/dict
/var/lib/dict

Another easy source for words are the scrabble word lists available at various sites around the internet (search with
your favorite search engine). We’ll first create this list. The system word lists consist of a file with one word per line.
The following should be modified to use the particular word list you have available:

>>> word_list = open('/usr/share/dict/words').readlines()
>>> word_list = map(str.strip, word_list)

We want to look at words of length 3, so let’s select just those words of the correct length. We’ll also eliminate words
which start with upper-case (proper nouns) or contain non alpha-numeric characters like apostrophes and hyphens.
Finally, we’ll make sure everything is lower-case for comparison later:

>>> word_list = [word for word in word_list if len(word) == 3]
>>> word_list = [word for word in word_list if word[0].islower()]
>>> word_list = [word for word in word_list if word.isalpha()]
>>> word_list = map(str.lower, word_list)
>>> len(word_list)
586

1.11. Compressed Sparse Graph Routines (scipy.sparse.csgraph) 85

http://en.wikipedia.org/wiki/Word_ladder

SciPy Reference Guide, Release 0.16.0

Now we have a list of 586 valid three-letter words (the exact number may change depending on the particular list
used). Each of these words will become a node in our graph, and we will create edges connecting the nodes associated
with each pair of words which differs by only one letter.

There are efficient ways to do this, and inefficient ways to do this. To do this as efficiently as possible, we’re going to
use some sophisticated numpy array manipulation:

>>> import numpy as np
>>> word_list = np.asarray(word_list)
>>> word_list.dtype
dtype('|S3')
>>> word_list.sort() # sort for quick searching later

We have an array where each entry is three bytes. We’d like to find all pairs where exactly one byte is different. We’ll
start by converting each word to a three-dimensional vector:

>>> word_bytes = np.ndarray((word_list.size, word_list.itemsize),
... dtype='int8',
... buffer=word_list.data)
>>> word_bytes.shape
(586, 3)

Now we’ll use the Hamming distance between each point to determine which pairs of words are connected. The
Hamming distance measures the fraction of entries between two vectors which differ: any two words with a hamming
distance equal to 1/𝑁 , where 𝑁 is the number of letters, are connected in the word ladder:

>>> from scipy.spatial.distance import pdist, squareform
>>> from scipy.sparse import csr_matrix
>>> hamming_dist = pdist(word_bytes, metric='hamming')
>>> graph = csr_matrix(squareform(hamming_dist < 1.5 / word_list.itemsize))

When comparing the distances, we don’t use an equality because this can be unstable for floating point values. The
inequality produces the desired result as long as no two entries of the word list are identical. Now that our graph is set
up, we’ll use a shortest path search to find the path between any two words in the graph:

>>> i1 = word_list.searchsorted('ape')
>>> i2 = word_list.searchsorted('man')
>>> word_list[i1]
'ape'
>>> word_list[i2]
'man'

We need to check that these match, because if the words are not in the list that will not be the case. Now all we need
is to find the shortest path between these two indices in the graph. We’ll use dijkstra’s algorithm, because it allows us
to find the path for just one node:

>>> from scipy.sparse.csgraph import dijkstra
>>> distances, predecessors = dijkstra(graph, indices=i1,
... return_predecessors=True)
>>> print distances[i2]
5.0

So we see that the shortest path between ‘ape’ and ‘man’ contains only five steps. We can use the predecessors returned
by the algorithm to reconstruct this path:

>>> path = []
>>> i = i2
>>> while i != i1:
>>> path.append(word_list[i])
>>> i = predecessors[i]

86 Chapter 1. SciPy Tutorial

http://en.wikipedia.org/wiki/Hamming_distance

SciPy Reference Guide, Release 0.16.0

>>> path.append(word_list[i1])
>>> print path[::-1]
['ape', 'apt', 'opt', 'oat', 'mat', 'man']

This is three fewer links than our initial example: the path from ape to man is only five steps.

Using other tools in the module, we can answer other questions. For example, are there three-letter words which are
not linked in a word ladder? This is a question of connected components in the graph:

>>> from scipy.sparse.csgraph import connected_components
>>> N_components, component_list = connected_components(graph)
>>> print N_components
15

In this particular sample of three-letter words, there are 15 connected components: that is, 15 distinct sets of words with
no paths between the sets. How many words are in each of these sets? We can learn this from the list of components:

>>> [np.sum(component_list == i) for i in range(15)]
[571, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

There is one large connected set, and 14 smaller ones. Let’s look at the words in the smaller ones:

>>> [list(word_list[np.where(component_list == i)]) for i in range(1, 15)]
[['aha'],
['chi'],
['ebb'],
['ems', 'emu'],
['gnu'],
['ism'],
['khz'],
['nth'],
['ova'],
['qua'],
['ugh'],
['ups'],
['urn'],
['use']]

These are all the three-letter words which do not connect to others via a word ladder.

We might also be curious about which words are maximally separated. Which two words take the most links to
connect? We can determine this by computing the matrix of all shortest paths. Note that by convention, the distance
between two non-connected points is reported to be infinity, so we’ll need to remove these before finding the maximum:

>>> distances, predecessors = dijkstra(graph, return_predecessors=True)
>>> np.max(distances[~np.isinf(distances)])
13.0

So there is at least one pair of words which takes 13 steps to get from one to the other! Let’s determine which these
are:

>>> i1, i2 = np.where(distances == 13)
>>> zip(word_list[i1], word_list[i2])
[('imp', 'ohm'),
('imp', 'ohs'),
('ohm', 'imp'),
('ohm', 'ump'),
('ohs', 'imp'),
('ohs', 'ump'),

1.11. Compressed Sparse Graph Routines (scipy.sparse.csgraph) 87

SciPy Reference Guide, Release 0.16.0

('ump', 'ohm'),
('ump', 'ohs')]

We see that there are two pairs of words which are maximally separated from each other: ‘imp’ and ‘ump’ on one
hand, and ‘ohm’ and ‘ohs’ on the other hand. We can find the connecting list in the same way as above:

>>> path = []
>>> i = i2[0]
>>> while i != i1[0]:
>>> path.append(word_list[i])
>>> i = predecessors[i1[0], i]
>>> path.append(word_list[i1[0]])
>>> print path[::-1]
['imp', 'amp', 'asp', 'ask', 'ark', 'are', 'aye', 'rye', 'roe', 'woe', 'woo', 'who', 'oho', 'ohm']

This gives us the path we desired to see.

Word ladders are just one potential application of scipy’s fast graph algorithms for sparse matrices. Graph theory
makes appearances in many areas of mathematics, data analysis, and machine learning. The sparse graph tools are
flexible enough to handle many of these situations.

1.12 Spatial data structures and algorithms (scipy.spatial)

scipy.spatial can compute triangulations, Voronoi diagrams, and convex hulls of a set of points, by leveraging
the Qhull library.

Moreover, it contains KDTree implementations for nearest-neighbor point queries, and utilities for distance compu-
tations in various metrics.

1.12.1 Delaunay triangulations

The Delaunay triangulation is a subdivision of a set of points into a non-overlapping set of triangles, such that no point
is inside the circumcircle of any triangle. In practice, such triangulations tend to avoid triangles with small angles.

Delaunay triangulation can be computed using scipy.spatial as follows:

>>> from scipy.spatial import Delaunay
>>> points = np.array([[0, 0], [0, 1.1], [1, 0], [1, 1]])
>>> tri = Delaunay(points)

We can visualize it:

>>> import matplotlib.pyplot as plt
>>> plt.triplot(points[:,0], points[:,1], tri.simplices.copy())
>>> plt.plot(points[:,0], points[:,1], 'o')

And add some further decorations:

>>> for j, p in enumerate(points):
... plt.text(p[0]-0.03, p[1]+0.03, j, ha='right') # label the points
>>> for j, s in enumerate(tri.simplices):
... p = points[s].mean(axis=0)
... plt.text(p[0], p[1], '#%d' % j, ha='center') # label triangles
>>> plt.xlim(-0.5, 1.5); plt.ylim(-0.5, 1.5)
>>> plt.show()

88 Chapter 1. SciPy Tutorial

http://qhull.org/

SciPy Reference Guide, Release 0.16.0

0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

0

1

2

3

#0

#1

The structure of the triangulation is encoded in the following way: the simplices attribute contains the indices of
the points in the points array that make up the triangle. For instance:

>>> i = 1
>>> tri.simplices[i,:]
array([3, 1, 0], dtype=int32)
>>> points[tri.simplices[i,:]]
array([[1. , 1.],

[0. , 1.1],
[0. , 0.]])

Moreover, neighboring triangles can also be found out:

>>> tri.neighbors[i]
array([-1, 0, -1], dtype=int32)

What this tells us is that this triangle has triangle #0 as a neighbor, but no other neighbors. Moreover, it tells us that
neighbor 0 is opposite the vertex 1 of the triangle:

>>> points[tri.simplices[i, 1]]
array([0. , 1.1])

Indeed, from the figure we see that this is the case.

Qhull can also perform tesselations to simplices also for higher-dimensional point sets (for instance, subdivision into
tetrahedra in 3-D).

Coplanar points

It is important to note that not all points necessarily appear as vertices of the triangulation, due to numerical precision
issues in forming the triangulation. Consider the above with a duplicated point:

>>> points = np.array([[0, 0], [0, 1], [1, 0], [1, 1], [1, 1]])
>>> tri = Delaunay(points)
>>> np.unique(tri.simplices.ravel())
array([0, 1, 2, 3], dtype=int32)

Observe that point #4, which is a duplicate, does not occur as a vertex of the triangulation. That this happened is
recorded:

1.12. Spatial data structures and algorithms (scipy.spatial) 89

SciPy Reference Guide, Release 0.16.0

>>> tri.coplanar
array([[4, 0, 3]], dtype=int32)

This means that point 4 resides near triangle 0 and vertex 3, but is not included in the triangulation.

Note that such degeneracies can occur not only because of duplicated points, but also for more complicated geometrical
reasons, even in point sets that at first sight seem well-behaved.

However, Qhull has the “QJ” option, which instructs it to perturb the input data randomly until degeneracies are
resolved:

>>> tri = Delaunay(points, qhull_options="QJ Pp")
>>> points[tri.simplices]
array([[[1, 1],

[1, 0],
[0, 0]],

[[1, 1],
[1, 1],
[1, 0]],

[[0, 1],
[1, 1],
[0, 0]],

[[0, 1],
[1, 1],
[1, 1]]])

Two new triangles appeared. However, we see that they are degenerate and have zero area.

1.12.2 Convex hulls

Convex hull is the smallest convex object containing all points in a given point set.

These can be computed via the Qhull wrappers in scipy.spatial as follows:

>>> from scipy.spatial import ConvexHull
>>> points = np.random.rand(30, 2) # 30 random points in 2-D
>>> hull = ConvexHull(points)

The convex hull is represented as a set of N-1 dimensional simplices, which in 2-D means line segments. The storage
scheme is exactly the same as for the simplices in the Delaunay triangulation discussed above.

We can illustrate the above result:

>>> import matplotlib.pyplot as plt
>>> plt.plot(points[:,0], points[:,1], 'o')
>>> for simplex in hull.simplices:
>>> plt.plot(points[simplex,0], points[simplex,1], 'k-')
>>> plt.show()

90 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

The same can be achieved with scipy.spatial.convex_hull_plot_2d.

1.12.3 Voronoi diagrams

A Voronoi diagram is a subdivision of the space into the nearest neighborhoods of a given set of points.

There are two ways to approach this object using scipy.spatial. First, one can use the KDTree to answer the
question “which of the points is closest to this one”, and define the regions that way:

>>> from scipy.spatial import KDTree
>>> points = np.array([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2],
... [2, 0], [2, 1], [2, 2]])
>>> tree = KDTree(points)
>>> tree.query([0.1, 0.1])
(0.14142135623730953, 0)

So the point (0.1, 0.1) belongs to region 0. In color:

>>> x = np.linspace(-0.5, 2.5, 31)
>>> y = np.linspace(-0.5, 2.5, 33)
>>> xx, yy = np.meshgrid(x, y)
>>> xy = np.c_[xx.ravel(), yy.ravel()]
>>> import matplotlib.pyplot as plt
>>> plt.pcolor(x, y, tree.query(xy)[1].reshape(33, 31))
>>> plt.plot(points[:,0], points[:,1], 'ko')
>>> plt.show()

1.12. Spatial data structures and algorithms (scipy.spatial) 91

SciPy Reference Guide, Release 0.16.0

0.5 0.0 0.5 1.0 1.5 2.0 2.5
0.5

0.0

0.5

1.0

1.5

2.0

2.5

This does not, however, give the Voronoi diagram as a geometrical object.

The representation in terms of lines and points can be again obtained via the Qhull wrappers in scipy.spatial:

>>> from scipy.spatial import Voronoi
>>> vor = Voronoi(points)
>>> vor.vertices
array([[0.5, 0.5],

[1.5, 0.5],
[0.5, 1.5],
[1.5, 1.5]])

The Voronoi vertices denote the set of points forming the polygonal edges of the Voronoi regions. In this case, there
are 9 different regions:

>>> vor.regions
[[-1, 0], [-1, 1], [1, -1, 0], [3, -1, 2], [-1, 3], [-1, 2], [3, 1, 0, 2], [2, -1, 0], [3, -1, 1]]

Negative value -1 again indicates a point at infinity. Indeed, only one of the regions, [3, 1, 0, 2], is bounded.
Note here that due to similar numerical precision issues as in Delaunay triangulation above, there may be fewer
Voronoi regions than input points.

The ridges (lines in 2-D) separating the regions are described as a similar collection of simplices as the convex hull
pieces:

>>> vor.ridge_vertices
[[-1, 0], [-1, 0], [-1, 1], [-1, 1], [0, 1], [-1, 3], [-1, 2], [2, 3], [-1, 3], [-1, 2], [0, 2], [1, 3]]

These numbers indicate indices of the Voronoi vertices making up the line segments. -1 is again a point at infinity —
only four of the 12 lines is a bounded line segment while the others extend to infinity.

The Voronoi ridges are perpendicular to lines drawn between the input points. Which two points each ridge corre-
sponds to is also recorded:

>>> vor.ridge_points
array([[0, 3],

[0, 1],
[6, 3],
[6, 7],
[3, 4],

92 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

[5, 8],
[5, 2],
[5, 4],
[8, 7],
[2, 1],
[4, 1],
[4, 7]], dtype=int32)

This information, taken together, is enough to construct the full diagram.

We can plot it as follows. First the points and the Voronoi vertices:

>>> plt.plot(points[:,0], points[:,1], 'o')
>>> plt.plot(vor.vertices[:,0], vor.vertices[:,1], '*')
>>> plt.xlim(-1, 3); plt.ylim(-1, 3)

Plotting the finite line segments goes as for the convex hull, but now we have to guard for the infinite edges:

>>> for simplex in vor.ridge_vertices:
>>> simplex = np.asarray(simplex)
>>> if np.all(simplex >= 0):
>>> plt.plot(vor.vertices[simplex,0], vor.vertices[simplex,1], 'k-')

The ridges extending to infinity require a bit more care:

>>> center = points.mean(axis=0)
>>> for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices):
>>> simplex = np.asarray(simplex)
>>> if np.any(simplex < 0):
>>> i = simplex[simplex >= 0][0] # finite end Voronoi vertex
>>> t = points[pointidx[1]] - points[pointidx[0]] # tangent
>>> t /= np.linalg.norm(t)
>>> n = np.array([-t[1], t[0]]) # normal
>>> midpoint = points[pointidx].mean(axis=0)
>>> far_point = vor.vertices[i] + np.sign(np.dot(midpoint - center, n)) * n * 100
>>> plt.plot([vor.vertices[i,0], far_point[0]],
... [vor.vertices[i,1], far_point[1]], 'k--')
>>> plt.show()

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

1.12. Spatial data structures and algorithms (scipy.spatial) 93

SciPy Reference Guide, Release 0.16.0

This plot can also be created using scipy.spatial.voronoi_plot_2d.

1.13 Statistics (scipy.stats)

1.13.1 Introduction

In this tutorial we discuss many, but certainly not all, features of scipy.stats. The intention here is to provide a
user with a working knowledge of this package. We refer to the reference manual for further details.

Note: This documentation is work in progress.

1.13.2 Random Variables

There are two general distribution classes that have been implemented for encapsulating continuous random variables
and discrete random variables . Over 80 continuous random variables (RVs) and 10 discrete random variables have
been implemented using these classes. Besides this, new routines and distributions can easily added by the end user.
(If you create one, please contribute it).

All of the statistics functions are located in the sub-package scipy.stats and a fairly complete listing of these
functions can be obtained using info(stats). The list of the random variables available can also be obtained from
the docstring for the stats sub-package.

In the discussion below we mostly focus on continuous RVs. Nearly all applies to discrete variables also, but we point
out some differences here: Specific Points for Discrete Distributions.

Getting Help

First of all, all distributions are accompanied with help functions. To obtain just some basic information we can call

>>> from scipy import stats
>>> from scipy.stats import norm
>>> print norm.__doc__

To find the support, i.e., upper and lower bound of the distribution, call:

>>> print 'bounds of distribution lower: %s, upper: %s' % (norm.a,norm.b)
bounds of distribution lower: -inf, upper: inf

We can list all methods and properties of the distribution with dir(norm). As it turns out, some of the methods
are private methods although they are not named as such (their name does not start with a leading underscore), for
example veccdf, are only available for internal calculation (those methods will give warnings when one tries to use
them, and will be removed at some point).

To obtain the real main methods, we list the methods of the frozen distribution. (We explain the meaning of a frozen
distribution below).

>>> rv = norm()
>>> dir(rv) # reformatted

['__class__', '__delattr__', '__dict__', '__doc__', '__getattribute__',
'__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__',
'__repr__', '__setattr__', '__str__', '__weakref__', 'args', 'cdf', 'dist',
'entropy', 'isf', 'kwds', 'moment', 'pdf', 'pmf', 'ppf', 'rvs', 'sf', 'stats']

Finally, we can obtain the list of available distribution through introspection:

94 Chapter 1. SciPy Tutorial

http://docs.scipy.org/doc/scipy/reference/stats.html

SciPy Reference Guide, Release 0.16.0

>>> import warnings
>>> warnings.simplefilter('ignore', DeprecationWarning)
>>> dist_continu = [d for d in dir(stats) if
... isinstance(getattr(stats,d), stats.rv_continuous)]
>>> dist_discrete = [d for d in dir(stats) if
... isinstance(getattr(stats,d), stats.rv_discrete)]
>>> print 'number of continuous distributions:', len(dist_continu)
number of continuous distributions: 84
>>> print 'number of discrete distributions: ', len(dist_discrete)
number of discrete distributions: 12

Common Methods

The main public methods for continuous RVs are:

• rvs: Random Variates

• pdf: Probability Density Function

• cdf: Cumulative Distribution Function

• sf: Survival Function (1-CDF)

• ppf: Percent Point Function (Inverse of CDF)

• isf: Inverse Survival Function (Inverse of SF)

• stats: Return mean, variance, (Fisher’s) skew, or (Fisher’s) kurtosis

• moment: non-central moments of the distribution

Let’s take a normal RV as an example.

>>> norm.cdf(0)
0.5

To compute the cdf at a number of points, we can pass a list or a numpy array.

>>> norm.cdf([-1., 0, 1])
array([0.15865525, 0.5 , 0.84134475])
>>> import numpy as np
>>> norm.cdf(np.array([-1., 0, 1]))
array([0.15865525, 0.5 , 0.84134475])

Thus, the basic methods such as pdf, cdf, and so on are vectorized with np.vectorize.

Other generally useful methods are supported too:

>>> norm.mean(), norm.std(), norm.var()
(0.0, 1.0, 1.0)
>>> norm.stats(moments = "mv")
(array(0.0), array(1.0))

To find the median of a distribution we can use the percent point function ppf, which is the inverse of the cdf:

>>> norm.ppf(0.5)
0.0

To generate a sequence of random variates, use the size keyword argument:

>>> norm.rvs(size=5)
array([-0.35687759, 1.34347647, -0.11710531, -1.00725181, -0.51275702])

1.13. Statistics (scipy.stats) 95

SciPy Reference Guide, Release 0.16.0

Don’t think that norm.rvs(5) generates 5 variates:

>>> norm.rvs(5)
7.131624370075814

Here, 5 with no keyword is being interpreted as the first possible keyword argument, loc, which is the first of a pair
of keyword arguments taken by all continuous distributions. This brings us to the topic of the next subsection.

Shifting and Scaling

All continuous distributions take loc and scale as keyword parameters to adjust the location and scale of the
distribution, e.g. for the standard normal distribution the location is the mean and the scale is the standard deviation.

>>> norm.stats(loc = 3, scale = 4, moments = "mv")
(array(3.0), array(16.0))

In many cases the standardized distribution for a random variable X is obtained through the transformation (X -
loc) / scale. The default values are loc = 0 and scale = 1.

Smart use of loc and scale can help modify the standard distributions in many ways. To illustrate the scaling
further, the cdf of an exponentially distributed RV with mean 1/𝜆 is given by

𝐹 (𝑥) = 1 − exp(−𝜆𝑥)

By applying the scaling rule above, it can be seen that by taking scale = 1./lambda we get the proper scale.

>>> from scipy.stats import expon
>>> expon.mean(scale=3.)
3.0

Note: Distributions that take shape parameters may require more than simple application of loc and/or scale to
achieve the desired form. For example, the distribution of 2-D vector lengths given a constant vector of length 𝑅
perturbed by independent N(0, 𝜎2) deviations in each component is rice(𝑅/𝜎, scale= 𝜎). The first argument is a shape
parameter that needs to be scaled along with 𝑥.

The uniform distribution is also interesting:

>>> from scipy.stats import uniform
>>> uniform.cdf([0, 1, 2, 3, 4, 5], loc = 1, scale = 4)
array([0. , 0. , 0.25, 0.5 , 0.75, 1.])

Finally, recall from the previous paragraph that we are left with the problem of the meaning of norm.rvs(5). As it
turns out, calling a distribution like this, the first argument, i.e., the 5, gets passed to set the loc parameter. Let’s see:

>>> np.mean(norm.rvs(5, size=500))
4.983550784784704

Thus, to explain the output of the example of the last section: norm.rvs(5) generates a single normally distributed
random variate with mean loc=5, because of the default size=1.

We recommend that you set loc and scale parameters explicitly, by passing the values as keywords rather than as
arguments. Repetition can be minimized when calling more than one method of a given RV by using the technique of
Freezing a Distribution, as explained below.

96 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Shape Parameters

While a general continuous random variable can be shifted and scaled with the loc and scale parameters, some
distributions require additional shape parameters. For instance, the gamma distribution, with density

𝛾(𝑥, 𝑎) =
𝜆(𝜆𝑥)𝑎−1

Γ(𝑎)
𝑒−𝜆𝑥 ,

requires the shape parameter 𝑎. Observe that setting 𝜆 can be obtained by setting the scale keyword to 1/𝜆.

Let’s check the number and name of the shape parameters of the gamma distribution. (We know from the above that
this should be 1.)

>>> from scipy.stats import gamma
>>> gamma.numargs
1
>>> gamma.shapes
'a'

Now we set the value of the shape variable to 1 to obtain the exponential distribution, so that we compare easily
whether we get the results we expect.

>>> gamma(1, scale=2.).stats(moments="mv")
(array(2.0), array(4.0))

Notice that we can also specify shape parameters as keywords:

>>> gamma(a=1, scale=2.).stats(moments="mv")
(array(2.0), array(4.0))

Freezing a Distribution

Passing the loc and scale keywords time and again can become quite bothersome. The concept of freezing a RV is
used to solve such problems.

>>> rv = gamma(1, scale=2.)

By using rv we no longer have to include the scale or the shape parameters anymore. Thus, distributions can be used
in one of two ways, either by passing all distribution parameters to each method call (such as we did earlier) or by
freezing the parameters for the instance of the distribution. Let us check this:

>>> rv.mean(), rv.std()
(2.0, 2.0)

This is indeed what we should get.

Broadcasting

The basic methods pdf and so on satisfy the usual numpy broadcasting rules. For example, we can calculate the
critical values for the upper tail of the t distribution for different probabilites and degrees of freedom.

>>> stats.t.isf([0.1, 0.05, 0.01], [[10], [11]])
array([[1.37218364, 1.81246112, 2.76376946],

[1.36343032, 1.79588482, 2.71807918]])

Here, the first row are the critical values for 10 degrees of freedom and the second row for 11 degrees of freedom
(d.o.f.). Thus, the broadcasting rules give the same result of calling isf twice:

1.13. Statistics (scipy.stats) 97

SciPy Reference Guide, Release 0.16.0

>>> stats.t.isf([0.1, 0.05, 0.01], 10)
array([1.37218364, 1.81246112, 2.76376946])
>>> stats.t.isf([0.1, 0.05, 0.01], 11)
array([1.36343032, 1.79588482, 2.71807918])

If the array with probabilities, i.e, [0.1, 0.05, 0.01] and the array of degrees of freedom i.e., [10, 11,
12], have the same array shape, then element wise matching is used. As an example, we can obtain the 10% tail for
10 d.o.f., the 5% tail for 11 d.o.f. and the 1% tail for 12 d.o.f. by calling

>>> stats.t.isf([0.1, 0.05, 0.01], [10, 11, 12])
array([1.37218364, 1.79588482, 2.68099799])

Specific Points for Discrete Distributions

Discrete distribution have mostly the same basic methods as the continuous distributions. However pdf is replaced
the probability mass function pmf, no estimation methods, such as fit, are available, and scale is not a valid keyword
parameter. The location parameter, keyword loc can still be used to shift the distribution.

The computation of the cdf requires some extra attention. In the case of continuous distribution the cumulative distri-
bution function is in most standard cases strictly monotonic increasing in the bounds (a,b) and has therefore a unique
inverse. The cdf of a discrete distribution, however, is a step function, hence the inverse cdf, i.e., the percent point
function, requires a different definition:

ppf(q) = min{x : cdf(x) >= q, x integer}

For further info, see the docs here.

We can look at the hypergeometric distribution as an example

>>> from scipy.stats import hypergeom
>>> [M, n, N] = [20, 7, 12]

If we use the cdf at some integer points and then evaluate the ppf at those cdf values, we get the initial integers back,
for example

>>> x = np.arange(4)*2
>>> x
array([0, 2, 4, 6])
>>> prb = hypergeom.cdf(x, M, n, N)
>>> prb
array([0.0001031991744066, 0.0521155830753351, 0.6083591331269301,

0.9897832817337386])
>>> hypergeom.ppf(prb, M, n, N)
array([0., 2., 4., 6.])

If we use values that are not at the kinks of the cdf step function, we get the next higher integer back:

>>> hypergeom.ppf(prb + 1e-8, M, n, N)
array([1., 3., 5., 7.])
>>> hypergeom.ppf(prb - 1e-8, M, n, N)
array([0., 2., 4., 6.])

Fitting Distributions

The main additional methods of the not frozen distribution are related to the estimation of distribution parameters:

98 Chapter 1. SciPy Tutorial

http://docs.scipy.org/doc/scipy/reference/tutorial/stats/discrete.html#percent-point-function-inverse-cdf

SciPy Reference Guide, Release 0.16.0

• fit: maximum likelihood estimation of distribution parameters, including location
and scale

• fit_loc_scale: estimation of location and scale when shape parameters are given

• nnlf: negative log likelihood function

• expect: Calculate the expectation of a function against the pdf or pmf

Performance Issues and Cautionary Remarks

The performance of the individual methods, in terms of speed, varies widely by distribution and method. The results of
a method are obtained in one of two ways: either by explicit calculation, or by a generic algorithm that is independent
of the specific distribution.

Explicit calculation, on the one hand, requires that the method is directly specified for the given distribution, either
through analytic formulas or through special functions in scipy.special or numpy.random for rvs. These are
usually relatively fast calculations.

The generic methods, on the other hand, are used if the distribution does not specify any explicit calcula-
tion. To define a distribution, only one of pdf or cdf is necessary; all other methods can be derived using nu-
meric integration and root finding. However, these indirect methods can be very slow. As an example, rgh =
stats.gausshyper.rvs(0.5, 2, 2, 2, size=100) creates random variables in a very indirect way and
takes about 19 seconds for 100 random variables on my computer, while one million random variables from the
standard normal or from the t distribution take just above one second.

Remaining Issues

The distributions in scipy.stats have recently been corrected and improved and gained a considerable test suite,
however a few issues remain:

• the distributions have been tested over some range of parameters, however in some corner ranges, a few incorrect
results may remain.

• the maximum likelihood estimation in fit does not work with default starting parameters for all distributions
and the user needs to supply good starting parameters. Also, for some distribution using a maximum likelihood
estimator might inherently not be the best choice.

1.13.3 Building Specific Distributions

The next examples shows how to build your own distributions. Further examples show the usage of the distributions
and some statistical tests.

Making a Continuous Distribution, i.e., Subclassing rv_continuous

Making continuous distributions is fairly simple.

>>> from scipy import stats
>>> class deterministic_gen(stats.rv_continuous):
... def _cdf(self, x):
... return np.where(x < 0, 0., 1.)
... def _stats(self):
... return 0., 0., 0., 0.

1.13. Statistics (scipy.stats) 99

SciPy Reference Guide, Release 0.16.0

>>> deterministic = deterministic_gen(name="deterministic")
>>> deterministic.cdf(np.arange(-3, 3, 0.5))
array([0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1.])

Interestingly, the pdf is now computed automatically:

>>> deterministic.pdf(np.arange(-3, 3, 0.5))
array([0.00000000e+00, 0.00000000e+00, 0.00000000e+00,

0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
5.83333333e+04, 4.16333634e-12, 4.16333634e-12,
4.16333634e-12, 4.16333634e-12, 4.16333634e-12])

Be aware of the performance issues mentions in Performance Issues and Cautionary Remarks. The computation of
unspecified common methods can become very slow, since only general methods are called which, by their very nature,
cannot use any specific information about the distribution. Thus, as a cautionary example:

>>> from scipy.integrate import quad
>>> quad(deterministic.pdf, -1e-1, 1e-1)
(4.163336342344337e-13, 0.0)

But this is not correct: the integral over this pdf should be 1. Let’s make the integration interval smaller:

>>> quad(deterministic.pdf, -1e-3, 1e-3) # warning removed
(1.000076872229173, 0.0010625571718182458)

This looks better. However, the problem originated from the fact that the pdf is not specified in the class definition of
the deterministic distribution.

Subclassing rv_discrete

In the following we use stats.rv_discrete to generate a discrete distribution that has the probabilities of the
truncated normal for the intervals centered around the integers.

General Info

From the docstring of rv_discrete, i.e.,

>>> from scipy.stats import rv_discrete
>>> help(rv_discrete)

we learn that:

“You can construct an aribtrary discrete rv where P{X=xk} = pk by passing to the rv_discrete initialization
method (through the values= keyword) a tuple of sequences (xk, pk) which describes only those values of X
(xk) that occur with nonzero probability (pk).”

Next to this, there are some further requirements for this approach to work:

• The keyword name is required.

• The support points of the distribution xk have to be integers.

• The number of significant digits (decimals) needs to be specified.

In fact, if the last two requirements are not satisfied an exception may be raised or the resulting numbers may be
incorrect.

An Example

Let’s do the work. First

100 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> npoints = 20 # number of integer support points of the distribution minus 1
>>> npointsh = npoints / 2
>>> npointsf = float(npoints)
>>> nbound = 4 # bounds for the truncated normal
>>> normbound = (1+1/npointsf) * nbound # actual bounds of truncated normal
>>> grid = np.arange(-npointsh, npointsh+2, 1) # integer grid
>>> gridlimitsnorm = (grid-0.5) / npointsh * nbound # bin limits for the truncnorm
>>> gridlimits = grid - 0.5 # used later in the analysis
>>> grid = grid[:-1]
>>> probs = np.diff(stats.truncnorm.cdf(gridlimitsnorm, -normbound, normbound))
>>> gridint = grid

And finally we can subclass rv_discrete:

>>> normdiscrete = stats.rv_discrete(values=(gridint,
... np.round(probs, decimals=7)), name='normdiscrete')

Now that we have defined the distribution, we have access to all common methods of discrete distributions.

>>> print 'mean = %6.4f, variance = %6.4f, skew = %6.4f, kurtosis = %6.4f'% \
... normdiscrete.stats(moments = 'mvsk')
mean = -0.0000, variance = 6.3302, skew = 0.0000, kurtosis = -0.0076

>>> nd_std = np.sqrt(normdiscrete.stats(moments='v'))

Testing the Implementation

Let’s generate a random sample and compare observed frequencies with the probabilities.

>>> n_sample = 500
>>> np.random.seed(87655678) # fix the seed for replicability
>>> rvs = normdiscrete.rvs(size=n_sample)
>>> rvsnd = rvs
>>> f, l = np.histogram(rvs, bins=gridlimits)
>>> sfreq = np.vstack([gridint, f, probs*n_sample]).T
>>> print sfreq
[[-1.00000000e+01 0.00000000e+00 2.95019349e-02]
[-9.00000000e+00 0.00000000e+00 1.32294142e-01]
[-8.00000000e+00 0.00000000e+00 5.06497902e-01]
[-7.00000000e+00 2.00000000e+00 1.65568919e+00]
[-6.00000000e+00 1.00000000e+00 4.62125309e+00]
[-5.00000000e+00 9.00000000e+00 1.10137298e+01]
[-4.00000000e+00 2.60000000e+01 2.24137683e+01]
[-3.00000000e+00 3.70000000e+01 3.89503370e+01]
[-2.00000000e+00 5.10000000e+01 5.78004747e+01]
[-1.00000000e+00 7.10000000e+01 7.32455414e+01]
[0.00000000e+00 7.40000000e+01 7.92618251e+01]
[1.00000000e+00 8.90000000e+01 7.32455414e+01]
[2.00000000e+00 5.50000000e+01 5.78004747e+01]
[3.00000000e+00 5.00000000e+01 3.89503370e+01]
[4.00000000e+00 1.70000000e+01 2.24137683e+01]
[5.00000000e+00 1.10000000e+01 1.10137298e+01]
[6.00000000e+00 4.00000000e+00 4.62125309e+00]
[7.00000000e+00 3.00000000e+00 1.65568919e+00]
[8.00000000e+00 0.00000000e+00 5.06497902e-01]
[9.00000000e+00 0.00000000e+00 1.32294142e-01]
[1.00000000e+01 0.00000000e+00 2.95019349e-02]]

1.13. Statistics (scipy.stats) 101

SciPy Reference Guide, Release 0.16.0

-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Fr
eq

ue
nc

y
Frequency and Probability of normdiscrete

true
sample

-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

cd
f

Cumulative Frequency and CDF of normdiscrete

true
sample

Next, we can test, whether our sample was generated by our normdiscrete distribution. This also verifies whether the
random numbers are generated correctly.

The chisquare test requires that there are a minimum number of observations in each bin. We combine the tail bins
into larger bins so that they contain enough observations.

>>> f2 = np.hstack([f[:5].sum(), f[5:-5], f[-5:].sum()])
>>> p2 = np.hstack([probs[:5].sum(), probs[5:-5], probs[-5:].sum()])
>>> ch2, pval = stats.chisquare(f2, p2*n_sample)

>>> print 'chisquare for normdiscrete: chi2 = %6.3f pvalue = %6.4f' % (ch2, pval)
chisquare for normdiscrete: chi2 = 12.466 pvalue = 0.4090

The pvalue in this case is high, so we can be quite confident that our random sample was actually generated by the
distribution.

102 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

1.13.4 Analysing One Sample

First, we create some random variables. We set a seed so that in each run we get identical results to look at. As an
example we take a sample from the Student t distribution:

>>> np.random.seed(282629734)
>>> x = stats.t.rvs(10, size=1000)

Here, we set the required shape parameter of the t distribution, which in statistics corresponds to the degrees of
freedom, to 10. Using size=1000 means that our sample consists of 1000 independently drawn (pseudo) random
numbers. Since we did not specify the keyword arguments loc and scale, those are set to their default values zero and
one.

Descriptive Statistics

x is a numpy array, and we have direct access to all array methods, e.g.

>>> print x.max(), x.min() # equivalent to np.max(x), np.min(x)
5.26327732981 -3.78975572422
>>> print x.mean(), x.var() # equivalent to np.mean(x), np.var(x)
0.0140610663985 1.28899386208

How do the some sample properties compare to their theoretical counterparts?

>>> m, v, s, k = stats.t.stats(10, moments='mvsk')
>>> n, (smin, smax), sm, sv, ss, sk = stats.describe(x)

>>> print 'distribution:',
distribution:
>>> sstr = 'mean = %6.4f, variance = %6.4f, skew = %6.4f, kurtosis = %6.4f'
>>> print sstr %(m, v, s ,k)
mean = 0.0000, variance = 1.2500, skew = 0.0000, kurtosis = 1.0000
>>> print 'sample: ',
sample:
>>> print sstr %(sm, sv, ss, sk)
mean = 0.0141, variance = 1.2903, skew = 0.2165, kurtosis = 1.0556

Note: stats.describe uses the unbiased estimator for the variance, while np.var is the biased estimator.

For our sample the sample statistics differ a by a small amount from their theoretical counterparts.

T-test and KS-test

We can use the t-test to test whether the mean of our sample differs in a statistcally significant way from the theoretical
expectation.

>>> print 't-statistic = %6.3f pvalue = %6.4f' % stats.ttest_1samp(x, m)
t-statistic = 0.391 pvalue = 0.6955

The pvalue is 0.7, this means that with an alpha error of, for example, 10%, we cannot reject the hypothesis that the
sample mean is equal to zero, the expectation of the standard t-distribution.

As an exercise, we can calculate our ttest also directly without using the provided function, which should give us the
same answer, and so it does:

>>> tt = (sm-m)/np.sqrt(sv/float(n)) # t-statistic for mean
>>> pval = stats.t.sf(np.abs(tt), n-1)*2 # two-sided pvalue = Prob(abs(t)>tt)

1.13. Statistics (scipy.stats) 103

SciPy Reference Guide, Release 0.16.0

>>> print 't-statistic = %6.3f pvalue = %6.4f' % (tt, pval)
t-statistic = 0.391 pvalue = 0.6955

The Kolmogorov-Smirnov test can be used to test the hypothesis that the sample comes from the standard t-distribution

>>> print 'KS-statistic D = %6.3f pvalue = %6.4f' % stats.kstest(x, 't', (10,))
KS-statistic D = 0.016 pvalue = 0.9606

Again the p-value is high enough that we cannot reject the hypothesis that the random sample really is distributed
according to the t-distribution. In real applications, we don’t know what the underlying distribution is. If we perform
the Kolmogorov-Smirnov test of our sample against the standard normal distribution, then we also cannot reject the
hypothesis that our sample was generated by the normal distribution given that in this example the p-value is almost
40%.

>>> print 'KS-statistic D = %6.3f pvalue = %6.4f' % stats.kstest(x,'norm')
KS-statistic D = 0.028 pvalue = 0.3949

However, the standard normal distribution has a variance of 1, while our sample has a variance of 1.29. If we stan-
dardize our sample and test it against the normal distribution, then the p-value is again large enough that we cannot
reject the hypothesis that the sample came form the normal distribution.

>>> d, pval = stats.kstest((x-x.mean())/x.std(), 'norm')
>>> print 'KS-statistic D = %6.3f pvalue = %6.4f' % (d, pval)
KS-statistic D = 0.032 pvalue = 0.2402

Note: The Kolmogorov-Smirnov test assumes that we test against a distribution with given parameters, since in the
last case we estimated mean and variance, this assumption is violated, and the distribution of the test statistic on which
the p-value is based, is not correct.

Tails of the distribution

Finally, we can check the upper tail of the distribution. We can use the percent point function ppf, which is the inverse
of the cdf function, to obtain the critical values, or, more directly, we can use the inverse of the survival function

>>> crit01, crit05, crit10 = stats.t.ppf([1-0.01, 1-0.05, 1-0.10], 10)
>>> print 'critical values from ppf at 1%%, 5%% and 10%% %8.4f %8.4f %8.4f'% (crit01, crit05, crit10)
critical values from ppf at 1%, 5% and 10% 2.7638 1.8125 1.3722
>>> print 'critical values from isf at 1%%, 5%% and 10%% %8.4f %8.4f %8.4f'% tuple(stats.t.isf([0.01,0.05,0.10],10))
critical values from isf at 1%, 5% and 10% 2.7638 1.8125 1.3722

>>> freq01 = np.sum(x>crit01) / float(n) * 100
>>> freq05 = np.sum(x>crit05) / float(n) * 100
>>> freq10 = np.sum(x>crit10) / float(n) * 100
>>> print 'sample %%-frequency at 1%%, 5%% and 10%% tail %8.4f %8.4f %8.4f'% (freq01, freq05, freq10)
sample %-frequency at 1%, 5% and 10% tail 1.4000 5.8000 10.5000

In all three cases, our sample has more weight in the top tail than the underlying distribution. We can briefly check
a larger sample to see if we get a closer match. In this case the empirical frequency is quite close to the theoretical
probability, but if we repeat this several times the fluctuations are still pretty large.

>>> freq05l = np.sum(stats.t.rvs(10, size=10000) > crit05) / 10000.0 * 100
>>> print 'larger sample %%-frequency at 5%% tail %8.4f'% freq05l
larger sample %-frequency at 5% tail 4.8000

We can also compare it with the tail of the normal distribution, which has less weight in the tails:

104 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> print 'tail prob. of normal at 1%%, 5%% and 10%% %8.4f %8.4f %8.4f'% \
... tuple(stats.norm.sf([crit01, crit05, crit10])*100)
tail prob. of normal at 1%, 5% and 10% 0.2857 3.4957 8.5003

The chisquare test can be used to test, whether for a finite number of bins, the observed frequencies differ significantly
from the probabilites of the hypothesized distribution.

>>> quantiles = [0.0, 0.01, 0.05, 0.1, 1-0.10, 1-0.05, 1-0.01, 1.0]
>>> crit = stats.t.ppf(quantiles, 10)
>>> print crit
[-Inf -2.76376946 -1.81246112 -1.37218364 1.37218364 1.81246112

2.76376946 Inf]
>>> n_sample = x.size
>>> freqcount = np.histogram(x, bins=crit)[0]
>>> tprob = np.diff(quantiles)
>>> nprob = np.diff(stats.norm.cdf(crit))
>>> tch, tpval = stats.chisquare(freqcount, tprob*n_sample)
>>> nch, npval = stats.chisquare(freqcount, nprob*n_sample)
>>> print 'chisquare for t: chi2 = %6.3f pvalue = %6.4f' % (tch, tpval)
chisquare for t: chi2 = 2.300 pvalue = 0.8901
>>> print 'chisquare for normal: chi2 = %6.3f pvalue = %6.4f' % (nch, npval)
chisquare for normal: chi2 = 64.605 pvalue = 0.0000

We see that the standard normal distribution is clearly rejected while the standard t-distribution cannot be rejected.
Since the variance of our sample differs from both standard distribution, we can again redo the test taking the estimate
for scale and location into account.

The fit method of the distributions can be used to estimate the parameters of the distribution, and the test is repeated
using probabilites of the estimated distribution.

>>> tdof, tloc, tscale = stats.t.fit(x)
>>> nloc, nscale = stats.norm.fit(x)
>>> tprob = np.diff(stats.t.cdf(crit, tdof, loc=tloc, scale=tscale))
>>> nprob = np.diff(stats.norm.cdf(crit, loc=nloc, scale=nscale))
>>> tch, tpval = stats.chisquare(freqcount, tprob*n_sample)
>>> nch, npval = stats.chisquare(freqcount, nprob*n_sample)
>>> print 'chisquare for t: chi2 = %6.3f pvalue = %6.4f' % (tch, tpval)
chisquare for t: chi2 = 1.577 pvalue = 0.9542
>>> print 'chisquare for normal: chi2 = %6.3f pvalue = %6.4f' % (nch, npval)
chisquare for normal: chi2 = 11.084 pvalue = 0.0858

Taking account of the estimated parameters, we can still reject the hypothesis that our sample came from a normal
distribution (at the 5% level), but again, with a p-value of 0.95, we cannot reject the t distribution.

Special tests for normal distributions

Since the normal distribution is the most common distribution in statistics, there are several additional functions
available to test whether a sample could have been drawn from a normal distribution

First we can test if skew and kurtosis of our sample differ significantly from those of a normal distribution:

>>> print 'normal skewtest teststat = %6.3f pvalue = %6.4f' % stats.skewtest(x)
normal skewtest teststat = 2.785 pvalue = 0.0054
>>> print 'normal kurtosistest teststat = %6.3f pvalue = %6.4f' % stats.kurtosistest(x)
normal kurtosistest teststat = 4.757 pvalue = 0.0000

These two tests are combined in the normality test

1.13. Statistics (scipy.stats) 105

SciPy Reference Guide, Release 0.16.0

>>> print 'normaltest teststat = %6.3f pvalue = %6.4f' % stats.normaltest(x)
normaltest teststat = 30.379 pvalue = 0.0000

In all three tests the p-values are very low and we can reject the hypothesis that the our sample has skew and kurtosis
of the normal distribution.

Since skew and kurtosis of our sample are based on central moments, we get exactly the same results if we test the
standardized sample:

>>> print 'normaltest teststat = %6.3f pvalue = %6.4f' % \
... stats.normaltest((x-x.mean())/x.std())
normaltest teststat = 30.379 pvalue = 0.0000

Because normality is rejected so strongly, we can check whether the normaltest gives reasonable results for other
cases:

>>> print 'normaltest teststat = %6.3f pvalue = %6.4f' % stats.normaltest(stats.t.rvs(10, size=100))
normaltest teststat = 4.698 pvalue = 0.0955
>>> print 'normaltest teststat = %6.3f pvalue = %6.4f' % stats.normaltest(stats.norm.rvs(size=1000))
normaltest teststat = 0.613 pvalue = 0.7361

When testing for normality of a small sample of t-distributed observations and a large sample of normal distributed
observation, then in neither case can we reject the null hypothesis that the sample comes from a normal distribution.
In the first case this is because the test is not powerful enough to distinguish a t and a normally distributed random
variable in a small sample.

1.13.5 Comparing two samples

In the following, we are given two samples, which can come either from the same or from different distribution, and
we want to test whether these samples have the same statistical properties.

Comparing means

Test with sample with identical means:

>>> rvs1 = stats.norm.rvs(loc=5, scale=10, size=500)
>>> rvs2 = stats.norm.rvs(loc=5, scale=10, size=500)
>>> stats.ttest_ind(rvs1, rvs2)
(-0.54890361750888583, 0.5831943748663857)

Test with sample with different means:

>>> rvs3 = stats.norm.rvs(loc=8, scale=10, size=500)
>>> stats.ttest_ind(rvs1, rvs3)
(-4.5334142901750321, 6.507128186505895e-006)

Kolmogorov-Smirnov test for two samples ks_2samp

For the example where both samples are drawn from the same distribution, we cannot reject the null hypothesis since
the pvalue is high

>>> stats.ks_2samp(rvs1, rvs2)
(0.025999999999999995, 0.99541195173064878)

In the second example, with different location, i.e. means, we can reject the null hypothesis since the pvalue is below
1%

106 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> stats.ks_2samp(rvs1, rvs3)
(0.11399999999999999, 0.0027132103661283141)

1.13.6 Kernel Density Estimation

A common task in statistics is to estimate the probability density function (PDF) of a random variable from a set
of data samples. This task is called density estimation. The most well-known tool to do this is the histogram. A
histogram is a useful tool for visualization (mainly because everyone understands it), but doesn’t use the available data
very efficiently. Kernel density estimation (KDE) is a more efficient tool for the same task. The gaussian_kde
estimator can be used to estimate the PDF of univariate as well as multivariate data. It works best if the data is
unimodal.

Univariate estimation

We start with a minimal amount of data in order to see how gaussian_kde works, and what the different options
for bandwidth selection do. The data sampled from the PDF is show as blue dashes at the bottom of the figure (this is
called a rug plot):

>>> from scipy import stats
>>> import matplotlib.pyplot as plt

>>> x1 = np.array([-7, -5, 1, 4, 5], dtype=np.float)
>>> kde1 = stats.gaussian_kde(x1)
>>> kde2 = stats.gaussian_kde(x1, bw_method='silverman')

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)

>>> ax.plot(x1, np.zeros(x1.shape), 'b+', ms=20) # rug plot
>>> x_eval = np.linspace(-10, 10, num=200)
>>> ax.plot(x_eval, kde1(x_eval), 'k-', label="Scott's Rule")
>>> ax.plot(x_eval, kde1(x_eval), 'r-', label="Silverman's Rule")

>>> plt.show()

10 5 0 5 10
0.00

0.01

0.02

0.03

0.04

0.05

0.06

1.13. Statistics (scipy.stats) 107

SciPy Reference Guide, Release 0.16.0

We see that there is very little difference between Scott’s Rule and Silverman’s Rule, and that the bandwidth selection
with a limited amount of data is probably a bit too wide. We can define our own bandwidth function to get a less
smoothed out result.

>>> def my_kde_bandwidth(obj, fac=1./5):
... """We use Scott's Rule, multiplied by a constant factor."""
... return np.power(obj.n, -1./(obj.d+4)) * fac

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)

>>> ax.plot(x1, np.zeros(x1.shape), 'b+', ms=20) # rug plot
>>> kde3 = stats.gaussian_kde(x1, bw_method=my_kde_bandwidth)
>>> ax.plot(x_eval, kde3(x_eval), 'g-', label="With smaller BW")

>>> plt.show()

10 5 0 5 10
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

We see that if we set bandwidth to be very narrow, the obtained estimate for the probability density function (PDF) is
simply the sum of Gaussians around each data point.

We now take a more realistic example, and look at the difference between the two available bandwidth selection rules.
Those rules are known to work well for (close to) normal distributions, but even for unimodal distributions that are
quite strongly non-normal they work reasonably well. As a non-normal distribution we take a Student’s T distribution
with 5 degrees of freedom.

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

np.random.seed(12456)
x1 = np.random.normal(size=200) # random data, normal distribution
xs = np.linspace(x1.min()-1, x1.max()+1, 200)

kde1 = stats.gaussian_kde(x1)
kde2 = stats.gaussian_kde(x1, bw_method='silverman')

fig = plt.figure(figsize=(8, 6))

108 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

ax1 = fig.add_subplot(211)
ax1.plot(x1, np.zeros(x1.shape), 'b+', ms=12) # rug plot
ax1.plot(xs, kde1(xs), 'k-', label="Scott's Rule")
ax1.plot(xs, kde2(xs), 'b-', label="Silverman's Rule")
ax1.plot(xs, stats.norm.pdf(xs), 'r--', label="True PDF")

ax1.set_xlabel('x')
ax1.set_ylabel('Density')
ax1.set_title("Normal (top) and Student's T$_{df=5}$ (bottom) distributions")
ax1.legend(loc=1)

x2 = stats.t.rvs(5, size=200) # random data, T distribution
xs = np.linspace(x2.min() - 1, x2.max() + 1, 200)

kde3 = stats.gaussian_kde(x2)
kde4 = stats.gaussian_kde(x2, bw_method='silverman')

ax2 = fig.add_subplot(212)
ax2.plot(x2, np.zeros(x2.shape), 'b+', ms=12) # rug plot
ax2.plot(xs, kde3(xs), 'k-', label="Scott's Rule")
ax2.plot(xs, kde4(xs), 'b-', label="Silverman's Rule")
ax2.plot(xs, stats.t.pdf(xs, 5), 'r--', label="True PDF")

ax2.set_xlabel('x')
ax2.set_ylabel('Density')

plt.show()

1.13. Statistics (scipy.stats) 109

SciPy Reference Guide, Release 0.16.0

5 4 3 2 1 0 1 2 3 4
x

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

De
ns

ity

Normal (top) and Student's Tdf =5 (bottom) distributions

Scott's Rule
Silverman's Rule
True PDF

6 4 2 0 2 4 6
x

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

De
ns

ity

We now take a look at a bimodal distribution with one wider and one narrower Gaussian feature. We expect that this
will be a more difficult density to approximate, due to the different bandwidths required to accurately resolve each
feature.

>>> from functools import partial

>>> loc1, scale1, size1 = (-2, 1, 175)
>>> loc2, scale2, size2 = (2, 0.2, 50)
>>> x2 = np.concatenate([np.random.normal(loc=loc1, scale=scale1, size=size1),
... np.random.normal(loc=loc2, scale=scale2, size=size2)])

>>> x_eval = np.linspace(x2.min() - 1, x2.max() + 1, 500)

>>> kde = stats.gaussian_kde(x2)
>>> kde2 = stats.gaussian_kde(x2, bw_method='silverman')
>>> kde3 = stats.gaussian_kde(x2, bw_method=partial(my_kde_bandwidth, fac=0.2))
>>> kde4 = stats.gaussian_kde(x2, bw_method=partial(my_kde_bandwidth, fac=0.5))

>>> pdf = stats.norm.pdf
>>> bimodal_pdf = pdf(x_eval, loc=loc1, scale=scale1) * float(size1) / x2.size + \
... pdf(x_eval, loc=loc2, scale=scale2) * float(size2) / x2.size

>>> fig = plt.figure(figsize=(8, 6))
>>> ax = fig.add_subplot(111)

110 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> ax.plot(x2, np.zeros(x2.shape), 'b+', ms=12)
>>> ax.plot(x_eval, kde(x_eval), 'k-', label="Scott's Rule")
>>> ax.plot(x_eval, kde2(x_eval), 'b-', label="Silverman's Rule")
>>> ax.plot(x_eval, kde3(x_eval), 'g-', label="Scott * 0.2")
>>> ax.plot(x_eval, kde4(x_eval), 'c-', label="Scott * 0.5")
>>> ax.plot(x_eval, bimodal_pdf, 'r--', label="Actual PDF")

>>> ax.set_xlim([x_eval.min(), x_eval.max()])
>>> ax.legend(loc=2)
>>> ax.set_xlabel('x')
>>> ax.set_ylabel('Density')
>>> plt.show()

4 2 0 2
x

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

Scott's Rule
Silverman's Rule
Scott * 0.2
Scott * 0.5
Actual PDF

As expected, the KDE is not as close to the true PDF as we would like due to the different characteristic size of the
two features of the bimodal distribution. By halving the default bandwidth (Scott * 0.5) we can do somewhat
better, while using a factor 5 smaller bandwidth than the default doesn’t smooth enough. What we really need though
in this case is a non-uniform (adaptive) bandwidth.

Multivariate estimation

With gaussian_kde we can perform multivariate as well as univariate estimation. We demonstrate the bivariate
case. First we generate some random data with a model in which the two variates are correlated.

>>> def measure(n):
... """Measurement model, return two coupled measurements."""

1.13. Statistics (scipy.stats) 111

SciPy Reference Guide, Release 0.16.0

... m1 = np.random.normal(size=n)

... m2 = np.random.normal(scale=0.5, size=n)

... return m1+m2, m1-m2

>>> m1, m2 = measure(2000)
>>> xmin = m1.min()
>>> xmax = m1.max()
>>> ymin = m2.min()
>>> ymax = m2.max()

Then we apply the KDE to the data:

>>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
>>> positions = np.vstack([X.ravel(), Y.ravel()])
>>> values = np.vstack([m1, m2])
>>> kernel = stats.gaussian_kde(values)
>>> Z = np.reshape(kernel.evaluate(positions).T, X.shape)

Finally we plot the estimated bivariate distribution as a colormap, and plot the individual data points on top.

>>> fig = plt.figure(figsize=(8, 6))
>>> ax = fig.add_subplot(111)

>>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r,
... extent=[xmin, xmax, ymin, ymax])
>>> ax.plot(m1, m2, 'k.', markersize=2)

>>> ax.set_xlim([xmin, xmax])
>>> ax.set_ylim([ymin, ymax])

>>> plt.show()

112 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

4 3 2 1 0 1 2 3
4

3

2

1

0

1

2

3

1.14 Multidimensional image processing (scipy.ndimage)

1.14.1 Introduction

Image processing and analysis are generally seen as operations on two-dimensional arrays of values. There are how-
ever a number of fields where images of higher dimensionality must be analyzed. Good examples of these are medical
imaging and biological imaging. numpy is suited very well for this type of applications due its inherent multidimen-
sional nature. The scipy.ndimage packages provides a number of general image processing and analysis functions
that are designed to operate with arrays of arbitrary dimensionality. The packages currently includes functions for lin-
ear and non-linear filtering, binary morphology, B-spline interpolation, and object measurements.

1.14.2 Properties shared by all functions

All functions share some common properties. Notably, all functions allow the specification of an output array with the
output argument. With this argument you can specify an array that will be changed in-place with the result with the
operation. In this case the result is not returned. Usually, using the output argument is more efficient, since an existing
array is used to store the result.

The type of arrays returned is dependent on the type of operation, but it is in most cases equal to the type of the input.
If, however, the output argument is used, the type of the result is equal to the type of the specified output argument.

1.14. Multidimensional image processing (scipy.ndimage) 113

http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

SciPy Reference Guide, Release 0.16.0

If no output argument is given, it is still possible to specify what the result of the output should be. This is done by
simply assigning the desired numpy type object to the output argument. For example:

>>> correlate(np.arange(10), [1, 2.5])
array([0, 2, 6, 9, 13, 16, 20, 23, 27, 30])
>>> correlate(np.arange(10), [1, 2.5], output=np.float64)
array([0. , 2.5, 6. , 9.5, 13. , 16.5, 20. , 23.5, 27. , 30.5])

1.14.3 Filter functions

The functions described in this section all perform some type of spatial filtering of the input array: the elements
in the output are some function of the values in the neighborhood of the corresponding input element. We refer to
this neighborhood of elements as the filter kernel, which is often rectangular in shape but may also have an arbitrary
footprint. Many of the functions described below allow you to define the footprint of the kernel, by passing a mask
through the footprint parameter. For example a cross shaped kernel can be defined as follows:

>>> footprint = array([[0,1,0],[1,1,1],[0,1,0]])
>>> footprint
array([[0, 1, 0],

[1, 1, 1],
[0, 1, 0]])

Usually the origin of the kernel is at the center calculated by dividing the dimensions of the kernel shape by two.
For instance, the origin of a one-dimensional kernel of length three is at the second element. Take for example the
correlation of a one-dimensional array with a filter of length 3 consisting of ones:

>>> a = [0, 0, 0, 1, 0, 0, 0]
>>> correlate1d(a, [1, 1, 1])
array([0, 0, 1, 1, 1, 0, 0])

Sometimes it is convenient to choose a different origin for the kernel. For this reason most functions support the origin
parameter which gives the origin of the filter relative to its center. For example:

>>> a = [0, 0, 0, 1, 0, 0, 0]
>>> correlate1d(a, [1, 1, 1], origin = -1)
array([0 1 1 1 0 0 0])

The effect is a shift of the result towards the left. This feature will not be needed very often, but it may be useful
especially for filters that have an even size. A good example is the calculation of backward and forward differences:

>>> a = [0, 0, 1, 1, 1, 0, 0]
>>> correlate1d(a, [-1, 1]) # backward difference
array([0 0 1 0 0 -1 0])
>>> correlate1d(a, [-1, 1], origin = -1) # forward difference
array([0 1 0 0 -1 0 0])

We could also have calculated the forward difference as follows:

>>> correlate1d(a, [0, -1, 1])
array([0 1 0 0 -1 0 0])

However, using the origin parameter instead of a larger kernel is more efficient. For multidimensional kernels origin
can be a number, in which case the origin is assumed to be equal along all axes, or a sequence giving the origin along
each axis.

Since the output elements are a function of elements in the neighborhood of the input elements, the borders of the
array need to be dealt with appropriately by providing the values outside the borders. This is done by assuming that
the arrays are extended beyond their boundaries according certain boundary conditions. In the functions described

114 Chapter 1. SciPy Tutorial

http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

SciPy Reference Guide, Release 0.16.0

below, the boundary conditions can be selected using the mode parameter which must be a string with the name of the
boundary condition. Following boundary conditions are currently supported:

“nearest” Use the value at the boundary [1 2 3]->[1 1 2 3 3]
“wrap” Periodically replicate the array [1 2 3]->[3 1 2 3 1]
“reflect” Reflect the array at the boundary [1 2 3]->[1 1 2 3 3]
“constant” Use a constant value, default is 0.0 [1 2 3]->[0 1 2 3 0]

The “constant” mode is special since it needs an additional parameter to specify the constant value that should be used.

Note: The easiest way to implement such boundary conditions would be to copy the data to a larger array and extend
the data at the borders according to the boundary conditions. For large arrays and large filter kernels, this would be
very memory consuming, and the functions described below therefore use a different approach that does not require
allocating large temporary buffers.

Correlation and convolution

The correlate1d function calculates a one-dimensional correlation along the given axis. The lines of the ar-
ray along the given axis are correlated with the given weights. The weights parameter must be a one-dimensional
sequences of numbers.
The function correlate implements multidimensional correlation of the input array with a given kernel.
The convolve1d function calculates a one-dimensional convolution along the given axis. The lines of the
array along the given axis are convoluted with the given weights. The weights parameter must be a one-
dimensional sequences of numbers.

Note: A convolution is essentially a correlation after mirroring the kernel. As a result, the origin parameter
behaves differently than in the case of a correlation: the result is shifted in the opposite directions.

The function convolve implements multidimensional convolution of the input array with a given kernel.

Note: A convolution is essentially a correlation after mirroring the kernel. As a result, the origin parameter
behaves differently than in the case of a correlation: the results is shifted in the opposite direction.

Smoothing filters

The gaussian_filter1d function implements a one-dimensional Gaussian filter. The standard-deviation
of the Gaussian filter is passed through the parameter sigma. Setting order = 0 corresponds to convolution with
a Gaussian kernel. An order of 1, 2, or 3 corresponds to convolution with the first, second or third derivatives of
a Gaussian. Higher order derivatives are not implemented.
The gaussian_filter function implements a multidimensional Gaussian filter. The standard-deviations of
the Gaussian filter along each axis are passed through the parameter sigma as a sequence or numbers. If sigma
is not a sequence but a single number, the standard deviation of the filter is equal along all directions. The order
of the filter can be specified separately for each axis. An order of 0 corresponds to convolution with a Gaussian
kernel. An order of 1, 2, or 3 corresponds to convolution with the first, second or third derivatives of a Gaussian.
Higher order derivatives are not implemented. The order parameter must be a number, to specify the same order
for all axes, or a sequence of numbers to specify a different order for each axis.

Note: The multidimensional filter is implemented as a sequence of one-dimensional Gaussian filters. The
intermediate arrays are stored in the same data type as the output. Therefore, for output types with a lower
precision, the results may be imprecise because intermediate results may be stored with insufficient precision.
This can be prevented by specifying a more precise output type.

1.14. Multidimensional image processing (scipy.ndimage) 115

SciPy Reference Guide, Release 0.16.0

The uniform_filter1d function calculates a one-dimensional uniform filter of the given size along the
given axis.
The uniform_filter implements a multidimensional uniform filter. The sizes of the uniform filter are given
for each axis as a sequence of integers by the size parameter. If size is not a sequence, but a single number, the
sizes along all axis are assumed to be equal.

Note: The multidimensional filter is implemented as a sequence of one-dimensional uniform filters. The
intermediate arrays are stored in the same data type as the output. Therefore, for output types with a lower
precision, the results may be imprecise because intermediate results may be stored with insufficient precision.
This can be prevented by specifying a more precise output type.

Filters based on order statistics

The minimum_filter1d function calculates a one-dimensional minimum filter of given size along the given
axis.
The maximum_filter1d function calculates a one-dimensional maximum filter of given size along the given
axis.
The minimum_filter function calculates a multidimensional minimum filter. Either the sizes of a rectangu-
lar kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of
sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint,
if provided, must be an array that defines the shape of the kernel by its non-zero elements.
The maximum_filter function calculates a multidimensional maximum filter. Either the sizes of a rectangu-
lar kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of
sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint,
if provided, must be an array that defines the shape of the kernel by its non-zero elements.
The rank_filter function calculates a multidimensional rank filter. The rank may be less then zero, i.e.,
rank = -1 indicates the largest element. Either the sizes of a rectangular kernel or the footprint of the kernel must
be provided. The size parameter, if provided, must be a sequence of sizes or a single number in which case the
size of the filter is assumed to be equal along each axis. The footprint, if provided, must be an array that defines
the shape of the kernel by its non-zero elements.
The percentile_filter function calculates a multidimensional percentile filter. The percentile may be
less then zero, i.e., percentile = -20 equals percentile = 80. Either the sizes of a rectangular kernel or the
footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of sizes or a single
number in which case the size of the filter is assumed to be equal along each axis. The footprint, if provided,
must be an array that defines the shape of the kernel by its non-zero elements.
The median_filter function calculates a multidimensional median filter. Either the sizes of a rectangular
kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of
sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint
if provided, must be an array that defines the shape of the kernel by its non-zero elements.

Derivatives

Derivative filters can be constructed in several ways. The function gaussian_filter1d described in Smoothing
filters can be used to calculate derivatives along a given axis using the order parameter. Other derivative filters are the
Prewitt and Sobel filters:

The prewitt function calculates a derivative along the given axis.
The sobel function calculates a derivative along the given axis.

The Laplace filter is calculated by the sum of the second derivatives along all axes. Thus, different Laplace filters
can be constructed using different second derivative functions. Therefore we provide a general function that takes a
function argument to calculate the second derivative along a given direction and to construct the Laplace filter:

116 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

The function generic_laplace calculates a laplace filter using the function passed through derivative2
to calculate second derivatives. The function derivative2 should have the following signature:

derivative2(input, axis, output, mode, cval, *extra_arguments, **extra_keywords)

It should calculate the second derivative along the dimension axis. If output is not None it should use that for
the output and return None, otherwise it should return the result. mode, cval have the usual meaning.
The extra_arguments and extra_keywords arguments can be used to pass a tuple of extra arguments and a dic-
tionary of named arguments that are passed to derivative2 at each call.
For example:

>>> def d2(input, axis, output, mode, cval):
... return correlate1d(input, [1, -2, 1], axis, output, mode, cval, 0)
...
>>> a = zeros((5, 5))
>>> a[2, 2] = 1
>>> generic_laplace(a, d2)
array([[0., 0., 0., 0., 0.],

[0., 0., 1., 0., 0.],
[0., 1., -4., 1., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0.]])

To demonstrate the use of the extra_arguments argument we could do:

>>> def d2(input, axis, output, mode, cval, weights):
... return correlate1d(input, weights, axis, output, mode, cval, 0,)
...
>>> a = zeros((5, 5))
>>> a[2, 2] = 1
>>> generic_laplace(a, d2, extra_arguments = ([1, -2, 1],))
array([[0., 0., 0., 0., 0.],

[0., 0., 1., 0., 0.],
[0., 1., -4., 1., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0.]])

or:

>>> generic_laplace(a, d2, extra_keywords = {'weights': [1, -2, 1]})
array([[0., 0., 0., 0., 0.],

[0., 0., 1., 0., 0.],
[0., 1., -4., 1., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0.]])

The following two functions are implemented using generic_laplace by providing appropriate functions for the
second derivative function:

The function laplace calculates the Laplace using discrete differentiation for the second derivative (i.e. con-
volution with [1, -2, 1]).
The function gaussian_laplace calculates the Laplace using gaussian_filter to calculate the second
derivatives. The standard-deviations of the Gaussian filter along each axis are passed through the parameter
sigma as a sequence or numbers. If sigma is not a sequence but a single number, the standard deviation of the
filter is equal along all directions.

The gradient magnitude is defined as the square root of the sum of the squares of the gradients in all directions. Similar
to the generic Laplace function there is a generic_gradient_magnitude function that calculated the gradient
magnitude of an array:

The function generic_gradient_magnitude calculates a gradient magnitude using the function passed
through derivative to calculate first derivatives. The function derivative should have the following

1.14. Multidimensional image processing (scipy.ndimage) 117

SciPy Reference Guide, Release 0.16.0

signature:

derivative(input, axis, output, mode, cval, *extra_arguments, **extra_keywords)

It should calculate the derivative along the dimension axis. If output is not None it should use that for the output
and return None, otherwise it should return the result. mode, cval have the usual meaning.
The extra_arguments and extra_keywords arguments can be used to pass a tuple of extra arguments and a dic-
tionary of named arguments that are passed to derivative at each call.
For example, the sobel function fits the required signature:

>>> a = zeros((5, 5))
>>> a[2, 2] = 1
>>> generic_gradient_magnitude(a, sobel)
array([[0. , 0. , 0. , 0. , 0.],

[0. , 1.41421356, 2. , 1.41421356, 0.],
[0. , 2. , 0. , 2. , 0.],
[0. , 1.41421356, 2. , 1.41421356, 0.],
[0. , 0. , 0. , 0. , 0.]])

See the documentation of generic_laplace for examples of using the extra_arguments and extra_keywords
arguments.

The sobel and prewitt functions fit the required signature and can therefore directly be used with
generic_gradient_magnitude. The following function implements the gradient magnitude using Gaussian
derivatives:

The function gaussian_gradient_magnitude calculates the gradient magnitude using
gaussian_filter to calculate the first derivatives. The standard-deviations of the Gaussian filter
along each axis are passed through the parameter sigma as a sequence or numbers. If sigma is not a sequence
but a single number, the standard deviation of the filter is equal along all directions.

Generic filter functions

To implement filter functions, generic functions can be used that accept a callable object that implements the filtering
operation. The iteration over the input and output arrays is handled by these generic functions, along with such
details as the implementation of the boundary conditions. Only a callable object implementing a callback function
that does the actual filtering work must be provided. The callback function can also be written in C and passed using
a PyCObject (see Extending ndimage in C for more information).

The generic_filter1d function implements a generic one-dimensional filter function, where the actual
filtering operation must be supplied as a python function (or other callable object). The generic_filter1d
function iterates over the lines of an array and calls function at each line. The arguments that are passed to
function are one-dimensional arrays of the tFloat64 type. The first contains the values of the current line.
It is extended at the beginning end the end, according to the filter_size and origin arguments. The second array
should be modified in-place to provide the output values of the line. For example consider a correlation along
one dimension:

>>> a = arange(12).reshape(3,4)
>>> correlate1d(a, [1, 2, 3])
array([[3, 8, 14, 17],

[27, 32, 38, 41],
[51, 56, 62, 65]])

The same operation can be implemented using generic_filter1d as follows:

>>> def fnc(iline, oline):
... oline[...] = iline[:-2] + 2 * iline[1:-1] + 3 * iline[2:]
...
>>> generic_filter1d(a, fnc, 3)
array([[3, 8, 14, 17],

118 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

[27, 32, 38, 41],
[51, 56, 62, 65]])

Here the origin of the kernel was (by default) assumed to be in the middle of the filter of length 3. Therefore,
each input line was extended by one value at the beginning and at the end, before the function was called.
Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and ex-
tra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the parameters of our filter as an argument:

>>> def fnc(iline, oline, a, b):
... oline[...] = iline[:-2] + a * iline[1:-1] + b * iline[2:]
...
>>> generic_filter1d(a, fnc, 3, extra_arguments = (2, 3))
array([[3, 8, 14, 17],

[27, 32, 38, 41],
[51, 56, 62, 65]])

or:

>>> generic_filter1d(a, fnc, 3, extra_keywords = {'a':2, 'b':3})
array([[3, 8, 14, 17],

[27, 32, 38, 41],
[51, 56, 62, 65]])

The generic_filter function implements a generic filter function, where the actual filtering operation must
be supplied as a python function (or other callable object). The generic_filter function iterates over the
array and calls function at each element. The argument of function is a one-dimensional array of the
tFloat64 type, that contains the values around the current element that are within the footprint of the filter.
The function should return a single value that can be converted to a double precision number. For example
consider a correlation:

>>> a = arange(12).reshape(3,4)
>>> correlate(a, [[1, 0], [0, 3]])
array([[0, 3, 7, 11],

[12, 15, 19, 23],
[28, 31, 35, 39]])

The same operation can be implemented using generic_filter as follows:

>>> def fnc(buffer):
... return (buffer * array([1, 3])).sum()
...
>>> generic_filter(a, fnc, footprint = [[1, 0], [0, 1]])
array([[0 3 7 11],

[12 15 19 23],
[28 31 35 39]])

Here a kernel footprint was specified that contains only two elements. Therefore the filter function receives a
buffer of length equal to two, which was multiplied with the proper weights and the result summed.
When calling generic_filter, either the sizes of a rectangular kernel or the footprint of the kernel must be
provided. The size parameter, if provided, must be a sequence of sizes or a single number in which case the size
of the filter is assumed to be equal along each axis. The footprint, if provided, must be an array that defines the
shape of the kernel by its non-zero elements.
Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and ex-
tra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the parameters of our filter as an argument:

>>> def fnc(buffer, weights):
... weights = asarray(weights)
... return (buffer * weights).sum()
...

1.14. Multidimensional image processing (scipy.ndimage) 119

SciPy Reference Guide, Release 0.16.0

>>> generic_filter(a, fnc, footprint = [[1, 0], [0, 1]], extra_arguments = ([1, 3],))
array([[0, 3, 7, 11],

[12, 15, 19, 23],
[28, 31, 35, 39]])

or:

>>> generic_filter(a, fnc, footprint = [[1, 0], [0, 1]], extra_keywords= {'weights': [1, 3]})
array([[0, 3, 7, 11],

[12, 15, 19, 23],
[28, 31, 35, 39]])

These functions iterate over the lines or elements starting at the last axis, i.e. the last index changes the fastest. This
order of iteration is guaranteed for the case that it is important to adapt the filter depending on spatial location. Here
is an example of using a class that implements the filter and keeps track of the current coordinates while iterating.
It performs the same filter operation as described above for generic_filter, but additionally prints the current
coordinates:

>>> a = arange(12).reshape(3,4)
>>>
>>> class fnc_class:
... def __init__(self, shape):
... # store the shape:
... self.shape = shape
... # initialize the coordinates:
... self.coordinates = [0] * len(shape)
...
... def filter(self, buffer):
... result = (buffer * array([1, 3])).sum()
... print self.coordinates
... # calculate the next coordinates:
... axes = range(len(self.shape))
... axes.reverse()
... for jj in axes:
... if self.coordinates[jj] < self.shape[jj] - 1:
... self.coordinates[jj] += 1
... break
... else:
... self.coordinates[jj] = 0
... return result
...
>>> fnc = fnc_class(shape = (3,4))
>>> generic_filter(a, fnc.filter, footprint = [[1, 0], [0, 1]])
[0, 0]
[0, 1]
[0, 2]
[0, 3]
[1, 0]
[1, 1]
[1, 2]
[1, 3]
[2, 0]
[2, 1]
[2, 2]
[2, 3]
array([[0, 3, 7, 11],

[12, 15, 19, 23],
[28, 31, 35, 39]])

120 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

For the generic_filter1d function the same approach works, except that this function does not iterate over the
axis that is being filtered. The example for generic_filter1d then becomes this:

>>> a = arange(12).reshape(3,4)
>>>
>>> class fnc1d_class:
... def __init__(self, shape, axis = -1):
... # store the filter axis:
... self.axis = axis
... # store the shape:
... self.shape = shape
... # initialize the coordinates:
... self.coordinates = [0] * len(shape)
...
... def filter(self, iline, oline):
... oline[...] = iline[:-2] + 2 * iline[1:-1] + 3 * iline[2:]
... print self.coordinates
... # calculate the next coordinates:
... axes = range(len(self.shape))
... # skip the filter axis:
... del axes[self.axis]
... axes.reverse()
... for jj in axes:
... if self.coordinates[jj] < self.shape[jj] - 1:
... self.coordinates[jj] += 1
... break
... else:
... self.coordinates[jj] = 0
...
>>> fnc = fnc1d_class(shape = (3,4))
>>> generic_filter1d(a, fnc.filter, 3)
[0, 0]
[1, 0]
[2, 0]
array([[3, 8, 14, 17],

[27, 32, 38, 41],
[51, 56, 62, 65]])

Fourier domain filters

The functions described in this section perform filtering operations in the Fourier domain. Thus, the input array
of such a function should be compatible with an inverse Fourier transform function, such as the functions from the
numpy.fft module. We therefore have to deal with arrays that may be the result of a real or a complex Fourier
transform. In the case of a real Fourier transform only half of the of the symmetric complex transform is stored.
Additionally, it needs to be known what the length of the axis was that was transformed by the real fft. The functions
described here provide a parameter n that in the case of a real transform must be equal to the length of the real
transform axis before transformation. If this parameter is less than zero, it is assumed that the input array was the
result of a complex Fourier transform. The parameter axis can be used to indicate along which axis the real transform
was executed.

The fourier_shift function multiplies the input array with the multidimensional Fourier transform of a
shift operation for the given shift. The shift parameter is a sequences of shifts for each dimension, or a single
value for all dimensions.
The fourier_gaussian function multiplies the input array with the multidimensional Fourier transform of
a Gaussian filter with given standard-deviations sigma. The sigma parameter is a sequences of values for each
dimension, or a single value for all dimensions.

1.14. Multidimensional image processing (scipy.ndimage) 121

http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft

SciPy Reference Guide, Release 0.16.0

The fourier_uniform function multiplies the input array with the multidimensional Fourier transform of a
uniform filter with given sizes size. The size parameter is a sequences of values for each dimension, or a single
value for all dimensions.
The fourier_ellipsoid function multiplies the input array with the multidimensional Fourier transform of
a elliptically shaped filter with given sizes size. The size parameter is a sequences of values for each dimension,
or a single value for all dimensions. This function is only implemented for dimensions 1, 2, and 3.

1.14.4 Interpolation functions

This section describes various interpolation functions that are based on B-spline theory. A good introduction to B-
splines can be found in: M. Unser, “Splines: A Perfect Fit for Signal and Image Processing,” IEEE Signal Processing
Magazine, vol. 16, no. 6, pp. 22-38, November 1999.

Spline pre-filters

Interpolation using splines of an order larger than 1 requires a pre- filtering step. The interpolation functions described
in section Interpolation functions apply pre-filtering by calling spline_filter, but they can be instructed not to
do this by setting the prefilter keyword equal to False. This is useful if more than one interpolation operation is done
on the same array. In this case it is more efficient to do the pre-filtering only once and use a prefiltered array as the
input of the interpolation functions. The following two functions implement the pre-filtering:

The spline_filter1d function calculates a one-dimensional spline filter along the given axis. An output
array can optionally be provided. The order of the spline must be larger then 1 and less than 6.
The spline_filter function calculates a multidimensional spline filter.

Note: The multidimensional filter is implemented as a sequence of one-dimensional spline filters. The inter-
mediate arrays are stored in the same data type as the output. Therefore, if an output with a limited precision is
requested, the results may be imprecise because intermediate results may be stored with insufficient precision.
This can be prevented by specifying a output type of high precision.

Interpolation functions

Following functions all employ spline interpolation to effect some type of geometric transformation of the input array.
This requires a mapping of the output coordinates to the input coordinates, and therefore the possibility arises that input
values outside the boundaries are needed. This problem is solved in the same way as described in Filter functions for
the multidimensional filter functions. Therefore these functions all support a mode parameter that determines how the
boundaries are handled, and a cval parameter that gives a constant value in case that the ‘constant’ mode is used.

The geometric_transform function applies an arbitrary geometric transform to the input. The given map-
ping function is called at each point in the output to find the corresponding coordinates in the input. mapping
must be a callable object that accepts a tuple of length equal to the output array rank and returns the correspond-
ing input coordinates as a tuple of length equal to the input array rank. The output shape and output type can
optionally be provided. If not given they are equal to the input shape and type.
For example:

>>> a = arange(12).reshape(4,3).astype(np.float64)
>>> def shift_func(output_coordinates):
... return (output_coordinates[0] - 0.5, output_coordinates[1] - 0.5)
...
>>> geometric_transform(a, shift_func)
array([[0. , 0. , 0.],

[0. , 1.3625, 2.7375],

122 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

[0. , 4.8125, 6.1875],
[0. , 8.2625, 9.6375]])

Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and ex-
tra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the shifts in our example as arguments:

>>> def shift_func(output_coordinates, s0, s1):
... return (output_coordinates[0] - s0, output_coordinates[1] - s1)
...
>>> geometric_transform(a, shift_func, extra_arguments = (0.5, 0.5))
array([[0. , 0. , 0.],

[0. , 1.3625, 2.7375],
[0. , 4.8125, 6.1875],
[0. , 8.2625, 9.6375]])

or:

>>> geometric_transform(a, shift_func, extra_keywords = {'s0': 0.5, 's1': 0.5})
array([[0. , 0. , 0.],

[0. , 1.3625, 2.7375],
[0. , 4.8125, 6.1875],
[0. , 8.2625, 9.6375]])

Note: The mapping function can also be written in C and passed using a PyCObject. See Extending ndimage
in C for more information.

The function map_coordinates applies an arbitrary coordinate transformation using the given array of
coordinates. The shape of the output is derived from that of the coordinate array by dropping the first axis. The
parameter coordinates is used to find for each point in the output the corresponding coordinates in the input.
The values of coordinates along the first axis are the coordinates in the input array at which the output value is
found. (See also the numarray coordinates function.) Since the coordinates may be non- integer coordinates,
the value of the input at these coordinates is determined by spline interpolation of the requested order. Here is
an example that interpolates a 2D array at (0.5, 0.5) and (1, 2):

>>> a = arange(12).reshape(4,3).astype(np.float64)
>>> a
array([[0., 1., 2.],

[3., 4., 5.],
[6., 7., 8.],
[9., 10., 11.]])

>>> map_coordinates(a, [[0.5, 2], [0.5, 1]])
array([1.3625 7.])

The affine_transform function applies an affine transformation to the input array. The given transforma-
tion matrix and offset are used to find for each point in the output the corresponding coordinates in the input. The
value of the input at the calculated coordinates is determined by spline interpolation of the requested order. The
transformation matrix must be two-dimensional or can also be given as a one-dimensional sequence or array. In
the latter case, it is assumed that the matrix is diagonal. A more efficient interpolation algorithm is then applied
that exploits the separability of the problem. The output shape and output type can optionally be provided. If
not given they are equal to the input shape and type.
The shift function returns a shifted version of the input, using spline interpolation of the requested order.
The zoom function returns a rescaled version of the input, using spline interpolation of the requested order.
The rotate function returns the input array rotated in the plane defined by the two axes given by the parameter
axes, using spline interpolation of the requested order. The angle must be given in degrees. If reshape is true,
then the size of the output array is adapted to contain the rotated input.

1.14. Multidimensional image processing (scipy.ndimage) 123

SciPy Reference Guide, Release 0.16.0

1.14.5 Morphology

Binary morphology

Binary morphology (need something to put here).

The generate_binary_structure functions generates a binary structuring element for use in binary
morphology operations. The rank of the structure must be provided. The size of the structure that is returned is
equal to three in each direction. The value of each element is equal to one if the square of the Euclidean distance
from the element to the center is less or equal to connectivity. For instance, two dimensional 4-connected and
8-connected structures are generated as follows:

>>> generate_binary_structure(2, 1)
array([[False, True, False],

[True, True, True],
[False, True, False]], dtype=bool)

>>> generate_binary_structure(2, 2)
array([[True, True, True],

[True, True, True],
[True, True, True]], dtype=bool)

Most binary morphology functions can be expressed in terms of the basic operations erosion and dilation:

The binary_erosion function implements binary erosion of arrays of arbitrary rank with the given struc-
turing element. The origin parameter controls the placement of the structuring element as described in Filter
functions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The border_value parameter gives the value of the array outside bound-
aries. The erosion is repeated iterations times. If iterations is less than one, the erosion is repeated until the result
does not change anymore. If a mask array is given, only those elements with a true value at the corresponding
mask element are modified at each iteration.
The binary_dilation function implements binary dilation of arrays of arbitrary rank with the given struc-
turing element. The origin parameter controls the placement of the structuring element as described in Filter
functions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The border_value parameter gives the value of the array outside bound-
aries. The dilation is repeated iterations times. If iterations is less than one, the dilation is repeated until the
result does not change anymore. If a mask array is given, only those elements with a true value at the corre-
sponding mask element are modified at each iteration.
Here is an example of using binary_dilation to find all elements that touch the border, by repeatedly
dilating an empty array from the border using the data array as the mask:

>>> struct = array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
>>> a = array([[1,0,0,0,0], [1,1,0,1,0], [0,0,1,1,0], [0,0,0,0,0]])
>>> a
array([[1, 0, 0, 0, 0],

[1, 1, 0, 1, 0],
[0, 0, 1, 1, 0],
[0, 0, 0, 0, 0]])

>>> binary_dilation(zeros(a.shape), struct, -1, a, border_value=1)
array([[True, False, False, False, False],

[True, True, False, False, False],
[False, False, False, False, False],
[False, False, False, False, False]], dtype=bool)

The binary_erosion and binary_dilation functions both have an iterations parameter which allows the
erosion or dilation to be repeated a number of times. Repeating an erosion or a dilation with a given structure n times
is equivalent to an erosion or a dilation with a structure that is n-1 times dilated with itself. A function is provided that
allows the calculation of a structure that is dilated a number of times with itself:

124 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

The iterate_structure function returns a structure by dilation of the input structure iteration - 1 times
with itself. For instance:

>>> struct = generate_binary_structure(2, 1)
>>> struct
array([[False, True, False],

[True, True, True],
[False, True, False]], dtype=bool)

>>> iterate_structure(struct, 2)
array([[False, False, True, False, False],

[False, True, True, True, False],
[True, True, True, True, True],
[False, True, True, True, False],
[False, False, True, False, False]], dtype=bool)

If the origin of the original structure is equal to 0, then it is also equal to 0 for the iterated structure. If not,
the origin must also be adapted if the equivalent of the iterations erosions or dilations must be achieved with
the iterated structure. The adapted origin is simply obtained by multiplying with the number of iterations. For
convenience the iterate_structure also returns the adapted origin if the origin parameter is not None:

>>> iterate_structure(struct, 2, -1)
(array([[False, False, True, False, False],

[False, True, True, True, False],
[True, True, True, True, True],
[False, True, True, True, False],
[False, False, True, False, False]], dtype=bool), [-2, -2])

Other morphology operations can be defined in terms of erosion and d dilation. Following functions provide a few of
these operations for convenience:

The binary_opening function implements binary opening of arrays of arbitrary rank with the given struc-
turing element. Binary opening is equivalent to a binary erosion followed by a binary dilation with the same
structuring element. The origin parameter controls the placement of the structuring element as described in Fil-
ter functions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The iterations parameter gives the number of erosions that is performed
followed by the same number of dilations.
The binary_closing function implements binary closing of arrays of arbitrary rank with the given struc-
turing element. Binary closing is equivalent to a binary dilation followed by a binary erosion with the same
structuring element. The origin parameter controls the placement of the structuring element as described in Fil-
ter functions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The iterations parameter gives the number of dilations that is performed
followed by the same number of erosions.
The binary_fill_holes function is used to close holes in objects in a binary image, where the structure
defines the connectivity of the holes. The origin parameter controls the placement of the structuring element as
described in Filter functions. If no structuring element is provided, an element with connectivity equal to one is
generated using generate_binary_structure.
The binary_hit_or_miss function implements a binary hit-or-miss transform of arrays of arbitrary rank
with the given structuring elements. The hit-or-miss transform is calculated by erosion of the input with
the first structure, erosion of the logical not of the input with the second structure, followed by the logi-
cal and of these two erosions. The origin parameters control the placement of the structuring elements as
described in Filter functions. If origin2 equals None it is set equal to the origin1 parameter. If the first
structuring element is not provided, a structuring element with connectivity equal to one is generated using
generate_binary_structure, if structure2 is not provided, it is set equal to the logical not of struc-
ture1.

1.14. Multidimensional image processing (scipy.ndimage) 125

SciPy Reference Guide, Release 0.16.0

Grey-scale morphology

Grey-scale morphology operations are the equivalents of binary morphology operations that operate on arrays with
arbitrary values. Below we describe the grey-scale equivalents of erosion, dilation, opening and closing. These
operations are implemented in a similar fashion as the filters described in Filter functions, and we refer to this section
for the description of filter kernels and footprints, and the handling of array borders. The grey-scale morphology
operations optionally take a structure parameter that gives the values of the structuring element. If this parameter
is not given the structuring element is assumed to be flat with a value equal to zero. The shape of the structure
can optionally be defined by the footprint parameter. If this parameter is not given, the structure is assumed to be
rectangular, with sizes equal to the dimensions of the structure array, or by the size parameter if structure is not given.
The size parameter is only used if both structure and footprint are not given, in which case the structuring element
is assumed to be rectangular and flat with the dimensions given by size. The size parameter, if provided, must be a
sequence of sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The
footprint parameter, if provided, must be an array that defines the shape of the kernel by its non-zero elements.

Similar to binary erosion and dilation there are operations for grey-scale erosion and dilation:

The grey_erosion function calculates a multidimensional grey- scale erosion.
The grey_dilation function calculates a multidimensional grey- scale dilation.

Grey-scale opening and closing operations can be defined similar to their binary counterparts:

The grey_opening function implements grey-scale opening of arrays of arbitrary rank. Grey-scale opening
is equivalent to a grey-scale erosion followed by a grey-scale dilation.
The grey_closing function implements grey-scale closing of arrays of arbitrary rank. Grey-scale opening
is equivalent to a grey-scale dilation followed by a grey-scale erosion.
The morphological_gradient function implements a grey-scale morphological gradient of arrays of
arbitrary rank. The grey-scale morphological gradient is equal to the difference of a grey-scale dilation and a
grey-scale erosion.
The morphological_laplace function implements a grey-scale morphological laplace of arrays of arbi-
trary rank. The grey-scale morphological laplace is equal to the sum of a grey-scale dilation and a grey-scale
erosion minus twice the input.
The white_tophat function implements a white top-hat filter of arrays of arbitrary rank. The white top-hat
is equal to the difference of the input and a grey-scale opening.
The black_tophat function implements a black top-hat filter of arrays of arbitrary rank. The black top-hat
is equal to the difference of the a grey-scale closing and the input.

1.14.6 Distance transforms

Distance transforms are used to calculate the minimum distance from each element of an object to the background.
The following functions implement distance transforms for three different distance metrics: Euclidean, City Block,
and Chessboard distances.

The function distance_transform_cdt uses a chamfer type algorithm to calculate the distance trans-
form of the input, by replacing each object element (defined by values larger than zero) with the shortest dis-
tance to the background (all non-object elements). The structure determines the type of chamfering that is
done. If the structure is equal to ‘cityblock’ a structure is generated using generate_binary_structure
with a squared distance equal to 1. If the structure is equal to ‘chessboard’, a structure is generated using
generate_binary_structure with a squared distance equal to the rank of the array. These choices cor-
respond to the common interpretations of the cityblock and the chessboard distancemetrics in two dimensions.
In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result. The return_distances, and return_indices flags
can be used to indicate if the distance transform, the feature transform, or both must be returned.
The distances and indices arguments can be used to give optional output arrays that must be of the correct size
and type (both Int32).

126 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

The basics of the algorithm used to implement this function is described in: G. Borgefors, “Distance transfor-
mations in arbitrary dimensions.”, Computer Vision, Graphics, and Image Processing, 27:321-345, 1984.
The function distance_transform_edt calculates the exact euclidean distance transform of the input, by
replacing each object element (defined by values larger than zero) with the shortest euclidean distance to the
background (all non-object elements).
In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result. The return_distances, and return_indices flags
can be used to indicate if the distance transform, the feature transform, or both must be returned.
Optionally the sampling along each axis can be given by the sampling parameter which should be a sequence of
length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes.
The distances and indices arguments can be used to give optional output arrays that must be of the correct size
and type (Float64 and Int32).
The algorithm used to implement this function is described in: C. R. Maurer, Jr., R. Qi, and V. Raghavan, “A lin-
ear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions.
IEEE Trans. PAMI 25, 265-270, 2003.
The function distance_transform_bf uses a brute-force algorithm to calculate the distance transform of
the input, by replacing each object element (defined by values larger than zero) with the shortest distance to the
background (all non-object elements). The metric must be one of “euclidean”, “cityblock”, or “chessboard”.
In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result. The return_distances, and return_indices flags
can be used to indicate if the distance transform, the feature transform, or both must be returned.
Optionally the sampling along each axis can be given by the sampling parameter which should be a sequence of
length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes.
This parameter is only used in the case of the euclidean distance transform.
The distances and indices arguments can be used to give optional output arrays that must be of the correct size
and type (Float64 and Int32).

Note: This function uses a slow brute-force algorithm, the function distance_transform_cdt
can be used to more efficiently calculate cityblock and chessboard distance transforms. The function
distance_transform_edt can be used to more efficiently calculate the exact euclidean distance trans-
form.

1.14.7 Segmentation and labeling

Segmentation is the process of separating objects of interest from the background. The most simple approach is
probably intensity thresholding, which is easily done with numpy functions:

>>> a = array([[1,2,2,1,1,0],
... [0,2,3,1,2,0],
... [1,1,1,3,3,2],
... [1,1,1,1,2,1]])
>>> where(a > 1, 1, 0)
array([[0, 1, 1, 0, 0, 0],

[0, 1, 1, 0, 1, 0],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 1, 0]])

The result is a binary image, in which the individual objects still need to be identified and labeled. The function
label generates an array where each object is assigned a unique number:

The label function generates an array where the objects in the input are labeled with an integer index. It returns
a tuple consisting of the array of object labels and the number of objects found, unless the output parameter is
given, in which case only the number of objects is returned. The connectivity of the objects is defined by a
structuring element. For instance, in two dimensions using a four-connected structuring element gives:

1.14. Multidimensional image processing (scipy.ndimage) 127

http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

SciPy Reference Guide, Release 0.16.0

>>> a = array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,0]])
>>> s = [[0, 1, 0], [1,1,1], [0,1,0]]
>>> label(a, s)
(array([[0, 1, 1, 0, 0, 0],

[0, 1, 1, 0, 2, 0],
[0, 0, 0, 2, 2, 2],
[0, 0, 0, 0, 2, 0]]), 2)

These two objects are not connected because there is no way in which we can place the structuring element such
that it overlaps with both objects. However, an 8-connected structuring element results in only a single object:

>>> a = array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,0]])
>>> s = [[1,1,1], [1,1,1], [1,1,1]]
>>> label(a, s)[0]
array([[0, 1, 1, 0, 0, 0],

[0, 1, 1, 0, 1, 0],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 1, 0]])

If no structuring element is provided, one is generated by calling generate_binary_structure (see
Binary morphology) using a connectivity of one (which in 2D is the 4-connected structure of the first example).
The input can be of any type, any value not equal to zero is taken to be part of an object. This is useful if you
need to ‘re-label’ an array of object indices, for instance after removing unwanted objects. Just apply the label
function again to the index array. For instance:

>>> l, n = label([1, 0, 1, 0, 1])
>>> l
array([1 0 2 0 3])
>>> l = where(l != 2, l, 0)
>>> l
array([1 0 0 0 3])
>>> label(l)[0]
array([1 0 0 0 2])

Note: The structuring element used by label is assumed to be symmetric.

There is a large number of other approaches for segmentation, for instance from an estimation of the borders of
the objects that can be obtained for instance by derivative filters. One such an approach is watershed segmentation.
The function watershed_ift generates an array where each object is assigned a unique label, from an array that
localizes the object borders, generated for instance by a gradient magnitude filter. It uses an array containing initial
markers for the objects:

The watershed_ift function applies a watershed from markers algorithm, using an Iterative Forest Trans-
form, as described in: P. Felkel, R. Wegenkittl, and M. Bruckschwaiger, “Implementation and Complexity of the
Watershed-from-Markers Algorithm Computed as a Minimal Cost Forest.”, Eurographics 2001, pp. C:26-35.
The inputs of this function are the array to which the transform is applied, and an array of markers that designate
the objects by a unique label, where any non-zero value is a marker. For instance:

>>> input = array([[0, 0, 0, 0, 0, 0, 0],
... [0, 1, 1, 1, 1, 1, 0],
... [0, 1, 0, 0, 0, 1, 0],
... [0, 1, 0, 0, 0, 1, 0],
... [0, 1, 0, 0, 0, 1, 0],
... [0, 1, 1, 1, 1, 1, 0],
... [0, 0, 0, 0, 0, 0, 0]], np.uint8)
>>> markers = array([[1, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 2, 0, 0, 0],

128 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

... [0, 0, 0, 0, 0, 0, 0],

... [0, 0, 0, 0, 0, 0, 0],

... [0, 0, 0, 0, 0, 0, 0]], np.int8)
>>> watershed_ift(input, markers)
array([[1, 1, 1, 1, 1, 1, 1],

[1, 1, 2, 2, 2, 1, 1],
[1, 2, 2, 2, 2, 2, 1],
[1, 2, 2, 2, 2, 2, 1],
[1, 2, 2, 2, 2, 2, 1],
[1, 1, 2, 2, 2, 1, 1],
[1, 1, 1, 1, 1, 1, 1]], dtype=int8)

Here two markers were used to designate an object (marker = 2) and the background (marker = 1). The order
in which these are processed is arbitrary: moving the marker for the background to the lower right corner of the
array yields a different result:

>>> markers = array([[0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 2, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 1]], np.int8)
>>> watershed_ift(input, markers)
array([[1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1],
[1, 1, 2, 2, 2, 1, 1],
[1, 1, 2, 2, 2, 1, 1],
[1, 1, 2, 2, 2, 1, 1],
[1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1]], dtype=int8)

The result is that the object (marker = 2) is smaller because the second marker was processed earlier. This
may not be the desired effect if the first marker was supposed to designate a background object. Therefore
watershed_ift treats markers with a negative value explicitly as background markers and processes them
after the normal markers. For instance, replacing the first marker by a negative marker gives a result similar to
the first example:

>>> markers = array([[0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 2, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, -1]], np.int8)
>>> watershed_ift(input, markers)
array([[-1, -1, -1, -1, -1, -1, -1],

[-1, -1, 2, 2, 2, -1, -1],
[-1, 2, 2, 2, 2, 2, -1],
[-1, 2, 2, 2, 2, 2, -1],
[-1, 2, 2, 2, 2, 2, -1],
[-1, -1, 2, 2, 2, -1, -1],
[-1, -1, -1, -1, -1, -1, -1]], dtype=int8)

The connectivity of the objects is defined by a structuring element. If no structuring element is provided, one
is generated by calling generate_binary_structure (see Binary morphology) using a connectivity of
one (which in 2D is a 4-connected structure.) For example, using an 8-connected structure with the last example
yields a different object:

1.14. Multidimensional image processing (scipy.ndimage) 129

SciPy Reference Guide, Release 0.16.0

>>> watershed_ift(input, markers,
... structure = [[1,1,1], [1,1,1], [1,1,1]])
array([[-1, -1, -1, -1, -1, -1, -1],

[-1, 2, 2, 2, 2, 2, -1],
[-1, 2, 2, 2, 2, 2, -1],
[-1, 2, 2, 2, 2, 2, -1],
[-1, 2, 2, 2, 2, 2, -1],
[-1, 2, 2, 2, 2, 2, -1],
[-1, -1, -1, -1, -1, -1, -1]], dtype=int8)

Note: The implementation of watershed_ift limits the data types of the input to UInt8 and UInt16.

1.14.8 Object measurements

Given an array of labeled objects, the properties of the individual objects can be measured. The find_objects
function can be used to generate a list of slices that for each object, give the smallest sub-array that fully contains the
object:

The find_objects function finds all objects in a labeled array and returns a list of slices that correspond to
the smallest regions in the array that contains the object. For instance:

>>> a = array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,0]])
>>> l, n = label(a)
>>> f = find_objects(l)
>>> a[f[0]]
array([[1 1],

[1 1]])
>>> a[f[1]]
array([[0, 1, 0],

[1, 1, 1],
[0, 1, 0]])

find_objects returns slices for all objects, unless the max_label parameter is larger then zero, in which case
only the first max_label objects are returned. If an index is missing in the label array, None is return instead of
a slice. For example:

>>> find_objects([1, 0, 3, 4], max_label = 3)
[(slice(0, 1, None),), None, (slice(2, 3, None),)]

The list of slices generated by find_objects is useful to find the position and dimensions of the objects in the
array, but can also be used to perform measurements on the individual objects. Say we want to find the sum of the
intensities of an object in image:

>>> image = arange(4 * 6).reshape(4, 6)
>>> mask = array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,0]])
>>> labels = label(mask)[0]
>>> slices = find_objects(labels)

Then we can calculate the sum of the elements in the second object:

>>> where(labels[slices[1]] == 2, image[slices[1]], 0).sum()
80

That is however not particularly efficient, and may also be more complicated for other types of measurements. There-
fore a few measurements functions are defined that accept the array of object labels and the index of the object to be
measured. For instance calculating the sum of the intensities can be done by:

130 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> sum(image, labels, 2)
80

For large arrays and small objects it is more efficient to call the measurement functions after slicing the array:

>>> sum(image[slices[1]], labels[slices[1]], 2)
80

Alternatively, we can do the measurements for a number of labels with a single function call, returning a list of results.
For instance, to measure the sum of the values of the background and the second object in our example we give a list
of labels:

>>> sum(image, labels, [0, 2])
array([178.0, 80.0])

The measurement functions described below all support the index parameter to indicate which object(s) should be
measured. The default value of index is None. This indicates that all elements where the label is larger than zero
should be treated as a single object and measured. Thus, in this case the labels array is treated as a mask defined by
the elements that are larger than zero. If index is a number or a sequence of numbers it gives the labels of the objects
that are measured. If index is a sequence, a list of the results is returned. Functions that return more than one result,
return their result as a tuple if index is a single number, or as a tuple of lists, if index is a sequence.

The sum function calculates the sum of the elements of the object with label(s) given by index, using the labels
array for the object labels. If index is None, all elements with a non-zero label value are treated as a single
object. If label is None, all elements of input are used in the calculation.
The mean function calculates the mean of the elements of the object with label(s) given by index, using the
labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.
The variance function calculates the variance of the elements of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.
The standard_deviation function calculates the standard deviation of the elements of the object with
label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-
zero label value are treated as a single object. If label is None, all elements of input are used in the calculation.
The minimum function calculates the minimum of the elements of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.
The maximum function calculates the maximum of the elements of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.
The minimum_position function calculates the position of the minimum of the elements of the object with
label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero
label value are treated as a single object. If label is None, all elements of input are used in the calculation.
The maximum_position function calculates the position of the maximum of the elements of the object with
label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero
label value are treated as a single object. If label is None, all elements of input are used in the calculation.
The extrema function calculates the minimum, the maximum, and their positions, of the elements of the
object with label(s) given by index, using the labels array for the object labels. If index is None, all elements
with a non-zero label value are treated as a single object. If label is None, all elements of input are used in
the calculation. The result is a tuple giving the minimum, the maximum, the position of the minimum and the
postition of the maximum. The result is the same as a tuple formed by the results of the functions minimum,
maximum, minimum_position, and maximum_position that are described above.
The center_of_mass function calculates the center of mass of the of the object with label(s) given by index,
using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated
as a single object. If label is None, all elements of input are used in the calculation.

1.14. Multidimensional image processing (scipy.ndimage) 131

SciPy Reference Guide, Release 0.16.0

The histogram function calculates a histogram of the of the object with label(s) given by index, using the
labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation. Histograms are defined by their
minimum (min), maximum (max) and the number of bins (bins). They are returned as one-dimensional arrays
of type Int32.

1.14.9 Extending ndimage in C

A few functions in the scipy.ndimage take a call-back argument. This can be a python function, but also a
PyCObject containing a pointer to a C function. To use this feature, you must write your own C extension that
defines the function, and define a Python function that returns a PyCObject containing a pointer to this function.

An example of a function that supports this is geometric_transform (see Interpolation functions). You can pass
it a python callable object that defines a mapping from all output coordinates to corresponding coordinates in the input
array. This mapping function can also be a C function, which generally will be much more efficient, since the overhead
of calling a python function at each element is avoided.

For example to implement a simple shift function we define the following function:

static int
_shift_function(int *output_coordinates, double* input_coordinates,

int output_rank, int input_rank, void *callback_data)
{

int ii;
/* get the shift from the callback data pointer: */
double shift = *(double*)callback_data;
/* calculate the coordinates: */
for(ii = 0; ii < irank; ii++)
icoor[ii] = ocoor[ii] - shift;

/* return OK status: */
return 1;

}

This function is called at every element of the output array, passing the current coordinates in the output_coordinates
array. On return, the input_coordinates array must contain the coordinates at which the input is interpolated. The ranks
of the input and output array are passed through output_rank and input_rank. The value of the shift is passed through
the callback_data argument, which is a pointer to void. The function returns an error status, in this case always 1,
since no error can occur.

A pointer to this function and a pointer to the shift value must be passed to geometric_transform. Both are
passed by a single PyCObject which is created by the following python extension function:

static PyObject *
py_shift_function(PyObject *obj, PyObject *args)
{

double shift = 0.0;
if (!PyArg_ParseTuple(args, "d", &shift)) {
PyErr_SetString(PyExc_RuntimeError, "invalid parameters");
return NULL;

} else {
/* assign the shift to a dynamically allocated location: */
double *cdata = (double*)malloc(sizeof(double));

*cdata = shift;
/* wrap function and callback_data in a CObject: */
return PyCObject_FromVoidPtrAndDesc(_shift_function, cdata,

_destructor);
}

}

132 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

The value of the shift is obtained and then assigned to a dynamically allocated memory location. Both this data pointer
and the function pointer are then wrapped in a PyCObject, which is returned. Additionally, a pointer to a destructor
function is given, that will free the memory we allocated for the shift value when the PyCObject is destroyed. This
destructor is very simple:

static void
_destructor(void* cobject, void *cdata)
{

if (cdata)
free(cdata);

}

To use these functions, an extension module is built:

static PyMethodDef methods[] = {
{"shift_function", (PyCFunction)py_shift_function, METH_VARARGS, ""},
{NULL, NULL, 0, NULL}

};

void
initexample(void)
{

Py_InitModule("example", methods);
}

This extension can then be used in Python, for example:

>>> import example
>>> array = arange(12).reshape=(4, 3).astype(np.float64)
>>> fnc = example.shift_function(0.5)
>>> geometric_transform(array, fnc)
array([[0. 0. 0.],

[0. 1.3625 2.7375],
[0. 4.8125 6.1875],
[0. 8.2625 9.6375]])

C callback functions for use with ndimage functions must all be written according to this scheme. The next section
lists the ndimage functions that acccept a C callback function and gives the prototype of the callback function.

1.14.10 Functions that support C callback functions

The ndimage functions that support C callback functions are described here. Obviously, the prototype of the func-
tion that is provided to these functions must match exactly that what they expect. Therefore we give here the pro-
totypes of the callback functions. All these callback functions accept a void callback_data pointer that must be
wrapped in a PyCObject using the Python PyCObject_FromVoidPtrAndDesc function, which can also ac-
cept a pointer to a destructor function to free any memory allocated for callback_data. If callback_data is not needed,
PyCObject_FromVoidPtr may be used instead. The callback functions must return an integer error status that is
equal to zero if something went wrong, or 1 otherwise. If an error occurs, you should normally set the python error
status with an informative message before returning, otherwise, a default error message is set by the calling function.

The function generic_filter (see Generic filter functions) accepts a callback function with the following proto-
type:

The calling function iterates over the elements of the input and output arrays, calling the callback function at
each element. The elements within the footprint of the filter at the current element are passed through the buffer
parameter, and the number of elements within the footprint through filter_size. The calculated valued should be
returned in the return_value argument.

1.14. Multidimensional image processing (scipy.ndimage) 133

SciPy Reference Guide, Release 0.16.0

The function generic_filter1d (see Generic filter functions) accepts a callback function with the following
prototype:

The calling function iterates over the lines of the input and output arrays, calling the callback function at each
line. The current line is extended according to the border conditions set by the calling function, and the result is
copied into the array that is passed through the input_line array. The length of the input line (after extension) is
passed through input_length. The callback function should apply the 1D filter and store the result in the array
passed through output_line. The length of the output line is passed through output_length.

The function geometric_transform (see Interpolation functions) expects a function with the following proto-
type:

The calling function iterates over the elements of the output array, calling the callback function at each element.
The coordinates of the current output element are passed through output_coordinates. The callback function
must return the coordinates at which the input must be interpolated in input_coordinates. The rank of the input
and output arrays are given by input_rank and output_rank respectively.

1.15 File IO (scipy.io)

See also:

numpy-reference.routines.io (in numpy)

1.15.1 MATLAB files

loadmat(file_name[, mdict, appendmat]) Load MATLAB file
savemat(file_name, mdict[, appendmat, ...]) Save a dictionary of names and arrays into a MATLAB-style .mat file.
whosmat(file_name[, appendmat]) List variables inside a MATLAB file

The basic functions

We’ll start by importing scipy.io and calling it sio for convenience:

>>> import scipy.io as sio

If you are using IPython, try tab completing on sio. Among the many options, you will find:

sio.loadmat
sio.savemat
sio.whosmat

These are the high-level functions you will most likely use when working with MATLAB files. You’ll also find:

sio.matlab

This is the package from which loadmat, savemat and whosmat are imported. Within sio.matlab, you will
find the mio module This module contains the machinery that loadmat and savemat use. From time to time you
may find yourself re-using this machinery.

How do I start?

You may have a .mat file that you want to read into Scipy. Or, you want to pass some variables from Scipy / Numpy
into MATLAB.

134 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

To save us using a MATLAB license, let’s start in Octave. Octave has MATLAB-compatible save and load functions.
Start Octave (octave at the command line for me):

octave:1> a = 1:12
a =

1 2 3 4 5 6 7 8 9 10 11 12

octave:2> a = reshape(a, [1 3 4])
a =

ans(:,:,1) =

1 2 3

ans(:,:,2) =

4 5 6

ans(:,:,3) =

7 8 9

ans(:,:,4) =

10 11 12

octave:3> save -6 octave_a.mat a % MATLAB 6 compatible
octave:4> ls octave_a.mat
octave_a.mat

Now, to Python:

>>> mat_contents = sio.loadmat('octave_a.mat')
>>> mat_contents
{'a': array([[[1., 4., 7., 10.],

[2., 5., 8., 11.],
[3., 6., 9., 12.]]]),

'__version__': '1.0',
'__header__': 'MATLAB 5.0 MAT-file, written by
Octave 3.6.3, 2013-02-17 21:02:11 UTC',
'__globals__': []}

>>> oct_a = mat_contents['a']
>>> oct_a
array([[[1., 4., 7., 10.],

[2., 5., 8., 11.],
[3., 6., 9., 12.]]])

>>> oct_a.shape
(1, 3, 4)

Now let’s try the other way round:

>>> import numpy as np
>>> vect = np.arange(10)
>>> vect.shape
(10,)
>>> sio.savemat('np_vector.mat', {'vect':vect})

Then back to Octave:

1.15. File IO (scipy.io) 135

http://www.gnu.org/software/octave

SciPy Reference Guide, Release 0.16.0

octave:8> load np_vector.mat
octave:9> vect
vect =

0 1 2 3 4 5 6 7 8 9

octave:10> size(vect)
ans =

1 10

If you want to inspect the contents of a MATLAB file without reading the data into memory, use the whosmat
command:

>>> sio.whosmat('octave_a.mat')
[('a', (1, 3, 4), 'double')]

whosmat returns a list of tuples, one for each array (or other object) in the file. Each tuple contains the name, shape
and data type of the array.

MATLAB structs

MATLAB structs are a little bit like Python dicts, except the field names must be strings. Any MATLAB object can be
a value of a field. As for all objects in MATLAB, structs are in fact arrays of structs, where a single struct is an array
of shape (1, 1).

octave:11> my_struct = struct('field1', 1, 'field2', 2)
my_struct =
{

field1 = 1
field2 = 2

}

octave:12> save -6 octave_struct.mat my_struct

We can load this in Python:

>>> mat_contents = sio.loadmat('octave_struct.mat')
>>> mat_contents
{'my_struct': array([[([[1.0]], [[2.0]])]],

dtype=[('field1', 'O'), ('field2', 'O')]), '__version__': '1.0', '__header__': 'MATLAB 5.0 MAT-file, written by Octave 3.6.3, 2013-02-17 21:23:14 UTC', '__globals__': []}
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct.shape
(1, 1)
>>> val = oct_struct[0,0]
>>> val
([[1.0]], [[2.0]])
>>> val['field1']
array([[1.]])
>>> val['field2']
array([[2.]])
>>> val.dtype
dtype([('field1', 'O'), ('field2', 'O')])

In versions of Scipy from 0.12.0, MATLAB structs come back as numpy structured arrays, with fields named for the
struct fields. You can see the field names in the dtype output above. Note also:

136 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> val = oct_struct[0,0]

and:

octave:13> size(my_struct)
ans =

1 1

So, in MATLAB, the struct array must be at least 2D, and we replicate that when we read into Scipy. If you want all
length 1 dimensions squeezed out, try this:

>>> mat_contents = sio.loadmat('octave_struct.mat', squeeze_me=True)
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct.shape
()

Sometimes, it’s more convenient to load the MATLAB structs as python objects rather than numpy structured ar-
rays - it can make the access syntax in python a bit more similar to that in MATLAB. In order to do this, use the
struct_as_record=False parameter setting to loadmat.

>>> mat_contents = sio.loadmat('octave_struct.mat', struct_as_record=False)
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct[0,0].field1
array([[1.]])

struct_as_record=False works nicely with squeeze_me:

>>> mat_contents = sio.loadmat('octave_struct.mat', struct_as_record=False, squeeze_me=True)
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct.shape # but no - it's a scalar
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'mat_struct' object has no attribute 'shape'
>>> type(oct_struct)
<class 'scipy.io.matlab.mio5_params.mat_struct'>
>>> oct_struct.field1
1.0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'mat_struct' object has no attribute 'shape'

Saving struct arrays can be done in various ways. One simple method is to use dicts:

>>> a_dict = {'field1': 0.5, 'field2': 'a string'}
>>> sio.savemat('saved_struct.mat', {'a_dict': a_dict})

loaded as:

octave:21> load saved_struct
octave:22> a_dict
a_dict =

scalar structure containing the fields:

field2 = a string
field1 = 0.50000

You can also save structs back again to MATLAB (or Octave in our case) like this:

1.15. File IO (scipy.io) 137

SciPy Reference Guide, Release 0.16.0

>>> dt = [('f1', 'f8'), ('f2', 'S10')]
>>> arr = np.zeros((2,), dtype=dt)
>>> arr
array([(0.0, ''), (0.0, '')],

dtype=[('f1', '<f8'), ('f2', 'S10')])
>>> arr[0]['f1'] = 0.5
>>> arr[0]['f2'] = 'python'
>>> arr[1]['f1'] = 99
>>> arr[1]['f2'] = 'not perl'
>>> sio.savemat('np_struct_arr.mat', {'arr': arr})

MATLAB cell arrays

Cell arrays in MATLAB are rather like python lists, in the sense that the elements in the arrays can contain any type
of MATLAB object. In fact they are most similar to numpy object arrays, and that is how we load them into numpy.

octave:14> my_cells = {1, [2, 3]}
my_cells =
{

[1,1] = 1
[1,2] =

2 3

}

octave:15> save -6 octave_cells.mat my_cells

Back to Python:

>>> mat_contents = sio.loadmat('octave_cells.mat')
>>> oct_cells = mat_contents['my_cells']
>>> print(oct_cells.dtype)
object
>>> val = oct_cells[0,0]
>>> val
array([[1.]])
>>> print(val.dtype)
float64

Saving to a MATLAB cell array just involves making a numpy object array:

>>> obj_arr = np.zeros((2,), dtype=np.object)
>>> obj_arr[0] = 1
>>> obj_arr[1] = 'a string'
>>> obj_arr
array([1, 'a string'], dtype=object)
>>> sio.savemat('np_cells.mat', {'obj_arr':obj_arr})

octave:16> load np_cells.mat
octave:17> obj_arr
obj_arr =
{

[1,1] = 1
[2,1] = a string

}

138 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

1.15.2 IDL files

readsav(file_name[, idict, python_dict, ...]) Read an IDL .sav file

1.15.3 Matrix Market files

mminfo(source) Queries the contents of the Matrix Market file ‘filename’ to extract size and storage information.
mmread(source) Reads the contents of a Matrix Market file ‘filename’ into a matrix.
mmwrite(target, a[, comment, field, precision]) Writes the sparse or dense array a to a Matrix Market formatted file.

1.15.4 Wav sound files (scipy.io.wavfile)

read(filename[, mmap]) Return the sample rate (in samples/sec) and data from a WAV file
write(filename, rate, data) Write a numpy array as a WAV file

1.15.5 Arff files (scipy.io.arff)

Module to read ARFF files, which are the standard data format for WEKA.

ARFF is a text file format which support numerical, string and data values. The format can also represent missing data
and sparse data.

See the WEKA website for more details about arff format and available datasets.

Examples

>>> from scipy.io import arff
>>> from cStringIO import StringIO
>>> content = """
... @relation foo
... @attribute width numeric
... @attribute height numeric
... @attribute color {red,green,blue,yellow,black}
... @data
... 5.0,3.25,blue
... 4.5,3.75,green
... 3.0,4.00,red
... """
>>> f = StringIO(content)
>>> data, meta = arff.loadarff(f)
>>> data
array([(5.0, 3.25, 'blue'), (4.5, 3.75, 'green'), (3.0, 4.0, 'red')],

dtype=[('width', '<f8'), ('height', '<f8'), ('color', '|S6')])
>>> meta
Dataset: foo

width's type is numeric
height's type is numeric
color's type is nominal, range is ('red', 'green', 'blue', 'yellow', 'black')

loadarff(f) Read an arff file.

1.15. File IO (scipy.io) 139

http://weka.wikispaces.com/ARFF

SciPy Reference Guide, Release 0.16.0

1.15.6 Netcdf (scipy.io.netcdf)

netcdf_file(filename[, mode, mmap, version]) A file object for NetCDF data.

Allows reading of NetCDF files (version of pupynere package)

1.16 Weave (scipy.weave)

1.16.1 Outline

140 Chapter 1. SciPy Tutorial

http://pypi.python.org/pypi/pupynere/

SciPy Reference Guide, Release 0.16.0

Contents

• Weave (scipy.weave)
– Outline
– Introduction
– Requirements
– Installation
– Testing

* Testing Notes:
– Benchmarks
– Inline

* More with printf
* More examples

· Binary search
· Dictionary Sort
· NumPy – cast/copy/transpose
· wxPython

* Keyword Option
* Inline Arguments
* Distutils keywords

· Keyword Option Examples
· Returning Values
· The issue with locals()
· A quick look at the code

* Technical Details
* Passing Variables in/out of the C/C++ code
* Type Conversions

· NumPy Argument Conversion
· String, List, Tuple, and Dictionary Conversion
· File Conversion
· Callable, Instance, and Module Conversion
· Customizing Conversions

* The Catalog
· Function Storage
· Catalog search paths and the PYTHONCOMPILED variable

– Blitz
* Requirements
* Limitations
* NumPy efficiency issues: What compilation buys you
* The Tools

· Parser
· Blitz and NumPy

* Type definitions and coersion
* Cataloging Compiled Functions
* Checking Array Sizes
* Creating the Extension Module

– Extension Modules
* A Simple Example
* Fibonacci Example

– Customizing Type Conversions – Type Factories
– Things I wish weave did

1.16. Weave (scipy.weave) 141

SciPy Reference Guide, Release 0.16.0

1.16.2 Introduction

The scipy.weave (below just weave) package provides tools for including C/C++ code within in Python code.
This offers both another level of optimization to those who need it, and an easy way to modify and extend any supported
extension libraries such as wxPython and hopefully VTK soon. Inlining C/C++ code within Python generally results
in speed ups of 1.5x to 30x speed-up over algorithms written in pure Python (However, it is also possible to slow things
down...). Generally algorithms that require a large number of calls to the Python API don’t benefit as much from the
conversion to C/C++ as algorithms that have inner loops completely convertable to C.

There are three basic ways to use weave. The weave.inline() function executes C code directly within Python,
and weave.blitz() translates Python NumPy expressions to C++ for fast execution. blitz() was the original
reason weavewas built. For those interested in building extension libraries, the ext_toolsmodule provides classes
for building extension modules within Python.

Most of weave’s functionality should work on Windows and Unix, although some of its functionality requires gcc
or a similarly modern C++ compiler that handles templates well. Up to now, most testing has been done on Windows
2000 with Microsoft’s C++ compiler (MSVC) and with gcc (mingw32 2.95.2 and 2.95.3-6). All tests also pass on
Linux (RH 7.1 with gcc 2.96), and I’ve had reports that it works on Debian also (thanks Pearu).

The inline and blitz provide new functionality to Python (although I’ve recently learned about the PyInline
project which may offer similar functionality to inline). On the other hand, tools for building Python extension
modules already exists (SWIG, SIP, pycpp, CXX, and others). As of yet, I’m not sure where weave fits in this
spectrum. It is closest in flavor to CXX in that it makes creating new C/C++ extension modules pretty easy. However,
if you’re wrapping a gaggle of legacy functions or classes, SWIG and friends are definitely the better choice. weave
is set up so that you can customize how Python types are converted to C types in weave. This is great for inline(),
but, for wrapping legacy code, it is more flexible to specify things the other way around – that is how C types map to
Python types. This weave does not do. I guess it would be possible to build such a tool on top of weave, but with
good tools like SWIG around, I’m not sure the effort produces any new capabilities. Things like function overloading
are probably easily implemented in weave and it might be easier to mix Python/C code in function calls, but nothing
beyond this comes to mind. So, if you’re developing new extension modules or optimizing Python functions in C,
weave.ext_tools() might be the tool for you. If you’re wrapping legacy code, stick with SWIG.

The next several sections give the basics of how to use weave. We’ll discuss what’s happening under the covers in
more detail later on. Serious users will need to at least look at the type conversion section to understand how Python
variables map to C/C++ types and how to customize this behavior. One other note. If you don’t know C or C++ then
these docs are probably of very little help to you. Further, it’d be helpful if you know something about writing Python
extensions. weave does quite a bit for you, but for anything complex, you’ll need to do some conversions, reference
counting, etc.

Note: weave is actually part of the SciPy package. However, it also works fine as a standalone package (you can
install from scipy/weave with python setup.py install). The examples here are given as if it is used as
a stand alone package. If you are using from within scipy, you can use from scipy import weave and the
examples will work identically.

1.16.3 Requirements

• Python

I use 2.1.1. Probably 2.0 or higher should work.

• C++ compiler

weave uses distutils to actually build extension modules, so it uses whatever compiler was originally
used to build Python. weave itself requires a C++ compiler. If you used a C++ compiler to build Python, your
probably fine.

142 Chapter 1. SciPy Tutorial

http://pyinline.sourceforge.net/
http://www.scipy.org

SciPy Reference Guide, Release 0.16.0

On Unix gcc is the preferred choice because I’ve done a little testing with it. All testing has been done with gcc,
but I expect the majority of compilers should work for inline and ext_tools. The one issue I’m not sure
about is that I’ve hard coded things so that compilations are linked with the stdc++ library. Is this standard
across Unix compilers, or is this a gcc-ism?

For blitz(), you’ll need a reasonably recent version of gcc. 2.95.2 works on windows and 2.96 looks fine on
Linux. Other versions are likely to work. Its likely that KAI’s C++ compiler and maybe some others will work,
but I haven’t tried. My advice is to use gcc for now unless your willing to tinker with the code some.

On Windows, either MSVC or gcc (mingw32) should work. Again, you’ll need gcc for blitz() as the MSVC
compiler doesn’t handle templates well.

I have not tried Cygwin, so please report success if it works for you.

• NumPy

The python NumPy module is required for blitz() to work and for numpy.distutils which is used by weave.

1.16.4 Installation

There are currently two ways to get weave. First, weave is part of SciPy and installed automatically (as a sub-
package) whenever SciPy is installed. Second, since weave is useful outside of the scientific community, it has been
setup so that it can be used as a stand-alone module.

The stand-alone version can be downloaded from here. Instructions for installing should be found there as well.
setup.py file to simplify installation.

1.16.5 Testing

Once weave is installed, fire up python and run its unit tests.

>>> import weave
>>> weave.test()
runs long time... spews tons of output and a few warnings
.
.
.
..
..
..
--
Ran 184 tests in 158.418s
OK
>>>

This takes a while, usually several minutes. On Unix with remote file systems, I’ve had it take 15 or so minutes. In the
end, it should run about 180 tests and spew some speed results along the way. If you get errors, they’ll be reported at
the end of the output. Please report errors that you find. Some tests are known to fail at this point.

If you only want to test a single module of the package, you can do this by running test() for that specific module.

>>> import weave.scalar_spec
>>> weave.scalar_spec.test()
.......
--

Ran 7 tests in 23.284s

1.16. Weave (scipy.weave) 143

http://www.mingw.org%3Ewww.mingw.org
http://numeric.scipy.org/
http://www.scipy.org/Weave

SciPy Reference Guide, Release 0.16.0

Testing Notes:

• Windows 1

I’ve had some test fail on windows machines where I have msvc, gcc-2.95.2 (in c:gcc-2.95.2), and gcc-2.95.3-6
(in c:gcc) all installed. My environment has c:gcc in the path and does not have c:gcc-2.95.2 in the path. The test
process runs very smoothly until the end where several test using gcc fail with cpp0 not found by g++. If I check
os.system(‘gcc -v’) before running tests, I get gcc-2.95.3-6. If I check after running tests (and after failure), I
get gcc-2.95.2. ??huh??. The os.environ[’PATH’] still has c:gcc first in it and is not corrupted (msvc/distutils
messes with the environment variables, so we have to undo its work in some places). If anyone else sees this, let
me know - - it may just be an quirk on my machine (unlikely). Testing with the gcc- 2.95.2 installation always
works.

• Windows 2

If you run the tests from PythonWin or some other GUI tool, you’ll get a ton of DOS windows popping up
periodically as weave spawns the compiler multiple times. Very annoying. Anyone know how to fix this?

• wxPython

wxPython tests are not enabled by default because importing wxPython on a Unix machine without access to a
X-term will cause the program to exit. Anyone know of a safe way to detect whether wxPython can be imported
and whether a display exists on a machine?

1.16.6 Benchmarks

This section has not been updated from old scipy weave and Numeric....

This section has a few benchmarks – thats all people want to see anyway right? These are mostly taken from running
files in the weave/example directory and also from the test scripts. Without more information about what the test
actually do, their value is limited. Still, their here for the curious. Look at the example scripts for more specifics about
what problem was actually solved by each run. These examples are run under windows 2000 using Microsoft Visual
C++ and python2.1 on a 850 MHz PIII laptop with 320 MB of RAM. Speed up is the improvement (degredation)
factor of weave compared to conventional Python functions. The blitz() comparisons are shown compared to
NumPy.

Table 1.7: inline and ext_tools

Algorithm Speed up
binary search 1.50
fibonacci (recursive) 82.10
fibonacci (loop) 9.17
return None 0.14
map 1.20
dictionary sort 2.54
vector quantization 37.40

Table 1.8: blitz – double precision

Algorithm Speed up
a = b + c 512x512 3.05
a = b + c + d 512x512 4.59
5 pt avg. filter, 2D Image 512x512 9.01
Electromagnetics (FDTD) 100x100x100 8.61

The benchmarks shown blitz in the best possible light. NumPy (at least on my machine) is significantly worse for
double precision than it is for single precision calculations. If your interested in single precision results, you can pretty
much divide the double precision speed up by 3 and you’ll be close.

144 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

1.16.7 Inline

inline() compiles and executes C/C++ code on the fly. Variables in the local and global Python scope are also
available in the C/C++ code. Values are passed to the C/C++ code by assignment much like variables are passed into
a standard Python function. Values are returned from the C/C++ code through a special argument called return_val.
Also, the contents of mutable objects can be changed within the C/C++ code and the changes remain after the C code
exits and returns to Python. (more on this later)

Here’s a trivial printf example using inline():

>>> import weave
>>> a = 1
>>> weave.inline('printf("%d\\n",a);',['a'])
1

In this, its most basic form, inline(c_code, var_list) requires two arguments. c_code is a string of valid
C/C++ code. var_list is a list of variable names that are passed from Python into C/C++. Here we have a simple
printf statement that writes the Python variable a to the screen. The first time you run this, there will be a pause
while the code is written to a .cpp file, compiled into an extension module, loaded into Python, cataloged for future
use, and executed. On windows (850 MHz PIII), this takes about 1.5 seconds when using Microsoft’s C++ compiler
(MSVC) and 6-12 seconds using gcc (mingw32 2.95.2). All subsequent executions of the code will happen very
quickly because the code only needs to be compiled once. If you kill and restart the interpreter and then execute the
same code fragment again, there will be a much shorter delay in the fractions of seconds range. This is because weave
stores a catalog of all previously compiled functions in an on disk cache. When it sees a string that has been compiled,
it loads the already compiled module and executes the appropriate function.

Note: If you try the printf example in a GUI shell such as IDLE, PythonWin, PyShell, etc., you’re unlikely to
see the output. This is because the C code is writing to stdout, instead of to the GUI window. This doesn’t mean that
inline doesn’t work in these environments – it only means that standard out in C is not the same as the standard out for
Python in these cases. Non input/output functions will work as expected.

Although effort has been made to reduce the overhead associated with calling inline, it is still less efficient for simple
code snippets than using equivalent Python code. The simple printf example is actually slower by 30% or so
than using Python print statement. And, it is not difficult to create code fragments that are 8-10 times slower
using inline than equivalent Python. However, for more complicated algorithms, the speedup can be worthwhile –
anywhere from 1.5-30 times faster. Algorithms that have to manipulate Python objects (sorting a list) usually only see
a factor of 2 or so improvement. Algorithms that are highly computational or manipulate NumPy arrays can see much
larger improvements. The examples/vq.py file shows a factor of 30 or more improvement on the vector quantization
algorithm that is used heavily in information theory and classification problems.

More with printf

MSVC users will actually see a bit of compiler output that distutils does not suppress the first time the code executes:

>>> weave.inline(r'printf("%d\n",a);',['a'])
sc_e013937dbc8c647ac62438874e5795131.cpp

Creating library C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp
\Release\sc_e013937dbc8c647ac62438874e5795131.lib and
object C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\sc_e013937dbc8c647ac62438874e5795131.exp

1

Nothing bad is happening, its just a bit annoying. * Anyone know how to turn this off?*

This example also demonstrates using ‘raw strings’. The r preceding the code string in the last example denotes that
this is a ‘raw string’. In raw strings, the backslash character is not interpreted as an escape character, and so it isn’t
necessary to use a double backslash to indicate that the ‘n’ is meant to be interpreted in the C printf statement

1.16. Weave (scipy.weave) 145

SciPy Reference Guide, Release 0.16.0

instead of by Python. If your C code contains a lot of strings and control characters, raw strings might make things
easier. Most of the time, however, standard strings work just as well.

The printf statement in these examples is formatted to print out integers. What happens if a is a string? inline
will happily, compile a new version of the code to accept strings as input, and execute the code. The result?

>>> a = 'string'
>>> weave.inline(r'printf("%d\n",a);',['a'])
32956972

In this case, the result is non-sensical, but also non-fatal. In other situations, it might produce a compile time error
because a is required to be an integer at some point in the code, or it could produce a segmentation fault. Its possible
to protect against passing inline arguments of the wrong data type by using asserts in Python.

>>> a = 'string'
>>> def protected_printf(a):
... assert(type(a) == type(1))
... weave.inline(r'printf("%d\n",a);',['a'])
>>> protected_printf(1)
1

>>> protected_printf('string')
AssertError...

For printing strings, the format statement needs to be changed. Also, weave doesn’t convert strings to char*. Instead
it uses CXX Py::String type, so you have to do a little more work. Here we convert it to a C++ std::string and then ask
cor the char* version.

>>> a = 'string'
>>> weave.inline(r'printf("%s\n",std::string(a).c_str());',['a'])
string

XXX
This is a little convoluted. Perhaps strings should convert to std::string objects instead of CXX objects. Or
maybe to char*.

As in this case, C/C++ code fragments often have to change to accept different types. For the given printing task,
however, C++ streams provide a way of a single statement that works for integers and strings. By default, the stream
objects live in the std (standard) namespace and thus require the use of std::.

>>> weave.inline('std::cout << a << std::endl;',['a'])
1
>>> a = 'string'
>>> weave.inline('std::cout << a << std::endl;',['a'])
string

Examples using printf and cout are included in examples/print_example.py.

More examples

This section shows several more advanced uses of inline. It includes a few algorithms from the Python Cookbook
that have been re-written in inline C to improve speed as well as a couple examples using NumPy and wxPython.

Binary search

Lets look at the example of searching a sorted list of integers for a value. For inspiration, we’ll use Kalle Svensson’s
binary_search() algorithm from the Python Cookbook. His recipe follows:

146 Chapter 1. SciPy Tutorial

http://aspn.activestate.com/ASPN/Cookbook/Python
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/81188

SciPy Reference Guide, Release 0.16.0

def binary_search(seq, t):
min = 0; max = len(seq) - 1
while 1:

if max < min:
return -1

m = (min + max) / 2
if seq[m] < t:

min = m + 1
elif seq[m] > t:

max = m - 1
else:

return m

This Python version works for arbitrary Python data types. The C version below is specialized to handle integer values.
There is a little type checking done in Python to assure that we’re working with the correct data types before heading
into C. The variables seq and t don’t need to be declared because weave handles converting and declaring them in
the C code. All other temporary variables such as min, max, etc. must be declared – it is C after all. Here’s the new
mixed Python/C function:

def c_int_binary_search(seq,t):
do a little type checking in Python
assert(type(t) == type(1))
assert(type(seq) == type([]))

now the C code
code = """

#line 29 "binary_search.py"
int val, m, min = 0;
int max = seq.length() - 1;
PyObject *py_val;
for(;;)
{

if (max < min)
{

return_val = Py::new_reference_to(Py::Int(-1));
break;

}
m = (min + max) /2;
val = py_to_int(PyList_GetItem(seq.ptr(),m),"val");
if (val < t)

min = m + 1;
else if (val > t)

max = m - 1;
else
{

return_val = Py::new_reference_to(Py::Int(m));
break;

}
}
"""

return inline(code,['seq','t'])

We have two variables seq and t passed in. t is guaranteed (by the assert) to be an integer. Python integers are
converted to C int types in the transition from Python to C. seq is a Python list. By default, it is translated to a CXX
list object. Full documentation for the CXX library can be found at its website. The basics are that the CXX provides
C++ class equivalents for Python objects that simplify, or at least object orientify, working with Python objects in
C/C++. For example, seq.length() returns the length of the list. A little more about CXX and its class methods,
etc. is in the Type Conversions section.

1.16. Weave (scipy.weave) 147

http://cxx.sourceforge.net/

SciPy Reference Guide, Release 0.16.0

Note: CXX uses templates and therefore may be a little less portable than another alternative by Gordan McMillan
called SCXX which was inspired by CXX. It doesn’t use templates so it should compile faster and be more portable.
SCXX has a few less features, but it appears to me that it would mesh with the needs of weave quite well. Hopefully
xxx_spec files will be written for SCXX in the future, and we’ll be able to compare on a more empirical basis. Both
sets of spec files will probably stick around, it just a question of which becomes the default.

Most of the algorithm above looks similar in C to the original Python code. There are two main differences. The first is
the setting of return_val instead of directly returning from the C code with a return statement. return_val
is an automatically defined variable of type PyObject* that is returned from the C code back to Python. You’ll
have to handle reference counting issues when setting this variable. In this example, CXX classes and functions
handle the dirty work. All CXX functions and classes live in the namespace Py::. The following code con-
verts the integer m to a CXX Int() object and then to a PyObject* with an incremented reference count using
Py::new_reference_to().

return_val = Py::new_reference_to(Py::Int(m));

The second big differences shows up in the retrieval of integer values from the Python list. The simple Python seq[i]
call balloons into a C Python API call to grab the value out of the list and then a separate call to py_to_int() that
converts the PyObject* to an integer. py_to_int() includes both a NULL cheack and a PyInt_Check() call as
well as the conversion call. If either of the checks fail, an exception is raised. The entire C++ code block is executed
with in a try/catch block that handles exceptions much like Python does. This removes the need for most error
checking code.

It is worth note that CXX lists do have indexing operators that result in code that looks much like Python. However,
the overhead in using them appears to be relatively high, so the standard Python API was used on the seq.ptr()
which is the underlying PyObject* of the List object.

The #line directive that is the first line of the C code block isn’t necessary, but it’s nice for debugging. If the
compilation fails because of the syntax error in the code, the error will be reported as an error in the Python file
“binary_search.py” with an offset from the given line number (29 here).

So what was all our effort worth in terms of efficiency? Well not a lot in this case. The examples/binary_search.py file
runs both Python and C versions of the functions As well as using the standard bisect module. If we run it on a 1
million element list and run the search 3000 times (for 0- 2999), here are the results we get:

C:\home\ej\wrk\scipy\weave\examples> python binary_search.py
Binary search for 3000 items in 1000000 length list of integers:
speed in python: 0.159999966621
speed of bisect: 0.121000051498
speed up: 1.32
speed in c: 0.110000014305
speed up: 1.45
speed in c(no asserts): 0.0900000333786
speed up: 1.78

So, we get roughly a 50-75% improvement depending on whether we use the Python asserts in our C version. If
we move down to searching a 10000 element list, the advantage evaporates. Even smaller lists might result in the
Python version being faster. I’d like to say that moving to NumPy lists (and getting rid of the GetItem() call) offers a
substantial speed up, but my preliminary efforts didn’t produce one. I think the log(N) algorithm is to blame. Because
the algorithm is nice, there just isn’t much time spent computing things, so moving to C isn’t that big of a win. If
there are ways to reduce conversion overhead of values, this may improve the C/Python speed up. Anyone have other
explanations or faster code, please let me know.

Dictionary Sort

The demo in examples/dict_sort.py is another example from the Python CookBook. This submission, by Alex Martelli,
demonstrates how to return the values from a dictionary sorted by their keys:

148 Chapter 1. SciPy Tutorial

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52306

SciPy Reference Guide, Release 0.16.0

def sortedDictValues3(adict):
keys = adict.keys()
keys.sort()
return map(adict.get, keys)

Alex provides 3 algorithms and this is the 3rd and fastest of the set. The C version of this same algorithm follows:

def c_sort(adict):
assert(type(adict) == type({}))
code = """
#line 21 "dict_sort.py"
Py::List keys = adict.keys();
Py::List items(keys.length()); keys.sort();
PyObject* item = NULL;
for(int i = 0; i < keys.length();i++)
{

item = PyList_GET_ITEM(keys.ptr(),i);
item = PyDict_GetItem(adict.ptr(),item);
Py_XINCREF(item);
PyList_SetItem(items.ptr(),i,item);

}
return_val = Py::new_reference_to(items);
"""
return inline_tools.inline(code,['adict'],verbose=1)

Like the original Python function, the C++ version can handle any Python dictionary regardless of the key/value pair
types. It uses CXX objects for the most part to declare python types in C++, but uses Python API calls to manipulate
their contents. Again, this choice is made for speed. The C++ version, while more complicated, is about a factor of 2
faster than Python.

C:\home\ej\wrk\scipy\weave\examples> python dict_sort.py
Dict sort of 1000 items for 300 iterations:
speed in python: 0.319999933243

[0, 1, 2, 3, 4]
speed in c: 0.151000022888
speed up: 2.12

[0, 1, 2, 3, 4]

NumPy – cast/copy/transpose

CastCopyTranspose is a function called quite heavily by Linear Algebra routines in the NumPy library. Its needed
in part because of the row-major memory layout of multi-demensional Python (and C) arrays vs. the col-major order
of the underlying Fortran algorithms. For small matrices (say 100x100 or less), a significant portion of the common
routines such as LU decompisition or singular value decompostion are spent in this setup routine. This shouldn’t
happen. Here is the Python version of the function using standard NumPy operations.

def _castCopyAndTranspose(type, array):
if a.typecode() == type:

cast_array = copy.copy(NumPy.transpose(a))
else:

cast_array = copy.copy(NumPy.transpose(a).astype(type))
return cast_array

And the following is a inline C version of the same function:

from weave.blitz_tools import blitz_type_factories
from weave import scalar_spec
from weave import inline
def _cast_copy_transpose(type,a_2d):

1.16. Weave (scipy.weave) 149

SciPy Reference Guide, Release 0.16.0

assert(len(shape(a_2d)) == 2)
new_array = zeros(shape(a_2d),type)
NumPy_type = scalar_spec.NumPy_to_blitz_type_mapping[type]
code = \
"""
for(int i = 0;i < _Na_2d[0]; i++)

for(int j = 0; j < _Na_2d[1]; j++)
new_array(i,j) = (%s) a_2d(j,i);

""" % NumPy_type
inline(code,['new_array','a_2d'],

type_factories = blitz_type_factories,compiler='gcc')
return new_array

This example uses blitz++ arrays instead of the standard representation of NumPy arrays so that indexing is simpler
to write. This is accomplished by passing in the blitz++ “type factories” to override the standard Python to C++ type
conversions. Blitz++ arrays allow you to write clean, fast code, but they also are sloooow to compile (20 seconds
or more for this snippet). This is why they aren’t the default type used for Numeric arrays (and also because most
compilers can’t compile blitz arrays...). inline() is also forced to use ‘gcc’ as the compiler because the default
compiler on Windows (MSVC) will not compile blitz code. (‘gcc’ I think will use the standard compiler on Unix
machine instead of explicitly forcing gcc (check this)) Comparisons of the Python vs inline C++ code show a factor
of 3 speed up. Also shown are the results of an “inplace” transpose routine that can be used if the output of the
linear algebra routine can overwrite the original matrix (this is often appropriate). This provides another factor of 2
improvement.

#C:\home\ej\wrk\scipy\weave\examples> python cast_copy_transpose.py
Cast/Copy/Transposing (150,150)array 1 times
speed in python: 0.870999932289
speed in c: 0.25
speed up: 3.48
inplace transpose c: 0.129999995232
speed up: 6.70

wxPython

inline knows how to handle wxPython objects. Thats nice in and of itself, but it also demonstrates that the type
conversion mechanism is reasonably flexible. Chances are, it won’t take a ton of effort to support special types you
might have. The examples/wx_example.py borrows the scrolled window example from the wxPython demo, accept
that it mixes inline C code in the middle of the drawing function.

def DoDrawing(self, dc):

red = wxNamedColour("RED");
blue = wxNamedColour("BLUE");
grey_brush = wxLIGHT_GREY_BRUSH;
code = \
"""
#line 108 "wx_example.py"
dc->BeginDrawing();
dc->SetPen(wxPen(*red,4,wxSOLID));
dc->DrawRectangle(5,5,50,50);
dc->SetBrush(*grey_brush);
dc->SetPen(wxPen(*blue,4,wxSOLID));
dc->DrawRectangle(15, 15, 50, 50);
"""
inline(code,['dc','red','blue','grey_brush'])

dc.SetFont(wxFont(14, wxSWISS, wxNORMAL, wxNORMAL))
dc.SetTextForeground(wxColour(0xFF, 0x20, 0xFF))

150 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

te = dc.GetTextExtent("Hello World")
dc.DrawText("Hello World", 60, 65)

dc.SetPen(wxPen(wxNamedColour('VIOLET'), 4))
dc.DrawLine(5, 65+te[1], 60+te[0], 65+te[1])
...

Here, some of the Python calls to wx objects were just converted to C++ calls. There isn’t any benefit, it just demon-
strates the capabilities. You might want to use this if you have a computationally intensive loop in your drawing code
that you want to speed up. On windows, you’ll have to use the MSVC compiler if you use the standard wxPython
DLLs distributed by Robin Dunn. Thats because MSVC and gcc, while binary compatible in C, are not binary com-
patible for C++. In fact, its probably best, no matter what platform you’re on, to specify that inline use the same
compiler that was used to build wxPython to be on the safe side. There isn’t currently a way to learn this info from the
library – you just have to know. Also, at least on the windows platform, you’ll need to install the wxWindows libraries
and link to them. I think there is a way around this, but I haven’t found it yet – I get some linking errors dealing with
wxString. One final note. You’ll probably have to tweak weave/wx_spec.py or weave/wx_info.py for your machine’s
configuration to point at the correct directories etc. There. That should sufficiently scare people into not even looking
at this... :)

Keyword Option

The basic definition of the inline() function has a slew of optional variables. It also takes keyword arguments that
are passed to distutils as compiler options. The following is a formatted cut/paste of the argument section of
inline’s doc-string. It explains all of the variables. Some examples using various options will follow.

def inline(code,arg_names,local_dict = None, global_dict = None,
force = 0,
compiler='',
verbose = 0,
support_code = None,
customize=None,
type_factories = None,
auto_downcast=1,

**kw):

inline has quite a few options as listed below. Also, the keyword arguments for distutils extension modules are
accepted to specify extra information needed for compiling.

Inline Arguments

code string. A string of valid C++ code. It should not specify a return statement. Instead it should assign results that
need to be returned to Python in the return_val. arg_names list of strings. A list of Python variable names that should
be transferred from Python into the C/C++ code. local_dict optional. dictionary. If specified, it is a dictionary of
values that should be used as the local scope for the C/C++ code. If local_dict is not specified the local dictionary of
the calling function is used. global_dict optional. dictionary. If specified, it is a dictionary of values that should be
used as the global scope for the C/C++ code. If global_dict is not specified the global dictionary of the calling function
is used. force optional. 0 or 1. default 0. If 1, the C++ code is compiled every time inline is called. This is really only
useful for debugging, and probably only useful if you’re editing support_code a lot. compiler optional. string. The
name of compiler to use when compiling. On windows, it understands ‘msvc’ and ‘gcc’ as well as all the compiler
names understood by distutils. On Unix, it’ll only understand the values understoof by distutils. (I should add ‘gcc’
though to this).

On windows, the compiler defaults to the Microsoft C++ compiler. If this isn’t available, it looks for mingw32 (the
gcc compiler).

1.16. Weave (scipy.weave) 151

SciPy Reference Guide, Release 0.16.0

On Unix, it’ll probably use the same compiler that was used when compiling Python. Cygwin’s behavior should be
similar.

verbose optional. 0,1, or 2. defualt 0. Speficies how much much information is printed during the compile phase
of inlining code. 0 is silent (except on windows with msvc where it still prints some garbage). 1 informs you when
compiling starts, finishes, and how long it took. 2 prints out the command lines for the compilation process and can
be useful if you’re having problems getting code to work. Its handy for finding the name of the .cpp file if you need
to examine it. verbose has no affect if the compilation isn’t necessary. support_code optional. string. A string of
valid C++ code declaring extra code that might be needed by your compiled function. This could be declarations of
functions, classes, or structures. customize optional. base_info.custom_info object. An alternative way to specifiy
support_code, headers, etc. needed by the function see the weave.base_info module for more details. (not sure this’ll
be used much). type_factories optional. list of type specification factories. These guys are what convert Python data
types to C/C++ data types. If you’d like to use a different set of type conversions than the default, specify them here.
Look in the type conversions section of the main documentation for examples. auto_downcast optional. 0 or 1. default
1. This only affects functions that have Numeric arrays as input variables. Setting this to 1 will cause all floating point
values to be cast as float instead of double if all the NumPy arrays are of type float. If even one of the arrays has type
double or double complex, all variables maintain there standard types.

Distutils keywords

inline() also accepts a number of distutils keywords for controlling how the code is compiled. The following
descriptions have been copied from Greg Ward’s distutils.extension.Extension class doc- strings for
convenience: sources [string] list of source filenames, relative to the distribution root (where the setup script lives), in
Unix form (slash- separated) for portability. Source files may be C, C++, SWIG (.i), platform- specific resource files,
or whatever else is recognized by the “build_ext” command as source for a Python extension. Note: The module_path
file is always appended to the front of this list include_dirs [string] list of directories to search for C/C++ header files
(in Unix form for portability) define_macros [(name : string, value : string|None)] list of macros to define; each macro
is defined using a 2-tuple, where ‘value’ is either the string to define it to or None to define it without a particular value
(equivalent of “#define FOO” in source or -DFOO on Unix C compiler command line) undef_macros [string] list of
macros to undefine explicitly library_dirs [string] list of directories to search for C/C++ libraries at link time libraries
[string] list of library names (not filenames or paths) to link against runtime_library_dirs [string] list of directories to
search for C/C++ libraries at run time (for shared extensions, this is when the extension is loaded) extra_objects [string]
list of extra files to link with (eg. object files not implied by ‘sources’, static library that must be explicitly specified,
binary resource files, etc.) extra_compile_args [string] any extra platform- and compiler-specific information to use
when compiling the source files in ‘sources’. For platforms and compilers where “command line” makes sense, this is
typically a list of command-line arguments, but for other platforms it could be anything. extra_link_args [string] any
extra platform- and compiler-specific information to use when linking object files together to create the extension (or
to create a new static Python interpreter). Similar interpretation as for ‘extra_compile_args’. export_symbols [string]
list of symbols to be exported from a shared extension. Not used on all platforms, and not generally necessary for
Python extensions, which typically export exactly one symbol: “init” + extension_name.

Keyword Option Examples

We’ll walk through several examples here to demonstrate the behavior of inline and also how the various arguments
are used. In the simplest (most) cases, code and arg_names are the only arguments that need to be specified. Here’s
a simple example run on Windows machine that has Microsoft VC++ installed.

>>> from weave import inline
>>> a = 'string'
>>> code = """
... int l = a.length();
... return_val = Py::new_reference_to(Py::Int(l));
... """
>>> inline(code,['a'])
sc_86e98826b65b047ffd2cd5f479c627f12.cpp

152 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Creating
library C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\sc_86e98826b65b047ffd2cd5f479c627f12.lib

and object C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\sc_86e98826b65b047ff
d2cd5f479c627f12.exp
6
>>> inline(code,['a'])
6

When inline is first run, you’ll notice that pause and some trash printed to the screen. The “trash” is actually part of
the compiler’s output that distutils does not supress. The name of the extension file, sc_bighonkingnumber.cpp,
is generated from the SHA-256 check sum of the C/C++ code fragment. On Unix or windows machines with only gcc
installed, the trash will not appear. On the second call, the code fragment is not compiled since it already exists, and
only the answer is returned. Now kill the interpreter and restart, and run the same code with a different string.

>>> from weave import inline
>>> a = 'a longer string'
>>> code = """
... int l = a.length();
... return_val = Py::new_reference_to(Py::Int(l));
... """
>>> inline(code,['a'])
15

Notice this time, inline() did not recompile the code because it found the compiled function in the persistent
catalog of functions. There is a short pause as it looks up and loads the function, but it is much shorter than compiling
would require.

You can specify the local and global dictionaries if you’d like (much like exec or eval() in Python), but if they
aren’t specified, the “expected” ones are used – i.e. the ones from the function that called inline(). This is
accomplished through a little call frame trickery. Here is an example where the local_dict is specified using the same
code example from above:

>>> a = 'a longer string'
>>> b = 'an even longer string'
>>> my_dict = {'a':b}
>>> inline(code,['a'])
15
>>> inline(code,['a'],my_dict)
21

Every time the code is changed, inline does a recompile. However, changing any of the other options in inline
does not force a recompile. The force option was added so that one could force a recompile when tinkering with
other variables. In practice, it is just as easy to change the code by a single character (like adding a space some place)
to force the recompile.

Note: It also might be nice to add some methods for purging the cache and on disk catalogs.

I use verbose sometimes for debugging. When set to 2, it’ll output all the information (including the name of
the .cpp file) that you’d expect from running a make file. This is nice if you need to examine the generated code to
see where things are going haywire. Note that error messages from failed compiles are printed to the screen even if
verbose is set to 0.

The following example demonstrates using gcc instead of the standard msvc compiler on windows using same code
fragment as above. Because the example has already been compiled, the force=1 flag is needed to make inline()
ignore the previously compiled version and recompile using gcc. The verbose flag is added to show what is printed
out:

1.16. Weave (scipy.weave) 153

SciPy Reference Guide, Release 0.16.0

>>>inline(code,['a'],compiler='gcc',verbose=2,force=1)
running build_ext
building 'sc_86e98826b65b047ffd2cd5f479c627f13' extension
c:\gcc-2.95.2\bin\g++.exe -mno-cygwin -mdll -O2 -w -Wstrict-prototypes -IC:
\home\ej\wrk\scipy\weave -IC:\Python21\Include -c C:\DOCUME~1\eric\LOCAL
S~1\Temp\python21_compiled\sc_86e98826b65b047ffd2cd5f479c627f13.cpp
-o C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\sc_86e98826b65b04ffd2cd5f479c627f13.o
skipping C:\home\ej\wrk\scipy\weave\CXX\cxxextensions.c
(C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\cxxextensions.o up-to-date)
skipping C:\home\ej\wrk\scipy\weave\CXX\cxxsupport.cxx
(C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\cxxsupport.o up-to-date)
skipping C:\home\ej\wrk\scipy\weave\CXX\IndirectPythonInterface.cxx
(C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\indirectpythoninterface.o up-to-date)
skipping C:\home\ej\wrk\scipy\weave\CXX\cxx_extensions.cxx
(C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\cxx_extensions.o
up-to-date)
writing C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\sc_86e98826b65b047ffd2cd5f479c627f13.def
c:\gcc-2.95.2\bin\dllwrap.exe --driver-name g++ -mno-cygwin
-mdll -static --output-lib
C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\libsc_86e98826b65b047ffd2cd5f479c627f13.a --def
C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\sc_86e98826b65b047ffd2cd5f479c627f13.def
-sC:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\sc_86e98826b65b047ffd2cd5f479c627f13.o
C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\cxxextensions.o
C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\cxxsupport.o
C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\indirectpythoninterface.o
C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\cxx_extensions.o -LC:\Python21\libs
-lpython21 -o
C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\sc_86e98826b65b047ffd2cd5f479c627f13.pyd
15

That’s quite a bit of output. verbose=1 just prints the compile time.

>>>inline(code,['a'],compiler='gcc',verbose=1,force=1)
Compiling code...
finished compiling (sec): 6.00800001621
15

Note: I’ve only used the compiler option for switching between ‘msvc’ and ‘gcc’ on windows. It may have use on
Unix also, but I don’t know yet.

The support_code argument is likely to be used a lot. It allows you to specify extra code fragments such as
function, structure or class definitions that you want to use in the code string. Note that changes to support_code
do not force a recompile. The catalog only relies on code (for performance reasons) to determine whether recompiling
is necessary. So, if you make a change to support_code, you’ll need to alter code in some way or use the force
argument to get the code to recompile. I usually just add some inocuous whitespace to the end of one of the lines in
code somewhere. Here’s an example of defining a separate method for calculating the string length:

>>> from weave import inline
>>> a = 'a longer string'
>>> support_code = """
... PyObject* length(Py::String a)
... {
... int l = a.length();
... return Py::new_reference_to(Py::Int(l));
... }
... """
>>> inline("return_val = length(a);",['a'],
... support_code = support_code)

154 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

15

customize is a left over from a previous way of specifying compiler options. It is a custom_info object that can
specify quite a bit of information about how a file is compiled. These info objects are the standard way of defining
compile information for type conversion classes. However, I don’t think they are as handy here, especially since we’ve
exposed all the keyword arguments that distutils can handle. Between these keywords, and the support_code
option, I think customize may be obsolete. We’ll see if anyone cares to use it. If not, it’ll get axed in the next
version.

The type_factories variable is important to people who want to customize the way arguments are converted
from Python to C. We’ll talk about this in the next chapter xx of this document when we discuss type conversions.

auto_downcast handles one of the big type conversion issues that is common when using NumPy arrays in con-
junction with Python scalar values. If you have an array of single precision values and multiply that array by a Python
scalar, the result is upcast to a double precision array because the scalar value is double precision. This is not usu-
ally the desired behavior because it can double your memory usage. auto_downcast goes some distance towards
changing the casting precedence of arrays and scalars. If your only using single precision arrays, it will automatically
downcast all scalar values from double to single precision when they are passed into the C++ code. This is the default
behavior. If you want all values to keep there default type, set auto_downcast to 0.

Returning Values

Python variables in the local and global scope transfer seemlessly from Python into the C++ snippets. And, if inline
were to completely live up to its name, any modifications to variables in the C++ code would be reflected in the Python
variables when control was passed back to Python. For example, the desired behavior would be something like:

THIS DOES NOT WORK
>>> a = 1
>>> weave.inline("a++;",['a'])
>>> a
2

Instead you get:

>>> a = 1
>>> weave.inline("a++;",['a'])
>>> a
1

Variables are passed into C++ as if you are calling a Python function. Python’s calling convention is sometimes called
“pass by assignment”. This means its as if a c_a = a assignment is made right before inline call is made and the
c_a variable is used within the C++ code. Thus, any changes made to c_a are not reflected in Python’s a variable.
Things do get a little more confusing, however, when looking at variables with mutable types. Changes made in C++
to the contents of mutable types are reflected in the Python variables.

>>> a= [1,2]
>>> weave.inline("PyList_SetItem(a.ptr(),0,PyInt_FromLong(3));",['a'])
>>> print a
[3, 2]

So modifications to the contents of mutable types in C++ are seen when control is returned to Python. Modifications
to immutable types such as tuples, strings, and numbers do not alter the Python variables. If you need to make changes
to an immutable variable, you’ll need to assign the new value to the “magic” variable return_val in C++. This
value is returned by the inline() function:

>>> a = 1
>>> a = weave.inline("return_val = Py::new_reference_to(Py::Int(a+1));",['a'])
>>> a
2

1.16. Weave (scipy.weave) 155

SciPy Reference Guide, Release 0.16.0

The return_val variable can also be used to return newly created values. This is possible by returning a tuple. The
following trivial example illustrates how this can be done:

python version
def multi_return():

return 1, '2nd'

C version.
def c_multi_return():

code = """
py::tuple results(2);
results[0] = 1;
results[1] = "2nd";
return_val = results;

"""
return inline_tools.inline(code)

The example is available in examples/tuple_return.py. It also has the dubious honor of demonstrating how
much inline() can slow things down. The C version here is about 7-10 times slower than the Python version. Of
course, something so trivial has no reason to be written in C anyway.

The issue with locals() inline passes the locals() and globals() dictionaries from Python into the
C++ function from the calling function. It extracts the variables that are used in the C++ code from these dictionaries,
converts then to C++ variables, and then calculates using them. It seems like it would be trivial, then, after the
calculations were finished to then insert the new values back into the locals() and globals() dictionaries so
that the modified values were reflected in Python. Unfortunately, as pointed out by the Python manual, the locals()
dictionary is not writable.

I suspect locals() is not writable because there are some optimizations done to speed lookups of the local names-
pace. I’m guessing local lookups don’t always look at a dictionary to find values. Can someone “in the know” confirm
or correct this? Another thing I’d like to know is whether there is a way to write to the local namespace of another
stack frame from C/C++. If so, it would be possible to have some clean up code in compiled functions that wrote
final values of variables in C++ back to the correct Python stack frame. I think this goes a long way toward making
inline truly live up to its name. I don’t think we’ll get to the point of creating variables in Python for variables
created in C – although I suppose with a C/C++ parser you could do that also.

A quick look at the code

weave generates a C++ file holding an extension function for each inline code snippet. These file names are
generated using from the SHA-256 signature of the code snippet and saved to a location specified by the PYTHON-
COMPILED environment variable (discussed later). The cpp files are generally about 200-400 lines long and include
quite a few functions to support type conversions, etc. However, the actual compiled function is pretty simple. Below
is the familiar printf example:

>>> import weave
>>> a = 1
>>> weave.inline('printf("%d\\n",a);',['a'])
1

And here is the extension function generated by inline:

static PyObject* compiled_func(PyObject*self, PyObject* args)
{

py::object return_val;
int exception_occured = 0;
PyObject *py__locals = NULL;
PyObject *py__globals = NULL;
PyObject *py_a;

156 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

py_a = NULL;

if(!PyArg_ParseTuple(args,"OO:compiled_func",&py__locals,&py__globals))
return NULL;

try
{

PyObject* raw_locals = py_to_raw_dict(py__locals,"_locals");
PyObject* raw_globals = py_to_raw_dict(py__globals,"_globals");
/* argument conversion code */
py_a = get_variable("a",raw_locals,raw_globals);
int a = convert_to_int(py_a,"a");
/* inline code */
/* NDARRAY API VERSION 90907 */
printf("%d\n",a); /*I would like to fill in changed locals and globals here...*/

}
catch(...)
{

return_val = py::object();
exception_occured = 1;

}
/* cleanup code */
if(!(PyObject*)return_val && !exception_occured)
{

return_val = Py_None;
}
return return_val.disown();

}

Every inline function takes exactly two arguments – the local and global dictionaries for the current scope. All variable
values are looked up out of these dictionaries. The lookups, along with all inline code execution, are done within
a C++ try block. If the variables aren’t found, or there is an error converting a Python variable to the appropriate
type in C++, an exception is raised. The C++ exception is automatically converted to a Python exception by SCXX
and returned to Python. The py_to_int() function illustrates how the conversions and exception handling works.
py_to_int first checks that the given PyObject* pointer is not NULL and is a Python integer. If all is well, it calls the
Python API to convert the value to an int. Otherwise, it calls handle_bad_type() which gathers information
about what went wrong and then raises a SCXX TypeError which returns to Python as a TypeError.

int py_to_int(PyObject* py_obj,char* name)
{

if (!py_obj || !PyInt_Check(py_obj))
handle_bad_type(py_obj,"int", name);

return (int) PyInt_AsLong(py_obj);
}

void handle_bad_type(PyObject* py_obj, char* good_type, char* var_name)
{

char msg[500];
sprintf(msg,"received '%s' type instead of '%s' for variable '%s'",

find_type(py_obj),good_type,var_name);
throw Py::TypeError(msg);

}

char* find_type(PyObject* py_obj)
{

if(py_obj == NULL) return "C NULL value";
if(PyCallable_Check(py_obj)) return "callable";
if(PyString_Check(py_obj)) return "string";
if(PyInt_Check(py_obj)) return "int";

1.16. Weave (scipy.weave) 157

SciPy Reference Guide, Release 0.16.0

if(PyFloat_Check(py_obj)) return "float";
if(PyDict_Check(py_obj)) return "dict";
if(PyList_Check(py_obj)) return "list";
if(PyTuple_Check(py_obj)) return "tuple";
if(PyFile_Check(py_obj)) return "file";
if(PyModule_Check(py_obj)) return "module";

//should probably do more interagation (and thinking) on these.
if(PyCallable_Check(py_obj) && PyInstance_Check(py_obj)) return "callable";
if(PyInstance_Check(py_obj)) return "instance";
if(PyCallable_Check(py_obj)) return "callable";
return "unknown type";

}

Since the inline is also executed within the try/catch block, you can use CXX exceptions within your code. It
is usually a bad idea to directly return from your code, even if an error occurs. This skips the clean up section of
the extension function. In this simple example, there isn’t any clean up code, but in more complicated examples, there
may be some reference counting that needs to be taken care of here on converted variables. To avoid this, either uses
exceptions or set return_val to NULL and use if/then’s to skip code after errors.

Technical Details

There are several main steps to using C/C++ code within Python:

1. Type conversion

2. Generating C/C++ code

3. Compile the code to an extension module

4. Catalog (and cache) the function for future use

Items 1 and 2 above are related, but most easily discussed separately. Type conversions are customizable by the user if
needed. Understanding them is pretty important for anything beyond trivial uses of inline. Generating the C/C++
code is handled by ext_function and ext_module classes and . For the most part, compiling the code is handled
by distutils. Some customizations were needed, but they were relatively minor and do not require changes to distutils
itself. Cataloging is pretty simple in concept, but surprisingly required the most code to implement (and still likely
needs some work). So, this section covers items 1 and 4 from the list. Item 2 is covered later in the chapter covering
the ext_tools module, and distutils is covered by a completely separate document xxx.

Passing Variables in/out of the C/C++ code

Note: Passing variables into the C code is pretty straight forward, but there are subtlties to how variable modifications
in C are returned to Python. see Returning Values for a more thorough discussion of this issue.

Type Conversions

Note: Maybe xxx_converter instead of xxx_specification is a more descriptive name. Might change in
future version?

By default, inline() makes the following type conversions between Python and C++ types.

158 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Table 1.9: Default Data Type Conver-
sions

Python C++
int int
float double
complex std::complex
string py::string
list py::list
dict py::dict
tuple py::tuple
file FILE*
callable py::object
instance py::object
numpy.ndarray PyArrayObject*
wxXXX wxXXX*

The Py:: namespace is defined by the SCXX library which has C++ class equivalents for many Python types. std::
is the namespace of the standard library in C++.

Note:
• I haven’t figured out how to handle long int yet (I think they are currenlty converted to int - - check this).

• Hopefully VTK will be added to the list soon

Python to C++ conversions fill in code in several locations in the generated inline extension function. Below is the
basic template for the function. This is actually the exact code that is generated by calling weave.inline("").

The /* inline code */ section is filled with the code passed to the inline() function call. The
/*argument conversion code*/ and /* cleanup code */ sections are filled with code that handles
conversion from Python to C++ types and code that deallocates memory or manipulates reference counts before the
function returns. The following sections demonstrate how these two areas are filled in by the default conversion meth-
ods. * Note: I’m not sure I have reference counting correct on a few of these. The only thing I increase/decrease the
ref count on is NumPy arrays. If you see an issue, please let me know.

NumPy Argument Conversion

Integer, floating point, and complex arguments are handled in a very similar fashion. Consider the following inline
function that has a single integer variable passed in:

>>> a = 1
>>> inline("",['a'])

The argument conversion code inserted for a is:

/* argument conversion code */
int a = py_to_int (get_variable("a",raw_locals,raw_globals),"a");

get_variable() reads the variable a from the local and global namespaces. py_to_int() has the following
form:

static int py_to_int(PyObject* py_obj,char* name)
{

if (!py_obj || !PyInt_Check(py_obj))
handle_bad_type(py_obj,"int", name);

return (int) PyInt_AsLong(py_obj);
}

1.16. Weave (scipy.weave) 159

SciPy Reference Guide, Release 0.16.0

Similarly, the float and complex conversion routines look like:

static double py_to_float(PyObject* py_obj,char* name)
{

if (!py_obj || !PyFloat_Check(py_obj))
handle_bad_type(py_obj,"float", name);

return PyFloat_AsDouble(py_obj);
}

static std::complex py_to_complex(PyObject* py_obj,char* name)
{

if (!py_obj || !PyComplex_Check(py_obj))
handle_bad_type(py_obj,"complex", name);

return std::complex(PyComplex_RealAsDouble(py_obj),
PyComplex_ImagAsDouble(py_obj));

}

NumPy conversions do not require any clean up code.

String, List, Tuple, and Dictionary Conversion

Strings, Lists, Tuples and Dictionary conversions are all converted to SCXX types by default. For the following code,

>>> a = [1]
>>> inline("",['a'])

The argument conversion code inserted for a is:

/* argument conversion code */
Py::List a = py_to_list(get_variable("a",raw_locals,raw_globals),"a");

get_variable() reads the variable a from the local and global namespaces. py_to_list() and its friends
have the following form:

static Py::List py_to_list(PyObject* py_obj,char* name)
{

if (!py_obj || !PyList_Check(py_obj))
handle_bad_type(py_obj,"list", name);

return Py::List(py_obj);
}

static Py::String py_to_string(PyObject* py_obj,char* name)
{

if (!PyString_Check(py_obj))
handle_bad_type(py_obj,"string", name);

return Py::String(py_obj);
}

static Py::Dict py_to_dict(PyObject* py_obj,char* name)
{

if (!py_obj || !PyDict_Check(py_obj))
handle_bad_type(py_obj,"dict", name);

return Py::Dict(py_obj);
}

static Py::Tuple py_to_tuple(PyObject* py_obj,char* name)
{

if (!py_obj || !PyTuple_Check(py_obj))
handle_bad_type(py_obj,"tuple", name);

160 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

return Py::Tuple(py_obj);
}

SCXX handles reference counts on for strings, lists, tuples, and dictionaries, so clean up code isn’t necessary.

File Conversion

For the following code,

>>> a = open("bob",'w')
>>> inline("",['a'])

The argument conversion code is:

/* argument conversion code */
PyObject* py_a = get_variable("a",raw_locals,raw_globals);
FILE* a = py_to_file(py_a,"a");

get_variable() reads the variable a from the local and global namespaces. py_to_file() converts PyObject*
to a FILE* and increments the reference count of the PyObject*:

FILE* py_to_file(PyObject* py_obj, char* name)
{

if (!py_obj || !PyFile_Check(py_obj))
handle_bad_type(py_obj,"file", name);

Py_INCREF(py_obj);
return PyFile_AsFile(py_obj);

}

Because the PyObject* was incremented, the clean up code needs to decrement the counter

/* cleanup code */
Py_XDECREF(py_a);

Its important to understand that file conversion only works on actual files – i.e. ones created using the open()
command in Python. It does not support converting arbitrary objects that support the file interface into C FILE*
pointers. This can affect many things. For example, in initial printf() examples, one might be tempted to solve the
problem of C and Python IDE’s (PythonWin, PyCrust, etc.) writing to different stdout and stderr by using fprintf()
and passing in sys.stdout and sys.stderr. For example, instead of

>>> weave.inline('printf("hello\\n");')

You might try:

>>> buf = sys.stdout
>>> weave.inline('fprintf(buf,"hello\\n");',['buf'])

This will work as expected from a standard python interpreter, but in PythonWin, the following occurs:

>>> buf = sys.stdout
>>> weave.inline('fprintf(buf,"hello\\n");',['buf'])
Traceback (most recent call last):

File "", line 1, in ?
File "C:\Python21\weave\inline_tools.py", line 315, in inline

auto_downcast = auto_downcast,
File "C:\Python21\weave\inline_tools.py", line 386, in compile_function

type_factories = type_factories)
File "C:\Python21\weave\ext_tools.py", line 197, in __init__

auto_downcast, type_factories)

1.16. Weave (scipy.weave) 161

SciPy Reference Guide, Release 0.16.0

File "C:\Python21\weave\ext_tools.py", line 390, in assign_variable_types
raise TypeError, format_error_msg(errors)

TypeError: {'buf': "Unable to convert variable 'buf' to a C++ type."}

The traceback tells us that inline() was unable to convert ‘buf’ to a C++ type (If instance conversion was imple-
mented, the error would have occurred at runtime instead). Why is this? Let’s look at what the buf object really
is:

>>> buf
pywin.framework.interact.InteractiveView instance at 00EAD014

PythonWin has reassigned sys.stdout to a special object that implements the Python file interface. This works
great in Python, but since the special object doesn’t have a FILE* pointer underlying it, fprintf doesn’t know what
to do with it (well this will be the problem when instance conversion is implemented...).

Callable, Instance, and Module Conversion

Note: Need to look into how ref counts should be handled. Also, Instance and Module conversion are not currently
implemented.

>>> def a():
pass

>>> inline("",['a'])

Callable and instance variables are converted to PyObject*. Nothing is done to their reference counts.

/* argument conversion code */
PyObject* a = py_to_callable(get_variable("a",raw_locals,raw_globals),"a");

get_variable() reads the variable a from the local and global namespaces. The py_to_callable() and
py_to_instance() don’t currently increment the ref count.

PyObject* py_to_callable(PyObject* py_obj, char* name)
{

if (!py_obj || !PyCallable_Check(py_obj))
handle_bad_type(py_obj,"callable", name);

return py_obj;
}

PyObject* py_to_instance(PyObject* py_obj, char* name)
{

if (!py_obj || !PyFile_Check(py_obj))
handle_bad_type(py_obj,"instance", name);

return py_obj;
}

There is no cleanup code for callables, modules, or instances.

Customizing Conversions

Converting from Python to C++ types is handled by xxx_specification classes. A type specification class
actually serve in two related but different roles. The first is in determining whether a Python variable that needs to be
converted should be represented by the given class. The second is as a code generator that generates C++ code needed
to convert from Python to C++ types for a specific variable.

When

>>> a = 1
>>> weave.inline('printf("%d",a);',['a'])

162 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

is called for the first time, the code snippet has to be compiled. In this process, the variable ‘a’ is tested against a
list of type specifications (the default list is stored in weave/ext_tools.py). The first specification in the list is used to
represent the variable.

Examples of xxx_specification are scattered throughout numerous “xxx_spec.py” files in the weave pack-
age. Closely related to the xxx_specification classes are yyy_info classes. These classes contain compiler,
header, and support code information necessary for including a certain set of capabilities (such as blitz++ or CXX
support) in a compiled module. xxx_specification classes have one or more yyy_info classes associated
with them. If you’d like to define your own set of type specifications, the current best route is to examine some of the
existing spec and info files. Maybe looking over sequence_spec.py and cxx_info.py are a good place to start. After
defining specification classes, you’ll need to pass them into inline using the type_factories argument. A
lot of times you may just want to change how a specific variable type is represented. Say you’d rather have Python
strings converted to std::string or maybe char* instead of using the CXX string object, but would like all other
type conversions to have default behavior. This requires that a new specification class that handles strings is written
and then prepended to a list of the default type specifications. Since it is closer to the front of the list, it effectively
overrides the default string specification. The following code demonstrates how this is done: ...

The Catalog

catalog.py has a class called catalog that helps keep track of previously compiled functions. This prevents
inline() and related functions from having to compile functions every time they are called. Instead, catalog will
check an in memory cache to see if the function has already been loaded into python. If it hasn’t, then it starts searching
through persisent catalogs on disk to see if it finds an entry for the given function. By saving information about
compiled functions to disk, it isn’t necessary to re-compile functions every time you stop and restart the interpreter.
Functions are compiled once and stored for future use.

When inline(cpp_code) is called the following things happen:

1. A fast local cache of functions is checked for the last function called for cpp_code. If an entry for cpp_code
doesn’t exist in the cache or the cached function call fails (perhaps because the function doesn’t have compatible
types) then the next step is to check the catalog.

2. The catalog class also keeps an in-memory cache with a list of all the functions compiled for cpp_code. If
cpp_code has ever been called, then this cache will be present (loaded from disk). If the cache isn’t present,
then it is loaded from disk.

If the cache is present, each function in the cache is called until one is found that was compiled for the correct
argument types. If none of the functions work, a new function is compiled with the given argument types. This
function is written to the on-disk catalog as well as into the in-memory cache.

3. When a lookup for cpp_code fails, the catalog looks through the on-disk function catalogs for the en-
tries. The PYTHONCOMPILED variable determines where to search for these catalogs and in what order.
If PYTHONCOMPILED is not present several platform dependent locations are searched. All functions found
for cpp_code in the path are loaded into the in-memory cache with functions found earlier in the search path
closer to the front of the call list.

If the function isn’t found in the on-disk catalog, then the function is compiled, written to the first writable
directory in the PYTHONCOMPILED path, and also loaded into the in-memory cache.

Function Storage

Function caches are stored as dictionaries where the key is the entire C++ code string and the value is either a single
function (as in the “level 1” cache) or a list of functions (as in the main catalog cache). On disk catalogs are stored in
the same manor using standard Python shelves.

Early on, there was a question as to whether md5 checksums of the C++ code strings should be used instead of the
actual code strings. I think this is the route inline Perl took. Some (admittedly quick) tests of the md5 vs. the entire
string showed that using the entire string was at least a factor of 3 or 4 faster for Python. I think this is because it is

1.16. Weave (scipy.weave) 163

SciPy Reference Guide, Release 0.16.0

more time consuming to compute the md5 value than it is to do look-ups of long strings in the dictionary. Look at the
examples/md5_speed.py file for the test run.

Catalog search paths and the PYTHONCOMPILED variable

The default location for catalog files on Unix is ~/.pythonXX_compiled where XX is version of Python being used.
If this directory doesn’t exist, it is created the first time a catalog is used. The directory must be writable. If, for any
reason it isn’t, then the catalog attempts to create a directory based on your user id in the /tmp directory. The directory
permissions are set so that only you have access to the directory. If this fails, I think you’re out of luck. I don’t think
either of these should ever fail though. On Windows, a directory called pythonXX_compiled is created in the user’s
temporary directory.

The actual catalog file that lives in this directory is a Python shelf with a platform specific name such as
“nt21compiled_catalog” so that multiple OSes can share the same file systems without trampling on each other. Along
with the catalog file, the .cpp and .so or .pyd files created by inline will live in this directory. The catalog file simply
contains keys which are the C++ code strings with values that are lists of functions. The function lists point at func-
tions within these compiled modules. Each function in the lists executes the same C++ code string, but compiled for
different input variables.

You can use the PYTHONCOMPILED environment variable to specify alternative locations for compiled functions.
On Unix this is a colon (‘:’) separated list of directories. On windows, it is a (‘;’) separated list of directories. These
directories will be searched prior to the default directory for a compiled function catalog. Also, the first writable
directory in the list is where all new compiled function catalogs, .cpp and .so or .pyd files are written. Relative
directory paths (‘.’ and ‘..’) should work fine in the PYTHONCOMPILED variable as should environement variables.

There is a “special” path variable called MODULE that can be placed in the PYTHONCOMPILED variable. It
specifies that the compiled catalog should reside in the same directory as the module that called it. This is useful if an
admin wants to build a lot of compiled functions during the build of a package and then install them in site-packages
along with the package. User’s who specify MODULE in their PYTHONCOMPILED variable will have access to
these compiled functions. Note, however, that if they call the function with a set of argument types that it hasn’t
previously been built for, the new function will be stored in their default directory (or some other writable directory in
the PYTHONCOMPILED path) because the user will not have write access to the site-packages directory.

An example of using the PYTHONCOMPILED path on bash follows:

PYTHONCOMPILED=MODULE:/some/path;export PYTHONCOMPILED;

If you are using python21 on linux, and the module bob.py in site-packages has a compiled function in it, then the
catalog search order when calling that function for the first time in a python session would be:

/usr/lib/python21/site-packages/linuxpython_compiled
/some/path/linuxpython_compiled
~/.python21_compiled/linuxpython_compiled

The default location is always included in the search path.

Note: hmmm. see a possible problem here. I should probably make a sub- directory such as /usr/lib/python21/site-
packages/python21_compiled/linuxpython_compiled so that library files compiled with python21 are tried to link with
python22 files in some strange scenarios. Need to check this.

The in-module cache (in weave.inline_tools reduces the overhead of calling inline functions by about a factor
of 2. It can be reduced a little more for type loop calls where the same function is called over and over again if the
cache was a single value instead of a dictionary, but the benefit is very small (less than 5%) and the utility is quite a bit
less. So, we’ll stick with a dictionary as the cache.

1.16.8 Blitz

164 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Note: most of this section is lifted from old documentation. It should be pretty accurate, but there may be a few
discrepancies.

weave.blitz() compiles NumPy Python expressions for fast execution. For most applications, compiled expres-
sions should provide a factor of 2-10 speed-up over NumPy arrays. Using compiled expressions is meant to be as
unobtrusive as possible and works much like pythons exec statement. As an example, the following code fragment
takes a 5 point average of the 512x512 2d image, b, and stores it in array, a:

from scipy import * # or from NumPy import *
a = ones((512,512), Float64)
b = ones((512,512), Float64)
...do some stuff to fill in b...
now average
a[1:-1,1:-1] = (b[1:-1,1:-1] + b[2:,1:-1] + b[:-2,1:-1] \

+ b[1:-1,2:] + b[1:-1,:-2]) / 5.

To compile the expression, convert the expression to a string by putting quotes around it and then use weave.blitz:

import weave
expr = "a[1:-1,1:-1] = (b[1:-1,1:-1] + b[2:,1:-1] + b[:-2,1:-1]" \

"+ b[1:-1,2:] + b[1:-1,:-2]) / 5."
weave.blitz(expr)

The first time weave.blitz is run for a given expression and set of arguments, C++ code that accomplishes the
exact same task as the Python expression is generated and compiled to an extension module. This can take up to
a couple of minutes depending on the complexity of the function. Subsequent calls to the function are very fast.
Furthermore, the generated module is saved between program executions so that the compilation is only done once for
a given expression and associated set of array types. If the given expression is executed with a new set of array types,
the code most be compiled again. This does not overwrite the previously compiled function – both of them are saved
and available for exectution.

The following table compares the run times for standard NumPy code and compiled code for the 5 point averaging.

Method Run Time (seconds) Standard NumPy 0.46349 blitz (1st time compiling) 78.95526 blitz (subsequent calls)
0.05843 (factor of 8 speedup)

These numbers are for a 512x512 double precision image run on a 400 MHz Celeron processor under RedHat Linux
6.2.

Because of the slow compile times, its probably most effective to develop algorithms as you usually do using the
capabilities of scipy or the NumPy module. Once the algorithm is perfected, put quotes around it and execute it using
weave.blitz. This provides the standard rapid prototyping strengths of Python and results in algorithms that run
close to that of hand coded C or Fortran.

Requirements

Currently, the weave.blitz has only been tested under Linux with gcc-2.95-3 and on Windows with Mingw32
(2.95.2). Its compiler requirements are pretty heavy duty (see the blitz++ home page), so it won’t work with just any
compiler. Particularly MSVC++ isn’t up to snuff. A number of other compilers such as KAI++ will also work, but my
suspicions are that gcc will get the most use.

Limitations

1. Currently, weave.blitz handles all standard mathematical operators except for the ** power operator. The
built-in trigonmetric, log, floor/ceil, and fabs functions might work (but haven’t been tested). It also handles all

1.16. Weave (scipy.weave) 165

http://www.oonumerics.org/blitz/

SciPy Reference Guide, Release 0.16.0

types of array indexing supported by the NumPy module. numarray’s NumPy compatible array indexing modes
are likewise supported, but numarray’s enhanced (array based) indexing modes are not supported.

weave.blitz does not currently support operations that use array broadcasting, nor have any of the special
purpose functions in NumPy such as take, compress, etc. been implemented. Note that there are no obvious
reasons why most of this functionality cannot be added to scipy.weave, so it will likely trickle into future
versions. Using slice() objects directly instead of start:stop:step is also not supported.

2. Currently Python only works on expressions that include assignment such as

>>> result = b + c + d

This means that the result array must exist before calling weave.blitz. Future versions will allow the
following:

>>> result = weave.blitz_eval("b + c + d")

3. weave.blitz works best when algorithms can be expressed in a “vectorized” form. Algorithms that have a
large number of if/thens and other conditions are better hand-written in C or Fortran. Further, the restrictions
imposed by requiring vectorized expressions sometimes preclude the use of more efficient data structures or
algorithms. For maximum speed in these cases, hand-coded C or Fortran code is the only way to go.

4. weave.blitz can produce different results than NumPy in certain situations. It can happen when the array
receiving the results of a calculation is also used during the calculation. The NumPy behavior is to carry out the
entire calculation on the right hand side of an equation and store it in a temporary array. This temprorary array is
assigned to the array on the left hand side of the equation. blitz, on the other hand, does a “running” calculation
of the array elements assigning values from the right hand side to the elements on the left hand side immediately
after they are calculated. Here is an example, provided by Prabhu Ramachandran, where this happens:

4 point average.
>>> expr = "u[1:-1, 1:-1] = (u[0:-2, 1:-1] + u[2:, 1:-1] + \
... "u[1:-1,0:-2] + u[1:-1, 2:])*0.25"
>>> u = zeros((5, 5), 'd'); u[0,:] = 100
>>> exec (expr)
>>> u
array([[100., 100., 100., 100., 100.],

[0., 25., 25., 25., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])

>>> u = zeros((5, 5), 'd'); u[0,:] = 100
>>> weave.blitz (expr)
>>> u
array([[100. , 100. , 100. , 100. , 100.],

[0. , 25. , 31.25 , 32.8125 , 0.],
[0. , 6.25 , 9.375 , 10.546875 , 0.],
[0. , 1.5625 , 2.734375 , 3.3203125, 0.],
[0. , 0. , 0. , 0. , 0.]])

You can prevent this behavior by using a temporary array.

>>> u = zeros((5, 5), 'd'); u[0,:] = 100
>>> temp = zeros((4, 4), 'd');
>>> expr = "temp = (u[0:-2, 1:-1] + u[2:, 1:-1] + "\
... "u[1:-1,0:-2] + u[1:-1, 2:])*0.25;"\
... "u[1:-1,1:-1] = temp"
>>> weave.blitz (expr)
>>> u
array([[100., 100., 100., 100., 100.],

166 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

[0., 25., 25., 25., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])

5. One other point deserves mention lest people be confused. weave.blitz is not a general purpose Python->C
compiler. It only works for expressions that contain NumPy arrays and/or Python scalar values. This focused
scope concentrates effort on the compuationally intensive regions of the program and sidesteps the difficult
issues associated with a general purpose Python->C compiler.

NumPy efficiency issues: What compilation buys you

Some might wonder why compiling NumPy expressions to C++ is beneficial since operations on NumPy array op-
erations are already executed within C loops. The problem is that anything other than the simplest expression are
executed in less than optimal fashion. Consider the following NumPy expression:

a = 1.2 * b + c * d

When NumPy calculates the value for the 2d array, a, it does the following steps:

temp1 = 1.2 * b
temp2 = c * d
a = temp1 + temp2

Two things to note. Since c is an (perhaps large) array, a large temporary array must be created to store the results of
1.2 * b. The same is true for temp2. Allocation is slow. The second thing is that we have 3 loops executing, one
to calculate temp1, one for temp2 and one for adding them up. A C loop for the same problem might look like:

for(int i = 0; i < M; i++)
for(int j = 0; j < N; j++)

a[i,j] = 1.2 * b[i,j] + c[i,j] * d[i,j]

Here, the 3 loops have been fused into a single loop and there is no longer a need for a temporary array. This provides
a significant speed improvement over the above example (write me and tell me what you get).

So, converting NumPy expressions into C/C++ loops that fuse the loops and eliminate temporary arrays can provide big
gains. The goal, then, is to convert NumPy expression to C/C++ loops, compile them in an extension module, and then
call the compiled extension function. The good news is that there is an obvious correspondence between the NumPy
expression above and the C loop. The bad news is that NumPy is generally much more powerful than this simple
example illustrates and handling all possible indexing possibilities results in loops that are less than straightforward to
write. (Take a peek at NumPy for confirmation). Luckily, there are several available tools that simplify the process.

The Tools

weave.blitz relies heavily on several remarkable tools. On the Python side, the main facilitators are Jermey
Hylton’s parser module and Travis Oliphant’s NumPy module. On the compiled language side, Todd Veldhuizen’s
blitz++ array library, written in C++ (shhhh. don’t tell David Beazley), does the heavy lifting. Don’t assume that,
because it’s C++, it’s much slower than C or Fortran. Blitz++ uses a jaw dropping array of template techniques
(metaprogramming, template expression, etc) to convert innocent-looking and readable C++ expressions into to code
that usually executes within a few percentage points of Fortran code for the same problem. This is good. Unfortunately
all the template raz-ma-taz is very expensive to compile, so the 200 line extension modules often take 2 or more
minutes to compile. This isn’t so good. weave.blitzworks to minimize this issue by remembering where compiled
modules live and reusing them instead of re-compiling every time a program is re-run.

1.16. Weave (scipy.weave) 167

SciPy Reference Guide, Release 0.16.0

Parser

Tearing NumPy expressions apart, examining the pieces, and then rebuilding them as C++ (blitz) expressions requires
a parser of some sort. I can imagine someone attacking this problem with regular expressions, but it’d likely be ugly
and fragile. Amazingly, Python solves this problem for us. It actually exposes its parsing engine to the world through
the parser module. The following fragment creates an Abstract Syntax Tree (AST) object for the expression and
then converts to a (rather unpleasant looking) deeply nested list representation of the tree.

>>> import parser
>>> import scipy.weave.misc
>>> ast = parser.suite("a = b * c + d")
>>> ast_list = ast.tolist()
>>> sym_list = scipy.weave.misc.translate_symbols(ast_list)
>>> pprint.pprint(sym_list)
['file_input',
['stmt',
['simple_stmt',
['small_stmt',
['expr_stmt',
['testlist',
['test',
['and_test',
['not_test',
['comparison',
['expr',
['xor_expr',
['and_expr',
['shift_expr',
['arith_expr',
['term',
['factor', ['power', ['atom', ['NAME', 'a']]]]]]]]]]]]]]],

['EQUAL', '='],
['testlist',
['test',
['and_test',
['not_test',
['comparison',
['expr',
['xor_expr',
['and_expr',
['shift_expr',
['arith_expr',
['term',
['factor', ['power', ['atom', ['NAME', 'b']]]],
['STAR', '*'],
['factor', ['power', ['atom', ['NAME', 'c']]]]],

['PLUS', '+'],
['term',
['factor', ['power', ['atom', ['NAME', 'd']]]]]]]]]]]]]]]]],

['NEWLINE', '']]],
['ENDMARKER', '']]

Despite its looks, with some tools developed by Jermey H., it’s possible to search these trees for specific patterns
(sub-trees), extract the sub-tree, manipulate them converting python specific code fragments to blitz code fragments,
and then re-insert it in the parse tree. The parser module documentation has some details on how to do this. Traversing
the new blitzified tree, writing out the terminal symbols as you go, creates our new blitz++ expression string.

168 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Blitz and NumPy

The other nice discovery in the project is that the data structure used for NumPy arrays and blitz arrays is nearly
identical. NumPy stores “strides” as byte offsets and blitz stores them as element offsets, but other than that, they are
the same. Further, most of the concept and capabilities of the two libraries are remarkably similar. It is satisfying that
two completely different implementations solved the problem with similar basic architectures. It is also fortuitous.
The work involved in converting NumPy expressions to blitz expressions was greatly diminished. As an example,
consider the code for slicing an array in Python with a stride:

>>> a = b[0:4:2] + c
>>> a
[0,2,4]

In Blitz it is as follows:

Array<2,int> b(10);
Array<2,int> c(3);
// ...
Array<2,int> a = b(Range(0,3,2)) + c;

Here the range object works exactly like Python slice objects with the exception that the top index (3) is inclusive
where as Python’s (4) is exclusive. Other differences include the type declarations in C++ and parentheses instead of
brackets for indexing arrays. Currently, weave.blitz handles the inclusive/exclusive issue by subtracting one from
upper indices during the translation. An alternative that is likely more robust/maintainable in the long run is to write a
PyRange class that behaves like Python’s range. This is likely very easy.

The stock blitz also doesn’t handle negative indices in ranges. The current implementation of the blitz() has a
partial solution to this problem. It calculates and index that starts with a ‘-‘ sign by subtracting it from the maximum
index in the array so that:

upper index limit
/-----\

b[:-1] -> b(Range(0,Nb[0]-1-1))

This approach fails, however, when the top index is calculated from other values. In the following scenario, if i+j
evaluates to a negative value, the compiled code will produce incorrect results and could even core-dump. Right now,
all calculated indices are assumed to be positive.

b[:i-j] -> b(Range(0,i+j))

A solution is to calculate all indices up front using if/then to handle the +/- cases. This is a little work and results in
more code, so it hasn’t been done. I’m holding out to see if blitz++ can be modified to handle negative indexing, but
haven’t looked into how much effort is involved yet. While it needs fixin’, I don’t think there is a ton of code where
this is an issue.

The actual translation of the Python expressions to blitz expressions is currently a two part process. First, all x:y:z
slicing expression are removed from the AST, converted to slice(x,y,z) and re-inserted into the tree. Any math needed
on these expressions (subtracting from the maximum index, etc.) are also preformed here. _beg and _end are used as
special variables that are defined as blitz::fromBegin and blitz::toEnd.

a[i+j:i+j+1,:] = b[2:3,:]

becomes a more verbose:

a[slice(i+j,i+j+1),slice(_beg,_end)] = b[slice(2,3),slice(_beg,_end)]

The second part does a simple string search/replace to convert to a blitz expression with the following translations:

slice(_beg,_end) -> _all # not strictly needed, but cuts down on code.
slice -> blitz::Range

1.16. Weave (scipy.weave) 169

SciPy Reference Guide, Release 0.16.0

[-> (
] ->)
_stp -> 1

_all is defined in the compiled function as blitz::Range.all(). These translations could of course happen
directly in the syntax tree. But the string replacement is slightly easier. Note that namespaces are maintained in the
C++ code to lessen the likelihood of name clashes. Currently no effort is made to detect name clashes. A good rule of
thumb is don’t use values that start with ‘_’ or ‘py_’ in compiled expressions and you’ll be fine.

Type definitions and coersion

So far we’ve glossed over the dynamic vs. static typing issue between Python and C++. In Python, the type of value
that a variable holds can change through the course of program execution. C/C++, on the other hand, forces you to
declare the type of value a variables will hold prior at compile time. weave.blitz handles this issue by examining
the types of the variables in the expression being executed, and compiling a function for those explicit types. For
example:

a = ones((5,5),Float32)
b = ones((5,5),Float32)
weave.blitz("a = a + b")

When compiling this expression to C++, weave.blitz sees that the values for a and b in the local scope have type
Float32, or ‘float’ on a 32 bit architecture. As a result, it compiles the function using the float type (no attempt has
been made to deal with 64 bit issues).

What happens if you call a compiled function with array types that are different than the ones for which it was
originally compiled? No biggie, you’ll just have to wait on it to compile a new version for your new types. This
doesn’t overwrite the old functions, as they are still accessible. See the catalog section in the inline() documentation
to see how this is handled. Suffice to say, the mechanism is transparent to the user and behaves like dynamic typing
with the occasional wait for compiling newly typed functions.

When working with combined scalar/array operations, the type of the array is always used. This is similar to the saves-
pace flag that was recently added to NumPy. This prevents issues with the following expression perhaps unexpectedly
being calculated at a higher (more expensive) precision that can occur in Python:

>>> a = array((1,2,3),typecode = Float32)
>>> b = a * 2.1 # results in b being a Float64 array.

In this example,

>>> a = ones((5,5),Float32)
>>> b = ones((5,5),Float32)
>>> weave.blitz("b = a * 2.1")

the 2.1 is cast down to a float before carrying out the operation. If you really want to force the calculation to be a
double, define a and b as double arrays.

One other point of note. Currently, you must include both the right hand side and left hand side (assignment side)
of your equation in the compiled expression. Also, the array being assigned to must be created prior to calling
weave.blitz. I’m pretty sure this is easily changed so that a compiled_eval expression can be defined, but no
effort has been made to allocate new arrays (and decern their type) on the fly.

Cataloging Compiled Functions

See The Catalog section in the weave.inline() documentation.

170 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Checking Array Sizes

Surprisingly, one of the big initial problems with compiled code was making sure all the arrays in an operation were
of compatible type. The following case is trivially easy:

a = b + c

It only requires that arrays a, b, and c have the same shape. However, expressions like:

a[i+j:i+j+1,:] = b[2:3,:] + c

are not so trivial. Since slicing is involved, the size of the slices, not the input arrays, must be checked. Broadcasting
complicates things further because arrays and slices with different dimensions and shapes may be compatible for math
operations (broadcasting isn’t yet supported by weave.blitz). Reductions have a similar effect as their results are
different shapes than their input operand. The binary operators in NumPy compare the shapes of their two operands just
before they operate on them. This is possible because NumPy treats each operation independently. The intermediate
(temporary) arrays created during sub-operations in an expression are tested for the correct shape before they are
combined by another operation. Because weave.blitz fuses all operations into a single loop, this isn’t possible.
The shape comparisons must be done and guaranteed compatible before evaluating the expression.

The solution chosen converts input arrays to “dummy arrays” that only represent the dimensions of the arrays, not the
data. Binary operations on dummy arrays check that input array sizes are comptible and return a dummy array with
the size correct size. Evaluating an expression of dummy arrays traces the changing array sizes through all operations
and fails if incompatible array sizes are ever found.

The machinery for this is housed in weave.size_check. It basically involves writing a new class (dummy array)
and overloading its math operators to calculate the new sizes correctly. All the code is in Python and there is a fair
amount of logic (mainly to handle indexing and slicing) so the operation does impose some overhead. For large arrays
(ie. 50x50x50), the overhead is negligible compared to evaluating the actual expression. For small arrays (ie. 16x16),
the overhead imposed for checking the shapes with this method can cause the weave.blitz to be slower than
evaluating the expression in Python.

What can be done to reduce the overhead? (1) The size checking code could be moved into C. This would likely
remove most of the overhead penalty compared to NumPy (although there is also some calling overhead), but no effort
has been made to do this. (2) You can also call weave.blitz with check_size=0 and the size checking isn’t
done. However, if the sizes aren’t compatible, it can cause a core-dump. So, foregoing size_checking isn’t advisable
until your code is well debugged.

Creating the Extension Module

weave.blitz uses the same machinery as weave.inline to build the extension module. The only difference is
the code included in the function is automatically generated from the NumPy array expression instead of supplied by
the user.

1.16.9 Extension Modules

weave.inline and weave.blitz are high level tools that generate extension modules automatically. Under
the covers, they use several classes from weave.ext_tools to help generate the extension module. The main two
classes are ext_module and ext_function (I’d like to add ext_class and ext_method also). These classes
simplify the process of generating extension modules by handling most of the “boiler plate” code automatically.

Note: inline actually sub-classes weave.ext_tools.ext_function to generate slightly different code
than the standard ext_function. The main difference is that the standard class converts function arguments to C
types, while inline always has two arguments, the local and global dicts, and the grabs the variables that need to be
convereted to C from these.

1.16. Weave (scipy.weave) 171

SciPy Reference Guide, Release 0.16.0

A Simple Example

The following simple example demonstrates how to build an extension module within a Python function:

examples/increment_example.py
from weave import ext_tools

def build_increment_ext():
""" Build a simple extension with functions that increment numbers.

The extension will be built in the local directory.
"""
mod = ext_tools.ext_module('increment_ext')

a = 1 # effectively a type declaration for 'a' in the
following functions.

ext_code = "return_val = Py::new_reference_to(Py::Int(a+1));"
func = ext_tools.ext_function('increment',ext_code,['a'])
mod.add_function(func)

ext_code = "return_val = Py::new_reference_to(Py::Int(a+2));"
func = ext_tools.ext_function('increment_by_2',ext_code,['a'])
mod.add_function(func)

mod.compile()

The function build_increment_ext() creates an extension module named increment_ext and compiles
it to a shared library (.so or .pyd) that can be loaded into Python.. increment_ext contains two functions,
increment and increment_by_2. The first line of build_increment_ext(),

mod = ext_tools.ext_module(‘increment_ext’)

creates an ext_module instance that is ready to have ext_function instances added to it. ext_function
instances are created much with a calling convention similar to weave.inline(). The most common call includes
a C/C++ code snippet and a list of the arguments for the function. The following:

ext_code = "return_val = Py::new_reference_to(Py::Int(a+1));"
func = ext_tools.ext_function('increment',ext_code,['a'])

creates a C/C++ extension function that is equivalent to the following Python function:

def increment(a):
return a + 1

A second method is also added to the module and then,

mod.compile()

is called to build the extension module. By default, the module is created in the current working directory. This exam-
ple is available in the examples/increment_example.py file found in the weave directory. At the bottom of
the file in the module’s “main” program, an attempt to import increment_ext without building it is made. If this
fails (the module doesn’t exist in the PYTHONPATH), the module is built by calling build_increment_ext().
This approach only takes the time-consuming (a few seconds for this example) process of building the module if it
hasn’t been built before.

if __name__ == "__main__":
try:

import increment_ext
except ImportError:

build_increment_ext()

172 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

import increment_ext
a = 1
print 'a, a+1:', a, increment_ext.increment(a)
print 'a, a+2:', a, increment_ext.increment_by_2(a)

Note: If we were willing to always pay the penalty of building the C++ code for a module, we could store
the SHA-256 checksum of the C++ code along with some information about the compiler, platform, etc. Then,
ext_module.compile() could try importing the module before it actually compiles it, check the SHA-256 check-
sum and other meta-data in the imported module with the meta-data of the code it just produced and only compile the
code if the module didn’t exist or the meta-data didn’t match. This would reduce the above code to:

if __name__ == "__main__":
build_increment_ext()

a = 1
print 'a, a+1:', a, increment_ext.increment(a)
print 'a, a+2:', a, increment_ext.increment_by_2(a)

Note: There would always be the overhead of building the C++ code, but it would only actually compile the code
once. You pay a little in overhead and get cleaner “import” code. Needs some thought.

If you run increment_example.py from the command line, you get the following:

[eric@n0]$ python increment_example.py
a, a+1: 1 2
a, a+2: 1 3

If the module didn’t exist before it was run, the module is created. If it did exist, it is just imported and used.

Fibonacci Example

examples/fibonacci.py provides a little more complex example of how to use ext_tools. Fibonacci num-
bers are a series of numbers where each number in the series is the sum of the previous two: 1, 1, 2, 3, 5, 8, etc. Here,
the first two numbers in the series are taken to be 1. One approach to calculating Fibonacci numbers uses recursive
function calls. In Python, it might be written as:

def fib(a):
if a <= 2:

return 1
else:

return fib(a-2) + fib(a-1)

In C, the same function would look something like this:

int fib(int a)
{

if(a <= 2)
return 1;

else
return fib(a-2) + fib(a-1);

}

Recursion is much faster in C than in Python, so it would be beneficial to use the C version for fibonacci number
calculations instead of the Python version. We need an extension function that calls this C function to do this. This
is possible by including the above code snippet as “support code” and then calling it from the extension function.

1.16. Weave (scipy.weave) 173

SciPy Reference Guide, Release 0.16.0

Support code snippets (usually structure definitions, helper functions and the like) are inserted into the extension
module C/C++ file before the extension function code. Here is how to build the C version of the fibonacci number
generator:

def build_fibonacci():
""" Builds an extension module with fibonacci calculators.
"""
mod = ext_tools.ext_module('fibonacci_ext')
a = 1 # this is effectively a type declaration

recursive fibonacci in C
fib_code = """

int fib1(int a)
{

if(a <= 2)
return 1;

else
return fib1(a-2) + fib1(a-1);

}
"""

ext_code = """
int val = fib1(a);
return_val = Py::new_reference_to(Py::Int(val));

"""
fib = ext_tools.ext_function('fib',ext_code,['a'])
fib.customize.add_support_code(fib_code)
mod.add_function(fib)

mod.compile()

XXX More about custom_info, and what xxx_info instances are good for.

Note: recursion is not the fastest way to calculate fibonacci numbers, but this approach serves nicely for this example.

1.16.10 Customizing Type Conversions – Type Factories

not written

1.16.11 Things I wish weave did

It is possible to get name clashes if you uses a variable name that is already defined in a header automatically included
(such as stdio.h) For instance, if you try to pass in a variable named stdout, you’ll get a cryptic error report due
to the fact that stdio.h also defines the name. weave should probably try and handle this in some way. Other
things...

174 Chapter 1. SciPy Tutorial

CHAPTER

TWO

CONTRIBUTING TO SCIPY

This document aims to give an overview of how to contribute to SciPy. It tries to answer commonly asked questions,
and provide some insight into how the community process works in practice. Readers who are familiar with the SciPy
community and are experienced Python coders may want to jump straight to the git workflow documentation.

Note: You may want to check the latest version of this guide, which is available at:
https://github.com/scipy/scipy/blob/master/HACKING.rst.txt

2.1 Contributing new code

If you have been working with the scientific Python toolstack for a while, you probably have some code lying around
of which you think “this could be useful for others too”. Perhaps it’s a good idea then to contribute it to SciPy or
another open source project. The first question to ask is then, where does this code belong? That question is hard
to answer here, so we start with a more specific one: what code is suitable for putting into SciPy? Almost all of
the new code added to scipy has in common that it’s potentially useful in multiple scientific domains and it fits in
the scope of existing scipy submodules. In principle new submodules can be added too, but this is far less common.
For code that is specific to a single application, there may be an existing project that can use the code. Some scikits
(scikit-learn, scikit-image, statsmodels, etc.) are good examples here; they have a narrower focus and because of that
more domain-specific code than SciPy.

Now if you have code that you would like to see included in SciPy, how do you go about it? After checking that your
code can be distributed in SciPy under a compatible license (see FAQ for details), the first step is to discuss on the
scipy-dev mailing list. All new features, as well as changes to existing code, are discussed and decided on there. You
can, and probably should, already start this discussion before your code is finished.

Assuming the outcome of the discussion on the mailing list is positive and you have a function or piece of code that
does what you need it to do, what next? Before code is added to SciPy, it at least has to have good documentation, unit
tests and correct code style.

1. Unit tests In principle you should aim to create unit tests that exercise all the code that you are adding.
This gives some degree of confidence that your code runs correctly, also on Python versions and
hardware or OSes that you don’t have available yourself. An extensive description of how to
write unit tests is given in the NumPy testing guidelines.

2. Documentation
Clear and complete documentation is essential in order for users to be able to find and under-
stand the code. Documentation for individual functions and classes – which includes at least a
basic description, type and meaning of all parameters and returns values, and usage examples in
doctest format – is put in docstrings. Those docstrings can be read within the interpreter, and
are compiled into a reference guide in html and pdf format. Higher-level documentation for key
(areas of) functionality is provided in tutorial format and/or in module docstrings. A guide on
how to write documentation is given in how to document.

175

http://docs.scipy.org/doc/numpy/dev/gitwash/index.html
https://github.com/scipy/scipy/blob/master/HACKING.rst.txt
http://scikit-learn.org
http://scikit-image.org/
http://statsmodels.sourceforge.net/
https://github.com/numpy/numpy/blob/master/doc/TESTS.rst.txt
http://www.doughellmann.com/PyMOTW/doctest/
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

SciPy Reference Guide, Release 0.16.0

3. Code style Uniformity of style in which code is written is important to others trying to understand the code.
SciPy follows the standard Python guidelines for code style, PEP8. In order to check that your
code conforms to PEP8, you can use the pep8 package style checker. Most IDEs and text editors
have settings that can help you follow PEP8, for example by translating tabs by four spaces.
Using pyflakes to check your code is also a good idea.

At the end of this document a checklist is given that may help to check if your code fulfills all requirements for
inclusion in SciPy.

Another question you may have is: where exactly do I put my code? To answer this, it is useful to understand
how the SciPy public API (application programming interface) is defined. For most modules the API is two levels
deep, which means your new function should appear as scipy.submodule.my_new_func. my_new_func
can be put in an existing or new file under /scipy/<submodule>/, its name is added to the __all__
list in that file (which lists all public functions in the file), and those public functions are then imported in
/scipy/<submodule>/__init__.py. Any private functions/classes should have a leading underscore (_) in
their name. A more detailed description of what the public API of SciPy is, is given in SciPy API.

Once you think your code is ready for inclusion in SciPy, you can send a pull request (PR) on Github. We won’t
go into the details of how to work with git here, this is described well in the git workflow section of the NumPy
documentation and on the Github help pages. When you send the PR for a new feature, be sure to also mention this on
the scipy-dev mailing list. This can prompt interested people to help review your PR. Assuming that you already got
positive feedback before on the general idea of your code/feature, the purpose of the code review is to ensure that the
code is correct, efficient and meets the requirements outlined above. In many cases the code review happens relatively
quickly, but it’s possible that it stalls. If you have addressed all feedback already given, it’s perfectly fine to ask on the
mailing list again for review (after a reasonable amount of time, say a couple of weeks, has passed). Once the review
is completed, the PR is merged into the “master” branch of SciPy.

The above describes the requirements and process for adding code to SciPy. It doesn’t yet answer the question though
how decisions are made exactly. The basic answer is: decisions are made by consensus, by everyone who chooses
to participate in the discussion on the mailing list. This includes developers, other users and yourself. Aiming for
consensus in the discussion is important – SciPy is a project by and for the scientific Python community. In those rare
cases that agreement cannot be reached, the maintainers of the module in question can decide the issue.

2.2 Contributing by helping maintain existing code

The previous section talked specifically about adding new functionality to SciPy. A large part of that discussion also
applies to maintenance of existing code. Maintenance means fixing bugs, improving code quality or style, documenting
existing functionality better, adding missing unit tests, keeping build scripts up-to-date, etc. The SciPy issue list
contains all reported bugs, build/documentation issues, etc. Fixing issues helps improve the overall quality of SciPy,
and is also a good way of getting familiar with the project. You may also want to fix a bug because you ran into it and
need the function in question to work correctly.

The discussion on code style and unit testing above applies equally to bug fixes. It is usually best to start by writing a
unit test that shows the problem, i.e. it should pass but doesn’t. Once you have that, you can fix the code so that the
test does pass. That should be enough to send a PR for this issue. Unlike when adding new code, discussing this on
the mailing list may not be necessary - if the old behavior of the code is clearly incorrect, no one will object to having
it fixed. It may be necessary to add some warning or deprecation message for the changed behavior. This should be
part of the review process.

2.3 Other ways to contribute

There are many ways to contribute other than contributing code. Participating in discussions on the scipy-user and
scipy-dev mailing lists is a contribution in itself. The scipy.org website contains a lot of information on the SciPy

176 Chapter 2. Contributing to SciPy

http://www.python.org/dev/peps/pep-0008/
http://pypi.python.org/pypi/pep8
http://pypi.python.org/pypi/pyflakes
http://docs.scipy.org/doc/scipy/reference/api.html
http://docs.scipy.org/doc/numpy/dev/gitwash/index.html
https://help.github.com/articles/set-up-git/
https://github.com/scipy/scipy/blob/master/doc/MAINTAINERS.rst.txt
https://github.com/scipy/scipy/issues
http://scipy.org/

SciPy Reference Guide, Release 0.16.0

community and can always use a new pair of hands.

2.4 Recommended development setup

Since Scipy contains parts written in C, C++, and Fortran that need to be compiled before use, make sure you have
the necessary compilers and Python development headers installed. Having compiled code also means that importing
Scipy from the development sources needs some additional steps, which are explained below.

First fork a copy of the main Scipy repository in Github onto your own account and then create your local repository
via:

$ git clone git@github.com:YOURUSERNAME/scipy.git scipy
$ cd scipy
$ git remote add upstream git://github.com/scipy/scipy.git

To build the development version of Scipy and run tests, spawn interactive shells with the Python import paths properly
set up etc., do one of:

$ python runtests.py -v
$ python runtests.py -v -s optimize
$ python runtests.py -v -t scipy/special/tests/test_basic.py:test_xlogy
$ python runtests.py --ipython
$ python runtests.py --python somescript.py
$ python runtests.py --bench

This builds Scipy first, so the first time it may take some time. If you specify -n, the tests are run against the version
of Scipy (if any) found on current PYTHONPATH.

Using runtests.py is the recommended approach to running tests. There are also a number of alternatives to it,
for example in-place build or installing to a virtualenv. See the FAQ below for details.

Some of the tests in Scipy are very slow and need to be separately enabled. See the FAQ below for details.

2.5 SciPy structure

All SciPy modules should follow the following conventions. In the following, a SciPy module is defined as a Python
package, say yyy, that is located in the scipy/ directory.

• Ideally, each SciPy module should be as self-contained as possible. That is, it should have minimal dependencies
on other packages or modules. Even dependencies on other SciPy modules should be kept to a minimum. A
dependency on NumPy is of course assumed.

• Directory yyy/ contains:

– A file setup.py that defines configuration(parent_package=’’,top_path=None) func-
tion for numpy.distutils.

– A directory tests/ that contains files test_<name>.py corresponding to modules
yyy/<name>{.py,.so,/}.

• Private modules should be prefixed with an underscore _, for instance yyy/_somemodule.py.

• User-visible functions should have good documentation following the Numpy documentation style, see how to
document

• The __init__.py of the module should contain the main reference documentation in its docstring. This is
connected to the Sphinx documentation under doc/ via Sphinx’s automodule directive.

2.4. Recommended development setup 177

http://docs.scipy.org/doc/numpy/reference/distutils.html#module-numpy.distutils
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

SciPy Reference Guide, Release 0.16.0

The reference documentation should first give a categorized list of the contents of the module using
autosummary:: directives, and after that explain points essential for understanding the use of the module.

Tutorial-style documentation with extensive examples should be separate, and put under
doc/source/tutorial/

See the existing Scipy submodules for guidance.

For further details on Numpy distutils, see:

https://github.com/numpy/numpy/blob/master/doc/DISTUTILS.rst.txt

2.6 Useful links, FAQ, checklist

2.6.1 Checklist before submitting a PR

• Are there unit tests with good code coverage?

• Do all public function have docstrings including examples?

• Is the code style correct (PEP8, pyflakes)

• Is the new functionality tagged with .. versionadded:: X.Y.Z (with X.Y.Z the version number of
the next release - can be found in setup.py)?

• Is the new functionality mentioned in the release notes of the next release?

• Is the new functionality added to the reference guide?

• In case of larger additions, is there a tutorial or more extensive module-level description?

• In case compiled code is added, is it integrated correctly via setup.py (and preferably also Bento configuration
files - bento.info and bscript)?

• If you are a first-time contributor, did you add yourself to THANKS.txt? Please note that this is perfectly normal
and desirable - the aim is to give every single contributor credit, and if you don’t add yourself it’s simply extra
work for the reviewer (or worse, the reviewer may forget).

• Did you check that the code can be distributed under a BSD license?

2.6.2 Useful SciPy documents

• The how to document guidelines

• NumPy/SciPy testing guidelines

• SciPy API

• SciPy maintainers

• NumPy/SciPy git workflow

2.6.3 FAQ

I based my code on existing Matlab/R/... code I found online, is this OK?

It depends. SciPy is distributed under a BSD license, so if the code that you based your code on is also BSD licensed
or has a BSD-compatible license (MIT, Apache, ...) then it’s OK. Code which is GPL-licensed, has no clear license,

178 Chapter 2. Contributing to SciPy

https://github.com/numpy/numpy/blob/master/doc/DISTUTILS.rst.txt
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://github.com/numpy/numpy/blob/master/doc/TESTS.rst.txt
http://docs.scipy.org/doc/scipy/reference/api.html
https://github.com/scipy/scipy/blob/master/doc/MAINTAINERS.rst.txt
http://docs.scipy.org/doc/numpy/dev/gitwash/index.html

SciPy Reference Guide, Release 0.16.0

requires citation or is free for academic use only can’t be included in SciPy. Therefore if you copied existing code with
such a license or made a direct translation to Python of it, your code can’t be included. See also license compatibility.

Why is SciPy under the BSD license and not, say, the GPL?

Like Python, SciPy uses a “permissive” open source license, which allows proprietary re-use. While this allows
companies to use and modify the software without giving anything back, it is felt that the larger user base results in
more contributions overall, and companies often publish their modifications anyway, without being required to. See
John Hunter’s BSD pitch.

How do I set up a development version of SciPy in parallel to a released version that I use to do my job/research?

One simple way to achieve this is to install the released version in site-packages, by using a binary installer or pip for
example, and set up the development version in a virtualenv. First install virtualenv (optionally use virtualenvwrapper),
then create your virtualenv (named scipy-dev here) with:

$ virtualenv scipy-dev

Now, whenever you want to switch to the virtual environment, you can use the command source
scipy-dev/bin/activate, and deactivate to exit from the virtual environment and back to your previ-
ous shell. With scipy-dev activated, install first Scipy’s dependencies:

$ pip install Numpy Nose Cython

After that, you can install a development version of Scipy, for example via:

$ python setup.py install

The installation goes to the virtual environment.

How do I set up an in-place build for development

For development, you can set up an in-place build so that changes made to .py files have effect without rebuild. First,
run:

$ python setup.py build_ext -i

Then you need to point your PYTHONPATH environment variable to this directory. Some IDEs (Spyder for example)
have utilities to manage PYTHONPATH. On Linux and OSX, you can run the command:

$ export PYTHONPATH=$PWD

and on Windows

$ set PYTHONPATH=/path/to/scipy

Now editing a Python source file in SciPy allows you to immediately test and use your changes (in .py files), by
simply restarting the interpreter.

Can I use a programming language other than Python to speed up my code?

Yes. The languages used in SciPy are Python, Cython, C, C++ and Fortran. All of these have their pros and cons.
If Python really doesn’t offer enough performance, one of those languages can be used. Important concerns when
using compiled languages are maintainability and portability. For maintainability, Cython is clearly preferred over
C/C++/Fortran. Cython and C are more portable than C++/Fortran. A lot of the existing C and Fortran code in SciPy
is older, battle-tested code that was only wrapped in (but not specifically written for) Python/SciPy. Therefore the
basic advice is: use Cython. If there’s specific reasons why C/C++/Fortran should be preferred, please discuss those
reasons first.

How do I debug code written in C/C++/Fortran inside Scipy?

The easiest way to do this is to first write a Python script that invokes the C code whose execution you want to debug.
For instance mytest.py:

2.6. Useful links, FAQ, checklist 179

http://www.scipy.org/License_Compatibility
http://nipy.sourceforge.net/nipy/stable/faq/johns_bsd_pitch.html
http://www.virtualenv.org/
http://www.doughellmann.com/projects/virtualenvwrapper/

SciPy Reference Guide, Release 0.16.0

from scipy.special import hyp2f1
print(hyp2f1(5.0, 1.0, -1.8, 0.95))

Now, you can run:

gdb --args python runtests.py -g --python mytest.py

If you didn’t compile with debug symbols enabled before, remove the build directory first. While in the debugger:

(gdb) break cephes_hyp2f1
(gdb) run

The execution will now stop at the corresponding C function and you can step through it as usual. Instead of
plain gdb you can of course use your favourite alternative debugger; run it on the python binary with arguments
runtests.py -g --python mytest.py.

How do I enable additional tests in Scipy?

Some of the tests in Scipy’s test suite are very slow and not enabled by default. You can run the full suite via:

$ python runtests.py -g -m full

This invokes the test suite import scipy; scipy.test("full"), enabling also slow tests.

There is an additional level of very slow tests (several minutes), which are disabled also in this case. They can be
enabled by setting the environment variable SCIPY_XSLOW=1 before running the test suite.

How do I write tests with test generators?

The Nose test framework supports so-called test generators, which can come useful if you need to have multiple tests
where just a parameter changes. Using test generators so that they are more useful than harmful is tricky, and we
recommend the following pattern:

def test_something():
some_array = (...)

def check(some_param):
c = compute_result(some_array, some_param)
known_result = (...)
assert_allclose(c, known_result)

for some_param in ['a', 'b', 'c']:
yield check, some_param

We require the following:

• All asserts and all computation that is tested must only be reached after a yield. (Rationale: the generator body
is part of no test, and a failure in it will show neither the test name nor for what parameters the test failed.)

• Arrays must not be passed as yield parameters. Either use variables from outer scope (eg. with some index
passed to yield), or capsulate test data to a class with a sensible __repr__. (Rationale: Nose truncates the
printed form of arrays in test output, and this makes it impossible to know for what parameters a test failed.
Arrays are big, and clutter test output unnecessarily.)

• Test generators cannot be used in test classes inheriting from unittest.TestCase; either use object as base class,
or use standalone test functions. (Rationale: Nose does not run test generators in TestCase-inheriting classes.)

If in doubt, do not use test generators. You can track for what parameter things failed also by passing
err_msg=repr((param1, param2, ...)) to the various assert functions.

180 Chapter 2. Contributing to SciPy

http://nose.readthedocs.org/en/latest/

CHAPTER

THREE

API - IMPORTING FROM SCIPY

In Python the distinction between what is the public API of a library and what are private implementation details is
not always clear. Unlike in other languages like Java, it is possible in Python to access “private” function or objects.
Occasionally this may be convenient, but be aware that if you do so your code may break without warning in future
releases. Some widely understood rules for what is and isn’t public in Python are:

• Methods / functions / classes and module attributes whose names begin with a leading underscore are private.

• If a class name begins with a leading underscore none of its members are public, whether or not they begin with
a leading underscore.

• If a module name in a package begins with a leading underscore none of its members are public, whether or not
they begin with a leading underscore.

• If a module or package defines __all__ that authoritatively defines the public interface.

• If a module or package doesn’t define __all__ then all names that don’t start with a leading underscore are
public.

Note: Reading the above guidelines one could draw the conclusion that every private module or object starts with
an underscore. This is not the case; the presence of underscores do mark something as private, but the absence of
underscores do not mark something as public.

In Scipy there are modules whose names don’t start with an underscore, but that should be considered private. To
clarify which modules these are we define below what the public API is for Scipy, and give some recommendations
for how to import modules/functions/objects from Scipy.

3.1 Guidelines for importing functions from Scipy

The scipy namespace itself only contains functions imported from numpy. These functions still exist for backwards
compatibility, but should be imported from numpy directly.

Everything in the namespaces of scipy submodules is public. In general, it is recommended to import functions from
submodule namespaces. For example, the function curve_fit (defined in scipy/optimize/minpack.py) should be
imported like this:

from scipy import optimize
result = optimize.curve_fit(...)

This form of importing submodules is preferred for all submodules except scipy.io (because io is also the name
of a module in the Python stdlib):

181

SciPy Reference Guide, Release 0.16.0

from scipy import interpolate
from scipy import integrate
import scipy.io as spio

In some cases, the public API is one level deeper. For example the scipy.sparse.linalg module is public, and
the functions it contains are not available in the scipy.sparse namespace. Sometimes it may result in more easily
understandable code if functions are imported from one level deeper. For example, in the following it is immediately
clear that lomax is a distribution if the second form is chosen:

first form
from scipy import stats
stats.lomax(...)

second form
from scipy.stats import distributions
distributions.lomax(...)

In that case the second form can be chosen, if it is documented in the next section that the submodule in question is
public.

3.2 API definition

Every submodule listed below is public. That means that these submodules are unlikely to be renamed or changed
in an incompatible way, and if that is necessary a deprecation warning will be raised for one Scipy release before the
change is made.

• scipy.cluster

– vq

– hierarchy

• scipy.constants

• scipy.fftpack

• scipy.integrate

• scipy.interpolate

• scipy.io

– arff

– harwell_boeing

– idl

– matlab

– netcdf

– wavfile

• scipy.linalg

– scipy.linalg.blas

– scipy.linalg.lapack

– scipy.linalg.interpolative

• scipy.misc

182 Chapter 3. API - importing from Scipy

SciPy Reference Guide, Release 0.16.0

• scipy.ndimage

• scipy.odr

• scipy.optimize

• scipy.signal

• scipy.sparse

– linalg

– csgraph

• scipy.spatial

– distance

• scipy.special

• scipy.stats

– distributions

– mstats

• scipy.weave

3.2. API definition 183

SciPy Reference Guide, Release 0.16.0

184 Chapter 3. API - importing from Scipy

CHAPTER

FOUR

RELEASE NOTES

4.1 SciPy 0.16.0 Release Notes

Contents

• SciPy 0.16.0 Release Notes
– New features

* Benchmark suite
* scipy.linalg improvements
* scipy.signal improvements
* scipy.sparse improvements
* scipy.spatial improvements
* scipy.stats improvements
* scipy.optimize improvements

– Deprecated features
– Backwards incompatible changes
– Other changes
– Authors

* Issues closed for 0.16.0
* Pull requests for 0.16.0

SciPy 0.16.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes,
improved test coverage and better documentation. There have been a number of deprecations and API changes in
this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large
number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the
0.16.x branch, and on adding new features on the master branch.

This release requires Python 2.6, 2.7 or 3.2-3.4 and NumPy 1.6.2 or greater.

Highlights of this release include:

• A Cython API for BLAS/LAPACK in scipy.linalg

• A new benchmark suite. It’s now straightforward to add new benchmarks, and they’re routinely included with
performance enhancement PRs.

• Support for the second order sections (SOS) format in scipy.signal.

185

SciPy Reference Guide, Release 0.16.0

4.1.1 New features

Benchmark suite

The benchmark suite has switched to using Airspeed Velocity for benchmarking. You can run the suite locally via
python runtests.py --bench. For more details, see benchmarks/README.rst.

scipy.linalg improvements

A full set of Cython wrappers for BLAS and LAPACK has been added in the modules
scipy.linalg.cython_blas and scipy.linalg.cython_lapack. In Cython, these wrappers can
now be cimported from their corresponding modules and used without linking directly against BLAS or LAPACK.

The functions scipy.linalg.qr_delete, scipy.linalg.qr_insert and
scipy.linalg.qr_update for updating QR decompositions were added.

The function scipy.linalg.solve_circulant solves a linear system with a circulant coefficient matrix.

The function scipy.linalg.invpascal computes the inverse of a Pascal matrix.

The function scipy.linalg.solve_toeplitz, a Levinson-Durbin Toeplitz solver, was added.

Added wrapper for potentially useful LAPACK function *lasd4. It computes the square root of the i-th updated
eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. See its LAPACK documenta-
tion and unit tests for it to get more info.

Added two extra wrappers for LAPACK least-square solvers. Namely, they are *gelsd and *gelsy.

Wrappers for the LAPACK *lange functions, which calculate various matrix norms, were added.

Wrappers for *gtsv and *ptsv, which solve A*X = B for tri-diagonal matrix A, were added.

scipy.signal improvements

Support for second order sections (SOS) as a format for IIR filters was added. The new functions are:

• scipy.signal.sosfilt

• scipy.signal.sosfilt_zi,

• scipy.signal.sos2tf

• scipy.signal.sos2zpk

• scipy.signal.tf2sos

• scipy.signal.zpk2sos.

Additionally, the filter design functions iirdesign, iirfilter, butter, cheby1, cheby2, ellip, and bessel can return the filter
in the SOS format.

The function scipy.signal.place_poles, which provides two methods to place poles for linear systems, was
added.

The option to use Gustafsson’s method for choosing the initial conditions of the forward and backward passes was
added to scipy.signal.filtfilt.

New classes TransferFunction, StateSpace and ZerosPolesGain were added. These classes are now
returned when instantiating scipy.signal.lti. Conversion between those classes can be done explicitly now.

An exponential (Poisson) window was added as scipy.signal.exponential, and a Tukey window was added
as scipy.signal.tukey.

186 Chapter 4. Release Notes

http://spacetelescope.github.io/asv/

SciPy Reference Guide, Release 0.16.0

The function for computing digital filter group delay was added as scipy.signal.group_delay.

The functionality for spectral analysis and spectral density estimation has been significantly improved:
scipy.signal.welch became ~8x faster and the functions scipy.signal.spectrogram,
scipy.signal.coherence and scipy.signal.csd (cross-spectral density) were added.

scipy.signal.lsim was rewritten - all known issues are fixed, so this function can now be used instead of
lsim2; lsim is orders of magnitude faster than lsim2 in most cases.

scipy.sparse improvements

The function scipy.sparse.norm, which computes sparse matrix norms, was added.

The function scipy.sparse.random, which allows to draw random variates from an arbitrary distribution, was
added.

scipy.spatial improvements

scipy.spatial.cKDTree has seen a major rewrite, which improved the performance of the query method
significantly, added support for parallel queries, pickling, and options that affect the tree layout. See pull request 4374
for more details.

The function scipy.spatial.procrustes for Procrustes analysis (statistical shape analysis) was added.

scipy.stats improvements

The Wishart distribution and its inverse have been added, as scipy.stats.wishart and
scipy.stats.invwishart.

The Exponentially Modified Normal distribution has been added as scipy.stats.exponnorm.

The Generalized Normal distribution has been added as scipy.stats.gennorm.

All distributions now contain a random_state property and allow specifying a specific
numpy.random.RandomState random number generator when generating random variates.

Many statistical tests and other scipy.stats functions that have multiple return values now return namedtuples.
See pull request 4709 for details.

scipy.optimize improvements

A new derivative-free method DF-SANE has been added to the nonlinear equation system solving function
scipy.optimize.root.

4.1.2 Deprecated features

scipy.stats.pdf_fromgamma is deprecated. This function was undocumented, untested and rarely used.
Statsmodels provides equivalent functionality with statsmodels.distributions.ExpandedNormal.

scipy.stats.fastsort is deprecated. This function is unnecessary, numpy.argsort can be used instead.

scipy.stats.signaltonoise and scipy.stats.mstats.signaltonoise are deprecated. These
functions did not belong in scipy.stats and are rarely used. See issue #609 for details.

scipy.stats.histogram2 is deprecated. This function is unnecessary, numpy.histogram2d can be used
instead.

4.1. SciPy 0.16.0 Release Notes 187

SciPy Reference Guide, Release 0.16.0

4.1.3 Backwards incompatible changes

The deprecated global optimizer scipy.optimize.anneal was removed.

The following deprecated modules have been removed: scipy.lib.blas, scipy.lib.lapack,
scipy.linalg.cblas, scipy.linalg.fblas, scipy.linalg.clapack,
scipy.linalg.flapack. They had been deprecated since Scipy 0.12.0, the functionality should be ac-
cessed as scipy.linalg.blas and scipy.linalg.lapack.

The deprecated function scipy.special.all_mat has been removed.

The deprecated functions fprob, ksprob, zprob, randwcdf and randwppf have been removed from
scipy.stats.

4.1.4 Other changes

The version numbering for development builds has been updated to comply with PEP 440.

Building with python setup.py develop is now supported.

4.1.5 Authors

• @axiru +

• @endolith

• Elliott Sales de Andrade +

• Anne Archibald

• Yoshiki Vázquez Baeza +

• Sylvain Bellemare

• Felix Berkenkamp +

• Raoul Bourquin +

• Matthew Brett

• Per Brodtkorb

• Christian Brueffer

• Lars Buitinck

• Evgeni Burovski

• Steven Byrnes

• CJ Carey

• George Castillo +

• Alex Conley +

• Liam Damewood +

• Rupak Das +

• Abraham Escalante +

• Matthias Feurer +

• Eric Firing +

188 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

• Clark Fitzgerald

• Chad Fulton

• André Gaul

• Andreea Georgescu +

• Christoph Gohlke

• Andrey Golovizin +

• Ralf Gommers

• J.J. Green +

• Alex Griffing

• Alexander Grigorievskiy +

• Hans Moritz Gunther +

• Jonas Hahnfeld +

• Charles Harris

• Ian Henriksen

• Andreas Hilboll

• Åsmund Hjulstad +

• Jan Schlüter +

• Janko Slavič +

• Daniel Jensen +

• Johannes Ballé +

• Terry Jones +

• Amato Kasahara +

• Eric Larson

• Denis Laxalde

• Antony Lee

• Gregory R. Lee

• Perry Lee +

• Loïc Estève

• Martin Manns +

• Eric Martin +

• Matěj Kocián +

• Andreas Mayer +

• Nikolay Mayorov +

• Robert McGibbon +

• Sturla Molden

• Nicola Montecchio +

4.1. SciPy 0.16.0 Release Notes 189

SciPy Reference Guide, Release 0.16.0

• Eric Moore

• Jamie Morton +

• Nikolas Moya +

• Maniteja Nandana +

• Andrew Nelson

• Joel Nothman

• Aldrian Obaja

• Regina Ongowarsito +

• Paul Ortyl +

• Pedro López-Adeva Fernández-Layos +

• Stefan Peterson +

• Irvin Probst +

• Eric Quintero +

• John David Reaver +

• Juha Remes +

• Thomas Robitaille

• Clancy Rowley +

• Tobias Schmidt +

• Skipper Seabold

• Aman Singh +

• Eric Soroos

• Valentine Svensson +

• Julian Taylor

• Aman Thakral +

• Helmut Toplitzer +

• Fukumu Tsutsumi +

• Anastasiia Tsyplia +

• Jacob Vanderplas

• Pauli Virtanen

• Matteo Visconti +

• Warren Weckesser

• Florian Wilhelm +

• Nathan Woods

• Haochen Wu +

• Daan Wynen +

190 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

A total of 93 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 0.16.0

• #1063: Implement a whishart distribution (Trac #536)

• #1885: Rbf: floating point warnings - possible bug (Trac #1360)

• #2020: Rbf default epsilon too large (Trac #1495)

• #2325: extending distributions, hypergeom, to degenerate cases (Trac...

• #3502: [ENH] linalg.hessenberg should use ORGHR for calc_q=True

• #3603: Passing array as window into signal.resample() fails

• #3675: Intermittent failures for signal.slepian on Windows

• #3742: Pchipinterpolator inconvenient as ppoly

• #3786: add procrustes?

• #3798: scipy.io.savemat fails for empty dicts

• #3975: Use RandomState in scipy.stats

• #4022: savemat incorrectly saves logical arrays

• #4028: scipy.stats.geom.logpmf(1,1) returns nan. The correct value is...

• #4030: simplify scipy.stats.betaprime.cdf

• #4031: improve accuracy of scipy.stats.gompertz distribution for small...

• #4033: improve accuracy of scipy.stats.lomax distribution for small...

• #4034: improve accuracy of scipy.stats.rayleigh distribution for large...

• #4035: improve accuracy of scipy.stats.truncexpon distribution for small...

• #4081: Error when reading matlab file: buffer is too small for requested...

• #4100: Why does qr(a, lwork=0) not fail?

• #4134: scipy.stats: rv_frozen has no expect() method

• #4204: Please add docstring to scipy.optimize.RootResults

• #4206: Wrap LAPACK tridiagonal solve routine gtsv

• #4208: Empty sparse matrices written to MAT file cannot be read by MATLAB

• #4217: use a TravisCI configuration with numpy built with NPY_RELAXED_STRIDES_CHECKING=1

• #4282: integrate.odeint raises an exception when full_output=1 and the...

• #4301: scipy and numpy version names do not follow pep 440

• #4355: PPoly.antiderivative() produces incorrect output

• #4391: spsolve becomes extremely slow with large b matrix

• #4393: Documentation glitsch in sparse.linalg.spilu

• #4408: Vector-valued constraints in minimize() et al

• #4412: Documentation of scipy.signal.cwt error

4.1. SciPy 0.16.0 Release Notes 191

https://github.com/scipy/scipy/issues/1063
https://github.com/scipy/scipy/issues/1885
https://github.com/scipy/scipy/issues/2020
https://github.com/scipy/scipy/issues/2325
https://github.com/scipy/scipy/issues/3502
https://github.com/scipy/scipy/issues/3603
https://github.com/scipy/scipy/issues/3675
https://github.com/scipy/scipy/issues/3742
https://github.com/scipy/scipy/issues/3786
https://github.com/scipy/scipy/issues/3798
https://github.com/scipy/scipy/issues/3975
https://github.com/scipy/scipy/issues/4022
https://github.com/scipy/scipy/issues/4028
https://github.com/scipy/scipy/issues/4030
https://github.com/scipy/scipy/issues/4031
https://github.com/scipy/scipy/issues/4033
https://github.com/scipy/scipy/issues/4034
https://github.com/scipy/scipy/issues/4035
https://github.com/scipy/scipy/issues/4081
https://github.com/scipy/scipy/issues/4100
https://github.com/scipy/scipy/issues/4134
https://github.com/scipy/scipy/issues/4204
https://github.com/scipy/scipy/issues/4206
https://github.com/scipy/scipy/issues/4208
https://github.com/scipy/scipy/issues/4217
https://github.com/scipy/scipy/issues/4282
https://github.com/scipy/scipy/issues/4301
https://github.com/scipy/scipy/issues/4355
https://github.com/scipy/scipy/issues/4391
https://github.com/scipy/scipy/issues/4393
https://github.com/scipy/scipy/issues/4408
https://github.com/scipy/scipy/issues/4412

SciPy Reference Guide, Release 0.16.0

• #4428: dok.__setitem__ problem with negative indices

• #4434: Incomplete documentation for sparse.linalg.spsolve

• #4438: linprog() documentation example wrong

• #4445: Typo in scipy.special.expit doc

• #4467: Documentation Error in scipy.optimize options for TNC

• #4492: solve_toeplitz benchmark is bitrotting already

• #4506: lobpcg/sparse performance regression Jun 2014?

• #4520: g77_abi_wrappers needed on Linux for MKL as well

• #4521: Broken check in uses_mkl for newer versions of the library

• #4523: rbf with gaussian kernel seems to produce more noise than original...

• #4526: error in site documentation for poisson.pmf() method

• #4527: KDTree example doesn’t work in Python 3

• #4550: scipy.stats.mode - UnboundLocalError on empty sequence

• #4554: filter out convergence warnings in optimization tests

• #4565: odeint messages

• #4569: remez: “ValueError: Failure to converge after 25 iterations....

• #4582: DOC: optimize: _minimize_scalar_brent does not have a disp option

• #4585: DOC: Erroneous latex-related characters in tutorial.

• #4590: sparse.linalg.svds should throw an exception if which not in...

• #4594: scipy.optimize.linprog IndexError when a callback is providen

• #4596: scipy.linalg.block_diag misbehavior with empty array inputs (v0.13.3)

• #4599: scipy.integrate.nquad should call _OptFunc when called with only...

• #4612: Crash in signal.lfilter on nd input with wrong shaped zi

• #4613: scipy.io.readsav error on reading sav file

• #4673: scipy.interpolate.RectBivariateSpline construction locks PyQt...

• #4681: Broadcasting in signal.lfilter still not quite right.

• #4705: kmeans k_or_guess parameter error if guess is not square array

• #4719: Build failure on 14.04.2

• #4724: GenGamma _munp function fails due to overflow

• #4726: FAIL: test_cobyla.test_vector_constraints

• #4734: Failing tests in stats with numpy master.

• #4736: qr_update bug or incompatibility with numpy 1.10?

• #4746: linprog returns solution violating equality constraint

• #4757: optimize.leastsq docstring mismatch

• #4774: Update contributor list for v0.16

• #4779: circmean and others do not appear in the documentation

192 Chapter 4. Release Notes

https://github.com/scipy/scipy/issues/4428
https://github.com/scipy/scipy/issues/4434
https://github.com/scipy/scipy/issues/4438
https://github.com/scipy/scipy/issues/4445
https://github.com/scipy/scipy/issues/4467
https://github.com/scipy/scipy/issues/4492
https://github.com/scipy/scipy/issues/4506
https://github.com/scipy/scipy/issues/4520
https://github.com/scipy/scipy/issues/4521
https://github.com/scipy/scipy/issues/4523
https://github.com/scipy/scipy/issues/4526
https://github.com/scipy/scipy/issues/4527
https://github.com/scipy/scipy/issues/4550
https://github.com/scipy/scipy/issues/4554
https://github.com/scipy/scipy/issues/4565
https://github.com/scipy/scipy/issues/4569
https://github.com/scipy/scipy/issues/4582
https://github.com/scipy/scipy/issues/4585
https://github.com/scipy/scipy/issues/4590
https://github.com/scipy/scipy/issues/4594
https://github.com/scipy/scipy/issues/4596
https://github.com/scipy/scipy/issues/4599
https://github.com/scipy/scipy/issues/4612
https://github.com/scipy/scipy/issues/4613
https://github.com/scipy/scipy/issues/4673
https://github.com/scipy/scipy/issues/4681
https://github.com/scipy/scipy/issues/4705
https://github.com/scipy/scipy/issues/4719
https://github.com/scipy/scipy/issues/4724
https://github.com/scipy/scipy/issues/4726
https://github.com/scipy/scipy/issues/4734
https://github.com/scipy/scipy/issues/4736
https://github.com/scipy/scipy/issues/4746
https://github.com/scipy/scipy/issues/4757
https://github.com/scipy/scipy/issues/4774
https://github.com/scipy/scipy/issues/4779

SciPy Reference Guide, Release 0.16.0

• #4788: problems with scipy sparse linalg isolve iterative.py when complex

• #4791: BUG: scipy.spatial: incremental Voronoi doesn’t increase size...

Pull requests for 0.16.0

• #3116: sparse: enhancements for DIA format

• #3157: ENH: linalg: add the function ‘solve_circulant’ for solving a...

• #3442: ENH: signal: Add Gustafsson’s method as an option for the filtfilt...

• #3679: WIP: fix sporadic slepian failures

• #3680: Some cleanups in stats

• #3717: ENH: Add second-order sections filtering

• #3741: Dltisys changes

• #3956: add note to scipy.signal.resample about prime sample numbers

• #3980: Add check_finite flag to UnivariateSpline

• #3996: MAINT: stricter linalg argument checking

• #4001: BUG: numerical precision in dirichlet

• #4012: ENH: linalg: Add a function to compute the inverse of a Pascal...

• #4021: ENH: Cython api for lapack and blas

• #4089: Fixes for various PEP8 issues.

• #4116: MAINT: fitpack: trim down compiler warnings (unused labels, variables)

• #4129: ENH: stats: add a random_state property to distributions

• #4135: ENH: Add Wishart and inverse Wishart distributions

• #4195: improve the interpolate docs

• #4200: ENH: Add t-test from descriptive stats function.

• #4202: Dendrogram threshold color

• #4205: BLD: fix a number of Bento build warnings.

• #4211: add an ufunc for the inverse Box-Cox transfrom

• #4212: MRG:fix for gh-4208

• #4213: ENH: specific warning if matlab file is empty

• #4215: Issue #4209: splprep documentation updated to reflect dimensional...

• #4219: DOC: silence several Sphinx warnings when building the docs

• #4223: MAINT: remove two redundant lines of code

• #4226: try forcing the numpy rebuild with relaxed strides

• #4228: BLD: some updates to Bento config files and docs. Closes gh-3978.

• #4232: wrong references in the docs

• #4242: DOC: change example sample spacing

• #4245: Arff fixes

4.1. SciPy 0.16.0 Release Notes 193

https://github.com/scipy/scipy/issues/4788
https://github.com/scipy/scipy/issues/4791
https://github.com/scipy/scipy/pull/3116
https://github.com/scipy/scipy/pull/3157
https://github.com/scipy/scipy/pull/3442
https://github.com/scipy/scipy/pull/3679
https://github.com/scipy/scipy/pull/3680
https://github.com/scipy/scipy/pull/3717
https://github.com/scipy/scipy/pull/3741
https://github.com/scipy/scipy/pull/3956
https://github.com/scipy/scipy/pull/3980
https://github.com/scipy/scipy/pull/3996
https://github.com/scipy/scipy/pull/4001
https://github.com/scipy/scipy/pull/4012
https://github.com/scipy/scipy/pull/4021
https://github.com/scipy/scipy/pull/4089
https://github.com/scipy/scipy/pull/4116
https://github.com/scipy/scipy/pull/4129
https://github.com/scipy/scipy/pull/4135
https://github.com/scipy/scipy/pull/4195
https://github.com/scipy/scipy/pull/4200
https://github.com/scipy/scipy/pull/4202
https://github.com/scipy/scipy/pull/4205
https://github.com/scipy/scipy/pull/4211
https://github.com/scipy/scipy/pull/4212
https://github.com/scipy/scipy/pull/4213
https://github.com/scipy/scipy/pull/4215
https://github.com/scipy/scipy/pull/4219
https://github.com/scipy/scipy/pull/4223
https://github.com/scipy/scipy/pull/4226
https://github.com/scipy/scipy/pull/4228
https://github.com/scipy/scipy/pull/4232
https://github.com/scipy/scipy/pull/4242
https://github.com/scipy/scipy/pull/4245

SciPy Reference Guide, Release 0.16.0

• #4246: MAINT: C fixes

• #4247: MAINT: remove some unused code

• #4249: Add routines for updating QR decompositions

• #4250: MAINT: Some pyflakes-driven cleanup in linalg and sparse

• #4252: MAINT trim away >10 kLOC of generated C code

• #4253: TST: stop shadowing ellip* tests vs boost data

• #4254: MAINT: special: use NPY_PI, not M_PI

• #4255: DOC: INSTALL: use Py3-compatible print syntax, and don’t mention...

• #4256: ENH: spatial: reimplement cdist_cosine using np.dot

• #4258: BUG: io.arff #4429 #2088

• #4261: MAINT: signal: PEP8 and related style clean up.

• #4262: BUG: newton_krylov() was ignoring norm_tol argument, closes #4259

• #4263: MAINT: clean up test noise and optimize tests for docstrings...

• #4266: MAINT: io: Give an informative error when attempting to read...

• #4268: MAINT: fftpack benchmark integer division vs true division

• #4269: MAINT: avoid shadowing the eigvals function

• #4272: BUG: sparse: Fix bench_sparse.py

• #4276: DOC: remove confusing parts of the documentation related to writing...

• #4281: Sparse matrix multiplication: only convert array if needed (with...

• #4284: BUG: integrate: odeint crashed when the integration time was...

• #4286: MRG: fix matlab output type of logical array

• #4287: DEP: deprecate stats.pdf_fromgamma. Closes gh-699.

• #4291: DOC: linalg: fix layout in cholesky_banded docstring

• #4292: BUG: allow empty dict as proxy for empty struct

• #4293: MAINT: != -> not_equal in hamming distance implementation

• #4295: Pole placement

• #4296: MAINT: some cleanups in tests of several modules

• #4302: ENH: Solve toeplitz linear systems

• #4306: Add benchmark for conjugate gradient solver.

• #4307: BLD: PEP 440

• #4310: BUG: make stats.geom.logpmf(1,1) return 0.0 instead of nan

• #4311: TST: restore a test that uses slogdet now that we have dropped...

• #4313: Some minor fixes for stats.wishart addition.

• #4315: MAINT: drop numpy 1.5 compatibility code in sparse matrix tests

• #4318: ENH: Add random_state to multivariate distributions

• #4319: MAINT: fix hamming distance regression for exotic arrays, with...

194 Chapter 4. Release Notes

https://github.com/scipy/scipy/pull/4246
https://github.com/scipy/scipy/pull/4247
https://github.com/scipy/scipy/pull/4249
https://github.com/scipy/scipy/pull/4250
https://github.com/scipy/scipy/pull/4252
https://github.com/scipy/scipy/pull/4253
https://github.com/scipy/scipy/pull/4254
https://github.com/scipy/scipy/pull/4255
https://github.com/scipy/scipy/pull/4256
https://github.com/scipy/scipy/pull/4258
https://github.com/scipy/scipy/pull/4261
https://github.com/scipy/scipy/pull/4262
https://github.com/scipy/scipy/pull/4263
https://github.com/scipy/scipy/pull/4266
https://github.com/scipy/scipy/pull/4268
https://github.com/scipy/scipy/pull/4269
https://github.com/scipy/scipy/pull/4272
https://github.com/scipy/scipy/pull/4276
https://github.com/scipy/scipy/pull/4281
https://github.com/scipy/scipy/pull/4284
https://github.com/scipy/scipy/pull/4286
https://github.com/scipy/scipy/pull/4287
https://github.com/scipy/scipy/pull/4291
https://github.com/scipy/scipy/pull/4292
https://github.com/scipy/scipy/pull/4293
https://github.com/scipy/scipy/pull/4295
https://github.com/scipy/scipy/pull/4296
https://github.com/scipy/scipy/pull/4302
https://github.com/scipy/scipy/pull/4306
https://github.com/scipy/scipy/pull/4307
https://github.com/scipy/scipy/pull/4310
https://github.com/scipy/scipy/pull/4311
https://github.com/scipy/scipy/pull/4313
https://github.com/scipy/scipy/pull/4315
https://github.com/scipy/scipy/pull/4318
https://github.com/scipy/scipy/pull/4319

SciPy Reference Guide, Release 0.16.0

• #4320: TST: a few changes like self.assertTrue(x == y, message) -> assert_equal(x,...

• #4321: TST: more changes like self.assertTrue(x == y, message) -> assert_equal(x,...

• #4322: TST: in test_signaltools, changes like self.assertTrue(x == y,...

• #4323: MAINT: clean up benchmarks so they can all be run as single files.

• #4324: Add more detailed committer guidelines, update MAINTAINERS.txt

• #4326: TST: use numpy.testing in test_hierarchy.py

• #4329: MAINT: stats: rename check_random_state test function

• #4330: Update distance tests

• #4333: MAINT: import comb, factorial from scipy.special, not scipy.misc

• #4338: TST: more conversions from nose to numpy.testing

• #4339: MAINT: remove the deprecated all_mat function from special_matrices.py

• #4340: add several features to frozen distributions

• #4344: BUG: Fix/test invalid lwork param in qr

• #4345: Fix test noise visible with Python 3.x

• #4347: Remove deprecated blas/lapack imports, rename lib to _lib

• #4349: DOC: add a nontrivial example to stats.binned_statistic.

• #4350: MAINT: remove optimize.anneal for 0.16.0 (was deprecated in 0.14.0).

• #4351: MAINT: fix usage of deprecated Numpy C API in optimize...

• #4352: MAINT: fix a number of special test failures

• #4353: implement cdf for betaprime distribution

• #4357: BUG: piecewise polynomial antiderivative

• #4358: BUG: integrate: fix handling of banded Jacobians in odeint, plus...

• #4359: MAINT: remove a code path taken for Python version < 2.5

• #4360: MAINT: stats.mstats: Remove some unused variables (thanks, pyflakes).

• #4362: Removed erroneous reference to smoothing parameter #4072

• #4363: MAINT: interpolate: clean up in fitpack.py

• #4364: MAINT: lib: don’t export “partial” from decorator

• #4365: svdvals now returns a length-0 sequence of singular values given...

• #4367: DOC: slightly improve TeX rendering of wishart/invwishart docstring

• #4373: ENH: wrap gtsv and ptsv for solve_banded and solveh_banded.

• #4374: ENH: Enhancements to spatial.cKDTree

• #4376: BF: fix reading off-spec matlab logical sparse

• #4377: MAINT: integrate: Clean up some Fortran test code.

• #4378: MAINT: fix usage of deprecated Numpy C API in signal

• #4380: MAINT: scipy.optimize, removing further anneal references

• #4381: ENH: Make DCT and DST accept int and complex types like fft

4.1. SciPy 0.16.0 Release Notes 195

https://github.com/scipy/scipy/pull/4320
https://github.com/scipy/scipy/pull/4321
https://github.com/scipy/scipy/pull/4322
https://github.com/scipy/scipy/pull/4323
https://github.com/scipy/scipy/pull/4324
https://github.com/scipy/scipy/pull/4326
https://github.com/scipy/scipy/pull/4329
https://github.com/scipy/scipy/pull/4330
https://github.com/scipy/scipy/pull/4333
https://github.com/scipy/scipy/pull/4338
https://github.com/scipy/scipy/pull/4339
https://github.com/scipy/scipy/pull/4340
https://github.com/scipy/scipy/pull/4344
https://github.com/scipy/scipy/pull/4345
https://github.com/scipy/scipy/pull/4347
https://github.com/scipy/scipy/pull/4349
https://github.com/scipy/scipy/pull/4350
https://github.com/scipy/scipy/pull/4351
https://github.com/scipy/scipy/pull/4352
https://github.com/scipy/scipy/pull/4353
https://github.com/scipy/scipy/pull/4357
https://github.com/scipy/scipy/pull/4358
https://github.com/scipy/scipy/pull/4359
https://github.com/scipy/scipy/pull/4360
https://github.com/scipy/scipy/pull/4362
https://github.com/scipy/scipy/pull/4363
https://github.com/scipy/scipy/pull/4364
https://github.com/scipy/scipy/pull/4365
https://github.com/scipy/scipy/pull/4367
https://github.com/scipy/scipy/pull/4373
https://github.com/scipy/scipy/pull/4374
https://github.com/scipy/scipy/pull/4376
https://github.com/scipy/scipy/pull/4377
https://github.com/scipy/scipy/pull/4378
https://github.com/scipy/scipy/pull/4380
https://github.com/scipy/scipy/pull/4381

SciPy Reference Guide, Release 0.16.0

• #4392: ENH: optimize: add DF-SANE nonlinear derivative-free solver

• #4394: Make reordering algorithms 64-bit clean

• #4396: BUG: bundle cblas.h in Accelerate ABI wrappers to enable compilation...

• #4398: FIX pdist bug where wminkowski’s w.dtype != double

• #4402: BUG: fix stat.hypergeom argcheck

• #4404: MAINT: Fill in the full symmetric squareform in the C loop

• #4405: BUG: avoid X += X.T (refs #4401)

• #4407: improved accuracy of gompertz distribution for small x

• #4414: DOC:fix error in scipy.signal.cwt documentation.

• #4415: ENH: Improve accuracy of lomax for small x.

• #4416: DOC: correct a parameter name in docstring of SuperLU.solve....

• #4419: Restore scipy.linalg.calc_lwork also in master

• #4420: fix a performance issue with a sparse solver

• #4423: ENH: improve rayleigh accuracy for large x.

• #4424: BUG: optimize.minimize: fix overflow issue with integer x0 input.

• #4425: ENH: Improve accuracy of truncexpon for small x

• #4426: ENH: improve rayleigh accuracy for large x.

• #4427: MAINT: optimize: cleanup of TNC code

• #4429: BLD: fix build failure with numpy 1.7.x and 1.8.x.

• #4430: BUG: fix a sparse.dok_matrix set/get copy-paste bug

• #4433: Update _minimize.py

• #4435: ENH: release GIL around batch distance computations

• #4436: Fixed incomplete documentation for spsolve

• #4439: MAINT: integrate: Some clean up in the tests.

• #4440: Fast permutation t-test

• #4442: DOC: optimize: fix wrong result in docstring

• #4447: DOC: signal: Some additional documentation to go along with the...

• #4448: DOC: tweak the docstring of lapack.linalg module

• #4449: fix a typo in the expit docstring

• #4451: ENH: vectorize distance loops with gcc

• #4456: MAINT: don’t fail large data tests on MemoryError

• #4461: CI: use travis_retry to deal with network timeouts

• #4462: DOC: rationalize minimize() et al. documentation

• #4470: MAINT: sparse: inherit dok_matrix.toarray from spmatrix

• #4473: BUG: signal: Fix validation of the zi shape in sosfilt.

• #4475: BLD: setup.py: update min numpy version and support “setup.py...

196 Chapter 4. Release Notes

https://github.com/scipy/scipy/pull/4392
https://github.com/scipy/scipy/pull/4394
https://github.com/scipy/scipy/pull/4396
https://github.com/scipy/scipy/pull/4398
https://github.com/scipy/scipy/pull/4402
https://github.com/scipy/scipy/pull/4404
https://github.com/scipy/scipy/pull/4405
https://github.com/scipy/scipy/pull/4407
https://github.com/scipy/scipy/pull/4414
https://github.com/scipy/scipy/pull/4415
https://github.com/scipy/scipy/pull/4416
https://github.com/scipy/scipy/pull/4419
https://github.com/scipy/scipy/pull/4420
https://github.com/scipy/scipy/pull/4423
https://github.com/scipy/scipy/pull/4424
https://github.com/scipy/scipy/pull/4425
https://github.com/scipy/scipy/pull/4426
https://github.com/scipy/scipy/pull/4427
https://github.com/scipy/scipy/pull/4429
https://github.com/scipy/scipy/pull/4430
https://github.com/scipy/scipy/pull/4433
https://github.com/scipy/scipy/pull/4435
https://github.com/scipy/scipy/pull/4436
https://github.com/scipy/scipy/pull/4439
https://github.com/scipy/scipy/pull/4440
https://github.com/scipy/scipy/pull/4442
https://github.com/scipy/scipy/pull/4447
https://github.com/scipy/scipy/pull/4448
https://github.com/scipy/scipy/pull/4449
https://github.com/scipy/scipy/pull/4451
https://github.com/scipy/scipy/pull/4456
https://github.com/scipy/scipy/pull/4461
https://github.com/scipy/scipy/pull/4462
https://github.com/scipy/scipy/pull/4470
https://github.com/scipy/scipy/pull/4473
https://github.com/scipy/scipy/pull/4475

SciPy Reference Guide, Release 0.16.0

• #4481: ENH: add a new linalg special matrix: the Helmert matrix

• #4485: MRG: some changes to allow reading bad mat files

• #4490: [ENH] linalg.hessenberg: use orghr - rebase

• #4491: ENH: linalg: Adding wrapper for potentially useful LAPACK function...

• #4493: BENCH: the solve_toeplitz benchmark used outdated syntax and...

• #4494: MAINT: stats: remove duplicated code

• #4496: References added for watershed_ift algorithm

• #4499: DOC: reshuffle stats distributions documentation

• #4501: Replace benchmark suite with airspeed velocity

• #4502: SLSQP should strictly satisfy bound constraints

• #4503: DOC: forward port 0.15.x release notes and update author name...

• #4504: ENH: option to avoid computing possibly unused svd matrix

• #4505: Rebase of PR 3303 (sparse matrix norms)

• #4507: MAINT: fix lobpcg performance regression

• #4509: DOC: sparse: replace dead link

• #4511: Fixed differential evolution bug

• #4512: Change to fully PEP440 compliant dev version numbers (always...

• #4525: made tiny style corrections (pep8)

• #4533: Add exponentially modified gaussian distribution (scipy.stats.expongauss)

• #4534: MAINT: benchmarks: make benchmark suite importable on all scipy...

• #4535: BUG: Changed zip() to list(zip()) so that it could work in Python...

• #4536: Follow up to pr 4348 (exponential window)

• #4540: ENH: spatial: Add procrustes analysis

• #4541: Bench fixes

• #4542: TST: NumpyVersion dev -> dev0

• #4543: BUG: Overflow in savgol_coeffs

• #4544: pep8 fixes for stats

• #4546: MAINT: use reduction axis arguments in one-norm estimation

• #4549: ENH : Added group_delay to scipy.signal

• #4553: ENH: Significantly faster moment function

• #4556: DOC: document the changes of the sparse.linalg.svds (optional...

• #4559: DOC: stats: describe loc and scale parameters in the docstring...

• #4563: ENH: rewrite of stats.ppcc_plot

• #4564: Be more (or less) forgiving when user passes +-inf instead of...

• #4566: DEP: remove a bunch of deprecated function from scipy.stats,...

• #4570: MNT: Suppress LineSearchWarning’s in scipy.optimize tests

4.1. SciPy 0.16.0 Release Notes 197

https://github.com/scipy/scipy/pull/4481
https://github.com/scipy/scipy/pull/4485
https://github.com/scipy/scipy/pull/4490
https://github.com/scipy/scipy/pull/4491
https://github.com/scipy/scipy/pull/4493
https://github.com/scipy/scipy/pull/4494
https://github.com/scipy/scipy/pull/4496
https://github.com/scipy/scipy/pull/4499
https://github.com/scipy/scipy/pull/4501
https://github.com/scipy/scipy/pull/4502
https://github.com/scipy/scipy/pull/4503
https://github.com/scipy/scipy/pull/4504
https://github.com/scipy/scipy/pull/4505
https://github.com/scipy/scipy/pull/4507
https://github.com/scipy/scipy/pull/4509
https://github.com/scipy/scipy/pull/4511
https://github.com/scipy/scipy/pull/4512
https://github.com/scipy/scipy/pull/4525
https://github.com/scipy/scipy/pull/4533
https://github.com/scipy/scipy/pull/4534
https://github.com/scipy/scipy/pull/4535
https://github.com/scipy/scipy/pull/4536
https://github.com/scipy/scipy/pull/4540
https://github.com/scipy/scipy/pull/4541
https://github.com/scipy/scipy/pull/4542
https://github.com/scipy/scipy/pull/4543
https://github.com/scipy/scipy/pull/4544
https://github.com/scipy/scipy/pull/4546
https://github.com/scipy/scipy/pull/4549
https://github.com/scipy/scipy/pull/4553
https://github.com/scipy/scipy/pull/4556
https://github.com/scipy/scipy/pull/4559
https://github.com/scipy/scipy/pull/4563
https://github.com/scipy/scipy/pull/4564
https://github.com/scipy/scipy/pull/4566
https://github.com/scipy/scipy/pull/4570

SciPy Reference Guide, Release 0.16.0

• #4572: ENH: Extract inverse hessian information from L-BFGS-B

• #4576: ENH: Split signal.lti into subclasses, part of #2912

• #4578: MNT: Reconcile docstrings and function signatures

• #4581: Fix build with Intel MKL on Linux

• #4583: DOC: optimize: remove references to unused disp kwarg

• #4584: ENH: scipy.signal - Tukey window

• #4587: Hermite asymptotic

• #4593: DOC - add example to RegularGridInterpolator

• #4595: DOC: Fix erroneous latex characters in tutorial/optimize.

• #4600: Add return codes to optimize.tnc docs

• #4603: ENH: Wrap LAPACK *lange functions for matrix norms

• #4604: scipy.stats: generalized normal distribution

• #4609: MAINT: interpolate: fix a few inconsistencies between docstrings...

• #4610: MAINT: make runtest.py –bench-compare use asv continuous and...

• #4611: DOC: stats: explain rice scaling; add a note to the tutorial...

• #4614: BUG: lfilter, the size of zi was not checked correctly for nd...

• #4617: MAINT: integrate: Clean the C code behind odeint.

• #4618: FIX: Raise error when window length != data length

• #4619: Issue #4550: scipy.stats.mode - UnboundLocalError on empty...

• #4620: Fixed a problem (#4590) with svds accepting wrong eigenvalue...

• #4621: Speed up special.ai_zeros/bi_zeros by 10x

• #4623: MAINT: some tweaks to spatial.procrustes (private file, html...

• #4628: Speed up signal.lfilter and add a convolution path for FIR filters

• #4629: Bug: integrate.nquad; resolve issue #4599

• #4631: MAINT: integrate: Remove unused variables in a Fortran test function.

• #4633: MAINT: Fix convergence message for remez

• #4635: PEP8: indentation (so that pep8 bot does not complain)

• #4637: MAINT: generalize a sign function to do the right thing for complex...

• #4639: Amended typo in apple_sgemv_fix.c

• #4642: MAINT: use lapack for scipy.linalg.norm

• #4643: RBF default epsilon too large 2020

• #4646: Added atleast_1d around poly in invres and invresz

• #4647: fix doc pdf build

• #4648: BUG: Fixes #4408: Vector-valued constraints in minimize() et...

• #4649: Vonmisesfix

• #4650: Signal example clean up in Tukey and place_poles

198 Chapter 4. Release Notes

https://github.com/scipy/scipy/pull/4572
https://github.com/scipy/scipy/pull/4576
https://github.com/scipy/scipy/pull/4578
https://github.com/scipy/scipy/pull/4581
https://github.com/scipy/scipy/pull/4583
https://github.com/scipy/scipy/pull/4584
https://github.com/scipy/scipy/pull/4587
https://github.com/scipy/scipy/pull/4593
https://github.com/scipy/scipy/pull/4595
https://github.com/scipy/scipy/pull/4600
https://github.com/scipy/scipy/pull/4603
https://github.com/scipy/scipy/pull/4604
https://github.com/scipy/scipy/pull/4609
https://github.com/scipy/scipy/pull/4610
https://github.com/scipy/scipy/pull/4611
https://github.com/scipy/scipy/pull/4614
https://github.com/scipy/scipy/pull/4617
https://github.com/scipy/scipy/pull/4618
https://github.com/scipy/scipy/pull/4619
https://github.com/scipy/scipy/pull/4620
https://github.com/scipy/scipy/pull/4621
https://github.com/scipy/scipy/pull/4623
https://github.com/scipy/scipy/pull/4628
https://github.com/scipy/scipy/pull/4629
https://github.com/scipy/scipy/pull/4631
https://github.com/scipy/scipy/pull/4633
https://github.com/scipy/scipy/pull/4635
https://github.com/scipy/scipy/pull/4637
https://github.com/scipy/scipy/pull/4639
https://github.com/scipy/scipy/pull/4642
https://github.com/scipy/scipy/pull/4643
https://github.com/scipy/scipy/pull/4646
https://github.com/scipy/scipy/pull/4647
https://github.com/scipy/scipy/pull/4648
https://github.com/scipy/scipy/pull/4649
https://github.com/scipy/scipy/pull/4650

SciPy Reference Guide, Release 0.16.0

• #4652: DOC: Fix the error in convolve for same mode

• #4653: improve erf performance

• #4655: DEP: deprecate scipy.stats.histogram2 in favour of np.histogram2d

• #4656: DEP: deprecate scipy.stats.signaltonoise

• #4660: Avoid extra copy for sparse compressed [:, seq] and [seq, :]...

• #4661: Clean, rebase of #4478, adding ?gelsy and ?gelsd wrappers

• #4662: MAINT: Correct odeint messages

• #4664: Update _monotone.py

• #4672: fix behavior of scipy.linalg.block_diag for empty input

• #4675: Fix lsim

• #4676: Added missing colon to :math: directive in docstring.

• #4679: ENH: sparse randn

• #4682: ENH: scipy.signal - Addition of CSD, coherence; Enhancement of...

• #4684: BUG: various errors in weight calculations in orthogonal.py

• #4685: BUG: Fixes #4594: optimize.linprog IndexError when a callback...

• #4686: MAINT: cluster: Clean up duplicated exception raising code.

• #4688: Improve is_distance_dm exception message

• #4692: MAINT: stats: Simplify the calculation in tukeylambda._ppf

• #4693: ENH: added functionality to handle scalars in stats._chk_asarray

• #4694: Vectorization of Anderson-Darling computations.

• #4696: Fix singleton expansion in lfilter.

• #4698: MAINT: quiet warnings from cephes.

• #4701: add Bpoly.antiderivatives / integrals

• #4703: Add citation of published paper

• #4706: MAINT: special: avoid out-of-bounds access in specfun

• #4707: MAINT: fix issues with np.matrix as input to functions related...

• #4709: ENH: scipy.stats now returns namedtuples.

• #4710: scipy.io.idl: make reader more robust to missing variables in...

• #4711: Fix crash for unknown chunks at the end of file

• #4712: Reduce onenormest memory usage

• #4713: MAINT: interpolate: no need to pass dtype around if it can be...

• #4714: BENCH: Add benchmarks for stats module

• #4715: MAINT: polish signal.place_poles and signal/test_ltisys.py

• #4716: DEP: deprecate mstats.signaltonoise ...

• #4717: MAINT: basinhopping: fix error in tests, silence /0 warning,...

• #4718: ENH: stats: can specify f-shapes to fix in fitting by name

4.1. SciPy 0.16.0 Release Notes 199

https://github.com/scipy/scipy/pull/4652
https://github.com/scipy/scipy/pull/4653
https://github.com/scipy/scipy/pull/4655
https://github.com/scipy/scipy/pull/4656
https://github.com/scipy/scipy/pull/4660
https://github.com/scipy/scipy/pull/4661
https://github.com/scipy/scipy/pull/4662
https://github.com/scipy/scipy/pull/4664
https://github.com/scipy/scipy/pull/4672
https://github.com/scipy/scipy/pull/4675
https://github.com/scipy/scipy/pull/4676
https://github.com/scipy/scipy/pull/4679
https://github.com/scipy/scipy/pull/4682
https://github.com/scipy/scipy/pull/4684
https://github.com/scipy/scipy/pull/4685
https://github.com/scipy/scipy/pull/4686
https://github.com/scipy/scipy/pull/4688
https://github.com/scipy/scipy/pull/4692
https://github.com/scipy/scipy/pull/4693
https://github.com/scipy/scipy/pull/4694
https://github.com/scipy/scipy/pull/4696
https://github.com/scipy/scipy/pull/4698
https://github.com/scipy/scipy/pull/4701
https://github.com/scipy/scipy/pull/4703
https://github.com/scipy/scipy/pull/4706
https://github.com/scipy/scipy/pull/4707
https://github.com/scipy/scipy/pull/4709
https://github.com/scipy/scipy/pull/4710
https://github.com/scipy/scipy/pull/4711
https://github.com/scipy/scipy/pull/4712
https://github.com/scipy/scipy/pull/4713
https://github.com/scipy/scipy/pull/4714
https://github.com/scipy/scipy/pull/4715
https://github.com/scipy/scipy/pull/4716
https://github.com/scipy/scipy/pull/4717
https://github.com/scipy/scipy/pull/4718

SciPy Reference Guide, Release 0.16.0

• #4721: Document that imresize converts the input to a PIL image

• #4722: MAINT: PyArray_BASE is not an lvalue unless the deprecated API...

• #4725: Fix gengamma _nump failure

• #4728: DOC: add poch to the list of scipy special function descriptions

• #4735: MAINT: stats: avoid (a spurious) division-by-zero in skew

• #4738: TST: silence runtime warnings for some corner cases in stats...

• #4739: BLD: try to build numpy instead of using the one on TravisCI

• #4740: DOC: Update some docstrings with ‘versionadded’.

• #4742: BLD: make sure that relaxed strides checking is in effect on...

• #4750: DOC: special: TeX typesetting of rel_entr, kl_div and pseudo_huber

• #4751: BENCH: add sparse null slice benchmark

• #4753: BUG: Fixed compilation with recent Cython versions.

• #4756: BUG: Fixes #4733: optimize.brute finish option is not compatible...

• #4758: DOC: optimize.leastsq default maxfev clarification

• #4759: improved stats mle fit

• #4760: MAINT: count bfgs updates more carefully

• #4762: BUGS: Fixes #4746 and #4594: linprog returns solution violating...

• #4763: fix small linprog bugs

• #4766: BENCH: add signal.lsim benchmark

• #4768: fix python syntax errors in docstring examples

• #4769: Fixes #4726: test_cobyla.test_vector_constraints

• #4770: Mark FITPACK functions as thread safe.

• #4771: edited scipy/stats/stats.py to fix doctest for fisher_exact

• #4773: DOC: update 0.16.0 release notes.

• #4775: DOC: linalg: add funm_psd as a docstring example

• #4778: Use a dictionary for function name synonyms

• #4780: Include apparently-forgotten functions in docs

• #4783: Added many missing special functions to docs

• #4784: add an axis attribute to PPoly and friends

• #4785: Brief note about origin of Lena image

• #4786: DOC: reformat the Methods section of the KDE docstring

• #4787: Add rice cdf and ppf.

• #4792: CI: add a kludge for detecting test failures which try to disguise...

• #4795: Make refguide_check smarter about false positives

• #4797: BUG/TST: numpoints not updated for incremental Voronoi

• #4799: BUG: spatial: Fix a couple edge cases for the Mahalanobis metric...

200 Chapter 4. Release Notes

https://github.com/scipy/scipy/pull/4721
https://github.com/scipy/scipy/pull/4722
https://github.com/scipy/scipy/pull/4725
https://github.com/scipy/scipy/pull/4728
https://github.com/scipy/scipy/pull/4735
https://github.com/scipy/scipy/pull/4738
https://github.com/scipy/scipy/pull/4739
https://github.com/scipy/scipy/pull/4740
https://github.com/scipy/scipy/pull/4742
https://github.com/scipy/scipy/pull/4750
https://github.com/scipy/scipy/pull/4751
https://github.com/scipy/scipy/pull/4753
https://github.com/scipy/scipy/pull/4756
https://github.com/scipy/scipy/pull/4758
https://github.com/scipy/scipy/pull/4759
https://github.com/scipy/scipy/pull/4760
https://github.com/scipy/scipy/pull/4762
https://github.com/scipy/scipy/pull/4763
https://github.com/scipy/scipy/pull/4766
https://github.com/scipy/scipy/pull/4768
https://github.com/scipy/scipy/pull/4769
https://github.com/scipy/scipy/pull/4770
https://github.com/scipy/scipy/pull/4771
https://github.com/scipy/scipy/pull/4773
https://github.com/scipy/scipy/pull/4775
https://github.com/scipy/scipy/pull/4778
https://github.com/scipy/scipy/pull/4780
https://github.com/scipy/scipy/pull/4783
https://github.com/scipy/scipy/pull/4784
https://github.com/scipy/scipy/pull/4785
https://github.com/scipy/scipy/pull/4786
https://github.com/scipy/scipy/pull/4787
https://github.com/scipy/scipy/pull/4792
https://github.com/scipy/scipy/pull/4795
https://github.com/scipy/scipy/pull/4797
https://github.com/scipy/scipy/pull/4799

SciPy Reference Guide, Release 0.16.0

• #4801: BUG: Fix TypeError in scipy.optimize._trust-region.py when disp=True.

• #4803: Issues with relaxed strides in QR updating routines

• #4806: MAINT: use an informed initial guess for cauchy fit

• #4810: PEP8ify codata.py

• #4812: BUG: Relaxed strides cleanup in decomp_update.pyx.in

• #4820: BLD: update Bento build for sgemv fix and install cython blas/lapack...

• #4823: ENH: scipy.signal - Addition of spectrogram function

• #4827: DOC: add csd and coherence to __init__.py

• #4833: BLD: fix issue in linalg *lange wrappers for g77 builds.

• #4841: TST: fix test failures in scipy.special with mingw32 due to test...

• #4842: DOC: update site.cfg.example. Mostly taken over from Numpy

• #4845: BUG: signal: Make spectrogram’s return values order match the...

• #4849: DOC:Fix error in ode docstring example

• #4856: BUG: fix typo causing memleak

4.2 SciPy 0.15.0 Release Notes

Contents

• SciPy 0.15.0 Release Notes
– New features

* Linear Programming Interface
* Differential evolution, a global optimizer
* scipy.signal improvements
* scipy.integrate improvements
* scipy.linalg improvements
* scipy.sparse improvements
* scipy.special improvements
* scipy.sparse.csgraph improvements
* scipy.stats improvements

– Deprecated features
– Backwards incompatible changes

* scipy.ndimage
* scipy.integrate

– Authors
* Issues closed
* Pull requests

SciPy 0.15.0 is the culmination of 6 months of hard work. It contains several new features, numerous bug-fixes,
improved test coverage and better documentation. There have been a number of deprecations and API changes in this
release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number
of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.16.x
branch, and on adding new features on the master branch.

This release requires Python 2.6, 2.7 or 3.2-3.4 and NumPy 1.5.1 or greater.

4.2. SciPy 0.15.0 Release Notes 201

https://github.com/scipy/scipy/pull/4801
https://github.com/scipy/scipy/pull/4803
https://github.com/scipy/scipy/pull/4806
https://github.com/scipy/scipy/pull/4810
https://github.com/scipy/scipy/pull/4812
https://github.com/scipy/scipy/pull/4820
https://github.com/scipy/scipy/pull/4823
https://github.com/scipy/scipy/pull/4827
https://github.com/scipy/scipy/pull/4833
https://github.com/scipy/scipy/pull/4841
https://github.com/scipy/scipy/pull/4842
https://github.com/scipy/scipy/pull/4845
https://github.com/scipy/scipy/pull/4849
https://github.com/scipy/scipy/pull/4856

SciPy Reference Guide, Release 0.16.0

4.2.1 New features

Linear Programming Interface

The new function scipy.optimize.linprog provides a generic linear programming similar to the way
scipy.optimize.minimize provides a generic interface to nonlinear programming optimizers. Currently the
only method supported is simplex which provides a two-phase, dense-matrix-based simplex algorithm. Callbacks
functions are supported, allowing the user to monitor the progress of the algorithm.

Differential evolution, a global optimizer

A new scipy.optimize.differential_evolution function has been added to the optimize module.
Differential Evolution is an algorithm used for finding the global minimum of multivariate functions. It is stochastic
in nature (does not use gradient methods), and can search large areas of candidate space, but often requires larger
numbers of function evaluations than conventional gradient based techniques.

scipy.signal improvements

The function scipy.signal.max_len_seq was added, which computes a Maximum Length Sequence (MLS)
signal.

scipy.integrate improvements

It is now possible to use scipy.integrate routines to integrate multivariate ctypes functions, thus avoiding call-
backs to Python and providing better performance.

scipy.linalg improvements

The function scipy.linalg.orthogonal_procrustes for solving the procrustes linear algebra problem was
added.

BLAS level 2 functions her, syr, her2 and syr2 are now wrapped in scipy.linalg.

scipy.sparse improvements

scipy.sparse.linalg.svds can now take a LinearOperator as its main input.

scipy.special improvements

Values of ellipsoidal harmonic (i.e. Lame) functions and associated normalization constants can be now computed
using ellip_harm, ellip_harm_2, and ellip_normal.

New convenience functions entr, rel_entr kl_div, huber, and pseudo_huber were added.

scipy.sparse.csgraph improvements

Routines reverse_cuthill_mckee and maximum_bipartite_matching for computing reorderings of
sparse graphs were added.

202 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

scipy.stats improvements

Added a Dirichlet multivariate distribution, scipy.stats.dirichlet.

The new function scipy.stats.median_test computes Mood’s median test.

The new function scipy.stats.combine_pvalues implements Fisher’s and Stouffer’s methods for combining
p-values.

scipy.stats.describe returns a namedtuple rather than a tuple, allowing users to access results by index or by
name.

4.2.2 Deprecated features

The scipy.weave module is deprecated. It was the only module never ported to Python 3.x, and is not recom-
mended to be used for new code - use Cython instead. In order to support existing code, scipy.weave has been
packaged separately: https://github.com/scipy/weave. It is a pure Python package, and can easily be installed with
pip install weave.

scipy.special.bessel_diff_formula is deprecated. It is a private function, and therefore will be removed
from the public API in a following release.

scipy.stats.nanmean, nanmedian and nanstd functions are deprecated in favor of their numpy equivalents.

4.2.3 Backwards incompatible changes

The functions scipy.ndimage.minimum_positions, scipy.ndimage.maximum_positions‘ and
scipy.ndimage.extrema return positions as ints instead of floats.

The format of banded Jacobians in scipy.integrate.ode solvers is changed. Note that the previous documen-
tation of this feature was erroneous.

4.2.4 Authors

• Abject +

• Ankit Agrawal +

• Sylvain Bellemare +

• Matthew Brett

• Christian Brodbeck

• Christian Brueffer

• Lars Buitinck

• Evgeni Burovski

• Pierre de Buyl +

• Greg Caporaso +

• CJ Carey

• Jacob Carey +

• Thomas A Caswell

• Helder Cesar +

4.2. SciPy 0.15.0 Release Notes 203

https://github.com/scipy/weave

SciPy Reference Guide, Release 0.16.0

• Björn Dahlgren +

• Kevin Davies +

• Yotam Doron +

• Marcos Duarte +

• endolith

• Jesse Engel +

• Rob Falck +

• Corey Farwell +

• Jaime Fernandez del Rio +

• Clark Fitzgerald +

• Tom Flannaghan +

• Chad Fulton +

• Jochen Garcke +

• François Garillot +

• André Gaul

• Christoph Gohlke

• Ralf Gommers

• Alex Griffing

• Blake Griffith

• Olivier Grisel

• Charles Harris

• Trent Hauck +

• Ian Henriksen +

• Jinhyok Heo +

• Matt Hickford +

• Andreas Hilboll

• Danilo Horta +

• David Menéndez Hurtado +

• Gert-Ludwig Ingold

• Thouis (Ray) Jones

• Chris Kerr +

• Carl Kleffner +

• Andreas Kloeckner

• Thomas Kluyver +

• Adrian Kretz +

• Johannes Kulick +

204 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

• Eric Larson

• Brianna Laugher +

• Denis Laxalde

• Antony Lee +

• Gregory R. Lee +

• Brandon Liu

• Alex Loew +

• Loïc Estève +

• Jaakko Luttinen +

• Benny Malengier

• Tobias Megies +

• Sturla Molden

• Eric Moore

• Brett R. Murphy +

• Paul Nation +

• Andrew Nelson

• Brian Newsom +

• Joel Nothman

• Sergio Oller +

• Janani Padmanabhan +

• Tiago M.D. Pereira +

• Nicolas Del Piano +

• Manuel Reinhardt +

• Thomas Robitaille

• Mike Romberg +

• Alex Rothberg +

• Sebastian Pölsterl +

• Maximilian Singh +

• Brigitta Sipocz +

• Alex Stewart +

• Julian Taylor

• Collin Tokheim +

• James Tomlinson +

• Benjamin Trendelkamp-Schroer +

• Richard Tsai

• Alexey Umnov +

4.2. SciPy 0.15.0 Release Notes 205

SciPy Reference Guide, Release 0.16.0

• Jacob Vanderplas

• Joris Vankerschaver

• Bastian Venthur +

• Pauli Virtanen

• Stefan van der Walt

• Yuxiang Wang +

• James T. Webber

• Warren Weckesser

• Axl West +

• Nathan Woods

• Benda Xu +

• Víctor Zabalza +

• Tiziano Zito +

A total of 99 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed

• #1431: ellipk(x) extending its domain for x<0 (Trac #904)

• #1727: consistency of std interface (Trac #1200)

• #1851: Shape parameter negated in genextreme (relative to R, MATLAB,...

• #1889: interp2d is weird (Trac #1364)

• #2188: splev gives wrong values or crashes outside of support when der...

• #2343: scipy.insterpolate’s splrep function fails with certain combinations...

• #2669: .signal.ltisys.ss2tf should only apply to MISO systems in current...

• #2911: interpolate.splder() failure on Fedora

• #3171: future of weave in scipy

• #3176: Suggestion to improve error message in scipy.integrate.odeint

• #3198: pdf() and logpdf() methods for scipy.stats.gaussian_kde

• #3318: Travis CI is breaking on test(“full”)

• #3329: scipy.stats.scoreatpercentile backward-incompatible change not...

• #3362: Reference cycle in scipy.sparse.linalg.eigs with shift-invert...

• #3364: BUG: linalg.hessenberg broken (wrong results)

• #3376: stats f_oneway needs floats

• #3379: Installation of scipy 0.13.3 via zc.buildout fails

• #3403: hierarchy.linkage raises an ugly exception for a compressed 2x2...

• #3422: optimize.curve_fit() handles NaN by returning all parameters...

206 Chapter 4. Release Notes

https://github.com/scipy/scipy/issues/1431
https://github.com/scipy/scipy/issues/1727
https://github.com/scipy/scipy/issues/1851
https://github.com/scipy/scipy/issues/1889
https://github.com/scipy/scipy/issues/2188
https://github.com/scipy/scipy/issues/2343
https://github.com/scipy/scipy/issues/2669
https://github.com/scipy/scipy/issues/2911
https://github.com/scipy/scipy/issues/3171
https://github.com/scipy/scipy/issues/3176
https://github.com/scipy/scipy/issues/3198
https://github.com/scipy/scipy/issues/3318
https://github.com/scipy/scipy/issues/3329
https://github.com/scipy/scipy/issues/3362
https://github.com/scipy/scipy/issues/3364
https://github.com/scipy/scipy/issues/3376
https://github.com/scipy/scipy/issues/3379
https://github.com/scipy/scipy/issues/3403
https://github.com/scipy/scipy/issues/3422

SciPy Reference Guide, Release 0.16.0

• #3457: linalg.fractional_matrix_power has no docstring

• #3469: DOC: ndimage.find_object ignores zero-values

• #3491: optimize.leastsq() documentation should mention it does not work...

• #3499: cluster.vq.whiten return nan for all zeros column in observations

• #3503: minimize attempts to do vector addition when numpy arrays are...

• #3508: exponweib.logpdf fails for valid parameters

• #3509: libatlas3-base-dev does not exist

• #3550: BUG: anomalous values computed by special.ellipkinc

• #3555: scipy.ndimage positions are float instead of int

• #3557: UnivariateSpline.__call__ should pass all relevant args through...

• #3569: No license statement for test data imported from boost?

• #3576: mstats test failure (too sensitive?)

• #3579: Errors on scipy 0.14.x branch using MKL, Ubuntu 14.04 x86_64

• #3580: Operator overloading with sparse matrices

• #3587: Wrong alphabetical order in continuous statistical distribution...

• #3596: scipy.signal.fftconvolve no longer threadsafe

• #3623: BUG: signal.convolve takes longer than it needs to

• #3655: Integer returned from integer data in scipy.signal.periodogram...

• #3662: Travis failure on Numpy 1.5.1 (not reproducible?)

• #3668: dendogram(orientation=’foo’)

• #3669: KroghInterpolator doesn’t pass through points

• #3672: Inserting a knot in a spline

• #3682: misleading documentation of scipy.optimize.curve_fit

• #3699: BUG?: minor problem with scipy.signal.lfilter w/initial conditions

• #3700: Inconsistent exceptions raised by scipy.io.loadmat

• #3703: TypeError for RegularGridInterpolator with big-endian data

• #3714: Misleading error message in eigsh: k must be between 1 and rank(A)-1

• #3720: coo_matrix.setdiag() fails

• #3740: Scipy.Spatial.KdTree (Query) Return Type?

• #3761: Invalid result from scipy.special.btdtri

• #3784: DOC - Special Functions - Drum example fix for higher modes

• #3785: minimize() should have friendlier args=

• #3787: BUG: signal: Division by zero in lombscargle

• #3800: BUG: scipy.sparse.csgraph.shortest_path overwrites input matrix

• #3817: Warning in calculating moments from Binomial distribution for...

• #3821: review scipy usage of np.ma.is_masked

4.2. SciPy 0.15.0 Release Notes 207

https://github.com/scipy/scipy/issues/3457
https://github.com/scipy/scipy/issues/3469
https://github.com/scipy/scipy/issues/3491
https://github.com/scipy/scipy/issues/3499
https://github.com/scipy/scipy/issues/3503
https://github.com/scipy/scipy/issues/3508
https://github.com/scipy/scipy/issues/3509
https://github.com/scipy/scipy/issues/3550
https://github.com/scipy/scipy/issues/3555
https://github.com/scipy/scipy/issues/3557
https://github.com/scipy/scipy/issues/3569
https://github.com/scipy/scipy/issues/3576
https://github.com/scipy/scipy/issues/3579
https://github.com/scipy/scipy/issues/3580
https://github.com/scipy/scipy/issues/3587
https://github.com/scipy/scipy/issues/3596
https://github.com/scipy/scipy/issues/3623
https://github.com/scipy/scipy/issues/3655
https://github.com/scipy/scipy/issues/3662
https://github.com/scipy/scipy/issues/3668
https://github.com/scipy/scipy/issues/3669
https://github.com/scipy/scipy/issues/3672
https://github.com/scipy/scipy/issues/3682
https://github.com/scipy/scipy/issues/3699
https://github.com/scipy/scipy/issues/3700
https://github.com/scipy/scipy/issues/3703
https://github.com/scipy/scipy/issues/3714
https://github.com/scipy/scipy/issues/3720
https://github.com/scipy/scipy/issues/3740
https://github.com/scipy/scipy/issues/3761
https://github.com/scipy/scipy/issues/3784
https://github.com/scipy/scipy/issues/3785
https://github.com/scipy/scipy/issues/3787
https://github.com/scipy/scipy/issues/3800
https://github.com/scipy/scipy/issues/3817
https://github.com/scipy/scipy/issues/3821

SciPy Reference Guide, Release 0.16.0

• #3829: Linear algebra function documentation doesn’t mention default...

• #3830: A bug in Docstring of scipy.linalg.eig

• #3844: Issue with shape parameter returned by genextreme

• #3858: “ImportError: No module named Cython.Compiler.Main” on install

• #3876: savgol_filter not in release notes and has no versionadded

• #3884: scipy.stats.kendalltau empty array error

• #3895: ValueError: illegal value in 12-th argument of internal gesdd...

• #3898: skimage test broken by minmax filter change

• #3901: scipy sparse errors with numpy master

• #3905: DOC: optimize: linprog docstring has two “Returns” sections

• #3915: DOC: sphinx warnings because of **kwds in the stats distributions...

• #3935: Split stats.distributions files in tutorial

• #3969: gh-3607 breaks backward compatibility in ode solver banded jacobians

• #4025: DOC: signal: The return value of find_peaks_cwt is not documented.

• #4029: scipy.stats.nbinom.logpmf(0,1,1) returns nan. Correct value is...

• #4032: ERROR: test_imresize (test_pilutil.TestPILUtil)

• #4038: errors do not propagate through scipy.integrate.odeint properly

• #4171: orthogonal_procrustes always returns scale.

• #4176: Solving the Discrete Lyapunov Equation does not work with matrix...

Pull requests

• #3109: ENH Added Fisher’s method and Stouffer’s Z-score method

• #3225: Add the limiting distributions to generalized Pareto distribution...

• #3262: Implement back end of faster multivariate integration

• #3266: ENH: signal: add type=False as parameter for periodogram and...

• #3273: Add PEP8 check to Travis-CI

• #3342: ENH: linprog function for linear programming

• #3348: BUG: add proper error handling when using interp2d on regular...

• #3351: ENH: Add MLS method

• #3382: ENH: scipy.special information theory functions

• #3396: ENH: improve stats.nanmedian more by assuming nans are rare

• #3398: Added two wrappers to the gaussian_kde class.

• #3405: BUG: cluster.linkage array conversion to double dtype

• #3407: MAINT: use assert_warns instead of a more complicated mechanism

• #3409: ENH: change to use array view in signal/_peak_finding.py

• #3416: Issue 3376 : stats f_oneway needs floats

208 Chapter 4. Release Notes

https://github.com/scipy/scipy/issues/3829
https://github.com/scipy/scipy/issues/3830
https://github.com/scipy/scipy/issues/3844
https://github.com/scipy/scipy/issues/3858
https://github.com/scipy/scipy/issues/3876
https://github.com/scipy/scipy/issues/3884
https://github.com/scipy/scipy/issues/3895
https://github.com/scipy/scipy/issues/3898
https://github.com/scipy/scipy/issues/3901
https://github.com/scipy/scipy/issues/3905
https://github.com/scipy/scipy/issues/3915
https://github.com/scipy/scipy/issues/3935
https://github.com/scipy/scipy/issues/3969
https://github.com/scipy/scipy/issues/4025
https://github.com/scipy/scipy/issues/4029
https://github.com/scipy/scipy/issues/4032
https://github.com/scipy/scipy/issues/4038
https://github.com/scipy/scipy/issues/4171
https://github.com/scipy/scipy/issues/4176
https://github.com/scipy/scipy/pull/3109
https://github.com/scipy/scipy/pull/3225
https://github.com/scipy/scipy/pull/3262
https://github.com/scipy/scipy/pull/3266
https://github.com/scipy/scipy/pull/3273
https://github.com/scipy/scipy/pull/3342
https://github.com/scipy/scipy/pull/3348
https://github.com/scipy/scipy/pull/3351
https://github.com/scipy/scipy/pull/3382
https://github.com/scipy/scipy/pull/3396
https://github.com/scipy/scipy/pull/3398
https://github.com/scipy/scipy/pull/3405
https://github.com/scipy/scipy/pull/3407
https://github.com/scipy/scipy/pull/3409
https://github.com/scipy/scipy/pull/3416

SciPy Reference Guide, Release 0.16.0

• #3419: BUG: tools: Fix list of FMA instructions in detect_cpu_extensions_wine.py

• #3420: DOC: stats: Add ‘entropy’ to the stats package-level documentation.

• #3429: BUG: close intermediate file descriptor right after it is used...

• #3430: MAINT: Fix some cython variable declarations to avoid warnings...

• #3433: Correcting the normalization of chebwin window function

• #3435: Add more precise link to R’s quantile documentation

• #3446: ENH: scipy.optimize - adding differential_evolution

• #3450: MAINT: remove unused function scipy.stats.mstats_basic._kolmog1

• #3458: Reworked version of PR-3084 (mstats-stats comparison)

• #3462: MAINT : Returning a warning for low attenuation values of chebwin...

• #3463: DOC: linalg: Add examples to functions in matfuncs.py

• #3477: ENH: sparse: release GIL in sparsetools routines

• #3480: DOC: Add more details to deconvolve docstring

• #3484: BLD: fix Qhull build issue with MinGW-w64. Closes gh-3237.

• #3498: MAINT: io: remove old warnings from idl.py

• #3504: BUG: cluster.vq.whiten returns nan or inf when std==0

• #3510: MAINT: stats: Reimplement the pdf and logpdf methods of exponweib.

• #3512: Fix PEP8 errors showing up on TravisCI after pep8 1.5 release

• #3514: DOC: libatlas3-base-dev seems to have never been a thing

• #3516: DOC improve scipy.sparse docstrings

• #3517: ENH: speed-up ndimage.filters.min(max)imum_filter1d

• #3518: Issues in scipy.misc.logsumexp

• #3526: DOC: graphical example for cwt, and use a more interesting signal

• #3527: ENH: Implement min(max)imum_filter1d using the MINLIST algorithm

• #3537: STY: reduce number of C compiler warnings

• #3540: DOC: linalg: add docstring to fractional_matrix_power

• #3542: kde.py Doc Typo

• #3545: BUG: stats: stats.levy.cdf with small arguments loses precision.

• #3547: BUG: special: erfcinv with small arguments loses precision.

• #3553: DOC: Convolve examples

• #3561: FIX: in ndimage.measurements return positions as int instead...

• #3564: Fix test failures with numpy master. Closes gh-3554

• #3565: ENH: make interp2d accept unsorted arrays for interpolation.

• #3566: BLD: add numpy requirement to metadata if it can’t be imported.

• #3567: DOC: move matfuncs docstrings to user-visible functions

• #3574: Fixes multiple bugs in mstats.theilslopes

4.2. SciPy 0.15.0 Release Notes 209

https://github.com/scipy/scipy/pull/3419
https://github.com/scipy/scipy/pull/3420
https://github.com/scipy/scipy/pull/3429
https://github.com/scipy/scipy/pull/3430
https://github.com/scipy/scipy/pull/3433
https://github.com/scipy/scipy/pull/3435
https://github.com/scipy/scipy/pull/3446
https://github.com/scipy/scipy/pull/3450
https://github.com/scipy/scipy/pull/3458
https://github.com/scipy/scipy/pull/3462
https://github.com/scipy/scipy/pull/3463
https://github.com/scipy/scipy/pull/3477
https://github.com/scipy/scipy/pull/3480
https://github.com/scipy/scipy/pull/3484
https://github.com/scipy/scipy/pull/3498
https://github.com/scipy/scipy/pull/3504
https://github.com/scipy/scipy/pull/3510
https://github.com/scipy/scipy/pull/3512
https://github.com/scipy/scipy/pull/3514
https://github.com/scipy/scipy/pull/3516
https://github.com/scipy/scipy/pull/3517
https://github.com/scipy/scipy/pull/3518
https://github.com/scipy/scipy/pull/3526
https://github.com/scipy/scipy/pull/3527
https://github.com/scipy/scipy/pull/3537
https://github.com/scipy/scipy/pull/3540
https://github.com/scipy/scipy/pull/3542
https://github.com/scipy/scipy/pull/3545
https://github.com/scipy/scipy/pull/3547
https://github.com/scipy/scipy/pull/3553
https://github.com/scipy/scipy/pull/3561
https://github.com/scipy/scipy/pull/3564
https://github.com/scipy/scipy/pull/3565
https://github.com/scipy/scipy/pull/3566
https://github.com/scipy/scipy/pull/3567
https://github.com/scipy/scipy/pull/3574

SciPy Reference Guide, Release 0.16.0

• #3577: TST: decrease sensitivity of an mstats test

• #3585: Cleanup of code in scipy.constants

• #3589: BUG: sparse: allow operator overloading

• #3594: BUG: lobpcg returned wrong values for small matrices (n < 10)

• #3598: MAINT: fix coverage and coveralls

• #3599: MAINT: symeig – now that’s a name I’ve not heard in a long time

• #3602: MAINT: clean up the new optimize.linprog and add a few more tests

• #3607: BUG: integrate: Fix some bugs and documentation errors in the...

• #3609: MAINT integrate/odepack: kill dead Fortran code

• #3616: FIX: Invalid values

• #3617: Sort netcdf variables in a Python-3 compatible way

• #3622: DOC: Added 0.15.0 release notes entry for linprog function.

• #3625: Fix documentation for cKDTree.sparse_distance_matrix

• #3626: MAINT: linalg.orth memory efficiency

• #3627: MAINT: stats: A bit of clean up

• #3628: MAINT: signal: remove a useless function from wavelets.py

• #3632: ENH: stats: Add Mood’s median test.

• #3636: MAINT: cluster: some clean up

• #3638: DOC: docstring of optimize.basinhopping confuses singular and...

• #3639: BUG: change ddof default to 1 in mstats.sem, consistent with...

• #3640: Weave: deprecate the module and disable slow tests on TravisCI

• #3641: ENH: Added support for date attributes to io.arff.arffread

• #3644: MAINT: stats: remove superfluous alias in mstats_basic.py

• #3646: ENH: adding sum_duplicates method to COO sparse matrix

• #3647: Fix for #3596: Make fftconvolve threadsafe

• #3650: BUG: sparse: smarter random index selection

• #3652: fix wrong option name in power_divergence dosctring example

• #3654: Changing EPD to Canopy

• #3657: BUG: signal.welch: ensure floating point dtype regardless of...

• #3660: TST: mark a test as known fail

• #3661: BLD: ignore pep8 E302 (expected 2 blank lines, found 1)

• #3663: BUG: fix leaking errstate, and ignore invalid= errors in a test

• #3664: BUG: correlate was extremely slow when in2.size > in1.size

• #3667: ENH: Adds default params to pdfs of multivariate_norm

• #3670: ENH: Small speedup of FFT size check

• #3671: DOC: adding differential_evolution function to 0.15 release notes

210 Chapter 4. Release Notes

https://github.com/scipy/scipy/pull/3577
https://github.com/scipy/scipy/pull/3585
https://github.com/scipy/scipy/pull/3589
https://github.com/scipy/scipy/pull/3594
https://github.com/scipy/scipy/pull/3598
https://github.com/scipy/scipy/pull/3599
https://github.com/scipy/scipy/pull/3602
https://github.com/scipy/scipy/pull/3607
https://github.com/scipy/scipy/pull/3609
https://github.com/scipy/scipy/pull/3616
https://github.com/scipy/scipy/pull/3617
https://github.com/scipy/scipy/pull/3622
https://github.com/scipy/scipy/pull/3625
https://github.com/scipy/scipy/pull/3626
https://github.com/scipy/scipy/pull/3627
https://github.com/scipy/scipy/pull/3628
https://github.com/scipy/scipy/pull/3632
https://github.com/scipy/scipy/pull/3636
https://github.com/scipy/scipy/pull/3638
https://github.com/scipy/scipy/pull/3639
https://github.com/scipy/scipy/pull/3640
https://github.com/scipy/scipy/pull/3641
https://github.com/scipy/scipy/pull/3644
https://github.com/scipy/scipy/pull/3646
https://github.com/scipy/scipy/pull/3647
https://github.com/scipy/scipy/pull/3650
https://github.com/scipy/scipy/pull/3652
https://github.com/scipy/scipy/pull/3654
https://github.com/scipy/scipy/pull/3657
https://github.com/scipy/scipy/pull/3660
https://github.com/scipy/scipy/pull/3661
https://github.com/scipy/scipy/pull/3663
https://github.com/scipy/scipy/pull/3664
https://github.com/scipy/scipy/pull/3667
https://github.com/scipy/scipy/pull/3670
https://github.com/scipy/scipy/pull/3671

SciPy Reference Guide, Release 0.16.0

• #3673: BUG: interpolate/fitpack: arguments to fortran routines may not...

• #3674: Add support for appending to existing netcdf files

• #3681: Speed up test(‘full’), solve Travis CI timeout issues

• #3683: ENH: cluster: rewrite and optimize vq in Cython

• #3684: Update special docs

• #3688: Spacing in special docstrings

• #3692: ENH: scipy.special: Improving sph_harm function

• #3693: Update refguide entries for signal and fftpack

• #3695: Update continuous.rst

• #3696: ENH: check for valid ‘orientation’ kwarg in dendrogram()

• #3701: make ‘a’ and ‘b’ coefficients atleast_1d array in filtfilt

• #3702: BUG: cluster: _vq unable to handle large features

• #3704: BUG: special: ellip(k,e)inc nan and double expected value

• #3707: BUG: handle fill_value dtype checks correctly in RegularGridInterpolator

• #3708: Reraise exception on failure to read mat file.

• #3709: BUG: cast ‘x’ to correct dtype in KroghInterpolator._evaluate

• #3712: ENH: cluster: reimplement the update-step of K-means in Cython

• #3713: FIX: Check type of lfiltic

• #3718: Changed INSTALL file extension to rst

• #3719: address svds returning nans for zero input matrix

• #3722: MAINT: spatial: static, unused code, sqrt(sqeuclidean)

• #3725: ENH: use numpys nanmedian if available

• #3727: TST: add a new fixed_point test and change some test function...

• #3731: BUG: fix romb in scipy.integrate.quadrature

• #3734: DOC: simplify examples with semilogx

• #3735: DOC: Add minimal docstrings to lti.impulse/step

• #3736: BUG: cast pchip arguments to floats

• #3744: stub out inherited methods of Akima1DInterpolator

• #3746: DOC: Fix formatting for Raises section

• #3748: ENH: Added discrete Lyapunov transformation solve

• #3750: Enable automated testing with Python 3.4

• #3751: Reverse Cuthill-McKee and Maximum Bipartite Matching reorderings...

• #3759: MAINT: avoid indexing with a float array

• #3762: TST: filter out RuntimeWarning in vq tests

• #3766: TST: cluster: some cleanups in test_hierarchy.py

• #3767: ENH/BUG: support negative m in elliptic integrals

4.2. SciPy 0.15.0 Release Notes 211

https://github.com/scipy/scipy/pull/3673
https://github.com/scipy/scipy/pull/3674
https://github.com/scipy/scipy/pull/3681
https://github.com/scipy/scipy/pull/3683
https://github.com/scipy/scipy/pull/3684
https://github.com/scipy/scipy/pull/3688
https://github.com/scipy/scipy/pull/3692
https://github.com/scipy/scipy/pull/3693
https://github.com/scipy/scipy/pull/3695
https://github.com/scipy/scipy/pull/3696
https://github.com/scipy/scipy/pull/3701
https://github.com/scipy/scipy/pull/3702
https://github.com/scipy/scipy/pull/3704
https://github.com/scipy/scipy/pull/3707
https://github.com/scipy/scipy/pull/3708
https://github.com/scipy/scipy/pull/3709
https://github.com/scipy/scipy/pull/3712
https://github.com/scipy/scipy/pull/3713
https://github.com/scipy/scipy/pull/3718
https://github.com/scipy/scipy/pull/3719
https://github.com/scipy/scipy/pull/3722
https://github.com/scipy/scipy/pull/3725
https://github.com/scipy/scipy/pull/3727
https://github.com/scipy/scipy/pull/3731
https://github.com/scipy/scipy/pull/3734
https://github.com/scipy/scipy/pull/3735
https://github.com/scipy/scipy/pull/3736
https://github.com/scipy/scipy/pull/3744
https://github.com/scipy/scipy/pull/3746
https://github.com/scipy/scipy/pull/3748
https://github.com/scipy/scipy/pull/3750
https://github.com/scipy/scipy/pull/3751
https://github.com/scipy/scipy/pull/3759
https://github.com/scipy/scipy/pull/3762
https://github.com/scipy/scipy/pull/3766
https://github.com/scipy/scipy/pull/3767

SciPy Reference Guide, Release 0.16.0

• #3769: ENH: avoid repeated matrix inverse

• #3770: BUG: signal: In lfilter_zi, b was not rescaled correctly when...

• #3772: STY avoid unnecessary transposes in csr_matrix.getcol/row

• #3773: ENH: Add ext parameter to UnivariateSpline call

• #3774: BUG: in integrate/quadpack.h, put all declarations before statements.

• #3779: Incbet fix

• #3788: BUG: Fix lombscargle ZeroDivisionError

• #3791: Some maintenance for doc builds

• #3795: scipy.special.legendre docstring

• #3796: TYPO: sheroidal -> spheroidal

• #3801: BUG: shortest_path overwrite

• #3803: TST: lombscargle regression test related to atan vs atan2

• #3809: ENH: orthogonal procrustes solver

• #3811: ENH: scipy.special, Implemented Ellipsoidal harmonic function:...

• #3819: BUG: make a fully connected csgraph from an ndarray with no zeros

• #3820: MAINT: avoid spurious warnings in binom(n, p=0).mean() etc

• #3825: Don’t claim scipy.cluster does distance matrix calculations.

• #3827: get and set diagonal of coo_matrix, and related csgraph laplacian...

• #3832: DOC: Minor additions to integrate/nquad docstring.

• #3845: Bug fix for #3842: Bug in scipy.optimize.line_search

• #3848: BUG: edge case where the covariance matrix is exactly zero

• #3850: DOC: typo

• #3851: DOC: document default argument values for some arpack functions

• #3860: DOC: sparse: add the function ‘find’ to the module-level docstring

• #3861: BUG: Removed unnecessary storage of args as instance variables...

• #3862: BUG: signal: fix handling of multi-output systems in ss2tf.

• #3865: Feature request: ability to read heterogeneous types in FortranFile

• #3866: MAINT: update pip wheelhouse for installs

• #3871: MAINT: linalg: get rid of calc_lwork.f

• #3872: MAINT: use scipy.linalg instead of np.dual

• #3873: BLD: show a more informative message if Cython wasn’t installed.

• #3874: TST: cluster: cleanup the hierarchy test data

• #3877: DOC: Savitzky-Golay filter version added

• #3878: DOC: move versionadded to notes

• #3879: small tweaks to the docs

• #3881: FIX incorrect sorting during fancy assignment

212 Chapter 4. Release Notes

https://github.com/scipy/scipy/pull/3769
https://github.com/scipy/scipy/pull/3770
https://github.com/scipy/scipy/pull/3772
https://github.com/scipy/scipy/pull/3773
https://github.com/scipy/scipy/pull/3774
https://github.com/scipy/scipy/pull/3779
https://github.com/scipy/scipy/pull/3788
https://github.com/scipy/scipy/pull/3791
https://github.com/scipy/scipy/pull/3795
https://github.com/scipy/scipy/pull/3796
https://github.com/scipy/scipy/pull/3801
https://github.com/scipy/scipy/pull/3803
https://github.com/scipy/scipy/pull/3809
https://github.com/scipy/scipy/pull/3811
https://github.com/scipy/scipy/pull/3819
https://github.com/scipy/scipy/pull/3820
https://github.com/scipy/scipy/pull/3825
https://github.com/scipy/scipy/pull/3827
https://github.com/scipy/scipy/pull/3832
https://github.com/scipy/scipy/pull/3845
https://github.com/scipy/scipy/pull/3848
https://github.com/scipy/scipy/pull/3850
https://github.com/scipy/scipy/pull/3851
https://github.com/scipy/scipy/pull/3860
https://github.com/scipy/scipy/pull/3861
https://github.com/scipy/scipy/pull/3862
https://github.com/scipy/scipy/pull/3865
https://github.com/scipy/scipy/pull/3866
https://github.com/scipy/scipy/pull/3871
https://github.com/scipy/scipy/pull/3872
https://github.com/scipy/scipy/pull/3873
https://github.com/scipy/scipy/pull/3874
https://github.com/scipy/scipy/pull/3877
https://github.com/scipy/scipy/pull/3878
https://github.com/scipy/scipy/pull/3879
https://github.com/scipy/scipy/pull/3881

SciPy Reference Guide, Release 0.16.0

• #3885: kendalltau function now returns a nan tuple if empty arrays used...

• #3886: BUG: fixing linprog’s kwarg order to match docs

• #3888: BUG: optimize: In _linprog_simplex, handle the case where the...

• #3891: BUG: stats: Fix ValueError message in chi2_contingency.

• #3892: DOC: sparse.linalg: Fix lobpcg docstring.

• #3894: DOC: stats: Assorted docstring edits.

• #3896: Fix 2 mistakes in MatrixMarket format parsing

• #3897: BUG: associated Legendre function of second kind for 1<x<1.0001

• #3899: BUG: fix undefined behavior in alngam

• #3906: MAINT/DOC: Whitespace tweaks in several docstrings.

• #3907: TST: relax bounds of interpolate test to accomodate rounding...

• #3909: MAINT: Create a common version of count_nonzero for compatibility...

• #3910: Fix a couple of test errors in master

• #3911: Use MathJax for the html docs

• #3914: Rework the _roots functions and document them.

• #3916: Remove all linpack_lite code and replace with LAPACK routines

• #3917: splines, constant extrapolation

• #3918: DOC: tweak the rv_discrete docstring example

• #3919: Quadrature speed-up: scipy.special.orthogonal.p_roots with cache

• #3920: DOC: Clarify docstring for sigma parameter for curve_fit

• #3922: Fixed Docstring issues in linprog (Fixes #3905).

• #3924: Coerce args into tuple if necessary.

• #3926: DOC: Surround stats class methods in docstrings with backticks.

• #3927: Changed doc for romb’s dx parameter to int.

• #3928: check FITPACK conditions in LSQUnivariateSpline

• #3929: Added a warning about leastsq using with NaNs.

• #3930: ENH: optimize: curve_fit now warns if pcov is undetermined

• #3932: Clarified the k > n case.

• #3933: DOC: remove import scipy as sp abbreviation here and there

• #3936: Add license and copyright holders to test data imported from...

• #3938: DOC: Corrected documentation for return types.

• #3939: DOC: fitpack: add a note about Sch-W conditions to splrep docstring

• #3940: TST: integrate: Remove an invalid test of odeint.

• #3942: FIX: Corrected error message of eigsh.

• #3943: ENH: release GIL for filter and interpolation of ndimage

• #3944: FIX: Raise value error if window data-type is unsupported

4.2. SciPy 0.15.0 Release Notes 213

https://github.com/scipy/scipy/pull/3885
https://github.com/scipy/scipy/pull/3886
https://github.com/scipy/scipy/pull/3888
https://github.com/scipy/scipy/pull/3891
https://github.com/scipy/scipy/pull/3892
https://github.com/scipy/scipy/pull/3894
https://github.com/scipy/scipy/pull/3896
https://github.com/scipy/scipy/pull/3897
https://github.com/scipy/scipy/pull/3899
https://github.com/scipy/scipy/pull/3906
https://github.com/scipy/scipy/pull/3907
https://github.com/scipy/scipy/pull/3909
https://github.com/scipy/scipy/pull/3910
https://github.com/scipy/scipy/pull/3911
https://github.com/scipy/scipy/pull/3914
https://github.com/scipy/scipy/pull/3916
https://github.com/scipy/scipy/pull/3917
https://github.com/scipy/scipy/pull/3918
https://github.com/scipy/scipy/pull/3919
https://github.com/scipy/scipy/pull/3920
https://github.com/scipy/scipy/pull/3922
https://github.com/scipy/scipy/pull/3924
https://github.com/scipy/scipy/pull/3926
https://github.com/scipy/scipy/pull/3927
https://github.com/scipy/scipy/pull/3928
https://github.com/scipy/scipy/pull/3929
https://github.com/scipy/scipy/pull/3930
https://github.com/scipy/scipy/pull/3932
https://github.com/scipy/scipy/pull/3933
https://github.com/scipy/scipy/pull/3936
https://github.com/scipy/scipy/pull/3938
https://github.com/scipy/scipy/pull/3939
https://github.com/scipy/scipy/pull/3940
https://github.com/scipy/scipy/pull/3942
https://github.com/scipy/scipy/pull/3943
https://github.com/scipy/scipy/pull/3944

SciPy Reference Guide, Release 0.16.0

• #3946: Fixed signal.get_window with unicode window name

• #3947: MAINT: some docstring fixes and style cleanups in stats.mstats

• #3949: DOC: fix a couple of issues in stats docstrings.

• #3950: TST: sparse: remove known failure that doesn’t fail

• #3951: TST: switch from Rackspace wheelhouse to numpy/cython source...

• #3952: DOC: stats: Small formatting correction to the ‘chi’ distribution...

• #3953: DOC: stats: Several corrections and small additions to docstrings.

• #3955: signal.__init__.py: remove duplicated get_window entry

• #3959: TST: sparse: more “known failures” for DOK that don’t fail

• #3960: BUG: io.netcdf: do not close mmap if there are references left...

• #3965: DOC: Fix a few more sphinx warnings that occur when building...

• #3966: DOC: add guidelines for using test generators in HACKING

• #3968: BUG: sparse.linalg: make Inv objects in arpack garbage-collectable...

• #3971: Remove all linpack_lite code and replace with LAPACK routines

• #3972: fix typo in error message

• #3973: MAINT: better error message for multivariate normal.

• #3981: turn the cryptically named scipy.special information theory functions...

• #3984: Wrap her, syr, her2, syr2 blas routines

• #3990: improve UnivariateSpline docs

• #3991: ENH: stats: return namedtuple for describe output

• #3993: DOC: stats: percentileofscore references np.percentile

• #3997: BUG: linalg: pascal(35) was incorrect: last element overflowed...

• #3998: MAINT: use isMaskedArray instead of is_masked to check type

• #3999: TST: test against all of boost data files.

• #4000: BUG: stats: Fix edge-case handling in a few distributions.

• #4003: ENH: using python’s warnings instead of prints in fitpack.

• #4004: MAINT: optimize: remove a couple unused variables in zeros.c

• #4006: BUG: Fix C90 compiler warnings in NI_MinOrMaxFilter1D

• #4007: MAINT/DOC: Fix spelling of ‘decomposition’ in several files.

• #4008: DOC: stats: Split the descriptions of the distributions in the...

• #4015: TST: logsumexp regression test

• #4016: MAINT: remove some inf-related warnings from logsumexp

• #4020: DOC: stats: fix whitespace in docstrings of several distributions

• #4023: Exactly one space required before assignments

• #4024: In dendrogram(): Correct an argument name and a grammar issue...

• #4041: BUG: misc: Ensure that the ‘size’ argument of PIL’s ‘resize’...

214 Chapter 4. Release Notes

https://github.com/scipy/scipy/pull/3946
https://github.com/scipy/scipy/pull/3947
https://github.com/scipy/scipy/pull/3949
https://github.com/scipy/scipy/pull/3950
https://github.com/scipy/scipy/pull/3951
https://github.com/scipy/scipy/pull/3952
https://github.com/scipy/scipy/pull/3953
https://github.com/scipy/scipy/pull/3955
https://github.com/scipy/scipy/pull/3959
https://github.com/scipy/scipy/pull/3960
https://github.com/scipy/scipy/pull/3965
https://github.com/scipy/scipy/pull/3966
https://github.com/scipy/scipy/pull/3968
https://github.com/scipy/scipy/pull/3971
https://github.com/scipy/scipy/pull/3972
https://github.com/scipy/scipy/pull/3973
https://github.com/scipy/scipy/pull/3981
https://github.com/scipy/scipy/pull/3984
https://github.com/scipy/scipy/pull/3990
https://github.com/scipy/scipy/pull/3991
https://github.com/scipy/scipy/pull/3993
https://github.com/scipy/scipy/pull/3997
https://github.com/scipy/scipy/pull/3998
https://github.com/scipy/scipy/pull/3999
https://github.com/scipy/scipy/pull/4000
https://github.com/scipy/scipy/pull/4003
https://github.com/scipy/scipy/pull/4004
https://github.com/scipy/scipy/pull/4006
https://github.com/scipy/scipy/pull/4007
https://github.com/scipy/scipy/pull/4008
https://github.com/scipy/scipy/pull/4015
https://github.com/scipy/scipy/pull/4016
https://github.com/scipy/scipy/pull/4020
https://github.com/scipy/scipy/pull/4023
https://github.com/scipy/scipy/pull/4024
https://github.com/scipy/scipy/pull/4041

SciPy Reference Guide, Release 0.16.0

• #4049: BUG: Return of _logpmf

• #4051: BUG: expm of integer matrices

• #4052: ENH: integrate: odeint: Handle exceptions in the callback functions.

• #4053: BUG: stats: Refactor argument validation to avoid a unicode issue.

• #4057: Added newline to scipy.sparse.linalg.svds documentation for correct...

• #4058: MAINT: stats: Add note about change to scoreatpercentile in release...

• #4059: ENH: interpolate: Allow splev to accept an n-dimensional array.

• #4064: Documented the return value for scipy.signal.find_peaks_cwt

• #4074: ENH: Support LinearOperator as input to svds

• #4084: BUG: Match exception declarations in scipy/io/matlab/streams.pyx...

• #4091: DOC: special: more clear instructions on how to evaluate polynomials

• #4105: BUG: Workaround for SGEMV segfault in Accelerate

• #4107: DOC: get rid of ‘import *’ in examples

• #4113: DOC: fix typos in distance.yule

• #4114: MAINT C fixes

• #4117: deprecate nanmean, nanmedian and nanstd in favor of their numpy...

• #4126: scipy.io.idl: support description records and fix bug with null...

• #4131: ENH: release GIL in more ndimage functions

• #4132: MAINT: stats: fix a typo [skip ci]

• #4145: DOC: Fix documentation error for nc chi-squared dist

• #4150: Fix _nd_image.geometric_transform endianness bug

• #4153: MAINT: remove use of deprecated numpy API in lib/lapack/ f2py...

• #4156: MAINT: optimize: remove dead code

• #4159: MAINT: optimize: clean up Zeros code

• #4165: DOC: add missing special functions to __doc__

• #4172: DOC: remove misleading procrustes docstring line

• #4175: DOC: sparse: clarify CSC and CSR constructor usage

• #4177: MAINT: enable np.matrix inputs to solve_discrete_lyapunov

• #4179: TST: fix an intermittently failing test case for special.legendre

• #4181: MAINT: remove unnecessary null checks before free

• #4182: Ellipsoidal harmonics

• #4183: Skip Cython build in Travis-CI

• #4184: Pr 4074

• #4187: Pr/3923

• #4190: BUG: special: fix up ellip_harm build

• #4193: BLD: fix msvc compiler errors

4.2. SciPy 0.15.0 Release Notes 215

https://github.com/scipy/scipy/pull/4049
https://github.com/scipy/scipy/pull/4051
https://github.com/scipy/scipy/pull/4052
https://github.com/scipy/scipy/pull/4053
https://github.com/scipy/scipy/pull/4057
https://github.com/scipy/scipy/pull/4058
https://github.com/scipy/scipy/pull/4059
https://github.com/scipy/scipy/pull/4064
https://github.com/scipy/scipy/pull/4074
https://github.com/scipy/scipy/pull/4084
https://github.com/scipy/scipy/pull/4091
https://github.com/scipy/scipy/pull/4105
https://github.com/scipy/scipy/pull/4107
https://github.com/scipy/scipy/pull/4113
https://github.com/scipy/scipy/pull/4114
https://github.com/scipy/scipy/pull/4117
https://github.com/scipy/scipy/pull/4126
https://github.com/scipy/scipy/pull/4131
https://github.com/scipy/scipy/pull/4132
https://github.com/scipy/scipy/pull/4145
https://github.com/scipy/scipy/pull/4150
https://github.com/scipy/scipy/pull/4153
https://github.com/scipy/scipy/pull/4156
https://github.com/scipy/scipy/pull/4159
https://github.com/scipy/scipy/pull/4165
https://github.com/scipy/scipy/pull/4172
https://github.com/scipy/scipy/pull/4175
https://github.com/scipy/scipy/pull/4177
https://github.com/scipy/scipy/pull/4179
https://github.com/scipy/scipy/pull/4181
https://github.com/scipy/scipy/pull/4182
https://github.com/scipy/scipy/pull/4183
https://github.com/scipy/scipy/pull/4184
https://github.com/scipy/scipy/pull/4187
https://github.com/scipy/scipy/pull/4190
https://github.com/scipy/scipy/pull/4193

SciPy Reference Guide, Release 0.16.0

• #4194: BUG: fix buffer dtype mismatch on win-amd64

• #4199: ENH: Changed scipy.stats.describe output from datalen to nobs

• #4201: DOC: add blas2 and nan* deprecations to the release notes

• #4243: TST: bump test tolerances

4.3 SciPy 0.14.0 Release Notes

Contents

• SciPy 0.14.0 Release Notes
– New features

* scipy.interpolate improvements
* scipy.linalg improvements
* scipy.optimize improvements
* scipy.stats improvements
* scipy.signal improvements
* scipy.special improvements
* scipy.sparse improvements

– Deprecated features
* anneal

* scipy.stats

* scipy.interpolate
– Backwards incompatible changes

* scipy.special.lpmn
* scipy.sparse.linalg
* scipy.stats
* scipy.interpolate

– Other changes
– Authors

* Issues closed
* Pull requests

SciPy 0.14.0 is the culmination of 8 months of hard work. It contains many new features, numerous bug-fixes,
improved test coverage and better documentation. There have been a number of deprecations and API changes in
this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large
number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the
0.14.x branch, and on adding new features on the master branch.

This release requires Python 2.6, 2.7 or 3.2-3.4 and NumPy 1.5.1 or greater.

4.3.1 New features

scipy.interpolate improvements

A new wrapper function scipy.interpolate.interpn for interpolation on regular grids has been added. in-
terpn supports linear and nearest-neighbor interpolation in arbitrary dimensions and spline interpolation in two dimen-
sions.

216 Chapter 4. Release Notes

https://github.com/scipy/scipy/pull/4194
https://github.com/scipy/scipy/pull/4199
https://github.com/scipy/scipy/pull/4201
https://github.com/scipy/scipy/pull/4243

SciPy Reference Guide, Release 0.16.0

Faster implementations of piecewise polynomials in power and Bernstein polynomial bases have been added as
scipy.interpolate.PPoly and scipy.interpolate.BPoly. New users should use these in favor of
scipy.interpolate.PiecewisePolynomial.

scipy.interpolate.interp1d now accepts non-monotonic inputs and sorts them. If performance is critical,
sorting can be turned off by using the new assume_sorted keyword.

Functionality for evaluation of bivariate spline derivatives in scipy.interpolate has been added.

The new class scipy.interpolate.Akima1DInterpolator implements the piecewise cubic polynomial
interpolation scheme devised by H. Akima.

Functionality for fast interpolation on regular, unevenly spaced grids in arbitrary dimensions has been added as
scipy.interpolate.RegularGridInterpolator .

scipy.linalg improvements

The new function scipy.linalg.dft computes the matrix of the discrete Fourier transform.

A condition number estimation function for matrix exponential, scipy.linalg.expm_cond, has been added.

scipy.optimize improvements

A set of benchmarks for optimize, which can be run with optimize.bench(), has been added.

scipy.optimize.curve_fit now has more controllable error estimation via the absolute_sigma keyword.

Support for passing custom minimization methods to optimize.minimize() and
optimize.minimize_scalar() has been added, currently useful especially for combining
optimize.basinhopping() with custom local optimizer routines.

scipy.stats improvements

A new class scipy.stats.multivariate_normal with functionality for multivariate normal random vari-
ables has been added.

A lot of work on the scipy.stats distribution framework has been done. Moment calculations (skew and kurtosis
mainly) are fixed and verified, all examples are now runnable, and many small accuracy and performance improve-
ments for individual distributions were merged.

The new function scipy.stats.anderson_ksamp computes the k-sample Anderson-Darling test for the null
hypothesis that k samples come from the same parent population.

scipy.signal improvements

scipy.signal.iirfilter and related functions to design Butterworth, Chebyshev, elliptical and Bessel IIR
filters now all use pole-zero (“zpk”) format internally instead of using transformations to numerator/denominator
format. The accuracy of the produced filters, especially high-order ones, is improved significantly as a result.

The Savitzky-Golay filter was added with the new functions scipy.signal.savgol_filter and
scipy.signal.savgol_coeffs.

The new function scipy.signal.vectorstrength computes the vector strength, a measure of phase syn-
chrony, of a set of events.

4.3. SciPy 0.14.0 Release Notes 217

SciPy Reference Guide, Release 0.16.0

scipy.special improvements

The functions scipy.special.boxcox and scipy.special.boxcox1p, which compute the Box-Cox trans-
formation, have been added.

scipy.sparse improvements

• Significant performance improvement in CSR, CSC, and DOK indexing speed.

• When using Numpy >= 1.9 (to be released in MM 2014), sparse matrices function correctly when given to
arguments of np.dot, np.multiply and other ufuncs. With earlier Numpy and Scipy versions, the results
of such operations are undefined and usually unexpected.

• Sparse matrices are no longer limited to 2^31 nonzero elements. They automatically switch to using 64-bit
index data type for matrices containing more elements. User code written assuming the sparse matrices use
int32 as the index data type will continue to work, except for such large matrices. Code dealing with larger
matrices needs to accept either int32 or int64 indices.

4.3.2 Deprecated features

anneal

The global minimization function scipy.optimize.anneal is deprecated. All users should use the
scipy.optimize.basinhopping function instead.

scipy.stats

randwcdf and randwppf functions are deprecated. All users should use distribution-specific rvsmethods instead.

Probability calculation aliases zprob, fprob and ksprob are deprecated. Use instead the sf methods of the
corresponding distributions or the special functions directly.

scipy.interpolate

PiecewisePolynomial class is deprecated.

4.3.3 Backwards incompatible changes

lpmn no longer accepts complex-valued arguments. A new function clpmn with uniform complex analytic behavior
has been added, and it should be used instead.

Eigenvectors in the case of generalized eigenvalue problem are normalized to unit vectors in 2-norm, rather than
following the LAPACK normalization convention.

The deprecated UMFPACK wrapper in scipy.sparse.linalg has been removed due to license and install is-
sues. If available, scikits.umfpack is still used transparently in the spsolve and factorized functions.
Otherwise, SuperLU is used instead in these functions.

The deprecated functions glm, oneway and cmedian have been removed from scipy.stats.

stats.scoreatpercentile now returns an array instead of a list of percentiles.

218 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

The API for computing derivatives of a monotone piecewise interpolation has changed: if p is a
PchipInterpolator object, p.derivative(der) returns a callable object representing the derivative of p. For in-
place derivatives use the second argument of the __call__ method: p(0.1, der=2) evaluates the second derivative of p
at x=0.1.

The method p.derivatives has been removed.

4.3.4 Other changes

4.3.5 Authors

• Marc Abramowitz +

• Anders Bech Borchersen +

• Vincent Arel-Bundock +

• Petr Baudis +

• Max Bolingbroke

• François Boulogne

• Matthew Brett

• Lars Buitinck

• Evgeni Burovski

• CJ Carey +

• Thomas A Caswell +

• Pawel Chojnacki +

• Phillip Cloud +

• Stefano Costa +

• David Cournapeau

• David Menendez Hurtado +

• Matthieu Dartiailh +

• Christoph Deil +

• Jörg Dietrich +

• endolith

• Francisco de la Peña +

• Ben FrantzDale +

• Jim Garrison +

• André Gaul

• Christoph Gohlke

• Ralf Gommers

• Robert David Grant

• Alex Griffing

4.3. SciPy 0.14.0 Release Notes 219

SciPy Reference Guide, Release 0.16.0

• Blake Griffith

• Yaroslav Halchenko

• Andreas Hilboll

• Kat Huang

• Gert-Ludwig Ingold

• James T. Webber +

• Dorota Jarecka +

• Todd Jennings +

• Thouis (Ray) Jones

• Juan Luis Cano Rodríguez

• ktritz +

• Jacques Kvam +

• Eric Larson +

• Justin Lavoie +

• Denis Laxalde

• Jussi Leinonen +

• lemonlaug +

• Tim Leslie

• Alain Leufroy +

• George Lewis +

• Max Linke +

• Brandon Liu +

• Benny Malengier +

• Matthias Kümmerer +

• Cimarron Mittelsteadt +

• Eric Moore

• Andrew Nelson +

• Niklas Hambüchen +

• Joel Nothman +

• Clemens Novak

• Emanuele Olivetti +

• Stefan Otte +

• peb +

• Josef Perktold

• pjwerneck

• poolio

220 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

• Jérôme Roy +

• Carl Sandrock +

• Andrew Sczesnak +

• Shauna +

• Fabrice Silva

• Daniel B. Smith

• Patrick Snape +

• Thomas Spura +

• Jacob Stevenson

• Julian Taylor

• Tomas Tomecek

• Richard Tsai

• Jacob Vanderplas

• Joris Vankerschaver +

• Pauli Virtanen

• Warren Weckesser

A total of 80 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed

• #1325: add custom axis keyword to dendrogram function in scipy.cluster.hierarchy...

• #1437: Wrong pochhammer symbol for negative integers (Trac #910)

• #1555: scipy.io.netcdf leaks file descriptors (Trac #1028)

• #1569: sparse matrix failed with element-wise multiplication using numpy.multiply()...

• #1833: Sparse matrices are limited to 2^32 non-zero elements (Trac #1307)

• #1834: scipy.linalg.eig does not normalize eigenvector if B is given...

• #1866: stats for invgamma (Trac #1340)

• #1886: stats.zipf floating point warnings (Trac #1361)

• #1887: Stats continuous distributions - floating point warnings (Trac...

• #1897: scoreatpercentile() does not handle empty list inputs (Trac #1372)

• #1918: splint returns incorrect results (Trac #1393)

• #1949: kurtosistest fails in mstats with type error (Trac #1424)

• #2092: scipy.test leaves darwin27compiled_catalog, cpp and so files...

• #2106: stats ENH: shape parameters in distribution docstrings (Trac...

• #2123: Bad behavior of sparse matrices in a binary ufunc (Trac #1598)

• #2152: Fix mmio/fromfile on gzip on Python 3 (Trac #1627)

4.3. SciPy 0.14.0 Release Notes 221

https://github.com/scipy/scipy/issues/1325
https://github.com/scipy/scipy/issues/1437
https://github.com/scipy/scipy/issues/1555
https://github.com/scipy/scipy/issues/1569
https://github.com/scipy/scipy/issues/1833
https://github.com/scipy/scipy/issues/1834
https://github.com/scipy/scipy/issues/1866
https://github.com/scipy/scipy/issues/1886
https://github.com/scipy/scipy/issues/1887
https://github.com/scipy/scipy/issues/1897
https://github.com/scipy/scipy/issues/1918
https://github.com/scipy/scipy/issues/1949
https://github.com/scipy/scipy/issues/2092
https://github.com/scipy/scipy/issues/2106
https://github.com/scipy/scipy/issues/2123
https://github.com/scipy/scipy/issues/2152

SciPy Reference Guide, Release 0.16.0

• #2164: stats.rice.pdf(x, 0) returns nan (Trac #1639)

• #2169: scipy.optimize.fmin_bfgs not handling functions with boundaries...

• #2177: scipy.cluster.hierarchy.ClusterNode.pre_order returns IndexError...

• #2179: coo.todense() segfaults (Trac #1654)

• #2185: Precision of scipy.ndimage.gaussian_filter*() limited (Trac #1660)

• #2186: scipy.stats.mstats.kurtosistest crashes on 1d input (Trac #1661)

• #2238: Negative p-value on hypergeom.cdf (Trac #1719)

• #2283: ascending order in interpolation routines (Trac #1764)

• #2288: mstats.kurtosistest is incorrectly converting to float, and fails...

• #2396: lpmn wrong results for |z| > 1 (Trac #1877)

• #2398: ss2tf returns num as 2D array instead of 1D (Trac #1879)

• #2406: linkage does not take Unicode strings as method names (Trac #1887)

• #2443: IIR filter design should not transform to tf representation internally

• #2572: class method solve of splu return object corrupted or falsely...

• #2667: stats endless loop ?

• #2671: .stats.hypergeom documentation error in the note about pmf

• #2691: BUG scipy.linalg.lapack: potrf/ptroi interpret their ‘lower’...

• #2721: Allow use of ellipsis in scipy.sparse slicing

• #2741: stats: deprecate and remove alias for special functions

• #2742: stats add rvs to rice distribution

• #2765: bugs stats entropy

• #2832: argrelextrema returns tuple of 2 empty arrays when no peaks found...

• #2861: scipy.stats.scoreatpercentile broken for vector per

• #2891: COBYLA successful termination when constraints violated

• #2919: test failure with the current master

• #2922: ndimage.percentile_filter ignores origin argument for multidimensional...

• #2938: Sparse/dense matrix inplace operations fail due to __numpy_ufunc__

• #2944: MacPorts builds yield 40Mb worth of build warnings

• #2945: FAIL: test_random_complex (test_basic.TestDet)

• #2947: FAIL: Test some trivial edge cases for savgol_filter()

• #2953: Scipy Delaunay triangulation is not oriented

• #2971: scipy.stats.mstats.winsorize documentation error

• #2980: Problems running what seems a perfectly valid example

• #2996: entropy for rv_discrete is incorrect?!

• #2998: Fix numpy version comparisons

• #3002: python setup.py install fails

222 Chapter 4. Release Notes

https://github.com/scipy/scipy/issues/2164
https://github.com/scipy/scipy/issues/2169
https://github.com/scipy/scipy/issues/2177
https://github.com/scipy/scipy/issues/2179
https://github.com/scipy/scipy/issues/2185
https://github.com/scipy/scipy/issues/2186
https://github.com/scipy/scipy/issues/2238
https://github.com/scipy/scipy/issues/2283
https://github.com/scipy/scipy/issues/2288
https://github.com/scipy/scipy/issues/2396
https://github.com/scipy/scipy/issues/2398
https://github.com/scipy/scipy/issues/2406
https://github.com/scipy/scipy/issues/2443
https://github.com/scipy/scipy/issues/2572
https://github.com/scipy/scipy/issues/2667
https://github.com/scipy/scipy/issues/2671
https://github.com/scipy/scipy/issues/2691
https://github.com/scipy/scipy/issues/2721
https://github.com/scipy/scipy/issues/2741
https://github.com/scipy/scipy/issues/2742
https://github.com/scipy/scipy/issues/2765
https://github.com/scipy/scipy/issues/2832
https://github.com/scipy/scipy/issues/2861
https://github.com/scipy/scipy/issues/2891
https://github.com/scipy/scipy/issues/2919
https://github.com/scipy/scipy/issues/2922
https://github.com/scipy/scipy/issues/2938
https://github.com/scipy/scipy/issues/2944
https://github.com/scipy/scipy/issues/2945
https://github.com/scipy/scipy/issues/2947
https://github.com/scipy/scipy/issues/2953
https://github.com/scipy/scipy/issues/2971
https://github.com/scipy/scipy/issues/2980
https://github.com/scipy/scipy/issues/2996
https://github.com/scipy/scipy/issues/2998
https://github.com/scipy/scipy/issues/3002

SciPy Reference Guide, Release 0.16.0

• #3014: Bug in stats.fisher_exact

• #3030: relative entropy using scipy.stats.distribution.entropy when...

• #3037: scipy.optimize.curve_fit leads to unexpected behavior when input...

• #3047: mstats.ttest_rel axis=None, requires masked array

• #3059: BUG: Slices of sparse matrices return incorrect dtype

• #3063: range keyword in binned_statistics incorrect

• #3067: cumtrapz not working as expected

• #3069: sinc

• #3086: standard error calculation inconsistent between ‘stats’ and ‘mstats’

• #3094: Add a perm function into scipy.misc and an enhancement of...

• #3111: scipy.sparse.[hv]stack don’t respect anymore the dtype parameter

• #3172: optimize.curve_fit uses different nomenclature from optimize.leastsq

• #3196: scipy.stats.mstats.gmean does not actually take dtype

• #3212: Dot product of csr_matrix causes segmentation fault

• #3227: ZeroDivisionError in broyden1 when initial guess is the right...

• #3238: lbfgsb output not suppressed by disp=0

• #3249: Sparse matrix min/max/etc don’t support axis=-1

• #3251: cdist performance issue with ‘sqeuclidean’ metric

• #3279: logm fails for singular matrix

• #3285: signal.chirp(method=’hyp’) disallows hyperbolic upsweep

• #3299: MEMORY LEAK: fmin_tnc

• #3330: test failures with the current master

• #3345: scipy and/or numpy change is causing tests to fail in another...

• #3363: splu does not work for non-vector inputs

• #3385: expit does not handle large arguments well

• #3395: specfun.f doesn’t compile with MinGW

• #3399: Error message bug in scipy.cluster.hierarchy.linkage

• #3404: interpolate._ppoly doesn’t build with MinGW

• #3412: Test failures in signal

• #3466: ‘scipy.sparse.csgraph.shortest_path‘ does not work on
‘scipy.sparse.csr_matrix‘ or ‘lil_matrix‘

Pull requests

• #442: ENH: sparse: enable 64-bit index arrays & nnz > 2**31

• #2766: DOC: remove doc/seps/technology-preview.rst

• #2772: TST: stats: Added a regression test for stats.wilcoxon. Closes...

4.3. SciPy 0.14.0 Release Notes 223

https://github.com/scipy/scipy/issues/3014
https://github.com/scipy/scipy/issues/3030
https://github.com/scipy/scipy/issues/3037
https://github.com/scipy/scipy/issues/3047
https://github.com/scipy/scipy/issues/3059
https://github.com/scipy/scipy/issues/3063
https://github.com/scipy/scipy/issues/3067
https://github.com/scipy/scipy/issues/3069
https://github.com/scipy/scipy/issues/3086
https://github.com/scipy/scipy/issues/3094
https://github.com/scipy/scipy/issues/3111
https://github.com/scipy/scipy/issues/3172
https://github.com/scipy/scipy/issues/3196
https://github.com/scipy/scipy/issues/3212
https://github.com/scipy/scipy/issues/3227
https://github.com/scipy/scipy/issues/3238
https://github.com/scipy/scipy/issues/3249
https://github.com/scipy/scipy/issues/3251
https://github.com/scipy/scipy/issues/3279
https://github.com/scipy/scipy/issues/3285
https://github.com/scipy/scipy/issues/3299
https://github.com/scipy/scipy/issues/3330
https://github.com/scipy/scipy/issues/3345
https://github.com/scipy/scipy/issues/3363
https://github.com/scipy/scipy/issues/3385
https://github.com/scipy/scipy/issues/3395
https://github.com/scipy/scipy/issues/3399
https://github.com/scipy/scipy/issues/3404
https://github.com/scipy/scipy/issues/3412
https://github.com/scipy/scipy/issues/3466
https://github.com/scipy/scipy/pull/442
https://github.com/scipy/scipy/pull/2766
https://github.com/scipy/scipy/pull/2772

SciPy Reference Guide, Release 0.16.0

• #2778: Clean up stats._support, close statistics review issues

• #2792: BUG io: fix file descriptor closing for netcdf variables

• #2847: Rice distribution: extend to b=0, add an explicit rvs method.

• #2878: [stats] fix formulas for higher moments of dweibull distribution

• #2904: ENH: moments for the zipf distribution

• #2907: ENH: add coverage info with coveralls.io for Travis runs.

• #2932: BUG+TST: setdiag implementation for dia_matrix (Close #2931)...

• #2942: Misc fixes pointed out by Eclipse PyDev static code analysis

• #2946: ENH: allow non-monotonic input in interp1d

• #2986: BUG: runtests: chdir away from root when running tests

• #2987: DOC: linalg: don’t recommend np.linalg.norm

• #2992: ENH: Add “limit” parameter to dijkstra calculation

• #2995: ENH: Use int shape

• #3006: DOC: stats: add a log base note to the docstring

• #3007: DEP: stats: Deprecate randwppf and randwcdf

• #3008: Fix mstats.kurtosistest, and test coverage for skewtest/normaltest

• #3009: Minor reST typo

• #3010: Add scipy.optimize.Result to API docs

• #3012: Corrects documentation error

• #3052: PEP-8 conformance improvements

• #3064: Binned statistic

• #3068: Fix Issue #3067 fix cumptrapz that was raising an exception when...

• #3073: Arff reader with nominal value of 1 character

• #3074: Some maintenance work

• #3080: Review and clean up all Box-Cox functions

• #3083: Bug: should return 0 if no regions found

• #3085: BUG: Use zpk in IIR filter design to improve accuracy

• #3101: refactor stats tests a bit

• #3112: ENH: implement Akima interpolation in 1D

• #3123: MAINT: an easier way to make ranges from slices

• #3124: File object support for imread and imsave

• #3126: pep8ify stats/distributions.py

• #3134: MAINT: split distributions.py into three files

• #3138: clean up tests for discrete distributions

• #3155: special: handle the edge case lambda=0 in pdtr, pdtrc and pdtrik

• #3156: Rename optimize.Result to OptimizeResult

224 Chapter 4. Release Notes

https://github.com/scipy/scipy/pull/2778
https://github.com/scipy/scipy/pull/2792
https://github.com/scipy/scipy/pull/2847
https://github.com/scipy/scipy/pull/2878
https://github.com/scipy/scipy/pull/2904
https://github.com/scipy/scipy/pull/2907
https://github.com/scipy/scipy/pull/2932
https://github.com/scipy/scipy/pull/2942
https://github.com/scipy/scipy/pull/2946
https://github.com/scipy/scipy/pull/2986
https://github.com/scipy/scipy/pull/2987
https://github.com/scipy/scipy/pull/2992
https://github.com/scipy/scipy/pull/2995
https://github.com/scipy/scipy/pull/3006
https://github.com/scipy/scipy/pull/3007
https://github.com/scipy/scipy/pull/3008
https://github.com/scipy/scipy/pull/3009
https://github.com/scipy/scipy/pull/3010
https://github.com/scipy/scipy/pull/3012
https://github.com/scipy/scipy/pull/3052
https://github.com/scipy/scipy/pull/3064
https://github.com/scipy/scipy/pull/3068
https://github.com/scipy/scipy/pull/3073
https://github.com/scipy/scipy/pull/3074
https://github.com/scipy/scipy/pull/3080
https://github.com/scipy/scipy/pull/3083
https://github.com/scipy/scipy/pull/3085
https://github.com/scipy/scipy/pull/3101
https://github.com/scipy/scipy/pull/3112
https://github.com/scipy/scipy/pull/3123
https://github.com/scipy/scipy/pull/3124
https://github.com/scipy/scipy/pull/3126
https://github.com/scipy/scipy/pull/3134
https://github.com/scipy/scipy/pull/3138
https://github.com/scipy/scipy/pull/3155
https://github.com/scipy/scipy/pull/3156

SciPy Reference Guide, Release 0.16.0

• #3166: BUG: make curve_fit() work with array_like input. Closes gh-3037.

• #3170: Fix numpy version checks

• #3175: use numpy sinc

• #3177: Update numpy version warning, remove oldnumeric import

• #3178: DEP: remove deprecated umfpack wrapper. Closes gh-3002.

• #3179: DOC: add BPoly to the docs

• #3180: Suppress warnings when running stats.test()

• #3181: altered sem func in mstats to match stats

• #3182: Make weave tests behave

• #3183: ENH: Add k-sample Anderson-Darling test to stats module

• #3186: Fix stats.scoreatpercentile

• #3187: DOC: make curve_fit nomenclature same as leastsq

• #3201: Added axis keyword to dendrogram function

• #3207: Make docstring examples in stats.distributions docstrings runnable

• #3218: BUG: integrate: Fix banded jacobian handling in the “vode” and...

• #3222: BUG: limit input ranges in special.nctdtr

• #3223: Fix test errors with numpy master

• #3224: Fix int32 overflows in sparsetools

• #3228: DOC: tf2ss zpk2ss note controller canonical form

• #3234: Add See Also links and Example graphs to filter design *ord functions

• #3235: Updated the buttord function to be consistent with the other...

• #3239: correct doc for pchip interpolation

• #3240: DOC: fix ReST errors in the BPoly docstring

• #3241: RF: check write attr of fileobject without writing

• #3243: a bit of maintanence work in stats

• #3245: BUG/ENH: stats: make frozen distributions hold separate instances

• #3247: ENH function to return nnz per row/column in some sparse matrices

• #3248: ENH much more efficient sparse min/max with axis

• #3252: Fast sqeuclidean

• #3253: FIX support axis=-1 and -2 for sparse reduce methods

• #3254: TST tests for non-canonical input to sparse matrix operations

• #3272: BUG: sparse: fix bugs in dia_matrix.setdiag

• #3278: Also generate a tar.xz when running paver sdist

• #3286: DOC: update 0.14.0 release notes.

• #3289: TST: remove insecure mktemp use in tests

• #3292: MAINT: fix a backwards incompatible change to stats.distributions.__all__

4.3. SciPy 0.14.0 Release Notes 225

https://github.com/scipy/scipy/pull/3166
https://github.com/scipy/scipy/pull/3170
https://github.com/scipy/scipy/pull/3175
https://github.com/scipy/scipy/pull/3177
https://github.com/scipy/scipy/pull/3178
https://github.com/scipy/scipy/pull/3179
https://github.com/scipy/scipy/pull/3180
https://github.com/scipy/scipy/pull/3181
https://github.com/scipy/scipy/pull/3182
https://github.com/scipy/scipy/pull/3183
https://github.com/scipy/scipy/pull/3186
https://github.com/scipy/scipy/pull/3187
https://github.com/scipy/scipy/pull/3201
https://github.com/scipy/scipy/pull/3207
https://github.com/scipy/scipy/pull/3218
https://github.com/scipy/scipy/pull/3222
https://github.com/scipy/scipy/pull/3223
https://github.com/scipy/scipy/pull/3224
https://github.com/scipy/scipy/pull/3228
https://github.com/scipy/scipy/pull/3234
https://github.com/scipy/scipy/pull/3235
https://github.com/scipy/scipy/pull/3239
https://github.com/scipy/scipy/pull/3240
https://github.com/scipy/scipy/pull/3241
https://github.com/scipy/scipy/pull/3243
https://github.com/scipy/scipy/pull/3245
https://github.com/scipy/scipy/pull/3247
https://github.com/scipy/scipy/pull/3248
https://github.com/scipy/scipy/pull/3252
https://github.com/scipy/scipy/pull/3253
https://github.com/scipy/scipy/pull/3254
https://github.com/scipy/scipy/pull/3272
https://github.com/scipy/scipy/pull/3278
https://github.com/scipy/scipy/pull/3286
https://github.com/scipy/scipy/pull/3289
https://github.com/scipy/scipy/pull/3292

SciPy Reference Guide, Release 0.16.0

• #3293: ENH: signal: Allow upsweeps of frequency in the ‘hyperbolic’...

• #3302: ENH: add dtype arg to stats.mstats.gmean and stats.mstats.hmean

• #3307: DOC: add note about different ba forms in tf2zpk

• #3309: doc enhancements to scipy.stats.mstats.winsorize

• #3310: DOC: clarify matrix vs array in mmio docstrings

• #3314: BUG: fix scipy.io.mmread() of gzipped files under Python3

• #3323: ENH: Efficient interpolation on regular grids in arbitrary dimensions

• #3332: DOC: clean up scipy.special docs

• #3335: ENH: improve nanmedian performance

• #3347: BUG: fix use of np.max in stats.fisher_exact

• #3356: ENH: sparse: speed up LIL indexing + assignment via Cython

• #3357: Fix “imresize does not work with size = int”

• #3358: MAINT: rename AkimaInterpolator to Akima1DInterpolator

• #3366: WHT: sparse: reindent dsolve/*.c *.h

• #3367: BUG: sparse/dsolve: fix dense matrix fortran order bugs in superlu...

• #3369: ENH minimize, minimize_scalar: Add support for user-provided...

• #3371: scipy.stats.sigmaclip doesn’t appear in the html docs.

• #3373: BUG: sparse/dsolve: detect invalid LAPACK parameters in superlu...

• #3375: ENH: sparse/dsolve: make the L and U factors of splu and spilu...

• #3377: MAINT: make travis build one target against Numpy 1.5

• #3378: MAINT: fftpack: Remove the use of ’import *’ in a couple test...

• #3381: MAINT: replace np.isinf(x) & (x>0) -> np.isposinf(x) to avoid...

• #3383: MAINT: skip float96 tests on platforms without float96

• #3384: MAINT: add pyflakes to Travis-CI

• #3386: BUG: stable evaluation of expit

• #3388: BUG: SuperLU: fix missing declaration of dlamch

• #3389: BUG: sparse: downcast 64-bit indices safely to intp when required

• #3390: BUG: nonlinear solvers are not confused by lucky guess

• #3391: TST: fix sparse test errors due to axis=-1,-2 usage in np.matrix.sum().

• #3392: BUG: sparse/lil: fix up Cython bugs in fused type lookup

• #3393: BUG: sparse/compressed: work around bug in np.unique in earlier...

• #3394: BUG: allow ClusterNode.pre_order() for non-root nodes

• #3400: BUG: cluster.linkage ValueError typo bug

• #3402: BUG: special: In specfun.f, replace the use of CMPLX with DCMPLX,...

• #3408: MAINT: sparse: Numpy 1.5 compatibility fixes

• #3410: MAINT: interpolate: fix blas defs in _ppoly

226 Chapter 4. Release Notes

https://github.com/scipy/scipy/pull/3293
https://github.com/scipy/scipy/pull/3302
https://github.com/scipy/scipy/pull/3307
https://github.com/scipy/scipy/pull/3309
https://github.com/scipy/scipy/pull/3310
https://github.com/scipy/scipy/pull/3314
https://github.com/scipy/scipy/pull/3323
https://github.com/scipy/scipy/pull/3332
https://github.com/scipy/scipy/pull/3335
https://github.com/scipy/scipy/pull/3347
https://github.com/scipy/scipy/pull/3356
https://github.com/scipy/scipy/pull/3357
https://github.com/scipy/scipy/pull/3358
https://github.com/scipy/scipy/pull/3366
https://github.com/scipy/scipy/pull/3367
https://github.com/scipy/scipy/pull/3369
https://github.com/scipy/scipy/pull/3371
https://github.com/scipy/scipy/pull/3373
https://github.com/scipy/scipy/pull/3375
https://github.com/scipy/scipy/pull/3377
https://github.com/scipy/scipy/pull/3378
https://github.com/scipy/scipy/pull/3381
https://github.com/scipy/scipy/pull/3383
https://github.com/scipy/scipy/pull/3384
https://github.com/scipy/scipy/pull/3386
https://github.com/scipy/scipy/pull/3388
https://github.com/scipy/scipy/pull/3389
https://github.com/scipy/scipy/pull/3390
https://github.com/scipy/scipy/pull/3391
https://github.com/scipy/scipy/pull/3392
https://github.com/scipy/scipy/pull/3393
https://github.com/scipy/scipy/pull/3394
https://github.com/scipy/scipy/pull/3400
https://github.com/scipy/scipy/pull/3402
https://github.com/scipy/scipy/pull/3408
https://github.com/scipy/scipy/pull/3410

SciPy Reference Guide, Release 0.16.0

• #3411: MAINT: Numpy 1.5 fixes in interpolate

• #3413: Fix more test issues with older numpy versions

• #3414: TST: signal: loosen some error tolerances in the filter tests....

• #3415: MAINT: tools: automated close issue + pr listings for release...

• #3440: MAINT: wrap sparsetools manually instead via SWIG

• #3460: TST: open image file in binary mode

• #3467: BUG: fix validation in csgraph.shortest_path

4.4 SciPy 0.13.2 Release Notes

SciPy 0.13.2 is a bug-fix release with no new features compared to 0.13.1.

4.4.1 Issues fixed

• 3096: require Cython 0.19, earlier versions have memory leaks in fused types

• 3079: ndimage.label fix swapped 64-bitness test

• 3108: optimize.fmin_slsqp constraint violation

4.5 SciPy 0.13.1 Release Notes

SciPy 0.13.1 is a bug-fix release with no new features compared to 0.13.0. The only changes are several fixes in
ndimage, one of which was a serious regression in ndimage.label (Github issue 3025), which gave incorrect
results in 0.13.0.

4.5.1 Issues fixed

• 3025: ndimage.label returns incorrect results in scipy 0.13.0

• 1992: ndimage.label return type changed from int32 to uint32

• 1992: ndimage.find_objects doesn’t work with int32 input in some cases

4.6 SciPy 0.13.0 Release Notes

4.4. SciPy 0.13.2 Release Notes 227

https://github.com/scipy/scipy/pull/3411
https://github.com/scipy/scipy/pull/3413
https://github.com/scipy/scipy/pull/3414
https://github.com/scipy/scipy/pull/3415
https://github.com/scipy/scipy/pull/3440
https://github.com/scipy/scipy/pull/3460
https://github.com/scipy/scipy/pull/3467

SciPy Reference Guide, Release 0.16.0

Contents

• SciPy 0.13.0 Release Notes
– New features

* scipy.integrate improvements
· N-dimensional numerical integration
· dopri* improvements

* scipy.linalg improvements
· Interpolative decompositions
· Polar decomposition
· BLAS level 3 functions
· Matrix functions

* scipy.optimize improvements
· Trust-region unconstrained minimization algorithms

* scipy.sparse improvements
· Boolean comparisons and sparse matrices
· CSR and CSC fancy indexing

* scipy.sparse.linalg improvements
* scipy.spatial improvements
* scipy.signal improvements
* scipy.special improvements
* scipy.io improvements

· Unformatted Fortran file reader
· scipy.io.wavfile enhancements

* scipy.interpolate improvements
· B-spline derivatives and antiderivatives

* scipy.stats improvements
– Deprecated features

* expm2 and expm3
* scipy.stats functions

– Backwards incompatible changes
* LIL matrix assignment
* Deprecated radon function removed
* Removed deprecated keywords xa and xb from stats.distributions

* Changes to MATLAB file readers / writers
– Other changes
– Authors

SciPy 0.13.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes,
improved test coverage and better documentation. There have been a number of deprecations and API changes in
this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large
number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the
0.13.x branch, and on adding new features on the master branch.

This release requires Python 2.6, 2.7 or 3.1-3.3 and NumPy 1.5.1 or greater. Highlights of this release are:

• support for fancy indexing and boolean comparisons with sparse matrices

• interpolative decompositions and matrix functions in the linalg module

• two new trust-region solvers for unconstrained minimization

228 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

4.6.1 New features

scipy.integrate improvements

N-dimensional numerical integration

A new function scipy.integrate.nquad, which provides N-dimensional integration functionality with a more
flexible interface than dblquad and tplquad, has been added.

dopri* improvements

The intermediate results from the dopri family of ODE solvers can now be accessed by a solout callback function.

scipy.linalg improvements

Interpolative decompositions

Scipy now includes a new module scipy.linalg.interpolative containing routines for computing interpola-
tive matrix decompositions (ID). This feature is based on the ID software package by P.G. Martinsson, V. Rokhlin, Y.
Shkolnisky, and M. Tygert, previously adapted for Python in the PymatrixId package by K.L. Ho.

Polar decomposition

A new function scipy.linalg.polar, to compute the polar decomposition of a matrix, was added.

BLAS level 3 functions

The BLAS functions symm, syrk, syr2k, hemm, herk and her2k are now wrapped in scipy.linalg.

Matrix functions

Several matrix function algorithms have been implemented or updated following detailed descriptions in recent pa-
pers of Nick Higham and his co-authors. These include the matrix square root (sqrtm), the matrix logarithm
(logm), the matrix exponential (expm) and its Frechet derivative (expm_frechet), and fractional matrix powers
(fractional_matrix_power).

scipy.optimize improvements

Trust-region unconstrained minimization algorithms

The minimize function gained two trust-region solvers for unconstrained minimization: dogleg and trust-ncg.

scipy.sparse improvements

Boolean comparisons and sparse matrices

All sparse matrix types now support boolean data, and boolean operations. Two sparse matrices A and B can be com-
pared in all the expected ways A < B, A >= B, A != B, producing similar results as dense Numpy arrays. Comparisons
with dense matrices and scalars are also supported.

CSR and CSC fancy indexing

Compressed sparse row and column sparse matrix types now support fancy indexing with boolean matrices, slices,
and lists. So where A is a (CSC or CSR) sparse matrix, you can do things like:

4.6. SciPy 0.13.0 Release Notes 229

SciPy Reference Guide, Release 0.16.0

>>> A[A > 0.5] = 1 # since Boolean sparse matrices work
>>> A[:2, :3] = 2
>>> A[[1,2], 2] = 3

scipy.sparse.linalg improvements

The new function onenormest provides a lower bound of the 1-norm of a linear operator and has been implemented
according to Higham and Tisseur (2000). This function is not only useful for sparse matrices, but can also be used to
estimate the norm of products or powers of dense matrices without explicitly building the intermediate matrix.

The multiplicative action of the matrix exponential of a linear operator (expm_multiply) has been implemented
following the description in Al-Mohy and Higham (2011).

Abstract linear operators (scipy.sparse.linalg.LinearOperator) can now be multiplied, added to each
other, and exponentiated, producing new linear operators. This enables easier construction of composite linear opera-
tions.

scipy.spatial improvements

The vertices of a ConvexHull can now be accessed via the vertices attribute, which gives proper orientation in 2-D.

scipy.signal improvements

The cosine window function scipy.signal.cosine was added.

scipy.special improvements

New functions scipy.special.xlogy and scipy.special.xlog1py were added. These functions can
simplify and speed up code that has to calculate x * log(y) and give 0 when x == 0.

scipy.io improvements

Unformatted Fortran file reader

The new class scipy.io.FortranFile facilitates reading unformatted sequential files written by Fortran code.

scipy.io.wavfile enhancements

scipy.io.wavfile.write now accepts a file buffer. Previously it only accepted a filename.

scipy.io.wavfile.read and scipy.io.wavfile.write can now handle floating point WAV files.

scipy.interpolate improvements

B-spline derivatives and antiderivatives

scipy.interpolate.splder and scipy.interpolate.splantider functions for comput-
ing B-splines that represent derivatives and antiderivatives of B-splines were added. These functions
are also available in the class-based FITPACK interface as UnivariateSpline.derivative and
UnivariateSpline.antiderivative.

230 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

scipy.stats improvements

Distributions now allow using keyword parameters in addition to positional parameters in all methods.

The function scipy.stats.power_divergence has been added for the Cressie-Read power divergence statistic
and goodness of fit test. Included in this family of statistics is the “G-test” (http://en.wikipedia.org/wiki/G-test).

scipy.stats.mood now accepts multidimensional input.

An option was added to scipy.stats.wilcoxon for continuity correction.

scipy.stats.chisquare now has an axis argument.

scipy.stats.mstats.chisquare now has axis and ddof arguments.

4.6.2 Deprecated features

expm2 and expm3

The matrix exponential functions scipy.linalg.expm2 and scipy.linalg.expm3 are deprecated. All users
should use the numerically more robust scipy.linalg.expm function instead.

scipy.stats functions

scipy.stats.oneway is deprecated; scipy.stats.f_oneway should be used instead.

scipy.stats.glm is deprecated. scipy.stats.ttest_ind is an equivalent function; more full-featured general
(and generalized) linear model implementations can be found in statsmodels.

scipy.stats.cmedian is deprecated; numpy.median should be used instead.

4.6.3 Backwards incompatible changes

LIL matrix assignment

Assigning values to LIL matrices with two index arrays now works similarly as assigning into ndarrays:

>>> x = lil_matrix((3, 3))
>>> x[[0,1,2],[0,1,2]]=[0,1,2]
>>> x.todense()
matrix([[0., 0., 0.],

[0., 1., 0.],
[0., 0., 2.]])

rather than giving the result:

>>> x.todense()
matrix([[0., 1., 2.],

[0., 1., 2.],
[0., 1., 2.]])

Users relying on the previous behavior will need to revisit their code. The previous behavior is obtained by
x[numpy.ix_([0,1,2],[0,1,2])] =

4.6. SciPy 0.13.0 Release Notes 231

http://en.wikipedia.org/wiki/G-test

SciPy Reference Guide, Release 0.16.0

Deprecated radon function removed

The misc.radon function, which was deprecated in scipy 0.11.0, has been removed. Users can find a more full-
featured radon function in scikit-image.

Removed deprecated keywords xa and xb from stats.distributions

The keywords xa and xb, which were deprecated since 0.11.0, have been removed from the distributions in
scipy.stats.

Changes to MATLAB file readers / writers

The major change is that 1D arrays in numpy now become row vectors (shape 1, N) when saved to a MATLAB 5 format
file. Previously 1D arrays saved as column vectors (N, 1). This is to harmonize the behavior of writing MATLAB 4
and 5 formats, and adapt to the defaults of numpy and MATLAB - for example np.atleast_2d returns 1D arrays
as row vectors.

Trying to save arrays of greater than 2 dimensions in MATLAB 4 format now raises an error instead of silently
reshaping the array as 2D.

scipy.io.loadmat(’afile’) used to look for afile on the Python system path (sys.path); now loadmat
only looks in the current directory for a relative path filename.

4.6.4 Other changes

Security fix: scipy.weave previously used temporary directories in an insecure manner under certain circum-
stances.

Cython is now required to build unreleased versions of scipy. The C files generated from Cython sources are not
included in the git repo anymore. They are however still shipped in source releases.

The code base received a fairly large PEP8 cleanup. A tox pep8 command has been added; new code should pass
this test command.

Scipy cannot be compiled with gfortran 4.1 anymore (at least on RH5), likely due to that compiler version not sup-
porting entry constructs well.

4.6.5 Authors

This release contains work by the following people (contributed at least one patch to this release, names in alphabetical
order):

• Jorge Cañardo Alastuey +

• Tom Aldcroft +

• Max Bolingbroke +

• Joseph Jon Booker +

• François Boulogne

• Matthew Brett

• Christian Brodbeck +

• Per Brodtkorb +

232 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

• Christian Brueffer +

• Lars Buitinck

• Evgeni Burovski +

• Tim Cera

• Lawrence Chan +

• David Cournapeau

• Drazen Lucanin +

• Alexander J. Dunlap +

• endolith

• André Gaul +

• Christoph Gohlke

• Ralf Gommers

• Alex Griffing +

• Blake Griffith +

• Charles Harris

• Bob Helmbold +

• Andreas Hilboll

• Kat Huang +

• Oleksandr (Sasha) Huziy +

• Gert-Ludwig Ingold +

• Thouis (Ray) Jones

• Juan Luis Cano Rodríguez +

• Robert Kern

• Andreas Kloeckner +

• Sytse Knypstra +

• Gustav Larsson +

• Denis Laxalde

• Christopher Lee

• Tim Leslie

• Wendy Liu +

• Clemens Novak +

• Takuya Oshima +

• Josef Perktold

• Illia Polosukhin +

• Przemek Porebski +

• Steve Richardson +

4.6. SciPy 0.13.0 Release Notes 233

SciPy Reference Guide, Release 0.16.0

• Branden Rolston +

• Skipper Seabold

• Fazlul Shahriar

• Leo Singer +

• Rohit Sivaprasad +

• Daniel B. Smith +

• Julian Taylor

• Louis Thibault +

• Tomas Tomecek +

• John Travers

• Richard Tsai +

• Jacob Vanderplas

• Patrick Varilly

• Pauli Virtanen

• Stefan van der Walt

• Warren Weckesser

• Pedro Werneck +

• Nils Werner +

• Michael Wimmer +

• Nathan Woods +

• Tony S. Yu +

A total of 65 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

4.7 SciPy 0.12.1 Release Notes

SciPy 0.12.1 is a bug-fix release with no new features compared to 0.12.0. The single issue fixed by this release is
a security issue in scipy.weave, which was previously using temporary directories in an insecure manner under
certain circumstances.

4.8 SciPy 0.12.0 Release Notes

234 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

Contents

• SciPy 0.12.0 Release Notes
– New features

* scipy.spatial improvements
· cKDTree feature-complete
· Voronoi diagrams and convex hulls
· Delaunay improvements

* Spectral estimators (scipy.signal)
* scipy.optimize improvements

· Callback functions in L-BFGS-B and TNC
· Basin hopping global optimization (scipy.optimize.basinhopping)

* scipy.special improvements
· Revised complex error functions
· Faster orthogonal polynomials

* scipy.sparse.linalg features
* Listing Matlab(R) file contents in scipy.io
* Documented BLAS and LAPACK low-level interfaces (scipy.linalg)
* Polynomial interpolation improvements (scipy.interpolate)

– Deprecated features
* scipy.lib.lapack

* fblas and cblas
– Backwards incompatible changes

* Removal of scipy.io.save_as_module
* axis argument added to scipy.stats.scoreatpercentile

– Authors

SciPy 0.12.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes,
improved test coverage and better documentation. There have been a number of deprecations and API changes in
this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large
number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the
0.12.x branch, and on adding new features on the master branch.

Some of the highlights of this release are:

• Completed QHull wrappers in scipy.spatial.

• cKDTree now a drop-in replacement for KDTree.

• A new global optimizer, basinhopping.

• Support for Python 2 and Python 3 from the same code base (no more 2to3).

This release requires Python 2.6, 2.7 or 3.1-3.3 and NumPy 1.5.1 or greater. Support for Python 2.4 and 2.5 has been
dropped as of this release.

4.8.1 New features

scipy.spatial improvements

cKDTree feature-complete

Cython version of KDTree, cKDTree, is now feature-complete. Most operations (construction, query,
query_ball_point, query_pairs, count_neighbors and sparse_distance_matrix) are between 200 and 1000 times faster

4.8. SciPy 0.12.0 Release Notes 235

SciPy Reference Guide, Release 0.16.0

in cKDTree than in KDTree. With very minor caveats, cKDTree has exactly the same interface as KDTree, and can be
used as a drop-in replacement.

Voronoi diagrams and convex hulls

scipy.spatial now contains functionality for computing Voronoi diagrams and convex hulls using the Qhull
library. (Delaunay triangulation was available since Scipy 0.9.0.)

Delaunay improvements

It’s now possible to pass in custom Qhull options in Delaunay triangulation. Coplanar points are now also recorded, if
present. Incremental construction of Delaunay triangulations is now also possible.

Spectral estimators (scipy.signal)

The functions scipy.signal.periodogram and scipy.signal.welch were added, providing DFT-based
spectral estimators.

scipy.optimize improvements

Callback functions in L-BFGS-B and TNC

A callback mechanism was added to L-BFGS-B and TNC minimization solvers.

Basin hopping global optimization (scipy.optimize.basinhopping)

A new global optimization algorithm. Basinhopping is designed to efficiently find the global minimum of a smooth
function.

scipy.special improvements

Revised complex error functions

The computation of special functions related to the error function now uses a new Faddeeva library from MIT which
increases their numerical precision. The scaled and imaginary error functions erfcx and erfi were also added, and
the Dawson integral dawsn can now be evaluated for a complex argument.

Faster orthogonal polynomials

Evaluation of orthogonal polynomials (the eval_* routines) in now faster in scipy.special, and their out=
argument functions properly.

scipy.sparse.linalg features

• In scipy.sparse.linalg.spsolve, the b argument can now be either a vector or a matrix.

• scipy.sparse.linalg.inv was added. This uses spsolve to compute a sparse matrix inverse.

• scipy.sparse.linalg.expmwas added. This computes the exponential of a sparse matrix using a similar
algorithm to the existing dense array implementation in scipy.linalg.expm.

Listing Matlab(R) file contents in scipy.io

A new function whosmat is available in scipy.io for inspecting contents of MAT files without reading them to
memory.

236 Chapter 4. Release Notes

http://ab-initio.mit.edu/Faddeeva

SciPy Reference Guide, Release 0.16.0

Documented BLAS and LAPACK low-level interfaces (scipy.linalg)

The modules scipy.linalg.blas and scipy.linalg.lapack can be used to access low-level BLAS and
LAPACK functions.

Polynomial interpolation improvements (scipy.interpolate)

The barycentric, Krogh, piecewise and pchip polynomial interpolators in scipy.interpolate accept now an
axis argument.

4.8.2 Deprecated features

scipy.lib.lapack

The module scipy.lib.lapack is deprecated. You can use scipy.linalg.lapack instead. The module
scipy.lib.blas was deprecated earlier in Scipy 0.10.0.

fblas and cblas

Accessing the modules scipy.linalg.fblas, cblas, flapack, clapack is deprecated. Instead, use the modules
scipy.linalg.lapack and scipy.linalg.blas.

4.8.3 Backwards incompatible changes

Removal of scipy.io.save_as_module

The function scipy.io.save_as_module was deprecated in Scipy 0.11.0, and is now removed.

Its private support modules scipy.io.dumbdbm_patched and scipy.io.dumb_shelve are also removed.

axis argument added to scipy.stats.scoreatpercentile

The function scipy.stats.scoreatpercentile has been given an axis argument. The default argument is
axis=None, which means the calculation is done on the flattened array. Before this change, scoreatpercentile would
act as if axis=0 had been given. Code using scoreatpercentile with a multidimensional array will need to add axis=0 to
the function call to preserve the old behavior. (This API change was not noticed until long after the release of 0.12.0.)

4.8.4 Authors

• Anton Akhmerov +

• Alexander Eberspächer +

• Anne Archibald

• Jisk Attema +

• K.-Michael Aye +

• bemasc +

• Sebastian Berg +

4.8. SciPy 0.12.0 Release Notes 237

SciPy Reference Guide, Release 0.16.0

• François Boulogne +

• Matthew Brett

• Lars Buitinck

• Steven Byrnes +

• Tim Cera +

• Christian +

• Keith Clawson +

• David Cournapeau

• Nathan Crock +

• endolith

• Bradley M. Froehle +

• Matthew R Goodman

• Christoph Gohlke

• Ralf Gommers

• Robert David Grant +

• Yaroslav Halchenko

• Charles Harris

• Jonathan Helmus

• Andreas Hilboll

• Hugo +

• Oleksandr Huziy

• Jeroen Demeyer +

• Johannes Schönberger +

• Steven G. Johnson +

• Chris Jordan-Squire

• Jonathan Taylor +

• Niklas Kroeger +

• Jerome Kieffer +

• kingson +

• Josh Lawrence

• Denis Laxalde

• Alex Leach +

• Tim Leslie

• Richard Lindsley +

• Lorenzo Luengo +

• Stephen McQuay +

238 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

• MinRK

• Sturla Molden +

• Eric Moore +

• mszep +

• Matt Newville +

• Vlad Niculae

• Travis Oliphant

• David Parker +

• Fabian Pedregosa

• Josef Perktold

• Zach Ploskey +

• Alex Reinhart +

• Gilles Rochefort +

• Ciro Duran Santillli +

• Jan Schlueter +

• Jonathan Scholz +

• Anthony Scopatz

• Skipper Seabold

• Fabrice Silva +

• Scott Sinclair

• Jacob Stevenson +

• Sturla Molden +

• Julian Taylor +

• thorstenkranz +

• John Travers +

• True Price +

• Nicky van Foreest

• Jacob Vanderplas

• Patrick Varilly

• Daniel Velkov +

• Pauli Virtanen

• Stefan van der Walt

• Warren Weckesser

A total of 75 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

4.8. SciPy 0.12.0 Release Notes 239

SciPy Reference Guide, Release 0.16.0

4.9 SciPy 0.11.0 Release Notes

Contents

• SciPy 0.11.0 Release Notes
– New features

* Sparse Graph Submodule
* scipy.optimize improvements

· Unified interfaces to minimizers
· Unified interface to root finding algorithms

* scipy.linalg improvements
· New matrix equation solvers
· QZ and QR Decomposition
· Pascal matrices

* Sparse matrix construction and operations
* LSMR iterative solver
* Discrete Sine Transform
* scipy.interpolate improvements
* Binned statistics (scipy.stats)

– Deprecated features
– Backwards incompatible changes

* Removal of scipy.maxentropy
* Minor change in behavior of splev
* Behavior of scipy.integrate.complex_ode
* Minor change in behavior of T-tests

– Other changes
– Authors

SciPy 0.11.0 is the culmination of 8 months of hard work. It contains many new features, numerous bug-fixes,
improved test coverage and better documentation. Highlights of this release are:

• A new module has been added which provides a number of common sparse graph algorithms.

• New unified interfaces to the existing optimization and root finding functions have been added.

All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Our
development attention will now shift to bug-fix releases on the 0.11.x branch, and on adding new features on the master
branch.

This release requires Python 2.4-2.7 or 3.1-3.2 and NumPy 1.5.1 or greater.

4.9.1 New features

Sparse Graph Submodule

The new submodule scipy.sparse.csgraph implements a number of efficient graph algorithms for graphs
stored as sparse adjacency matrices. Available routines are:

• connected_components - determine connected components of a graph

• laplacian - compute the laplacian of a graph

• shortest_path - compute the shortest path between points on a positive graph

• dijkstra - use Dijkstra’s algorithm for shortest path

240 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

• floyd_warshall - use the Floyd-Warshall algorithm for shortest path

• breadth_first_order - compute a breadth-first order of nodes

• depth_first_order - compute a depth-first order of nodes

• breadth_first_tree - construct the breadth-first tree from a given node

• depth_first_tree - construct a depth-first tree from a given node

• minimum_spanning_tree - construct the minimum spanning tree of a graph

scipy.optimize improvements

The optimize module has received a lot of attention this release. In addition to added tests, documentation improve-
ments, bug fixes and code clean-up, the following improvements were made:

• A unified interface to minimizers of univariate and multivariate functions has been added.

• A unified interface to root finding algorithms for multivariate functions has been added.

• The L-BFGS-B algorithm has been updated to version 3.0.

Unified interfaces to minimizers

Two new functions scipy.optimize.minimize and scipy.optimize.minimize_scalar were added
to provide a common interface to minimizers of multivariate and univariate functions respectively. For multivari-
ate functions, scipy.optimize.minimize provides an interface to methods for unconstrained optimization
(fmin, fmin_powell, fmin_cg, fmin_ncg, fmin_bfgs and anneal) or constrained optimization (fmin_l_bfgs_b, fmin_tnc,
fmin_cobyla and fmin_slsqp). For univariate functions, scipy.optimize.minimize_scalar provides an in-
terface to methods for unconstrained and bounded optimization (brent, golden, fminbound). This allows for easier
comparing and switching between solvers.

Unified interface to root finding algorithms

The new function scipy.optimize.root provides a common interface to root finding algorithms for multivariate
functions, embeding fsolve, leastsq and nonlin solvers.

scipy.linalg improvements

New matrix equation solvers

Solvers for the Sylvester equation (scipy.linalg.solve_sylvester, discrete and continuous Lya-
punov equations (scipy.linalg.solve_lyapunov, scipy.linalg.solve_discrete_lyapunov)
and discrete and continuous algebraic Riccati equations (scipy.linalg.solve_continuous_are,
scipy.linalg.solve_discrete_are) have been added to scipy.linalg. These solvers are often used in
the field of linear control theory.

QZ and QR Decomposition

It is now possible to calculate the QZ, or Generalized Schur, decomposition using scipy.linalg.qz. This func-
tion wraps the LAPACK routines sgges, dgges, cgges, and zgges.

The function scipy.linalg.qr_multiply, which allows efficient computation of the matrix product of Q (from
a QR decomposition) and a vector, has been added.

Pascal matrices

A function for creating Pascal matrices, scipy.linalg.pascal, was added.

4.9. SciPy 0.11.0 Release Notes 241

SciPy Reference Guide, Release 0.16.0

Sparse matrix construction and operations

Two new functions, scipy.sparse.diags and scipy.sparse.block_diag, were added to easily construct
diagonal and block-diagonal sparse matrices respectively.

scipy.sparse.csc_matrix and csr_matrix now support the operations sin, tan, arcsin, arctan,
sinh, tanh, arcsinh, arctanh, rint, sign, expm1, log1p, deg2rad, rad2deg, floor, ceil and
trunc. Previously, these operations had to be performed by operating on the matrices’ data attribute.

LSMR iterative solver

LSMR, an iterative method for solving (sparse) linear and linear least-squares systems, was added as
scipy.sparse.linalg.lsmr.

Discrete Sine Transform

Bindings for the discrete sine transform functions have been added to scipy.fftpack.

scipy.interpolate improvements

For interpolation in spherical coordinates, the three classes scipy.interpolate.SmoothSphereBivariateSpline,
scipy.interpolate.LSQSphereBivariateSpline, and scipy.interpolate.RectSphereBivariateSpline
have been added.

Binned statistics (scipy.stats)

The stats module has gained functions to do binned statistics, which are a generalization of histograms, in 1-D, 2-D
and multiple dimensions: scipy.stats.binned_statistic, scipy.stats.binned_statistic_2d
and scipy.stats.binned_statistic_dd.

4.9.2 Deprecated features

scipy.sparse.cs_graph_components has been made a part of the sparse graph submodule, and renamed to
scipy.sparse.csgraph.connected_components. Calling the former routine will result in a deprecation
warning.

scipy.misc.radon has been deprecated. A more full-featured radon transform can be found in scikits-image.

scipy.io.save_as_module has been deprecated. A better way to save multiple Numpy arrays is the
numpy.savez function.

The xa and xb parameters for all distributions in scipy.stats.distributions already weren’t used; they have
now been deprecated.

4.9.3 Backwards incompatible changes

Removal of scipy.maxentropy

The scipy.maxentropy module, which was deprecated in the 0.10.0 release, has been removed. Logistic regres-
sion in scikits.learn is a good and modern alternative for this functionality.

242 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

Minor change in behavior of splev

The spline evaluation function now behaves similarly to interp1d for size-1 arrays. Previous behavior:

>>> from scipy.interpolate import splev, splrep, interp1d
>>> x = [1,2,3,4,5]
>>> y = [4,5,6,7,8]
>>> tck = splrep(x, y)
>>> splev([1], tck)
4.
>>> splev(1, tck)
4.

Corrected behavior:

>>> splev([1], tck)
array([4.])
>>> splev(1, tck)
array(4.)

This affects also the UnivariateSpline classes.

Behavior of scipy.integrate.complex_ode

The behavior of the y attribute of complex_ode is changed. Previously, it expressed the complex-valued solution
in the form:

z = ode.y[::2] + 1j * ode.y[1::2]

Now, it is directly the complex-valued solution:

z = ode.y

Minor change in behavior of T-tests

The T-tests scipy.stats.ttest_ind, scipy.stats.ttest_rel and scipy.stats.ttest_1samp
have been changed so that 0 / 0 now returns NaN instead of 1.

4.9.4 Other changes

The SuperLU sources in scipy.sparse.linalg have been updated to version 4.3 from upstream.

The function scipy.signal.bode, which calculates magnitude and phase data for a continuous-time system, has
been added.

The two-sample T-test scipy.stats.ttest_ind gained an option to compare samples with unequal variances,
i.e. Welch’s T-test.

scipy.misc.logsumexp now takes an optional axis keyword argument.

4.9.5 Authors

This release contains work by the following people (contributed at least one patch to this release, names in alphabetical
order):

• Jeff Armstrong

4.9. SciPy 0.11.0 Release Notes 243

SciPy Reference Guide, Release 0.16.0

• Chad Baker

• Brandon Beacher +

• behrisch +

• borishim +

• Matthew Brett

• Lars Buitinck

• Luis Pedro Coelho +

• Johann Cohen-Tanugi

• David Cournapeau

• dougal +

• Ali Ebrahim +

• endolith +

• Bjørn Forsman +

• Robert Gantner +

• Sebastian Gassner +

• Christoph Gohlke

• Ralf Gommers

• Yaroslav Halchenko

• Charles Harris

• Jonathan Helmus +

• Andreas Hilboll +

• Marc Honnorat +

• Jonathan Hunt +

• Maxim Ivanov +

• Thouis (Ray) Jones

• Christopher Kuster +

• Josh Lawrence +

• Denis Laxalde +

• Travis Oliphant

• Joonas Paalasmaa +

• Fabian Pedregosa

• Josef Perktold

• Gavin Price +

• Jim Radford +

• Andrew Schein +

• Skipper Seabold

244 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

• Jacob Silterra +

• Scott Sinclair

• Alexis Tabary +

• Martin Teichmann

• Matt Terry +

• Nicky van Foreest +

• Jacob Vanderplas

• Patrick Varilly +

• Pauli Virtanen

• Nils Wagner +

• Darryl Wally +

• Stefan van der Walt

• Liming Wang +

• David Warde-Farley +

• Warren Weckesser

• Sebastian Werk +

• Mike Wimmer +

• Tony S Yu +

A total of 55 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

4.10 SciPy 0.10.1 Release Notes

Contents

• SciPy 0.10.1 Release Notes
– Main changes
– Other issues fixed

SciPy 0.10.1 is a bug-fix release with no new features compared to 0.10.0.

4.10.1 Main changes

The most important changes are:

1. The single precision routines of eigs and eigsh in scipy.sparse.linalg have been disabled (they
internally use double precision now).

2. A compatibility issue related to changes in NumPy macros has been fixed, in order to make scipy 0.10.1 compile
with the upcoming numpy 1.7.0 release.

4.10. SciPy 0.10.1 Release Notes 245

SciPy Reference Guide, Release 0.16.0

4.10.2 Other issues fixed

• #835: stats: nan propagation in stats.distributions

• #1202: io: netcdf segfault

• #1531: optimize: make curve_fit work with method as callable.

• #1560: linalg: fixed mistake in eig_banded documentation.

• #1565: ndimage: bug in ndimage.variance

• #1457: ndimage: standard_deviation does not work with sequence of indexes

• #1562: cluster: segfault in linkage function

• #1568: stats: One-sided fisher_exact() returns p < 1 for 0 successful attempts

• #1575: stats: zscore and zmap handle the axis keyword incorrectly

4.11 SciPy 0.10.0 Release Notes

Contents

• SciPy 0.10.0 Release Notes
– New features

* Bento: new optional build system
* Generalized and shift-invert eigenvalue problems in scipy.sparse.linalg
* Discrete-Time Linear Systems (scipy.signal)
* Enhancements to scipy.signal
* Additional decomposition options (scipy.linalg)
* Additional special matrices (scipy.linalg)
* Enhancements to scipy.stats
* Enhancements to scipy.special
* Basic support for Harwell-Boeing file format for sparse matrices

– Deprecated features
* scipy.maxentropy

* scipy.lib.blas

* Numscons build system
– Backwards-incompatible changes
– Other changes
– Authors

SciPy 0.10.0 is the culmination of 8 months of hard work. It contains many new features, numerous bug-fixes,
improved test coverage and better documentation. There have been a limited number of deprecations and backwards-
incompatible changes in this release, which are documented below. All users are encouraged to upgrade to this release,
as there are a large number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-
fix releases on the 0.10.x branch, and on adding new features on the development master branch.

Release highlights:

• Support for Bento as optional build system.

• Support for generalized eigenvalue problems, and all shift-invert modes available in ARPACK.

This release requires Python 2.4-2.7 or 3.1- and NumPy 1.5 or greater.

246 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

4.11.1 New features

Bento: new optional build system

Scipy can now be built with Bento. Bento has some nice features like parallel builds and partial rebuilds, that are not
possible with the default build system (distutils). For usage instructions see BENTO_BUILD.txt in the scipy top-level
directory.

Currently Scipy has three build systems, distutils, numscons and bento. Numscons is deprecated and is planned and
will likely be removed in the next release.

Generalized and shift-invert eigenvalue problems in scipy.sparse.linalg

The sparse eigenvalue problem solver functions scipy.sparse.eigs/eigh now support generalized eigenvalue
problems, and all shift-invert modes available in ARPACK.

Discrete-Time Linear Systems (scipy.signal)

Support for simulating discrete-time linear systems, including scipy.signal.dlsim,
scipy.signal.dimpulse, and scipy.signal.dstep, has been added to SciPy. Conver-
sion of linear systems from continuous-time to discrete-time representations is also present via the
scipy.signal.cont2discrete function.

Enhancements to scipy.signal

A Lomb-Scargle periodogram can now be computed with the new function scipy.signal.lombscargle.

The forward-backward filter function scipy.signal.filtfilt can now filter the data in a given axis of an n-
dimensional numpy array. (Previously it only handled a 1-dimensional array.) Options have been added to allow more
control over how the data is extended before filtering.

FIR filter design with scipy.signal.firwin2 now has options to create filters of type III (zero at zero and
Nyquist frequencies) and IV (zero at zero frequency).

Additional decomposition options (scipy.linalg)

A sort keyword has been added to the Schur decomposition routine (scipy.linalg.schur) to allow the sorting
of eigenvalues in the resultant Schur form.

Additional special matrices (scipy.linalg)

The functions hilbert and invhilbert were added to scipy.linalg.

Enhancements to scipy.stats

• The one-sided form of Fisher’s exact test is now also implemented in stats.fisher_exact.

• The function stats.chi2_contingency for computing the chi-square test of independence of factors in a
contingency table has been added, along with the related utility functions stats.contingency.margins
and stats.contingency.expected_freq.

4.11. SciPy 0.10.0 Release Notes 247

http://cournape.github.com/Bento/

SciPy Reference Guide, Release 0.16.0

Enhancements to scipy.special

The functions logit(p) = log(p/(1-p)) and expit(x) = 1/(1+exp(-x)) have been implemented as
scipy.special.logit and scipy.special.expit respectively.

Basic support for Harwell-Boeing file format for sparse matrices

Both read and write are support through a simple function-based API, as well as a more complete API to control
number format. The functions may be found in scipy.sparse.io.

The following features are supported:

• Read and write sparse matrices in the CSC format

• Only real, symmetric, assembled matrix are supported (RUA format)

4.11.2 Deprecated features

scipy.maxentropy

The maxentropy module is unmaintained, rarely used and has not been functioning well for several releases. There-
fore it has been deprecated for this release, and will be removed for scipy 0.11. Logistic regression in scikits.learn
is a good alternative for this functionality. The scipy.maxentropy.logsumexp function has been moved to
scipy.misc.

scipy.lib.blas

There are similar BLAS wrappers in scipy.linalg and scipy.lib. These have now been consolidated as
scipy.linalg.blas, and scipy.lib.blas is deprecated.

Numscons build system

The numscons build system is being replaced by Bento, and will be removed in one of the next scipy releases.

4.11.3 Backwards-incompatible changes

The deprecated name invnorm was removed from scipy.stats.distributions, this distribution is available
as invgauss.

The following deprecated nonlinear solvers from scipy.optimize have been removed:

- ``broyden_modified`` (bad performance)
- ``broyden1_modified`` (bad performance)
- ``broyden_generalized`` (equivalent to ``anderson``)
- ``anderson2`` (equivalent to ``anderson``)
- ``broyden3`` (obsoleted by new limited-memory broyden methods)
- ``vackar`` (renamed to ``diagbroyden``)

248 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

4.11.4 Other changes

scipy.constants has been updated with the CODATA 2010 constants.

__all__ dicts have been added to all modules, which has cleaned up the namespaces (particularly useful for inter-
active work).

An API section has been added to the documentation, giving recommended import guidelines and specifying which
submodules are public and which aren’t.

4.11.5 Authors

This release contains work by the following people (contributed at least one patch to this release, names in alphabetical
order):

• Jeff Armstrong +

• Matthew Brett

• Lars Buitinck +

• David Cournapeau

• FI$H 2000 +

• Michael McNeil Forbes +

• Matty G +

• Christoph Gohlke

• Ralf Gommers

• Yaroslav Halchenko

• Charles Harris

• Thouis (Ray) Jones +

• Chris Jordan-Squire +

• Robert Kern

• Chris Lasher +

• Wes McKinney +

• Travis Oliphant

• Fabian Pedregosa

• Josef Perktold

• Thomas Robitaille +

• Pim Schellart +

• Anthony Scopatz +

• Skipper Seabold +

• Fazlul Shahriar +

• David Simcha +

• Scott Sinclair +

4.11. SciPy 0.10.0 Release Notes 249

SciPy Reference Guide, Release 0.16.0

• Andrey Smirnov +

• Collin RM Stocks +

• Martin Teichmann +

• Jake Vanderplas +

• Gaël Varoquaux +

• Pauli Virtanen

• Stefan van der Walt

• Warren Weckesser

• Mark Wiebe +

A total of 35 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

4.12 SciPy 0.9.0 Release Notes

Contents

• SciPy 0.9.0 Release Notes
– Python 3
– Scipy source code location to be changed
– New features

* Delaunay tesselations (scipy.spatial)
* N-dimensional interpolation (scipy.interpolate)
* Nonlinear equation solvers (scipy.optimize)
* New linear algebra routines (scipy.linalg)
* Improved FIR filter design functions (scipy.signal)
* Improved statistical tests (scipy.stats)

– Deprecated features
* Obsolete nonlinear solvers (in scipy.optimize)

– Removed features
* Old correlate/convolve behavior (in scipy.signal)
* scipy.stats

* scipy.sparse

* scipy.sparse.linalg.arpack.speigs
– Other changes

* ARPACK interface changes

SciPy 0.9.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release,
which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-
fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.9.x branch,
and on adding new features on the development trunk.

This release requires Python 2.4 - 2.7 or 3.1 - and NumPy 1.5 or greater.

Please note that SciPy is still considered to have “Beta” status, as we work toward a SciPy 1.0.0 release. The 1.0.0
release will mark a major milestone in the development of SciPy, after which changing the package structure or API
will be much more difficult. Whilst these pre-1.0 releases are considered to have “Beta” status, we are committed to
making them as bug-free as possible.

250 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface.
This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we
need help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything
- from which algorithms we implement, to details about our function’s call signatures.

4.12.1 Python 3

Scipy 0.9.0 is the first SciPy release to support Python 3. The only module that is not yet ported is scipy.weave.

4.12.2 Scipy source code location to be changed

Soon after this release, Scipy will stop using SVN as the version control system, and move to Git. The development
source code for Scipy can from then on be found at

http://github.com/scipy/scipy

4.12.3 New features

Delaunay tesselations (scipy.spatial)

Scipy now includes routines for computing Delaunay tesselations in N dimensions, powered by the Qhull computa-
tional geometry library. Such calculations can now make use of the new scipy.spatial.Delaunay interface.

N-dimensional interpolation (scipy.interpolate)

Support for scattered data interpolation is now significantly improved. This version includes a
scipy.interpolate.griddata function that can perform linear and nearest-neighbour interpolation for
N-dimensional scattered data, in addition to cubic spline (C1-smooth) interpolation in 2D and 1D. An object-oriented
interface to each interpolator type is also available.

Nonlinear equation solvers (scipy.optimize)

Scipy includes new routines for large-scale nonlinear equation solving in scipy.optimize. The following methods
are implemented:

• Newton-Krylov (scipy.optimize.newton_krylov)

• (Generalized) secant methods:

– Limited-memory Broyden methods (scipy.optimize.broyden1,
scipy.optimize.broyden2)

– Anderson method (scipy.optimize.anderson)

• Simple iterations (scipy.optimize.diagbroyden, scipy.optimize.excitingmixing,
scipy.optimize.linearmixing)

The scipy.optimize.nonlin module was completely rewritten, and some of the functions were deprecated (see
above).

4.12. SciPy 0.9.0 Release Notes 251

http://github.com/scipy/scipy
http://www.qhull.org/

SciPy Reference Guide, Release 0.16.0

New linear algebra routines (scipy.linalg)

Scipy now contains routines for effectively solving triangular equation systems
(scipy.linalg.solve_triangular).

Improved FIR filter design functions (scipy.signal)

The function scipy.signal.firwin was enhanced to allow the design of highpass, bandpass, bandstop and
multi-band FIR filters.

The function scipy.signal.firwin2 was added. This function uses the window method to create a linear phase
FIR filter with an arbitrary frequency response.

The functions scipy.signal.kaiser_atten and scipy.signal.kaiser_beta were added.

Improved statistical tests (scipy.stats)

A new function scipy.stats.fisher_exact was added, that provides Fisher’s exact test for 2x2 contingency
tables.

The function scipy.stats.kendalltau was rewritten to make it much faster (O(n log(n)) vs O(n^2)).

4.12.4 Deprecated features

Obsolete nonlinear solvers (in scipy.optimize)

The following nonlinear solvers from scipy.optimize are deprecated:

• broyden_modified (bad performance)

• broyden1_modified (bad performance)

• broyden_generalized (equivalent to anderson)

• anderson2 (equivalent to anderson)

• broyden3 (obsoleted by new limited-memory broyden methods)

• vackar (renamed to diagbroyden)

4.12.5 Removed features

The deprecated modules helpmod, pexec and ppimport were removed from scipy.misc.

The output_type keyword in many scipy.ndimage interpolation functions has been removed.

The econ keyword in scipy.linalg.qr has been removed. The same functionality is still available by specifying
mode=’economic’.

Old correlate/convolve behavior (in scipy.signal)

The old behavior for scipy.signal.convolve, scipy.signal.convolve2d,
scipy.signal.correlate and scipy.signal.correlate2d was deprecated in 0.8.0 and has now
been removed. Convolve and correlate used to swap their arguments if the second argument has dimensions larger
than the first one, and the mode was relative to the input with the largest dimension. The current behavior is to never
swap the inputs, which is what most people expect, and is how correlation is usually defined.

252 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

scipy.stats

Many functions in scipy.stats that are either available from numpy or have been superseded, and have been
deprecated since version 0.7, have been removed: std, var, mean, median, cov, corrcoef, z, zs, stderr, samplestd,
samplevar, pdfapprox, pdf_moments and erfc. These changes are mirrored in scipy.stats.mstats.

scipy.sparse

Several methods of the sparse matrix classes in scipy.sparse which had been deprecated since version 0.7 were
removed: save, rowcol, getdata, listprint, ensure_sorted_indices, matvec, matmat and rmatvec.

The functions spkron, speye, spidentity, lil_eye and lil_diags were removed from scipy.sparse.
The first three functions are still available as scipy.sparse.kron, scipy.sparse.eye and
scipy.sparse.identity.

The dims and nzmax keywords were removed from the sparse matrix constructor. The colind and rowind attributes
were removed from CSR and CSC matrices respectively.

scipy.sparse.linalg.arpack.speigs

A duplicated interface to the ARPACK library was removed.

4.12.6 Other changes

ARPACK interface changes

The interface to the ARPACK eigenvalue routines in scipy.sparse.linalg was changed for more robustness.

The eigenvalue and SVD routines now raise ArpackNoConvergence if the eigenvalue iteration fails to converge.
If partially converged results are desired, they can be accessed as follows:

import numpy as np
from scipy.sparse.linalg import eigs, ArpackNoConvergence

m = np.random.randn(30, 30)
try:

w, v = eigs(m, 6)
except ArpackNoConvergence, err:

partially_converged_w = err.eigenvalues
partially_converged_v = err.eigenvectors

Several bugs were also fixed.

The routines were moreover renamed as follows:

• eigen –> eigs

• eigen_symmetric –> eigsh

• svd –> svds

4.13 SciPy 0.8.0 Release Notes

4.13. SciPy 0.8.0 Release Notes 253

SciPy Reference Guide, Release 0.16.0

Contents

• SciPy 0.8.0 Release Notes
– Python 3
– Major documentation improvements
– Deprecated features

* Swapping inputs for correlation functions (scipy.signal)
* Obsolete code deprecated (scipy.misc)
* Additional deprecations

– New features
* DCT support (scipy.fftpack)
* Single precision support for fft functions (scipy.fftpack)
* Correlation functions now implement the usual definition (scipy.signal)
* Additions and modification to LTI functions (scipy.signal)
* Improved waveform generators (scipy.signal)
* New functions and other changes in scipy.linalg
* New function and changes in scipy.optimize
* New sparse least squares solver
* ARPACK-based sparse SVD
* Alternative behavior available for scipy.constants.find
* Incomplete sparse LU decompositions
* Faster matlab file reader and default behavior change
* Faster evaluation of orthogonal polynomials
* Lambert W function
* Improved hypergeometric 2F1 function
* More flexible interface for Radial basis function interpolation

– Removed features
* scipy.io

SciPy 0.8.0 is the culmination of 17 months of hard work. It contains many new features, numerous bug-fixes,
improved test coverage and better documentation. There have been a number of deprecations and API changes in
this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large
number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the
0.8.x branch, and on adding new features on the development trunk. This release requires Python 2.4 - 2.6 and NumPy
1.4.1 or greater.

Please note that SciPy is still considered to have “Beta” status, as we work toward a SciPy 1.0.0 release. The 1.0.0
release will mark a major milestone in the development of SciPy, after which changing the package structure or API
will be much more difficult. Whilst these pre-1.0 releases are considered to have “Beta” status, we are committed to
making them as bug-free as possible.

However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface.
This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we
need help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything
- from which algorithms we implement, to details about our function’s call signatures.

4.13.1 Python 3

Python 3 compatibility is planned and is currently technically feasible, since Numpy has been ported. However, since
the Python 3 compatible Numpy 1.5 has not been released yet, support for Python 3 in Scipy is not yet included in
Scipy 0.8. SciPy 0.9, planned for fall 2010, will very likely include experimental support for Python 3.

254 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

4.13.2 Major documentation improvements

SciPy documentation is greatly improved.

4.13.3 Deprecated features

Swapping inputs for correlation functions (scipy.signal)

Concern correlate, correlate2d, convolve and convolve2d. If the second input is larger than the first input, the inputs
are swapped before calling the underlying computation routine. This behavior is deprecated, and will be removed in
scipy 0.9.0.

Obsolete code deprecated (scipy.misc)

The modules helpmod, ppimport and pexec from scipy.misc are deprecated. They will be removed from SciPy in
version 0.9.

Additional deprecations

• linalg: The function solveh_banded currently returns a tuple containing the Cholesky factorization and the
solution to the linear system. In SciPy 0.9, the return value will be just the solution.

• The function constants.codata.find will generate a DeprecationWarning. In Scipy version 0.8.0, the keyword
argument ‘disp’ was added to the function, with the default value ‘True’. In 0.9.0, the default will be ‘False’.

• The qshape keyword argument of signal.chirp is deprecated. Use the argument vertex_zero instead.

• Passing the coefficients of a polynomial as the argument f0 to signal.chirp is deprecated. Use the function
signal.sweep_poly instead.

• The io.recaster module has been deprecated and will be removed in 0.9.0.

4.13.4 New features

DCT support (scipy.fftpack)

New realtransforms have been added, namely dct and idct for Discrete Cosine Transform; type I, II and III are available.

Single precision support for fft functions (scipy.fftpack)

fft functions can now handle single precision inputs as well: fft(x) will return a single precision array if x is single
precision.

At the moment, for FFT sizes that are not composites of 2, 3, and 5, the transform is computed internally in double
precision to avoid rounding error in FFTPACK.

Correlation functions now implement the usual definition (scipy.signal)

The outputs should now correspond to their matlab and R counterparts, and do what most people expect if the
old_behavior=False argument is passed:

• correlate, convolve and their 2d counterparts do not swap their inputs depending on their relative shape anymore;

4.13. SciPy 0.8.0 Release Notes 255

SciPy Reference Guide, Release 0.16.0

• correlation functions now conjugate their second argument while computing the slided sum-products, which
correspond to the usual definition of correlation.

Additions and modification to LTI functions (scipy.signal)

• The functions impulse2 and step2 were added to scipy.signal. They use the function
scipy.signal.lsim2 to compute the impulse and step response of a system, respectively.

• The function scipy.signal.lsim2 was changed to pass any additional keyword arguments to the ODE
solver.

Improved waveform generators (scipy.signal)

Several improvements to the chirp function in scipy.signal were made:

• The waveform generated when method=”logarithmic” was corrected; it now generates a waveform that is also
known as an “exponential” or “geometric” chirp. (See http://en.wikipedia.org/wiki/Chirp.)

• A new chirp method, “hyperbolic”, was added.

• Instead of the keyword qshape, chirp now uses the keyword vertex_zero, a boolean.

• chirp no longer handles an arbitrary polynomial. This functionality has been moved to a new function,
sweep_poly.

A new function, sweep_poly, was added.

New functions and other changes in scipy.linalg

The functions cho_solve_banded, circulant, companion, hadamard and leslie were added to scipy.linalg.

The function block_diag was enhanced to accept scalar and 1D arguments, along with the usual 2D arguments.

New function and changes in scipy.optimize

The curve_fit function has been added; it takes a function and uses non-linear least squares to fit that to the provided
data.

The leastsq and fsolve functions now return an array of size one instead of a scalar when solving for a single parameter.

New sparse least squares solver

The lsqr function was added to scipy.sparse. This routine finds a least-squares solution to a large, sparse, linear
system of equations.

ARPACK-based sparse SVD

A naive implementation of SVD for sparse matrices is available in scipy.sparse.linalg.eigen.arpack. It is based on
using an symmetric solver on <A, A>, and as such may not be very precise.

256 Chapter 4. Release Notes

http://en.wikipedia.org/wiki/Chirp
http://www.stanford.edu/group/SOL/software/lsqr.html

SciPy Reference Guide, Release 0.16.0

Alternative behavior available for scipy.constants.find

The keyword argument disp was added to the function scipy.constants.find, with the default value True.
When disp is True, the behavior is the same as in Scipy version 0.7. When False, the function returns the list of keys
instead of printing them. (In SciPy version 0.9, the default will be reversed.)

Incomplete sparse LU decompositions

Scipy now wraps SuperLU version 4.0, which supports incomplete sparse LU decompositions. These can be accessed
via scipy.sparse.linalg.spilu. Upgrade to SuperLU 4.0 also fixes some known bugs.

Faster matlab file reader and default behavior change

We’ve rewritten the matlab file reader in Cython and it should now read matlab files at around the same speed that
Matlab does.

The reader reads matlab named and anonymous functions, but it can’t write them.

Until scipy 0.8.0 we have returned arrays of matlab structs as numpy object arrays, where the objects have attributes
named for the struct fields. As of 0.8.0, we return matlab structs as numpy structured arrays. You can get the older
behavior by using the optional struct_as_record=False keyword argument to scipy.io.loadmat and
friends.

There is an inconsistency in the matlab file writer, in that it writes numpy 1D arrays as column vectors in matlab 5
files, and row vectors in matlab 4 files. We will change this in the next version, so both write row vectors. There is
a FutureWarning when calling the writer to warn of this change; for now we suggest using the oned_as=’row’
keyword argument to scipy.io.savemat and friends.

Faster evaluation of orthogonal polynomials

Values of orthogonal polynomials can be evaluated with new vectorized functions in scipy.special:
eval_legendre, eval_chebyt, eval_chebyu, eval_chebyc, eval_chebys, eval_jacobi, eval_laguerre, eval_genlaguerre,
eval_hermite, eval_hermitenorm, eval_gegenbauer, eval_sh_legendre, eval_sh_chebyt, eval_sh_chebyu,
eval_sh_jacobi. This is faster than constructing the full coefficient representation of the polynomials, which
was previously the only available way.

Note that the previous orthogonal polynomial routines will now also invoke this feature, when possible.

Lambert W function

scipy.special.lambertw can now be used for evaluating the Lambert W function.

Improved hypergeometric 2F1 function

Implementation of scipy.special.hyp2f1 for real parameters was revised. The new version should produce
accurate values for all real parameters.

More flexible interface for Radial basis function interpolation

The scipy.interpolate.Rbf class now accepts a callable as input for the “function” argument, in addition to
the built-in radial basis functions which can be selected with a string argument.

4.13. SciPy 0.8.0 Release Notes 257

SciPy Reference Guide, Release 0.16.0

4.13.5 Removed features

scipy.stsci: the package was removed

The module scipy.misc.limits was removed.

The IO code in both NumPy and SciPy is being extensively reworked. NumPy will be where basic code for reading
and writing NumPy arrays is located, while SciPy will house file readers and writers for various data formats (data,
audio, video, images, matlab, etc.).

Several functions in scipy.io are removed in the 0.8.0 release including: npfile, save, load, create_module, cre-
ate_shelf, objload, objsave, fopen, read_array, write_array, fread, fwrite, bswap, packbits, unpackbits, and con-
vert_objectarray. Some of these functions have been replaced by NumPy’s raw reading and writing capabilities,
memory-mapping capabilities, or array methods. Others have been moved from SciPy to NumPy, since basic array
reading and writing capability is now handled by NumPy.

4.14 SciPy 0.7.2 Release Notes

Contents

• SciPy 0.7.2 Release Notes

SciPy 0.7.2 is a bug-fix release with no new features compared to 0.7.1. The only change is that all C sources from
Cython code have been regenerated with Cython 0.12.1. This fixes the incompatibility between binaries of SciPy 0.7.1
and NumPy 1.4.

4.15 SciPy 0.7.1 Release Notes

Contents

• SciPy 0.7.1 Release Notes
– scipy.io
– scipy.odr
– scipy.signal
– scipy.sparse
– scipy.special
– scipy.stats
– Windows binaries for python 2.6
– Universal build for scipy

SciPy 0.7.1 is a bug-fix release with no new features compared to 0.7.0.

Bugs fixed:

• Several fixes in Matlab file IO

Bugs fixed:

• Work around a failure with Python 2.6

Memory leak in lfilter have been fixed, as well as support for array object

Bugs fixed:

258 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

• #880, #925: lfilter fixes

• #871: bicgstab fails on Win32

Bugs fixed:

• #883: scipy.io.mmread with scipy.sparse.lil_matrix broken

• lil_matrix and csc_matrix reject now unexpected sequences, cf. http://thread.gmane.org/gmane.comp.python.scientific.user/19996

Several bugs of varying severity were fixed in the special functions:

• #503, #640: iv: problems at large arguments fixed by new implementation

• #623: jv: fix errors at large arguments

• #679: struve: fix wrong output for v < 0

• #803: pbdv produces invalid output

• #804: lqmn: fix crashes on some input

• #823: betainc: fix documentation

• #834: exp1 strange behavior near negative integer values

• #852: jn_zeros: more accurate results for large s, also in jnp/yn/ynp_zeros

• #853: jv, yv, iv: invalid results for non-integer v < 0, complex x

• #854: jv, yv, iv, kv: return nan more consistently when out-of-domain

• #927: ellipj: fix segfault on Windows

• #946: ellpj: fix segfault on Mac OS X/python 2.6 combination.

• ive, jve, yve, kv, kve: with real-valued input, return nan for out-of-domain instead of returning only the real part
of the result.

Also, when scipy.special.errprint(1) has been enabled, warning messages are now issued as Python warn-
ings instead of printing them to stderr.

• linregress, mannwhitneyu, describe: errors fixed

• kstwobign, norm, expon, exponweib, exponpow, frechet, genexpon, rdist, truncexpon, planck: improvements to
numerical accuracy in distributions

4.15.1 Windows binaries for python 2.6

python 2.6 binaries for windows are now included. The binary for python 2.5 requires numpy 1.2.0 or above, and the
one for python 2.6 requires numpy 1.3.0 or above.

4.15.2 Universal build for scipy

Mac OS X binary installer is now a proper universal build, and does not depend on gfortran anymore (libgfortran is
statically linked). The python 2.5 version of scipy requires numpy 1.2.0 or above, the python 2.6 version requires
numpy 1.3.0 or above.

4.15. SciPy 0.7.1 Release Notes 259

http://thread.gmane.org/gmane.comp.python.scientific.user/19996

SciPy Reference Guide, Release 0.16.0

4.16 SciPy 0.7.0 Release Notes

Contents

• SciPy 0.7.0 Release Notes
– Python 2.6 and 3.0
– Major documentation improvements
– Running Tests
– Building SciPy
– Sandbox Removed
– Sparse Matrices
– Statistics package
– Reworking of IO package
– New Hierarchical Clustering module
– New Spatial package
– Reworked fftpack package
– New Constants package
– New Radial Basis Function module
– New complex ODE integrator
– New generalized symmetric and hermitian eigenvalue problem solver
– Bug fixes in the interpolation package
– Weave clean up
– Known problems

SciPy 0.7.0 is the culmination of 16 months of hard work. It contains many new features, numerous bug-fixes,
improved test coverage and better documentation. There have been a number of deprecations and API changes in
this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large
number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on
the 0.7.x branch, and on adding new features on the development trunk. This release requires Python 2.4 or 2.5 and
NumPy 1.2 or greater.

Please note that SciPy is still considered to have “Beta” status, as we work toward a SciPy 1.0.0 release. The 1.0.0
release will mark a major milestone in the development of SciPy, after which changing the package structure or API
will be much more difficult. Whilst these pre-1.0 releases are considered to have “Beta” status, we are committed to
making them as bug-free as possible. For example, in addition to fixing numerous bugs in this release, we have also
doubled the number of unit tests since the last release.

However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface.
This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we
need help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything
- from which algorithms we implement, to details about our function’s call signatures.

Over the last year, we have seen a rapid increase in community involvement, and numerous infrastructure improve-
ments to lower the barrier to contributions (e.g., more explicit coding standards, improved testing infrastructure, better
documentation tools). Over the next year, we hope to see this trend continue and invite everyone to become more
involved.

4.16.1 Python 2.6 and 3.0

A significant amount of work has gone into making SciPy compatible with Python 2.6; however, there are still some
issues in this regard. The main issue with 2.6 support is NumPy. On UNIX (including Mac OS X), NumPy 1.2.1
mostly works, with a few caveats. On Windows, there are problems related to the compilation process. The upcoming

260 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

NumPy 1.3 release will fix these problems. Any remaining issues with 2.6 support for SciPy 0.7 will be addressed in
a bug-fix release.

Python 3.0 is not supported at all; it requires NumPy to be ported to Python 3.0. This requires immense effort, since a
lot of C code has to be ported. The transition to 3.0 is still under consideration; currently, we don’t have any timeline
or roadmap for this transition.

4.16.2 Major documentation improvements

SciPy documentation is greatly improved; you can view a HTML reference manual online or download it as a PDF
file. The new reference guide was built using the popular Sphinx tool.

This release also includes an updated tutorial, which hadn’t been available since SciPy was ported to NumPy in
2005. Though not comprehensive, the tutorial shows how to use several essential parts of Scipy. It also includes the
ndimage documentation from the numarray manual.

Nevertheless, more effort is needed on the documentation front. Luckily, contributing to Scipy documentation is now
easier than before: if you find that a part of it requires improvements, and want to help us out, please register a user
name in our web-based documentation editor at http://docs.scipy.org/ and correct the issues.

4.16.3 Running Tests

NumPy 1.2 introduced a new testing framework based on nose. Starting with this release, SciPy now uses the new
NumPy test framework as well. Taking advantage of the new testing framework requires nose version 0.10, or later.
One major advantage of the new framework is that it greatly simplifies writing unit tests - which has all ready paid off,
given the rapid increase in tests. To run the full test suite:

>>> import scipy
>>> scipy.test('full')

For more information, please see The NumPy/SciPy Testing Guide.

We have also greatly improved our test coverage. There were just over 2,000 unit tests in the 0.6.0 release; this release
nearly doubles that number, with just over 4,000 unit tests.

4.16.4 Building SciPy

Support for NumScons has been added. NumScons is a tentative new build system for NumPy/SciPy, using SCons at
its core.

SCons is a next-generation build system, intended to replace the venerable Make with the integrated functionality
of autoconf/automake and ccache. Scons is written in Python and its configuration files are Python scripts.
NumScons is meant to replace NumPy’s custom version of distutils providing more advanced functionality, such
as autoconf, improved fortran support, more tools, and support for numpy.distutils/scons cooperation.

4.16.5 Sandbox Removed

While porting SciPy to NumPy in 2005, several packages and modules were moved into scipy.sandbox. The
sandbox was a staging ground for packages that were undergoing rapid development and whose APIs were in flux. It
was also a place where broken code could live. The sandbox has served its purpose well, but was starting to create
confusion. Thus scipy.sandbox was removed. Most of the code was moved into scipy, some code was made
into a scikit, and the remaining code was just deleted, as the functionality had been replaced by other code.

4.16. SciPy 0.7.0 Release Notes 261

http://docs.scipy.org/
http://sphinx.pocoo.org/
http://docs.scipy.org/
http://somethingaboutorange.com/mrl/projects/nose/
http://projects.scipy.org/scipy/numpy/wiki/TestingGuidelines
http://www.scons.org/

SciPy Reference Guide, Release 0.16.0

4.16.6 Sparse Matrices

Sparse matrices have seen extensive improvements. There is now support for integer dtypes such int8, uint32, etc.
Two new sparse formats were added:

• new class dia_matrix : the sparse DIAgonal format

• new class bsr_matrix : the Block CSR format

Several new sparse matrix construction functions were added:

• sparse.kron : sparse Kronecker product

• sparse.bmat : sparse version of numpy.bmat

• sparse.vstack : sparse version of numpy.vstack

• sparse.hstack : sparse version of numpy.hstack

Extraction of submatrices and nonzero values have been added:

• sparse.tril : extract lower triangle

• sparse.triu : extract upper triangle

• sparse.find : nonzero values and their indices

csr_matrix and csc_matrix now support slicing and fancy indexing (e.g., A[1:3, 4:7] and
A[[3,2,6,8],:]). Conversions among all sparse formats are now possible:

• using member functions such as .tocsr() and .tolil()

• using the .asformat() member function, e.g. A.asformat(’csr’)

• using constructors A = lil_matrix([[1,2]]); B = csr_matrix(A)

All sparse constructors now accept dense matrices and lists of lists. For example:

• A = csr_matrix(rand(3,3)) and B = lil_matrix([[1,2],[3,4]])

The handling of diagonals in the spdiags function has been changed. It now agrees with the MATLAB(TM) function
of the same name.

Numerous efficiency improvements to format conversions and sparse matrix arithmetic have been made. Finally, this
release contains numerous bugfixes.

4.16.7 Statistics package

Statistical functions for masked arrays have been added, and are accessible through scipy.stats.mstats. The
functions are similar to their counterparts in scipy.stats but they have not yet been verified for identical interfaces
and algorithms.

Several bugs were fixed for statistical functions, of those, kstest and percentileofscore gained new keyword
arguments.

Added deprecation warning for mean, median, var, std, cov, and corrcoef. These functions should
be replaced by their numpy counterparts. Note, however, that some of the default options differ between the
scipy.stats and numpy versions of these functions.

Numerous bug fixes to stats.distributions: all generic methods now work correctly, several methods in
individual distributions were corrected. However, a few issues remain with higher moments (skew, kurtosis)
and entropy. The maximum likelihood estimator, fit, does not work out-of-the-box for some distributions - in
some cases, starting values have to be carefully chosen, in other cases, the generic implementation of the maximum
likelihood method might not be the numerically appropriate estimation method.

262 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

We expect more bugfixes, increases in numerical precision and enhancements in the next release of scipy.

4.16.8 Reworking of IO package

The IO code in both NumPy and SciPy is being extensively reworked. NumPy will be where basic code for reading
and writing NumPy arrays is located, while SciPy will house file readers and writers for various data formats (data,
audio, video, images, matlab, etc.).

Several functions in scipy.io have been deprecated and will be removed in the 0.8.0 release including
npfile, save, load, create_module, create_shelf, objload, objsave, fopen, read_array,
write_array, fread, fwrite, bswap, packbits, unpackbits, and convert_objectarray. Some
of these functions have been replaced by NumPy’s raw reading and writing capabilities, memory-mapping capabili-
ties, or array methods. Others have been moved from SciPy to NumPy, since basic array reading and writing capability
is now handled by NumPy.

The Matlab (TM) file readers/writers have a number of improvements:

• default version 5

• v5 writers for structures, cell arrays, and objects

• v5 readers/writers for function handles and 64-bit integers

• new struct_as_record keyword argument to loadmat, which loads struct arrays in matlab as record arrays in
numpy

• string arrays have dtype=’U...’ instead of dtype=object

• loadmat no longer squeezes singleton dimensions, i.e. squeeze_me=False by default

4.16.9 New Hierarchical Clustering module

This module adds new hierarchical clustering functionality to the scipy.cluster package. The function inter-
faces are similar to the functions provided MATLAB(TM)’s Statistics Toolbox to help facilitate easier migration to
the NumPy/SciPy framework. Linkage methods implemented include single, complete, average, weighted, centroid,
median, and ward.

In addition, several functions are provided for computing inconsistency statistics, cophenetic distance, and maximum
distance between descendants. The fcluster and fclusterdata functions transform a hierarchical clustering
into a set of flat clusters. Since these flat clusters are generated by cutting the tree into a forest of trees, the leaders
function takes a linkage and a flat clustering, and finds the root of each tree in the forest. The ClusterNode class
represents a hierarchical clusterings as a field-navigable tree object. to_tree converts a matrix-encoded hierarchical
clustering to a ClusterNode object. Routines for converting between MATLAB and SciPy linkage encodings are
provided. Finally, a dendrogram function plots hierarchical clusterings as a dendrogram, using matplotlib.

4.16.10 New Spatial package

The new spatial package contains a collection of spatial algorithms and data structures, useful for spatial statistics and
clustering applications. It includes rapidly compiled code for computing exact and approximate nearest neighbors, as
well as a pure-python kd-tree with the same interface, but that supports annotation and a variety of other algorithms.
The API for both modules may change somewhat, as user requirements become clearer.

It also includes a distance module, containing a collection of distance and dissimilarity functions for computing
distances between vectors, which is useful for spatial statistics, clustering, and kd-trees. Distance and dissimilar-
ity functions provided include Bray-Curtis, Canberra, Chebyshev, City Block, Cosine, Dice, Euclidean, Hamming,

4.16. SciPy 0.7.0 Release Notes 263

SciPy Reference Guide, Release 0.16.0

Jaccard, Kulsinski, Mahalanobis, Matching, Minkowski, Rogers-Tanimoto, Russell-Rao, Squared Euclidean, Stan-
dardized Euclidean, Sokal-Michener, Sokal-Sneath, and Yule.

The pdist function computes pairwise distance between all unordered pairs of vectors in a set of vectors. The cdist
computes the distance on all pairs of vectors in the Cartesian product of two sets of vectors. Pairwise distance matrices
are stored in condensed form; only the upper triangular is stored. squareform converts distance matrices between
square and condensed forms.

4.16.11 Reworked fftpack package

FFTW2, FFTW3, MKL and DJBFFT wrappers have been removed. Only (NETLIB) fftpack remains. By focusing on
one backend, we hope to add new features - like float32 support - more easily.

4.16.12 New Constants package

scipy.constants provides a collection of physical constants and conversion factors. These constants are
taken from CODATA Recommended Values of the Fundamental Physical Constants: 2002. They may be found at
physics.nist.gov/constants. The values are stored in the dictionary physical_constants as a tuple containing the value,
the units, and the relative precision - in that order. All constants are in SI units, unless otherwise stated. Several helper
functions are provided.

4.16.13 New Radial Basis Function module

scipy.interpolate now contains a Radial Basis Function module. Radial basis functions can be used for
smoothing/interpolating scattered data in n-dimensions, but should be used with caution for extrapolation outside
of the observed data range.

4.16.14 New complex ODE integrator

scipy.integrate.ode now contains a wrapper for the ZVODE complex-valued ordinary differential equation
solver (by Peter N. Brown, Alan C. Hindmarsh, and George D. Byrne).

4.16.15 New generalized symmetric and hermitian eigenvalue problem solver

scipy.linalg.eigh now contains wrappers for more LAPACK symmetric and hermitian eigenvalue problem
solvers. Users can now solve generalized problems, select a range of eigenvalues only, and choose to use a faster algo-
rithm at the expense of increased memory usage. The signature of the scipy.linalg.eigh changed accordingly.

4.16.16 Bug fixes in the interpolation package

The shape of return values from scipy.interpolate.interp1d used to be incorrect, if interpolated data
had more than 2 dimensions and the axis keyword was set to a non-default value. This has been fixed. Moreover,
interp1d returns now a scalar (0D-array) if the input is a scalar. Users of scipy.interpolate.interp1d
may need to revise their code if it relies on the previous behavior.

4.16.17 Weave clean up

There were numerous improvements to scipy.weave. blitz++ was relicensed by the author to be compatible
with the SciPy license. wx_spec.py was removed.

264 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

4.16.18 Known problems

Here are known problems with scipy 0.7.0:

• weave test failures on windows: those are known, and are being revised.

• weave test failure with gcc 4.3 (std::labs): this is a gcc 4.3 bug. A workaround is to add #include <cstdlib> in
scipy/weave/blitz/blitz/funcs.h (line 27). You can make the change in the installed scipy (in site-packages).

4.16. SciPy 0.7.0 Release Notes 265

SciPy Reference Guide, Release 0.16.0

266 Chapter 4. Release Notes

CHAPTER

FIVE

REFERENCE

5.1 Clustering package (scipy.cluster)

scipy.cluster.vq

Clustering algorithms are useful in information theory, target detection, communications, compression, and other
areas. The vq module only supports vector quantization and the k-means algorithms.

scipy.cluster.hierarchy

The hierarchy module provides functions for hierarchical and agglomerative clustering. Its features include gen-
erating hierarchical clusters from distance matrices, calculating statistics on clusters, cutting linkages to generate flat
clusters, and visualizing clusters with dendrograms.

5.2 K-means clustering and vector quantization
(scipy.cluster.vq)

Provides routines for k-means clustering, generating code books from k-means models, and quantizing vectors by
comparing them with centroids in a code book.

whiten(obs[, check_finite]) Normalize a group of observations on a per feature basis.
vq(obs, code_book[, check_finite]) Assign codes from a code book to observations.
kmeans(obs, k_or_guess[, iter, thresh, ...]) Performs k-means on a set of observation vectors forming k clusters.
kmeans2(data, k[, iter, thresh, minit, ...]) Classify a set of observations into k clusters using the k-means algorithm.

scipy.cluster.vq.whiten(obs, check_finite=True)
Normalize a group of observations on a per feature basis.

Before running k-means, it is beneficial to rescale each feature dimension of the observation set with whitening.
Each feature is divided by its standard deviation across all observations to give it unit variance.

Parameters obs : ndarray
Each row of the array is an observation. The columns are the features seen during each
observation.

>>> # f0 f1 f2
>>> obs = [[1., 1., 1.], #o0
... [2., 2., 2.], #o1
... [3., 3., 3.], #o2
... [4., 4., 4.]] #o3

check_finite : bool, optional

267

SciPy Reference Guide, Release 0.16.0

Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs. Default: True

Returns result : ndarray
Contains the values in obs scaled by the standard deviation of each column.

Examples

>>> from scipy.cluster.vq import whiten
>>> features = np.array([[1.9, 2.3, 1.7],
... [1.5, 2.5, 2.2],
... [0.8, 0.6, 1.7,]])
>>> whiten(features)
array([[4.17944278, 2.69811351, 7.21248917],

[3.29956009, 2.93273208, 9.33380951],
[1.75976538, 0.7038557 , 7.21248917]])

scipy.cluster.vq.vq(obs, code_book, check_finite=True)
Assign codes from a code book to observations.

Assigns a code from a code book to each observation. Each observation vector in the ‘M’ by ‘N’ obs array is
compared with the centroids in the code book and assigned the code of the closest centroid.

The features in obs should have unit variance, which can be achieved by passing them through the whiten
function. The code book can be created with the k-means algorithm or a different encoding algorithm.

Parameters obs : ndarray
Each row of the ‘M’ x ‘N’ array is an observation. The columns are the “features” seen
during each observation. The features must be whitened first using the whiten function
or something equivalent.

code_book : ndarray
The code book is usually generated using the k-means algorithm. Each row of the array
holds a different code, and the columns are the features of the code.

>>> # f0 f1 f2 f3
>>> code_book = [
... [1., 2., 3., 4.], #c0
... [1., 2., 3., 4.], #c1
... [1., 2., 3., 4.]] #c2

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs. Default: True

Returns code : ndarray
A length M array holding the code book index for each observation.

dist : ndarray
The distortion (distance) between the observation and its nearest code.

Examples

>>> from numpy import array
>>> from scipy.cluster.vq import vq
>>> code_book = array([[1.,1.,1.],
... [2.,2.,2.]])
>>> features = array([[1.9,2.3,1.7],
... [1.5,2.5,2.2],
... [0.8,0.6,1.7]])

268 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> vq(features,code_book)
(array([1, 1, 0],'i'), array([0.43588989, 0.73484692, 0.83066239]))

scipy.cluster.vq.kmeans(obs, k_or_guess, iter=20, thresh=1e-05, check_finite=True)
Performs k-means on a set of observation vectors forming k clusters.

The k-means algorithm adjusts the centroids until sufficient progress cannot be made, i.e. the change in distor-
tion since the last iteration is less than some threshold. This yields a code book mapping centroids to codes and
vice versa.

Distortion is defined as the sum of the squared differences between the observations and the corresponding
centroid.

Parameters obs : ndarray
Each row of the M by N array is an observation vector. The columns are the features
seen during each observation. The features must be whitened first with the whiten
function.

k_or_guess : int or ndarray
The number of centroids to generate. A code is assigned to each centroid, which is also
the row index of the centroid in the code_book matrix generated.
The initial k centroids are chosen by randomly selecting observations from the obser-
vation matrix. Alternatively, passing a k by N array specifies the initial k centroids.

iter : int, optional
The number of times to run k-means, returning the codebook with the lowest distor-
tion. This argument is ignored if initial centroids are specified with an array for the
k_or_guess parameter. This parameter does not represent the number of iterations
of the k-means algorithm.

thresh : float, optional
Terminates the k-means algorithm if the change in distortion since the last k-means
iteration is less than or equal to thresh.

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs. Default: True

Returns codebook : ndarray
A k by N array of k centroids. The i’th centroid codebook[i] is represented with the
code i. The centroids and codes generated represent the lowest distortion seen, not
necessarily the globally minimal distortion.

distortion : float
The distortion between the observations passed and the centroids generated.

See also:

kmeans2 a different implementation of k-means clustering with more methods for generating initial cen-
troids but without using a distortion change threshold as a stopping criterion.

whiten must be called prior to passing an observation matrix to kmeans.

Examples

>>> from numpy import array
>>> from scipy.cluster.vq import vq, kmeans, whiten
>>> features = array([[1.9,2.3],
... [1.5,2.5],
... [0.8,0.6],
... [0.4,1.8],
... [0.1,0.1],

5.2. K-means clustering and vector quantization (scipy.cluster.vq) 269

SciPy Reference Guide, Release 0.16.0

... [0.2,1.8],

... [2.0,0.5],

... [0.3,1.5],

... [1.0,1.0]])
>>> whitened = whiten(features)
>>> book = array((whitened[0],whitened[2]))
>>> kmeans(whitened,book)
(array([[2.3110306 , 2.86287398],

[0.93218041, 1.24398691]]), 0.85684700941625547)

>>> from numpy import random
>>> random.seed((1000,2000))
>>> codes = 3
>>> kmeans(whitened,codes)
(array([[2.3110306 , 2.86287398],

[1.32544402, 0.65607529],
[0.40782893, 2.02786907]]), 0.5196582527686241)

scipy.cluster.vq.kmeans2(data, k, iter=10, thresh=1e-05, minit=’random’, missing=’warn’,
check_finite=True)

Classify a set of observations into k clusters using the k-means algorithm.

The algorithm attempts to minimize the Euclidian distance between observations and centroids. Several initial-
ization methods are included.

Parameters data : ndarray
A ‘M’ by ‘N’ array of ‘M’ observations in ‘N’ dimensions or a length ‘M’ array of ‘M’
one-dimensional observations.

k : int or ndarray
The number of clusters to form as well as the number of centroids to generate. If minit
initialization string is ‘matrix’, or if a ndarray is given instead, it is interpreted as initial
cluster to use instead.

iter : int, optional
Number of iterations of the k-means algrithm to run. Note that this differs in meaning
from the iters parameter to the kmeans function.

thresh : float, optional
(not used yet)

minit : str, optional
Method for initialization. Available methods are ‘random’, ‘points’, ‘uniform’, and
‘matrix’:
‘random’: generate k centroids from a Gaussian with mean and variance estimated
from the data.
‘points’: choose k observations (rows) at random from data for the initial centroids.
‘uniform’: generate k observations from the data from a uniform distribution defined
by the data set (unsupported).
‘matrix’: interpret the k parameter as a k by M (or length k array for one-dimensional
data) array of initial centroids.

missing : str, optional
Method to deal with empty clusters. Available methods are ‘warn’ and ‘raise’:
‘warn’: give a warning and continue.
‘raise’: raise an ClusterError and terminate the algorithm.

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs. Default: True

Returns centroid : ndarray

270 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

A ‘k’ by ‘N’ array of centroids found at the last iteration of k-means.
label : ndarray

label[i] is the code or index of the centroid the i’th observation is closest to.

5.2.1 Background information

The k-means algorithm takes as input the number of clusters to generate, k, and a set of observation vectors to cluster.
It returns a set of centroids, one for each of the k clusters. An observation vector is classified with the cluster number
or centroid index of the centroid closest to it.

A vector v belongs to cluster i if it is closer to centroid i than any other centroids. If v belongs to i, we say centroid i is
the dominating centroid of v. The k-means algorithm tries to minimize distortion, which is defined as the sum of the
squared distances between each observation vector and its dominating centroid. Each step of the k-means algorithm
refines the choices of centroids to reduce distortion. The change in distortion is used as a stopping criterion: when
the change is lower than a threshold, the k-means algorithm is not making sufficient progress and terminates. One can
also define a maximum number of iterations.

Since vector quantization is a natural application for k-means, information theory terminology is often used. The
centroid index or cluster index is also referred to as a “code” and the table mapping codes to centroids and vice
versa is often referred as a “code book”. The result of k-means, a set of centroids, can be used to quantize vectors.
Quantization aims to find an encoding of vectors that reduces the expected distortion.

All routines expect obs to be a M by N array where the rows are the observation vectors. The codebook is a k by N
array where the i’th row is the centroid of code word i. The observation vectors and centroids have the same feature
dimension.

As an example, suppose we wish to compress a 24-bit color image (each pixel is represented by one byte for red, one
for blue, and one for green) before sending it over the web. By using a smaller 8-bit encoding, we can reduce the
amount of data by two thirds. Ideally, the colors for each of the 256 possible 8-bit encoding values should be chosen
to minimize distortion of the color. Running k-means with k=256 generates a code book of 256 codes, which fills up
all possible 8-bit sequences. Instead of sending a 3-byte value for each pixel, the 8-bit centroid index (or code word)
of the dominating centroid is transmitted. The code book is also sent over the wire so each 8-bit code can be translated
back to a 24-bit pixel value representation. If the image of interest was of an ocean, we would expect many 24-bit
blues to be represented by 8-bit codes. If it was an image of a human face, more flesh tone colors would be represented
in the code book.

5.3 Hierarchical clustering (scipy.cluster.hierarchy)

These functions cut hierarchical clusterings into flat clusterings or find the roots of the forest formed by a cut by
providing the flat cluster ids of each observation.

fcluster(Z, t[, criterion, depth, R, monocrit]) Forms flat clusters from the hierarchical clustering defined by the linkage matrix Z.
fclusterdata(X, t[, criterion, metric, ...]) Cluster observation data using a given metric.
leaders(Z, T) Returns the root nodes in a hierarchical clustering.

scipy.cluster.hierarchy.fcluster(Z, t, criterion=’inconsistent’, depth=2, R=None, mon-
ocrit=None)

Forms flat clusters from the hierarchical clustering defined by the linkage matrix Z.

Parameters Z : ndarray
The hierarchical clustering encoded with the matrix returned by the linkage func-
tion.

t : float

5.3. Hierarchical clustering (scipy.cluster.hierarchy) 271

SciPy Reference Guide, Release 0.16.0

The threshold to apply when forming flat clusters.
criterion : str, optional

The criterion to use in forming flat clusters. This can be any of the following values:
inconsistent

[If a cluster node and all its] descendants have an inconsistent value
less than or equal to t then all its leaf descendants belong to the same
flat cluster. When no non-singleton cluster meets this criterion, every
node is assigned to its own cluster. (Default)

distance [Forms flat clusters so that the original] observations in each flat clus-
ter have no greater a cophenetic distance than t.

maxclust [Finds a minimum threshold r so that] the cophenetic distance be-
tween any two original observations in the same flat cluster is no more
than r and no more than t flat clusters are formed.

monocrit [Forms a flat cluster from a cluster node c] with index i when
monocrit[j] <= t.
For example, to threshold on the maximum mean distance as com-
puted in the inconsistency matrix R with a threshold of 0.8 do:

MR = maxRstat(Z, R, 3)
cluster(Z, t=0.8, criterion=’monocrit’, monocrit=MR)

maxclust_monocrit
[Forms a flat cluster from a] non-singleton cluster node c when
monocrit[i] <= r for all cluster indices i below and including
c. r is minimized such that no more than t flat clusters are formed.
monocrit must be monotonic. For example, to minimize the thresh-
old t on maximum inconsistency values so that no more than 3 flat
clusters are formed, do:

MI = maxinconsts(Z, R)
cluster(Z, t=3, criterion=’maxclust_monocrit’, monocrit=MI)

depth : int, optional
The maximum depth to perform the inconsistency calculation. It has no meaning for
the other criteria. Default is 2.

R : ndarray, optional
The inconsistency matrix to use for the ‘inconsistent’ criterion. This matrix is com-
puted if not provided.

monocrit : ndarray, optional
An array of length n-1. monocrit[i] is the statistics upon which non-singleton i is
thresholded. The monocrit vector must be monotonic, i.e. given a node c with index i,
for all node indices j corresponding to nodes below c, monocrit[i] >= monocrit[j].

Returns fcluster : ndarray
An array of length n. T[i] is the flat cluster number to which original observation i
belongs.

scipy.cluster.hierarchy.fclusterdata(X, t, criterion=’inconsistent’, metric=’euclidean’,
depth=2, method=’single’, R=None)

Cluster observation data using a given metric.

Clusters the original observations in the n-by-m data matrix X (n observations in m dimensions), using the
euclidean distance metric to calculate distances between original observations, performs hierarchical clustering
using the single linkage algorithm, and forms flat clusters using the inconsistency method with t as the cut-off
threshold.

A one-dimensional array T of length n is returned. T[i] is the index of the flat cluster to which the original
observation i belongs.

Parameters X : (N, M) ndarray
N by M data matrix with N observations in M dimensions.

272 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

t : float
The threshold to apply when forming flat clusters.

criterion : str, optional
Specifies the criterion for forming flat clusters. Valid values are ‘inconsistent’ (de-
fault), ‘distance’, or ‘maxclust’ cluster formation algorithms. See fcluster for
descriptions.

metric : str, optional
The distance metric for calculating pairwise distances. See distance.pdist for
descriptions and linkage to verify compatibility with the linkage method.

depth : int, optional
The maximum depth for the inconsistency calculation. See inconsistent for
more information.

method : str, optional
The linkage method to use (single, complete, average, weighted, median centroid,
ward). See linkage for more information. Default is “single”.

R : ndarray, optional
The inconsistency matrix. It will be computed if necessary if it is not passed.

Returns fclusterdata : ndarray
A vector of length n. T[i] is the flat cluster number to which original observation i
belongs.

Notes

This function is similar to the MATLAB function clusterdata.

scipy.cluster.hierarchy.leaders(Z, T)
Returns the root nodes in a hierarchical clustering.

Returns the root nodes in a hierarchical clustering corresponding to a cut defined by a flat cluster assignment
vector T. See the fcluster function for more information on the format of T.

For each flat cluster 𝑗 of the 𝑘 flat clusters represented in the n-sized flat cluster assignment vector T, this
function finds the lowest cluster node 𝑖 in the linkage tree Z such that:

•leaf descendents belong only to flat cluster j (i.e. T[p]==j for all 𝑝 in 𝑆(𝑖) where 𝑆(𝑖) is the set of leaf
ids of leaf nodes descendent with cluster node 𝑖)

•there does not exist a leaf that is not descendent with 𝑖 that also belongs to cluster 𝑗 (i.e. T[q]!=j for
all 𝑞 not in 𝑆(𝑖)). If this condition is violated, T is not a valid cluster assignment vector, and an exception
will be thrown.

Parameters Z : ndarray
The hierarchical clustering encoded as a matrix. See linkage for more information.

T : ndarray
The flat cluster assignment vector.

Returns L : ndarray
The leader linkage node id’s stored as a k-element 1-D array where k is the number
of flat clusters found in T.
L[j]=i is the linkage cluster node id that is the leader of flat cluster with id M[j].
If i < n, i corresponds to an original observation, otherwise it corresponds to a
non-singleton cluster.
For example: if L[3]=2 and M[3]=8, the flat cluster with id 8’s leader is linkage
node 2.

M : ndarray
The leader linkage node id’s stored as a k-element 1-D array where k is the number
of flat clusters found in T. This allows the set of flat cluster ids to be any arbitrary set
of k integers.

5.3. Hierarchical clustering (scipy.cluster.hierarchy) 273

SciPy Reference Guide, Release 0.16.0

These are routines for agglomerative clustering.

linkage(y[, method, metric]) Performs hierarchical/agglomerative clustering on the condensed distance matrix y.
single(y) Performs single/min/nearest linkage on the condensed distance matrix y
complete(y) Performs complete/max/farthest point linkage on a condensed distance matrix
average(y) Performs average/UPGMA linkage on a condensed distance matrix
weighted(y) Performs weighted/WPGMA linkage on the condensed distance matrix.
centroid(y) Performs centroid/UPGMC linkage.
median(y) Performs median/WPGMC linkage.
ward(y) Performs Ward’s linkage on a condensed or redundant distance matrix.

scipy.cluster.hierarchy.linkage(y, method=’single’, metric=’euclidean’)
Performs hierarchical/agglomerative clustering on the condensed distance matrix y.

y must be a
(︀
𝑛
2

)︀
sized vector where n is the number of original observations paired in the distance matrix. The

behavior of this function is very similar to the MATLAB linkage function.

A 4 by (𝑛 − 1) matrix Z is returned. At the 𝑖-th iteration, clusters with indices Z[i, 0] and Z[i, 1]
are combined to form cluster 𝑛 + 𝑖. A cluster with an index less than 𝑛 corresponds to one of the 𝑛 original
observations. The distance between clusters Z[i, 0] and Z[i, 1] is given by Z[i, 2]. The fourth value
Z[i, 3] represents the number of original observations in the newly formed cluster.

The following linkage methods are used to compute the distance 𝑑(𝑠, 𝑡) between two clusters 𝑠 and 𝑡. The
algorithm begins with a forest of clusters that have yet to be used in the hierarchy being formed. When two
clusters 𝑠 and 𝑡 from this forest are combined into a single cluster 𝑢, 𝑠 and 𝑡 are removed from the forest, and 𝑢
is added to the forest. When only one cluster remains in the forest, the algorithm stops, and this cluster becomes
the root.

A distance matrix is maintained at each iteration. The d[i,j] entry corresponds to the distance between cluster
𝑖 and 𝑗 in the original forest.

At each iteration, the algorithm must update the distance matrix to reflect the distance of the newly formed
cluster u with the remaining clusters in the forest.

Suppose there are |𝑢| original observations 𝑢[0], . . . , 𝑢[|𝑢| − 1] in cluster 𝑢 and |𝑣| original objects
𝑣[0], . . . , 𝑣[|𝑣| − 1] in cluster 𝑣. Recall 𝑠 and 𝑡 are combined to form cluster 𝑢. Let 𝑣 be any remaining cluster
in the forest that is not 𝑢.

The following are methods for calculating the distance between the newly formed cluster 𝑢 and each 𝑣.

•method=’single’ assigns

𝑑(𝑢, 𝑣) = min(𝑑𝑖𝑠𝑡(𝑢[𝑖], 𝑣[𝑗]))

for all points 𝑖 in cluster 𝑢 and 𝑗 in cluster 𝑣. This is also known as the Nearest Point Algorithm.

•method=’complete’ assigns

𝑑(𝑢, 𝑣) = max(𝑑𝑖𝑠𝑡(𝑢[𝑖], 𝑣[𝑗]))

for all points 𝑖 in cluster u and 𝑗 in cluster 𝑣. This is also known by the Farthest Point Algorithm or Voor
Hees Algorithm.

•method=’average’ assigns

𝑑(𝑢, 𝑣) =
∑︁
𝑖𝑗

𝑑(𝑢[𝑖], 𝑣[𝑗])

(|𝑢| * |𝑣|)

for all points 𝑖 and 𝑗 where |𝑢| and |𝑣| are the cardinalities of clusters 𝑢 and 𝑣, respectively. This is also
called the UPGMA algorithm.

274 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

•method=’weighted’ assigns

𝑑(𝑢, 𝑣) = (𝑑𝑖𝑠𝑡(𝑠, 𝑣) + 𝑑𝑖𝑠𝑡(𝑡, 𝑣))/2

where cluster u was formed with cluster s and t and v is a remaining cluster in the forest. (also called
WPGMA)

•method=’centroid’ assigns

𝑑𝑖𝑠𝑡(𝑠, 𝑡) = ||𝑐𝑠 − 𝑐𝑡||2

where 𝑐𝑠 and 𝑐𝑡 are the centroids of clusters 𝑠 and 𝑡, respectively. When two clusters 𝑠 and 𝑡 are combined
into a new cluster 𝑢, the new centroid is computed over all the original objects in clusters 𝑠 and 𝑡. The
distance then becomes the Euclidean distance between the centroid of 𝑢 and the centroid of a remaining
cluster 𝑣 in the forest. This is also known as the UPGMC algorithm.

•method=’median’ assigns 𝑑(𝑠, 𝑡) like the centroid method. When two clusters 𝑠 and 𝑡 are combined
into a new cluster 𝑢, the average of centroids s and t give the new centroid 𝑢. This is also known as the
WPGMC algorithm.

•method=’ward’ uses the Ward variance minimization algorithm. The new entry 𝑑(𝑢, 𝑣) is computed as
follows,

𝑑(𝑢, 𝑣) =

√︂
|𝑣| + |𝑠|

𝑇
𝑑(𝑣, 𝑠)2 +

|𝑣| + |𝑡|
𝑇

𝑑(𝑣, 𝑡)2 − |𝑣|
𝑇

𝑑(𝑠, 𝑡)2

where 𝑢 is the newly joined cluster consisting of clusters 𝑠 and 𝑡, 𝑣 is an unused cluster in the forest,
𝑇 = |𝑣| + |𝑠| + |𝑡|, and | * | is the cardinality of its argument. This is also known as the incremental
algorithm.

Warning: When the minimum distance pair in the forest is chosen, there may be two or more pairs with the same
minimum distance. This implementation may chose a different minimum than the MATLAB version.

Parameters y : ndarray
A condensed or redundant distance matrix. A condensed distance matrix is a flat array
containing the upper triangular of the distance matrix. This is the form that pdist
returns. Alternatively, a collection of 𝑚 observation vectors in n dimensions may be
passed as an 𝑚 by 𝑛 array.

method : str, optional
The linkage algorithm to use. See the Linkage Methods section below for full
descriptions.

metric : str or function, optional
The distance metric to use. See the distance.pdist function for a list of valid dis-
tance metrics. The customized distance can also be used. See the distance.pdist
function for details.

Returns Z : ndarray
The hierarchical clustering encoded as a linkage matrix.

scipy.cluster.hierarchy.single(y)
Performs single/min/nearest linkage on the condensed distance matrix y

Parameters y : ndarray
The upper triangular of the distance matrix. The result of pdist is returned in this
form.

Returns Z : ndarray
The linkage matrix.

See also:

linkage for advanced creation of hierarchical clusterings.

5.3. Hierarchical clustering (scipy.cluster.hierarchy) 275

SciPy Reference Guide, Release 0.16.0

scipy.cluster.hierarchy.complete(y)
Performs complete/max/farthest point linkage on a condensed distance matrix

Parameters y : ndarray
The upper triangular of the distance matrix. The result of pdist is returned in this
form.

Returns Z : ndarray
A linkage matrix containing the hierarchical clustering. See the linkage function
documentation for more information on its structure.

See also:

linkage

scipy.cluster.hierarchy.average(y)
Performs average/UPGMA linkage on a condensed distance matrix

Parameters y : ndarray
The upper triangular of the distance matrix. The result of pdist is returned in this
form.

Returns Z : ndarray
A linkage matrix containing the hierarchical clustering. See the linkage function
documentation for more information on its structure.

See also:

linkage for advanced creation of hierarchical clusterings.

scipy.cluster.hierarchy.weighted(y)
Performs weighted/WPGMA linkage on the condensed distance matrix.

See linkage for more information on the return structure and algorithm.

Parameters y : ndarray
The upper triangular of the distance matrix. The result of pdist is returned in this
form.

Returns Z : ndarray
A linkage matrix containing the hierarchical clustering. See the linkage function
documentation for more information on its structure.

See also:

linkage for advanced creation of hierarchical clusterings.

scipy.cluster.hierarchy.centroid(y)
Performs centroid/UPGMC linkage.

See linkage for more information on the return structure and algorithm.

The following are common calling conventions:

1.Z = centroid(y)

Performs centroid/UPGMC linkage on the condensed distance matrix y. See linkage for more infor-
mation on the return structure and algorithm.

2.Z = centroid(X)

Performs centroid/UPGMC linkage on the observation matrix X using Euclidean distance as the distance
metric. See linkage for more information on the return structure and algorithm.

276 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters y : ndarray
A condensed or redundant distance matrix. A condensed distance matrix is a flat array
containing the upper triangular of the distance matrix. This is the form that pdist
returns. Alternatively, a collection of m observation vectors in n dimensions may be
passed as a m by n array.

Returns Z : ndarray
A linkage matrix containing the hierarchical clustering. See the linkage function
documentation for more information on its structure.

See also:

linkage for advanced creation of hierarchical clusterings.

scipy.cluster.hierarchy.median(y)
Performs median/WPGMC linkage.

See linkage for more information on the return structure and algorithm.

The following are common calling conventions:
1.Z = median(y)

Performs median/WPGMC linkage on the condensed distance matrix y. See linkage for more
information on the return structure and algorithm.

2.Z = median(X)
Performs median/WPGMC linkage on the observation matrix X using Euclidean distance as the
distance metric. See linkage for more information on the return structure and algorithm.

Parameters y : ndarray
A condensed or redundant distance matrix. A condensed distance matrix is a flat array
containing the upper triangular of the distance matrix. This is the form that pdist
returns. Alternatively, a collection of m observation vectors in n dimensions may be
passed as a m by n array.

Returns Z : ndarray
The hierarchical clustering encoded as a linkage matrix.

See also:

linkage for advanced creation of hierarchical clusterings.

scipy.cluster.hierarchy.ward(y)
Performs Ward’s linkage on a condensed or redundant distance matrix.

See linkage for more information on the return structure and algorithm.

The following are common calling conventions:

1.Z = ward(y) Performs Ward’s linkage on the condensed distance matrix Z. See linkage for more
information on the return structure and algorithm.

2.Z = ward(X) Performs Ward’s linkage on the observation matrix X using Euclidean distance as the
distance metric. See linkage for more information on the return structure and algorithm.

Parameters y : ndarray
A condensed or redundant distance matrix. A condensed distance matrix is a flat array
containing the upper triangular of the distance matrix. This is the form that pdist
returns. Alternatively, a collection of m observation vectors in n dimensions may be
passed as a m by n array.

Returns Z : ndarray

5.3. Hierarchical clustering (scipy.cluster.hierarchy) 277

SciPy Reference Guide, Release 0.16.0

The hierarchical clustering encoded as a linkage matrix.

See also:

linkage for advanced creation of hierarchical clusterings.

These routines compute statistics on hierarchies.

cophenet(Z[, Y]) Calculates the cophenetic distances between each observation in the hierarchical clustering defined by the linkage Z.
from_mlab_linkage(Z) Converts a linkage matrix generated by MATLAB(TM) to a new linkage matrix compatible with this module.
inconsistent(Z[, d]) Calculates inconsistency statistics on a linkage.
maxinconsts(Z, R) Returns the maximum inconsistency coefficient for each non-singleton cluster and its descendents.
maxdists(Z) Returns the maximum distance between any non-singleton cluster.
maxRstat(Z, R, i) Returns the maximum statistic for each non-singleton cluster and its descendents.
to_mlab_linkage(Z) Converts a linkage matrix to a MATLAB(TM) compatible one.

scipy.cluster.hierarchy.cophenet(Z, Y=None)
Calculates the cophenetic distances between each observation in the hierarchical clustering defined by the
linkage Z.

Suppose p and q are original observations in disjoint clusters s and t, respectively and s and t are joined by
a direct parent cluster u. The cophenetic distance between observations i and j is simply the distance between
clusters s and t.

Parameters Z : ndarray
The hierarchical clustering encoded as an array (see linkage function).

Y : ndarray (optional)
Calculates the cophenetic correlation coefficient c of a hierarchical clustering defined
by the linkage matrix Z of a set of 𝑛 observations in 𝑚 dimensions. Y is the condensed
distance matrix from which Z was generated.

Returns c : ndarray
The cophentic correlation distance (if y is passed).

d : ndarray
The cophenetic distance matrix in condensed form. The 𝑖𝑗 th entry is the cophenetic
distance between original observations 𝑖 and 𝑗.

scipy.cluster.hierarchy.from_mlab_linkage(Z)
Converts a linkage matrix generated by MATLAB(TM) to a new linkage matrix compatible with this module.

The conversion does two things:

•the indices are converted from 1..N to 0..(N-1) form, and

•a fourth column Z[:,3] is added where Z[i,3] is represents the number of original observations (leaves) in
the non-singleton cluster i.

This function is useful when loading in linkages from legacy data files generated by MATLAB.

Parameters Z : ndarray
A linkage matrix generated by MATLAB(TM).

Returns ZS : ndarray
A linkage matrix compatible with this library.

scipy.cluster.hierarchy.inconsistent(Z, d=2)
Calculates inconsistency statistics on a linkage.

Note: This function behaves similarly to the MATLAB(TM) inconsistent function.

278 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters Z : ndarray
The (𝑛−1) by 4 matrix encoding the linkage (hierarchical clustering). See linkage
documentation for more information on its form.

d : int, optional
The number of links up to d levels below each non-singleton cluster.

Returns R : ndarray
A (𝑛 − 1) by 5 matrix where the i‘th row contains the link statistics for the non-
singleton cluster i. The link statistics are computed over the link heights for links 𝑑
levels below the cluster i. R[i,0] and R[i,1] are the mean and standard devia-
tion of the link heights, respectively; R[i,2] is the number of links included in the
calculation; and R[i,3] is the inconsistency coefficient,

Z[i, 2] − R[i, 0]

𝑅[𝑖, 1]

scipy.cluster.hierarchy.maxinconsts(Z, R)
Returns the maximum inconsistency coefficient for each non-singleton cluster and its descendents.

Parameters Z : ndarray
The hierarchical clustering encoded as a matrix. See linkage for more information.

R : ndarray
The inconsistency matrix.

Returns MI : ndarray
A monotonic (n-1)-sized numpy array of doubles.

scipy.cluster.hierarchy.maxdists(Z)
Returns the maximum distance between any non-singleton cluster.

Parameters Z : ndarray
The hierarchical clustering encoded as a matrix. See linkage for more information.

Returns maxdists : ndarray
A (n-1) sized numpy array of doubles; MD[i] represents the maximum distance
between any cluster (including singletons) below and including the node with index
i. More specifically, MD[i] = Z[Q(i)-n, 2].max() where Q(i) is the set of
all node indices below and including node i.

scipy.cluster.hierarchy.maxRstat(Z, R, i)
Returns the maximum statistic for each non-singleton cluster and its descendents.

Parameters Z : array_like
The hierarchical clustering encoded as a matrix. See linkage for more information.

R : array_like
The inconsistency matrix.

i : int
The column of R to use as the statistic.

Returns MR : ndarray
Calculates the maximum statistic for the i’th column of the inconsistency matrix R
for each non-singleton cluster node. MR[j] is the maximum over R[Q(j)-n, i]
where Q(j) the set of all node ids corresponding to nodes below and including j.

scipy.cluster.hierarchy.to_mlab_linkage(Z)
Converts a linkage matrix to a MATLAB(TM) compatible one.

Converts a linkage matrix Z generated by the linkage function of this module to a MATLAB(TM) compatible
one. The return linkage matrix has the last column removed and the cluster indices are converted to 1..N
indexing.

Parameters Z : ndarray
A linkage matrix generated by this library.

5.3. Hierarchical clustering (scipy.cluster.hierarchy) 279

SciPy Reference Guide, Release 0.16.0

Returns to_mlab_linkage : ndarray
A linkage matrix compatible with MATLAB(TM)’s hierarchical clustering functions.
The return linkage matrix has the last column removed and the cluster indices are
converted to 1..N indexing.

Routines for visualizing flat clusters.

dendrogram(Z[, p, truncate_mode, ...]) Plots the hierarchical clustering as a dendrogram.

scipy.cluster.hierarchy.dendrogram(Z, p=30, truncate_mode=None, color_threshold=None,
get_leaves=True, orientation=’top’, la-
bels=None, count_sort=False, dis-
tance_sort=False, show_leaf_counts=True,
no_plot=False, no_labels=False, color_list=None,
leaf_font_size=None, leaf_rotation=None,
leaf_label_func=None, no_leaves=False,
show_contracted=False, link_color_func=None,
ax=None, above_threshold_color=’b’)

Plots the hierarchical clustering as a dendrogram.

The dendrogram illustrates how each cluster is composed by drawing a U-shaped link between a non-singleton
cluster and its children. The height of the top of the U-link is the distance between its children clusters. It is
also the cophenetic distance between original observations in the two children clusters. It is expected that the
distances in Z[:,2] be monotonic, otherwise crossings appear in the dendrogram.

Parameters Z : ndarray
The linkage matrix encoding the hierarchical clustering to render as a dendrogram.
See the linkage function for more information on the format of Z.

p : int, optional
The p parameter for truncate_mode.

truncate_mode : str, optional
The dendrogram can be hard to read when the original observation matrix from which
the linkage is derived is large. Truncation is used to condense the dendrogram. There
are several modes:
None/’none’

No truncation is performed (Default).
’lastp’ The last p non-singleton formed in the linkage are the only non-leaf

nodes in the linkage; they correspond to rows Z[n-p-2:end] in Z.
All other non-singleton clusters are contracted into leaf nodes.

’mlab’ This corresponds to MATLAB(TM) behavior. (not implemented yet)
’level’/’mtica’

No more than p levels of the dendrogram tree are displayed. This
corresponds to Mathematica(TM) behavior.

color_threshold : double, optional
For brevity, let 𝑡 be the color_threshold. Colors all the descendent links below
a cluster node 𝑘 the same color if 𝑘 is the first node below the cut threshold 𝑡. All links
connecting nodes with distances greater than or equal to the threshold are colored blue.
If 𝑡 is less than or equal to zero, all nodes are colored blue. If color_threshold
is None or ‘default’, corresponding with MATLAB(TM) behavior, the threshold is set
to 0.7*max(Z[:,2]).

get_leaves : bool, optional
Includes a list R[’leaves’]=H in the result dictionary. For each 𝑖, H[i] == j,
cluster node j appears in position i in the left-to-right traversal of the leaves, where
𝑗 < 2𝑛− 1 and 𝑖 < 𝑛.

orientation : str, optional

280 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The direction to plot the dendrogram, which can be any of the following strings:
’top’ Plots the root at the top, and plot descendent links going downwards.

(default).
’bottom’ Plots the root at the bottom, and plot descendent links going upwards.
’left’ Plots the root at the left, and plot descendent links going right.
’right’ Plots the root at the right, and plot descendent links going left.

labels : ndarray, optional
By default labels is None so the index of the original observation is used to label
the leaf nodes. Otherwise, this is an 𝑛 -sized list (or tuple). The labels[i] value is
the text to put under the 𝑖 th leaf node only if it corresponds to an original observation
and not a non-singleton cluster.

count_sort : str or bool, optional
For each node n, the order (visually, from left-to-right) n’s two descendent links are
plotted is determined by this parameter, which can be any of the following values:
False Nothing is done.
’ascending’ or True

The child with the minimum number of original objects in its cluster is
plotted first.

’descendent’
The child with the maximum number of original objects in its cluster
is plotted first.

Note distance_sort and count_sort cannot both be True.
distance_sort : str or bool, optional

For each node n, the order (visually, from left-to-right) n’s two descendent links are
plotted is determined by this parameter, which can be any of the following values:
False Nothing is done.
’ascending’ or True

The child with the minimum distance between its direct descendents is
plotted first.

’descending’
The child with the maximum distance between its direct descendents
is plotted first.

Note distance_sort and count_sort cannot both be True.
show_leaf_counts : bool, optional

When True, leaf nodes representing 𝑘 > 1 original observation are labeled with the
number of observations they contain in parentheses.

no_plot : bool, optional
When True, the final rendering is not performed. This is useful if only the data struc-
tures computed for the rendering are needed or if matplotlib is not available.

no_labels : bool, optional
When True, no labels appear next to the leaf nodes in the rendering of the dendrogram.

leaf_rotation : double, optional
Specifies the angle (in degrees) to rotate the leaf labels. When unspecified, the rotation
is based on the number of nodes in the dendrogram (default is 0).

leaf_font_size : int, optional
Specifies the font size (in points) of the leaf labels. When unspecified, the size based
on the number of nodes in the dendrogram.

leaf_label_func : lambda or function, optional
When leaf_label_func is a callable function, for each leaf with cluster index 𝑘 <
2𝑛− 1. The function is expected to return a string with the label for the leaf.
Indices 𝑘 < 𝑛 correspond to original observations while indices 𝑘 ≥ 𝑛 correspond to
non-singleton clusters.
For example, to label singletons with their node id and non-singletons with their id,
count, and inconsistency coefficient, simply do:

5.3. Hierarchical clustering (scipy.cluster.hierarchy) 281

SciPy Reference Guide, Release 0.16.0

>>> # First define the leaf label function.
>>> def llf(id):
... if id < n:
... return str(id)
... else:
>>> return '[%d %d %1.2f]' % (id, count, R[n-id,3])
>>>
>>> # The text for the leaf nodes is going to be big so force
>>> # a rotation of 90 degrees.
>>> dendrogram(Z, leaf_label_func=llf, leaf_rotation=90)

show_contracted : bool, optional
When True the heights of non-singleton nodes contracted into a leaf node are plotted
as crosses along the link connecting that leaf node. This really is only useful when
truncation is used (see truncate_mode parameter).

link_color_func : callable, optional
If given, link_color_function is called with each non-singleton id corresponding to
each U-shaped link it will paint. The function is expected to return the color to paint
the link, encoded as a matplotlib color string code. For example:

>>> dendrogram(Z, link_color_func=lambda k: colors[k])

colors the direct links below each untruncated non-singleton node k using
colors[k].

ax : matplotlib Axes instance, optional
If None and no_plot is not True, the dendrogram will be plotted on the current axes.
Otherwise if no_plot is not True the dendrogram will be plotted on the given Axes
instance. This can be useful if the dendrogram is part of a more complex figure.

above_threshold_color : str, optional
This matplotlib color string sets the color of the links above the color_threshold. The
default is ‘b’.

Returns R : dict
A dictionary of data structures computed to render the dendrogram. Its has the fol-
lowing keys:
’color_list’

A list of color names. The k’th element represents the color of the k’th
link.

’icoord’ and ’dcoord’
Each of them is a list of lists. Let icoord = [I1,
I2, ..., Ip] where Ik = [xk1, xk2, xk3, xk4] and
dcoord = [D1, D2, ..., Dp] where Dk = [yk1, yk2,
yk3, yk4], then the k’th link painted is (xk1, yk1) - (xk2,
yk2) - (xk3, yk3) - (xk4, yk4).

’ivl’ A list of labels corresponding to the leaf nodes.
’leaves’ For each i, H[i] == j, cluster node j appears in position i in the

left-to-right traversal of the leaves, where 𝑗 < 2𝑛−1 and 𝑖 < 𝑛. If j is
less than n, the i-th leaf node corresponds to an original observation.
Otherwise, it corresponds to a non-singleton cluster.

These are data structures and routines for representing hierarchies as tree objects.

ClusterNode(id[, left, right, dist, count]) A tree node class for representing a cluster.
leaves_list(Z) Returns a list of leaf node ids
to_tree(Z[, rd]) Converts a hierarchical clustering encoded in the matrix Z (by linkage) into an easy-to-use tree object.

class scipy.cluster.hierarchy.ClusterNode(id, left=None, right=None, dist=0, count=1)

282 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

A tree node class for representing a cluster.

Leaf nodes correspond to original observations, while non-leaf nodes correspond to non-singleton clusters.

The to_tree function converts a matrix returned by the linkage function into an easy-to-use tree representation.

See also:

to_tree for converting a linkage matrix Z into a tree object.

Methods

get_count() The number of leaf nodes (original observations) belonging to the cluster node nd.
get_id() The identifier of the target node.
get_left() Return a reference to the left child tree object.
get_right() Returns a reference to the right child tree object.
is_leaf() Returns True if the target node is a leaf.
pre_order([func]) Performs pre-order traversal without recursive function calls.

ClusterNode.get_count()
The number of leaf nodes (original observations) belonging to the cluster node nd. If the target node is a
leaf, 1 is returned.

Returns get_count : int
The number of leaf nodes below the target node.

ClusterNode.get_id()
The identifier of the target node.

For 0 <= i < n, i corresponds to original observation i. For n <= i < 2n-1, i corresponds to
non-singleton cluster formed at iteration i-n.

Returns id : int
The identifier of the target node.

ClusterNode.get_left()
Return a reference to the left child tree object.

Returns left : ClusterNode
The left child of the target node. If the node is a leaf, None is returned.

ClusterNode.get_right()
Returns a reference to the right child tree object.

Returns right : ClusterNode
The left child of the target node. If the node is a leaf, None is returned.

ClusterNode.is_leaf()
Returns True if the target node is a leaf.

Returns leafness : bool
True if the target node is a leaf node.

ClusterNode.pre_order(func=<function <lambda> at 0x7fa4127d22a8>)
Performs pre-order traversal without recursive function calls.

When a leaf node is first encountered, func is called with the leaf node as its argument, and its result is
appended to the list.

For example, the statement:

5.3. Hierarchical clustering (scipy.cluster.hierarchy) 283

SciPy Reference Guide, Release 0.16.0

ids = root.pre_order(lambda x: x.id)

returns a list of the node ids corresponding to the leaf nodes of the tree as they appear from left to right.

Parameters func : function
Applied to each leaf ClusterNode object in the pre-order traversal. Given the
i’th leaf node in the pre-ordeR traversal n[i], the result of func(n[i]) is stored
in L[i]. If not provided, the index of the original observation to which the node
corresponds is used.

Returns L : list
The pre-order traversal.

scipy.cluster.hierarchy.leaves_list(Z)
Returns a list of leaf node ids

The return corresponds to the observation vector index as it appears in the tree from left to right. Z is a linkage
matrix.

Parameters Z : ndarray
The hierarchical clustering encoded as a matrix. Z is a linkage matrix. See linkage
for more information.

Returns leaves_list : ndarray
The list of leaf node ids.

scipy.cluster.hierarchy.to_tree(Z, rd=False)
Converts a hierarchical clustering encoded in the matrix Z (by linkage) into an easy-to-use tree object.

The reference r to the root ClusterNode object is returned.

Each ClusterNode object has a left, right, dist, id, and count attribute. The left and right attributes point to
ClusterNode objects that were combined to generate the cluster. If both are None then the ClusterNode object
is a leaf node, its count must be 1, and its distance is meaningless but set to 0.

Note: This function is provided for the convenience of the library user. ClusterNodes are not used as input to
any of the functions in this library.

Parameters Z : ndarray
The linkage matrix in proper form (see the linkage function documentation).

rd : bool, optional
When False, a reference to the root ClusterNode object is returned. Otherwise, a tuple
(r,d) is returned. r is a reference to the root node while d is a dictionary mapping clus-
ter ids to ClusterNode references. If a cluster id is less than n, then it corresponds to a
singleton cluster (leaf node). See linkage for more information on the assignment
of cluster ids to clusters.

Returns L : list
The pre-order traversal.

These are predicates for checking the validity of linkage and inconsistency matrices as well as for checking isomor-
phism of two flat cluster assignments.

is_valid_im(R[, warning, throw, name]) Returns True if the inconsistency matrix passed is valid.
is_valid_linkage(Z[, warning, throw, name]) Checks the validity of a linkage matrix.
is_isomorphic(T1, T2) Determines if two different cluster assignments are equivalent.
is_monotonic(Z) Returns True if the linkage passed is monotonic.
correspond(Z, Y) Checks for correspondence between linkage and condensed distance matrices
num_obs_linkage(Z) Returns the number of original observations of the linkage matrix passed.

scipy.cluster.hierarchy.is_valid_im(R, warning=False, throw=False, name=None)

284 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Returns True if the inconsistency matrix passed is valid.

It must be a 𝑛 by 4 numpy array of doubles. The standard deviations R[:,1] must be nonnegative. The link
counts R[:,2] must be positive and no greater than 𝑛− 1.

Parameters R : ndarray
The inconsistency matrix to check for validity.

warning : bool, optional
When True, issues a Python warning if the linkage matrix passed is invalid.

throw : bool, optional
When True, throws a Python exception if the linkage matrix passed is invalid.

name : str, optional
This string refers to the variable name of the invalid linkage matrix.

Returns b : bool
True if the inconsistency matrix is valid.

scipy.cluster.hierarchy.is_valid_linkage(Z, warning=False, throw=False, name=None)
Checks the validity of a linkage matrix.

A linkage matrix is valid if it is a two dimensional ndarray (type double) with 𝑛 rows and 4 columns. The first
two columns must contain indices between 0 and 2𝑛 − 1. For a given row i, 0 ≤ Z[i, 0] ≤ 𝑖 + 𝑛 − 1 and
0 ≤ 𝑍[𝑖, 1] ≤ 𝑖 + 𝑛 − 1 (i.e. a cluster cannot join another cluster unless the cluster being joined has been
generated.)

Parameters Z : array_like
Linkage matrix.

warning : bool, optional
When True, issues a Python warning if the linkage matrix passed is invalid.

throw : bool, optional
When True, throws a Python exception if the linkage matrix passed is invalid.

name : str, optional
This string refers to the variable name of the invalid linkage matrix.

Returns b : bool
True iff the inconsistency matrix is valid.

scipy.cluster.hierarchy.is_isomorphic(T1, T2)
Determines if two different cluster assignments are equivalent.

Parameters T1 : array_like
An assignment of singleton cluster ids to flat cluster ids.

T2 : array_like
An assignment of singleton cluster ids to flat cluster ids.

Returns b : bool
Whether the flat cluster assignments T1 and T2 are equivalent.

scipy.cluster.hierarchy.is_monotonic(Z)
Returns True if the linkage passed is monotonic.

The linkage is monotonic if for every cluster 𝑠 and 𝑡 joined, the distance between them is no less than the
distance between any previously joined clusters.

Parameters Z : ndarray
The linkage matrix to check for monotonicity.

Returns b : bool
A boolean indicating whether the linkage is monotonic.

scipy.cluster.hierarchy.correspond(Z, Y)
Checks for correspondence between linkage and condensed distance matrices

They must have the same number of original observations for the check to succeed.

5.3. Hierarchical clustering (scipy.cluster.hierarchy) 285

SciPy Reference Guide, Release 0.16.0

This function is useful as a sanity check in algorithms that make extensive use of linkage and distance matrices
that must correspond to the same set of original observations.

Parameters Z : array_like
The linkage matrix to check for correspondence.

Y : array_like
The condensed distance matrix to check for correspondence.

Returns b : bool
A boolean indicating whether the linkage matrix and distance matrix could possibly
correspond to one another.

scipy.cluster.hierarchy.num_obs_linkage(Z)
Returns the number of original observations of the linkage matrix passed.

Parameters Z : ndarray
The linkage matrix on which to perform the operation.

Returns n : int
The number of original observations in the linkage.

Utility routines for plotting:

set_link_color_palette(palette) Set list of matplotlib color codes for dendrogram color_threshold.

scipy.cluster.hierarchy.set_link_color_palette(palette)
Set list of matplotlib color codes for dendrogram color_threshold.

Parameters palette : list
A list of matplotlib color codes. The order of the color codes is the order in which the
colors are cycled through when color thresholding in the dendrogram.

5.3.1 References

• MATLAB and MathWorks are registered trademarks of The MathWorks, Inc.

• Mathematica is a registered trademark of The Wolfram Research, Inc.

5.4 Constants (scipy.constants)

Physical and mathematical constants and units.

5.4.1 Mathematical constants

pi Pi
golden Golden ratio

286 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

5.4.2 Physical constants

c speed of light in vacuum
mu_0 the magnetic constant 𝜇0

epsilon_0 the electric constant (vacuum permittivity), 𝜖0
h the Planck constant ℎ
hbar ℎ̄ = ℎ/(2𝜋)
G Newtonian constant of gravitation
g standard acceleration of gravity
e elementary charge
R molar gas constant
alpha fine-structure constant
N_A Avogadro constant
k Boltzmann constant
sigma Stefan-Boltzmann constant 𝜎
Wien Wien displacement law constant
Rydberg Rydberg constant
m_e electron mass
m_p proton mass
m_n neutron mass

Constants database

In addition to the above variables, scipy.constants also contains the 2010 CODATA recommended values [CO-
DATA2010] database containing more physical constants.

value(key) Value in physical_constants indexed by key
unit(key) Unit in physical_constants indexed by key
precision(key) Relative precision in physical_constants indexed by key
find([sub, disp]) Return list of codata.physical_constant keys containing a given string.
ConstantWarning Accessing a constant no longer in current CODATA data set

scipy.constants.value(key)
Value in physical_constants indexed by key

Parameters key : Python string or unicode
Key in dictionary physical_constants

Returns value : float
Value in physical_constants corresponding to key

See also:

codata Contains the description of physical_constants, which, as a dictionary literal object, does
not itself possess a docstring.

Examples

>>> from scipy.constants import codata
>>> codata.value('elementary charge')

1.602176487e-019

scipy.constants.unit(key)
Unit in physical_constants indexed by key

5.4. Constants (scipy.constants) 287

SciPy Reference Guide, Release 0.16.0

Parameters key : Python string or unicode
Key in dictionary physical_constants

Returns unit : Python string
Unit in physical_constants corresponding to key

See also:

codata Contains the description of physical_constants, which, as a dictionary literal object, does
not itself possess a docstring.

Examples

>>> from scipy.constants import codata
>>> codata.unit(u'proton mass')
'kg'

scipy.constants.precision(key)
Relative precision in physical_constants indexed by key

Parameters key : Python string or unicode
Key in dictionary physical_constants

Returns prec : float
Relative precision in physical_constants corresponding to key

See also:

codata Contains the description of physical_constants, which, as a dictionary literal object, does
not itself possess a docstring.

Examples

>>> from scipy.constants import codata
>>> codata.precision(u'proton mass')
4.96226989798e-08

scipy.constants.find(sub=None, disp=False)
Return list of codata.physical_constant keys containing a given string.

Parameters sub : str, unicode
Sub-string to search keys for. By default, return all keys.

disp : bool
If True, print the keys that are found, and return None. Otherwise, return the list of
keys without printing anything.

Returns keys : list or None
If disp is False, the list of keys is returned. Otherwise, None is returned.

See also:

codata Contains the description of physical_constants, which, as a dictionary literal object, does
not itself possess a docstring.

exception scipy.constants.ConstantWarning
Accessing a constant no longer in current CODATA data set

scipy.constants.physical_constants
Dictionary of physical constants, of the format physical_constants[name] = (value, unit,
uncertainty).

288 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Available constants:

5.4. Constants (scipy.constants) 289

SciPy Reference Guide, Release 0.16.0

alpha particle mass 6.64465675e-27 kg
alpha particle mass energy equivalent 5.97191967e-10 J
alpha particle mass energy equivalent in MeV 3727.37924 MeV
alpha particle mass in u 4.00150617913 u
alpha particle molar mass 0.00400150617912 kg mol^-1
alpha particle-electron mass ratio 7294.2995361
alpha particle-proton mass ratio 3.97259968933
Angstrom star 1.00001495e-10 m
atomic mass constant 1.660538921e-27 kg
atomic mass constant energy equivalent 1.492417954e-10 J
atomic mass constant energy equivalent in MeV 931.494061 MeV
atomic mass unit-electron volt relationship 931494061.0 eV
atomic mass unit-hartree relationship 34231776.845 E_h
atomic mass unit-hertz relationship 2.2523427168e+23 Hz
atomic mass unit-inverse meter relationship 7.5130066042e+14 m^-1
atomic mass unit-joule relationship 1.492417954e-10 J
atomic mass unit-kelvin relationship 1.08095408e+13 K
atomic mass unit-kilogram relationship 1.660538921e-27 kg
atomic unit of 1st hyperpolarizability 3.206361449e-53 C^3 m^3 J^-2
atomic unit of 2nd hyperpolarizability 6.23538054e-65 C^4 m^4 J^-3
atomic unit of action 1.054571726e-34 J s
atomic unit of charge 1.602176565e-19 C
atomic unit of charge density 1.081202338e+12 C m^-3
atomic unit of current 0.00662361795 A
atomic unit of electric dipole mom. 8.47835326e-30 C m
atomic unit of electric field 5.14220652e+11 V m^-1
atomic unit of electric field gradient 9.717362e+21 V m^-2
atomic unit of electric polarizability 1.6487772754e-41 C^2 m^2 J^-1
atomic unit of electric potential 27.21138505 V
atomic unit of electric quadrupole mom. 4.486551331e-40 C m^2
atomic unit of energy 4.35974434e-18 J
atomic unit of force 8.23872278e-08 N
atomic unit of length 5.2917721092e-11 m
atomic unit of mag. dipole mom. 1.854801936e-23 J T^-1
atomic unit of mag. flux density 235051.7464 T
atomic unit of magnetizability 7.891036607e-29 J T^-2
atomic unit of mass 9.10938291e-31 kg
atomic unit of mom.um 1.99285174e-24 kg m s^-1
atomic unit of permittivity 1.11265005605e-10 F m^-1
atomic unit of time 2.4188843265e-17 s
atomic unit of velocity 2187691.26379 m s^-1
Avogadro constant 6.02214129e+23 mol^-1
Bohr magneton 9.27400968e-24 J T^-1
Bohr magneton in eV/T 5.7883818066e-05 eV T^-1
Bohr magneton in Hz/T 13996245550.0 Hz T^-1
Bohr magneton in inverse meters per tesla 46.6864498 m^-1 T^-1
Bohr magneton in K/T 0.67171388 K T^-1
Bohr radius 5.2917721092e-11 m
Boltzmann constant 1.3806488e-23 J K^-1
Boltzmann constant in eV/K 8.6173324e-05 eV K^-1

Continued on next page

290 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.11 – continued from previous page
Boltzmann constant in Hz/K 20836618000.0 Hz K^-1
Boltzmann constant in inverse meters per kelvin 69.503476 m^-1 K^-1
characteristic impedance of vacuum 376.730313462 ohm
classical electron radius 2.8179403267e-15 m
Compton wavelength 2.4263102389e-12 m
Compton wavelength over 2 pi 3.86159268e-13 m
conductance quantum 7.7480917346e-05 S
conventional value of Josephson constant 4.835979e+14 Hz V^-1
conventional value of von Klitzing constant 25812.807 ohm
Cu x unit 1.00207697e-13 m
deuteron g factor 0.8574382308
deuteron mag. mom. 4.33073489e-27 J T^-1
deuteron mag. mom. to Bohr magneton ratio 0.0004669754556
deuteron mag. mom. to nuclear magneton ratio 0.8574382308
deuteron mass 3.34358348e-27 kg
deuteron mass energy equivalent 3.00506297e-10 J
deuteron mass energy equivalent in MeV 1875.612859 MeV
deuteron mass in u 2.01355321271 u
deuteron molar mass 0.00201355321271 kg mol^-1
deuteron rms charge radius 2.1424e-15 m
deuteron-electron mag. mom. ratio -0.0004664345537
deuteron-electron mass ratio 3670.4829652
deuteron-neutron mag. mom. ratio -0.44820652
deuteron-proton mag. mom. ratio 0.307012207
deuteron-proton mass ratio 1.99900750097
electric constant 8.85418781762e-12 F m^-1
electron charge to mass quotient -1.758820088e+11 C kg^-1
electron g factor -2.00231930436
electron gyromag. ratio 1.760859708e+11 s^-1 T^-1
electron gyromag. ratio over 2 pi 28024.95266 MHz T^-1
electron mag. mom. -9.2847643e-24 J T^-1
electron mag. mom. anomaly 0.00115965218076
electron mag. mom. to Bohr magneton ratio -1.00115965218
electron mag. mom. to nuclear magneton ratio -1838.2819709
electron mass 9.10938291e-31 kg
electron mass energy equivalent 8.18710506e-14 J
electron mass energy equivalent in MeV 0.510998928 MeV
electron mass in u 0.00054857990946 u
electron molar mass 5.4857990946e-07 kg mol^-1
electron to alpha particle mass ratio 0.000137093355578
electron to shielded helion mag. mom. ratio 864.058257
electron to shielded proton mag. mom. ratio -658.2275971
electron volt 1.602176565e-19 J
electron volt-atomic mass unit relationship 1.07354415e-09 u
electron volt-hartree relationship 0.03674932379 E_h
electron volt-hertz relationship 2.417989348e+14 Hz
electron volt-inverse meter relationship 806554.429 m^-1
electron volt-joule relationship 1.602176565e-19 J
electron volt-kelvin relationship 11604.519 K
electron volt-kilogram relationship 1.782661845e-36 kg

Continued on next page

5.4. Constants (scipy.constants) 291

SciPy Reference Guide, Release 0.16.0

Table 5.11 – continued from previous page
electron-deuteron mag. mom. ratio -2143.923498
electron-deuteron mass ratio 0.00027244371095
electron-helion mass ratio 0.00018195430761
electron-muon mag. mom. ratio 206.7669896
electron-muon mass ratio 0.00483633166
electron-neutron mag. mom. ratio 960.9205
electron-neutron mass ratio 0.00054386734461
electron-proton mag. mom. ratio -658.2106848
electron-proton mass ratio 0.00054461702178
electron-tau mass ratio 0.000287592
electron-triton mass ratio 0.00018192000653
elementary charge 1.602176565e-19 C
elementary charge over h 2.417989348e+14 A J^-1
Faraday constant 96485.3365 C mol^-1
Faraday constant for conventional electric current 96485.3321 C_90 mol^-1
Fermi coupling constant 1.166364e-05 GeV^-2
fine-structure constant 0.0072973525698
first radiation constant 3.74177153e-16 W m^2
first radiation constant for spectral radiance 1.191042869e-16 W m^2 sr^-1
Hartree energy 4.35974434e-18 J
Hartree energy in eV 27.21138505 eV
hartree-atomic mass unit relationship 2.9212623246e-08 u
hartree-electron volt relationship 27.21138505 eV
hartree-hertz relationship 6.57968392073e+15 Hz
hartree-inverse meter relationship 21947463.1371 m^-1
hartree-joule relationship 4.35974434e-18 J
hartree-kelvin relationship 315775.04 K
hartree-kilogram relationship 4.85086979e-35 kg
helion g factor -4.255250613
helion mag. mom. -1.074617486e-26 J T^-1
helion mag. mom. to Bohr magneton ratio -0.001158740958
helion mag. mom. to nuclear magneton ratio -2.127625306
helion mass 5.00641234e-27 kg
helion mass energy equivalent 4.49953902e-10 J
helion mass energy equivalent in MeV 2808.391482 MeV
helion mass in u 3.0149322468 u
helion molar mass 0.0030149322468 kg mol^-1
helion-electron mass ratio 5495.8852754
helion-proton mass ratio 2.9931526707
hertz-atomic mass unit relationship 4.4398216689e-24 u
hertz-electron volt relationship 4.135667516e-15 eV
hertz-hartree relationship 1.519829846e-16 E_h
hertz-inverse meter relationship 3.33564095198e-09 m^-1
hertz-joule relationship 6.62606957e-34 J
hertz-kelvin relationship 4.7992434e-11 K
hertz-kilogram relationship 7.37249668e-51 kg
inverse fine-structure constant 137.035999074
inverse meter-atomic mass unit relationship 1.3310250512e-15 u
inverse meter-electron volt relationship 1.23984193e-06 eV
inverse meter-hartree relationship 4.55633525276e-08 E_h

Continued on next page

292 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.11 – continued from previous page
inverse meter-hertz relationship 299792458.0 Hz
inverse meter-joule relationship 1.986445684e-25 J
inverse meter-kelvin relationship 0.01438777 K
inverse meter-kilogram relationship 2.210218902e-42 kg
inverse of conductance quantum 12906.4037217 ohm
Josephson constant 4.8359787e+14 Hz V^-1
joule-atomic mass unit relationship 6700535850.0 u
joule-electron volt relationship 6.24150934e+18 eV
joule-hartree relationship 2.29371248e+17 E_h
joule-hertz relationship 1.509190311e+33 Hz
joule-inverse meter relationship 5.03411701e+24 m^-1
joule-kelvin relationship 7.2429716e+22 K
joule-kilogram relationship 1.11265005605e-17 kg
kelvin-atomic mass unit relationship 9.2510868e-14 u
kelvin-electron volt relationship 8.6173324e-05 eV
kelvin-hartree relationship 3.1668114e-06 E_h
kelvin-hertz relationship 20836618000.0 Hz
kelvin-inverse meter relationship 69.503476 m^-1
kelvin-joule relationship 1.3806488e-23 J
kelvin-kilogram relationship 1.536179e-40 kg
kilogram-atomic mass unit relationship 6.02214129e+26 u
kilogram-electron volt relationship 5.60958885e+35 eV
kilogram-hartree relationship 2.061485968e+34 E_h
kilogram-hertz relationship 1.356392608e+50 Hz
kilogram-inverse meter relationship 4.52443873e+41 m^-1
kilogram-joule relationship 8.98755178737e+16 J
kilogram-kelvin relationship 6.5096582e+39 K
lattice parameter of silicon 5.431020504e-10 m
Loschmidt constant (273.15 K, 100 kPa) 2.6516462e+25 m^-3
Loschmidt constant (273.15 K, 101.325 kPa) 2.6867805e+25 m^-3
mag. constant 1.25663706144e-06 N A^-2
mag. flux quantum 2.067833758e-15 Wb
Mo x unit 1.00209952e-13 m
molar gas constant 8.3144621 J mol^-1 K^-1
molar mass constant 0.001 kg mol^-1
molar mass of carbon-12 0.012 kg mol^-1
molar Planck constant 3.9903127176e-10 J s mol^-1
molar Planck constant times c 0.119626565779 J m mol^-1
molar volume of ideal gas (273.15 K, 100 kPa) 0.022710953 m^3 mol^-1
molar volume of ideal gas (273.15 K, 101.325 kPa) 0.022413968 m^3 mol^-1
molar volume of silicon 1.205883301e-05 m^3 mol^-1
muon Compton wavelength 1.173444103e-14 m
muon Compton wavelength over 2 pi 1.867594294e-15 m
muon g factor -2.0023318418
muon mag. mom. -4.49044807e-26 J T^-1
muon mag. mom. anomaly 0.00116592091
muon mag. mom. to Bohr magneton ratio -0.00484197044
muon mag. mom. to nuclear magneton ratio -8.89059697
muon mass 1.883531475e-28 kg
muon mass energy equivalent 1.692833667e-11 J

Continued on next page

5.4. Constants (scipy.constants) 293

SciPy Reference Guide, Release 0.16.0

Table 5.11 – continued from previous page
muon mass energy equivalent in MeV 105.6583715 MeV
muon mass in u 0.1134289267 u
muon molar mass 0.0001134289267 kg mol^-1
muon-electron mass ratio 206.7682843
muon-neutron mass ratio 0.1124545177
muon-proton mag. mom. ratio -3.183345107
muon-proton mass ratio 0.1126095272
muon-tau mass ratio 0.0594649
natural unit of action 1.054571726e-34 J s
natural unit of action in eV s 6.58211928e-16 eV s
natural unit of energy 8.18710506e-14 J
natural unit of energy in MeV 0.510998928 MeV
natural unit of length 3.86159268e-13 m
natural unit of mass 9.10938291e-31 kg
natural unit of mom.um 2.73092429e-22 kg m s^-1
natural unit of mom.um in MeV/c 0.510998928 MeV/c
natural unit of time 1.28808866833e-21 s
natural unit of velocity 299792458.0 m s^-1
neutron Compton wavelength 1.3195909068e-15 m
neutron Compton wavelength over 2 pi 2.1001941568e-16 m
neutron g factor -3.82608545
neutron gyromag. ratio 183247179.0 s^-1 T^-1
neutron gyromag. ratio over 2 pi 29.1646943 MHz T^-1
neutron mag. mom. -9.6623647e-27 J T^-1
neutron mag. mom. to Bohr magneton ratio -0.00104187563
neutron mag. mom. to nuclear magneton ratio -1.91304272
neutron mass 1.674927351e-27 kg
neutron mass energy equivalent 1.505349631e-10 J
neutron mass energy equivalent in MeV 939.565379 MeV
neutron mass in u 1.008664916 u
neutron molar mass 0.001008664916 kg mol^-1
neutron to shielded proton mag. mom. ratio -0.68499694
neutron-electron mag. mom. ratio 0.00104066882
neutron-electron mass ratio 1838.6836605
neutron-muon mass ratio 8.892484
neutron-proton mag. mom. ratio -0.68497934
neutron-proton mass difference 2.30557392e-30
neutron-proton mass difference energy equivalent 2.0721465e-13
neutron-proton mass difference energy equivalent in MeV 1.29333217
neutron-proton mass difference in u 0.00138844919
neutron-proton mass ratio 1.00137841917
neutron-tau mass ratio 0.52879
Newtonian constant of gravitation 6.67384e-11 m^3 kg^-1 s^-2
Newtonian constant of gravitation over h-bar c 6.70837e-39 (GeV/c^2)^-2
nuclear magneton 5.05078353e-27 J T^-1
nuclear magneton in eV/T 3.1524512605e-08 eV T^-1
nuclear magneton in inverse meters per tesla 0.02542623527 m^-1 T^-1
nuclear magneton in K/T 0.00036582682 K T^-1
nuclear magneton in MHz/T 7.62259357 MHz T^-1
Planck constant 6.62606957e-34 J s

Continued on next page

294 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.11 – continued from previous page
Planck constant in eV s 4.135667516e-15 eV s
Planck constant over 2 pi 1.054571726e-34 J s
Planck constant over 2 pi in eV s 6.58211928e-16 eV s
Planck constant over 2 pi times c in MeV fm 197.3269718 MeV fm
Planck length 1.616199e-35 m
Planck mass 2.17651e-08 kg
Planck mass energy equivalent in GeV 1.220932e+19 GeV
Planck temperature 1.416833e+32 K
Planck time 5.39106e-44 s
proton charge to mass quotient 95788335.8 C kg^-1
proton Compton wavelength 1.32140985623e-15 m
proton Compton wavelength over 2 pi 2.1030891047e-16 m
proton g factor 5.585694713
proton gyromag. ratio 267522200.5 s^-1 T^-1
proton gyromag. ratio over 2 pi 42.5774806 MHz T^-1
proton mag. mom. 1.410606743e-26 J T^-1
proton mag. mom. to Bohr magneton ratio 0.00152103221
proton mag. mom. to nuclear magneton ratio 2.792847356
proton mag. shielding correction 2.5694e-05
proton mass 1.672621777e-27 kg
proton mass energy equivalent 1.503277484e-10 J
proton mass energy equivalent in MeV 938.272046 MeV
proton mass in u 1.00727646681 u
proton molar mass 0.00100727646681 kg mol^-1
proton rms charge radius 8.775e-16 m
proton-electron mass ratio 1836.15267245
proton-muon mass ratio 8.88024331
proton-neutron mag. mom. ratio -1.45989806
proton-neutron mass ratio 0.99862347826
proton-tau mass ratio 0.528063
quantum of circulation 0.0003636947552 m^2 s^-1
quantum of circulation times 2 0.0007273895104 m^2 s^-1
Rydberg constant 10973731.5685 m^-1
Rydberg constant times c in Hz 3.28984196036e+15 Hz
Rydberg constant times hc in eV 13.60569253 eV
Rydberg constant times hc in J 2.179872171e-18 J
Sackur-Tetrode constant (1 K, 100 kPa) -1.1517078
Sackur-Tetrode constant (1 K, 101.325 kPa) -1.1648708
second radiation constant 0.01438777 m K
shielded helion gyromag. ratio 203789465.9 s^-1 T^-1
shielded helion gyromag. ratio over 2 pi 32.43410084 MHz T^-1
shielded helion mag. mom. -1.074553044e-26 J T^-1
shielded helion mag. mom. to Bohr magneton ratio -0.001158671471
shielded helion mag. mom. to nuclear magneton ratio -2.127497718
shielded helion to proton mag. mom. ratio -0.761766558
shielded helion to shielded proton mag. mom. ratio -0.7617861313
shielded proton gyromag. ratio 267515326.8 s^-1 T^-1
shielded proton gyromag. ratio over 2 pi 42.5763866 MHz T^-1
shielded proton mag. mom. 1.410570499e-26 J T^-1
shielded proton mag. mom. to Bohr magneton ratio 0.001520993128

Continued on next page

5.4. Constants (scipy.constants) 295

SciPy Reference Guide, Release 0.16.0

Table 5.11 – continued from previous page
shielded proton mag. mom. to nuclear magneton ratio 2.792775598
speed of light in vacuum 299792458.0 m s^-1
standard acceleration of gravity 9.80665 m s^-2
standard atmosphere 101325.0 Pa
standard-state pressure 100000.0 Pa
Stefan-Boltzmann constant 5.670373e-08 W m^-2 K^-4
tau Compton wavelength 6.97787e-16 m
tau Compton wavelength over 2 pi 1.11056e-16 m
tau mass 3.16747e-27 kg
tau mass energy equivalent 2.84678e-10 J
tau mass energy equivalent in MeV 1776.82 MeV
tau mass in u 1.90749 u
tau molar mass 0.00190749 kg mol^-1
tau-electron mass ratio 3477.15
tau-muon mass ratio 16.8167
tau-neutron mass ratio 1.89111
tau-proton mass ratio 1.89372
Thomson cross section 6.652458734e-29 m^2
triton g factor 5.957924896
triton mag. mom. 1.504609447e-26 J T^-1
triton mag. mom. to Bohr magneton ratio 0.001622393657
triton mag. mom. to nuclear magneton ratio 2.978962448
triton mass 5.0073563e-27 kg
triton mass energy equivalent 4.50038741e-10 J
triton mass energy equivalent in MeV 2808.921005 MeV
triton mass in u 3.0155007134 u
triton molar mass 0.0030155007134 kg mol^-1
triton-electron mass ratio 5496.9215267
triton-proton mass ratio 2.9937170308
unified atomic mass unit 1.660538921e-27 kg
von Klitzing constant 25812.8074434 ohm
weak mixing angle 0.2223
Wien frequency displacement law constant 58789254000.0 Hz K^-1
Wien wavelength displacement law constant 0.0028977721 m K
{220} lattice spacing of silicon 1.920155714e-10 m

296 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

5.4.3 Units

SI prefixes

yotta 1024

zetta 1021

exa 1018

peta 1015

tera 1012

giga 109

mega 106

kilo 103

hecto 102

deka 101

deci 10−1

centi 10−2

milli 10−3

micro 10−6

nano 10−9

pico 10−12

femto 10−15

atto 10−18

zepto 10−21

Binary prefixes

kibi 210

mebi 220

gibi 230

tebi 240

pebi 250

exbi 260

zebi 270

yobi 280

Weight

gram 10−3 kg
metric_ton 103 kg
grain one grain in kg
lb one pound (avoirdupous) in kg
oz one ounce in kg
stone one stone in kg
grain one grain in kg
long_ton one long ton in kg
short_ton one short ton in kg
troy_ounce one Troy ounce in kg
troy_pound one Troy pound in kg
carat one carat in kg
m_u atomic mass constant (in kg)

5.4. Constants (scipy.constants) 297

SciPy Reference Guide, Release 0.16.0

Angle

degree degree in radians
arcmin arc minute in radians
arcsec arc second in radians

Time

minute one minute in seconds
hour one hour in seconds
day one day in seconds
week one week in seconds
year one year (365 days) in seconds
Julian_year one Julian year (365.25 days) in seconds

Length

inch one inch in meters
foot one foot in meters
yard one yard in meters
mile one mile in meters
mil one mil in meters
pt one point in meters
survey_foot one survey foot in meters
survey_mile one survey mile in meters
nautical_mile one nautical mile in meters
fermi one Fermi in meters
angstrom one Angstrom in meters
micron one micron in meters
au one astronomical unit in meters
light_year one light year in meters
parsec one parsec in meters

Pressure

atm standard atmosphere in pascals
bar one bar in pascals
torr one torr (mmHg) in pascals
psi one psi in pascals

Area

hectare one hectare in square meters
acre one acre in square meters

298 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Volume

liter one liter in cubic meters
gallon one gallon (US) in cubic meters
gallon_imp one gallon (UK) in cubic meters
fluid_ounce one fluid ounce (US) in cubic meters
fluid_ounce_imp one fluid ounce (UK) in cubic meters
bbl one barrel in cubic meters

Speed

kmh kilometers per hour in meters per second
mph miles per hour in meters per second
mach one Mach (approx., at 15 C, 1 atm) in meters per second
knot one knot in meters per second

Temperature

zero_Celsius zero of Celsius scale in Kelvin
degree_Fahrenheit one Fahrenheit (only differences) in Kelvins

C2K(C) Convert Celsius to Kelvin
K2C(K) Convert Kelvin to Celsius
F2C(F) Convert Fahrenheit to Celsius
C2F(C) Convert Celsius to Fahrenheit
F2K(F) Convert Fahrenheit to Kelvin
K2F(K) Convert Kelvin to Fahrenheit

scipy.constants.C2K(C)
Convert Celsius to Kelvin

Parameters C : array_like
Celsius temperature(s) to be converted.

Returns K : float or array of floats
Equivalent Kelvin temperature(s).

Notes

Computes K = C + zero_Celsius where zero_Celsius = 273.15, i.e., (the absolute value of) temper-
ature “absolute zero” as measured in Celsius.

Examples

>>> from scipy.constants.constants import C2K
>>> C2K(_np.array([-40, 40.0]))
array([233.15, 313.15])

scipy.constants.K2C(K)
Convert Kelvin to Celsius

Parameters K : array_like
Kelvin temperature(s) to be converted.

Returns C : float or array of floats

5.4. Constants (scipy.constants) 299

SciPy Reference Guide, Release 0.16.0

Equivalent Celsius temperature(s).

Notes

Computes C = K - zero_Celsius where zero_Celsius = 273.15, i.e., (the absolute value of) temper-
ature “absolute zero” as measured in Celsius.

Examples

>>> from scipy.constants.constants import K2C
>>> K2C(_np.array([233.15, 313.15]))
array([-40., 40.])

scipy.constants.F2C(F)
Convert Fahrenheit to Celsius

Parameters F : array_like
Fahrenheit temperature(s) to be converted.

Returns C : float or array of floats
Equivalent Celsius temperature(s).

Notes

Computes C = (F - 32) / 1.8.

Examples

>>> from scipy.constants.constants import F2C
>>> F2C(_np.array([-40, 40.0]))
array([-40. , 4.44444444])

scipy.constants.C2F(C)
Convert Celsius to Fahrenheit

Parameters C : array_like
Celsius temperature(s) to be converted.

Returns F : float or array of floats
Equivalent Fahrenheit temperature(s).

Notes

Computes F = 1.8 * C + 32.

Examples

>>> from scipy.constants.constants import C2F
>>> C2F(_np.array([-40, 40.0]))
array([-40., 104.])

scipy.constants.F2K(F)
Convert Fahrenheit to Kelvin

Parameters F : array_like
Fahrenheit temperature(s) to be converted.

Returns K : float or array of floats
Equivalent Kelvin temperature(s).

Notes

Computes K = (F - 32)/1.8 + zero_Celsius where zero_Celsius = 273.15, i.e., (the absolute
value of) temperature “absolute zero” as measured in Celsius.

300 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.constants.constants import F2K
>>> F2K(_np.array([-40, 104]))
array([233.15, 313.15])

scipy.constants.K2F(K)
Convert Kelvin to Fahrenheit

Parameters K : array_like
Kelvin temperature(s) to be converted.

Returns F : float or array of floats
Equivalent Fahrenheit temperature(s).

Notes

Computes F = 1.8 * (K - zero_Celsius) + 32 where zero_Celsius = 273.15, i.e., (the abso-
lute value of) temperature “absolute zero” as measured in Celsius.

Examples

>>> from scipy.constants.constants import K2F
>>> K2F(_np.array([233.15, 313.15]))
array([-40., 104.])

Energy

eV one electron volt in Joules
calorie one calorie (thermochemical) in Joules
calorie_IT one calorie (International Steam Table calorie, 1956) in Joules
erg one erg in Joules
Btu one British thermal unit (International Steam Table) in Joules
Btu_th one British thermal unit (thermochemical) in Joules
ton_TNT one ton of TNT in Joules

Power

hp one horsepower in watts

Force

dyn one dyne in newtons
lbf one pound force in newtons
kgf one kilogram force in newtons

Optics

lambda2nu(lambda_) Convert wavelength to optical frequency
nu2lambda(nu) Convert optical frequency to wavelength.

5.4. Constants (scipy.constants) 301

SciPy Reference Guide, Release 0.16.0

scipy.constants.lambda2nu(lambda_)
Convert wavelength to optical frequency

Parameters lambda_ : array_like
Wavelength(s) to be converted.

Returns nu : float or array of floats
Equivalent optical frequency.

Notes

Computes nu = c / lambda where c = 299792458.0, i.e., the (vacuum) speed of light in meters/second.

Examples

>>> from scipy.constants.constants import lambda2nu
>>> lambda2nu(_np.array((1, speed_of_light)))
array([2.99792458e+08, 1.00000000e+00])

scipy.constants.nu2lambda(nu)
Convert optical frequency to wavelength.

Parameters nu : array_like
Optical frequency to be converted.

Returns lambda : float or array of floats
Equivalent wavelength(s).

Notes

Computes lambda = c / nu where c = 299792458.0, i.e., the (vacuum) speed of light in meters/second.

Examples

>>> from scipy.constants.constants import nu2lambda
>>> nu2lambda(_np.array((1, speed_of_light)))
array([2.99792458e+08, 1.00000000e+00])

5.4.4 References

5.5 Discrete Fourier transforms (scipy.fftpack)

5.5.1 Fast Fourier Transforms (FFTs)

fft(x[, n, axis, overwrite_x]) Return discrete Fourier transform of real or complex sequence.
ifft(x[, n, axis, overwrite_x]) Return discrete inverse Fourier transform of real or complex sequence.
fft2(x[, shape, axes, overwrite_x]) 2-D discrete Fourier transform.
ifft2(x[, shape, axes, overwrite_x]) 2-D discrete inverse Fourier transform of real or complex sequence.
fftn(x[, shape, axes, overwrite_x]) Return multidimensional discrete Fourier transform.
ifftn(x[, shape, axes, overwrite_x]) Return inverse multi-dimensional discrete Fourier transform of arbitrary type sequence x.
rfft(x[, n, axis, overwrite_x]) Discrete Fourier transform of a real sequence.
irfft(x[, n, axis, overwrite_x]) Return inverse discrete Fourier transform of real sequence x.
dct(x[, type, n, axis, norm, overwrite_x]) Return the Discrete Cosine Transform of arbitrary type sequence x.
idct(x[, type, n, axis, norm, overwrite_x]) Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.
dst(x[, type, n, axis, norm, overwrite_x]) Return the Discrete Sine Transform of arbitrary type sequence x.

Continued on next page

302 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.14 – continued from previous page
idst(x[, type, n, axis, norm, overwrite_x]) Return the Inverse Discrete Sine Transform of an arbitrary type sequence.

scipy.fftpack.fft(x, n=None, axis=-1, overwrite_x=False)
Return discrete Fourier transform of real or complex sequence.

The returned complex array contains y(0), y(1),..., y(n-1) where

y(j) = (x * exp(-2*pi*sqrt(-1)*j*np.arange(n)/n)).sum().

Parameters x : array_like
Array to Fourier transform.

n : int, optional
Length of the Fourier transform. If n < x.shape[axis], x is truncated.
If n > x.shape[axis], x is zero-padded. The default results in n =
x.shape[axis].

axis : int, optional
Axis along which the fft’s are computed; the default is over the last axis (i.e.,
axis=-1).

overwrite_x : bool, optional
If True, the contents of x can be destroyed; the default is False.

Returns z : complex ndarray
with the elements:

[y(0),y(1),..,y(n/2),y(1-n/2),...,y(-1)] if n is even
[y(0),y(1),..,y((n-1)/2),y(-(n-1)/2),...,y(-1)] if n is odd

where:

y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k* 2*pi/n), j = 0..n-1

Note that y(-j) = y(n-j).conjugate().

See also:

ifft Inverse FFT

rfft FFT of a real sequence

Notes

The packing of the result is “standard”: If A = fft(a, n), then A[0] contains the zero-frequency term,
A[1:n/2] contains the positive-frequency terms, and A[n/2:] contains the negative-frequency terms, in
order of decreasingly negative frequency. So for an 8-point transform, the frequencies of the result are [0, 1, 2,
3, -4, -3, -2, -1]. To rearrange the fft output so that the zero-frequency component is centered, like [-4, -3, -2, -1,
0, 1, 2, 3], use fftshift.

For n even, A[n/2] contains the sum of the positive and negative-frequency terms. For n even and x real,
A[n/2] will always be real.

This function is most efficient when n is a power of two, and least efficient when n is prime.

If the data type of x is real, a “real FFT” algorithm is automatically used, which roughly halves the computation
time. To increase efficiency a little further, use rfft, which does the same calculation, but only outputs half of
the symmetrical spectrum. If the data is both real and symmetrical, the dct can again double the efficiency, by
generating half of the spectrum from half of the signal.

5.5. Discrete Fourier transforms (scipy.fftpack) 303

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.fftpack import fft, ifft
>>> x = np.arange(5)
>>> np.allclose(fft(ifft(x)), x, atol=1e-15) # within numerical accuracy.
True

scipy.fftpack.ifft(x, n=None, axis=-1, overwrite_x=False)
Return discrete inverse Fourier transform of real or complex sequence.

The returned complex array contains y(0), y(1),..., y(n-1) where

y(j) = (x * exp(2*pi*sqrt(-1)*j*np.arange(n)/n)).mean().

Parameters x : array_like
Transformed data to invert.

n : int, optional
Length of the inverse Fourier transform. If n < x.shape[axis], x is trun-
cated. If n > x.shape[axis], x is zero-padded. The default results in n =
x.shape[axis].

axis : int, optional
Axis along which the ifft’s are computed; the default is over the last axis (i.e.,
axis=-1).

overwrite_x : bool, optional
If True, the contents of x can be destroyed; the default is False.

Returns ifft : ndarray of floats
The inverse discrete Fourier transform.

See also:

fft Forward FFT

Notes

This function is most efficient when n is a power of two, and least efficient when n is prime.

If the data type of x is real, a “real IFFT” algorithm is automatically used, which roughly halves the computation
time.

scipy.fftpack.fft2(x, shape=None, axes=(-2, -1), overwrite_x=False)
2-D discrete Fourier transform.

Return the two-dimensional discrete Fourier transform of the 2-D argument x.

See also:

fftn for detailed information.

scipy.fftpack.ifft2(x, shape=None, axes=(-2, -1), overwrite_x=False)
2-D discrete inverse Fourier transform of real or complex sequence.

Return inverse two-dimensional discrete Fourier transform of arbitrary type sequence x.

See ifft for more information.

See also:

fft2, ifft

304 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.fftpack.fftn(x, shape=None, axes=None, overwrite_x=False)
Return multidimensional discrete Fourier transform.

The returned array contains:

y[j_1,..,j_d] = sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
x[k_1,..,k_d] * prod[i=1..d] exp(-sqrt(-1)*2*pi/n_i * j_i * k_i)

where d = len(x.shape) and n = x.shape. Note that y[..., -j_i, ...] = y[..., n_i-j_i,
...].conjugate().

Parameters x : array_like
The (n-dimensional) array to transform.

shape : tuple of ints, optional
The shape of the result. If both shape and axes (see below) are None,
shape is x.shape; if shape is None but axes is not None, then shape is
scipy.take(x.shape, axes, axis=0). If shape[i] > x.shape[i],
the i-th dimension is padded with zeros. If shape[i] < x.shape[i], the i-th
dimension is truncated to length shape[i].

axes : array_like of ints, optional
The axes of x (y if shape is not None) along which the transform is applied.

overwrite_x : bool, optional
If True, the contents of x can be destroyed. Default is False.

Returns y : complex-valued n-dimensional numpy array
The (n-dimensional) DFT of the input array.

See also:

ifftn

Examples

>>> from scipy.fftpack import fftn, ifftn
>>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16))
>>> np.allclose(y, fftn(ifftn(y)))
True

scipy.fftpack.ifftn(x, shape=None, axes=None, overwrite_x=False)
Return inverse multi-dimensional discrete Fourier transform of arbitrary type sequence x.

The returned array contains:

y[j_1,..,j_d] = 1/p * sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
x[k_1,..,k_d] * prod[i=1..d] exp(sqrt(-1)*2*pi/n_i * j_i * k_i)

where d = len(x.shape), n = x.shape, and p = prod[i=1..d] n_i.

For description of parameters see fftn.

See also:

fftn for detailed information.

scipy.fftpack.rfft(x, n=None, axis=-1, overwrite_x=False)
Discrete Fourier transform of a real sequence.

Parameters x : array_like, real-valued
The data to transform.

n : int, optional

5.5. Discrete Fourier transforms (scipy.fftpack) 305

SciPy Reference Guide, Release 0.16.0

Defines the length of the Fourier transform. If n is not specified (the default)
then n = x.shape[axis]. If n < x.shape[axis], x is truncated, if n >
x.shape[axis], x is zero-padded.

axis : int, optional
The axis along which the transform is applied. The default is the last axis.

overwrite_x : bool, optional
If set to true, the contents of x can be overwritten. Default is False.

Returns z : real ndarray
The returned real array contains:

[y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2))] if n is even
[y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2)),Im(y(n/2))] if n is odd

where:

y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k*2*pi/n)
j = 0..n-1

Note that y(-j) == y(n-j).conjugate().

See also:

fft, irfft, scipy.fftpack.basic

Notes

Within numerical accuracy, y == rfft(irfft(y)).

Examples

>>> from scipy.fftpack import fft, rfft
>>> a = [9, -9, 1, 3]
>>> fft(a)
array([4. +0.j, 8.+12.j, 16. +0.j, 8.-12.j])
>>> rfft(a)
array([4., 8., 12., 16.])

scipy.fftpack.irfft(x, n=None, axis=-1, overwrite_x=False)
Return inverse discrete Fourier transform of real sequence x.

The contents of x are interpreted as the output of the rfft function.

Parameters x : array_like
Transformed data to invert.

n : int, optional
Length of the inverse Fourier transform. If n < x.shape[axis], x is truncated. If n >
x.shape[axis], x is zero-padded. The default results in n = x.shape[axis].

axis : int, optional
Axis along which the ifft’s are computed; the default is over the last axis (i.e., axis=-1).

overwrite_x : bool, optional
If True, the contents of x can be destroyed; the default is False.

Returns irfft : ndarray of floats
The inverse discrete Fourier transform.

See also:

rfft, ifft

Notes

The returned real array contains:

306 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

[y(0),y(1),...,y(n-1)]

where for n is even:

y(j) = 1/n (sum[k=1..n/2-1] (x[2*k-1]+sqrt(-1)*x[2*k])

* exp(sqrt(-1)*j*k* 2*pi/n)
+ c.c. + x[0] + (-1)**(j) x[n-1])

and for n is odd:

y(j) = 1/n (sum[k=1..(n-1)/2] (x[2*k-1]+sqrt(-1)*x[2*k])

* exp(sqrt(-1)*j*k* 2*pi/n)
+ c.c. + x[0])

c.c. denotes complex conjugate of preceding expression.

For details on input parameters, see rfft.

scipy.fftpack.dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)
Return the Discrete Cosine Transform of arbitrary type sequence x.

Parameters x : array_like
The input array.

type : {1, 2, 3}, optional
Type of the DCT (see Notes). Default type is 2.

n : int, optional
Length of the transform. If n < x.shape[axis], x is truncated. If
n > x.shape[axis], x is zero-padded. The default results in n =
x.shape[axis].

axis : int, optional
Axis along which the dct is computed; the default is over the last axis (i.e., axis=-1).

norm : {None, ‘ortho’}, optional
Normalization mode (see Notes). Default is None.

overwrite_x : bool, optional
If True, the contents of x can be destroyed; the default is False.

Returns y : ndarray of real
The transformed input array.

See also:

idct Inverse DCT

Notes

For a single dimension array x, dct(x, norm=’ortho’) is equal to MATLAB dct(x).

There are theoretically 8 types of the DCT, only the first 3 types are implemented in scipy. ‘The’ DCT generally
refers to DCT type 2, and ‘the’ Inverse DCT generally refers to DCT type 3.

Type I

There are several definitions of the DCT-I; we use the following (for norm=None):

N-2
y[k] = x[0] + (-1)**k x[N-1] + 2 * sum x[n]*cos(pi*k*n/(N-1))

n=1

Only None is supported as normalization mode for DCT-I. Note also that the DCT-I is only supported for input
size > 1

Type II

5.5. Discrete Fourier transforms (scipy.fftpack) 307

SciPy Reference Guide, Release 0.16.0

There are several definitions of the DCT-II; we use the following (for norm=None):

N-1
y[k] = 2* sum x[n]*cos(pi*k*(2n+1)/(2*N)), 0 <= k < N.

n=0

If norm=’ortho’, y[k] is multiplied by a scaling factor f :

f = sqrt(1/(4*N)) if k = 0,
f = sqrt(1/(2*N)) otherwise.

Which makes the corresponding matrix of coefficients orthonormal (OO’ = Id).

Type III

There are several definitions, we use the following (for norm=None):

N-1
y[k] = x[0] + 2 * sum x[n]*cos(pi*(k+0.5)*n/N), 0 <= k < N.

n=1

or, for norm=’ortho’ and 0 <= k < N:

N-1
y[k] = x[0] / sqrt(N) + sqrt(2/N) * sum x[n]*cos(pi*(k+0.5)*n/N)

n=1

The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up to a factor 2N. The orthonormalized
DCT-III is exactly the inverse of the orthonormalized DCT-II.

References

[R36], [R37]

Examples

The Type 1 DCT is equivalent to the FFT (though faster) for real, even-symmetrical inputs. The output is also
real and even-symmetrical. Half of the FFT input is used to generate half of the FFT output:

>>> from scipy.fftpack import fft, dct
>>> fft(np.array([4., 3., 5., 10., 5., 3.])).real
array([30., -8., 6., -2., 6., -8.])
>>> dct(np.array([4., 3., 5., 10.]), 1)
array([30., -8., 6., -2.])

scipy.fftpack.idct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)
Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.

Parameters x : array_like
The input array.

type : {1, 2, 3}, optional
Type of the DCT (see Notes). Default type is 2.

n : int, optional
Length of the transform. If n < x.shape[axis], x is truncated. If
n > x.shape[axis], x is zero-padded. The default results in n =
x.shape[axis].

axis : int, optional
Axis along which the idct is computed; the default is over the last axis (i.e.,
axis=-1).

norm : {None, ‘ortho’}, optional
Normalization mode (see Notes). Default is None.

308 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

overwrite_x : bool, optional
If True, the contents of x can be destroyed; the default is False.

Returns idct : ndarray of real
The transformed input array.

See also:

dct Forward DCT

Notes

For a single dimension array x, idct(x, norm=’ortho’) is equal to MATLAB idct(x).

‘The’ IDCT is the IDCT of type 2, which is the same as DCT of type 3.

IDCT of type 1 is the DCT of type 1, IDCT of type 2 is the DCT of type 3, and IDCT of type 3 is the DCT of
type 2. For the definition of these types, see dct.

Examples

The Type 1 DCT is equivalent to the DFT for real, even-symmetrical inputs. The output is also real and even-
symmetrical. Half of the IFFT input is used to generate half of the IFFT output:

>>> from scipy.fftpack import ifft, idct
>>> ifft(np.array([30., -8., 6., -2., 6., -8.])).real
array([4., 3., 5., 10., 5., 3.])
>>> idct(np.array([30., -8., 6., -2.]), 1) / 6
array([4., 3., 5., 10.])

scipy.fftpack.dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)
Return the Discrete Sine Transform of arbitrary type sequence x.

Parameters x : array_like
The input array.

type : {1, 2, 3}, optional
Type of the DST (see Notes). Default type is 2.

n : int, optional
Length of the transform. If n < x.shape[axis], x is truncated. If
n > x.shape[axis], x is zero-padded. The default results in n =
x.shape[axis].

axis : int, optional
Axis along which the dst is computed; the default is over the last axis (i.e., axis=-1).

norm : {None, ‘ortho’}, optional
Normalization mode (see Notes). Default is None.

overwrite_x : bool, optional
If True, the contents of x can be destroyed; the default is False.

Returns dst : ndarray of reals
The transformed input array.

See also:

idst Inverse DST

Notes

For a single dimension array x.

There are theoretically 8 types of the DST for different combinations of even/odd boundary conditions and
boundary off sets [R38], only the first 3 types are implemented in scipy.

5.5. Discrete Fourier transforms (scipy.fftpack) 309

SciPy Reference Guide, Release 0.16.0

Type I

There are several definitions of the DST-I; we use the following for norm=None. DST-I assumes the input is
odd around n=-1 and n=N.

N-1
y[k] = 2 * sum x[n]*sin(pi*(k+1)*(n+1)/(N+1))

n=0

Only None is supported as normalization mode for DCT-I. Note also that the DCT-I is only supported for input
size > 1 The (unnormalized) DCT-I is its own inverse, up to a factor 2(N+1).

Type II

There are several definitions of the DST-II; we use the following for norm=None. DST-II assumes the input is
odd around n=-1/2 and n=N-1/2; the output is odd around k=-1 and even around k=N-1

N-1
y[k] = 2* sum x[n]*sin(pi*(k+1)*(n+0.5)/N), 0 <= k < N.

n=0

if norm=’ortho’, y[k] is multiplied by a scaling factor f

f = sqrt(1/(4*N)) if k == 0
f = sqrt(1/(2*N)) otherwise.

Type III

There are several definitions of the DST-III, we use the following (for norm=None). DST-III assumes the input
is odd around n=-1 and even around n=N-1

N-2
y[k] = x[N-1]*(-1)**k + 2* sum x[n]*sin(pi*(k+0.5)*(n+1)/N), 0 <= k < N.

n=0

The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up to a factor 2N. The orthonormalized
DST-III is exactly the inverse of the orthonormalized DST-II.

New in version 0.11.0.

References

[R38]

scipy.fftpack.idst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)
Return the Inverse Discrete Sine Transform of an arbitrary type sequence.

Parameters x : array_like
The input array.

type : {1, 2, 3}, optional
Type of the DST (see Notes). Default type is 2.

n : int, optional
Length of the transform. If n < x.shape[axis], x is truncated. If
n > x.shape[axis], x is zero-padded. The default results in n =
x.shape[axis].

axis : int, optional
Axis along which the idst is computed; the default is over the last axis (i.e.,
axis=-1).

norm : {None, ‘ortho’}, optional
Normalization mode (see Notes). Default is None.

overwrite_x : bool, optional

310 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

If True, the contents of x can be destroyed; the default is False.
Returns idst : ndarray of real

The transformed input array.

See also:

dst Forward DST

Notes

‘The’ IDST is the IDST of type 2, which is the same as DST of type 3.

IDST of type 1 is the DST of type 1, IDST of type 2 is the DST of type 3, and IDST of type 3 is the DST of type
2. For the definition of these types, see dst.

New in version 0.11.0.

5.5.2 Differential and pseudo-differential operators

diff(x[, order, period, _cache]) Return k-th derivative (or integral) of a periodic sequence x.
tilbert(x, h[, period, _cache]) Return h-Tilbert transform of a periodic sequence x.
itilbert(x, h[, period, _cache]) Return inverse h-Tilbert transform of a periodic sequence x.
hilbert(x[, _cache]) Return Hilbert transform of a periodic sequence x.
ihilbert(x) Return inverse Hilbert transform of a periodic sequence x.
cs_diff(x, a, b[, period, _cache]) Return (a,b)-cosh/sinh pseudo-derivative of a periodic sequence.
sc_diff(x, a, b[, period, _cache]) Return (a,b)-sinh/cosh pseudo-derivative of a periodic sequence x.
ss_diff(x, a, b[, period, _cache]) Return (a,b)-sinh/sinh pseudo-derivative of a periodic sequence x.
cc_diff(x, a, b[, period, _cache]) Return (a,b)-cosh/cosh pseudo-derivative of a periodic sequence.
shift(x, a[, period, _cache]) Shift periodic sequence x by a: y(u) = x(u+a).

scipy.fftpack.diff(x, order=1, period=None, _cache={})
Return k-th derivative (or integral) of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = pow(sqrt(-1)*j*2*pi/period, order) * x_j
y_0 = 0 if order is not 0.

Parameters x : array_like
Input array.

order : int, optional
The order of differentiation. Default order is 1. If order is negative, then integration is
carried out under the assumption that x_0 == 0.

period : float, optional
The assumed period of the sequence. Default is 2*pi.

Notes

If sum(x, axis=0) = 0 then diff(diff(x, k), -k) == x (within numerical accuracy).

For odd order and even len(x), the Nyquist mode is taken zero.

scipy.fftpack.tilbert(x, h, period=None, _cache={})
Return h-Tilbert transform of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

5.5. Discrete Fourier transforms (scipy.fftpack) 311

SciPy Reference Guide, Release 0.16.0

y_j = sqrt(-1)*coth(j*h*2*pi/period) * x_j
y_0 = 0

Parameters x : array_like
The input array to transform.

h : float
Defines the parameter of the Tilbert transform.

period : float, optional
The assumed period of the sequence. Default period is 2*pi.

Returns tilbert : ndarray
The result of the transform.

Notes

If sum(x, axis=0) == 0 and n = len(x) is odd then tilbert(itilbert(x)) == x.

If 2 * pi * h / period is approximately 10 or larger, then numerically tilbert == hilbert (the-
oretically oo-Tilbert == Hilbert).

For even len(x), the Nyquist mode of x is taken zero.

scipy.fftpack.itilbert(x, h, period=None, _cache={})
Return inverse h-Tilbert transform of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = -sqrt(-1)*tanh(j*h*2*pi/period) * x_j
y_0 = 0

For more details, see tilbert.

scipy.fftpack.hilbert(x, _cache={})
Return Hilbert transform of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = sqrt(-1)*sign(j) * x_j
y_0 = 0

Parameters x : array_like
The input array, should be periodic.

_cache : dict, optional
Dictionary that contains the kernel used to do a convolution with.

Returns y : ndarray
The transformed input.

Notes

If sum(x, axis=0) == 0 then hilbert(ihilbert(x)) == x.

For even len(x), the Nyquist mode of x is taken zero.

The sign of the returned transform does not have a factor -1 that is more often than not found in the definition
of the Hilbert transform. Note also that scipy.signal.hilbert does have an extra -1 factor compared to
this function.

scipy.fftpack.ihilbert(x)
Return inverse Hilbert transform of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

312 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

y_j = -sqrt(-1)*sign(j) * x_j
y_0 = 0

scipy.fftpack.cs_diff(x, a, b, period=None, _cache={})
Return (a,b)-cosh/sinh pseudo-derivative of a periodic sequence.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = -sqrt(-1)*cosh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j
y_0 = 0

Parameters x : array_like
The array to take the pseudo-derivative from.

a, b : float
Defines the parameters of the cosh/sinh pseudo-differential operator.

period : float, optional
The period of the sequence. Default period is 2*pi.

Returns cs_diff : ndarray
Pseudo-derivative of periodic sequence x.

Notes

For even len(x), the Nyquist mode of x is taken as zero.

scipy.fftpack.sc_diff(x, a, b, period=None, _cache={})
Return (a,b)-sinh/cosh pseudo-derivative of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = sqrt(-1)*sinh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j
y_0 = 0

Parameters x : array_like
Input array.

a,b : float
Defines the parameters of the sinh/cosh pseudo-differential operator.

period : float, optional
The period of the sequence x. Default is 2*pi.

Notes

sc_diff(cs_diff(x,a,b),b,a) == x For even len(x), the Nyquist mode of x is taken as zero.

scipy.fftpack.ss_diff(x, a, b, period=None, _cache={})
Return (a,b)-sinh/sinh pseudo-derivative of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = sinh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j
y_0 = a/b * x_0

Parameters x : array_like
The array to take the pseudo-derivative from.

a,b
Defines the parameters of the sinh/sinh pseudo-differential operator.

period : float, optional
The period of the sequence x. Default is 2*pi.

5.5. Discrete Fourier transforms (scipy.fftpack) 313

SciPy Reference Guide, Release 0.16.0

Notes

ss_diff(ss_diff(x,a,b),b,a) == x

scipy.fftpack.cc_diff(x, a, b, period=None, _cache={})
Return (a,b)-cosh/cosh pseudo-derivative of a periodic sequence.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = cosh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j

Parameters x : array_like
The array to take the pseudo-derivative from.

a,b : float
Defines the parameters of the sinh/sinh pseudo-differential operator.

period : float, optional
The period of the sequence x. Default is 2*pi.

Returns cc_diff : ndarray
Pseudo-derivative of periodic sequence x.

Notes

cc_diff(cc_diff(x,a,b),b,a) == x

scipy.fftpack.shift(x, a, period=None, _cache={})
Shift periodic sequence x by a: y(u) = x(u+a).

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = exp(j*a*2*pi/period*sqrt(-1)) * x_f

Parameters x : array_like
The array to take the pseudo-derivative from.

a : float
Defines the parameters of the sinh/sinh pseudo-differential

period : float, optional
The period of the sequences x and y. Default period is 2*pi.

5.5.3 Helper functions

fftshift(x[, axes]) Shift the zero-frequency component to the center of the spectrum.
ifftshift(x[, axes]) The inverse of fftshift.
fftfreq(n[, d]) Return the Discrete Fourier Transform sample frequencies.
rfftfreq(n[, d]) DFT sample frequencies (for usage with rfft, irfft).

scipy.fftpack.fftshift(x, axes=None)
Shift the zero-frequency component to the center of the spectrum.

This function swaps half-spaces for all axes listed (defaults to all). Note that y[0] is the Nyquist component
only if len(x) is even.

Parameters x : array_like
Input array.

axes : int or shape tuple, optional
Axes over which to shift. Default is None, which shifts all axes.

Returns y : ndarray

314 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The shifted array.

See also:

ifftshift The inverse of fftshift.

Examples

>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([0., 1., 2., 3., 4., -5., -4., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])

Shift the zero-frequency component only along the second axis:

>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[0., 1., 2.],

[3., 4., -4.],
[-3., -2., -1.]])

>>> np.fft.fftshift(freqs, axes=(1,))
array([[2., 0., 1.],

[-4., 3., 4.],
[-1., -3., -2.]])

scipy.fftpack.ifftshift(x, axes=None)
The inverse of fftshift.

Parameters x : array_like
Input array.

axes : int or shape tuple, optional
Axes over which to calculate. Defaults to None, which shifts all axes.

Returns y : ndarray
The shifted array.

See also:

fftshift Shift zero-frequency component to the center of the spectrum.

Examples

>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[0., 1., 2.],

[3., 4., -4.],
[-3., -2., -1.]])

>>> np.fft.ifftshift(np.fft.fftshift(freqs))
array([[0., 1., 2.],

[3., 4., -4.],
[-3., -2., -1.]])

scipy.fftpack.fftfreq(n, d=1.0)
Return the Discrete Fourier Transform sample frequencies.

The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero
at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length n and a sample spacing d:

5.5. Discrete Fourier transforms (scipy.fftpack) 315

SciPy Reference Guide, Release 0.16.0

f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd

Parameters n : int
Window length.

d : scalar, optional
Sample spacing (inverse of the sampling rate). Defaults to 1.

Returns f : ndarray
Array of length n containing the sample frequencies.

Examples

>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft(signal)
>>> n = signal.size
>>> timestep = 0.1
>>> freq = np.fft.fftfreq(n, d=timestep)
>>> freq
array([0. , 1.25, 2.5 , 3.75, -5. , -3.75, -2.5 , -1.25])

scipy.fftpack.rfftfreq(n, d=1.0)
DFT sample frequencies (for usage with rfft, irfft).

The returned float array contains the frequency bins in cycles/unit (with zero at the start) given a window length
n and a sample spacing d:

f = [0,1,1,2,2,...,n/2-1,n/2-1,n/2]/(d*n) if n is even
f = [0,1,1,2,2,...,n/2-1,n/2-1,n/2,n/2]/(d*n) if n is odd

Parameters n : int
Window length.

d : scalar, optional
Sample spacing. Default is 1.

Returns out : ndarray
The array of length n, containing the sample frequencies.

Examples

>>> from scipy import fftpack
>>> sig = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> sig_fft = fftpack.rfft(sig)
>>> n = sig_fft.size
>>> timestep = 0.1
>>> freq = fftpack.rfftfreq(n, d=timestep)
>>> freq
array([0. , 1.25, 1.25, 2.5 , 2.5 , 3.75, 3.75, 5.])

Note that fftshift, ifftshift and fftfreq are numpy functions exposed by fftpack; importing them from
numpy should be preferred.

5.5.4 Convolutions (scipy.fftpack.convolve)

convolve(x,omega,[swap_real_imag,overwrite_x]) Wrapper for convolve.
convolve_z(x,omega_real,omega_imag,[overwrite_x]) Wrapper for convolve_z.

Continued on next page

316 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.17 – continued from previous page
init_convolution_kernel(...) Wrapper for init_convolution_kernel.
destroy_convolve_cache() Wrapper for destroy_convolve_cache.

scipy.fftpack.convolve.convolve(x, omega[, swap_real_imag, overwrite_x]) = <fortran ob-
ject>

Wrapper for convolve.

Parameters x : input rank-1 array(‘d’) with bounds (n)
omega : input rank-1 array(‘d’) with bounds (n)

Returns y : rank-1 array(‘d’) with bounds (n) and x storage
Other Parameters

overwrite_x : input int, optional
Default: 0

swap_real_imag : input int, optional
Default: 0

scipy.fftpack.convolve.convolve_z(x, omega_real, omega_imag[, overwrite_x]) = <fortran
object>

Wrapper for convolve_z.

Parameters x : input rank-1 array(‘d’) with bounds (n)
omega_real : input rank-1 array(‘d’) with bounds (n)
omega_imag : input rank-1 array(‘d’) with bounds (n)

Returns y : rank-1 array(‘d’) with bounds (n) and x storage
Other Parameters

overwrite_x : input int, optional
Default: 0

scipy.fftpack.convolve.init_convolution_kernel(n, kernel_func[, d, zero_nyquist, ker-
nel_func_extra_args]) = <fortran ob-
ject>

Wrapper for init_convolution_kernel.

Parameters n : input int
kernel_func : call-back function

Returns omega : rank-1 array(‘d’) with bounds (n)
Other Parameters

d : input int, optional
Default: 0

kernel_func_extra_args : input tuple, optional
Default: ()

zero_nyquist : input int, optional
Default: d%2

Notes

Call-back functions:

def kernel_func(k): return kernel_func
Required arguments:
k : input int

Return objects:
kernel_func : float

scipy.fftpack.convolve.destroy_convolve_cache = <fortran object>
Wrapper for destroy_convolve_cache.

5.5. Discrete Fourier transforms (scipy.fftpack) 317

SciPy Reference Guide, Release 0.16.0

5.6 Integration and ODEs (scipy.integrate)

5.6.1 Integrating functions, given function object

quad(func, a, b[, args, full_output, ...]) Compute a definite integral.
dblquad(func, a, b, gfun, hfun[, args, ...]) Compute a double integral.
tplquad(func, a, b, gfun, hfun, qfun, rfun) Compute a triple (definite) integral.
nquad(func, ranges[, args, opts]) Integration over multiple variables.
fixed_quad(func, a, b[, args, n]) Compute a definite integral using fixed-order Gaussian quadrature.
quadrature(func, a, b[, args, tol, rtol, ...]) Compute a definite integral using fixed-tolerance Gaussian quadrature.
romberg(function, a, b[, args, tol, rtol, ...]) Romberg integration of a callable function or method.

scipy.integrate.quad(func, a, b, args=(), full_output=0, epsabs=1.49e-08, epsrel=1.49e-08, limit=50,
points=None, weight=None, wvar=None, wopts=None, maxp1=50, limlst=50)

Compute a definite integral.

Integrate func from a to b (possibly infinite interval) using a technique from the Fortran library QUADPACK.

Parameters func : function
A Python function or method to integrate. If func takes many arguments, it is inte-
grated along the axis corresponding to the first argument. If the user desires improved
integration performance, then f may instead be a ctypes function of the form:

f(int n, double args[n]),
where args is an array of function arguments and n is the length of args.
f.argtypes should be set to (c_int, c_double), and f.restype should
be (c_double,).

a : float
Lower limit of integration (use -numpy.inf for -infinity).

b : float
Upper limit of integration (use numpy.inf for +infinity).

args : tuple, optional
Extra arguments to pass to func.

full_output : int, optional
Non-zero to return a dictionary of integration information. If non-zero, warning mes-
sages are also suppressed and the message is appended to the output tuple.

Returns y : float
The integral of func from a to b.

abserr : float
An estimate of the absolute error in the result.

infodict : dict
A dictionary containing additional information. Run scipy.integrate.quad_explain()
for more information.

message :
A convergence message.

explain :
Appended only with ‘cos’ or ‘sin’ weighting and infinite integration limits, it contains
an explanation of the codes in infodict[’ierlst’]

Other Parameters
epsabs : float or int, optional

Absolute error tolerance.
epsrel : float or int, optional

Relative error tolerance.

318 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

limit : float or int, optional
An upper bound on the number of subintervals used in the adaptive algorithm.

points : (sequence of floats,ints), optional
A sequence of break points in the bounded integration interval where local difficulties
of the integrand may occur (e.g., singularities, discontinuities). The sequence does
not have to be sorted.

weight : float or int, optional
String indicating weighting function. Full explanation for this and the remaining ar-
guments can be found below.

wvar : optional
Variables for use with weighting functions.

wopts : optional
Optional input for reusing Chebyshev moments.

maxp1 : float or int, optional
An upper bound on the number of Chebyshev moments.

limlst : int, optional
Upper bound on the number of cycles (>=3) for use with a sinusoidal weighting and
an infinite end-point.

See also:

dblquad double integral

tplquad triple integral

nquad n-dimensional integrals (uses quad recursively)

fixed_quadfixed-order Gaussian quadrature

quadratureadaptive Gaussian quadrature

odeint ODE integrator

ode ODE integrator

simps integrator for sampled data

romb integrator for sampled data

scipy.special
for coefficients and roots of orthogonal polynomials

Notes

Extra information for quad() inputs and outputs

If full_output is non-zero, then the third output argument (infodict) is a dictionary with entries as tabulated
below. For infinite limits, the range is transformed to (0,1) and the optional outputs are given with respect to this
transformed range. Let M be the input argument limit and let K be infodict[’last’]. The entries are:

‘neval’ The number of function evaluations.

‘last’ The number, K, of subintervals produced in the subdivision process.

‘alist’ A rank-1 array of length M, the first K elements of which are the left end points of the subintervals
in the partition of the integration range.

‘blist’ A rank-1 array of length M, the first K elements of which are the right end points of the subinter-
vals.

‘rlist’ A rank-1 array of length M, the first K elements of which are the integral approximations on the
subintervals.

5.6. Integration and ODEs (scipy.integrate) 319

SciPy Reference Guide, Release 0.16.0

‘elist’ A rank-1 array of length M, the first K elements of which are the moduli of the absolute error
estimates on the subintervals.

‘iord’ A rank-1 integer array of length M, the first L elements of which are pointers to the error estimates
over the subintervals with L=K if K<=M/2+2 or L=M+1-K otherwise. Let I be the sequence
infodict[’iord’] and let E be the sequence infodict[’elist’]. Then E[I[1]],
..., E[I[L]] forms a decreasing sequence.

If the input argument points is provided (i.e. it is not None), the following additional outputs are placed in the
output dictionary. Assume the points sequence is of length P.

‘pts’ A rank-1 array of length P+2 containing the integration limits and the break points of the intervals
in ascending order. This is an array giving the subintervals over which integration will occur.

‘level’ A rank-1 integer array of length M (=limit), containing the subdivision levels of the subinter-
vals, i.e., if (aa,bb) is a subinterval of (pts[1], pts[2]) where pts[0] and pts[2]
are adjacent elements of infodict[’pts’], then (aa,bb) has level l if |bb-aa| =
|pts[2]-pts[1]| * 2**(-l).

‘ndin’ A rank-1 integer array of length P+2. After the first integration over the intervals (pts[1], pts[2]),
the error estimates over some of the intervals may have been increased artificially in order to
put their subdivision forward. This array has ones in slots corresponding to the subintervals for
which this happens.

Weighting the integrand

The input variables, weight and wvar, are used to weight the integrand by a select list of functions. Different
integration methods are used to compute the integral with these weighting functions. The possible values of
weight and the corresponding weighting functions are.

weight Weight function used wvar
‘cos’ cos(w*x) wvar = w
‘sin’ sin(w*x) wvar = w
‘alg’ g(x) = ((x-a)**alpha)*((b-x)**beta) wvar = (alpha, beta)
‘alg-loga’ g(x)*log(x-a) wvar = (alpha, beta)
‘alg-logb’ g(x)*log(b-x) wvar = (alpha, beta)
‘alg-log’ g(x)*log(x-a)*log(b-x) wvar = (alpha, beta)
‘cauchy’ 1/(x-c) wvar = c

wvar holds the parameter w, (alpha, beta), or c depending on the weight selected. In these expressions, a and b
are the integration limits.

For the ‘cos’ and ‘sin’ weighting, additional inputs and outputs are available.

For finite integration limits, the integration is performed using a Clenshaw-Curtis method which uses Chebyshev
moments. For repeated calculations, these moments are saved in the output dictionary:

‘momcom’ The maximum level of Chebyshev moments that have been computed, i.e., if M_c is
infodict[’momcom’] then the moments have been computed for intervals of length |b-a|
* 2**(-l), l=0,1,...,M_c.

‘nnlog’ A rank-1 integer array of length M(=limit), containing the subdivision levels of the subintervals,
i.e., an element of this array is equal to l if the corresponding subinterval is |b-a|* 2**(-l).

‘chebmo’ A rank-2 array of shape (25, maxp1) containing the computed Chebyshev moments. These can
be passed on to an integration over the same interval by passing this array as the second element
of the sequence wopts and passing infodict[’momcom’] as the first element.

If one of the integration limits is infinite, then a Fourier integral is computed (assuming w neq 0). If full_output
is 1 and a numerical error is encountered, besides the error message attached to the output tuple, a dictionary is
also appended to the output tuple which translates the error codes in the array info[’ierlst’] to English

320 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

messages. The output information dictionary contains the following entries instead of ‘last’, ‘alist’, ‘blist’,
‘rlist’, and ‘elist’:

‘lst’ The number of subintervals needed for the integration (call it K_f).

‘rslst’ A rank-1 array of length M_f=limlst, whose first K_f elements contain the integral contribu-
tion over the interval (a+(k-1)c, a+kc) where c = (2*floor(|w|) + 1) * pi /
|w| and k=1,2,...,K_f.

‘erlst’ A rank-1 array of length M_f containing the error estimate corresponding to the interval in the
same position in infodict[’rslist’].

‘ierlst’ A rank-1 integer array of length M_f containing an error flag corresponding to the interval in
the same position in infodict[’rslist’]. See the explanation dictionary (last entry in the
output tuple) for the meaning of the codes.

Examples

Calculate
∫︀ 4

0
𝑥2𝑑𝑥 and compare with an analytic result

>>> from scipy import integrate
>>> x2 = lambda x: x**2
>>> integrate.quad(x2, 0, 4)
(21.333333333333332, 2.3684757858670003e-13)
>>> print(4**3 / 3.) # analytical result
21.3333333333

Calculate
∫︀∞
0

𝑒−𝑥𝑑𝑥

>>> invexp = lambda x: np.exp(-x)
>>> integrate.quad(invexp, 0, np.inf)
(1.0, 5.842605999138044e-11)

>>> f = lambda x,a : a*x
>>> y, err = integrate.quad(f, 0, 1, args=(1,))
>>> y
0.5
>>> y, err = integrate.quad(f, 0, 1, args=(3,))
>>> y
1.5

Calculate
∫︀ 1

0
𝑥2 + 𝑦2𝑑𝑥 with ctypes, holding y parameter as 1:

testlib.c =>
double func(int n, double args[n]){

return args[0]*args[0] + args[1]*args[1];}
compile to library testlib.*

>>> from scipy import integrate
>>> import ctypes
>>> lib = ctypes.CDLL('/home/.../testlib.*') #use absolute path
>>> lib.func.restype = ctypes.c_double
>>> lib.func.argtypes = (ctypes.c_int,ctypes.c_double)
>>> integrate.quad(lib.func,0,1,(1))
(1.3333333333333333, 1.4802973661668752e-14)
>>> print((1.0**3/3.0 + 1.0) - (0.0**3/3.0 + 0.0)) #Analytic result
1.3333333333333333

scipy.integrate.dblquad(func, a, b, gfun, hfun, args=(), epsabs=1.49e-08, epsrel=1.49e-08)
Compute a double integral.

5.6. Integration and ODEs (scipy.integrate) 321

SciPy Reference Guide, Release 0.16.0

Return the double (definite) integral of func(y, x) from x = a..b and y = gfun(x)..hfun(x).

Parameters func : callable
A Python function or method of at least two variables: y must be the first argument
and x the second argument.

a, b : float
The limits of integration in x: a < b

gfun : callable
The lower boundary curve in y which is a function taking a single floating point argu-
ment (x) and returning a floating point result: a lambda function can be useful here.

hfun : callable
The upper boundary curve in y (same requirements as gfun).

args : sequence, optional
Extra arguments to pass to func.

epsabs : float, optional
Absolute tolerance passed directly to the inner 1-D quadrature integration. Default is
1.49e-8.

epsrel : float, optional
Relative tolerance of the inner 1-D integrals. Default is 1.49e-8.

Returns y : float
The resultant integral.

abserr : float
An estimate of the error.

See also:

quad single integral

tplquad triple integral

nquad N-dimensional integrals

fixed_quadfixed-order Gaussian quadrature

quadratureadaptive Gaussian quadrature

odeint ODE integrator

ode ODE integrator

simps integrator for sampled data

romb integrator for sampled data

scipy.special
for coefficients and roots of orthogonal polynomials

scipy.integrate.tplquad(func, a, b, gfun, hfun, qfun, rfun, args=(), epsabs=1.49e-08, epsrel=1.49e-
08)

Compute a triple (definite) integral.

Return the triple integral of func(z, y, x) from x = a..b, y = gfun(x)..hfun(x), and z =
qfun(x,y)..rfun(x,y).

Parameters func : function
A Python function or method of at least three variables in the order (z, y, x).

a, b : float
The limits of integration in x: a < b

gfun : function
The lower boundary curve in y which is a function taking a single floating point argu-
ment (x) and returning a floating point result: a lambda function can be useful here.

322 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

hfun : function
The upper boundary curve in y (same requirements as gfun).

qfun : function
The lower boundary surface in z. It must be a function that takes two floats in the
order (x, y) and returns a float.

rfun : function
The upper boundary surface in z. (Same requirements as qfun.)

args : tuple, optional
Extra arguments to pass to func.

epsabs : float, optional
Absolute tolerance passed directly to the innermost 1-D quadrature integration. De-
fault is 1.49e-8.

epsrel : float, optional
Relative tolerance of the innermost 1-D integrals. Default is 1.49e-8.

Returns y : float
The resultant integral.

abserr : float
An estimate of the error.

See also:

quad Adaptive quadrature using QUADPACK

quadratureAdaptive Gaussian quadrature

fixed_quadFixed-order Gaussian quadrature

dblquad Double integrals

nquad N-dimensional integrals

romb Integrators for sampled data

simps Integrators for sampled data

ode ODE integrators

odeint ODE integrators

scipy.special
For coefficients and roots of orthogonal polynomials

scipy.integrate.nquad(func, ranges, args=None, opts=None)
Integration over multiple variables.

Wraps quad to enable integration over multiple variables. Various options allow improved integration of dis-
continuous functions, as well as the use of weighted integration, and generally finer control of the integration
process.

Parameters func : callable
The function to be integrated. Has arguments of x0, ... xn, t0, tm, where
integration is carried out over x0, ... xn, which must be floats. Function signa-
ture should be func(x0, x1, ..., xn, t0, t1, ..., tm). Integration
is carried out in order. That is, integration over x0 is the innermost integral, and xn
is the outermost. If performance is a concern, this function may be a ctypes function
of the form:

f(int n, double args[n])

5.6. Integration and ODEs (scipy.integrate) 323

SciPy Reference Guide, Release 0.16.0

where n is the number of extra parameters and args is an array of doubles of the
additional parameters. This function may then be compiled to a dynamic/shared li-
brary then imported through ctypes, setting the function’s argtypes to (c_int,
c_double), and the function’s restype to (c_double). Its pointer may then be
passed into nquad normally. This allows the underlying Fortran library to evaluate
the function in the innermost integration calls without callbacks to Python, and also
speeds up the evaluation of the function itself.

ranges : iterable object
Each element of ranges may be either a sequence of 2 numbers, or else a callable that
returns such a sequence. ranges[0] corresponds to integration over x0, and so on.
If an element of ranges is a callable, then it will be called with all of the integration
arguments available. e.g. if func = f(x0, x1, x2), then ranges[0] may be
defined as either (a, b) or else as (a, b) = range0(x1, x2).

args : iterable object, optional
Additional arguments t0, ..., tn, required by func.

opts : iterable object or dict, optional
Options to be passed to quad. May be empty, a dict, or a sequence of dicts or func-
tions that return a dict. If empty, the default options from scipy.integrate.quadare
used. If a dict, the same options are used for all levels of integraion. If a sequence,
then each element of the sequence corresponds to a particular integration. e.g. opts[0]
corresponds to integration over x0, and so on. The available options together with
their default values are:

•epsabs = 1.49e-08
•epsrel = 1.49e-08
•limit = 50
•points = None
•weight = None
•wvar = None
•wopts = None

The full_output option from quad is unavailable, due to the complexity of han-
dling the large amount of data such an option would return for this kind of nested
integration. For more information on these options, see quad and quad_explain.

Returns result : float
The result of the integration.

abserr : float
The maximum of the estimates of the absolute error in the various integration results.

See also:

quad 1-dimensional numerical integration

dblquad, tplquad

fixed_quadfixed-order Gaussian quadrature

quadratureadaptive Gaussian quadrature

Examples

>>> from scipy import integrate
>>> func = lambda x0,x1,x2,x3 : x0**2 + x1*x2 - x3**3 + np.sin(x0) + (
... 1 if (x0-.2*x3-.5-.25*x1>0) else 0)
>>> points = [[lambda (x1,x2,x3) : 0.2*x3 + 0.5 + 0.25*x1], [], [], []]
>>> def opts0(*args, **kwargs):
... return {'points':[0.2*args[2] + 0.5 + 0.25*args[0]]}
>>> integrate.nquad(func, [[0,1], [-1,1], [.13,.8], [-.15,1]],

324 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

... opts=[opts0,{},{},{}])
(1.5267454070738633, 2.9437360001402324e-14)

>>> scale = .1
>>> def func2(x0, x1, x2, x3, t0, t1):
... return x0*x1*x3**2 + np.sin(x2) + 1 + (1 if x0+t1*x1-t0>0 else 0)
>>> def lim0(x1, x2, x3, t0, t1):
... return [scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) - 1,
... scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) + 1]
>>> def lim1(x2, x3, t0, t1):
... return [scale * (t0*x2 + t1*x3) - 1,
... scale * (t0*x2 + t1*x3) + 1]
>>> def lim2(x3, t0, t1):
... return [scale * (x3 + t0**2*t1**3) - 1,
... scale * (x3 + t0**2*t1**3) + 1]
>>> def lim3(t0, t1):
... return [scale * (t0+t1) - 1, scale * (t0+t1) + 1]
>>> def opts0(x1, x2, x3, t0, t1):
... return {'points' : [t0 - t1*x1]}
>>> def opts1(x2, x3, t0, t1):
... return {}
>>> def opts2(x3, t0, t1):
... return {}
>>> def opts3(t0, t1):
... return {}
>>> integrate.nquad(func2, [lim0, lim1, lim2, lim3], args=(0,0),
... opts=[opts0, opts1, opts2, opts3])
(25.066666666666666, 2.7829590483937256e-13)

scipy.integrate.fixed_quad(func, a, b, args=(), n=5)
Compute a definite integral using fixed-order Gaussian quadrature.

Integrate func from a to b using Gaussian quadrature of order n.

Parameters func : callable
A Python function or method to integrate (must accept vector inputs).

a : float
Lower limit of integration.

b : float
Upper limit of integration.

args : tuple, optional
Extra arguments to pass to function, if any.

n : int, optional
Order of quadrature integration. Default is 5.

Returns val : float
Gaussian quadrature approximation to the integral

See also:

quad adaptive quadrature using QUADPACK

dblquad double integrals

tplquad triple integrals

romberg adaptive Romberg quadrature

quadratureadaptive Gaussian quadrature

romb integrators for sampled data

5.6. Integration and ODEs (scipy.integrate) 325

SciPy Reference Guide, Release 0.16.0

simps integrators for sampled data

cumtrapz cumulative integration for sampled data

ode ODE integrator

odeint ODE integrator

scipy.integrate.quadrature(func, a, b, args=(), tol=1.49e-08, rtol=1.49e-08, maxiter=50,
vec_func=True, miniter=1)

Compute a definite integral using fixed-tolerance Gaussian quadrature.

Integrate func from a to b using Gaussian quadrature with absolute tolerance tol.

Parameters func : function
A Python function or method to integrate.

a : float
Lower limit of integration.

b : float
Upper limit of integration.

args : tuple, optional
Extra arguments to pass to function.

tol, rtol : float, optional
Iteration stops when error between last two iterates is less than tol OR the relative
change is less than rtol.

maxiter : int, optional
Maximum order of Gaussian quadrature.

vec_func : bool, optional
True or False if func handles arrays as arguments (is a “vector” function). Default is
True.

miniter : int, optional
Minimum order of Gaussian quadrature.

Returns val : float
Gaussian quadrature approximation (within tolerance) to integral.

err : float
Difference between last two estimates of the integral.

See also:

romberg adaptive Romberg quadrature

fixed_quadfixed-order Gaussian quadrature

quad adaptive quadrature using QUADPACK

dblquad double integrals

tplquad triple integrals

romb integrator for sampled data

simps integrator for sampled data

cumtrapz cumulative integration for sampled data

ode ODE integrator

odeint ODE integrator

326 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.integrate.romberg(function, a, b, args=(), tol=1.48e-08, rtol=1.48e-08, show=False, div-
max=10, vec_func=False)

Romberg integration of a callable function or method.

Returns the integral of function (a function of one variable) over the interval (a, b).

If show is 1, the triangular array of the intermediate results will be printed. If vec_func is True (default is False),
then function is assumed to support vector arguments.

Parameters function : callable
Function to be integrated.

a : float
Lower limit of integration.

b : float
Upper limit of integration.

Returns results : float
Result of the integration.

Other Parameters
args : tuple, optional

Extra arguments to pass to function. Each element of args will be passed as a single
argument to func. Default is to pass no extra arguments.

tol, rtol : float, optional
The desired absolute and relative tolerances. Defaults are 1.48e-8.

show : bool, optional
Whether to print the results. Default is False.

divmax : int, optional
Maximum order of extrapolation. Default is 10.

vec_func : bool, optional
Whether func handles arrays as arguments (i.e whether it is a “vector” function). De-
fault is False.

See also:

fixed_quadFixed-order Gaussian quadrature.

quad Adaptive quadrature using QUADPACK.

dblquad Double integrals.

tplquad Triple integrals.

romb Integrators for sampled data.

simps Integrators for sampled data.

cumtrapz Cumulative integration for sampled data.

ode ODE integrator.

odeint ODE integrator.

References

[R39]

Examples

Integrate a gaussian from 0 to 1 and compare to the error function.

5.6. Integration and ODEs (scipy.integrate) 327

SciPy Reference Guide, Release 0.16.0

>>> from scipy import integrate
>>> from scipy.special import erf
>>> gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2)
>>> result = integrate.romberg(gaussian, 0, 1, show=True)
Romberg integration of <function vfunc at ...> from [0, 1]

Steps StepSize Results
1 1.000000 0.385872
2 0.500000 0.412631 0.421551
4 0.250000 0.419184 0.421368 0.421356
8 0.125000 0.420810 0.421352 0.421350 0.421350

16 0.062500 0.421215 0.421350 0.421350 0.421350 0.421350
32 0.031250 0.421317 0.421350 0.421350 0.421350 0.421350 0.421350

The final result is 0.421350396475 after 33 function evaluations.

>>> print("%g %g" % (2*result, erf(1)))
0.842701 0.842701

5.6.2 Integrating functions, given fixed samples

cumtrapz(y[, x, dx, axis, initial]) Cumulatively integrate y(x) using the composite trapezoidal rule.
simps(y[, x, dx, axis, even]) Integrate y(x) using samples along the given axis and the composite Simpson’s rule.
romb(y[, dx, axis, show]) Romberg integration using samples of a function.

scipy.integrate.cumtrapz(y, x=None, dx=1.0, axis=-1, initial=None)
Cumulatively integrate y(x) using the composite trapezoidal rule.

Parameters y : array_like
Values to integrate.

x : array_like, optional
The coordinate to integrate along. If None (default), use spacing dx between consec-
utive elements in y.

dx : int, optional
Spacing between elements of y. Only used if x is None.

axis : int, optional
Specifies the axis to cumulate. Default is -1 (last axis).

initial : scalar, optional
If given, uses this value as the first value in the returned result. Typically this value
should be 0. Default is None, which means no value at x[0] is returned and res has
one element less than y along the axis of integration.

Returns res : ndarray
The result of cumulative integration of y along axis. If initial is None, the shape is
such that the axis of integration has one less value than y. If initial is given, the shape
is equal to that of y.

See also:

numpy.cumsum, numpy.cumprod

quad adaptive quadrature using QUADPACK

romberg adaptive Romberg quadrature

quadratureadaptive Gaussian quadrature

328 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.cumsum.html#numpy.cumsum
http://docs.scipy.org/doc/numpy/reference/generated/numpy.cumprod.html#numpy.cumprod

SciPy Reference Guide, Release 0.16.0

fixed_quadfixed-order Gaussian quadrature

dblquad double integrals

tplquad triple integrals

romb integrators for sampled data

ode ODE integrators

odeint ODE integrators

Examples

>>> from scipy import integrate
>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-2, 2, num=20)
>>> y = x
>>> y_int = integrate.cumtrapz(y, x, initial=0)
>>> plt.plot(x, y_int, 'ro', x, y[0] + 0.5 * x**2, 'b-')
>>> plt.show()

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

scipy.integrate.simps(y, x=None, dx=1, axis=-1, even=’avg’)
Integrate y(x) using samples along the given axis and the composite Simpson’s rule. If x is None, spacing of dx
is assumed.

If there are an even number of samples, N, then there are an odd number of intervals (N-1), but Simpson’s rule
requires an even number of intervals. The parameter ‘even’ controls how this is handled.

Parameters y : array_like
Array to be integrated.

x : array_like, optional
If given, the points at which y is sampled.

dx : int, optional
Spacing of integration points along axis of y. Only used when x is None. Default is 1.

axis : int, optional
Axis along which to integrate. Default is the last axis.

even : {‘avg’, ‘first’, ‘str’}, optional

5.6. Integration and ODEs (scipy.integrate) 329

SciPy Reference Guide, Release 0.16.0

‘avg’ [Average two results:1) use the first N-2 intervals with] a trapezoidal
rule on the last interval and 2) use the last N-2 intervals with a trape-
zoidal rule on the first interval.

‘first’ [Use Simpson’s rule for the first N-2 intervals with] a trapezoidal rule
on the last interval.

‘last’ [Use Simpson’s rule for the last N-2 intervals with a] trapezoidal rule
on the first interval.

See also:

quad adaptive quadrature using QUADPACK

romberg adaptive Romberg quadrature

quadratureadaptive Gaussian quadrature

fixed_quadfixed-order Gaussian quadrature

dblquad double integrals

tplquad triple integrals

romb integrators for sampled data

cumtrapz cumulative integration for sampled data

ode ODE integrators

odeint ODE integrators

Notes

For an odd number of samples that are equally spaced the result is exact if the function is a polynomial of order
3 or less. If the samples are not equally spaced, then the result is exact only if the function is a polynomial of
order 2 or less.

scipy.integrate.romb(y, dx=1.0, axis=-1, show=False)
Romberg integration using samples of a function.

Parameters y : array_like
A vector of 2**k + 1 equally-spaced samples of a function.

dx : float, optional
The sample spacing. Default is 1.

axis : int, optional
The axis along which to integrate. Default is -1 (last axis).

show : bool, optional
When y is a single 1-D array, then if this argument is True print the table showing
Richardson extrapolation from the samples. Default is False.

Returns romb : ndarray
The integrated result for axis.

See also:

quad adaptive quadrature using QUADPACK

romberg adaptive Romberg quadrature

quadratureadaptive Gaussian quadrature

fixed_quadfixed-order Gaussian quadrature

dblquad double integrals

330 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

tplquad triple integrals

simps integrators for sampled data

cumtrapz cumulative integration for sampled data

ode ODE integrators

odeint ODE integrators

See also:

scipy.special for orthogonal polynomials (special) for Gaussian quadrature roots and weights for other weight-
ing factors and regions.

5.6.3 Integrators of ODE systems

odeint(func, y0, t[, args, Dfun, col_deriv, ...]) Integrate a system of ordinary differential equations.
ode(f[, jac]) A generic interface class to numeric integrators.
complex_ode(f[, jac]) A wrapper of ode for complex systems.

scipy.integrate.odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None,
mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0,
hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, print-
messg=0)

Integrate a system of ordinary differential equations.

Solve a system of ordinary differential equations using lsoda from the FORTRAN library odepack.

Solves the initial value problem for stiff or non-stiff systems of first order ode-s:

dy/dt = func(y,t0,...)

where y can be a vector.

Parameters func : callable(y, t0, ...)
Computes the derivative of y at t0.

y0 : array
Initial condition on y (can be a vector).

t : array
A sequence of time points for which to solve for y. The initial value point should be
the first element of this sequence.

args : tuple, optional
Extra arguments to pass to function.

Dfun : callable(y, t0, ...)
Gradient (Jacobian) of func.

col_deriv : bool, optional
True if Dfun defines derivatives down columns (faster), otherwise Dfun should define
derivatives across rows.

full_output : bool, optional
True if to return a dictionary of optional outputs as the second output

printmessg : bool, optional
Whether to print the convergence message

Returns y : array, shape (len(t), len(y0))
Array containing the value of y for each desired time in t, with the initial value y0 in
the first row.

5.6. Integration and ODEs (scipy.integrate) 331

SciPy Reference Guide, Release 0.16.0

infodict : dict, only returned if full_output == True
Dictionary containing additional output information

key meaning
‘hu’ vector of step sizes successfully used for each time step.
‘tcur’ vector with the value of t reached for each time step. (will always be at

least as large as the input times).
‘tolsf’ vector of tolerance scale factors, greater than 1.0, computed when a

request for too much accuracy was detected.
‘tsw’ value of t at the time of the last method switch (given for each time step)
‘nst’ cumulative number of time steps
‘nfe’ cumulative number of function evaluations for each time step
‘nje’ cumulative number of jacobian evaluations for each time step
‘nqu’ a vector of method orders for each successful step.
‘imxer’ index of the component of largest magnitude in the weighted local error

vector (e / ewt) on an error return, -1 otherwise.
‘lenrw’ the length of the double work array required.
‘leniw’ the length of integer work array required.
‘mused’a vector of method indicators for each successful time step: 1: adams

(nonstiff), 2: bdf (stiff)
Other Parameters

ml, mu : int, optional
If either of these are not None or non-negative, then the Jacobian is assumed to be
banded. These give the number of lower and upper non-zero diagonals in this banded
matrix. For the banded case, Dfun should return a matrix whose rows contain the non-
zero bands (starting with the lowest diagonal). Thus, the return matrix jac from Dfun
should have shape (ml + mu + 1, len(y0)) when ml >=0 or mu >=0. The
data in jac must be stored such that jac[i - j + mu, j] holds the derivative
of the i‘th equation with respect to the ‘j‘th state variable. If ‘col_deriv is True, the
transpose of this jac must be returned.

rtol, atol : float, optional
The input parameters rtol and atol determine the error control performed by the solver.
The solver will control the vector, e, of estimated local errors in y, according to an
inequality of the form max-norm of (e / ewt) <= 1, where ewt is a vector
of positive error weights computed as ewt = rtol * abs(y) + atol. rtol
and atol can be either vectors the same length as y or scalars. Defaults to 1.49012e-8.

tcrit : ndarray, optional
Vector of critical points (e.g. singularities) where integration care should be taken.

h0 : float, (0: solver-determined), optional
The step size to be attempted on the first step.

hmax : float, (0: solver-determined), optional
The maximum absolute step size allowed.

hmin : float, (0: solver-determined), optional
The minimum absolute step size allowed.

ixpr : bool, optional
Whether to generate extra printing at method switches.

mxstep : int, (0: solver-determined), optional
Maximum number of (internally defined) steps allowed for each integration point in t.

mxhnil : int, (0: solver-determined), optional
Maximum number of messages printed.

mxordn : int, (0: solver-determined), optional
Maximum order to be allowed for the non-stiff (Adams) method.

mxords : int, (0: solver-determined), optional
Maximum order to be allowed for the stiff (BDF) method.

332 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

See also:

ode a more object-oriented integrator based on VODE.

quad for finding the area under a curve.

class scipy.integrate.ode(f, jac=None)
A generic interface class to numeric integrators.

Solve an equation system 𝑦′(𝑡) = 𝑓(𝑡, 𝑦) with (optional) jac = df/dy.

Parameters f : callable f(t, y, *f_args)
Rhs of the equation. t is a scalar, y.shape == (n,). f_args is set by calling
set_f_params(*args). f should return a scalar, array or list (not a tuple).

jac : callable jac(t, y, *jac_args), optional
Jacobian of the rhs, jac[i,j] = d f[i] / d y[j]. jac_args is set by call-
ing set_f_params(*args).

See also:

odeint an integrator with a simpler interface based on lsoda from ODEPACK

quad for finding the area under a curve

Notes

Available integrators are listed below. They can be selected using the set_integrator method.

“vode”

Real-valued Variable-coefficient Ordinary Differential Equation solver, with fixed-leading-coefficient im-
plementation. It provides implicit Adams method (for non-stiff problems) and a method based on back-
ward differentiation formulas (BDF) (for stiff problems).
Source: http://www.netlib.org/ode/vode.f

Warning: This integrator is not re-entrant. You cannot have two ode instances using the “vode”
integrator at the same time.

This integrator accepts the following parameters in set_integrator method of the ode class:
•atol : float or sequence absolute tolerance for solution
•rtol : float or sequence relative tolerance for solution
•lband : None or int
•uband : None or int Jacobian band width, jac[i,j] != 0 for i-lband <= j <= i+uband. Setting these
requires your jac routine to return the jacobian in packed format, jac_packed[i-j+uband, j] = jac[i,j].
The dimension of the matrix must be (lband+uband+1, len(y)).

•method: ‘adams’ or ‘bdf’ Which solver to use, Adams (non-stiff) or BDF (stiff)
•with_jacobian : bool This option is only considered when the user has not supplied a Jacobian
function and has not indicated (by setting either band) that the Jacobian is banded. In this case,
with_jacobian specifies whether the iteration method of the ODE solver’s correction step is chord
iteration with an internally generated full Jacobian or functional iteration with no Jacobian.

•nsteps : int Maximum number of (internally defined) steps allowed during one call to the solver.
•first_step : float
•min_step : float
•max_step : float Limits for the step sizes used by the integrator.
•order : int Maximum order used by the integrator, order <= 12 for Adams, <= 5 for BDF.

“zvode”

5.6. Integration and ODEs (scipy.integrate) 333

http://www.netlib.org/ode/vode.f

SciPy Reference Guide, Release 0.16.0

Complex-valued Variable-coefficient Ordinary Differential Equation solver, with fixed-leading-coefficient
implementation. It provides implicit Adams method (for non-stiff problems) and a method based on
backward differentiation formulas (BDF) (for stiff problems).
Source: http://www.netlib.org/ode/zvode.f

Warning: This integrator is not re-entrant. You cannot have two ode instances using the “zvode”
integrator at the same time.

This integrator accepts the same parameters in set_integrator as the “vode” solver.

Note: When using ZVODE for a stiff system, it should only be used for the case in which the function
f is analytic, that is, when each f(i) is an analytic function of each y(j). Analyticity means that the partial
derivative df(i)/dy(j) is a unique complex number, and this fact is critical in the way ZVODE solves the
dense or banded linear systems that arise in the stiff case. For a complex stiff ODE system in which f is
not analytic, ZVODE is likely to have convergence failures, and for this problem one should instead use
DVODE on the equivalent real system (in the real and imaginary parts of y).

“lsoda”

Real-valued Variable-coefficient Ordinary Differential Equation solver, with fixed-leading-coefficient im-
plementation. It provides automatic method switching between implicit Adams method (for non-stiff
problems) and a method based on backward differentiation formulas (BDF) (for stiff problems).
Source: http://www.netlib.org/odepack

Warning: This integrator is not re-entrant. You cannot have two ode instances using the “lsoda”
integrator at the same time.

This integrator accepts the following parameters in set_integrator method of the ode class:
•atol : float or sequence absolute tolerance for solution
•rtol : float or sequence relative tolerance for solution
•lband : None or int
•uband : None or int Jacobian band width, jac[i,j] != 0 for i-lband <= j <= i+uband. Setting these
requires your jac routine to return the jacobian in packed format, jac_packed[i-j+uband, j] = jac[i,j].

•with_jacobian : bool Not used.
•nsteps : int Maximum number of (internally defined) steps allowed during one call to the solver.
•first_step : float
•min_step : float
•max_step : float Limits for the step sizes used by the integrator.
•max_order_ns : int Maximum order used in the nonstiff case (default 12).
•max_order_s : int Maximum order used in the stiff case (default 5).
•max_hnil : int Maximum number of messages reporting too small step size (t + h = t) (default 0)
•ixpr : int Whether to generate extra printing at method switches (default False).

“dopri5”

This is an explicit runge-kutta method of order (4)5 due to Dormand & Prince (with stepsize control and
dense output).
Authors:

E. Hairer and G. Wanner Universite de Geneve, Dept. de Mathematiques CH-1211 Geneve 24,
Switzerland e-mail: ernst.hairer@math.unige.ch, gerhard.wanner@math.unige.ch

This code is described in [HNW93].
This integrator accepts the following parameters in set_integrator() method of the ode class:

•atol : float or sequence absolute tolerance for solution
•rtol : float or sequence relative tolerance for solution
•nsteps : int Maximum number of (internally defined) steps allowed during one call to the solver.
•first_step : float
•max_step : float

334 Chapter 5. Reference

http://www.netlib.org/ode/zvode.f
http://www.netlib.org/odepack
mailto:ernst.hairer@math.unige.ch
mailto:gerhard.wanner@math.unige.ch

SciPy Reference Guide, Release 0.16.0

•safety : float Safety factor on new step selection (default 0.9)
•ifactor : float
•dfactor : float Maximum factor to increase/decrease step size by in one step
•beta : float Beta parameter for stabilised step size control.
•verbosity : int Switch for printing messages (< 0 for no messages).

“dop853”

This is an explicit runge-kutta method of order 8(5,3) due to Dormand & Prince (with stepsize control and
dense output).
Options and references the same as “dopri5”.

References

[HNW93]

Examples

A problem to integrate and the corresponding jacobian:

>>> from scipy.integrate import ode
>>>
>>> y0, t0 = [1.0j, 2.0], 0
>>>
>>> def f(t, y, arg1):
... return [1j*arg1*y[0] + y[1], -arg1*y[1]**2]
>>> def jac(t, y, arg1):
... return [[1j*arg1, 1], [0, -arg1*2*y[1]]]

The integration:

>>> r = ode(f, jac).set_integrator('zvode', method='bdf')
>>> r.set_initial_value(y0, t0).set_f_params(2.0).set_jac_params(2.0)
>>> t1 = 10
>>> dt = 1
>>> while r.successful() and r.t < t1:
... print(r.t, r.integrate(r.t+dt))

Attributes

t (float) Current time.
y (ndarray) Current variable values.

Methods

integrate(t[, step, relax]) Find y=y(t), set y as an initial condition, and return y.
set_f_params(*args) Set extra parameters for user-supplied function f.
set_initial_value(y[, t]) Set initial conditions y(t) = y.
set_integrator(name, **integrator_params) Set integrator by name.
set_jac_params(*args) Set extra parameters for user-supplied function jac.
set_solout(solout) Set callable to be called at every successful integration step.
successful() Check if integration was successful.

ode.integrate(t, step=0, relax=0)
Find y=y(t), set y as an initial condition, and return y.

ode.set_f_params(*args)
Set extra parameters for user-supplied function f.

5.6. Integration and ODEs (scipy.integrate) 335

SciPy Reference Guide, Release 0.16.0

ode.set_initial_value(y, t=0.0)
Set initial conditions y(t) = y.

ode.set_integrator(name, **integrator_params)
Set integrator by name.

Parameters name : str
Name of the integrator.

integrator_params :
Additional parameters for the integrator.

ode.set_jac_params(*args)
Set extra parameters for user-supplied function jac.

ode.set_solout(solout)
Set callable to be called at every successful integration step.

Parameters solout : callable
solout(t, y) is called at each internal integrator step, t is a scalar providing
the current independent position y is the current soloution y.shape == (n,)
solout should return -1 to stop integration otherwise it should return None or 0

ode.successful()
Check if integration was successful.

class scipy.integrate.complex_ode(f, jac=None)
A wrapper of ode for complex systems.

This functions similarly as ode, but re-maps a complex-valued equation system to a real-valued one before
using the integrators.

Parameters f : callable f(t, y, *f_args)
Rhs of the equation. t is a scalar, y.shape == (n,). f_args is set by calling
set_f_params(*args).

jac : callable jac(t, y, *jac_args)
Jacobian of the rhs, jac[i,j] = d f[i] / d y[j]. jac_args is set by call-
ing set_f_params(*args).

Examples

For usage examples, see ode.

Attributes

t (float) Current time.
y (ndarray) Current variable values.

Methods

integrate(t[, step, relax]) Find y=y(t), set y as an initial condition, and return y.
set_f_params(*args) Set extra parameters for user-supplied function f.
set_initial_value(y[, t]) Set initial conditions y(t) = y.
set_integrator(name, **integrator_params) Set integrator by name.
set_jac_params(*args) Set extra parameters for user-supplied function jac.
set_solout(solout) Set callable to be called at every successful integration step.
successful() Check if integration was successful.

complex_ode.integrate(t, step=0, relax=0)
Find y=y(t), set y as an initial condition, and return y.

336 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

complex_ode.set_f_params(*args)
Set extra parameters for user-supplied function f.

complex_ode.set_initial_value(y, t=0.0)
Set initial conditions y(t) = y.

complex_ode.set_integrator(name, **integrator_params)
Set integrator by name.

Parameters name : str
Name of the integrator

integrator_params :
Additional parameters for the integrator.

complex_ode.set_jac_params(*args)
Set extra parameters for user-supplied function jac.

complex_ode.set_solout(solout)
Set callable to be called at every successful integration step.

Parameters solout : callable
solout(t, y) is called at each internal integrator step, t is a scalar providing
the current independent position y is the current soloution y.shape == (n,)
solout should return -1 to stop integration otherwise it should return None or 0

complex_ode.successful()
Check if integration was successful.

5.7 Interpolation (scipy.interpolate)

Sub-package for objects used in interpolation.

As listed below, this sub-package contains spline functions and classes, one-dimensional and multi-dimensional (uni-
variate and multivariate) interpolation classes, Lagrange and Taylor polynomial interpolators, and wrappers for FIT-
PACK and DFITPACK functions.

5.7.1 Univariate interpolation

interp1d(x, y[, kind, axis, copy, ...]) Interpolate a 1-D function.
BarycentricInterpolator(xi[, yi, axis]) The interpolating polynomial for a set of points
KroghInterpolator(xi, yi[, axis]) Interpolating polynomial for a set of points.
PiecewisePolynomial(xi, yi[, orders, ...]) Piecewise polynomial curve specified by points and derivatives
PchipInterpolator(x, y[, axis, extrapolate]) PCHIP 1-d monotonic cubic interpolation
barycentric_interpolate(xi, yi, x[, axis]) Convenience function for polynomial interpolation.
krogh_interpolate(xi, yi, x[, der, axis]) Convenience function for polynomial interpolation.
piecewise_polynomial_interpolate(xi, yi, x) Convenience function for piecewise polynomial interpolation.
pchip_interpolate(xi, yi, x[, der, axis]) Convenience function for pchip interpolation.
Akima1DInterpolator(x, y[, axis]) Akima interpolator
PPoly(c, x[, extrapolate, axis]) Piecewise polynomial in terms of coefficients and breakpoints
BPoly(c, x[, extrapolate, axis]) Piecewise polynomial in terms of coefficients and breakpoints

class scipy.interpolate.interp1d(x, y, kind=’linear’, axis=-1, copy=True, bounds_error=True,
fill_value=nan, assume_sorted=False)

Interpolate a 1-D function.

5.7. Interpolation (scipy.interpolate) 337

http://www.netlib.org/dierckx/
http://www.netlib.org/dierckx/

SciPy Reference Guide, Release 0.16.0

x and y are arrays of values used to approximate some function f: y = f(x). This class returns a function
whose call method uses interpolation to find the value of new points.

Parameters x : (N,) array_like
A 1-D array of real values.

y : (...,N,...) array_like
A N-D array of real values. The length of y along the interpolation axis must be equal
to the length of x.

kind : str or int, optional
Specifies the kind of interpolation as a string (‘linear’, ‘nearest’, ‘zero’, ‘slinear’,
‘quadratic, ‘cubic’ where ‘slinear’, ‘quadratic’ and ‘cubic’ refer to a spline interpola-
tion of first, second or third order) or as an integer specifying the order of the spline
interpolator to use. Default is ‘linear’.

axis : int, optional
Specifies the axis of y along which to interpolate. Interpolation defaults to the last axis
of y.

copy : bool, optional
If True, the class makes internal copies of x and y. If False, references to x and y are
used. The default is to copy.

bounds_error : bool, optional
If True, a ValueError is raised any time interpolation is attempted on a value outside
of the range of x (where extrapolation is necessary). If False, out of bounds values are
assigned fill_value. By default, an error is raised.

fill_value : float, optional
If provided, then this value will be used to fill in for requested points outside of the
data range. If not provided, then the default is NaN.

assume_sorted : bool, optional
If False, values of x can be in any order and they are sorted first. If True, x has to be
an array of monotonically increasing values.

See also:

splrep, splev

UnivariateSpline
An object-oriented wrapper of the FITPACK routines.

interp2d 2-D interpolation

Examples

>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate
>>> x = np.arange(0, 10)
>>> y = np.exp(-x/3.0)
>>> f = interpolate.interp1d(x, y)

>>> xnew = np.arange(0, 9, 0.1)
>>> ynew = f(xnew) # use interpolation function returned by `interp1d`
>>> plt.plot(x, y, 'o', xnew, ynew, '-')
>>> plt.show()

338 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

Methods

__call__(x) Evaluate the interpolant

interp1d.__call__(x)
Evaluate the interpolant

Parameters x : array_like
Points to evaluate the interpolant at.

Returns y : array_like
Interpolated values. Shape is determined by replacing the interpolation axis in
the original array with the shape of x.

class scipy.interpolate.BarycentricInterpolator(xi, yi=None, axis=0)
The interpolating polynomial for a set of points

Constructs a polynomial that passes through a given set of points. Allows evaluation of the polynomial, efficient
changing of the y values to be interpolated, and updating by adding more x values. For reasons of numerical
stability, this function does not compute the coefficients of the polynomial.

The values yi need to be provided before the function is evaluated, but none of the preprocessing depends on
them, so rapid updates are possible.

Parameters xi : array_like
1-d array of x coordinates of the points the polynomial should pass through

yi : array_like, optional
The y coordinates of the points the polynomial should pass through. If None, the y
values will be supplied later via the set_y method.

axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.

Notes

This class uses a “barycentric interpolation” method that treats the problem as a special case of rational function
interpolation. This algorithm is quite stable, numerically, but even in a world of exact computation, unless the
x coordinates are chosen very carefully - Chebyshev zeros (e.g. cos(i*pi/n)) are a good choice - polynomial
interpolation itself is a very ill-conditioned process due to the Runge phenomenon.

5.7. Interpolation (scipy.interpolate) 339

SciPy Reference Guide, Release 0.16.0

Based on Berrut and Trefethen 2004, “Barycentric Lagrange Interpolation”.

Methods

__call__(x) Evaluate the interpolating polynomial at the points x
add_xi(xi[, yi]) Add more x values to the set to be interpolated
set_yi(yi[, axis]) Update the y values to be interpolated

BarycentricInterpolator.__call__(x)
Evaluate the interpolating polynomial at the points x

Parameters x : array_like
Points to evaluate the interpolant at.

Returns y : array_like
Interpolated values. Shape is determined by replacing the interpolation axis in
the original array with the shape of x.

Notes

Currently the code computes an outer product between x and the weights, that is, it constructs an interme-
diate array of size N by len(x), where N is the degree of the polynomial.

BarycentricInterpolator.add_xi(xi, yi=None)
Add more x values to the set to be interpolated

The barycentric interpolation algorithm allows easy updating by adding more points for the polynomial
to pass through.

Parameters xi : array_like
The x coordinates of the points that the polynomial should pass through.

yi : array_like, optional
The y coordinates of the points the polynomial should pass through. Should have
shape (xi.size, R); if R > 1 then the polynomial is vector-valued. If yi is
not given, the y values will be supplied later. yi should be given if and only if the
interpolator has y values specified.

BarycentricInterpolator.set_yi(yi, axis=None)
Update the y values to be interpolated

The barycentric interpolation algorithm requires the calculation of weights, but these depend only on the
xi. The yi can be changed at any time.

Parameters yi : array_like
The y coordinates of the points the polynomial should pass through. If None, the
y values will be supplied later.

axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.

class scipy.interpolate.KroghInterpolator(xi, yi, axis=0)
Interpolating polynomial for a set of points.

The polynomial passes through all the pairs (xi,yi). One may additionally specify a number of derivatives at
each point xi; this is done by repeating the value xi and specifying the derivatives as successive yi values.

Allows evaluation of the polynomial and all its derivatives. For reasons of numerical stability, this function does
not compute the coefficients of the polynomial, although they can be obtained by evaluating all the derivatives.

Parameters xi : array_like, length N
Known x-coordinates. Must be sorted in increasing order.

340 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

yi : array_like
Known y-coordinates. When an xi occurs two or more times in a row, the correspond-
ing yi’s represent derivative values.

axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.

Notes

Be aware that the algorithms implemented here are not necessarily the most numerically stable known. More-
over, even in a world of exact computation, unless the x coordinates are chosen very carefully - Chebyshev
zeros (e.g. cos(i*pi/n)) are a good choice - polynomial interpolation itself is a very ill-conditioned process due
to the Runge phenomenon. In general, even with well-chosen x values, degrees higher than about thirty cause
problems with numerical instability in this code.

Based on [R44].

References

[R44]

Examples

To produce a polynomial that is zero at 0 and 1 and has derivative 2 at 0, call

>>> KroghInterpolator([0,0,1],[0,2,0])

This constructs the quadratic 2*X**2-2*X. The derivative condition is indicated by the repeated zero in the xi
array; the corresponding yi values are 0, the function value, and 2, the derivative value.

For another example, given xi, yi, and a derivative ypi for each point, appropriate arrays can be constructed as:

>>> xi_k, yi_k = np.repeat(xi, 2), np.ravel(np.dstack((yi,ypi)))
>>> KroghInterpolator(xi_k, yi_k)

To produce a vector-valued polynomial, supply a higher-dimensional array for yi:

>>> KroghInterpolator([0,1],[[2,3],[4,5]])

This constructs a linear polynomial giving (2,3) at 0 and (4,5) at 1.

Methods

__call__(x) Evaluate the interpolant
derivative(x[, der]) Evaluate one derivative of the polynomial at the point x
derivatives(x[, der]) Evaluate many derivatives of the polynomial at the point x

KroghInterpolator.__call__(x)
Evaluate the interpolant

Parameters x : array_like
Points to evaluate the interpolant at.

Returns y : array_like
Interpolated values. Shape is determined by replacing the interpolation axis in
the original array with the shape of x.

KroghInterpolator.derivative(x, der=1)
Evaluate one derivative of the polynomial at the point x

Parameters x : array_like

5.7. Interpolation (scipy.interpolate) 341

SciPy Reference Guide, Release 0.16.0

Point or points at which to evaluate the derivatives
der : integer, optional

Which derivative to extract. This number includes the function value as 0th
derivative.

Returns d : ndarray
Derivative interpolated at the x-points. Shape of d is determined by replacing the
interpolation axis in the original array with the shape of x.

Notes

This is computed by evaluating all derivatives up to the desired one (using self.derivatives()) and then
discarding the rest.

KroghInterpolator.derivatives(x, der=None)
Evaluate many derivatives of the polynomial at the point x

Produce an array of all derivative values at the point x.

Parameters x : array_like
Point or points at which to evaluate the derivatives

der : int or None, optional
How many derivatives to extract; None for all potentially nonzero derivatives
(that is a number equal to the number of points). This number includes the func-
tion value as 0th derivative.

Returns d : ndarray
Array with derivatives; d[j] contains the j-th derivative. Shape of d[j] is deter-
mined by replacing the interpolation axis in the original array with the shape of
x.

Examples

>>> KroghInterpolator([0,0,0],[1,2,3]).derivatives(0)
array([1.0,2.0,3.0])
>>> KroghInterpolator([0,0,0],[1,2,3]).derivatives([0,0])
array([[1.0,1.0],

[2.0,2.0],
[3.0,3.0]])

class scipy.interpolate.PiecewisePolynomial(xi, yi, orders=None, direction=None, axis=0)
Piecewise polynomial curve specified by points and derivatives

This class represents a curve that is a piecewise polynomial. It passes through a list of points and has specified
derivatives at each point. The degree of the polynomial may vary from segment to segment, as may the number
of derivatives available. The degree should not exceed about thirty.

Appending points to the end of the curve is efficient.

Parameters xi : array_like
A sorted 1-d array of x-coordinates.

yi : array_like or list of array_likes
yi[i][j] is the j-th derivative known at xi[i] (for axis=0).

orders : list of int, or int, optional
A list of polynomial orders, or a single universal order.

direction : {None, 1, -1}, optional
Indicates whether the xi are increasing or decreasing:

+1 : increasing values
-1 : decreasing values
None : direction will be deduced from the first two elements of xi

axis : int, optional

342 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Axis in the yi array corresponding to the x-coordinate values.

Notes

If orders is None, or orders[i] is None, then the degree of the polynomial segment is exactly the degree
required to match all i available derivatives at both endpoints. If orders[i] is not None, then some deriva-
tives will be ignored. The code will try to use an equal number of derivatives from each end; if the total number
of derivatives needed is odd, it will prefer the rightmost endpoint. If not enough derivatives are available, an
exception is raised.

Methods

__call__(x) Evaluate the interpolant
append(xi, yi[, order]) Append a single point with derivatives to the PiecewisePolynomial
derivative(x[, der]) Evaluate one derivative of the polynomial at the point x
derivatives(x[, der]) Evaluate many derivatives of the polynomial at the point x
extend(xi, yi[, orders]) Extend the PiecewisePolynomial by a list of points

PiecewisePolynomial.__call__(x)
Evaluate the interpolant

Parameters x : array_like
Points to evaluate the interpolant at.

Returns y : array_like
Interpolated values. Shape is determined by replacing the interpolation axis in
the original array with the shape of x.

PiecewisePolynomial.append(xi, yi, order=None)
Append a single point with derivatives to the PiecewisePolynomial

Parameters xi : float
Point to add.

yi : array_like
yi is the list of derivatives known at xi.

order : int or None, optional
A polynomial order, or instructions to use the highest possible order.

PiecewisePolynomial.derivative(x, der=1)
Evaluate one derivative of the polynomial at the point x

Parameters x : array_like
Point or points at which to evaluate the derivatives

der : integer, optional
Which derivative to extract. This number includes the function value as 0th
derivative.

Returns d : ndarray
Derivative interpolated at the x-points. Shape of d is determined by replacing the
interpolation axis in the original array with the shape of x.

Notes

This is computed by evaluating all derivatives up to the desired one (using self.derivatives()) and then
discarding the rest.

PiecewisePolynomial.derivatives(x, der=None)
Evaluate many derivatives of the polynomial at the point x

Produce an array of all derivative values at the point x.

5.7. Interpolation (scipy.interpolate) 343

SciPy Reference Guide, Release 0.16.0

Parameters x : array_like
Point or points at which to evaluate the derivatives

der : int or None, optional
How many derivatives to extract; None for all potentially nonzero derivatives
(that is a number equal to the number of points). This number includes the func-
tion value as 0th derivative.

Returns d : ndarray
Array with derivatives; d[j] contains the j-th derivative. Shape of d[j] is deter-
mined by replacing the interpolation axis in the original array with the shape of
x.

Examples

>>> KroghInterpolator([0,0,0],[1,2,3]).derivatives(0)
array([1.0,2.0,3.0])
>>> KroghInterpolator([0,0,0],[1,2,3]).derivatives([0,0])
array([[1.0,1.0],

[2.0,2.0],
[3.0,3.0]])

PiecewisePolynomial.extend(xi, yi, orders=None)
Extend the PiecewisePolynomial by a list of points

Parameters xi : array_like
A sorted list of x-coordinates.

yi : list of lists of length N1
yi[i] (if axis == 0) is the list of derivatives known at xi[i].

orders : int or list of ints, optional
A list of polynomial orders, or a single universal order.

class scipy.interpolate.PchipInterpolator(x, y, axis=0, extrapolate=None)
PCHIP 1-d monotonic cubic interpolation

x and y are arrays of values used to approximate some function f, with y = f(x). The interpolant uses mono-
tonic cubic splines to find the value of new points. (PCHIP stands for Piecewise Cubic Hermite Interpolating
Polynomial).

Parameters x : ndarray
A 1-D array of monotonically increasing real values. x cannot include duplicate val-
ues (otherwise f is overspecified)

y : ndarray
A 1-D array of real values. y‘s length along the interpolation axis must be equal to the
length of x. If N-D array, use axis parameter to select correct axis.

axis : int, optional
Axis in the y array corresponding to the x-coordinate values.

extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to
return NaNs.

See also:

Akima1DInterpolator

Notes

The first derivatives are guaranteed to be continuous, but the second derivatives may jump at x_k.

Preserves monotonicity in the interpolation data and does not overshoot if the data is not smooth.

Determines the derivatives at the points x_k, d_k, by using PCHIP algorithm:

344 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Let m_k be the slope of the kth segment (between k and k+1) If m_k=0 or m_{k-1}=0 or sgn(m_k) != sgn(m_{k-
1}) then d_k == 0 else use weighted harmonic mean:

w_1 = 2h_k + h_{k-1}, w_2 = h_k + 2h_{k-1} 1/d_k = 1/(w_1 + w_2)*(w_1 / m_k + w_2 / m_{k-1})

where h_k is the spacing between x_k and x_{k+1}.

Methods

__call__(x[, nu, extrapolate]) Evaluate the piecewise polynomial or its derivative
derivative([nu]) Construct a new piecewise polynomial representing the derivative.
antiderivative([nu]) Construct a new piecewise polynomial representing the antiderivative.

PchipInterpolator.__call__(x, nu=0, extrapolate=None)
Evaluate the piecewise polynomial or its derivative

Parameters x : array_like
Points to evaluate the interpolant at.

nu : int, optional
Order of derivative to evaluate. Must be non-negative.

extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals,
or to return NaNs.

Returns y : array_like
Interpolated values. Shape is determined by replacing the interpolation axis in
the original array with the shape of x.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

PchipInterpolator.derivative(nu=1)
Construct a new piecewise polynomial representing the derivative.

Parameters nu : int, optional
Order of derivative to evaluate. (Default: 1) If negative, the antiderivative is
returned.

Returns bp : BPoly
Piecewise polynomial of order k2 = k - nu representing the derivative of this
polynomial.

PchipInterpolator.antiderivative(nu=1)
Construct a new piecewise polynomial representing the antiderivative.

Parameters nu : int, optional
Order of derivative to evaluate. (Default: 1) If negative, the derivative is returned.

Returns bp : BPoly
Piecewise polynomial of order k2 = k + nu representing the antiderivative of this
polynomial.

scipy.interpolate.barycentric_interpolate(xi, yi, x, axis=0)
Convenience function for polynomial interpolation.

Constructs a polynomial that passes through a given set of points, then evaluates the polynomial. For reasons of
numerical stability, this function does not compute the coefficients of the polynomial.

5.7. Interpolation (scipy.interpolate) 345

SciPy Reference Guide, Release 0.16.0

This function uses a “barycentric interpolation” method that treats the problem as a special case of rational
function interpolation. This algorithm is quite stable, numerically, but even in a world of exact computation,
unless the x coordinates are chosen very carefully - Chebyshev zeros (e.g. cos(i*pi/n)) are a good choice -
polynomial interpolation itself is a very ill-conditioned process due to the Runge phenomenon.

Parameters xi : array_like
1-d array of x coordinates of the points the polynomial should pass through

yi : array_like
The y coordinates of the points the polynomial should pass through.

x : scalar or array_like
Points to evaluate the interpolator at.

axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.

Returns y : scalar or array_like
Interpolated values. Shape is determined by replacing the interpolation axis in the
original array with the shape of x.

See also:

BarycentricInterpolator

Notes

Construction of the interpolation weights is a relatively slow process. If you want to call this many times with
the same xi (but possibly varying yi or x) you should use the class BarycentricInterpolator. This is
what this function uses internally.

scipy.interpolate.krogh_interpolate(xi, yi, x, der=0, axis=0)
Convenience function for polynomial interpolation.

See KroghInterpolator for more details.

Parameters xi : array_like
Known x-coordinates.

yi : array_like
Known y-coordinates, of shape (xi.size, R). Interpreted as vectors of length R,
or scalars if R=1.

x : array_like
Point or points at which to evaluate the derivatives.

der : int or list, optional
How many derivatives to extract; None for all potentially nonzero derivatives (that is a
number equal to the number of points), or a list of derivatives to extract. This number
includes the function value as 0th derivative.

axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.

Returns d : ndarray
If the interpolator’s values are R-dimensional then the returned array will be the num-
ber of derivatives by N by R. If x is a scalar, the middle dimension will be dropped; if
the yi are scalars then the last dimension will be dropped.

See also:

KroghInterpolator

Notes

Construction of the interpolating polynomial is a relatively expensive process. If you want to evaluate it repeat-
edly consider using the class KroghInterpolator (which is what this function uses).

346 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.interpolate.piecewise_polynomial_interpolate(xi, yi, x, orders=None, der=0,
axis=0)

Convenience function for piecewise polynomial interpolation.

Parameters xi : array_like
A sorted list of x-coordinates.

yi : list of lists
yi[i] is the list of derivatives known at xi[i].

x : scalar or array_like
Coordinates at which to evalualte the polynomial.

orders : int or list of ints, optional
A list of polynomial orders, or a single universal order.

der : int or list, optional
How many derivatives to extract; None for all potentially nonzero derivatives (that is a
number equal to the number of points), or a list of derivatives to extract. This number
includes the function value as 0th derivative.

axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.

Returns y : ndarray
Interpolated values or derivatives. If multiple derivatives were requested, these are
given along the first axis.

See also:

PiecewisePolynomial

Notes

If orders is None, or orders[i] is None, then the degree of the polynomial segment is exactly the degree
required to match all i available derivatives at both endpoints. If orders[i] is not None, then some derivatives
will be ignored. The code will try to use an equal number of derivatives from each end; if the total number of
derivatives needed is odd, it will prefer the rightmost endpoint. If not enough derivatives are available, an
exception is raised.

Construction of these piecewise polynomials can be an expensive process; if you repeatedly evaluate the same
polynomial, consider using the class PiecewisePolynomial (which is what this function does).

scipy.interpolate.pchip_interpolate(xi, yi, x, der=0, axis=0)
Convenience function for pchip interpolation. xi and yi are arrays of values used to approximate some function
f, with yi = f(xi). The interpolant uses monotonic cubic splines to find the value of new points x and the
derivatives there.

See PchipInterpolator for details.

Parameters xi : array_like
A sorted list of x-coordinates, of length N.

yi : array_like
A 1-D array of real values. yi‘s length along the interpolation axis must be equal to
the length of xi. If N-D array, use axis parameter to select correct axis.

x : scalar or array_like
Of length M.

der : int or list, optional
How many derivatives to extract; None for all potentially nonzero derivatives (that is a
number equal to the number of points), or a list of derivatives to extract. This number
includes the function value as 0th derivative.

axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.

Returns y : scalar or array_like

5.7. Interpolation (scipy.interpolate) 347

SciPy Reference Guide, Release 0.16.0

The result, of length R or length M or M by R,

See also:

PchipInterpolator

class scipy.interpolate.Akima1DInterpolator(x, y, axis=0)
Akima interpolator

Fit piecewise cubic polynomials, given vectors x and y. The interpolation method by Akima uses a continuously
differentiable sub-spline built from piecewise cubic polynomials. The resultant curve passes through the given
data points and will appear smooth and natural.

Parameters x : ndarray, shape (m,)
1-D array of monotonically increasing real values.

y : ndarray, shape (m, ...)
N-D array of real values. The length of y along the first axis must be equal to the
length of x.

axis : int, optional
Specifies the axis of y along which to interpolate. Interpolation defaults to the first
axis of y.

See also:

PchipInterpolator

Notes

New in version 0.14.

Use only for precise data, as the fitted curve passes through the given points exactly. This routine is useful for
plotting a pleasingly smooth curve through a few given points for purposes of plotting.

References

[1] A new method of interpolation and smooth curve fitting based
on local procedures. Hiroshi Akima, J. ACM, October 1970, 17(4), 589-602.

Methods

__call__(x[, nu, extrapolate]) Evaluate the piecewise polynomial or its derivative
derivative([nu]) Construct a new piecewise polynomial representing the derivative.
antiderivative([nu]) Construct a new piecewise polynomial representing the antiderivative.
roots([discontinuity, extrapolate]) Find real roots of the piecewise polynomial.

Akima1DInterpolator.__call__(x, nu=0, extrapolate=None)
Evaluate the piecewise polynomial or its derivative

Parameters x : array_like
Points to evaluate the interpolant at.

nu : int, optional
Order of derivative to evaluate. Must be non-negative.

extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals,
or to return NaNs.

Returns y : array_like
Interpolated values. Shape is determined by replacing the interpolation axis in
the original array with the shape of x.

348 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

Akima1DInterpolator.derivative(nu=1)
Construct a new piecewise polynomial representing the derivative.

Parameters nu : int, optional
Order of derivative to evaluate. (Default: 1) If negative, the antiderivative is
returned.

Returns pp : PPoly
Piecewise polynomial of order k2 = k - n representing the derivative of this poly-
nomial.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

Akima1DInterpolator.antiderivative(nu=1)
Construct a new piecewise polynomial representing the antiderivative.

Antiderivativative is also the indefinite integral of the function, and derivative is its inverse operation.

Parameters nu : int, optional
Order of antiderivative to evaluate. (Default: 1) If negative, the derivative is
returned.

Returns pp : PPoly
Piecewise polynomial of order k2 = k + n representing the antiderivative of this
polynomial.

Notes

The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up
to floating point rounding error.

Akima1DInterpolator.roots(discontinuity=True, extrapolate=None)
Find real roots of the piecewise polynomial.

Parameters discontinuity : bool, optional
Whether to report sign changes across discontinuities at breakpoints as roots.

extrapolate : bool, optional
Whether to return roots from the polynomial extrapolated based on first and last
intervals.

Returns roots : ndarray
Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the return value is an object
array whose each element is an ndarray containing the roots.

Notes

This routine works only on real-valued polynomials.

If the piecewise polynomial contains sections that are identically zero, the root list will contain the start
point of the corresponding interval, followed by a nan value.

If the polynomial is discontinuous across a breakpoint, and there is a sign change across the breakpoint,
this is reported if the discont parameter is True.

5.7. Interpolation (scipy.interpolate) 349

SciPy Reference Guide, Release 0.16.0

Examples

Finding roots of [x**2 - 1, (x - 1)**2] defined on intervals [-2, 1], [1, 2]:

>>> from scipy.interpolate import PPoly
>>> pp = PPoly(np.array([[1, 0, -1], [1, 0, 0]]).T, [-2, 1, 2])
>>> pp.roots()
array([-1., 1.])

class scipy.interpolate.PPoly(c, x, extrapolate=None, axis=0)
Piecewise polynomial in terms of coefficients and breakpoints

The polynomial in the ith interval is x[i] <= xp < x[i+1]:

S = sum(c[m, i] * (xp - x[i])**(k-m) for m in range(k+1))

where k is the degree of the polynomial. This representation is the local power basis.

Parameters c : ndarray, shape (k, m, ...)
Polynomial coefficients, order k and m intervals

x : ndarray, shape (m+1,)
Polynomial breakpoints. These must be sorted in increasing order.

extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to
return NaNs. Default: True.

axis : int, optional
Interpolation axis. Default is zero.

See also:

BPoly piecewise polynomials in the Bernstein basis

Notes

High-order polynomials in the power basis can be numerically unstable. Precision problems can start to appear
for orders larger than 20-30.

Attributes

x (ndarray) Breakpoints.
c (ndarray) Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last

dimension representing the trailing dimensions of the original coefficient array.
axis (int) Interpolation axis.

Methods

__call__(x[, nu, extrapolate]) Evaluate the piecewise polynomial or its derivative
derivative([nu]) Construct a new piecewise polynomial representing the derivative.
antiderivative([nu]) Construct a new piecewise polynomial representing the antiderivative.
integrate(a, b[, extrapolate]) Compute a definite integral over a piecewise polynomial.
roots([discontinuity, extrapolate]) Find real roots of the piecewise polynomial.
extend(c, x[, right]) Add additional breakpoints and coefficients to the polynomial.
from_spline(tck[, extrapolate]) Construct a piecewise polynomial from a spline
from_bernstein_basis(bp[, extrapolate]) Construct a piecewise polynomial in the power basis from a polynomial in Bernstein basis.
construct_fast(c, x[, extrapolate, axis]) Construct the piecewise polynomial without making checks.

350 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

PPoly.__call__(x, nu=0, extrapolate=None)
Evaluate the piecewise polynomial or its derivative

Parameters x : array_like
Points to evaluate the interpolant at.

nu : int, optional
Order of derivative to evaluate. Must be non-negative.

extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals,
or to return NaNs.

Returns y : array_like
Interpolated values. Shape is determined by replacing the interpolation axis in
the original array with the shape of x.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

PPoly.derivative(nu=1)
Construct a new piecewise polynomial representing the derivative.

Parameters nu : int, optional
Order of derivative to evaluate. (Default: 1) If negative, the antiderivative is
returned.

Returns pp : PPoly
Piecewise polynomial of order k2 = k - n representing the derivative of this poly-
nomial.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

PPoly.antiderivative(nu=1)
Construct a new piecewise polynomial representing the antiderivative.

Antiderivativative is also the indefinite integral of the function, and derivative is its inverse operation.

Parameters nu : int, optional
Order of antiderivative to evaluate. (Default: 1) If negative, the derivative is
returned.

Returns pp : PPoly
Piecewise polynomial of order k2 = k + n representing the antiderivative of this
polynomial.

Notes

The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up
to floating point rounding error.

PPoly.integrate(a, b, extrapolate=None)
Compute a definite integral over a piecewise polynomial.

Parameters a : float
Lower integration bound

b : float
Upper integration bound

5.7. Interpolation (scipy.interpolate) 351

SciPy Reference Guide, Release 0.16.0

extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals,
or to return NaNs.

Returns ig : array_like
Definite integral of the piecewise polynomial over [a, b]

PPoly.roots(discontinuity=True, extrapolate=None)
Find real roots of the piecewise polynomial.

Parameters discontinuity : bool, optional
Whether to report sign changes across discontinuities at breakpoints as roots.

extrapolate : bool, optional
Whether to return roots from the polynomial extrapolated based on first and last
intervals.

Returns roots : ndarray
Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the return value is an object
array whose each element is an ndarray containing the roots.

Notes

This routine works only on real-valued polynomials.

If the piecewise polynomial contains sections that are identically zero, the root list will contain the start
point of the corresponding interval, followed by a nan value.

If the polynomial is discontinuous across a breakpoint, and there is a sign change across the breakpoint,
this is reported if the discont parameter is True.

Examples

Finding roots of [x**2 - 1, (x - 1)**2] defined on intervals [-2, 1], [1, 2]:

>>> from scipy.interpolate import PPoly
>>> pp = PPoly(np.array([[1, 0, -1], [1, 0, 0]]).T, [-2, 1, 2])
>>> pp.roots()
array([-1., 1.])

PPoly.extend(c, x, right=True)
Add additional breakpoints and coefficients to the polynomial.

Parameters c : ndarray, size (k, m, ...)
Additional coefficients for polynomials in intervals self.x[-1]
<= x < x_right[0], x_right[0] <= x < x_right[1], ...,
x_right[m-2] <= x < x_right[m-1]

x : ndarray, size (m,)
Additional breakpoints. Must be sorted and either to the right or to the left of the
current breakpoints.

right : bool, optional
Whether the new intervals are to the right or to the left of the current intervals.

classmethod PPoly.from_spline(tck, extrapolate=None)
Construct a piecewise polynomial from a spline

Parameters tck
A spline, as returned by splrep

extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals,
or to return NaNs. Default: True.

352 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

classmethod PPoly.from_bernstein_basis(bp, extrapolate=None)
Construct a piecewise polynomial in the power basis from a polynomial in Bernstein basis.

Parameters bp : BPoly
A Bernstein basis polynomial, as created by BPoly

extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals,
or to return NaNs. Default: True.

classmethod PPoly.construct_fast(c, x, extrapolate=None, axis=0)
Construct the piecewise polynomial without making checks.

Takes the same parameters as the constructor. Input arguments c and x must be arrays of the correct shape
and type. The c array can only be of dtypes float and complex, and x array must have dtype float.

class scipy.interpolate.BPoly(c, x, extrapolate=None, axis=0)
Piecewise polynomial in terms of coefficients and breakpoints

The polynomial in the i-th interval x[i] <= xp < x[i+1] is written in the Bernstein polynomial basis:

S = sum(c[a, i] * b(a, k; x) for a in range(k+1))

where k is the degree of the polynomial, and:

b(a, k; x) = comb(k, a) * t**k * (1 - t)**(k - a)

with t = (x - x[i]) / (x[i+1] - x[i]).

Parameters c : ndarray, shape (k, m, ...)
Polynomial coefficients, order k and m intervals

x : ndarray, shape (m+1,)
Polynomial breakpoints. These must be sorted in increasing order.

extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to
return NaNs. Default: True.

axis : int, optional
Interpolation axis. Default is zero.

See also:

PPoly piecewise polynomials in the power basis

Notes

Properties of Bernstein polynomials are well documented in the literature. Here’s a non-exhaustive list:

Examples

>>> x = [0, 1]
>>> c = [[1], [2], [3]]
>>> bp = BPoly(c, x)

This creates a 2nd order polynomial

𝐵(𝑥) = 1 × 𝑏0,2(𝑥) + 2 × 𝑏1,2(𝑥) + 3 × 𝑏2,2(𝑥)

= 1 × (1 − 𝑥)2 + 2 × 2𝑥(1 − 𝑥) + 3 × 𝑥2

5.7. Interpolation (scipy.interpolate) 353

SciPy Reference Guide, Release 0.16.0

Attributes

x (ndarray) Breakpoints.
c (ndarray) Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last

dimension representing the trailing dimensions of the original coefficient array.
axis (int) Interpolation axis.

Methods

__call__(x[, nu, extrapolate]) Evaluate the piecewise polynomial or its derivative
extend(c, x[, right]) Add additional breakpoints and coefficients to the polynomial.
derivative([nu]) Construct a new piecewise polynomial representing the derivative.
antiderivative([nu]) Construct a new piecewise polynomial representing the antiderivative.
integrate(a, b[, extrapolate]) Compute a definite integral over a piecewise polynomial.
construct_fast(c, x[, extrapolate, axis]) Construct the piecewise polynomial without making checks.
from_power_basis(pp[, extrapolate]) Construct a piecewise polynomial in Bernstein basis from a power basis polynomial.
from_derivatives(xi, yi[, orders, extrapolate]) Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints.

BPoly.__call__(x, nu=0, extrapolate=None)
Evaluate the piecewise polynomial or its derivative

Parameters x : array_like
Points to evaluate the interpolant at.

nu : int, optional
Order of derivative to evaluate. Must be non-negative.

extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals,
or to return NaNs.

Returns y : array_like
Interpolated values. Shape is determined by replacing the interpolation axis in
the original array with the shape of x.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

BPoly.extend(c, x, right=True)
Add additional breakpoints and coefficients to the polynomial.

Parameters c : ndarray, size (k, m, ...)
Additional coefficients for polynomials in intervals self.x[-1]
<= x < x_right[0], x_right[0] <= x < x_right[1], ...,
x_right[m-2] <= x < x_right[m-1]

x : ndarray, size (m,)
Additional breakpoints. Must be sorted and either to the right or to the left of the
current breakpoints.

right : bool, optional
Whether the new intervals are to the right or to the left of the current intervals.

BPoly.derivative(nu=1)
Construct a new piecewise polynomial representing the derivative.

Parameters nu : int, optional

354 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Order of derivative to evaluate. (Default: 1) If negative, the antiderivative is
returned.

Returns bp : BPoly
Piecewise polynomial of order k2 = k - nu representing the derivative of this
polynomial.

BPoly.antiderivative(nu=1)
Construct a new piecewise polynomial representing the antiderivative.

Parameters nu : int, optional
Order of derivative to evaluate. (Default: 1) If negative, the derivative is returned.

Returns bp : BPoly
Piecewise polynomial of order k2 = k + nu representing the antiderivative of this
polynomial.

BPoly.integrate(a, b, extrapolate=None)
Compute a definite integral over a piecewise polynomial.

Parameters a : float
Lower integration bound

b : float
Upper integration bound

extrapolate : bool, optional
Whether to extrapolate to out-of-bounds points based on first and last intervals,
or to return NaNs. Defaults to self.extrapolate.

Returns array_like
Definite integral of the piecewise polynomial over [a, b]

classmethod BPoly.construct_fast(c, x, extrapolate=None, axis=0)
Construct the piecewise polynomial without making checks.

Takes the same parameters as the constructor. Input arguments c and x must be arrays of the correct shape
and type. The c array can only be of dtypes float and complex, and x array must have dtype float.

classmethod BPoly.from_power_basis(pp, extrapolate=None)
Construct a piecewise polynomial in Bernstein basis from a power basis polynomial.

Parameters pp : PPoly
A piecewise polynomial in the power basis

extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals,
or to return NaNs. Default: True.

classmethod BPoly.from_derivatives(xi, yi, orders=None, extrapolate=None)
Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and deriva-
tives at breakpoints.

Parameters xi : array_like
sorted 1D array of x-coordinates

yi : array_like or list of array_likes
yi[i][j] is the j-th derivative known at xi[i]

orders : None or int or array_like of ints. Default: None.
Specifies the degree of local polynomials. If not None, some derivatives are
ignored.

extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals,
or to return NaNs. Default: True.

5.7. Interpolation (scipy.interpolate) 355

SciPy Reference Guide, Release 0.16.0

Notes

If k derivatives are specified at a breakpoint x, the constructed polynomial is exactly k times continuously
differentiable at x, unless the order is provided explicitly. In the latter case, the smoothness of the
polynomial at the breakpoint is controlled by the order.

Deduces the number of derivatives to match at each end from order and the number of derivatives
available. If possible it uses the same number of derivatives from each end; if the number is odd it tries
to take the extra one from y2. In any case if not enough derivatives are available at one end or another it
draws enough to make up the total from the other end.

If the order is too high and not enough derivatives are available, an exception is raised.

Examples

>>> BPoly.from_derivatives([0, 1], [[1, 2], [3, 4]])

Creates a polynomial f(x) of degree 3, defined on [0, 1] such that f(0) = 1, df/dx(0) = 2, f(1) = 3, df/dx(1)
= 4

>>> BPoly.from_derivatives([0, 1, 2], [[0, 1], [0], [2]])

Creates a piecewise polynomial f(x), such that f(0) = f(1) = 0, f(2) = 2, and df/dx(0) = 1. Based on the
number of derivatives provided, the order of the local polynomials is 2 on [0, 1] and 1 on [1, 2]. Notice
that no restriction is imposed on the derivatives at x = 1 and x = 2.

Indeed, the explicit form of the polynomial is:

f(x) = | x * (1 - x), 0 <= x < 1
| 2 * (x - 1), 1 <= x <= 2

So that f’(1-0) = -1 and f’(1+0) = 2

5.7.2 Multivariate interpolation

Unstructured data:

griddata(points, values, xi[, method, ...]) Interpolate unstructured D-dimensional data.
LinearNDInterpolator(points, values[, ...]) Piecewise linear interpolant in N dimensions.
NearestNDInterpolator(points, values) Nearest-neighbour interpolation in N dimensions.
CloughTocher2DInterpolator(points, values[, tol]) Piecewise cubic, C1 smooth, curvature-minimizing interpolant in 2D.
Rbf(*args) A class for radial basis function approximation/interpolation of n-dimensional scattered data.
interp2d(x, y, z[, kind, copy, ...]) Interpolate over a 2-D grid.

scipy.interpolate.griddata(points, values, xi, method=’linear’, fill_value=nan, rescale=False)
Interpolate unstructured D-dimensional data.

Parameters points : ndarray of floats, shape (n, D)
Data point coordinates. Can either be an array of shape (n, D), or a tuple of ndim
arrays.

values : ndarray of float or complex, shape (n,)
Data values.

xi : ndarray of float, shape (M, D)
Points at which to interpolate data.

method : {‘linear’, ‘nearest’, ‘cubic’}, optional
Method of interpolation. One of

356 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

nearest return the value at the data point closest to the point of interpolation.
See NearestNDInterpolator for more details.

linear tesselate the input point set to n-dimensional simplices, and interpolate
linearly on each simplex. See LinearNDInterpolator for more
details.

cubic (1-D) return the value determined from a cubic spline.
cubic (2-D) return the value determined from a piecewise cubic, continuously dif-

ferentiable (C1), and approximately curvature-minimizing polynomial
surface. See CloughTocher2DInterpolator for more details.

fill_value : float, optional
Value used to fill in for requested points outside of the convex hull of the input points.
If not provided, then the default is nan. This option has no effect for the ‘nearest’
method.

rescale : bool, optional
Rescale points to unit cube before performing interpolation. This is useful if some
of the input dimensions have incommensurable units and differ by many orders of
magnitude.
New in version 0.14.0.

Notes

New in version 0.9.

Examples

Suppose we want to interpolate the 2-D function

>>> def func(x, y):
... return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2

on a grid in [0, 1]x[0, 1]

>>> grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j]

but we only know its values at 1000 data points:

>>> points = np.random.rand(1000, 2)
>>> values = func(points[:,0], points[:,1])

This can be done with griddata – below we try out all of the interpolation methods:

>>> from scipy.interpolate import griddata
>>> grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest')
>>> grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear')
>>> grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic')

One can see that the exact result is reproduced by all of the methods to some degree, but for this smooth function
the piecewise cubic interpolant gives the best results:

>>> import matplotlib.pyplot as plt
>>> plt.subplot(221)
>>> plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower')
>>> plt.plot(points[:,0], points[:,1], 'k.', ms=1)
>>> plt.title('Original')
>>> plt.subplot(222)
>>> plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Nearest')
>>> plt.subplot(223)
>>> plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower')

5.7. Interpolation (scipy.interpolate) 357

SciPy Reference Guide, Release 0.16.0

>>> plt.title('Linear')
>>> plt.subplot(224)
>>> plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Cubic')
>>> plt.gcf().set_size_inches(6, 6)
>>> plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Original

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Nearest

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Linear

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Cubic

class scipy.interpolate.LinearNDInterpolator(points, values, fill_value=np.nan,
rescale=False)

Piecewise linear interpolant in N dimensions.

New in version 0.9.

Parameters points : ndarray of floats, shape (npoints, ndims); or Delaunay
Data point coordinates, or a precomputed Delaunay triangulation.

values : ndarray of float or complex, shape (npoints, ...)
Data values.

fill_value : float, optional

358 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Value used to fill in for requested points outside of the convex hull of the input points.
If not provided, then the default is nan.

rescale : bool, optional
Rescale points to unit cube before performing interpolation. This is useful if some
of the input dimensions have incommensurable units and differ by many orders of
magnitude.

Notes

The interpolant is constructed by triangulating the input data with Qhull [R45], and on each triangle performing
linear barycentric interpolation.

References

[R45]

Methods

__call__(xi) Evaluate interpolator at given points.

LinearNDInterpolator.__call__(xi)
Evaluate interpolator at given points.

Parameters xi : ndarray of float, shape (..., ndim)
Points where to interpolate data at.

class scipy.interpolate.NearestNDInterpolator(points, values)
Nearest-neighbour interpolation in N dimensions.

New in version 0.9.

Parameters x : (Npoints, Ndims) ndarray of floats
Data point coordinates.

y : (Npoints,) ndarray of float or complex
Data values.

rescale : boolean, optional
Rescale points to unit cube before performing interpolation. This is useful if some
of the input dimensions have incommensurable units and differ by many orders of
magnitude.
New in version 0.14.0.

Notes

Uses scipy.spatial.cKDTree

Methods

__call__(*args) Evaluate interpolator at given points.

NearestNDInterpolator.__call__(*args)
Evaluate interpolator at given points.

Parameters xi : ndarray of float, shape (..., ndim)
Points where to interpolate data at.

class scipy.interpolate.CloughTocher2DInterpolator(points, values, tol=1e-6)
Piecewise cubic, C1 smooth, curvature-minimizing interpolant in 2D.

5.7. Interpolation (scipy.interpolate) 359

SciPy Reference Guide, Release 0.16.0

New in version 0.9.

Parameters points : ndarray of floats, shape (npoints, ndims); or Delaunay
Data point coordinates, or a precomputed Delaunay triangulation.

values : ndarray of float or complex, shape (npoints, ...)
Data values.

fill_value : float, optional
Value used to fill in for requested points outside of the convex hull of the input points.
If not provided, then the default is nan.

tol : float, optional
Absolute/relative tolerance for gradient estimation.

maxiter : int, optional
Maximum number of iterations in gradient estimation.

rescale : bool, optional
Rescale points to unit cube before performing interpolation. This is useful if some
of the input dimensions have incommensurable units and differ by many orders of
magnitude.

Notes

The interpolant is constructed by triangulating the input data with Qhull [R43], and constructing a piecewise
cubic interpolating Bezier polynomial on each triangle, using a Clough-Tocher scheme [CT]. The interpolant is
guaranteed to be continuously differentiable.

The gradients of the interpolant are chosen so that the curvature of the interpolating surface is approxima-
tively minimized. The gradients necessary for this are estimated using the global algorithm described in [Niel-
son83,Renka84]_.

References

[R43], [CT], [Nielson83], [Renka84]

Methods

__call__(xi) Evaluate interpolator at given points.

CloughTocher2DInterpolator.__call__(xi)
Evaluate interpolator at given points.

Parameters xi : ndarray of float, shape (..., ndim)
Points where to interpolate data at.

class scipy.interpolate.Rbf(*args)
A class for radial basis function approximation/interpolation of n-dimensional scattered data.

Parameters *args : arrays
x, y, z, ..., d, where x, y, z, ... are the coordinates of the nodes and d is the array of
values at the nodes

function : str or callable, optional
The radial basis function, based on the radius, r, given by the norm (default is Eu-
clidean distance); the default is ‘multiquadric’:

'multiquadric': sqrt((r/self.epsilon)**2 + 1)
'inverse': 1.0/sqrt((r/self.epsilon)**2 + 1)
'gaussian': exp(-(r/self.epsilon)**2)
'linear': r
'cubic': r**3

360 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

'quintic': r**5
'thin_plate': r**2 * log(r)

If callable, then it must take 2 arguments (self, r). The epsilon parameter will be
available as self.epsilon. Other keyword arguments passed in will be available as
well.

epsilon : float, optional
Adjustable constant for gaussian or multiquadrics functions - defaults to approximate
average distance between nodes (which is a good start).

smooth : float, optional
Values greater than zero increase the smoothness of the approximation. 0 is for inter-
polation (default), the function will always go through the nodal points in this case.

norm : callable, optional
A function that returns the ‘distance’ between two points, with inputs as arrays of
positions (x, y, z, ...), and an output as an array of distance. E.g, the default:

def euclidean_norm(x1, x2):
return sqrt(((x1 - x2)**2).sum(axis=0))

which is called with x1=x1[ndims,newaxis,:] and x2=x2[ndims,:,newaxis] such that
the result is a matrix of the distances from each point in x1 to each point in x2.

Examples

>>> rbfi = Rbf(x, y, z, d) # radial basis function interpolator instance
>>> di = rbfi(xi, yi, zi) # interpolated values

Methods

__call__(*args)

Rbf.__call__(*args)

class scipy.interpolate.interp2d(x, y, z, kind=’linear’, copy=True, bounds_error=False,
fill_value=nan)

Interpolate over a 2-D grid.

x, y and z are arrays of values used to approximate some function f: z = f(x, y). This class returns a
function whose call method uses spline interpolation to find the value of new points.

If x and y represent a regular grid, consider using RectBivariateSpline.

Parameters x, y : array_like
Arrays defining the data point coordinates.
If the points lie on a regular grid, x can specify the column coordinates and y the row
coordinates, for example:

>>> x = [0,1,2]; y = [0,3]; z = [[1,2,3], [4,5,6]]

Otherwise, x and y must specify the full coordinates for each point, for example:

>>> x = [0,1,2,0,1,2]; y = [0,0,0,3,3,3]; z = [1,2,3,4,5,6]

If x and y are multi-dimensional, they are flattened before use.
z : array_like

The values of the function to interpolate at the data points. If z is a multi-dimensional
array, it is flattened before use. The length of a flattened z array is either len(x)*len(y)
if x and y specify the column and row coordinates or len(z) == len(x) ==
len(y) if x and y specify coordinates for each point.

5.7. Interpolation (scipy.interpolate) 361

SciPy Reference Guide, Release 0.16.0

kind : {‘linear’, ‘cubic’, ‘quintic’}, optional
The kind of spline interpolation to use. Default is ‘linear’.

copy : bool, optional
If True, the class makes internal copies of x, y and z. If False, references may be used.
The default is to copy.

bounds_error : bool, optional
If True, when interpolated values are requested outside of the domain of the input data
(x,y), a ValueError is raised. If False, then fill_value is used.

fill_value : number, optional
If provided, the value to use for points outside of the interpolation domain. If omitted
(None), values outside the domain are extrapolated.

Returns values_x : ndarray, shape xi.shape[:-1] + values.shape[ndim:]
Interpolated values at input coordinates.

See also:

RectBivariateSpline
Much faster 2D interpolation if your input data is on a grid

bisplrep, bisplev

BivariateSpline
a more recent wrapper of the FITPACK routines

interp1d one dimension version of this function

Notes

The minimum number of data points required along the interpolation axis is (k+1)**2, with k=1 for linear,
k=3 for cubic and k=5 for quintic interpolation.

The interpolator is constructed by bisplrep, with a smoothing factor of 0. If more control over smoothing is
needed, bisplrep should be used directly.

Examples

Construct a 2-D grid and interpolate on it:

>>> from scipy import interpolate
>>> x = np.arange(-5.01, 5.01, 0.25)
>>> y = np.arange(-5.01, 5.01, 0.25)
>>> xx, yy = np.meshgrid(x, y)
>>> z = np.sin(xx**2+yy**2)
>>> f = interpolate.interp2d(x, y, z, kind='cubic')

Now use the obtained interpolation function and plot the result:

>>> import matplotlib.pyplot as plt
>>> xnew = np.arange(-5.01, 5.01, 1e-2)
>>> ynew = np.arange(-5.01, 5.01, 1e-2)
>>> znew = f(xnew, ynew)
>>> plt.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-')
>>> plt.show()

362 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

6 4 2 0 2 4 6
1.5

1.0

0.5

0.0

0.5

1.0

Methods

__call__(x, y[, dx, dy, assume_sorted]) Interpolate the function.

interp2d.__call__(x, y, dx=0, dy=0, assume_sorted=False)
Interpolate the function.

Parameters x : 1D array
x-coordinates of the mesh on which to interpolate.

y : 1D array
y-coordinates of the mesh on which to interpolate.

dx : int >= 0, < kx
Order of partial derivatives in x.

dy : int >= 0, < ky
Order of partial derivatives in y.

assume_sorted : bool, optional
If False, values of x and y can be in any order and they are sorted first. If True, x
and y have to be arrays of monotonically increasing values.

Returns z : 2D array with shape (len(y), len(x))
The interpolated values.

For data on a grid:

interpn(points, values, xi[, method, ...]) Multidimensional interpolation on regular grids.
RegularGridInterpolator(points, values[, ...]) Interpolation on a regular grid in arbitrary dimensions
RectBivariateSpline(x, y, z[, bbox, kx, ky, s]) Bivariate spline approximation over a rectangular mesh.

scipy.interpolate.interpn(points, values, xi, method=’linear’, bounds_error=True,
fill_value=nan)

Multidimensional interpolation on regular grids.

Parameters points : tuple of ndarray of float, with shapes (m1,), ..., (mn,)
The points defining the regular grid in n dimensions.

values : array_like, shape (m1, ..., mn, ...)
The data on the regular grid in n dimensions.

5.7. Interpolation (scipy.interpolate) 363

SciPy Reference Guide, Release 0.16.0

xi : ndarray of shape (..., ndim)
The coordinates to sample the gridded data at

method : str, optional
The method of interpolation to perform. Supported are “linear” and “nearest”, and
“splinef2d”. “splinef2d” is only supported for 2-dimensional data.

bounds_error : bool, optional
If True, when interpolated values are requested outside of the domain of the input
data, a ValueError is raised. If False, then fill_value is used.

fill_value : number, optional
If provided, the value to use for points outside of the interpolation domain. If None,
values outside the domain are extrapolated. Extrapolation is not supported by method
“splinef2d”.

Returns values_x : ndarray, shape xi.shape[:-1] + values.shape[ndim:]
Interpolated values at input coordinates.

See also:

NearestNDInterpolator
Nearest neighbour interpolation on unstructured data in N dimensions

LinearNDInterpolator
Piecewise linear interpolant on unstructured data in N dimensions

RegularGridInterpolator
Linear and nearest-neighbor Interpolation on a regular grid in arbitrary dimensions

RectBivariateSpline
Bivariate spline approximation over a rectangular mesh

Notes

New in version 0.14.

class scipy.interpolate.RegularGridInterpolator(points, values, method=’linear’,
bounds_error=True, fill_value=nan)

Interpolation on a regular grid in arbitrary dimensions

The data must be defined on a regular grid; the grid spacing however may be uneven. Linear and nearest-
neighbour interpolation are supported. After setting up the interpolator object, the interpolation method (linear
or nearest) may be chosen at each evaluation.

Parameters points : tuple of ndarray of float, with shapes (m1,), ..., (mn,)
The points defining the regular grid in n dimensions.

values : array_like, shape (m1, ..., mn, ...)
The data on the regular grid in n dimensions.

method : str, optional
The method of interpolation to perform. Supported are “linear” and “nearest”. This
parameter will become the default for the object’s __call__ method. Default is
“linear”.

bounds_error : bool, optional
If True, when interpolated values are requested outside of the domain of the input
data, a ValueError is raised. If False, then fill_value is used.

fill_value : number, optional
If provided, the value to use for points outside of the interpolation domain. If None,
values outside the domain are extrapolated.

See also:

364 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

NearestNDInterpolator
Nearest neighbour interpolation on unstructured data in N dimensions

LinearNDInterpolator
Piecewise linear interpolant on unstructured data in N dimensions

Notes

Contrary to LinearNDInterpolator and NearestNDInterpolator, this class avoids expensive triangulation of the
input data by taking advantage of the regular grid structure.

New in version 0.14.

References

[R46], [R47], [R48]

Examples

Evaluate a simple example function on the points of a 3D grid:

>>> from scipy.interpolate import RegularGridInterpolator
>>> def f(x,y,z):
... return 2 * x**3 + 3 * y**2 - z
>>> x = np.linspace(1, 4, 11)
>>> y = np.linspace(4, 7, 22)
>>> z = np.linspace(7, 9, 33)
>>> data = f(*np.meshgrid(x, y, z, indexing='ij', sparse=True))

data is now a 3D array with data[i,j,k] = f(x[i], y[j], z[k]). Next, define an interpolating
function from this data:

>>> my_interpolating_function = RegularGridInterpolator((x, y, z), data)

Evaluate the interpolating function at the two points (x,y,z) = (2.1, 6.2, 8.3) and (3.3, 5.2,
7.1):

>>> pts = np.array([[2.1, 6.2, 8.3], [3.3, 5.2, 7.1]])
>>> my_interpolating_function(pts)
array([125.80469388, 146.30069388])

which is indeed a close approximation to [f(2.1, 6.2, 8.3), f(3.3, 5.2, 7.1)].

Methods

__call__(xi[, method]) Interpolation at coordinates

RegularGridInterpolator.__call__(xi, method=None)
Interpolation at coordinates

Parameters xi : ndarray of shape (..., ndim)
The coordinates to sample the gridded data at

method : str
The method of interpolation to perform. Supported are “linear” and “nearest”.

class scipy.interpolate.RectBivariateSpline(x, y, z, bbox=[None, None, None, None], kx=3,
ky=3, s=0)

Bivariate spline approximation over a rectangular mesh.

Can be used for both smoothing and interpolating data.

5.7. Interpolation (scipy.interpolate) 365

SciPy Reference Guide, Release 0.16.0

Parameters x,y : array_like
1-D arrays of coordinates in strictly ascending order.

z : array_like
2-D array of data with shape (x.size,y.size).

bbox : array_like, optional
Sequence of length 4 specifying the boundary of the rectangular ap-
proximation domain. By default, bbox=[min(x,tx),max(x,tx),
min(y,ty),max(y,ty)].

kx, ky : ints, optional
Degrees of the bivariate spline. Default is 3.

s : float, optional
Positive smoothing factor defined for estimation condition:
sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s Default
is s=0, which is for interpolation.

See also:

SmoothBivariateSpline
a smoothing bivariate spline for scattered data

bisplrep an older wrapping of FITPACK

bisplev an older wrapping of FITPACK

UnivariateSpline
a similar class for univariate spline interpolation

Methods

__call__(x, y[, mth, dx, dy, grid]) Evaluate the spline or its derivatives at given positions.
ev(xi, yi[, dx, dy]) Evaluate the spline at points
get_coeffs() Return spline coefficients.
get_knots() Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively.
get_residual() Return weighted sum of squared residuals of the spline
integral(xa, xb, ya, yb) Evaluate the integral of the spline over area [xa,xb] x [ya,yb].

RectBivariateSpline.__call__(x, y, mth=None, dx=0, dy=0, grid=True)
Evaluate the spline or its derivatives at given positions.

Parameters x, y : array_like
Input coordinates.
If grid is False, evaluate the spline at points (x[i], y[i]), i=0, ...,
len(x)-1. Standard Numpy broadcasting is obeyed.
If grid is True: evaluate spline at the grid points defined by the coordinate arrays
x, y. The arrays must be sorted to increasing order.

dx : int
Order of x-derivative
New in version 0.14.0.

dy : int
Order of y-derivative
New in version 0.14.0.

grid : bool
Whether to evaluate the results on a grid spanned by the input arrays, or at points
specified by the input arrays.
New in version 0.14.0.

366 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

mth : str
Deprecated argument. Has no effect.

RectBivariateSpline.ev(xi, yi, dx=0, dy=0)
Evaluate the spline at points

Returns the interpolated value at (xi[i], yi[i]), i=0,...,len(xi)-1.

Parameters xi, yi : array_like
Input coordinates. Standard Numpy broadcasting is obeyed.

dx : int, optional
Order of x-derivative
New in version 0.14.0.

dy : int, optional
Order of y-derivative
New in version 0.14.0.

RectBivariateSpline.get_coeffs()
Return spline coefficients.

RectBivariateSpline.get_knots()
Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable,
respectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b,
t[-k-1:]=e, respectively.

RectBivariateSpline.get_residual()
Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

RectBivariateSpline.integral(xa, xb, ya, yb)
Evaluate the integral of the spline over area [xa,xb] x [ya,yb].

Parameters xa, xb : float
The end-points of the x integration interval.

ya, yb : float
The end-points of the y integration interval.

Returns integ : float
The value of the resulting integral.

See also:

scipy.ndimage.interpolation.map_coordinates

5.7.3 1-D Splines

UnivariateSpline(x, y[, w, bbox, k, s, ext, ...]) One-dimensional smoothing spline fit to a given set of data points.
InterpolatedUnivariateSpline(x, y[, w, ...]) One-dimensional interpolating spline for a given set of data points.
LSQUnivariateSpline(x, y, t[, w, bbox, k, ...]) One-dimensional spline with explicit internal knots.

class scipy.interpolate.UnivariateSpline(x, y, w=None, bbox=[None, None], k=3, s=None,
ext=0, check_finite=False)

One-dimensional smoothing spline fit to a given set of data points.

Fits a spline y = spl(x) of degree k to the provided x, y data. s specifies the number of knots by specifying a
smoothing condition.

Parameters x : (N,) array_like
1-D array of independent input data. Must be increasing.

5.7. Interpolation (scipy.interpolate) 367

SciPy Reference Guide, Release 0.16.0

y : (N,) array_like
1-D array of dependent input data, of the same length as x.

w : (N,) array_like, optional
Weights for spline fitting. Must be positive. If None (default), weights are all equal.

bbox : (2,) array_like, optional
2-sequence specifying the boundary of the approximation interval. If None (default),
bbox=[x[0], x[-1]].

k : int, optional
Degree of the smoothing spline. Must be <= 5. Default is k=3, a cubic spline.

s : float or None, optional
Positive smoothing factor used to choose the number of knots. Number of knots will
be increased until the smoothing condition is satisfied:

sum((w[i] * (y[i]-spl(x[i])))**2, axis=0) <= s

If None (default), s = len(w) which should be a good value if 1/w[i] is an
estimate of the standard deviation of y[i]. If 0, spline will interpolate through all
data points.

ext : int or str, optional
Controls the extrapolation mode for elements not in the interval defined by the knot
sequence.

•if ext=0 or ‘extrapolate’, return the extrapolated value.
•if ext=1 or ‘zeros’, return 0
•if ext=2 or ‘raise’, raise a ValueError
•if ext=3 of ‘const’, return the boundary value.

The default value is 0.
check_finite : bool, optional

Whether to check that the input arrays contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination or
non-sensical results) if the inputs do contain infinities or NaNs. Default is False.

See also:

InterpolatedUnivariateSpline
Subclass with smoothing forced to 0

LSQUnivariateSpline
Subclass in which knots are user-selected instead of being set by smoothing condition

splrep An older, non object-oriented wrapping of FITPACK

splev, sproot, splint, spalde

BivariateSpline
A similar class for two-dimensional spline interpolation

Notes

The number of data points must be larger than the spline degree k.

NaN handling: If the input arrays contain nan values, the result is not useful, since the underlying spline fitting
routines cannot deal with nan . A workaround is to use zero weights for not-a-number data points:

>>> w = np.isnan(y)
>>> y[w] = 0.
>>> spl = UnivariateSpline(x, y, w=~w)

Notice the need to replace a nan by a numerical value (precise value does not matter as long as the corresponding
weight is zero.)

368 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)
>>> plt.plot(x, y, 'ro', ms=5)

Use the default value for the smoothing parameter:

>>> spl = UnivariateSpline(x, y)
>>> xs = np.linspace(-3, 3, 1000)
>>> plt.plot(xs, spl(xs), 'g', lw=3)

Manually change the amount of smoothing:

>>> spl.set_smoothing_factor(0.5)
>>> plt.plot(xs, spl(xs), 'b', lw=3)
>>> plt.show()

3 2 1 0 1 2 3
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Methods

__call__(x[, nu, ext]) Evaluate spline (or its nu-th derivative) at positions x.
antiderivative([n]) Construct a new spline representing the antiderivative of this spline.
derivative([n]) Construct a new spline representing the derivative of this spline.
derivatives(x) Return all derivatives of the spline at the point x.
get_coeffs() Return spline coefficients.
get_knots() Return positions of interior knots of the spline.
get_residual() Return weighted sum of squared residuals of the spline approximation.
integral(a, b) Return definite integral of the spline between two given points.
roots() Return the zeros of the spline.
set_smoothing_factor(s) Continue spline computation with the given smoothing factor s and with the knots found at the last call.

UnivariateSpline.__call__(x, nu=0, ext=None)
Evaluate spline (or its nu-th derivative) at positions x.

Parameters x : array_like

5.7. Interpolation (scipy.interpolate) 369

SciPy Reference Guide, Release 0.16.0

A 1-D array of points at which to return the value of the smoothed spline or its
derivatives. Note: x can be unordered but the evaluation is more efficient if x is
(partially) ordered.

nu : int
The order of derivative of the spline to compute.

ext : int
Controls the value returned for elements of x not in the interval defined by the
knot sequence.

•if ext=0 or ‘extrapolate’, return the extrapolated value.
•if ext=1 or ‘zeros’, return 0
•if ext=2 or ‘raise’, raise a ValueError
•if ext=3 or ‘const’, return the boundary value.

The default value is 0, passed from the initialization of UnivariateSpline.

UnivariateSpline.antiderivative(n=1)
Construct a new spline representing the antiderivative of this spline.

Parameters n : int, optional
Order of antiderivative to evaluate. Default: 1

Returns spline : UnivariateSpline
Spline of order k2=k+n representing the antiderivative of this spline.

See also:

splantider, derivative

Notes

New in version 0.13.0.

Examples

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, np.pi/2, 70)
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
>>> spl = UnivariateSpline(x, y, s=0)

The derivative is the inverse operation of the antiderivative, although some floating point error accumu-
lates:

>>> spl(1.7), spl.antiderivative().derivative()(1.7)
(array(2.1565429877197317), array(2.1565429877201865))

Antiderivative can be used to evaluate definite integrals:

>>> ispl = spl.antiderivative()
>>> ispl(np.pi/2) - ispl(0)
2.2572053588768486

This is indeed an approximation to the complete elliptic integral 𝐾(𝑚) =
∫︀ 𝜋/2

0
[1 −𝑚 sin2 𝑥]−1/2𝑑𝑥:

>>> from scipy.special import ellipk
>>> ellipk(0.8)
2.2572053268208538

UnivariateSpline.derivative(n=1)
Construct a new spline representing the derivative of this spline.

Parameters n : int, optional
Order of derivative to evaluate. Default: 1

370 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Returns spline : UnivariateSpline
Spline of order k2=k-n representing the derivative of this spline.

See also:

splder, antiderivative

Notes

New in version 0.13.0.

Examples

This can be used for finding maxima of a curve:

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 10, 70)
>>> y = np.sin(x)
>>> spl = UnivariateSpline(x, y, k=4, s=0)

Now, differentiate the spline and find the zeros of the derivative. (NB: sproot only works for order 3
splines, so we fit an order 4 spline):

>>> spl.derivative().roots() / np.pi
array([0.50000001, 1.5 , 2.49999998])

This agrees well with roots 𝜋/2 + 𝑛𝜋 of cos(x) = sin’(x).

UnivariateSpline.derivatives(x)
Return all derivatives of the spline at the point x.

Parameters x : float
The point to evaluate the derivatives at.

Returns der : ndarray, shape(k+1,)
Derivatives of the orders 0 to k.

Examples

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.derivatives(1.5)
array([2.25, 3.0, 2.0, 0])

UnivariateSpline.get_coeffs()
Return spline coefficients.

UnivariateSpline.get_knots()
Return positions of interior knots of the spline.

Internally, the knot vector contains 2*k additional boundary knots.

UnivariateSpline.get_residual()
Return weighted sum of squared residuals of the spline approximation.

This is equivalent to:

sum((w[i] * (y[i]-spl(x[i])))**2, axis=0)

UnivariateSpline.integral(a, b)
Return definite integral of the spline between two given points.

5.7. Interpolation (scipy.interpolate) 371

SciPy Reference Guide, Release 0.16.0

Parameters a : float
Lower limit of integration.

b : float
Upper limit of integration.

Returns integral : float
The value of the definite integral of the spline between limits.

Examples

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.integral(0, 3)
9.0

which agrees with
∫︀
𝑥2𝑑𝑥 = 𝑥3/3 between the limits of 0 and 3.

A caveat is that this routine assumes the spline to be zero outside of the data limits:

>>> spl.integral(-1, 4)
9.0
>>> spl.integral(-1, 0)
0.0

UnivariateSpline.roots()
Return the zeros of the spline.

Restriction: only cubic splines are supported by fitpack.

UnivariateSpline.set_smoothing_factor(s)
Continue spline computation with the given smoothing factor s and with the knots found at the last call.

This routine modifies the spline in place.

class scipy.interpolate.InterpolatedUnivariateSpline(x, y, w=None, bbox=[None, None],
k=3, ext=0, check_finite=False)

One-dimensional interpolating spline for a given set of data points.

Fits a spline y = spl(x) of degree k to the provided x, y data. Spline function passes through all provided points.
Equivalent to UnivariateSpline with s=0.

Parameters x : (N,) array_like
Input dimension of data points – must be increasing

y : (N,) array_like
input dimension of data points

w : (N,) array_like, optional
Weights for spline fitting. Must be positive. If None (default), weights are all equal.

bbox : (2,) array_like, optional
2-sequence specifying the boundary of the approximation interval. If None (default),
bbox=[x[0], x[-1]].

k : int, optional
Degree of the smoothing spline. Must be 1 <= k <= 5.

ext : int or str, optional
Controls the extrapolation mode for elements not in the interval defined by the knot
sequence.

•if ext=0 or ‘extrapolate’, return the extrapolated value.
•if ext=1 or ‘zeros’, return 0
•if ext=2 or ‘raise’, raise a ValueError
•if ext=3 of ‘const’, return the boundary value.

372 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The default value is 0.
check_finite : bool, optional

Whether to check that the input arrays contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination or
non-sensical results) if the inputs do contain infinities or NaNs. Default is False.

See also:

UnivariateSpline
Superclass – allows knots to be selected by a smoothing condition

LSQUnivariateSpline
spline for which knots are user-selected

splrep An older, non object-oriented wrapping of FITPACK

splev, sproot, splint, spalde

BivariateSpline
A similar class for two-dimensional spline interpolation

Notes

The number of data points must be larger than the spline degree k.

Examples

>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import InterpolatedUnivariateSpline
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)
>>> spl = InterpolatedUnivariateSpline(x, y)
>>> plt.plot(x, y, 'ro', ms=5)
>>> xs = np.linspace(-3, 3, 1000)
>>> plt.plot(xs, spl(xs), 'g', lw=3, alpha=0.7)
>>> plt.show()

3 2 1 0 1 2 3
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Notice that the spl(x) interpolates y:

5.7. Interpolation (scipy.interpolate) 373

SciPy Reference Guide, Release 0.16.0

>>> spl.get_residual()
0.0

Methods

__call__(x[, nu, ext]) Evaluate spline (or its nu-th derivative) at positions x.
antiderivative([n]) Construct a new spline representing the antiderivative of this spline.
derivative([n]) Construct a new spline representing the derivative of this spline.
derivatives(x) Return all derivatives of the spline at the point x.
get_coeffs() Return spline coefficients.
get_knots() Return positions of interior knots of the spline.
get_residual() Return weighted sum of squared residuals of the spline approximation.
integral(a, b) Return definite integral of the spline between two given points.
roots() Return the zeros of the spline.
set_smoothing_factor(s) Continue spline computation with the given smoothing factor s and with the knots found at the last call.

InterpolatedUnivariateSpline.__call__(x, nu=0, ext=None)
Evaluate spline (or its nu-th derivative) at positions x.

Parameters x : array_like
A 1-D array of points at which to return the value of the smoothed spline or its
derivatives. Note: x can be unordered but the evaluation is more efficient if x is
(partially) ordered.

nu : int
The order of derivative of the spline to compute.

ext : int
Controls the value returned for elements of x not in the interval defined by the
knot sequence.

•if ext=0 or ‘extrapolate’, return the extrapolated value.
•if ext=1 or ‘zeros’, return 0
•if ext=2 or ‘raise’, raise a ValueError
•if ext=3 or ‘const’, return the boundary value.

The default value is 0, passed from the initialization of UnivariateSpline.

InterpolatedUnivariateSpline.antiderivative(n=1)
Construct a new spline representing the antiderivative of this spline.

Parameters n : int, optional
Order of antiderivative to evaluate. Default: 1

Returns spline : UnivariateSpline
Spline of order k2=k+n representing the antiderivative of this spline.

See also:

splantider, derivative

Notes

New in version 0.13.0.

Examples

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, np.pi/2, 70)
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
>>> spl = UnivariateSpline(x, y, s=0)

374 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The derivative is the inverse operation of the antiderivative, although some floating point error accumu-
lates:

>>> spl(1.7), spl.antiderivative().derivative()(1.7)
(array(2.1565429877197317), array(2.1565429877201865))

Antiderivative can be used to evaluate definite integrals:

>>> ispl = spl.antiderivative()
>>> ispl(np.pi/2) - ispl(0)
2.2572053588768486

This is indeed an approximation to the complete elliptic integral 𝐾(𝑚) =
∫︀ 𝜋/2

0
[1 −𝑚 sin2 𝑥]−1/2𝑑𝑥:

>>> from scipy.special import ellipk
>>> ellipk(0.8)
2.2572053268208538

InterpolatedUnivariateSpline.derivative(n=1)
Construct a new spline representing the derivative of this spline.

Parameters n : int, optional
Order of derivative to evaluate. Default: 1

Returns spline : UnivariateSpline
Spline of order k2=k-n representing the derivative of this spline.

See also:

splder, antiderivative

Notes

New in version 0.13.0.

Examples

This can be used for finding maxima of a curve:

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 10, 70)
>>> y = np.sin(x)
>>> spl = UnivariateSpline(x, y, k=4, s=0)

Now, differentiate the spline and find the zeros of the derivative. (NB: sproot only works for order 3
splines, so we fit an order 4 spline):

>>> spl.derivative().roots() / np.pi
array([0.50000001, 1.5 , 2.49999998])

This agrees well with roots 𝜋/2 + 𝑛𝜋 of cos(x) = sin’(x).

InterpolatedUnivariateSpline.derivatives(x)
Return all derivatives of the spline at the point x.

Parameters x : float
The point to evaluate the derivatives at.

Returns der : ndarray, shape(k+1,)
Derivatives of the orders 0 to k.

5.7. Interpolation (scipy.interpolate) 375

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.derivatives(1.5)
array([2.25, 3.0, 2.0, 0])

InterpolatedUnivariateSpline.get_coeffs()
Return spline coefficients.

InterpolatedUnivariateSpline.get_knots()
Return positions of interior knots of the spline.

Internally, the knot vector contains 2*k additional boundary knots.

InterpolatedUnivariateSpline.get_residual()
Return weighted sum of squared residuals of the spline approximation.

This is equivalent to:

sum((w[i] * (y[i]-spl(x[i])))**2, axis=0)

InterpolatedUnivariateSpline.integral(a, b)
Return definite integral of the spline between two given points.

Parameters a : float
Lower limit of integration.

b : float
Upper limit of integration.

Returns integral : float
The value of the definite integral of the spline between limits.

Examples

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.integral(0, 3)
9.0

which agrees with
∫︀
𝑥2𝑑𝑥 = 𝑥3/3 between the limits of 0 and 3.

A caveat is that this routine assumes the spline to be zero outside of the data limits:

>>> spl.integral(-1, 4)
9.0
>>> spl.integral(-1, 0)
0.0

InterpolatedUnivariateSpline.roots()
Return the zeros of the spline.

Restriction: only cubic splines are supported by fitpack.

InterpolatedUnivariateSpline.set_smoothing_factor(s)
Continue spline computation with the given smoothing factor s and with the knots found at the last call.

This routine modifies the spline in place.

376 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

class scipy.interpolate.LSQUnivariateSpline(x, y, t, w=None, bbox=[None, None], k=3,
ext=0, check_finite=False)

One-dimensional spline with explicit internal knots.

Fits a spline y = spl(x) of degree k to the provided x, y data. t specifies the internal knots of the spline

Parameters x : (N,) array_like
Input dimension of data points – must be increasing

y : (N,) array_like
Input dimension of data points

t : (M,) array_like
interior knots of the spline. Must be in ascending order and:

bbox[0] < t[0] < ... < t[-1] < bbox[-1]

w : (N,) array_like, optional
weights for spline fitting. Must be positive. If None (default), weights are all equal.

bbox : (2,) array_like, optional
2-sequence specifying the boundary of the approximation interval. If None (default),
bbox = [x[0], x[-1]].

k : int, optional
Degree of the smoothing spline. Must be 1 <= k <= 5. Default is k=3, a cubic spline.

ext : int or str, optional
Controls the extrapolation mode for elements not in the interval defined by the knot
sequence.

•if ext=0 or ‘extrapolate’, return the extrapolated value.
•if ext=1 or ‘zeros’, return 0
•if ext=2 or ‘raise’, raise a ValueError
•if ext=3 of ‘const’, return the boundary value.

The default value is 0.
check_finite : bool, optional

Whether to check that the input arrays contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination or
non-sensical results) if the inputs do contain infinities or NaNs. Default is False.

Raises ValueError
If the interior knots do not satisfy the Schoenberg-Whitney conditions

See also:

UnivariateSpline
Superclass – knots are specified by setting a smoothing condition

InterpolatedUnivariateSpline
spline passing through all points

splrep An older, non object-oriented wrapping of FITPACK

splev, sproot, splint, spalde

BivariateSpline
A similar class for two-dimensional spline interpolation

Notes

The number of data points must be larger than the spline degree k.

Knots t must satisfy the Schoenberg-Whitney conditions, i.e., there must be a subset of data points x[j] such
that t[j] < x[j] < t[j+k+1], for j=0, 1,...,n-k-2.

5.7. Interpolation (scipy.interpolate) 377

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.interpolate import LSQUnivariateSpline
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)

Fit a smoothing spline with a pre-defined internal knots:

>>> t = [-1, 0, 1]
>>> spl = LSQUnivariateSpline(x, y, t)

>>> xs = np.linspace(-3, 3, 1000)
>>> plt.plot(x, y, 'ro', ms=5)
>>> plt.plot(xs, spl(xs), 'g-', lw=3)
>>> plt.show()

3 2 1 0 1 2 3
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Check the knot vector:

>>> spl.get_knots()
array([-3., -1., 0., 1., 3.])

Methods

__call__(x[, nu, ext]) Evaluate spline (or its nu-th derivative) at positions x.
antiderivative([n]) Construct a new spline representing the antiderivative of this spline.
derivative([n]) Construct a new spline representing the derivative of this spline.
derivatives(x) Return all derivatives of the spline at the point x.
get_coeffs() Return spline coefficients.
get_knots() Return positions of interior knots of the spline.
get_residual() Return weighted sum of squared residuals of the spline approximation.
integral(a, b) Return definite integral of the spline between two given points.
roots() Return the zeros of the spline.
set_smoothing_factor(s) Continue spline computation with the given smoothing factor s and with the knots found at the last call.

378 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

LSQUnivariateSpline.__call__(x, nu=0, ext=None)
Evaluate spline (or its nu-th derivative) at positions x.

Parameters x : array_like
A 1-D array of points at which to return the value of the smoothed spline or its
derivatives. Note: x can be unordered but the evaluation is more efficient if x is
(partially) ordered.

nu : int
The order of derivative of the spline to compute.

ext : int
Controls the value returned for elements of x not in the interval defined by the
knot sequence.

•if ext=0 or ‘extrapolate’, return the extrapolated value.
•if ext=1 or ‘zeros’, return 0
•if ext=2 or ‘raise’, raise a ValueError
•if ext=3 or ‘const’, return the boundary value.

The default value is 0, passed from the initialization of UnivariateSpline.

LSQUnivariateSpline.antiderivative(n=1)
Construct a new spline representing the antiderivative of this spline.

Parameters n : int, optional
Order of antiderivative to evaluate. Default: 1

Returns spline : UnivariateSpline
Spline of order k2=k+n representing the antiderivative of this spline.

See also:

splantider, derivative

Notes

New in version 0.13.0.

Examples

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, np.pi/2, 70)
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
>>> spl = UnivariateSpline(x, y, s=0)

The derivative is the inverse operation of the antiderivative, although some floating point error accumu-
lates:

>>> spl(1.7), spl.antiderivative().derivative()(1.7)
(array(2.1565429877197317), array(2.1565429877201865))

Antiderivative can be used to evaluate definite integrals:

>>> ispl = spl.antiderivative()
>>> ispl(np.pi/2) - ispl(0)
2.2572053588768486

This is indeed an approximation to the complete elliptic integral 𝐾(𝑚) =
∫︀ 𝜋/2

0
[1 −𝑚 sin2 𝑥]−1/2𝑑𝑥:

>>> from scipy.special import ellipk
>>> ellipk(0.8)
2.2572053268208538

LSQUnivariateSpline.derivative(n=1)
Construct a new spline representing the derivative of this spline.

5.7. Interpolation (scipy.interpolate) 379

SciPy Reference Guide, Release 0.16.0

Parameters n : int, optional
Order of derivative to evaluate. Default: 1

Returns spline : UnivariateSpline
Spline of order k2=k-n representing the derivative of this spline.

See also:

splder, antiderivative

Notes

New in version 0.13.0.

Examples

This can be used for finding maxima of a curve:

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 10, 70)
>>> y = np.sin(x)
>>> spl = UnivariateSpline(x, y, k=4, s=0)

Now, differentiate the spline and find the zeros of the derivative. (NB: sproot only works for order 3
splines, so we fit an order 4 spline):

>>> spl.derivative().roots() / np.pi
array([0.50000001, 1.5 , 2.49999998])

This agrees well with roots 𝜋/2 + 𝑛𝜋 of cos(x) = sin’(x).

LSQUnivariateSpline.derivatives(x)
Return all derivatives of the spline at the point x.

Parameters x : float
The point to evaluate the derivatives at.

Returns der : ndarray, shape(k+1,)
Derivatives of the orders 0 to k.

Examples

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.derivatives(1.5)
array([2.25, 3.0, 2.0, 0])

LSQUnivariateSpline.get_coeffs()
Return spline coefficients.

LSQUnivariateSpline.get_knots()
Return positions of interior knots of the spline.

Internally, the knot vector contains 2*k additional boundary knots.

LSQUnivariateSpline.get_residual()
Return weighted sum of squared residuals of the spline approximation.

This is equivalent to:

sum((w[i] * (y[i]-spl(x[i])))**2, axis=0)

380 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

LSQUnivariateSpline.integral(a, b)
Return definite integral of the spline between two given points.

Parameters a : float
Lower limit of integration.

b : float
Upper limit of integration.

Returns integral : float
The value of the definite integral of the spline between limits.

Examples

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.integral(0, 3)
9.0

which agrees with
∫︀
𝑥2𝑑𝑥 = 𝑥3/3 between the limits of 0 and 3.

A caveat is that this routine assumes the spline to be zero outside of the data limits:

>>> spl.integral(-1, 4)
9.0
>>> spl.integral(-1, 0)
0.0

LSQUnivariateSpline.roots()
Return the zeros of the spline.

Restriction: only cubic splines are supported by fitpack.

LSQUnivariateSpline.set_smoothing_factor(s)
Continue spline computation with the given smoothing factor s and with the knots found at the last call.

This routine modifies the spline in place.

Functional interface to FITPACK functions:

splrep(x, y[, w, xb, xe, k, task, s, t, ...]) Find the B-spline representation of 1-D curve.
splprep(x[, w, u, ub, ue, k, task, s, t, ...]) Find the B-spline representation of an N-dimensional curve.
splev(x, tck[, der, ext]) Evaluate a B-spline or its derivatives.
splint(a, b, tck[, full_output]) Evaluate the definite integral of a B-spline.
sproot(tck[, mest]) Find the roots of a cubic B-spline.
spalde(x, tck) Evaluate all derivatives of a B-spline.
splder(tck[, n]) Compute the spline representation of the derivative of a given spline
splantider(tck[, n]) Compute the spline for the antiderivative (integral) of a given spline.

scipy.interpolate.splrep(x, y, w=None, xb=None, xe=None, k=3, task=0, s=None, t=None,
full_output=0, per=0, quiet=1)

Find the B-spline representation of 1-D curve.

Given the set of data points (x[i], y[i]) determine a smooth spline approximation of degree k on the
interval xb <= x <= xe.

Parameters x, y : array_like
The data points defining a curve y = f(x).

w : array_like, optional

5.7. Interpolation (scipy.interpolate) 381

SciPy Reference Guide, Release 0.16.0

Strictly positive rank-1 array of weights the same length as x and y. The weights
are used in computing the weighted least-squares spline fit. If the errors in the y
values have standard-deviation given by the vector d, then w should be 1/d. Default is
ones(len(x)).

xb, xe : float, optional
The interval to fit. If None, these default to x[0] and x[-1] respectively.

k : int, optional
The order of the spline fit. It is recommended to use cubic splines. Even order splines
should be avoided especially with small s values. 1 <= k <= 5

task : {1, 0, -1}, optional
If task==0 find t and c for a given smoothing factor, s.
If task==1 find t and c for another value of the smoothing factor, s. There must have
been a previous call with task=0 or task=1 for the same set of data (t will be stored an
used internally)
If task=-1 find the weighted least square spline for a given set of knots, t. These should
be interior knots as knots on the ends will be added automatically.

s : float, optional
A smoothing condition. The amount of smoothness is determined by satisfying the
conditions: sum((w * (y - g))**2,axis=0) <= s where g(x) is the smoothed interpola-
tion of (x,y). The user can use s to control the tradeoff between closeness and smooth-
ness of fit. Larger s means more smoothing while smaller values of s indicate less
smoothing. Recommended values of s depend on the weights, w. If the weights rep-
resent the inverse of the standard-deviation of y, then a good s value should be found
in the range (m-sqrt(2*m),m+sqrt(2*m)) where m is the number of datapoints in x, y,
and w. default : s=m-sqrt(2*m) if weights are supplied. s = 0.0 (interpolating) if no
weights are supplied.

t : array_like, optional
The knots needed for task=-1. If given then task is automatically set to -1.

full_output : bool, optional
If non-zero, then return optional outputs.

per : bool, optional
If non-zero, data points are considered periodic with period x[m-1] - x[0] and a smooth
periodic spline approximation is returned. Values of y[m-1] and w[m-1] are not used.

quiet : bool, optional
Non-zero to suppress messages. This parameter is deprecated; use standard Python
warning filters instead.

Returns tck : tuple
(t,c,k) a tuple containing the vector of knots, the B-spline coefficients, and the degree
of the spline.

fp : array, optional
The weighted sum of squared residuals of the spline approximation.

ier : int, optional
An integer flag about splrep success. Success is indicated if ier<=0. If ier in [1,2,3]
an error occurred but was not raised. Otherwise an error is raised.

msg : str, optional
A message corresponding to the integer flag, ier.

See also:

UnivariateSpline, BivariateSpline, splprep, splev, sproot, spalde, splint,
bisplrep, bisplev

Notes

See splev for evaluation of the spline and its derivatives. Uses the FORTRAN routine curfit from FITPACK.

382 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

If provided, knots t must satisfy the Schoenberg-Whitney conditions, i.e., there must be a subset of data points
x[j] such that t[j] < x[j] < t[j+k+1], for j=0, 1,...,n-k-2.

References

Based on algorithms described in [R66], [R67], [R68], and [R69]:

[R66], [R67], [R68], [R69]

Examples

>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import splev, splrep
>>> x = np.linspace(0, 10, 10)
>>> y = np.sin(x)
>>> tck = splrep(x, y)
>>> x2 = np.linspace(0, 10, 200)
>>> y2 = splev(x2, tck)
>>> plt.plot(x, y, 'o', x2, y2)
>>> plt.show()

0 2 4 6 8 10
1.0

0.5

0.0

0.5

1.0

scipy.interpolate.splprep(x, w=None, u=None, ub=None, ue=None, k=3, task=0, s=None,
t=None, full_output=0, nest=None, per=0, quiet=1)

Find the B-spline representation of an N-dimensional curve.

Given a list of N rank-1 arrays, x, which represent a curve in N-dimensional space parametrized by u, find a
smooth approximating spline curve g(u). Uses the FORTRAN routine parcur from FITPACK.

Parameters x : array_like
A list of sample vector arrays representing the curve.

w : array_like, optional
Strictly positive rank-1 array of weights the same length as x[0]. The weights are
used in computing the weighted least-squares spline fit. If the errors in the x val-
ues have standard-deviation given by the vector d, then w should be 1/d. Default is
ones(len(x[0])).

u : array_like, optional
An array of parameter values. If not given, these values are calculated automatically
as M = len(x[0]), where

5.7. Interpolation (scipy.interpolate) 383

SciPy Reference Guide, Release 0.16.0

v[0] = 0
v[i] = v[i-1] + distance(x[i], x[i-1])
u[i] = v[i] / v[M-1]

ub, ue : int, optional
The end-points of the parameters interval. Defaults to u[0] and u[-1].

k : int, optional
Degree of the spline. Cubic splines are recommended. Even values of k should be
avoided especially with a small s-value. 1 <= k <= 5, default is 3.

task : int, optional
If task==0 (default), find t and c for a given smoothing factor, s. If task==1, find t
and c for another value of the smoothing factor, s. There must have been a previous
call with task=0 or task=1 for the same set of data. If task=-1 find the weighted least
square spline for a given set of knots, t.

s : float, optional
A smoothing condition. The amount of smoothness is determined by satisfying
the conditions: sum((w * (y - g))**2,axis=0) <= s, where g(x) is the
smoothed interpolation of (x,y). The user can use s to control the trade-off between
closeness and smoothness of fit. Larger s means more smoothing while smaller val-
ues of s indicate less smoothing. Recommended values of s depend on the weights,
w. If the weights represent the inverse of the standard-deviation of y, then a good s
value should be found in the range (m-sqrt(2*m),m+sqrt(2*m)), where m is
the number of data points in x, y, and w.

t : int, optional
The knots needed for task=-1.

full_output : int, optional
If non-zero, then return optional outputs.

nest : int, optional
An over-estimate of the total number of knots of the spline to help in determining the
storage space. By default nest=m/2. Always large enough is nest=m+k+1.

per : int, optional
If non-zero, data points are considered periodic with period x[m-1] - x[0] and a
smooth periodic spline approximation is returned. Values of y[m-1] and w[m-1]
are not used.

quiet : int, optional
Non-zero to suppress messages. This parameter is deprecated; use standard Python
warning filters instead.

Returns tck : tuple
A tuple (t,c,k) containing the vector of knots, the B-spline coefficients, and the degree
of the spline.

u : array
An array of the values of the parameter.

fp : float
The weighted sum of squared residuals of the spline approximation.

ier : int
An integer flag about splrep success. Success is indicated if ier<=0. If ier in [1,2,3]
an error occurred but was not raised. Otherwise an error is raised.

msg : str
A message corresponding to the integer flag, ier.

See also:

splrep, splev, sproot, spalde, splint, bisplrep, bisplev, UnivariateSpline,
BivariateSpline

384 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

See splev for evaluation of the spline and its derivatives. The number of dimensions N must be smaller than
11.

References

[R63], [R64], [R65]

scipy.interpolate.splev(x, tck, der=0, ext=0)
Evaluate a B-spline or its derivatives.

Given the knots and coefficients of a B-spline representation, evaluate the value of the smoothing polynomial
and its derivatives. This is a wrapper around the FORTRAN routines splev and splder of FITPACK.

Parameters x : array_like
An array of points at which to return the value of the smoothed spline or its derivatives.
If tck was returned from splprep, then the parameter values, u should be given.

tck : tuple
A sequence of length 3 returned by splrep or splprep containing the knots, co-
efficients, and degree of the spline.

der : int, optional
The order of derivative of the spline to compute (must be less than or equal to k).

ext : int, optional
Controls the value returned for elements of x not in the interval defined by the knot
sequence.

•if ext=0, return the extrapolated value.
•if ext=1, return 0
•if ext=2, raise a ValueError
•if ext=3, return the boundary value.

The default value is 0.
Returns y : ndarray or list of ndarrays

An array of values representing the spline function evaluated at the points in x. If
tck was returned from splprep, then this is a list of arrays representing the curve in
N-dimensional space.

See also:

splprep, splrep, sproot, spalde, splint, bisplrep, bisplev

References

[R58], [R59], [R60]

scipy.interpolate.splint(a, b, tck, full_output=0)
Evaluate the definite integral of a B-spline.

Given the knots and coefficients of a B-spline, evaluate the definite integral of the smoothing polynomial be-
tween two given points.

Parameters a, b : float
The end-points of the integration interval.

tck : tuple
A tuple (t,c,k) containing the vector of knots, the B-spline coefficients, and the degree
of the spline (see splev).

full_output : int, optional
Non-zero to return optional output.

Returns integral : float
The resulting integral.

wrk : ndarray

5.7. Interpolation (scipy.interpolate) 385

SciPy Reference Guide, Release 0.16.0

An array containing the integrals of the normalized B-splines defined on the set of
knots.

See also:

splprep, splrep, sproot, spalde, splev, bisplrep, bisplev, UnivariateSpline,
BivariateSpline

Notes

splint silently assumes that the spline function is zero outside the data interval (a, b).

References

[R61], [R62]

scipy.interpolate.sproot(tck, mest=10)
Find the roots of a cubic B-spline.

Given the knots (>=8) and coefficients of a cubic B-spline return the roots of the spline.

Parameters tck : tuple
A tuple (t,c,k) containing the vector of knots, the B-spline coefficients, and the degree
of the spline. The number of knots must be >= 8, and the degree must be 3. The knots
must be a montonically increasing sequence.

mest : int, optional
An estimate of the number of zeros (Default is 10).

Returns zeros : ndarray
An array giving the roots of the spline.

See also:

splprep, splrep, splint, spalde, splev, bisplrep, bisplev, UnivariateSpline,
BivariateSpline

References

[R70], [R71], [R72]

scipy.interpolate.spalde(x, tck)
Evaluate all derivatives of a B-spline.

Given the knots and coefficients of a cubic B-spline compute all derivatives up to order k at a point (or set of
points).

Parameters x : array_like
A point or a set of points at which to evaluate the derivatives. Note that t(k) <= x
<= t(n-k+1) must hold for each x.

tck : tuple
A tuple (t,c,k) containing the vector of knots, the B-spline coefficients, and the degree
of the spline.

Returns results : {ndarray, list of ndarrays}
An array (or a list of arrays) containing all derivatives up to order k inclusive for each
point x.

See also:

splprep, splrep, splint, sproot, splev, bisplrep, bisplev, UnivariateSpline,
BivariateSpline

386 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

References

[R55], [R56], [R57]

scipy.interpolate.splder(tck, n=1)
Compute the spline representation of the derivative of a given spline

Parameters tck : tuple of (t, c, k)
Spline whose derivative to compute

n : int, optional
Order of derivative to evaluate. Default: 1

Returns tck_der : tuple of (t2, c2, k2)
Spline of order k2=k-n representing the derivative of the input spline.

See also:

splantider, splev, spalde

Notes

New in version 0.13.0.

Examples

This can be used for finding maxima of a curve:

>>> from scipy.interpolate import splrep, splder, sproot
>>> x = np.linspace(0, 10, 70)
>>> y = np.sin(x)
>>> spl = splrep(x, y, k=4)

Now, differentiate the spline and find the zeros of the derivative. (NB: sproot only works for order 3 splines,
so we fit an order 4 spline):

>>> dspl = splder(spl)
>>> sproot(dspl) / np.pi
array([0.50000001, 1.5 , 2.49999998])

This agrees well with roots 𝜋/2 + 𝑛𝜋 of cos(𝑥) = sin′(𝑥).

scipy.interpolate.splantider(tck, n=1)
Compute the spline for the antiderivative (integral) of a given spline.

Parameters tck : tuple of (t, c, k)
Spline whose antiderivative to compute

n : int, optional
Order of antiderivative to evaluate. Default: 1

Returns tck_ader : tuple of (t2, c2, k2)
Spline of order k2=k+n representing the antiderivative of the input spline.

See also:

splder, splev, spalde

Notes

The splder function is the inverse operation of this function. Namely, splder(splantider(tck)) is
identical to tck, modulo rounding error.

New in version 0.13.0.

5.7. Interpolation (scipy.interpolate) 387

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.interpolate import splrep, splder, splantider, splev
>>> x = np.linspace(0, np.pi/2, 70)
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
>>> spl = splrep(x, y)

The derivative is the inverse operation of the antiderivative, although some floating point error accumulates:

>>> splev(1.7, spl), splev(1.7, splder(splantider(spl)))
(array(2.1565429877197317), array(2.1565429877201865))

Antiderivative can be used to evaluate definite integrals:

>>> ispl = splantider(spl)
>>> splev(np.pi/2, ispl) - splev(0, ispl)
2.2572053588768486

This is indeed an approximation to the complete elliptic integral 𝐾(𝑚) =
∫︀ 𝜋/2

0
[1 −𝑚 sin2 𝑥]−1/2𝑑𝑥:

>>> from scipy.special import ellipk
>>> ellipk(0.8)
2.2572053268208538

5.7.4 2-D Splines

For data on a grid:

RectBivariateSpline(x, y, z[, bbox, kx, ky, s]) Bivariate spline approximation over a rectangular mesh.
RectSphereBivariateSpline(u, v, r[, s, ...]) Bivariate spline approximation over a rectangular mesh on a sphere.

class scipy.interpolate.RectBivariateSpline(x, y, z, bbox=[None, None, None, None], kx=3,
ky=3, s=0)

Bivariate spline approximation over a rectangular mesh.

Can be used for both smoothing and interpolating data.

Parameters x,y : array_like
1-D arrays of coordinates in strictly ascending order.

z : array_like
2-D array of data with shape (x.size,y.size).

bbox : array_like, optional
Sequence of length 4 specifying the boundary of the rectangular ap-
proximation domain. By default, bbox=[min(x,tx),max(x,tx),
min(y,ty),max(y,ty)].

kx, ky : ints, optional
Degrees of the bivariate spline. Default is 3.

s : float, optional
Positive smoothing factor defined for estimation condition:
sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s Default
is s=0, which is for interpolation.

See also:

SmoothBivariateSpline
a smoothing bivariate spline for scattered data

388 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

bisplrep an older wrapping of FITPACK

bisplev an older wrapping of FITPACK

UnivariateSpline
a similar class for univariate spline interpolation

Methods

__call__(x, y[, mth, dx, dy, grid]) Evaluate the spline or its derivatives at given positions.
ev(xi, yi[, dx, dy]) Evaluate the spline at points
get_coeffs() Return spline coefficients.
get_knots() Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively.
get_residual() Return weighted sum of squared residuals of the spline
integral(xa, xb, ya, yb) Evaluate the integral of the spline over area [xa,xb] x [ya,yb].

RectBivariateSpline.__call__(x, y, mth=None, dx=0, dy=0, grid=True)
Evaluate the spline or its derivatives at given positions.

Parameters x, y : array_like
Input coordinates.
If grid is False, evaluate the spline at points (x[i], y[i]), i=0, ...,
len(x)-1. Standard Numpy broadcasting is obeyed.
If grid is True: evaluate spline at the grid points defined by the coordinate arrays
x, y. The arrays must be sorted to increasing order.

dx : int
Order of x-derivative
New in version 0.14.0.

dy : int
Order of y-derivative
New in version 0.14.0.

grid : bool
Whether to evaluate the results on a grid spanned by the input arrays, or at points
specified by the input arrays.
New in version 0.14.0.

mth : str
Deprecated argument. Has no effect.

RectBivariateSpline.ev(xi, yi, dx=0, dy=0)
Evaluate the spline at points

Returns the interpolated value at (xi[i], yi[i]), i=0,...,len(xi)-1.

Parameters xi, yi : array_like
Input coordinates. Standard Numpy broadcasting is obeyed.

dx : int, optional
Order of x-derivative
New in version 0.14.0.

dy : int, optional
Order of y-derivative
New in version 0.14.0.

RectBivariateSpline.get_coeffs()
Return spline coefficients.

RectBivariateSpline.get_knots()
Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable,

5.7. Interpolation (scipy.interpolate) 389

SciPy Reference Guide, Release 0.16.0

respectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b,
t[-k-1:]=e, respectively.

RectBivariateSpline.get_residual()
Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

RectBivariateSpline.integral(xa, xb, ya, yb)
Evaluate the integral of the spline over area [xa,xb] x [ya,yb].

Parameters xa, xb : float
The end-points of the x integration interval.

ya, yb : float
The end-points of the y integration interval.

Returns integ : float
The value of the resulting integral.

class scipy.interpolate.RectSphereBivariateSpline(u, v, r, s=0.0, pole_continuity=False,
pole_values=None, pole_exact=False,
pole_flat=False)

Bivariate spline approximation over a rectangular mesh on a sphere.

Can be used for smoothing data.

New in version 0.11.0.

Parameters u : array_like
1-D array of latitude coordinates in strictly ascending order. Coordinates must be
given in radians and lie within the interval (0, pi).

v : array_like
1-D array of longitude coordinates in strictly ascending order. Coordinates must be
given in radians, and must lie within (0, 2pi).

r : array_like
2-D array of data with shape (u.size, v.size).

s : float, optional
Positive smoothing factor defined for estimation condition (s=0 is for interpolation).

pole_continuity : bool or (bool, bool), optional
Order of continuity at the poles u=0 (pole_continuity[0]) and u=pi
(pole_continuity[1]). The order of continuity at the pole will be 1 or 0 when
this is True or False, respectively. Defaults to False.

pole_values : float or (float, float), optional
Data values at the poles u=0 and u=pi. Either the whole parameter or each individual
element can be None. Defaults to None.

pole_exact : bool or (bool, bool), optional
Data value exactness at the poles u=0 and u=pi. If True, the value is considered to
be the right function value, and it will be fitted exactly. If False, the value will be
considered to be a data value just like the other data values. Defaults to False.

pole_flat : bool or (bool, bool), optional
For the poles at u=0 and u=pi, specify whether or not the approximation has vanish-
ing derivatives. Defaults to False.

See also:

RectBivariateSpline
bivariate spline approximation over a rectangular mesh

390 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

Currently, only the smoothing spline approximation (iopt[0] = 0 and iopt[0] = 1 in the FITPACK
routine) is supported. The exact least-squares spline approximation is not implemented yet.

When actually performing the interpolation, the requested v values must lie within the same length 2pi interval
that the original v values were chosen from.

For more information, see the FITPACK site about this function.

Examples

Suppose we have global data on a coarse grid

>>> lats = np.linspace(10, 170, 9) * np.pi / 180.
>>> lons = np.linspace(0, 350, 18) * np.pi / 180.
>>> data = np.dot(np.atleast_2d(90. - np.linspace(-80., 80., 18)).T,
... np.atleast_2d(180. - np.abs(np.linspace(0., 350., 9)))).T

We want to interpolate it to a global one-degree grid

>>> new_lats = np.linspace(1, 180, 180) * np.pi / 180
>>> new_lons = np.linspace(1, 360, 360) * np.pi / 180
>>> new_lats, new_lons = np.meshgrid(new_lats, new_lons)

We need to set up the interpolator object

>>> from scipy.interpolate import RectSphereBivariateSpline
>>> lut = RectSphereBivariateSpline(lats, lons, data)

Finally we interpolate the data. The RectSphereBivariateSpline object only takes 1-D arrays as input,
therefore we need to do some reshaping.

>>> data_interp = lut.ev(new_lats.ravel(),
... new_lons.ravel()).reshape((360, 180)).T

Looking at the original and the interpolated data, one can see that the interpolant reproduces the original data
very well:

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(211)
>>> ax1.imshow(data, interpolation='nearest')
>>> ax2 = fig.add_subplot(212)
>>> ax2.imshow(data_interp, interpolation='nearest')
>>> plt.show()

5.7. Interpolation (scipy.interpolate) 391

http://www.netlib.org/dierckx/spgrid.f

SciPy Reference Guide, Release 0.16.0

0 5 10 15

0
2
4
6
8

0 50 100 150 200 250 300 350

0
50

100
150

Chosing the optimal value of s can be a delicate task. Recommended values for s depend on the accuracy of
the data values. If the user has an idea of the statistical errors on the data, she can also find a proper estimate
for s. By assuming that, if she specifies the right s, the interpolator will use a spline f(u,v) which exactly
reproduces the function underlying the data, she can evaluate sum((r(i,j)-s(u(i),v(j)))**2) to find
a good estimate for this s. For example, if she knows that the statistical errors on her r(i,j)-values are not
greater than 0.1, she may expect that a good s should have a value not larger than u.size * v.size *
(0.1)**2.

If nothing is known about the statistical error in r(i,j), s must be determined by trial and error. The best is
then to start with a very large value of s (to determine the least-squares polynomial and the corresponding upper
bound fp0 for s) and then to progressively decrease the value of s (say by a factor 10 in the beginning, i.e. s
= fp0 / 10, fp0 / 100, ... and more carefully as the approximation shows more detail) to obtain
closer fits.

The interpolation results for different values of s give some insight into this process:

>>> fig2 = plt.figure()
>>> s = [3e9, 2e9, 1e9, 1e8]
>>> for ii in xrange(len(s)):
... lut = RectSphereBivariateSpline(lats, lons, data, s=s[ii])
... data_interp = lut.ev(new_lats.ravel(),
... new_lons.ravel()).reshape((360, 180)).T
... ax = fig2.add_subplot(2, 2, ii+1)
... ax.imshow(data_interp, interpolation='nearest')
... ax.set_title("s = %g" % s[ii])
>>> plt.show()

392 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

0 50 100150200250300350

0
50

100
150

s = 3e+09

0 50 100150200250300350

0
50

100
150

s = 2e+09

0 50 100150200250300350

0
50

100
150

s = 1e+09

0 50 100150200250300350

0
50

100
150

s = 1e+08

Methods

__call__(theta, phi[, dtheta, dphi, grid]) Evaluate the spline or its derivatives at given positions.
ev(theta, phi[, dtheta, dphi]) Evaluate the spline at points
get_coeffs() Return spline coefficients.
get_knots() Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively.
get_residual() Return weighted sum of squared residuals of the spline

RectSphereBivariateSpline.__call__(theta, phi, dtheta=0, dphi=0, grid=True)
Evaluate the spline or its derivatives at given positions.

Parameters theta, phi : array_like
Input coordinates.
If grid is False, evaluate the spline at points (theta[i], phi[i]), i=0,
..., len(x)-1. Standard Numpy broadcasting is obeyed.
If grid is True: evaluate spline at the grid points defined by the coordinate arrays
theta, phi. The arrays must be sorted to increasing order.

dtheta : int, optional
Order of theta-derivative
New in version 0.14.0.

dphi : int
Order of phi-derivative
New in version 0.14.0.

grid : bool
Whether to evaluate the results on a grid spanned by the input arrays, or at points
specified by the input arrays.
New in version 0.14.0.

RectSphereBivariateSpline.ev(theta, phi, dtheta=0, dphi=0)
Evaluate the spline at points

Returns the interpolated value at (theta[i], phi[i]), i=0,...,len(theta)-1.

Parameters theta, phi : array_like
Input coordinates. Standard Numpy broadcasting is obeyed.

dtheta : int, optional

5.7. Interpolation (scipy.interpolate) 393

SciPy Reference Guide, Release 0.16.0

Order of theta-derivative
New in version 0.14.0.

dphi : int, optional
Order of phi-derivative
New in version 0.14.0.

RectSphereBivariateSpline.get_coeffs()
Return spline coefficients.

RectSphereBivariateSpline.get_knots()
Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable,
respectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b,
t[-k-1:]=e, respectively.

RectSphereBivariateSpline.get_residual()
Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

For unstructured data:

BivariateSpline Base class for bivariate splines.
SmoothBivariateSpline(x, y, z[, w, bbox, ...]) Smooth bivariate spline approximation.
SmoothSphereBivariateSpline(theta, phi, r[, ...]) Smooth bivariate spline approximation in spherical coordinates.
LSQBivariateSpline(x, y, z, tx, ty[, w, ...]) Weighted least-squares bivariate spline approximation.
LSQSphereBivariateSpline(theta, phi, r, tt, tp) Weighted least-squares bivariate spline approximation in spherical coordinates.

class scipy.interpolate.BivariateSpline
Base class for bivariate splines.

This describes a spline s(x, y) of degrees kx and ky on the rectangle [xb, xe] * [yb, ye] calculated
from a given set of data points (x, y, z).

This class is meant to be subclassed, not instantiated directly. To construct these splines, call either
SmoothBivariateSpline or LSQBivariateSpline.

See also:

UnivariateSpline
a similar class for univariate spline interpolation

SmoothBivariateSpline
to create a BivariateSpline through the given points

LSQBivariateSpline
to create a BivariateSpline using weighted least-squares fitting

SphereBivariateSpline
bivariate spline interpolation in spherical cooridinates

bisplrep older wrapping of FITPACK

bisplev older wrapping of FITPACK

Methods

__call__(x, y[, mth, dx, dy, grid]) Evaluate the spline or its derivatives at given positions.
ev(xi, yi[, dx, dy]) Evaluate the spline at points
get_coeffs() Return spline coefficients.

Continued on next page

394 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.50 – continued from previous page
get_knots() Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively.
get_residual() Return weighted sum of squared residuals of the spline
integral(xa, xb, ya, yb) Evaluate the integral of the spline over area [xa,xb] x [ya,yb].

BivariateSpline.__call__(x, y, mth=None, dx=0, dy=0, grid=True)
Evaluate the spline or its derivatives at given positions.

Parameters x, y : array_like
Input coordinates.
If grid is False, evaluate the spline at points (x[i], y[i]), i=0, ...,
len(x)-1. Standard Numpy broadcasting is obeyed.
If grid is True: evaluate spline at the grid points defined by the coordinate arrays
x, y. The arrays must be sorted to increasing order.

dx : int
Order of x-derivative
New in version 0.14.0.

dy : int
Order of y-derivative
New in version 0.14.0.

grid : bool
Whether to evaluate the results on a grid spanned by the input arrays, or at points
specified by the input arrays.
New in version 0.14.0.

mth : str
Deprecated argument. Has no effect.

BivariateSpline.ev(xi, yi, dx=0, dy=0)
Evaluate the spline at points

Returns the interpolated value at (xi[i], yi[i]), i=0,...,len(xi)-1.

Parameters xi, yi : array_like
Input coordinates. Standard Numpy broadcasting is obeyed.

dx : int, optional
Order of x-derivative
New in version 0.14.0.

dy : int, optional
Order of y-derivative
New in version 0.14.0.

BivariateSpline.get_coeffs()
Return spline coefficients.

BivariateSpline.get_knots()
Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable,
respectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b,
t[-k-1:]=e, respectively.

BivariateSpline.get_residual()
Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

BivariateSpline.integral(xa, xb, ya, yb)
Evaluate the integral of the spline over area [xa,xb] x [ya,yb].

Parameters xa, xb : float
The end-points of the x integration interval.

5.7. Interpolation (scipy.interpolate) 395

SciPy Reference Guide, Release 0.16.0

ya, yb : float
The end-points of the y integration interval.

Returns integ : float
The value of the resulting integral.

class scipy.interpolate.SmoothBivariateSpline(x, y, z, w=None, bbox=[None, None, None,
None], kx=3, ky=3, s=None, eps=None)

Smooth bivariate spline approximation.

Parameters x, y, z : array_like
1-D sequences of data points (order is not important).

w : array_like, optional
Positive 1-D sequence of weights, of same length as x, y and z.

bbox : array_like, optional
Sequence of length 4 specifying the boundary of the rectangular ap-
proximation domain. By default, bbox=[min(x,tx),max(x,tx),
min(y,ty),max(y,ty)].

kx, ky : ints, optional
Degrees of the bivariate spline. Default is 3.

s : float, optional
Positive smoothing factor defined for estimation condition:
sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s Default
s=len(w) which should be a good value if 1/w[i] is an estimate of the standard
deviation of z[i].

eps : float, optional
A threshold for determining the effective rank of an over-determined linear system of
equations. eps should have a value between 0 and 1, the default is 1e-16.

See also:

bisplrep an older wrapping of FITPACK

bisplev an older wrapping of FITPACK

UnivariateSpline
a similar class for univariate spline interpolation

LSQUnivariateSpline
to create a BivariateSpline using weighted

Notes

The length of x, y and z should be at least (kx+1) * (ky+1).

Methods

__call__(x, y[, mth, dx, dy, grid]) Evaluate the spline or its derivatives at given positions.
ev(xi, yi[, dx, dy]) Evaluate the spline at points
get_coeffs() Return spline coefficients.
get_knots() Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively.
get_residual() Return weighted sum of squared residuals of the spline
integral(xa, xb, ya, yb) Evaluate the integral of the spline over area [xa,xb] x [ya,yb].

SmoothBivariateSpline.__call__(x, y, mth=None, dx=0, dy=0, grid=True)
Evaluate the spline or its derivatives at given positions.

Parameters x, y : array_like

396 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Input coordinates.
If grid is False, evaluate the spline at points (x[i], y[i]), i=0, ...,
len(x)-1. Standard Numpy broadcasting is obeyed.
If grid is True: evaluate spline at the grid points defined by the coordinate arrays
x, y. The arrays must be sorted to increasing order.

dx : int
Order of x-derivative
New in version 0.14.0.

dy : int
Order of y-derivative
New in version 0.14.0.

grid : bool
Whether to evaluate the results on a grid spanned by the input arrays, or at points
specified by the input arrays.
New in version 0.14.0.

mth : str
Deprecated argument. Has no effect.

SmoothBivariateSpline.ev(xi, yi, dx=0, dy=0)
Evaluate the spline at points

Returns the interpolated value at (xi[i], yi[i]), i=0,...,len(xi)-1.

Parameters xi, yi : array_like
Input coordinates. Standard Numpy broadcasting is obeyed.

dx : int, optional
Order of x-derivative
New in version 0.14.0.

dy : int, optional
Order of y-derivative
New in version 0.14.0.

SmoothBivariateSpline.get_coeffs()
Return spline coefficients.

SmoothBivariateSpline.get_knots()
Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable,
respectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b,
t[-k-1:]=e, respectively.

SmoothBivariateSpline.get_residual()
Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

SmoothBivariateSpline.integral(xa, xb, ya, yb)
Evaluate the integral of the spline over area [xa,xb] x [ya,yb].

Parameters xa, xb : float
The end-points of the x integration interval.

ya, yb : float
The end-points of the y integration interval.

Returns integ : float
The value of the resulting integral.

class scipy.interpolate.SmoothSphereBivariateSpline(theta, phi, r, w=None, s=0.0,
eps=1e-16)

Smooth bivariate spline approximation in spherical coordinates.

New in version 0.11.0.

5.7. Interpolation (scipy.interpolate) 397

SciPy Reference Guide, Release 0.16.0

Parameters theta, phi, r : array_like
1-D sequences of data points (order is not important). Coordinates must be given in
radians. Theta must lie within the interval (0, pi), and phi must lie within the interval
(0, 2pi).

w : array_like, optional
Positive 1-D sequence of weights.

s : float, optional
Positive smoothing factor defined for estimation condition: sum((w(i)*(r(i) -
s(theta(i), phi(i))))**2, axis=0) <= s Default s=len(w) which
should be a good value if 1/w[i] is an estimate of the standard deviation of r[i].

eps : float, optional
A threshold for determining the effective rank of an over-determined linear system of
equations. eps should have a value between 0 and 1, the default is 1e-16.

Notes

For more information, see the FITPACK site about this function.

Examples

Suppose we have global data on a coarse grid (the input data does not have to be on a grid):

>>> theta = np.linspace(0., np.pi, 7)
>>> phi = np.linspace(0., 2*np.pi, 9)
>>> data = np.empty((theta.shape[0], phi.shape[0]))
>>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0.
>>> data[1:-1,1], data[1:-1,-1] = 1., 1.
>>> data[1,1:-1], data[-2,1:-1] = 1., 1.
>>> data[2:-2,2], data[2:-2,-2] = 2., 2.
>>> data[2,2:-2], data[-3,2:-2] = 2., 2.
>>> data[3,3:-2] = 3.
>>> data = np.roll(data, 4, 1)

We need to set up the interpolator object

>>> lats, lons = np.meshgrid(theta, phi)
>>> from scipy.interpolate import SmoothSphereBivariateSpline
>>> lut = SmoothSphereBivariateSpline(lats.ravel(), lons.ravel(),
... data.T.ravel(), s=3.5)

As a first test, we’ll see what the algorithm returns when run on the input coordinates

>>> data_orig = lut(theta, phi)

Finally we interpolate the data to a finer grid

>>> fine_lats = np.linspace(0., np.pi, 70)
>>> fine_lons = np.linspace(0., 2 * np.pi, 90)

>>> data_smth = lut(fine_lats, fine_lons)

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(131)
>>> ax1.imshow(data, interpolation='nearest')
>>> ax2 = fig.add_subplot(132)
>>> ax2.imshow(data_orig, interpolation='nearest')
>>> ax3 = fig.add_subplot(133)

398 Chapter 5. Reference

http://www.netlib.org/dierckx/sphere.f

SciPy Reference Guide, Release 0.16.0

>>> ax3.imshow(data_smth, interpolation='nearest')
>>> plt.show()

0 2 4 6 8

0
1
2
3
4
5
6

0 2 4 6 8

0
1
2
3
4
5
6

0 20 40 60 80

0
10
20
30
40
50
60
70

Methods

__call__(theta, phi[, dtheta, dphi, grid]) Evaluate the spline or its derivatives at given positions.
ev(theta, phi[, dtheta, dphi]) Evaluate the spline at points
get_coeffs() Return spline coefficients.
get_knots() Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively.
get_residual() Return weighted sum of squared residuals of the spline

SmoothSphereBivariateSpline.__call__(theta, phi, dtheta=0, dphi=0, grid=True)
Evaluate the spline or its derivatives at given positions.

Parameters theta, phi : array_like
Input coordinates.
If grid is False, evaluate the spline at points (theta[i], phi[i]), i=0,
..., len(x)-1. Standard Numpy broadcasting is obeyed.
If grid is True: evaluate spline at the grid points defined by the coordinate arrays
theta, phi. The arrays must be sorted to increasing order.

dtheta : int, optional
Order of theta-derivative
New in version 0.14.0.

dphi : int
Order of phi-derivative
New in version 0.14.0.

grid : bool
Whether to evaluate the results on a grid spanned by the input arrays, or at points
specified by the input arrays.
New in version 0.14.0.

SmoothSphereBivariateSpline.ev(theta, phi, dtheta=0, dphi=0)
Evaluate the spline at points

Returns the interpolated value at (theta[i], phi[i]), i=0,...,len(theta)-1.

5.7. Interpolation (scipy.interpolate) 399

SciPy Reference Guide, Release 0.16.0

Parameters theta, phi : array_like
Input coordinates. Standard Numpy broadcasting is obeyed.

dtheta : int, optional
Order of theta-derivative
New in version 0.14.0.

dphi : int, optional
Order of phi-derivative
New in version 0.14.0.

SmoothSphereBivariateSpline.get_coeffs()
Return spline coefficients.

SmoothSphereBivariateSpline.get_knots()
Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable,
respectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b,
t[-k-1:]=e, respectively.

SmoothSphereBivariateSpline.get_residual()
Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

class scipy.interpolate.LSQBivariateSpline(x, y, z, tx, ty, w=None, bbox=[None, None, None,
None], kx=3, ky=3, eps=None)

Weighted least-squares bivariate spline approximation.

Parameters x, y, z : array_like
1-D sequences of data points (order is not important).

tx, ty : array_like
Strictly ordered 1-D sequences of knots coordinates.

w : array_like, optional
Positive 1-D array of weights, of the same length as x, y and z.

bbox : (4,) array_like, optional
Sequence of length 4 specifying the boundary of the rectangular ap-
proximation domain. By default, bbox=[min(x,tx),max(x,tx),
min(y,ty),max(y,ty)].

kx, ky : ints, optional
Degrees of the bivariate spline. Default is 3.

eps : float, optional
A threshold for determining the effective rank of an over-determined linear system of
equations. eps should have a value between 0 and 1, the default is 1e-16.

See also:

bisplrep an older wrapping of FITPACK

bisplev an older wrapping of FITPACK

UnivariateSpline
a similar class for univariate spline interpolation

SmoothBivariateSpline
create a smoothing BivariateSpline

Notes

The length of x, y and z should be at least (kx+1) * (ky+1).

Methods

400 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

__call__(x, y[, mth, dx, dy, grid]) Evaluate the spline or its derivatives at given positions.
ev(xi, yi[, dx, dy]) Evaluate the spline at points
get_coeffs() Return spline coefficients.
get_knots() Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively.
get_residual() Return weighted sum of squared residuals of the spline
integral(xa, xb, ya, yb) Evaluate the integral of the spline over area [xa,xb] x [ya,yb].

LSQBivariateSpline.__call__(x, y, mth=None, dx=0, dy=0, grid=True)
Evaluate the spline or its derivatives at given positions.

Parameters x, y : array_like
Input coordinates.
If grid is False, evaluate the spline at points (x[i], y[i]), i=0, ...,
len(x)-1. Standard Numpy broadcasting is obeyed.
If grid is True: evaluate spline at the grid points defined by the coordinate arrays
x, y. The arrays must be sorted to increasing order.

dx : int
Order of x-derivative
New in version 0.14.0.

dy : int
Order of y-derivative
New in version 0.14.0.

grid : bool
Whether to evaluate the results on a grid spanned by the input arrays, or at points
specified by the input arrays.
New in version 0.14.0.

mth : str
Deprecated argument. Has no effect.

LSQBivariateSpline.ev(xi, yi, dx=0, dy=0)
Evaluate the spline at points

Returns the interpolated value at (xi[i], yi[i]), i=0,...,len(xi)-1.

Parameters xi, yi : array_like
Input coordinates. Standard Numpy broadcasting is obeyed.

dx : int, optional
Order of x-derivative
New in version 0.14.0.

dy : int, optional
Order of y-derivative
New in version 0.14.0.

LSQBivariateSpline.get_coeffs()
Return spline coefficients.

LSQBivariateSpline.get_knots()
Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable,
respectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b,
t[-k-1:]=e, respectively.

LSQBivariateSpline.get_residual()
Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

5.7. Interpolation (scipy.interpolate) 401

SciPy Reference Guide, Release 0.16.0

LSQBivariateSpline.integral(xa, xb, ya, yb)
Evaluate the integral of the spline over area [xa,xb] x [ya,yb].

Parameters xa, xb : float
The end-points of the x integration interval.

ya, yb : float
The end-points of the y integration interval.

Returns integ : float
The value of the resulting integral.

class scipy.interpolate.LSQSphereBivariateSpline(theta, phi, r, tt, tp, w=None, eps=1e-16)
Weighted least-squares bivariate spline approximation in spherical coordinates.

New in version 0.11.0.

Parameters theta, phi, r : array_like
1-D sequences of data points (order is not important). Coordinates must be given in
radians. Theta must lie within the interval (0, pi), and phi must lie within the interval
(0, 2pi).

tt, tp : array_like
Strictly ordered 1-D sequences of knots coordinates. Coordinates must satisfy 0 <
tt[i] < pi, 0 < tp[i] < 2*pi.

w : array_like, optional
Positive 1-D sequence of weights, of the same length as theta, phi and r.

eps : float, optional
A threshold for determining the effective rank of an over-determined linear system of
equations. eps should have a value between 0 and 1, the default is 1e-16.

Notes

For more information, see the FITPACK site about this function.

Examples

Suppose we have global data on a coarse grid (the input data does not have to be on a grid):

>>> theta = np.linspace(0., np.pi, 7)
>>> phi = np.linspace(0., 2*np.pi, 9)
>>> data = np.empty((theta.shape[0], phi.shape[0]))
>>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0.
>>> data[1:-1,1], data[1:-1,-1] = 1., 1.
>>> data[1,1:-1], data[-2,1:-1] = 1., 1.
>>> data[2:-2,2], data[2:-2,-2] = 2., 2.
>>> data[2,2:-2], data[-3,2:-2] = 2., 2.
>>> data[3,3:-2] = 3.
>>> data = np.roll(data, 4, 1)

We need to set up the interpolator object. Here, we must also specify the coordinates of the knots to use.

>>> lats, lons = np.meshgrid(theta, phi)
>>> knotst, knotsp = theta.copy(), phi.copy()
>>> knotst[0] += .0001
>>> knotst[-1] -= .0001
>>> knotsp[0] += .0001
>>> knotsp[-1] -= .0001
>>> from scipy.interpolate import LSQSphereBivariateSpline
>>> lut = LSQSphereBivariateSpline(lats.ravel(), lons.ravel(),
... data.T.ravel(), knotst, knotsp)

402 Chapter 5. Reference

http://www.netlib.org/dierckx/sphere.f

SciPy Reference Guide, Release 0.16.0

As a first test, we’ll see what the algorithm returns when run on the input coordinates

>>> data_orig = lut(theta, phi)

Finally we interpolate the data to a finer grid

>>> fine_lats = np.linspace(0., np.pi, 70)
>>> fine_lons = np.linspace(0., 2*np.pi, 90)

>>> data_lsq = lut(fine_lats, fine_lons)

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(131)
>>> ax1.imshow(data, interpolation='nearest')
>>> ax2 = fig.add_subplot(132)
>>> ax2.imshow(data_orig, interpolation='nearest')
>>> ax3 = fig.add_subplot(133)
>>> ax3.imshow(data_lsq, interpolation='nearest')
>>> plt.show()

0 2 4 6 8

0
1
2
3
4
5
6

0 2 4 6 8

0
1
2
3
4
5
6

0 20 40 60 80

0
10
20
30
40
50
60
70

Methods

__call__(theta, phi[, dtheta, dphi, grid]) Evaluate the spline or its derivatives at given positions.
ev(theta, phi[, dtheta, dphi]) Evaluate the spline at points
get_coeffs() Return spline coefficients.
get_knots() Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively.
get_residual() Return weighted sum of squared residuals of the spline

LSQSphereBivariateSpline.__call__(theta, phi, dtheta=0, dphi=0, grid=True)
Evaluate the spline or its derivatives at given positions.

Parameters theta, phi : array_like
Input coordinates.
If grid is False, evaluate the spline at points (theta[i], phi[i]), i=0,
..., len(x)-1. Standard Numpy broadcasting is obeyed.

5.7. Interpolation (scipy.interpolate) 403

SciPy Reference Guide, Release 0.16.0

If grid is True: evaluate spline at the grid points defined by the coordinate arrays
theta, phi. The arrays must be sorted to increasing order.

dtheta : int, optional
Order of theta-derivative
New in version 0.14.0.

dphi : int
Order of phi-derivative
New in version 0.14.0.

grid : bool
Whether to evaluate the results on a grid spanned by the input arrays, or at points
specified by the input arrays.
New in version 0.14.0.

LSQSphereBivariateSpline.ev(theta, phi, dtheta=0, dphi=0)
Evaluate the spline at points

Returns the interpolated value at (theta[i], phi[i]), i=0,...,len(theta)-1.

Parameters theta, phi : array_like
Input coordinates. Standard Numpy broadcasting is obeyed.

dtheta : int, optional
Order of theta-derivative
New in version 0.14.0.

dphi : int, optional
Order of phi-derivative
New in version 0.14.0.

LSQSphereBivariateSpline.get_coeffs()
Return spline coefficients.

LSQSphereBivariateSpline.get_knots()
Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable,
respectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b,
t[-k-1:]=e, respectively.

LSQSphereBivariateSpline.get_residual()
Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

Low-level interface to FITPACK functions:

bisplrep(x, y, z[, w, xb, xe, yb, ye, kx, ...]) Find a bivariate B-spline representation of a surface.
bisplev(x, y, tck[, dx, dy]) Evaluate a bivariate B-spline and its derivatives.

scipy.interpolate.bisplrep(x, y, z, w=None, xb=None, xe=None, yb=None, ye=None, kx=3, ky=3,
task=0, s=None, eps=1e-16, tx=None, ty=None, full_output=0, nx-
est=None, nyest=None, quiet=1)

Find a bivariate B-spline representation of a surface.

Given a set of data points (x[i], y[i], z[i]) representing a surface z=f(x,y), compute a B-spline representation of
the surface. Based on the routine SURFIT from FITPACK.

Parameters x, y, z : ndarray
Rank-1 arrays of data points.

w : ndarray, optional
Rank-1 array of weights. By default w=np.ones(len(x)).

xb, xe : float, optional

404 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

End points of approximation interval in x. By default xb = x.min(),
xe=x.max().

yb, ye : float, optional
End points of approximation interval in y. By default yb=y.min(), ye =
y.max().

kx, ky : int, optional
The degrees of the spline (1 <= kx, ky <= 5). Third order (kx=ky=3) is recommended.

task : int, optional
If task=0, find knots in x and y and coefficients for a given smoothing factor, s. If
task=1, find knots and coefficients for another value of the smoothing factor, s. bis-
plrep must have been previously called with task=0 or task=1. If task=-1, find coeffi-
cients for a given set of knots tx, ty.

s : float, optional
A non-negative smoothing factor. If weights correspond to the inverse of the standard-
deviation of the errors in z, then a good s-value should be found in the range
(m-sqrt(2*m),m+sqrt(2*m)) where m=len(x).

eps : float, optional
A threshold for determining the effective rank of an over-determined linear system of
equations (0 < eps < 1). eps is not likely to need changing.

tx, ty : ndarray, optional
Rank-1 arrays of the knots of the spline for task=-1

full_output : int, optional
Non-zero to return optional outputs.

nxest, nyest : int, optional
Over-estimates of the total number of knots. If None
then nxest = max(kx+sqrt(m/2),2*kx+3), nyest =
max(ky+sqrt(m/2),2*ky+3).

quiet : int, optional
Non-zero to suppress printing of messages. This parameter is deprecated; use standard
Python warning filters instead.

Returns tck : array_like
A list [tx, ty, c, kx, ky] containing the knots (tx, ty) and coefficients (c) of the bivariate
B-spline representation of the surface along with the degree of the spline.

fp : ndarray
The weighted sum of squared residuals of the spline approximation.

ier : int
An integer flag about splrep success. Success is indicated if ier<=0. If ier in [1,2,3]
an error occurred but was not raised. Otherwise an error is raised.

msg : str
A message corresponding to the integer flag, ier.

See also:

splprep, splrep, splint, sproot, splev, UnivariateSpline, BivariateSpline

Notes

See bisplev to evaluate the value of the B-spline given its tck representation.

References

[R52], [R53], [R54]

scipy.interpolate.bisplev(x, y, tck, dx=0, dy=0)
Evaluate a bivariate B-spline and its derivatives.

5.7. Interpolation (scipy.interpolate) 405

SciPy Reference Guide, Release 0.16.0

Return a rank-2 array of spline function values (or spline derivative values) at points given by the cross-product
of the rank-1 arrays x and y. In special cases, return an array or just a float if either x or y or both are floats.
Based on BISPEV from FITPACK.

Parameters x, y : ndarray
Rank-1 arrays specifying the domain over which to evaluate the spline or its derivative.

tck : tuple
A sequence of length 5 returned by bisplrep containing the knot locations, the
coefficients, and the degree of the spline: [tx, ty, c, kx, ky].

dx, dy : int, optional
The orders of the partial derivatives in x and y respectively.

Returns vals : ndarray
The B-spline or its derivative evaluated over the set formed by the cross-product of x
and y.

See also:

splprep, splrep, splint, sproot, splev, UnivariateSpline, BivariateSpline

Notes

See bisplrep to generate the tck representation.

References

[R49], [R50], [R51]

5.7.5 Additional tools

lagrange(x, w) Return a Lagrange interpolating polynomial.
approximate_taylor_polynomial(f, x, degree, ...) Estimate the Taylor polynomial of f at x by polynomial fitting.

scipy.interpolate.lagrange(x, w)
Return a Lagrange interpolating polynomial.

Given two 1-D arrays x and w, returns the Lagrange interpolating polynomial through the points (x, w).

Warning: This implementation is numerically unstable. Do not expect to be able to use more than about 20
points even if they are chosen optimally.

Parameters x : array_like
x represents the x-coordinates of a set of datapoints.

w : array_like
w represents the y-coordinates of a set of datapoints, i.e. f(x).

Returns lagrange : numpy.poly1d instance
The Lagrange interpolating polynomial.

scipy.interpolate.approximate_taylor_polynomial(f, x, degree, scale, order=None)
Estimate the Taylor polynomial of f at x by polynomial fitting.

Parameters f : callable
The function whose Taylor polynomial is sought. Should accept a vector of x values.

x : scalar
The point at which the polynomial is to be evaluated.

degree : int
The degree of the Taylor polynomial

scale : scalar

406 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The width of the interval to use to evaluate the Taylor polynomial. Function values
spread over a range this wide are used to fit the polynomial. Must be chosen carefully.

order : int or None, optional
The order of the polynomial to be used in the fitting; f will be evaluated order+1
times. If None, use degree.

Returns p : poly1d instance
The Taylor polynomial (translated to the origin, so that for example p(0)=f(x)).

Notes

The appropriate choice of “scale” is a trade-off; too large and the function differs from its Taylor polynomial too
much to get a good answer, too small and round-off errors overwhelm the higher-order terms. The algorithm
used becomes numerically unstable around order 30 even under ideal circumstances.

Choosing order somewhat larger than degree may improve the higher-order terms.

See also:

scipy.ndimage.interpolation.map_coordinates, scipy.ndimage.interpolation.spline_filter,
scipy.signal.resample, scipy.signal.bspline, scipy.signal.gauss_spline,
scipy.signal.qspline1d, scipy.signal.cspline1d, scipy.signal.qspline1d_eval,
scipy.signal.cspline1d_eval, scipy.signal.qspline2d, scipy.signal.cspline2d.

5.8 Input and output (scipy.io)

SciPy has many modules, classes, and functions available to read data from and write data to a variety of file formats.

See also:

numpy-reference.routines.io (in Numpy)

5.8.1 MATLAB® files

loadmat(file_name[, mdict, appendmat]) Load MATLAB file
savemat(file_name, mdict[, appendmat, ...]) Save a dictionary of names and arrays into a MATLAB-style .mat file.
whosmat(file_name[, appendmat]) List variables inside a MATLAB file

scipy.io.loadmat(file_name, mdict=None, appendmat=True, **kwargs)
Load MATLAB file

Parameters file_name : str
Name of the mat file (do not need .mat extension if appendmat==True) Can also pass
open file-like object.

m_dict : dict, optional
Dictionary in which to insert matfile variables.

appendmat : bool, optional
True to append the .mat extension to the end of the given filename, if not already
present.

byte_order : str or None, optional
None by default, implying byte order guessed from mat file. Otherwise can be one of
(‘native’, ‘=’, ‘little’, ‘<’, ‘BIG’, ‘>’).

mat_dtype : bool, optional
If True, return arrays in same dtype as would be loaded into MATLAB (instead of the
dtype with which they are saved).

5.8. Input and output (scipy.io) 407

SciPy Reference Guide, Release 0.16.0

squeeze_me : bool, optional
Whether to squeeze unit matrix dimensions or not.

chars_as_strings : bool, optional
Whether to convert char arrays to string arrays.

matlab_compatible : bool, optional
Returns matrices as would be loaded by MATLAB (implies squeeze_me=False,
chars_as_strings=False, mat_dtype=True, struct_as_record=True).

struct_as_record : bool, optional
Whether to load MATLAB structs as numpy record arrays, or as old-style numpy
arrays with dtype=object. Setting this flag to False replicates the behavior of scipy
version 0.7.x (returning numpy object arrays). The default setting is True, because it
allows easier round-trip load and save of MATLAB files.

verify_compressed_data_integrity : bool, optional
Whether the length of compressed sequences in the MATLAB file should be checked,
to ensure that they are not longer than we expect. It is advisable to enable this (the
default) because overlong compressed sequences in MATLAB files generally indicate
that the files have experienced some sort of corruption.

variable_names : None or sequence
If None (the default) - read all variables in file. Otherwise variable_names should be
a sequence of strings, giving names of the matlab variables to read from the file. The
reader will skip any variable with a name not in this sequence, possibly saving some
read processing.

Returns mat_dict : dict
dictionary with variable names as keys, and loaded matrices as values

Notes

v4 (Level 1.0), v6 and v7 to 7.2 matfiles are supported.

You will need an HDF5 python library to read matlab 7.3 format mat files. Because scipy does not supply one,
we do not implement the HDF5 / 7.3 interface here.

scipy.io.savemat(file_name, mdict, appendmat=True, format=‘5’, long_field_names=False,
do_compression=False, oned_as=’row’)

Save a dictionary of names and arrays into a MATLAB-style .mat file.

This saves the array objects in the given dictionary to a MATLAB- style .mat file.

Parameters file_name : str or file-like object
Name of the .mat file (.mat extension not needed if appendmat == True). Can
also pass open file_like object.

mdict : dict
Dictionary from which to save matfile variables.

appendmat : bool, optional
True (the default) to append the .mat extension to the end of the given filename, if not
already present.

format : {‘5’, ‘4’}, string, optional
‘5’ (the default) for MATLAB 5 and up (to 7.2), ‘4’ for MATLAB 4 .mat files

long_field_names : bool, optional
False (the default) - maximum field name length in a structure is 31 characters which
is the documented maximum length. True - maximum field name length in a structure
is 63 characters which works for MATLAB 7.6+

do_compression : bool, optional
Whether or not to compress matrices on write. Default is False.

oned_as : {‘row’, ‘column’}, optional
If ‘column’, write 1-D numpy arrays as column vectors. If ‘row’, write 1-D numpy
arrays as row vectors.

408 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

See also:

mio4.MatFile4Writer, mio5.MatFile5Writer

scipy.io.whosmat(file_name, appendmat=True, **kwargs)
List variables inside a MATLAB file

Parameters file_name : str
Name of the mat file (do not need .mat extension if appendmat==True) Can also pass
open file-like object.

appendmat : bool, optional
True to append the .mat extension to the end of the given filename, if not already
present.

byte_order : str or None, optional
None by default, implying byte order guessed from mat file. Otherwise can be one of
(‘native’, ‘=’, ‘little’, ‘<’, ‘BIG’, ‘>’).

mat_dtype : bool, optional
If True, return arrays in same dtype as would be loaded into MATLAB (instead of the
dtype with which they are saved).

squeeze_me : bool, optional
Whether to squeeze unit matrix dimensions or not.

chars_as_strings : bool, optional
Whether to convert char arrays to string arrays.

matlab_compatible : bool, optional
Returns matrices as would be loaded by MATLAB (implies squeeze_me=False,
chars_as_strings=False, mat_dtype=True, struct_as_record=True).

struct_as_record : bool, optional
Whether to load MATLAB structs as numpy record arrays, or as old-style numpy
arrays with dtype=object. Setting this flag to False replicates the behavior of scipy
version 0.7.x (returning numpy object arrays). The default setting is True, because it
allows easier round-trip load and save of MATLAB files.

Returns variables : list of tuples
A list of tuples, where each tuple holds the matrix name (a string), its shape (tuple of
ints), and its data class (a string). Possible data classes are: int8, uint8, int16, uint16,
int32, uint32, int64, uint64, single, double, cell, struct, object, char, sparse, function,
opaque, logical, unknown.

Notes

v4 (Level 1.0), v6 and v7 to 7.2 matfiles are supported.

You will need an HDF5 python library to read matlab 7.3 format mat files. Because scipy does not supply one,
we do not implement the HDF5 / 7.3 interface here.

New in version 0.12.0.

5.8.2 IDL® files

readsav(file_name[, idict, python_dict, ...]) Read an IDL .sav file

scipy.io.readsav(file_name, idict=None, python_dict=False, uncompressed_file_name=None, ver-
bose=False)

Read an IDL .sav file

Parameters file_name : str
Name of the IDL save file.

5.8. Input and output (scipy.io) 409

SciPy Reference Guide, Release 0.16.0

idict : dict, optional
Dictionary in which to insert .sav file variables

python_dict : bool, optional
By default, the object return is not a Python dictionary, but a case-insensitive dic-
tionary with item, attribute, and call access to variables. To get a standard Python
dictionary, set this option to True.

uncompressed_file_name : str, optional
This option only has an effect for .sav files written with the /compress option. If a
file name is specified, compressed .sav files are uncompressed to this file. Otherwise,
readsav will use the tempfile module to determine a temporary filename automat-
ically, and will remove the temporary file upon successfully reading it in.

verbose : bool, optional
Whether to print out information about the save file, including the records read, and
available variables.

Returns idl_dict : AttrDict or dict
If python_dict is set to False (default), this function returns a case-insensitive dictio-
nary with item, attribute, and call access to variables. If python_dict is set to True,
this function returns a Python dictionary with all variable names in lowercase. If idict
was specified, then variables are written to the dictionary specified, and the updated
dictionary is returned.

5.8.3 Matrix Market files

mminfo(source) Queries the contents of the Matrix Market file ‘filename’ to extract size and storage information.
mmread(source) Reads the contents of a Matrix Market file ‘filename’ into a matrix.
mmwrite(target, a[, comment, field, precision]) Writes the sparse or dense array a to a Matrix Market formatted file.

scipy.io.mminfo(source)
Queries the contents of the Matrix Market file ‘filename’ to extract size and storage information.

Parameters source : file
Matrix Market filename (extension .mtx) or open file object

Returns rows,cols : int
Number of matrix rows and columns

entries : int
Number of non-zero entries of a sparse matrix or rows*cols for a dense matrix

format : str
Either ‘coordinate’ or ‘array’.

field : str
Either ‘real’, ‘complex’, ‘pattern’, or ‘integer’.

symm : str
Either ‘general’, ‘symmetric’, ‘skew-symmetric’, or ‘hermitian’.

scipy.io.mmread(source)
Reads the contents of a Matrix Market file ‘filename’ into a matrix.

Parameters source : file
Matrix Market filename (extensions .mtx, .mtz.gz) or open file object.

Returns a:
Sparse or full matrix

scipy.io.mmwrite(target, a, comment=’‘, field=None, precision=None)
Writes the sparse or dense array a to a Matrix Market formatted file.

410 Chapter 5. Reference

http://docs.python.org/dev/library/tempfile.html#module-tempfile

SciPy Reference Guide, Release 0.16.0

Parameters target : file
Matrix Market filename (extension .mtx) or open file object

a : array like
Sparse or dense 2D array

comment : str, optional
comments to be prepended to the Matrix Market file

field : None or str, optional
Either ‘real’, ‘complex’, ‘pattern’, or ‘integer’.

precision : None or int, optional
Number of digits to display for real or complex values.

5.8.4 Unformatted Fortran files

FortranFile(filename[, mode, header_dtype]) A file object for unformatted sequential files from Fortran code.

class scipy.io.FortranFile(filename, mode=’r’, header_dtype=<type ‘numpy.uint32’>)
A file object for unformatted sequential files from Fortran code.

Parameters filename : file or str
Open file object or filename.

mode : {‘r’, ‘w’}, optional
Read-write mode, default is ‘r’.

header_dtype : dtype, optional
Data type of the header. Size and endiness must match the input/output file.

Notes

These files are broken up into records of unspecified types. The size of each record is given at the start (although
the size of this header is not standard) and the data is written onto disk without any formatting. Fortran compilers
supporting the BACKSPACE statement will write a second copy of the size to facilitate backwards seeking.

This class only supports files written with both sizes for the record. It also does not support the subrecords used
in Intel and gfortran compilers for records which are greater than 2GB with a 4-byte header.

An example of an unformatted sequential file in Fortran would be written as:

OPEN(1, FILE=myfilename, FORM='unformatted')

WRITE(1) myvariable

Since this is a non-standard file format, whose contents depend on the compiler and the endianness of the
machine, caution is advised. Files from gfortran 4.8.0 and gfortran 4.1.2 on x86_64 are known to work.

Consider using Fortran direct-access files or files from the newer Stream I/O, which can be easily read by
numpy.fromfile.

Examples

To create an unformatted sequential Fortran file:

>>> from scipy.io import FortranFile
>>> f = FortranFile('test.unf', 'w')
>>> f.write_record(np.array([1,2,3,4,5],dtype=np.int32))
>>> f.write_record(np.linspace(0,1,20).reshape((5,-1)))
>>> f.close()

To read this file:

5.8. Input and output (scipy.io) 411

http://docs.scipy.org/doc/numpy/reference/generated/numpy.fromfile.html#numpy.fromfile

SciPy Reference Guide, Release 0.16.0

>>> from scipy.io import FortranFile
>>> f = FortranFile('test.unf', 'r')
>>> print(f.read_ints(dtype=np.int32))
[1 2 3 4 5]
>>> print(f.read_reals(dtype=np.float).reshape((5,-1)))
[[0. 0.05263158 0.10526316 0.15789474]
[0.21052632 0.26315789 0.31578947 0.36842105]
[0.42105263 0.47368421 0.52631579 0.57894737]
[0.63157895 0.68421053 0.73684211 0.78947368]
[0.84210526 0.89473684 0.94736842 1.]]
>>> f.close()

Methods

close() Closes the file.
read_ints([dtype]) Reads a record of a given type from the file, defaulting to an integer
read_reals([dtype]) Reads a record of a given type from the file, defaulting to a floating
read_record([dtype]) Reads a record of a given type from the file.
write_record(s) Write a record (including sizes) to the file.

FortranFile.close()
Closes the file. It is unsupported to call any other methods off this object after closing it. Note that this
class supports the ‘with’ statement in modern versions of Python, to call this automatically

FortranFile.read_ints(dtype=’i4’)
Reads a record of a given type from the file, defaulting to an integer type (INTEGER*4 in Fortran)

Parameters dtype : dtype, optional
Data type specifying the size and endiness of the data.

Returns data : ndarray
A one-dimensional array object.

See also:

read_reals, read_record

FortranFile.read_reals(dtype=’f8’)
Reads a record of a given type from the file, defaulting to a floating point number (real*8 in Fortran)

Parameters dtype : dtype, optional
Data type specifying the size and endiness of the data.

Returns data : ndarray
A one-dimensional array object.

See also:

read_ints, read_record

FortranFile.read_record(dtype=None)
Reads a record of a given type from the file.

Parameters dtype : dtype, optional
Data type specifying the size and endiness of the data.

Returns data : ndarray
A one-dimensional array object.

See also:

read_reals, read_ints

412 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

If the record contains a multi-dimensional array, calling reshape or resize will restructure the array to the
correct size. Since Fortran multidimensional arrays are stored in column-major format, this may have
some non-intuitive consequences. If the variable was declared as ‘INTEGER var(5,4)’, for example, var
could be read with ‘read_record(dtype=np.integer).reshape((4,5))’ since Python uses row-major ordering
of indices.

One can transpose to obtain the indices in the same order as in Fortran.

For records that contain several variables or mixed types (as opposed to single scalar or array types), it is
possible to specify a dtype with mixed types:

>>> record = f.read_record([('a', '<f4'), ('b', '<i4')])
>>> record['a'] # access the variable 'a'
5.6

and if any of the variables are arrays, the shape can be specified as the third item in the relevant tuple:

>>> record = f.read_record([('a', '<f4'), ('b', '<i4', (3,3))])

Numpy also supports a short syntax for this kind of type:

>>> record = f.read_record('<f4,(3,3)<i4')
>>> record['f0'] # variables are called f0, f1, ...
5.6

FortranFile.write_record(s)
Write a record (including sizes) to the file.

Parameters s : array_like
The data to write.

5.8.5 Wav sound files (scipy.io.wavfile)

read(filename[, mmap]) Return the sample rate (in samples/sec) and data from a WAV file
write(filename, rate, data) Write a numpy array as a WAV file

scipy.io.wavfile.read(filename, mmap=False)
Return the sample rate (in samples/sec) and data from a WAV file

Parameters filename : string or open file handle
Input wav file.

mmap : bool, optional
Whether to read data as memory mapped. Only to be used on real files (Default: False)
New in version 0.12.0.

Returns rate : int
Sample rate of wav file

data : numpy array
Data read from wav file

Notes

•The file can be an open file or a filename.

•The returned sample rate is a Python integer.

•The data is returned as a numpy array with a data-type determined from the file.

5.8. Input and output (scipy.io) 413

SciPy Reference Guide, Release 0.16.0

•This function cannot read wav files with 24 bit data.

scipy.io.wavfile.write(filename, rate, data)
Write a numpy array as a WAV file

Parameters filename : string or open file handle
Output wav file

rate : int
The sample rate (in samples/sec).

data : ndarray
A 1-D or 2-D numpy array of either integer or float data-type.

Notes

•The file can be an open file or a filename.

•Writes a simple uncompressed WAV file.

•The bits-per-sample will be determined by the data-type.

•To write multiple-channels, use a 2-D array of shape (Nsamples, Nchannels).

5.8.6 Arff files (scipy.io.arff)

loadarff(f) Read an arff file.

scipy.io.arff.loadarff(f)
Read an arff file.

The data is returned as a record array, which can be accessed much like a dictionary of numpy arrays. For
example, if one of the attributes is called ‘pressure’, then its first 10 data points can be accessed from the data
record array like so: data[’pressure’][0:10]

Parameters f : file-like or str
File-like object to read from, or filename to open.

Returns data : record array
The data of the arff file, accessible by attribute names.

meta : MetaData
Contains information about the arff file such as name and type of attributes, the rela-
tion (name of the dataset), etc...

Raises ParseArffError
This is raised if the given file is not ARFF-formatted.

NotImplementedError
The ARFF file has an attribute which is not supported yet.

Notes

This function should be able to read most arff files. Not implemented functionality include:

•date type attributes

•string type attributes

It can read files with numeric and nominal attributes. It cannot read files with sparse data ({} in the file).
However, this function can read files with missing data (? in the file), representing the data points as NaNs.

414 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

5.8.7 Netcdf (scipy.io.netcdf)

netcdf_file(filename[, mode, mmap, version]) A file object for NetCDF data.
netcdf_variable(data, typecode, size, shape, ...) A data object for the netcdf module.

class scipy.io.netcdf.netcdf_file(filename, mode=’r’, mmap=None, version=1)
A file object for NetCDF data.

A netcdf_file object has two standard attributes: dimensions and variables. The values of both are dic-
tionaries, mapping dimension names to their associated lengths and variable names to variables, respectively.
Application programs should never modify these dictionaries.

All other attributes correspond to global attributes defined in the NetCDF file. Global file attributes are created
by assigning to an attribute of the netcdf_file object.

Parameters filename : string or file-like
string -> filename

mode : {‘r’, ‘w’, ‘a’}, optional
read-write-append mode, default is ‘r’

mmap : None or bool, optional
Whether to mmap filename when reading. Default is True when filename is a file
name, False when filename is a file-like object. Note that when mmap is in use, data
arrays returned refer directly to the mmapped data on disk, and the file cannot be
closed as long as references to it exist.

version : {1, 2}, optional
version of netcdf to read / write, where 1 means Classic format and 2 means 64-bit
offset format. Default is 1. See here for more info.

Notes

The major advantage of this module over other modules is that it doesn’t require the code to be linked to the
NetCDF libraries. This module is derived from pupynere.

NetCDF files are a self-describing binary data format. The file contains metadata that describes the dimensions
and variables in the file. More details about NetCDF files can be found here. There are three main sections to a
NetCDF data structure:

1.Dimensions

2.Variables

3.Attributes

The dimensions section records the name and length of each dimension used by the variables. The variables
would then indicate which dimensions it uses and any attributes such as data units, along with containing the
data values for the variable. It is good practice to include a variable that is the same name as a dimension to
provide the values for that axes. Lastly, the attributes section would contain additional information such as the
name of the file creator or the instrument used to collect the data.

When writing data to a NetCDF file, there is often the need to indicate the ‘record dimension’. A record
dimension is the unbounded dimension for a variable. For example, a temperature variable may have dimensions
of latitude, longitude and time. If one wants to add more temperature data to the NetCDF file as time progresses,
then the temperature variable should have the time dimension flagged as the record dimension.

In addition, the NetCDF file header contains the position of the data in the file, so access can be done in an
efficient manner without loading unnecessary data into memory. It uses the mmap module to create Numpy
arrays mapped to the data on disk, for the same purpose.

5.8. Input and output (scipy.io) 415

http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/Which-Format.html
https://bitbucket.org/robertodealmeida/pupynere/
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf.html

SciPy Reference Guide, Release 0.16.0

Note that when netcdf_file is used to open a file with mmap=True (default for read-only), arrays returned
by it refer to data directly on the disk. The file should not be closed, and cannot be cleanly closed when asked,
if such arrays are alive. You may want to copy data arrays obtained from mmapped Netcdf file if they are to be
processed after the file is closed, see the example below.

Examples

To create a NetCDF file:

>>> from scipy.io import netcdf
>>> f = netcdf.netcdf_file('simple.nc', 'w')
>>> f.history = 'Created for a test'
>>> f.createDimension('time', 10)
>>> time = f.createVariable('time', 'i', ('time',))
>>> time[:] = np.arange(10)
>>> time.units = 'days since 2008-01-01'
>>> f.close()

Note the assignment of range(10) to time[:]. Exposing the slice of the time variable allows for the data
to be set in the object, rather than letting range(10) overwrite the time variable.

To read the NetCDF file we just created:

>>> from scipy.io import netcdf
>>> f = netcdf.netcdf_file('simple.nc', 'r')
>>> print(f.history)
Created for a test
>>> time = f.variables['time']
>>> print(time.units)
days since 2008-01-01
>>> print(time.shape)
(10,)
>>> print(time[-1])
9

NetCDF files, when opened read-only, return arrays that refer directly to memory-mapped data on disk:

>>> data = time[:]
>>> data.base.base
<mmap.mmap object at 0x7fe753763180>

If the data is to be processed after the file is closed, it needs to be copied to main memory:

>>> data = time[:].copy()
>>> f.close()
>>> data.mean()

A NetCDF file can also be used as context manager:

>>> from scipy.io import netcdf
>>> with netcdf.netcdf_file('simple.nc', 'r') as f:
... print(f.history)
Created for a test

Methods

close() Closes the NetCDF file.
createDimension(name, length) Adds a dimension to the Dimension section of the NetCDF data structure.
createVariable(name, type, dimensions) Create an empty variable for the netcdf_file object, specifying its data type and the dimensions it uses.

Continued on next page

416 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.65 – continued from previous page
flush() Perform a sync-to-disk flush if the netcdf_file object is in write mode.
sync() Perform a sync-to-disk flush if the netcdf_file object is in write mode.

netcdf_file.close()
Closes the NetCDF file.

netcdf_file.createDimension(name, length)
Adds a dimension to the Dimension section of the NetCDF data structure.

Note that this function merely adds a new dimension that the variables can reference. The values for
the dimension, if desired, should be added as a variable using createVariable, referring to this
dimension.

Parameters name : str
Name of the dimension (Eg, ‘lat’ or ‘time’).

length : int
Length of the dimension.

See also:

createVariable

netcdf_file.createVariable(name, type, dimensions)
Create an empty variable for the netcdf_file object, specifying its data type and the dimensions it
uses.

Parameters name : str
Name of the new variable.

type : dtype or str
Data type of the variable.

dimensions : sequence of str
List of the dimension names used by the variable, in the desired order.

Returns variable : netcdf_variable
The newly created netcdf_variable object. This object has also been added
to the netcdf_file object as well.

See also:

createDimension

Notes

Any dimensions to be used by the variable should already exist in the NetCDF data structure or should be
created by createDimension prior to creating the NetCDF variable.

netcdf_file.flush()
Perform a sync-to-disk flush if the netcdf_file object is in write mode.

See also:

sync Identical function

netcdf_file.sync()
Perform a sync-to-disk flush if the netcdf_file object is in write mode.

See also:

sync Identical function

5.8. Input and output (scipy.io) 417

SciPy Reference Guide, Release 0.16.0

class scipy.io.netcdf.netcdf_variable(data, typecode, size, shape, dimensions, at-
tributes=None)

A data object for the netcdf module.

netcdf_variable objects are constructed by calling the method netcdf_file.createVariable on
the netcdf_file object. netcdf_variable objects behave much like array objects defined in numpy,
except that their data resides in a file. Data is read by indexing and written by assigning to an indexed sub-
set; the entire array can be accessed by the index [:] or (for scalars) by using the methods getValue and
assignValue. netcdf_variable objects also have attribute shapewith the same meaning as for arrays,
but the shape cannot be modified. There is another read-only attribute dimensions, whose value is the tuple of
dimension names.

All other attributes correspond to variable attributes defined in the NetCDF file. Variable attributes are created
by assigning to an attribute of the netcdf_variable object.

Parameters data : array_like
The data array that holds the values for the variable. Typically, this is initialized as
empty, but with the proper shape.

typecode : dtype character code
Desired data-type for the data array.

size : int
Desired element size for the data array.

shape : sequence of ints
The shape of the array. This should match the lengths of the variable’s dimensions.

dimensions : sequence of strings
The names of the dimensions used by the variable. Must be in the same order of the
dimension lengths given by shape.

attributes : dict, optional
Attribute values (any type) keyed by string names. These attributes become attributes
for the netcdf_variable object.

See also:

isrec, shape

Attributes

dimensions (list of str) List of names of dimensions used by the variable object.
isrec, shape Properties

Methods

assignValue(value) Assign a scalar value to a netcdf_variable of length one.
getValue() Retrieve a scalar value from a netcdf_variable of length one.
itemsize() Return the itemsize of the variable.
typecode() Return the typecode of the variable.

netcdf_variable.assignValue(value)
Assign a scalar value to a netcdf_variable of length one.

Parameters value : scalar
Scalar value (of compatible type) to assign to a length-one netcdf variable. This
value will be written to file.

Raises ValueError
If the input is not a scalar, or if the destination is not a length-one netcdf variable.

netcdf_variable.getValue()

418 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Retrieve a scalar value from a netcdf_variable of length one.

Raises ValueError
If the netcdf variable is an array of length greater than one, this exception will be
raised.

netcdf_variable.itemsize()
Return the itemsize of the variable.

Returns itemsize : int
The element size of the variable (eg, 8 for float64).

netcdf_variable.typecode()
Return the typecode of the variable.

Returns typecode : char
The character typecode of the variable (eg, ‘i’ for int).

5.9 Linear algebra (scipy.linalg)

Linear algebra functions.

See also:

numpy.linalg for more linear algebra functions. Note that although scipy.linalg imports most of them,
identically named functions from scipy.linalg may offer more or slightly differing functionality.

5.9.1 Basics

inv(a[, overwrite_a, check_finite]) Compute the inverse of a matrix.
solve(a, b[, sym_pos, lower, overwrite_a, ...]) Solve the equation a x = b for x.
solve_banded(l_and_u, ab, b[, overwrite_ab, ...]) Solve the equation a x = b for x, assuming a is banded matrix.
solveh_banded(ab, b[, overwrite_ab, ...]) Solve equation a x = b.
solve_circulant(c, b[, singular, tol, ...]) Solve C x = b for x, where C is a circulant matrix.
solve_triangular(a, b[, trans, lower, ...]) Solve the equation a x = b for x, assuming a is a triangular matrix.
solve_toeplitz(c_or_cr, b[, check_finite]) Solve a Toeplitz system using Levinson Recursion
det(a[, overwrite_a, check_finite]) Compute the determinant of a matrix
norm(a[, ord]) Matrix or vector norm.
lstsq(a, b[, cond, overwrite_a, ...]) Compute least-squares solution to equation Ax = b.
pinv(a[, cond, rcond, return_rank, check_finite]) Compute the (Moore-Penrose) pseudo-inverse of a matrix.
pinv2(a[, cond, rcond, return_rank, ...]) Compute the (Moore-Penrose) pseudo-inverse of a matrix.
pinvh(a[, cond, rcond, lower, return_rank, ...]) Compute the (Moore-Penrose) pseudo-inverse of a Hermitian matrix.
kron(a, b) Kronecker product.
tril(m[, k]) Make a copy of a matrix with elements above the k-th diagonal zeroed.
triu(m[, k]) Make a copy of a matrix with elements below the k-th diagonal zeroed.
orthogonal_procrustes(A, B[, check_finite]) Compute the matrix solution of the orthogonal Procrustes problem.

scipy.linalg.inv(a, overwrite_a=False, check_finite=True)
Compute the inverse of a matrix.

Parameters a : array_like
Square matrix to be inverted.

overwrite_a : bool, optional

5.9. Linear algebra (scipy.linalg) 419

SciPy Reference Guide, Release 0.16.0

Discard data in a (may improve performance). Default is False.
check_finite : bool, optional

Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns ainv : ndarray
Inverse of the matrix a.

Raises LinAlgError :
If a is singular.

ValueError :
If a is not square, or not 2-dimensional.

Examples

>>> from scipy import linalg
>>> a = np.array([[1., 2.], [3., 4.]])
>>> linalg.inv(a)
array([[-2. , 1.],

[1.5, -0.5]])
>>> np.dot(a, linalg.inv(a))
array([[1., 0.],

[0., 1.]])

scipy.linalg.solve(a, b, sym_pos=False, lower=False, overwrite_a=False, overwrite_b=False, de-
bug=False, check_finite=True)

Solve the equation a x = b for x.

Parameters a : (M, M) array_like
A square matrix.

b : (M,) or (M, N) array_like
Right-hand side matrix in a x = b.

sym_pos : bool, optional
Assume a is symmetric and positive definite.

lower : bool, optional
Use only data contained in the lower triangle of a, if sym_pos is true. Default is to use
upper triangle.

overwrite_a : bool, optional
Allow overwriting data in a (may enhance performance). Default is False.

overwrite_b : bool, optional
Allow overwriting data in b (may enhance performance). Default is False.

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns x : (M,) or (M, N) ndarray
Solution to the system a x = b. Shape of the return matches the shape of b.

Raises LinAlgError
If a is singular.

Examples

Given a and b, solve for x:

>>> a = np.array([[3, 2, 0], [1, -1, 0], [0, 5, 1]])
>>> b = np.array([2, 4, -1])
>>> from scipy import linalg
>>> x = linalg.solve(a, b)

420 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> x
array([2., -2., 9.])
>>> np.dot(a, x) == b
array([True, True, True], dtype=bool)

scipy.linalg.solve_banded(l_and_u, ab, b, overwrite_ab=False, overwrite_b=False, debug=False,
check_finite=True)

Solve the equation a x = b for x, assuming a is banded matrix.

The matrix a is stored in ab using the matrix diagonal ordered form:

ab[u + i - j, j] == a[i,j]

Example of ab (shape of a is (6,6), u =1, l =2):

* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *

Parameters (l, u) : (integer, integer)
Number of non-zero lower and upper diagonals

ab : (l + u + 1, M) array_like
Banded matrix

b : (M,) or (M, K) array_like
Right-hand side

overwrite_ab : bool, optional
Discard data in ab (may enhance performance)

overwrite_b : bool, optional
Discard data in b (may enhance performance)

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns x : (M,) or (M, K) ndarray
The solution to the system a x = b. Returned shape depends on the shape of b.

scipy.linalg.solveh_banded(ab, b, overwrite_ab=False, overwrite_b=False, lower=False,
check_finite=True)

Solve equation a x = b. a is Hermitian positive-definite banded matrix.

The matrix a is stored in ab either in lower diagonal or upper diagonal ordered form:

ab[u + i - j, j] == a[i,j] (if upper form; i <= j) ab[i - j, j] == a[i,j] (if lower form; i >= j)

Example of ab (shape of a is (6, 6), u =2):

upper form:

* * a02 a13 a24 a35

* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55

lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *

Cells marked with * are not used.

5.9. Linear algebra (scipy.linalg) 421

SciPy Reference Guide, Release 0.16.0

Parameters ab : (u + 1, M) array_like
Banded matrix

b : (M,) or (M, K) array_like
Right-hand side

overwrite_ab : bool, optional
Discard data in ab (may enhance performance)

overwrite_b : bool, optional
Discard data in b (may enhance performance)

lower : bool, optional
Is the matrix in the lower form. (Default is upper form)

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns x : (M,) or (M, K) ndarray
The solution to the system a x = b. Shape of return matches shape of b.

scipy.linalg.solve_circulant(c, b, singular=’raise’, tol=None, caxis=-1, baxis=0, outaxis=0)
Solve C x = b for x, where C is a circulant matrix.

C is the circulant matrix associated with the vector c.

The system is solved by doing division in Fourier space. The calculation is:

x = ifft(fft(b) / fft(c))

where fft and ifft are the fast Fourier transform and its inverse, respectively. For a large vector c, this is much
faster than solving the system with the full circulant matrix.

Parameters c : array_like
The coefficients of the circulant matrix.

b : array_like
Right-hand side matrix in a x = b.

singular : str, optional
This argument controls how a near singular circulant matrix is handled. If singular
is “raise” and the circulant matrix is near singular, a LinAlgError is raised. If
singular is “lstsq”, the least squares solution is returned. Default is “raise”.

tol : float, optional
If any eigenvalue of the circulant matrix has an absolute value that is less than or equal
to tol, the matrix is considered to be near singular. If not given, tol is set to:

tol = abs_eigs.max() * abs_eigs.size * np.finfo(np.float64).eps

where abs_eigs is the array of absolute values of the eigenvalues of the circulant ma-
trix.

caxis : int
When c has dimension greater than 1, it is viewed as a collection of circulant vectors.
In this case, caxis is the axis of c that holds the vectors of circulant coefficients.

baxis : int
When b has dimension greater than 1, it is viewed as a collection of vectors. In this
case, baxis is the axis of b that holds the right-hand side vectors.

outaxis : int
When c or b are multidimensional, the value returned by solve_circulant is
multidimensional. In this case, outaxis is the axis of the result that holds the solution
vectors.

Returns x : ndarray
Solution to the system C x = b.

Raises LinAlgError

422 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

If the circulant matrix associated with c is near singular.

See also:

circulant

Notes

For a one-dimensional vector c with length m, and an array b with shape (m, ...),

solve_circulant(c, b)

returns the same result as

solve(circulant(c), b)

where solve and circulant are from scipy.linalg.

New in version 0.16.0.

Examples

>>> from scipy.linalg import solve_circulant, solve, circulant, lstsq

>>> c = np.array([2, 2, 4])
>>> b = np.array([1, 2, 3])
>>> solve_circulant(c, b)
array([0.75, -0.25, 0.25])

Compare that result to solving the system with scipy.linalg.solve:

>>> solve(circulant(c), b)
array([0.75, -0.25, 0.25])

A singular example:

>>> c = np.array([1, 1, 0, 0])
>>> b = np.array([1, 2, 3, 4])

Calling solve_circulant(c, b) will raise a LinAlgError. For the least square solution, use the
option singular=’lstsq’:

>>> solve_circulant(c, b, singular='lstsq')
array([0.25, 1.25, 2.25, 1.25])

Compare to scipy.linalg.lstsq:

>>> x, resid, rnk, s = lstsq(circulant(c), b)
>>> x
array([0.25, 1.25, 2.25, 1.25])

A broadcasting example:

Suppose we have the vectors of two circulant matrices stored in an array with shape (2, 5), and three b vectors
stored in an array with shape (3, 5). For example,

>>> c = np.array([[1.5, 2, 3, 0, 0], [1, 1, 4, 3, 2]])
>>> b = np.arange(15).reshape(-1, 5)

We want to solve all combinations of circulant matrices and b vectors, with the result stored in an array with
shape (2, 3, 5). When we disregard the axes of c and b that hold the vectors of coefficients, the shapes of the
collections are (2,) and (3,), respectively, which are not compatible for broadcasting. To have a broadcast result
with shape (2, 3), we add a trivial dimension to c: c[:, np.newaxis, :] has shape (2, 1, 5). The last

5.9. Linear algebra (scipy.linalg) 423

SciPy Reference Guide, Release 0.16.0

dimension holds the coefficients of the circulant matrices, so when we call solve_circulant, we can use
the default caxis=-1. The coefficients of the b vectors are in the last dimension of the array b, so we use
baxis=-1. If we use the default outaxis, the result will have shape (5, 2, 3), so we’ll use outaxis=-1 to put
the solution vectors in the last dimension.

>>> x = solve_circulant(c[:, np.newaxis, :], b, baxis=-1, outaxis=-1)
>>> x.shape
(2, 3, 5)
>>> np.set_printoptions(precision=3) # For compact output of numbers.
>>> x
array([[[-0.118, 0.22 , 1.277, -0.142, 0.302],

[0.651, 0.989, 2.046, 0.627, 1.072],
[1.42 , 1.758, 2.816, 1.396, 1.841]],

[[0.401, 0.304, 0.694, -0.867, 0.377],
[0.856, 0.758, 1.149, -0.412, 0.831],
[1.31 , 1.213, 1.603, 0.042, 1.286]]])

Check by solving one pair of c and b vectors (cf. x[1, 1, :]):

>>> solve_circulant(c[1], b[1, :])
array([0.856, 0.758, 1.149, -0.412, 0.831])

scipy.linalg.solve_triangular(a, b, trans=0, lower=False, unit_diagonal=False, over-
write_b=False, debug=False, check_finite=True)

Solve the equation a x = b for x, assuming a is a triangular matrix.

Parameters a : (M, M) array_like
A triangular matrix

b : (M,) or (M, N) array_like
Right-hand side matrix in a x = b

lower : bool, optional
Use only data contained in the lower triangle of a. Default is to use upper triangle.

trans : {0, 1, 2, ‘N’, ‘T’, ‘C’}, optional
Type of system to solve:

trans system
0 or ‘N’ a x = b
1 or ‘T’ a^T x = b
2 or ‘C’ a^H x = b

unit_diagonal : bool, optional
If True, diagonal elements of a are assumed to be 1 and will not be referenced.

overwrite_b : bool, optional
Allow overwriting data in b (may enhance performance)

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns x : (M,) or (M, N) ndarray
Solution to the system a x = b. Shape of return matches b.

Raises LinAlgError
If a is singular

Notes

New in version 0.9.0.

scipy.linalg.solve_toeplitz(c_or_cr, b, check_finite=True)
Solve a Toeplitz system using Levinson Recursion

424 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The Toeplitz matrix has constant diagonals, with c as its first column and r as its first row. If r is not given, r
== conjugate(c) is assumed.

Parameters c_or_cr : array_like or tuple of (array_like, array_like)
The vector c, or a tuple of arrays (c, r). Whatever the actual shape of c, it will be
converted to a 1-D array. If not supplied, r = conjugate(c) is assumed; in this
case, if c[0] is real, the Toeplitz matrix is Hermitian. r[0] is ignored; the first row of
the Toeplitz matrix is [c[0], r[1:]]. Whatever the actual shape of r, it will be
converted to a 1-D array.

b : (M,) or (M, K) array_like
Right-hand side in T x = b.

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (result entirely NaNs) if the inputs
do contain infinities or NaNs.

Returns x : (M,) or (M, K) ndarray
The solution to the system T x = b. Shape of return matches shape of b.

Notes

The solution is computed using Levinson-Durbin recursion, which is faster than generic least-squares methods,
but can be less numerically stable.

scipy.linalg.det(a, overwrite_a=False, check_finite=True)
Compute the determinant of a matrix

The determinant of a square matrix is a value derived arithmetically from the coefficients of the matrix.

The determinant for a 3x3 matrix, for example, is computed as follows:

a b c
d e f = A
g h i

det(A) = a*e*i + b*f*g + c*d*h - c*e*g - b*d*i - a*f*h

Parameters a : (M, M) array_like
A square matrix.

overwrite_a : bool, optional
Allow overwriting data in a (may enhance performance).

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns det : float or complex
Determinant of a.

Notes

The determinant is computed via LU factorization, LAPACK routine z/dgetrf.

Examples

>>> from scipy import linalg
>>> a = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> linalg.det(a)
0.0
>>> a = np.array([[0,2,3], [4,5,6], [7,8,9]])

5.9. Linear algebra (scipy.linalg) 425

SciPy Reference Guide, Release 0.16.0

>>> linalg.det(a)
3.0

scipy.linalg.norm(a, ord=None)
Matrix or vector norm.

This function is able to return one of seven different matrix norms, or one of an infinite number of vector norms
(described below), depending on the value of the ord parameter.

Parameters a : (M,) or (M, N) array_like
Input array.

ord : {non-zero int, inf, -inf, ‘fro’}, optional
Order of the norm (see table under Notes). inf means numpy’s inf object.

Returns norm : float
Norm of the matrix or vector.

Notes

For values of ord <= 0, the result is, strictly speaking, not a mathematical ‘norm’, but it may still be useful
for various numerical purposes.

The following norms can be calculated:

ord norm for matrices norm for vectors
None Frobenius norm 2-norm
‘fro’ Frobenius norm –
inf max(sum(abs(x), axis=1)) max(abs(x))
-inf min(sum(abs(x), axis=1)) min(abs(x))
0 – sum(x != 0)
1 max(sum(abs(x), axis=0)) as below
-1 min(sum(abs(x), axis=0)) as below
2 2-norm (largest sing. value) as below
-2 smallest singular value as below
other – sum(abs(x)**ord)**(1./ord)

The Frobenius norm is given by [R86]:

||𝐴||𝐹 = [
∑︀

𝑖,𝑗 𝑎𝑏𝑠(𝑎𝑖,𝑗)
2]1/2

References

[R86]

Examples

>>> from scipy.linalg import norm
>>> a = np.arange(9) - 4
>>> a
array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
>>> b = a.reshape((3, 3))
>>> b
array([[-4, -3, -2],

[-1, 0, 1],
[2, 3, 4]])

>>> norm(a)
7.745966692414834
>>> norm(b)
7.745966692414834

426 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> norm(b, 'fro')
7.745966692414834
>>> norm(a, np.inf)
4
>>> norm(b, np.inf)
9
>>> norm(a, -np.inf)
0
>>> norm(b, -np.inf)
2

>>> norm(a, 1)
20
>>> norm(b, 1)
7
>>> norm(a, -1)
-4.6566128774142013e-010
>>> norm(b, -1)
6
>>> norm(a, 2)
7.745966692414834
>>> norm(b, 2)
7.3484692283495345

>>> norm(a, -2)
nan
>>> norm(b, -2)
1.8570331885190563e-016
>>> norm(a, 3)
5.8480354764257312
>>> norm(a, -3)
nan

scipy.linalg.lstsq(a, b, cond=None, overwrite_a=False, overwrite_b=False, check_finite=True)
Compute least-squares solution to equation Ax = b.

Compute a vector x such that the 2-norm |b - A x| is minimized.

Parameters a : (M, N) array_like
Left hand side matrix (2-D array).

b : (M,) or (M, K) array_like
Right hand side matrix or vector (1-D or 2-D array).

cond : float, optional
Cutoff for ‘small’ singular values; used to determine effective rank of a. Singular
values smaller than rcond * largest_singular_value are considered zero.

overwrite_a : bool, optional
Discard data in a (may enhance performance). Default is False.

overwrite_b : bool, optional
Discard data in b (may enhance performance). Default is False.

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns x : (N,) or (N, K) ndarray
Least-squares solution. Return shape matches shape of b.

residues : () or (1,) or (K,) ndarray

5.9. Linear algebra (scipy.linalg) 427

SciPy Reference Guide, Release 0.16.0

Sums of residues, squared 2-norm for each column in b - a x. If rank of matrix a
is < N or > M this is an empty array. If b was 1-D, this is an (1,) shape array, otherwise
the shape is (K,).

rank : int
Effective rank of matrix a.

s : (min(M,N),) ndarray
Singular values of a. The condition number of a is abs(s[0]/s[-1]).

Raises LinAlgError :
If computation does not converge.

See also:

optimize.nnls
linear least squares with non-negativity constraint

scipy.linalg.pinv(a, cond=None, rcond=None, return_rank=False, check_finite=True)
Compute the (Moore-Penrose) pseudo-inverse of a matrix.

Calculate a generalized inverse of a matrix using a least-squares solver.

Parameters a : (M, N) array_like
Matrix to be pseudo-inverted.

cond, rcond : float, optional
Cutoff for ‘small’ singular values in the least-squares solver. Singular values smaller
than rcond * largest_singular_value are considered zero.

return_rank : bool, optional
if True, return the effective rank of the matrix

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns B : (N, M) ndarray
The pseudo-inverse of matrix a.

rank : int
The effective rank of the matrix. Returned if return_rank == True

Raises LinAlgError
If computation does not converge.

Examples

>>> from scipy import linalg
>>> a = np.random.randn(9, 6)
>>> B = linalg.pinv(a)
>>> np.allclose(a, np.dot(a, np.dot(B, a)))
True
>>> np.allclose(B, np.dot(B, np.dot(a, B)))
True

scipy.linalg.pinv2(a, cond=None, rcond=None, return_rank=False, check_finite=True)
Compute the (Moore-Penrose) pseudo-inverse of a matrix.

Calculate a generalized inverse of a matrix using its singular-value decomposition and including all ‘large’
singular values.

Parameters a : (M, N) array_like
Matrix to be pseudo-inverted.

cond, rcond : float or None

428 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Cutoff for ‘small’ singular values. Singular values smaller than
rcond*largest_singular_value are considered zero. If None or -1,
suitable machine precision is used.

return_rank : bool, optional
if True, return the effective rank of the matrix

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns B : (N, M) ndarray
The pseudo-inverse of matrix a.

rank : int
The effective rank of the matrix. Returned if return_rank == True

Raises LinAlgError
If SVD computation does not converge.

Examples

>>> from scipy import linalg
>>> a = np.random.randn(9, 6)
>>> B = linalg.pinv2(a)
>>> np.allclose(a, np.dot(a, np.dot(B, a)))
True
>>> np.allclose(B, np.dot(B, np.dot(a, B)))
True

scipy.linalg.pinvh(a, cond=None, rcond=None, lower=True, return_rank=False, check_finite=True)
Compute the (Moore-Penrose) pseudo-inverse of a Hermitian matrix.

Calculate a generalized inverse of a Hermitian or real symmetric matrix using its eigenvalue decomposition and
including all eigenvalues with ‘large’ absolute value.

Parameters a : (N, N) array_like
Real symmetric or complex hermetian matrix to be pseudo-inverted

cond, rcond : float or None
Cutoff for ‘small’ eigenvalues. Singular values smaller than rcond *
largest_eigenvalue are considered zero.
If None or -1, suitable machine precision is used.

lower : bool, optional
Whether the pertinent array data is taken from the lower or upper triangle of a. (De-
fault: lower)

return_rank : bool, optional
if True, return the effective rank of the matrix

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns B : (N, N) ndarray
The pseudo-inverse of matrix a.

rank : int
The effective rank of the matrix. Returned if return_rank == True

Raises LinAlgError
If eigenvalue does not converge

5.9. Linear algebra (scipy.linalg) 429

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.linalg import pinvh
>>> a = np.random.randn(9, 6)
>>> a = np.dot(a, a.T)
>>> B = pinvh(a)
>>> np.allclose(a, np.dot(a, np.dot(B, a)))
True
>>> np.allclose(B, np.dot(B, np.dot(a, B)))
True

scipy.linalg.kron(a, b)
Kronecker product.

The result is the block matrix:

a[0,0]*b a[0,1]*b ... a[0,-1]*b
a[1,0]*b a[1,1]*b ... a[1,-1]*b
...
a[-1,0]*b a[-1,1]*b ... a[-1,-1]*b

Parameters a : (M, N) ndarray
Input array

b : (P, Q) ndarray
Input array

Returns A : (M*P, N*Q) ndarray
Kronecker product of a and b.

Examples

>>> from numpy import array
>>> from scipy.linalg import kron
>>> kron(array([[1,2],[3,4]]), array([[1,1,1]]))
array([[1, 1, 1, 2, 2, 2],

[3, 3, 3, 4, 4, 4]])

scipy.linalg.tril(m, k=0)
Make a copy of a matrix with elements above the k-th diagonal zeroed.

Parameters m : array_like
Matrix whose elements to return

k : int, optional
Diagonal above which to zero elements. k == 0 is the main diagonal, k < 0 subdiagonal
and k > 0 superdiagonal.

Returns tril : ndarray
Return is the same shape and type as m.

Examples

>>> from scipy.linalg import tril
>>> tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[0, 0, 0],

[4, 0, 0],
[7, 8, 0],
[10, 11, 12]])

scipy.linalg.triu(m, k=0)
Make a copy of a matrix with elements below the k-th diagonal zeroed.

430 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters m : array_like
Matrix whose elements to return

k : int, optional
Diagonal below which to zero elements. k == 0 is the main diagonal, k < 0 subdiagonal
and k > 0 superdiagonal.

Returns triu : ndarray
Return matrix with zeroed elements below the k-th diagonal and has same shape and
type as m.

Examples

>>> from scipy.linalg import triu
>>> triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[1, 2, 3],

[4, 5, 6],
[0, 8, 9],
[0, 0, 12]])

scipy.linalg.orthogonal_procrustes(A, B, check_finite=True)
Compute the matrix solution of the orthogonal Procrustes problem.

Given matrices A and B of equal shape, find an orthogonal matrix R that most closely maps A to B [R87]. Note
that unlike higher level Procrustes analyses of spatial data, this function only uses orthogonal transformations
like rotations and reflections, and it does not use scaling or translation.

Parameters A : (M, N) array_like
Matrix to be mapped.

B : (M, N) array_like
Target matrix.

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns R : (N, N) ndarray
The matrix solution of the orthogonal Procrustes problem. Minimizes the Frobenius
norm of dot(A, R) - B, subject to dot(R.T, R) == I.

scale : float
Sum of the singular values of dot(A.T, B).

Raises ValueError
If the input arrays are incompatibly shaped. This may also be raised if matrix A or B
contains an inf or nan and check_finite is True, or if the matrix product AB contains
an inf or nan.

Notes

New in version 0.15.0.

References

[R87]

5.9.2 Eigenvalue Problems

eig(a[, b, left, right, overwrite_a, ...]) Solve an ordinary or generalized eigenvalue problem of a square matrix.
Continued on next page

5.9. Linear algebra (scipy.linalg) 431

SciPy Reference Guide, Release 0.16.0

Table 5.68 – continued from previous page
eigvals(a[, b, overwrite_a, check_finite]) Compute eigenvalues from an ordinary or generalized eigenvalue problem.
eigh(a[, b, lower, eigvals_only, ...]) Solve an ordinary or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.
eigvalsh(a[, b, lower, overwrite_a, ...]) Solve an ordinary or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.
eig_banded(a_band[, lower, eigvals_only, ...]) Solve real symmetric or complex hermitian band matrix eigenvalue problem.
eigvals_banded(a_band[, lower, ...]) Solve real symmetric or complex hermitian band matrix eigenvalue problem.

scipy.linalg.eig(a, b=None, left=False, right=True, overwrite_a=False, overwrite_b=False,
check_finite=True)

Solve an ordinary or generalized eigenvalue problem of a square matrix.

Find eigenvalues w and right or left eigenvectors of a general matrix:

a vr[:,i] = w[i] b vr[:,i]
a.H vl[:,i] = w[i].conj() b.H vl[:,i]

where .H is the Hermitian conjugation.

Parameters a : (M, M) array_like
A complex or real matrix whose eigenvalues and eigenvectors will be computed.

b : (M, M) array_like, optional
Right-hand side matrix in a generalized eigenvalue problem. Default is None, identity
matrix is assumed.

left : bool, optional
Whether to calculate and return left eigenvectors. Default is False.

right : bool, optional
Whether to calculate and return right eigenvectors. Default is True.

overwrite_a : bool, optional
Whether to overwrite a; may improve performance. Default is False.

overwrite_b : bool, optional
Whether to overwrite b; may improve performance. Default is False.

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns w : (M,) double or complex ndarray
The eigenvalues, each repeated according to its multiplicity.

vl : (M, M) double or complex ndarray
The normalized left eigenvector corresponding to the eigenvalue w[i] is the column
vl[:,i]. Only returned if left=True.

vr : (M, M) double or complex ndarray
The normalized right eigenvector corresponding to the eigenvalue w[i] is the column
vr[:,i]. Only returned if right=True.

Raises LinAlgError
If eigenvalue computation does not converge.

See also:

eigh Eigenvalues and right eigenvectors for symmetric/Hermitian arrays.

scipy.linalg.eigvals(a, b=None, overwrite_a=False, check_finite=True)
Compute eigenvalues from an ordinary or generalized eigenvalue problem.

Find eigenvalues of a general matrix:

432 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

a vr[:,i] = w[i] b vr[:,i]

Parameters a : (M, M) array_like
A complex or real matrix whose eigenvalues and eigenvectors will be computed.

b : (M, M) array_like, optional
Right-hand side matrix in a generalized eigenvalue problem. If omitted, identity ma-
trix is assumed.

overwrite_a : bool, optional
Whether to overwrite data in a (may improve performance)

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns w : (M,) double or complex ndarray
The eigenvalues, each repeated according to its multiplicity, but not in any specific
order.

Raises LinAlgError
If eigenvalue computation does not converge

See also:

eigvalsh eigenvalues of symmetric or Hermitian arrays,

eig eigenvalues and right eigenvectors of general arrays.

eigh eigenvalues and eigenvectors of symmetric/Hermitian arrays.

scipy.linalg.eigh(a, b=None, lower=True, eigvals_only=False, overwrite_a=False, over-
write_b=False, turbo=True, eigvals=None, type=1, check_finite=True)

Solve an ordinary or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.

Find eigenvalues w and optionally eigenvectors v of matrix a, where b is positive definite:

a v[:,i] = w[i] b v[:,i]
v[i,:].conj() a v[:,i] = w[i]
v[i,:].conj() b v[:,i] = 1

Parameters a : (M, M) array_like
A complex Hermitian or real symmetric matrix whose eigenvalues and eigenvectors
will be computed.

b : (M, M) array_like, optional
A complex Hermitian or real symmetric definite positive matrix in. If omitted, identity
matrix is assumed.

lower : bool, optional
Whether the pertinent array data is taken from the lower or upper triangle of a. (De-
fault: lower)

eigvals_only : bool, optional
Whether to calculate only eigenvalues and no eigenvectors. (Default: both are calcu-
lated)

turbo : bool, optional
Use divide and conquer algorithm (faster but expensive in memory, only for general-
ized eigenvalue problem and if eigvals=None)

eigvals : tuple (lo, hi), optional

5.9. Linear algebra (scipy.linalg) 433

SciPy Reference Guide, Release 0.16.0

Indexes of the smallest and largest (in ascending order) eigenvalues and corresponding
eigenvectors to be returned: 0 <= lo <= hi <= M-1. If omitted, all eigenvalues and
eigenvectors are returned.

type : int, optional
Specifies the problem type to be solved:

type = 1: a v[:,i] = w[i] b v[:,i]
type = 2: a b v[:,i] = w[i] v[:,i]
type = 3: b a v[:,i] = w[i] v[:,i]

overwrite_a : bool, optional
Whether to overwrite data in a (may improve performance)

overwrite_b : bool, optional
Whether to overwrite data in b (may improve performance)

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns w : (N,) float ndarray
The N (1<=N<=M) selected eigenvalues, in ascending order, each repeated according
to its multiplicity.

v : (M, N) complex ndarray
(if eigvals_only == False)
The normalized selected eigenvector corresponding to the eigenvalue w[i] is the col-
umn v[:,i].
Normalization:

type 1 and 3: v.conj() a v = w
type 2: inv(v).conj() a inv(v) = w
type = 1 or 2: v.conj() b v = I
type = 3: v.conj() inv(b) v = I

Raises LinAlgError :
If eigenvalue computation does not converge, an error occurred, or b matrix is not
definite positive. Note that if input matrices are not symmetric or hermitian, no error
is reported but results will be wrong.

See also:

eig eigenvalues and right eigenvectors for non-symmetric arrays

scipy.linalg.eigvalsh(a, b=None, lower=True, overwrite_a=False, overwrite_b=False, turbo=True,
eigvals=None, type=1, check_finite=True)

Solve an ordinary or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.

Find eigenvalues w of matrix a, where b is positive definite:

a v[:,i] = w[i] b v[:,i]
v[i,:].conj() a v[:,i] = w[i]
v[i,:].conj() b v[:,i] = 1

Parameters a : (M, M) array_like
A complex Hermitian or real symmetric matrix whose eigenvalues and eigenvectors
will be computed.

b : (M, M) array_like, optional
A complex Hermitian or real symmetric definite positive matrix in. If omitted, identity
matrix is assumed.

lower : bool, optional

434 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Whether the pertinent array data is taken from the lower or upper triangle of a. (De-
fault: lower)

turbo : bool, optional
Use divide and conquer algorithm (faster but expensive in memory, only for general-
ized eigenvalue problem and if eigvals=None)

eigvals : tuple (lo, hi), optional
Indexes of the smallest and largest (in ascending order) eigenvalues and corresponding
eigenvectors to be returned: 0 <= lo < hi <= M-1. If omitted, all eigenvalues and
eigenvectors are returned.

type : int, optional
Specifies the problem type to be solved:

type = 1: a v[:,i] = w[i] b v[:,i]
type = 2: a b v[:,i] = w[i] v[:,i]
type = 3: b a v[:,i] = w[i] v[:,i]

overwrite_a : bool, optional
Whether to overwrite data in a (may improve performance)

overwrite_b : bool, optional
Whether to overwrite data in b (may improve performance)

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns w : (N,) float ndarray
The N (1<=N<=M) selected eigenvalues, in ascending order, each repeated according
to its multiplicity.

Raises LinAlgError :
If eigenvalue computation does not converge, an error occurred, or b matrix is not
definite positive. Note that if input matrices are not symmetric or hermitian, no error
is reported but results will be wrong.

See also:

eigvals eigenvalues of general arrays

eigh eigenvalues and right eigenvectors for symmetric/Hermitian arrays

eig eigenvalues and right eigenvectors for non-symmetric arrays

scipy.linalg.eig_banded(a_band, lower=False, eigvals_only=False, overwrite_a_band=False, se-
lect=’a’, select_range=None, max_ev=0, check_finite=True)

Solve real symmetric or complex hermitian band matrix eigenvalue problem.

Find eigenvalues w and optionally right eigenvectors v of a:

a v[:,i] = w[i] v[:,i]
v.H v = identity

The matrix a is stored in a_band either in lower diagonal or upper diagonal ordered form:

a_band[u + i - j, j] == a[i,j] (if upper form; i <= j) a_band[i - j, j] == a[i,j] (if lower form; i >= j)

where u is the number of bands above the diagonal.

Example of a_band (shape of a is (6,6), u=2):

upper form:

* * a02 a13 a24 a35

* a01 a12 a23 a34 a45

5.9. Linear algebra (scipy.linalg) 435

SciPy Reference Guide, Release 0.16.0

a00 a11 a22 a33 a44 a55

lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *

Cells marked with * are not used.

Parameters a_band : (u+1, M) array_like
The bands of the M by M matrix a.

lower : bool, optional
Is the matrix in the lower form. (Default is upper form)

eigvals_only : bool, optional
Compute only the eigenvalues and no eigenvectors. (Default: calculate also eigenvec-
tors)

overwrite_a_band : bool, optional
Discard data in a_band (may enhance performance)

select : {‘a’, ‘v’, ‘i’}, optional
Which eigenvalues to calculate

select calculated
‘a’ All eigenvalues
‘v’ Eigenvalues in the interval (min, max]
‘i’ Eigenvalues with indices min <= i <= max

select_range : (min, max), optional
Range of selected eigenvalues

max_ev : int, optional
For select==’v’, maximum number of eigenvalues expected. For other values of select,
has no meaning.
In doubt, leave this parameter untouched.

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns w : (M,) ndarray
The eigenvalues, in ascending order, each repeated according to its multiplicity.

v : (M, M) float or complex ndarray
The normalized eigenvector corresponding to the eigenvalue w[i] is the column v[:,i].

Raises LinAlgError if eigenvalue computation does not converge

scipy.linalg.eigvals_banded(a_band, lower=False, overwrite_a_band=False, select=’a’, se-
lect_range=None, check_finite=True)

Solve real symmetric or complex hermitian band matrix eigenvalue problem.

Find eigenvalues w of a:

a v[:,i] = w[i] v[:,i]
v.H v = identity

The matrix a is stored in a_band either in lower diagonal or upper diagonal ordered form:

a_band[u + i - j, j] == a[i,j] (if upper form; i <= j) a_band[i - j, j] == a[i,j] (if lower form; i >= j)

where u is the number of bands above the diagonal.

Example of a_band (shape of a is (6,6), u=2):

436 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

upper form:

* * a02 a13 a24 a35

* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55

lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *

Cells marked with * are not used.

Parameters a_band : (u+1, M) array_like
The bands of the M by M matrix a.

lower : bool, optional
Is the matrix in the lower form. (Default is upper form)

overwrite_a_band : bool, optional
Discard data in a_band (may enhance performance)

select : {‘a’, ‘v’, ‘i’}, optional
Which eigenvalues to calculate

select calculated
‘a’ All eigenvalues
‘v’ Eigenvalues in the interval (min, max]
‘i’ Eigenvalues with indices min <= i <= max

select_range : (min, max), optional
Range of selected eigenvalues

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns w : (M,) ndarray
The eigenvalues, in ascending order, each repeated according to its multiplicity.

Raises LinAlgError if eigenvalue computation does not converge

See also:

eig_bandedeigenvalues and right eigenvectors for symmetric/Hermitian band matrices

eigvals eigenvalues of general arrays

eigh eigenvalues and right eigenvectors for symmetric/Hermitian arrays

eig eigenvalues and right eigenvectors for non-symmetric arrays

5.9.3 Decompositions

lu(a[, permute_l, overwrite_a, check_finite]) Compute pivoted LU decomposition of a matrix.
lu_factor(a[, overwrite_a, check_finite]) Compute pivoted LU decomposition of a matrix.
lu_solve(lu_and_piv, b[, trans, ...]) Solve an equation system, a x = b, given the LU factorization of a
svd(a[, full_matrices, compute_uv, ...]) Singular Value Decomposition.
svdvals(a[, overwrite_a, check_finite]) Compute singular values of a matrix.
diagsvd(s, M, N) Construct the sigma matrix in SVD from singular values and size M, N.
orth(A) Construct an orthonormal basis for the range of A using SVD
cholesky(a[, lower, overwrite_a, check_finite]) Compute the Cholesky decomposition of a matrix.

Continued on next page

5.9. Linear algebra (scipy.linalg) 437

SciPy Reference Guide, Release 0.16.0

Table 5.69 – continued from previous page
cholesky_banded(ab[, overwrite_ab, lower, ...]) Cholesky decompose a banded Hermitian positive-definite matrix
cho_factor(a[, lower, overwrite_a, check_finite]) Compute the Cholesky decomposition of a matrix, to use in cho_solve
cho_solve(c_and_lower, b[, overwrite_b, ...]) Solve the linear equations A x = b, given the Cholesky factorization of A.
cho_solve_banded(cb_and_lower, b[, ...]) Solve the linear equations A x = b, given the Cholesky factorization of A.
polar(a[, side]) Compute the polar decomposition.
qr(a[, overwrite_a, lwork, mode, pivoting, ...]) Compute QR decomposition of a matrix.
qr_multiply(a, c[, mode, pivoting, ...]) Calculate the QR decomposition and multiply Q with a matrix.
qr_update(Q, R, u, v[, overwrite_qruv, ...]) Rank-k QR update
qr_delete(Q, R, k[, p, which, overwrite_qr, ...]) QR downdate on row or column deletions
qr_insert(Q, R, u, k[, which, rcond, ...]) QR update on row or column insertions
rq(a[, overwrite_a, lwork, mode, check_finite]) Compute RQ decomposition of a matrix.
qz(A, B[, output, lwork, sort, overwrite_a, ...]) QZ decomposition for generalized eigenvalues of a pair of matrices.
schur(a[, output, lwork, overwrite_a, sort, ...]) Compute Schur decomposition of a matrix.
rsf2csf(T, Z[, check_finite]) Convert real Schur form to complex Schur form.
hessenberg(a[, calc_q, overwrite_a, ...]) Compute Hessenberg form of a matrix.

scipy.linalg.lu(a, permute_l=False, overwrite_a=False, check_finite=True)
Compute pivoted LU decomposition of a matrix.

The decomposition is:

A = P L U

where P is a permutation matrix, L lower triangular with unit diagonal elements, and U upper triangular.

Parameters a : (M, N) array_like
Array to decompose

permute_l : bool, optional
Perform the multiplication P*L (Default: do not permute)

overwrite_a : bool, optional
Whether to overwrite data in a (may improve performance)

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns (If permute_l == False)
p : (M, M) ndarray

Permutation matrix
l : (M, K) ndarray

Lower triangular or trapezoidal matrix with unit diagonal. K = min(M, N)
u : (K, N) ndarray

Upper triangular or trapezoidal matrix
(If permute_l == True)
pl : (M, K) ndarray

Permuted L matrix. K = min(M, N)
u : (K, N) ndarray

Upper triangular or trapezoidal matrix

Notes

This is a LU factorization routine written for Scipy.

scipy.linalg.lu_factor(a, overwrite_a=False, check_finite=True)
Compute pivoted LU decomposition of a matrix.

438 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The decomposition is:

A = P L U

where P is a permutation matrix, L lower triangular with unit diagonal elements, and U upper triangular.

Parameters a : (M, M) array_like
Matrix to decompose

overwrite_a : bool, optional
Whether to overwrite data in A (may increase performance)

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns lu : (N, N) ndarray
Matrix containing U in its upper triangle, and L in its lower triangle. The unit diagonal
elements of L are not stored.

piv : (N,) ndarray
Pivot indices representing the permutation matrix P: row i of matrix was interchanged
with row piv[i].

See also:

lu_solve solve an equation system using the LU factorization of a matrix

Notes

This is a wrapper to the *GETRF routines from LAPACK.

scipy.linalg.lu_solve(lu_and_piv, b, trans=0, overwrite_b=False, check_finite=True)
Solve an equation system, a x = b, given the LU factorization of a

Parameters (lu, piv)
Factorization of the coefficient matrix a, as given by lu_factor

b : array
Right-hand side

trans : {0, 1, 2}, optional
Type of system to solve:

trans system
0 a x = b
1 a^T x = b
2 a^H x = b

overwrite_b : bool, optional
Whether to overwrite data in b (may increase performance)

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns x : array
Solution to the system

See also:

lu_factor LU factorize a matrix

5.9. Linear algebra (scipy.linalg) 439

SciPy Reference Guide, Release 0.16.0

scipy.linalg.svd(a, full_matrices=True, compute_uv=True, overwrite_a=False, check_finite=True)
Singular Value Decomposition.

Factorizes the matrix a into two unitary matrices U and Vh, and a 1-D array s of singular values (real, non-
negative) such that a == U*S*Vh, where S is a suitably shaped matrix of zeros with main diagonal s.

Parameters a : (M, N) array_like
Matrix to decompose.

full_matrices : bool, optional
If True, U and Vh are of shape (M,M), (N,N). If False, the shapes are (M,K) and
(K,N), where K = min(M,N).

compute_uv : bool, optional
Whether to compute also U and Vh in addition to s. Default is True.

overwrite_a : bool, optional
Whether to overwrite a; may improve performance. Default is False.

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns U : ndarray
Unitary matrix having left singular vectors as columns. Of shape (M,M) or (M,K),
depending on full_matrices.

s : ndarray
The singular values, sorted in non-increasing order. Of shape (K,), with K =
min(M, N).

Vh : ndarray
Unitary matrix having right singular vectors as rows. Of shape (N,N) or (K,N)
depending on full_matrices.

For compute_uv = False, only s is returned.
Raises LinAlgError

If SVD computation does not converge.

See also:

svdvals Compute singular values of a matrix.

diagsvd Construct the Sigma matrix, given the vector s.

Examples

>>> from scipy import linalg
>>> a = np.random.randn(9, 6) + 1.j*np.random.randn(9, 6)
>>> U, s, Vh = linalg.svd(a)
>>> U.shape, Vh.shape, s.shape
((9, 9), (6, 6), (6,))

>>> U, s, Vh = linalg.svd(a, full_matrices=False)
>>> U.shape, Vh.shape, s.shape
((9, 6), (6, 6), (6,))
>>> S = linalg.diagsvd(s, 6, 6)
>>> np.allclose(a, np.dot(U, np.dot(S, Vh)))
True

>>> s2 = linalg.svd(a, compute_uv=False)
>>> np.allclose(s, s2)
True

440 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.linalg.svdvals(a, overwrite_a=False, check_finite=True)
Compute singular values of a matrix.

Parameters a : (M, N) array_like
Matrix to decompose.

overwrite_a : bool, optional
Whether to overwrite a; may improve performance. Default is False.

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns s : (min(M, N),) ndarray
The singular values, sorted in decreasing order.

Raises LinAlgError
If SVD computation does not converge.

See also:

svd Compute the full singular value decomposition of a matrix.

diagsvd Construct the Sigma matrix, given the vector s.

Notes

svdvals(a) only differs from svd(a, compute_uv=False) by its handling of the edge case of empty
a, where it returns an empty sequence:

>>> a = np.empty((0, 2))
>>> from scipy.linalg import svdvals
>>> svdvals(a)
array([], dtype=float64)

scipy.linalg.diagsvd(s, M, N)
Construct the sigma matrix in SVD from singular values and size M, N.

Parameters s : (M,) or (N,) array_like
Singular values

M : int
Size of the matrix whose singular values are s.

N : int
Size of the matrix whose singular values are s.

Returns S : (M, N) ndarray
The S-matrix in the singular value decomposition

scipy.linalg.orth(A)
Construct an orthonormal basis for the range of A using SVD

Parameters A : (M, N) array_like
Input array

Returns Q : (M, K) ndarray
Orthonormal basis for the range of A. K = effective rank of A, as determined by
automatic cutoff

See also:

svd Singular value decomposition of a matrix

5.9. Linear algebra (scipy.linalg) 441

SciPy Reference Guide, Release 0.16.0

scipy.linalg.cholesky(a, lower=False, overwrite_a=False, check_finite=True)
Compute the Cholesky decomposition of a matrix.

Returns the Cholesky decomposition, 𝐴 = 𝐿𝐿* or 𝐴 = 𝑈*𝑈 of a Hermitian positive-definite matrix A.

Parameters a : (M, M) array_like
Matrix to be decomposed

lower : bool, optional
Whether to compute the upper or lower triangular Cholesky factorization. Default is
upper-triangular.

overwrite_a : bool, optional
Whether to overwrite data in a (may improve performance).

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns c : (M, M) ndarray
Upper- or lower-triangular Cholesky factor of a.

Raises LinAlgError : if decomposition fails.

Examples

>>> from scipy import array, linalg, dot
>>> a = array([[1,-2j],[2j,5]])
>>> L = linalg.cholesky(a, lower=True)
>>> L
array([[1.+0.j, 0.+0.j],

[0.+2.j, 1.+0.j]])
>>> dot(L, L.T.conj())
array([[1.+0.j, 0.-2.j],

[0.+2.j, 5.+0.j]])

scipy.linalg.cholesky_banded(ab, overwrite_ab=False, lower=False, check_finite=True)
Cholesky decompose a banded Hermitian positive-definite matrix

The matrix a is stored in ab either in lower diagonal or upper diagonal ordered form:

ab[u + i - j, j] == a[i,j] (if upper form; i <= j)
ab[i - j, j] == a[i,j] (if lower form; i >= j)

Example of ab (shape of a is (6,6), u=2):

upper form:

* * a02 a13 a24 a35

* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55

lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *

Parameters ab : (u + 1, M) array_like
Banded matrix

overwrite_ab : bool, optional
Discard data in ab (may enhance performance)

lower : bool, optional
Is the matrix in the lower form. (Default is upper form)

442 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns c : (u + 1, M) ndarray
Cholesky factorization of a, in the same banded format as ab

scipy.linalg.cho_factor(a, lower=False, overwrite_a=False, check_finite=True)
Compute the Cholesky decomposition of a matrix, to use in cho_solve

Returns a matrix containing the Cholesky decomposition, A = L L* or A = U* U of a Hermitian positive-
definite matrix a. The return value can be directly used as the first parameter to cho_solve.

Warning: The returned matrix also contains random data in the entries not used by the Cholesky decom-
position. If you need to zero these entries, use the function cholesky instead.

Parameters a : (M, M) array_like
Matrix to be decomposed

lower : bool, optional
Whether to compute the upper or lower triangular Cholesky factorization (Default:
upper-triangular)

overwrite_a : bool, optional
Whether to overwrite data in a (may improve performance)

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns c : (M, M) ndarray
Matrix whose upper or lower triangle contains the Cholesky factor of a. Other parts
of the matrix contain random data.

lower : bool
Flag indicating whether the factor is in the lower or upper triangle

Raises LinAlgError
Raised if decomposition fails.

See also:

cho_solve Solve a linear set equations using the Cholesky factorization of a matrix.

scipy.linalg.cho_solve(c_and_lower, b, overwrite_b=False, check_finite=True)
Solve the linear equations A x = b, given the Cholesky factorization of A.

Parameters (c, lower) : tuple, (array, bool)
Cholesky factorization of a, as given by cho_factor

b : array
Right-hand side

overwrite_b : bool, optional
Whether to overwrite data in b (may improve performance)

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns x : array
The solution to the system A x = b

See also:

5.9. Linear algebra (scipy.linalg) 443

SciPy Reference Guide, Release 0.16.0

cho_factorCholesky factorization of a matrix

scipy.linalg.cho_solve_banded(cb_and_lower, b, overwrite_b=False, check_finite=True)
Solve the linear equations A x = b, given the Cholesky factorization of A.

Parameters (cb, lower) : tuple, (array, bool)
cb is the Cholesky factorization of A, as given by cholesky_banded. lower must be
the same value that was given to cholesky_banded.

b : array
Right-hand side

overwrite_b : bool, optional
If True, the function will overwrite the values in b.

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns x : array
The solution to the system A x = b

See also:

cholesky_banded
Cholesky factorization of a banded matrix

Notes

New in version 0.8.0.

scipy.linalg.polar(a, side=’right’)
Compute the polar decomposition.

Returns the factors of the polar decomposition [R88] u and p such that a = up (if side is “right”) or a = pu
(if side is “left”), where p is positive semidefinite. Depending on the shape of a, either the rows or columns of
u are orthonormal. When a is a square array, u is a square unitary array. When a is not square, the “canonical
polar decomposition” [R89] is computed.

Parameters a : (m, n) array_like
The array to be factored.

side : {‘left’, ‘right’}, optional
Determines whether a right or left polar decomposition is computed. If side is “right”,
then a = up. If side is “left”, then a = pu. The default is “right”.

Returns u : (m, n) ndarray
If a is square, then u is unitary. If m > n, then the columns of a are orthonormal, and
if m < n, then the rows of u are orthonormal.

p : ndarray
p is Hermitian positive semidefinite. If a is nonsingular, p is positive definite. The
shape of p is (n, n) or (m, m), depending on whether side is “right” or “left”, respec-
tively.

References

[R88], [R89]

Examples

>>> from scipy.linalg import polar
>>> a = np.array([[1, -1], [2, 4]])
>>> u, p = polar(a)

444 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> u
array([[0.85749293, -0.51449576],

[0.51449576, 0.85749293]])
>>> p
array([[1.88648444, 1.2004901],

[1.2004901 , 3.94446746]])

A non-square example, with m < n:

>>> b = np.array([[0.5, 1, 2], [1.5, 3, 4]])
>>> u, p = polar(b)
>>> u
array([[-0.21196618, -0.42393237, 0.88054056],

[0.39378971, 0.78757942, 0.4739708]])
>>> p
array([[0.48470147, 0.96940295, 1.15122648],

[0.96940295, 1.9388059 , 2.30245295],
[1.15122648, 2.30245295, 3.65696431]])

>>> u.dot(p) # Verify the decomposition.
array([[0.5, 1. , 2.],

[1.5, 3. , 4.]])
>>> u.dot(u.T) # The rows of u are orthonormal.
array([[1.00000000e+00, -2.07353665e-17],

[-2.07353665e-17, 1.00000000e+00]])

Another non-square example, with m > n:

>>> c = b.T
>>> u, p = polar(c)
>>> u
array([[-0.21196618, 0.39378971],

[-0.42393237, 0.78757942],
[0.88054056, 0.4739708]])

>>> p
array([[1.23116567, 1.93241587],

[1.93241587, 4.84930602]])
>>> u.dot(p) # Verify the decomposition.
array([[0.5, 1.5],

[1. , 3.],
[2. , 4.]])

>>> u.T.dot(u) # The columns of u are orthonormal.
array([[1.00000000e+00, -1.26363763e-16],

[-1.26363763e-16, 1.00000000e+00]])

scipy.linalg.qr(a, overwrite_a=False, lwork=None, mode=’full’, pivoting=False, check_finite=True)
Compute QR decomposition of a matrix.

Calculate the decomposition A = Q R where Q is unitary/orthogonal and R upper triangular.

Parameters a : (M, N) array_like
Matrix to be decomposed

overwrite_a : bool, optional
Whether data in a is overwritten (may improve performance)

lwork : int, optional
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size is computed.

mode : {‘full’, ‘r’, ‘economic’, ‘raw’}, optional
Determines what information is to be returned: either both Q and R (‘full’, default),
only R (‘r’) or both Q and R but computed in economy-size (‘economic’, see Notes).

5.9. Linear algebra (scipy.linalg) 445

SciPy Reference Guide, Release 0.16.0

The final option ‘raw’ (added in Scipy 0.11) makes the function return two matrices
(Q, TAU) in the internal format used by LAPACK.

pivoting : bool, optional
Whether or not factorization should include pivoting for rank-revealing qr decompo-
sition. If pivoting, compute the decomposition A P = Q R as above, but where P is
chosen such that the diagonal of R is non-increasing.

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns Q : float or complex ndarray
Of shape (M, M), or (M, K) for mode=’economic’. Not returned if mode=’r’.

R : float or complex ndarray
Of shape (M, N), or (K, N) for mode=’economic’. K = min(M, N).

P : int ndarray
Of shape (N,) for pivoting=True. Not returned if pivoting=False.

Raises LinAlgError
Raised if decomposition fails

Notes

This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, zungqr, dgeqp3, and zgeqp3.

If mode=economic, the shapes of Q and R are (M, K) and (K, N) instead of (M,M) and (M,N), with
K=min(M,N).

Examples

>>> from scipy import random, linalg, dot, diag, all, allclose
>>> a = random.randn(9, 6)

>>> q, r = linalg.qr(a)
>>> allclose(a, np.dot(q, r))
True
>>> q.shape, r.shape
((9, 9), (9, 6))

>>> r2 = linalg.qr(a, mode='r')
>>> allclose(r, r2)
True

>>> q3, r3 = linalg.qr(a, mode='economic')
>>> q3.shape, r3.shape
((9, 6), (6, 6))

>>> q4, r4, p4 = linalg.qr(a, pivoting=True)
>>> d = abs(diag(r4))
>>> all(d[1:] <= d[:-1])
True
>>> allclose(a[:, p4], dot(q4, r4))
True
>>> q4.shape, r4.shape, p4.shape
((9, 9), (9, 6), (6,))

>>> q5, r5, p5 = linalg.qr(a, mode='economic', pivoting=True)
>>> q5.shape, r5.shape, p5.shape
((9, 6), (6, 6), (6,))

446 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.linalg.qr_multiply(a, c, mode=’right’, pivoting=False, conjugate=False, overwrite_a=False,
overwrite_c=False)

Calculate the QR decomposition and multiply Q with a matrix.

Calculate the decomposition A = Q R where Q is unitary/orthogonal and R upper triangular. Multiply Q with
a vector or a matrix c.

Parameters a : array_like, shape (M, N)
Matrix to be decomposed

c : array_like, one- or two-dimensional
calculate the product of c and q, depending on the mode:

mode : {‘left’, ‘right’}, optional
dot(Q, c) is returned if mode is ‘left’, dot(c, Q) is returned if mode is
‘right’. The shape of c must be appropriate for the matrix multiplications, if mode is
‘left’, min(a.shape) == c.shape[0], if mode is ‘right’, a.shape[0] ==
c.shape[1].

pivoting : bool, optional
Whether or not factorization should include pivoting for rank-revealing qr decompo-
sition, see the documentation of qr.

conjugate : bool, optional
Whether Q should be complex-conjugated. This might be faster than explicit conju-
gation.

overwrite_a : bool, optional
Whether data in a is overwritten (may improve performance)

overwrite_c : bool, optional
Whether data in c is overwritten (may improve performance). If this is used, c must
be big enough to keep the result, i.e. c.shape[0] = a.shape[0] if mode is ‘left’.

Returns CQ : float or complex ndarray
the product of Q and c, as defined in mode

R : float or complex ndarray
Of shape (K, N), K = min(M, N).

P : ndarray of ints
Of shape (N,) for pivoting=True. Not returned if pivoting=False.

Raises LinAlgError
Raised if decomposition fails

Notes

This is an interface to the LAPACK routines dgeqrf, zgeqrf, dormqr, zunmqr, dgeqp3, and zgeqp3.

New in version 0.11.0.

scipy.linalg.qr_update(Q, R, u, v, overwrite_qruv=False, check_finite=True)
Rank-k QR update

If A = Q R is the QR factorization of A, return the QR factorization of A + u v**T for real A or A + u
v**H for complex A.

Parameters Q : (M, M) or (M, N) array_like
Unitary/orthogonal matrix from the qr decomposition of A.

R : (M, N) or (N, N) array_like
Upper triangular matrix from the qr decomposition of A.

u : (M,) or (M, k) array_like
Left update vector

v : (N,) or (N, k) array_like
Right update vector

overwrite_qruv : bool, optional

5.9. Linear algebra (scipy.linalg) 447

SciPy Reference Guide, Release 0.16.0

If True, consume Q, R, u, and v, if possible, while performing the update, otherwise
make copies as necessary. Defaults to False.

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs. Default is True.

Returns Q1 : ndarray
Updated unitary/orthogonal factor

R1 : ndarray
Updated upper triangular factor

See also:

qr, qr_multiply, qr_delete, qr_insert

Notes

This routine does not guarantee that the diagonal entries of R1 are real or positive.

New in version 0.16.0.

References

[R96], [R97], [R98]

Examples

>>> from scipy import linalg
>>> a = np.array([[3., -2., -2.],
... [6., -9., -3.],
... [-3., 10., 1.],
... [6., -7., 4.],
... [7., 8., -6.]])
>>> q, r = linalg.qr(a)

Given this q, r decomposition, perform a rank 1 update.

>>> u = np.array([7., -2., 4., 3., 5.])
>>> v = np.array([1., 3., -5.])
>>> q_up, r_up = linalg.qr_update(q, r, u, v, False)
>>> q_up
array([[0.54073807, 0.18645997, 0.81707661, -0.02136616, 0.06902409],

[0.21629523, -0.63257324, 0.06567893, 0.34125904, -0.65749222],
[0.05407381, 0.64757787, -0.12781284, -0.20031219, -0.72198188],
[0.48666426, -0.30466718, -0.27487277, -0.77079214, 0.0256951],
[0.64888568, 0.23001 , -0.4859845 , 0.49883891, 0.20253783]])

>>> r_up
array([[18.49324201, 24.11691794, -44.98940746],

[0. , 31.95894662, -27.40998201],
[0. , 0. , -9.25451794],
[0. , 0. , 0.],
[0. , 0. , 0.]])

The update is equivalent, but faster than the following.

>>> a_up = a + np.outer(u, v)
>>> q_direct, r_direct = linalg.qr(a_up)

Check that we have equivalent results:

448 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> np.allclose(np.dot(q_up, r_up), a_up)
True

And the updated Q is still unitary:

>>> np.allclose(np.dot(q_up.T, q_up), np.eye(5))
True

Updating economic (reduced, thin) decompositions is also possible:

>>> qe, re = linalg.qr(a, mode='economic')
>>> qe_up, re_up = linalg.qr_update(qe, re, u, v, False)
>>> qe_up
array([[0.54073807, 0.18645997, 0.81707661],

[0.21629523, -0.63257324, 0.06567893],
[0.05407381, 0.64757787, -0.12781284],
[0.48666426, -0.30466718, -0.27487277],
[0.64888568, 0.23001 , -0.4859845]])

>>> re_up
array([[18.49324201, 24.11691794, -44.98940746],

[0. , 31.95894662, -27.40998201],
[0. , 0. , -9.25451794]])

>>> np.allclose(np.dot(qe_up, re_up), a_up)
True
>>> np.allclose(np.dot(qe_up.T, qe_up), np.eye(3))
True

Similarly to the above, perform a rank 2 update.

>>> u2 = np.array([[7., -1,],
... [-2., 4.],
... [4., 2.],
... [3., -6.],
... [5., 3.]])
>>> v2 = np.array([[1., 2.],
... [3., 4.],
... [-5., 2]])
>>> q_up2, r_up2 = linalg.qr_update(q, r, u, v, False)
>>> q_up2
array([[-0.33626508, -0.03477253, 0.61956287, -0.64352987, -0.29618884],

[-0.50439762, 0.58319694, -0.43010077, -0.33395279, 0.33008064],
[-0.21016568, -0.63123106, 0.0582249 , -0.13675572, 0.73163206],
[0.12609941, 0.49694436, 0.64590024, 0.31191919, 0.47187344],
[-0.75659643, -0.11517748, 0.10284903, 0.5986227 , -0.21299983]])

>>> r_up2
array([[-23.79075451, -41.1084062 , 24.71548348],

[0. , -33.83931057, 11.02226551],
[0. , 0. , -48.91476811],
[-0. , 0. , 0.],
[0. , 0. , 0.]])

This update is also a valid qr decomposition of A + U V**T.

>>> a_up2 = a + np.dot(u2, v2.T)
>>> np.allclose(a_up2, np.dot(q_up2, r_up2))
True
>>> np.allclose(np.dot(q_up2.T, q_up2), np.eye(5))
True

scipy.linalg.qr_delete(Q, R, k, p=1, which=’row’, overwrite_qr=False, check_finite=True)

5.9. Linear algebra (scipy.linalg) 449

SciPy Reference Guide, Release 0.16.0

QR downdate on row or column deletions

If A = Q R is the QR factorization of A, return the QR factorization of A where p rows or columns have been
removed starting at row or column k.

Parameters Q : (M, M) or (M, N) array_like
Unitary/orthogonal matrix from QR decomposition.

R : (M, N) or (N, N) array_like
Upper triangular matrix from QR decomposition.

k : int
Index of the first row or column to delete.

p : int, optional
Number of rows or columns to delete, defaults to 1.

which: {‘row’, ‘col’}, optional
Determines if rows or columns will be deleted, defaults to ‘row’

overwrite_qr : bool, optional
If True, consume Q and R, overwriting their contents with their downdated versions,
and returning approriately sized views. Defaults to False.

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs. Default is True.

Returns Q1 : ndarray
Updated unitary/orthogonal factor

R1 : ndarray
Updated upper triangular factor

See also:

qr, qr_multiply, qr_insert, qr_update

Notes

This routine does not guarantee that the diagonal entries of R1 are positive.

New in version 0.16.0.

References

[R90], [R91], [R92]

Examples

>>> from scipy import linalg
>>> a = np.array([[3., -2., -2.],
... [6., -9., -3.],
... [-3., 10., 1.],
... [6., -7., 4.],
... [7., 8., -6.]])
>>> q, r = linalg.qr(a)

Given this QR decomposition, update q and r when 2 rows are removed.

>>> q1, r1 = linalg.qr_delete(q, r, 2, 2, 'row', False)
>>> q1
array([[0.30942637, 0.15347579, 0.93845645],

[0.61885275, 0.71680171, -0.32127338],
[0.72199487, -0.68017681, -0.12681844]])

>>> r1
array([[9.69535971, -0.4125685 , -6.80738023],

450 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

[0. , -12.19958144, 1.62370412],
[0. , 0. , -0.15218213]])

The update is equivalent, but faster than the following.

>>> a1 = np.delete(a, slice(2,4), 0)
>>> a1
array([[3., -2., -2.],

[6., -9., -3.],
[7., 8., -6.]])

>>> q_direct, r_direct = linalg.qr(a1)

Check that we have equivalent results:

>>> np.dot(q1, r1)
array([[3., -2., -2.],

[6., -9., -3.],
[7., 8., -6.]])

>>> np.allclose(np.dot(q1, r1), a1)
True

And the updated Q is still unitary:

>>> np.allclose(np.dot(q1.T, q1), np.eye(3))
True

scipy.linalg.qr_insert(Q, R, u, k, which=’row’, rcond=None, overwrite_qru=False,
check_finite=True)

QR update on row or column insertions

If A = Q R is the QR factorization of A, return the QR factorization of A where rows or columns have been
inserted starting at row or column k.

Parameters Q : (M, M) array_like
Unitary/orthogonal matrix from the QR decomposition of A.

R : (M, N) array_like
Upper triangular matrix from the QR decomposition of A.

u : (N,), (p, N), (M,), or (M, p) array_like
Rows or columns to insert

k : int
Index before which u is to be inserted.

which: {‘row’, ‘col’}, optional
Determines if rows or columns will be inserted, defaults to ‘row’

rcond : float
Lower bound on the reciprocal condition number of Q augmented with u/||u||
Only used when updating economic mode (thin, (M,N) (N,N)) decompositions. If
None, machine precision is used. Defaults to None.

overwrite_qru : bool, optional
If True, consume Q, R, and u, if possible, while performing the update, otherwise
make copies as necessary. Defaults to False.

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs. Default is True.

Returns Q1 : ndarray
Updated unitary/orthogonal factor

R1 : ndarray
Updated upper triangular factor

5.9. Linear algebra (scipy.linalg) 451

SciPy Reference Guide, Release 0.16.0

Raises LinAlgError :
If updating a (M,N) (N,N) factorization and the reciprocal condition number of Q
augmented with u/||u|| is smaller than rcond.

See also:

qr, qr_multiply, qr_delete, qr_update

Notes

This routine does not guarantee that the diagonal entries of R1 are positive.

New in version 0.16.0.

References

[R93], [R94], [R95]

Examples

>>> from scipy import linalg
>>> a = np.array([[3., -2., -2.],
... [6., -7., 4.],
... [7., 8., -6.]])
>>> q, r = linalg.qr(a)

Given this QR decomposition, update q and r when 2 rows are inserted.

>>> u = np.array([[6., -9., -3.],
... [-3., 10., 1.]])
>>> q1, r1 = linalg.qr_insert(q, r, u, 2, 'row')
>>> q1
array([[-0.25445668, 0.02246245, 0.18146236, -0.72798806, 0.60979671],

[-0.50891336, 0.23226178, -0.82836478, -0.02837033, -0.00828114],
[-0.50891336, 0.35715302, 0.38937158, 0.58110733, 0.35235345],
[0.25445668, -0.52202743, -0.32165498, 0.36263239, 0.65404509],
[-0.59373225, -0.73856549, 0.16065817, -0.0063658 , -0.27595554]])

>>> r1
array([[-11.78982612, 6.44623587, 3.81685018],

[0. , -16.01393278, 3.72202865],
[0. , 0. , -6.13010256],
[0. , 0. , 0.],
[0. , 0. , 0.]])

The update is equivalent, but faster than the following.

>>> a1 = np.insert(a, 2, u, 0)
>>> a1
array([[3., -2., -2.],

[6., -7., 4.],
[6., -9., -3.],
[-3., 10., 1.],
[7., 8., -6.]])

>>> q_direct, r_direct = linalg.qr(a1)

Check that we have equivalent results:

>>> np.dot(q1, r1)
array([[3., -2., -2.],

[6., -7., 4.],
[6., -9., -3.],

452 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

[-3., 10., 1.],
[7., 8., -6.]])

>>> np.allclose(np.dot(q1, r1), a1)
True

And the updated Q is still unitary:

>>> np.allclose(np.dot(q1.T, q1), np.eye(5))
True

scipy.linalg.rq(a, overwrite_a=False, lwork=None, mode=’full’, check_finite=True)
Compute RQ decomposition of a matrix.

Calculate the decomposition A = R Q where Q is unitary/orthogonal and R upper triangular.

Parameters a : (M, N) array_like
Matrix to be decomposed

overwrite_a : bool, optional
Whether data in a is overwritten (may improve performance)

lwork : int, optional
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size is computed.

mode : {‘full’, ‘r’, ‘economic’}, optional
Determines what information is to be returned: either both Q and R (‘full’, default),
only R (‘r’) or both Q and R but computed in economy-size (‘economic’, see Notes).

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns R : float or complex ndarray
Of shape (M, N) or (M, K) for mode=’economic’. K = min(M, N).

Q : float or complex ndarray
Of shape (N, N) or (K, N) for mode=’economic’. Not returned if mode=’r’.

Raises LinAlgError
If decomposition fails.

Notes

This is an interface to the LAPACK routines sgerqf, dgerqf, cgerqf, zgerqf, sorgrq, dorgrq, cungrq and zungrq.

If mode=economic, the shapes of Q and R are (K, N) and (M, K) instead of (N,N) and (M,N), with
K=min(M,N).

Examples

>>> from scipy import linalg
>>> from numpy import random, dot, allclose
>>> a = random.randn(6, 9)
>>> r, q = linalg.rq(a)
>>> allclose(a, dot(r, q))
True
>>> r.shape, q.shape
((6, 9), (9, 9))
>>> r2 = linalg.rq(a, mode='r')
>>> allclose(r, r2)
True
>>> r3, q3 = linalg.rq(a, mode='economic')
>>> r3.shape, q3.shape
((6, 6), (6, 9))

5.9. Linear algebra (scipy.linalg) 453

SciPy Reference Guide, Release 0.16.0

scipy.linalg.qz(A, B, output=’real’, lwork=None, sort=None, overwrite_a=False, overwrite_b=False,
check_finite=True)

QZ decomposition for generalized eigenvalues of a pair of matrices.

The QZ, or generalized Schur, decomposition for a pair of N x N nonsymmetric matrices (A,B) is:

(A,B) = (Q*AA*Z', Q*BB*Z')

where AA, BB is in generalized Schur form if BB is upper-triangular with non-negative diagonal and AA is
upper-triangular, or for real QZ decomposition (output=’real’) block upper triangular with 1x1 and 2x2
blocks. In this case, the 1x1 blocks correspond to real generalized eigenvalues and 2x2 blocks are ‘standardized’
by making the corresponding elements of BB have the form:

[a 0]
[0 b]

and the pair of corresponding 2x2 blocks in AA and BB will have a complex conjugate pair of generalized
eigenvalues. If (output=’complex’) or A and B are complex matrices, Z’ denotes the conjugate-transpose
of Z. Q and Z are unitary matrices.

Parameters A : (N, N) array_like
2d array to decompose

B : (N, N) array_like
2d array to decompose

output : {‘real’, ‘complex’}, optional
Construct the real or complex QZ decomposition for real matrices. Default is ‘real’.

lwork : int, optional
Work array size. If None or -1, it is automatically computed.

sort : {None, callable, ‘lhp’, ‘rhp’, ‘iuc’, ‘ouc’}, optional
NOTE: THIS INPUT IS DISABLED FOR NOW, IT DOESN’T WORK WELL ON
WINDOWS.
Specifies whether the upper eigenvalues should be sorted. A callable may be passed
that, given a eigenvalue, returns a boolean denoting whether the eigenvalue should be
sorted to the top-left (True). For real matrix pairs, the sort function takes three real
arguments (alphar, alphai, beta). The eigenvalue x = (alphar + alphai*1j)/beta. For
complex matrix pairs or output=’complex’, the sort function takes two complex argu-
ments (alpha, beta). The eigenvalue x = (alpha/beta). Alternatively, string parameters
may be used:

•‘lhp’ Left-hand plane (x.real < 0.0)
•‘rhp’ Right-hand plane (x.real > 0.0)
•‘iuc’ Inside the unit circle (x*x.conjugate() <= 1.0)
•‘ouc’ Outside the unit circle (x*x.conjugate() > 1.0)

Defaults to None (no sorting).
overwrite_a : bool, optional

Whether to overwrite data in a (may improve performance)
overwrite_b : bool, optional

Whether to overwrite data in b (may improve performance)
check_finite : bool, optional

If true checks the elements of A and B are finite numbers. If false does no checking
and passes matrix through to underlying algorithm.

Returns AA : (N, N) ndarray
Generalized Schur form of A.

BB : (N, N) ndarray
Generalized Schur form of B.

Q : (N, N) ndarray
The left Schur vectors.

454 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Z : (N, N) ndarray
The right Schur vectors.

sdim : int, optional
If sorting was requested, a fifth return value will contain the number of eigenvalues
for which the sort condition was True.

Notes

Q is transposed versus the equivalent function in Matlab.

New in version 0.11.0.

Examples

>>> from scipy import linalg
>>> np.random.seed(1234)
>>> A = np.arange(9).reshape((3, 3))
>>> B = np.random.randn(3, 3)

>>> AA, BB, Q, Z = linalg.qz(A, B)
>>> AA
array([[-13.40928183, -4.62471562, 1.09215523],

[0. , 0. , 1.22805978],
[0. , 0. , 0.31973817]])

>>> BB
array([[0.33362547, -1.37393632, 0.02179805],

[0. , 1.68144922, 0.74683866],
[0. , 0. , 0.9258294]])

>>> Q
array([[0.14134727, -0.97562773, 0.16784365],

[0.49835904, -0.07636948, -0.86360059],
[0.85537081, 0.20571399, 0.47541828]])

>>> Z
array([[-0.24900855, -0.51772687, 0.81850696],

[-0.79813178, 0.58842606, 0.12938478],
[-0.54861681, -0.6210585 , -0.55973739]])

scipy.linalg.schur(a, output=’real’, lwork=None, overwrite_a=False, sort=None,
check_finite=True)

Compute Schur decomposition of a matrix.

The Schur decomposition is:

A = Z T Z^H

where Z is unitary and T is either upper-triangular, or for real Schur decomposition (output=’real’), quasi-upper
triangular. In the quasi-triangular form, 2x2 blocks describing complex-valued eigenvalue pairs may extrude
from the diagonal.

Parameters a : (M, M) array_like
Matrix to decompose

output : {‘real’, ‘complex’}, optional
Construct the real or complex Schur decomposition (for real matrices).

lwork : int, optional
Work array size. If None or -1, it is automatically computed.

overwrite_a : bool, optional
Whether to overwrite data in a (may improve performance).

sort : {None, callable, ‘lhp’, ‘rhp’, ‘iuc’, ‘ouc’}, optional

5.9. Linear algebra (scipy.linalg) 455

SciPy Reference Guide, Release 0.16.0

Specifies whether the upper eigenvalues should be sorted. A callable may be passed
that, given a eigenvalue, returns a boolean denoting whether the eigenvalue should be
sorted to the top-left (True). Alternatively, string parameters may be used:

'lhp' Left-hand plane (x.real < 0.0)
'rhp' Right-hand plane (x.real > 0.0)
'iuc' Inside the unit circle (x*x.conjugate() <= 1.0)
'ouc' Outside the unit circle (x*x.conjugate() > 1.0)

Defaults to None (no sorting).
check_finite : bool, optional

Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns T : (M, M) ndarray
Schur form of A. It is real-valued for the real Schur decomposition.

Z : (M, M) ndarray
An unitary Schur transformation matrix for A. It is real-valued for the real Schur
decomposition.

sdim : int
If and only if sorting was requested, a third return value will contain the number of
eigenvalues satisfying the sort condition.

Raises LinAlgError
Error raised under three conditions:

1.The algorithm failed due to a failure of the QR algorithm to compute all eigenval-
ues

2.If eigenvalue sorting was requested, the eigenvalues could not be reordered due to
a failure to separate eigenvalues, usually because of poor conditioning

3.If eigenvalue sorting was requested, roundoff errors caused the leading eigenval-
ues to no longer satisfy the sorting condition

See also:

rsf2csf Convert real Schur form to complex Schur form

scipy.linalg.rsf2csf(T, Z, check_finite=True)
Convert real Schur form to complex Schur form.

Convert a quasi-diagonal real-valued Schur form to the upper triangular complex-valued Schur form.

Parameters T : (M, M) array_like
Real Schur form of the original matrix

Z : (M, M) array_like
Schur transformation matrix

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns T : (M, M) ndarray
Complex Schur form of the original matrix

Z : (M, M) ndarray
Schur transformation matrix corresponding to the complex form

See also:

schur Schur decompose a matrix

456 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.linalg.hessenberg(a, calc_q=False, overwrite_a=False, check_finite=True)
Compute Hessenberg form of a matrix.

The Hessenberg decomposition is:

A = Q H Q^H

where Q is unitary/orthogonal and H has only zero elements below the first sub-diagonal.

Parameters a : (M, M) array_like
Matrix to bring into Hessenberg form.

calc_q : bool, optional
Whether to compute the transformation matrix. Default is False.

overwrite_a : bool, optional
Whether to overwrite a; may improve performance. Default is False.

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns H : (M, M) ndarray
Hessenberg form of a.

Q : (M, M) ndarray
Unitary/orthogonal similarity transformation matrix A = Q H Q^H. Only returned
if calc_q=True.

See also:

scipy.linalg.interpolative – Interpolative matrix decompositions

5.9.4 Matrix Functions

expm(A[, q]) Compute the matrix exponential using Pade approximation.
logm(A[, disp]) Compute matrix logarithm.
cosm(A) Compute the matrix cosine.
sinm(A) Compute the matrix sine.
tanm(A) Compute the matrix tangent.
coshm(A) Compute the hyperbolic matrix cosine.
sinhm(A) Compute the hyperbolic matrix sine.
tanhm(A) Compute the hyperbolic matrix tangent.
signm(A[, disp]) Matrix sign function.
sqrtm(A[, disp, blocksize]) Matrix square root.
funm(A, func[, disp]) Evaluate a matrix function specified by a callable.
expm_frechet(A, E[, method, compute_expm, ...]) Frechet derivative of the matrix exponential of A in the direction E.
expm_cond(A[, check_finite]) Relative condition number of the matrix exponential in the Frobenius norm.
fractional_matrix_power(A, t) Compute the fractional power of a matrix.

scipy.linalg.expm(A, q=None)
Compute the matrix exponential using Pade approximation.

Parameters A : (N, N) array_like or sparse matrix
Matrix to be exponentiated.

Returns expm : (N, N) ndarray
Matrix exponential of A.

5.9. Linear algebra (scipy.linalg) 457

SciPy Reference Guide, Release 0.16.0

References

[R75]

Examples

>>> from scipy.linalg import expm, sinm, cosm

Matrix version of the formula exp(0) = 1:

>>> expm(np.zeros((2,2)))
array([[1., 0.],

[0., 1.]])

Euler’s identity (exp(i*theta) = cos(theta) + i*sin(theta)) applied to a matrix:

>>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
>>> expm(1j*a)
array([[0.42645930+1.89217551j, -2.13721484-0.97811252j],

[1.06860742+0.48905626j, -1.71075555+0.91406299j]])
>>> cosm(a) + 1j*sinm(a)
array([[0.42645930+1.89217551j, -2.13721484-0.97811252j],

[1.06860742+0.48905626j, -1.71075555+0.91406299j]])

scipy.linalg.logm(A, disp=True)
Compute matrix logarithm.

The matrix logarithm is the inverse of expm: expm(logm(A)) == A

Parameters A : (N, N) array_like
Matrix whose logarithm to evaluate

disp : bool, optional
Print warning if error in the result is estimated large instead of returning estimated
error. (Default: True)

Returns logm : (N, N) ndarray
Matrix logarithm of A

errest : float
(if disp == False)
1-norm of the estimated error, ||err||_1 / ||A||_1

References

[R83], [R84], [R85]

Examples

>>> from scipy.linalg import logm, expm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> b = logm(a)
>>> b
array([[-1.02571087, 2.05142174],

[0.68380725, 1.02571087]])
>>> expm(b) # Verify expm(logm(a)) returns a
array([[1., 3.],

[1., 4.]])

scipy.linalg.cosm(A)
Compute the matrix cosine.

This routine uses expm to compute the matrix exponentials.

458 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters A : (N, N) array_like
Input array

Returns cosm : (N, N) ndarray
Matrix cosine of A

Examples

>>> from scipy.linalg import expm, sinm, cosm

Euler’s identity (exp(i*theta) = cos(theta) + i*sin(theta)) applied to a matrix:

>>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
>>> expm(1j*a)
array([[0.42645930+1.89217551j, -2.13721484-0.97811252j],

[1.06860742+0.48905626j, -1.71075555+0.91406299j]])
>>> cosm(a) + 1j*sinm(a)
array([[0.42645930+1.89217551j, -2.13721484-0.97811252j],

[1.06860742+0.48905626j, -1.71075555+0.91406299j]])

scipy.linalg.sinm(A)
Compute the matrix sine.

This routine uses expm to compute the matrix exponentials.

Parameters A : (N, N) array_like
Input array.

Returns sinm : (N, N) ndarray
Matrix cosine of A

Examples

>>> from scipy.linalg import expm, sinm, cosm

Euler’s identity (exp(i*theta) = cos(theta) + i*sin(theta)) applied to a matrix:

>>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
>>> expm(1j*a)
array([[0.42645930+1.89217551j, -2.13721484-0.97811252j],

[1.06860742+0.48905626j, -1.71075555+0.91406299j]])
>>> cosm(a) + 1j*sinm(a)
array([[0.42645930+1.89217551j, -2.13721484-0.97811252j],

[1.06860742+0.48905626j, -1.71075555+0.91406299j]])

scipy.linalg.tanm(A)
Compute the matrix tangent.

This routine uses expm to compute the matrix exponentials.

Parameters A : (N, N) array_like
Input array.

Returns tanm : (N, N) ndarray
Matrix tangent of A

Examples

>>> from scipy.linalg import tanm, sinm, cosm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> t = tanm(a)
>>> t

5.9. Linear algebra (scipy.linalg) 459

SciPy Reference Guide, Release 0.16.0

array([[-2.00876993, -8.41880636],
[-2.80626879, -10.42757629]])

Verify tanm(a) = sinm(a).dot(inv(cosm(a)))

>>> s = sinm(a)
>>> c = cosm(a)
>>> s.dot(np.linalg.inv(c))
array([[-2.00876993, -8.41880636],

[-2.80626879, -10.42757629]])

scipy.linalg.coshm(A)
Compute the hyperbolic matrix cosine.

This routine uses expm to compute the matrix exponentials.

Parameters A : (N, N) array_like
Input array.

Returns coshm : (N, N) ndarray
Hyperbolic matrix cosine of A

Examples

>>> from scipy.linalg import tanhm, sinhm, coshm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> c = coshm(a)
>>> c
array([[11.24592233, 38.76236492],

[12.92078831, 50.00828725]])

Verify tanhm(a) = sinhm(a).dot(inv(coshm(a)))

>>> t = tanhm(a)
>>> s = sinhm(a)
>>> t - s.dot(np.linalg.inv(c))
array([[2.72004641e-15, 4.55191440e-15],

[0.00000000e+00, -5.55111512e-16]])

scipy.linalg.sinhm(A)
Compute the hyperbolic matrix sine.

This routine uses expm to compute the matrix exponentials.

Parameters A : (N, N) array_like
Input array.

Returns sinhm : (N, N) ndarray
Hyperbolic matrix sine of A

Examples

>>> from scipy.linalg import tanhm, sinhm, coshm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> s = sinhm(a)
>>> s
array([[10.57300653, 39.28826594],

[13.09608865, 49.86127247]])

Verify tanhm(a) = sinhm(a).dot(inv(coshm(a)))

460 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> t = tanhm(a)
>>> c = coshm(a)
>>> t - s.dot(np.linalg.inv(c))
array([[2.72004641e-15, 4.55191440e-15],

[0.00000000e+00, -5.55111512e-16]])

scipy.linalg.tanhm(A)
Compute the hyperbolic matrix tangent.

This routine uses expm to compute the matrix exponentials.

Parameters A : (N, N) array_like
Input array

Returns tanhm : (N, N) ndarray
Hyperbolic matrix tangent of A

Examples

>>> from scipy.linalg import tanhm, sinhm, coshm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> t = tanhm(a)
>>> t
array([[0.3428582 , 0.51987926],

[0.17329309, 0.86273746]])

Verify tanhm(a) = sinhm(a).dot(inv(coshm(a)))

>>> s = sinhm(a)
>>> c = coshm(a)
>>> t - s.dot(np.linalg.inv(c))
array([[2.72004641e-15, 4.55191440e-15],

[0.00000000e+00, -5.55111512e-16]])

scipy.linalg.signm(A, disp=True)
Matrix sign function.

Extension of the scalar sign(x) to matrices.

Parameters A : (N, N) array_like
Matrix at which to evaluate the sign function

disp : bool, optional
Print warning if error in the result is estimated large instead of returning estimated
error. (Default: True)

Returns signm : (N, N) ndarray
Value of the sign function at A

errest : float
(if disp == False)
1-norm of the estimated error, ||err||_1 / ||A||_1

Examples

>>> from scipy.linalg import signm, eigvals
>>> a = [[1,2,3], [1,2,1], [1,1,1]]
>>> eigvals(a)
array([4.12488542+0.j, -0.76155718+0.j, 0.63667176+0.j])
>>> eigvals(signm(a))
array([-1.+0.j, 1.+0.j, 1.+0.j])

5.9. Linear algebra (scipy.linalg) 461

SciPy Reference Guide, Release 0.16.0

scipy.linalg.sqrtm(A, disp=True, blocksize=64)
Matrix square root.

Parameters A : (N, N) array_like
Matrix whose square root to evaluate

disp : bool, optional
Print warning if error in the result is estimated large instead of returning estimated
error. (Default: True)

blocksize : integer, optional
If the blocksize is not degenerate with respect to the size of the input array, then use a
blocked algorithm. (Default: 64)

Returns sqrtm : (N, N) ndarray
Value of the sqrt function at A

errest : float
(if disp == False)
Frobenius norm of the estimated error, ||err||_F / ||A||_F

References

[R101]

Examples

>>> from scipy.linalg import sqrtm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> r = sqrtm(a)
>>> r
array([[0.75592895, 1.13389342],

[0.37796447, 1.88982237]])
>>> r.dot(r)
array([[1., 3.],

[1., 4.]])

scipy.linalg.funm(A, func, disp=True)
Evaluate a matrix function specified by a callable.

Returns the value of matrix-valued function f at A. The function f is an extension of the scalar-valued function
func to matrices.

Parameters A : (N, N) array_like
Matrix at which to evaluate the function

func : callable
Callable object that evaluates a scalar function f. Must be vectorized (eg. using vec-
torize).

disp : bool, optional
Print warning if error in the result is estimated large instead of returning estimated
error. (Default: True)

Returns funm : (N, N) ndarray
Value of the matrix function specified by func evaluated at A

errest : float
(if disp == False)
1-norm of the estimated error, ||err||_1 / ||A||_1

Notes

This function implements the general algorithm based on Schur decomposition (Algorithm 9.1.1. in [R78]).

If the input matrix is known to be diagonalizable, then relying on the eigendecomposition is likely to be faster.
For example, if your matrix is Hermitian, you can do

462 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> from scipy.linalg import eigh
>>> def funm_herm(a, func, check_finite=False):
... w, v = eigh(a, check_finite=check_finite)
... ## if you further know that your matrix is positive semidefinite,
... ## you can optionally guard against precision errors by doing
... # w = np.maximum(w, 0)
... w = func(w)
... return (v * w).dot(v.conj().T)

References

[R78]

Examples

>>> from scipy.linalg import funm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> funm(a, lambda x: x*x)
array([[4., 15.],

[5., 19.]])
>>> a.dot(a)
array([[4., 15.],

[5., 19.]])

scipy.linalg.expm_frechet(A, E, method=None, compute_expm=True, check_finite=True)
Frechet derivative of the matrix exponential of A in the direction E.

Parameters A : (N, N) array_like
Matrix of which to take the matrix exponential.

E : (N, N) array_like
Matrix direction in which to take the Frechet derivative.

method : str, optional
Choice of algorithm. Should be one of

•SPS (default)
•blockEnlarge

compute_expm : bool, optional
Whether to compute also expm_A in addition to expm_frechet_AE. Default is True.

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns expm_A : ndarray
Matrix exponential of A.

expm_frechet_AE : ndarray
Frechet derivative of the matrix exponential of A in the direction E.

For compute_expm = False, only expm_frechet_AE is returned.

See also:

expm Compute the exponential of a matrix.

Notes

This section describes the available implementations that can be selected by the method parameter. The default
method is SPS.

Method blockEnlarge is a naive algorithm.

5.9. Linear algebra (scipy.linalg) 463

SciPy Reference Guide, Release 0.16.0

Method SPS is Scaling-Pade-Squaring [R76]. It is a sophisticated implementation which should take only about
3/8 as much time as the naive implementation. The asymptotics are the same.

New in version 0.13.0.

References

[R76]

Examples

>>> import scipy.linalg
>>> A = np.random.randn(3, 3)
>>> E = np.random.randn(3, 3)
>>> expm_A, expm_frechet_AE = scipy.linalg.expm_frechet(A, E)
>>> expm_A.shape, expm_frechet_AE.shape
((3, 3), (3, 3))

>>> import scipy.linalg
>>> A = np.random.randn(3, 3)
>>> E = np.random.randn(3, 3)
>>> expm_A, expm_frechet_AE = scipy.linalg.expm_frechet(A, E)
>>> M = np.zeros((6, 6))
>>> M[:3, :3] = A; M[:3, 3:] = E; M[3:, 3:] = A
>>> expm_M = scipy.linalg.expm(M)
>>> np.allclose(expm_A, expm_M[:3, :3])
True
>>> np.allclose(expm_frechet_AE, expm_M[:3, 3:])
True

scipy.linalg.expm_cond(A, check_finite=True)
Relative condition number of the matrix exponential in the Frobenius norm.

Parameters A : 2d array_like
Square input matrix with shape (N, N).

check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns kappa : float
The relative condition number of the matrix exponential in the Frobenius norm

See also:

expm Compute the exponential of a matrix.

expm_frechet
Compute the Frechet derivative of the matrix exponential.

Notes

A faster estimate for the condition number in the 1-norm has been published but is not yet implemented in scipy.

New in version 0.14.0.

scipy.linalg.fractional_matrix_power(A, t)
Compute the fractional power of a matrix.

Proceeds according to the discussion in section (6) of [R77].

Parameters A : (N, N) array_like

464 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Matrix whose fractional power to evaluate.
t : float

Fractional power.
Returns X : (N, N) array_like

The fractional power of the matrix.

References

[R77]

Examples

>>> from scipy.linalg import fractional_matrix_power
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> b = fractional_matrix_power(a, 0.5)
>>> b
array([[0.75592895, 1.13389342],

[0.37796447, 1.88982237]])
>>> np.dot(b, b) # Verify square root
array([[1., 3.],

[1., 4.]])

5.9.5 Matrix Equation Solvers

solve_sylvester(a, b, q) Computes a solution (X) to the Sylvester equation (AX + XB = Q).
solve_continuous_are(a, b, q, r) Solves the continuous algebraic Riccati equation, or CARE, defined as (A’X + XA - XBR^-1B’X+Q=0) directly using a Schur decomposition method.
solve_discrete_are(a, b, q, r) Solves the disctrete algebraic Riccati equation, or DARE, defined as (X = A’XA-(A’XB)(R+B’XB)^-1(B’XA)+Q), directly using a Schur decomposition method.
solve_discrete_lyapunov(a, q[, method]) Solves the discrete Lyapunov equation (𝐴′𝑋𝐴−𝑋 = −𝑄).
solve_lyapunov(a, q) Solves the continuous Lyapunov equation (AX + XA^H = Q) given the values of A and Q using the Bartels-Stewart algorithm.

scipy.linalg.solve_sylvester(a, b, q)
Computes a solution (X) to the Sylvester equation (AX + XB = Q).

Parameters a : (M, M) array_like
Leading matrix of the Sylvester equation

b : (N, N) array_like
Trailing matrix of the Sylvester equation

q : (M, N) array_like
Right-hand side

Returns x : (M, N) ndarray
The solution to the Sylvester equation.

Raises LinAlgError
If solution was not found

Notes

Computes a solution to the Sylvester matrix equation via the Bartels- Stewart algorithm. The A and B matri-
ces first undergo Schur decompositions. The resulting matrices are used to construct an alternative Sylvester
equation (RY + YS^T = F) where the R and S matrices are in quasi-triangular form (or, when R, S or F are
complex, triangular form). The simplified equation is then solved using *TRSYL from LAPACK directly.

New in version 0.11.0.

scipy.linalg.solve_continuous_are(a, b, q, r)
Solves the continuous algebraic Riccati equation, or CARE, defined as (A’X + XA - XBR^-1B’X+Q=0) directly

5.9. Linear algebra (scipy.linalg) 465

SciPy Reference Guide, Release 0.16.0

using a Schur decomposition method.

Parameters a : (M, M) array_like
Input

b : (M, N) array_like
Input

q : (M, M) array_like
Input

r : (N, N) array_like
Non-singular, square matrix

Returns x : (M, M) ndarray
Solution to the continuous algebraic Riccati equation

See also:

solve_discrete_are
Solves the discrete algebraic Riccati equation

Notes

Method taken from: Laub, “A Schur Method for Solving Algebraic Riccati Equations.”
U.S. Energy Research and Development Agency under contract ERDA-E(49-18)-2087.
http://dspace.mit.edu/bitstream/handle/1721.1/1301/R-0859-05666488.pdf

New in version 0.11.0.

scipy.linalg.solve_discrete_are(a, b, q, r)
Solves the disctrete algebraic Riccati equation, or DARE, defined as (X = A’XA-(A’XB)(R+B’XB)^-
1(B’XA)+Q), directly using a Schur decomposition method.

Parameters a : (M, M) array_like
Non-singular, square matrix

b : (M, N) array_like
Input

q : (M, M) array_like
Input

r : (N, N) array_like
Non-singular, square matrix

Returns x : ndarray
Solution to the continuous Lyapunov equation

See also:

solve_continuous_are
Solves the continuous algebraic Riccati equation

Notes

Method taken from: Laub, “A Schur Method for Solving Algebraic Riccati Equations.”
U.S. Energy Research and Development Agency under contract ERDA-E(49-18)-2087.
http://dspace.mit.edu/bitstream/handle/1721.1/1301/R-0859-05666488.pdf

New in version 0.11.0.

scipy.linalg.solve_discrete_lyapunov(a, q, method=None)
Solves the discrete Lyapunov equation (𝐴′𝑋𝐴−𝑋 = −𝑄).

Parameters a : (M, M) array_like
A square matrix

466 Chapter 5. Reference

http://dspace.mit.edu/bitstream/handle/1721.1/1301/R-0859-05666488.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/1301/R-0859-05666488.pdf

SciPy Reference Guide, Release 0.16.0

q : (M, M) array_like
Right-hand side square matrix

method : {‘direct’, ‘bilinear’}, optional
Type of solver.
If not given, chosen to be direct if M is less than 10 and bilinear otherwise.

Returns x : ndarray
Solution to the discrete Lyapunov equation

See also:

solve_lyapunov
computes the solution to the continuous Lyapunov equation

Notes

This section describes the available solvers that can be selected by the ‘method’ parameter. The default method
is direct if M is less than 10 and bilinear otherwise.

Method direct uses a direct analytical solution to the discrete Lyapunov equation. The algorithm is given in, for
example, [R99]. However it requires the linear solution of a system with dimension 𝑀2 so that performance
degrades rapidly for even moderately sized matrices.

Method bilinear uses a bilinear transformation to convert the discrete Lyapunov equation to a continuous Lya-
punov equation (𝐵′𝑋 + 𝑋𝐵 = −𝐶) where 𝐵 = (𝐴− 𝐼)(𝐴 + 𝐼)−1 and 𝐶 = 2(𝐴′ + 𝐼)−1𝑄(𝐴 + 𝐼)−1. The
continuous equation can be efficiently solved since it is a special case of a Sylvester equation. The transforma-
tion algorithm is from Popov (1964) as described in [R100].

New in version 0.11.0.

References

[R99], [R100]

scipy.linalg.solve_lyapunov(a, q)
Solves the continuous Lyapunov equation (AX + XA^H = Q) given the values of A and Q using the Bartels-
Stewart algorithm.

Parameters a : array_like
A square matrix

q : array_like
Right-hand side square matrix

Returns x : array_like
Solution to the continuous Lyapunov equation

See also:

solve_sylvester
computes the solution to the Sylvester equation

Notes

Because the continuous Lyapunov equation is just a special form of the Sylvester equation, this solver relies
entirely on solve_sylvester for a solution.

New in version 0.11.0.

5.9.6 Special Matrices

5.9. Linear algebra (scipy.linalg) 467

SciPy Reference Guide, Release 0.16.0

block_diag(*arrs) Create a block diagonal matrix from provided arrays.
circulant(c) Construct a circulant matrix.
companion(a) Create a companion matrix.
dft(n[, scale]) Discrete Fourier transform matrix.
hadamard(n[, dtype]) Construct a Hadamard matrix.
hankel(c[, r]) Construct a Hankel matrix.
helmert(n[, full]) Create a Helmert matrix of order n.
hilbert(n) Create a Hilbert matrix of order n.
invhilbert(n[, exact]) Compute the inverse of the Hilbert matrix of order n.
leslie(f, s) Create a Leslie matrix.
pascal(n[, kind, exact]) Returns the n x n Pascal matrix.
invpascal(n[, kind, exact]) Returns the inverse of the n x n Pascal matrix.
toeplitz(c[, r]) Construct a Toeplitz matrix.
tri(N[, M, k, dtype]) Construct (N, M) matrix filled with ones at and below the k-th diagonal.

scipy.linalg.block_diag(*arrs)
Create a block diagonal matrix from provided arrays.

Given the inputs A, B and C, the output will have these arrays arranged on the diagonal:

[[A, 0, 0],
[0, B, 0],
[0, 0, C]]

Parameters A, B, C, ... : array_like, up to 2-D
Input arrays. A 1-D array or array_like sequence of length n is treated as a 2-D array
with shape (1,n).

Returns D : ndarray
Array with A, B, C, ... on the diagonal. D has the same dtype as A.

Notes

If all the input arrays are square, the output is known as a block diagonal matrix.

Empty sequences (i.e., array-likes of zero size) are ignored.

Examples

>>> from scipy.linalg import block_diag
>>> A = [[1, 0],
... [0, 1]]
>>> B = [[3, 4, 5],
... [6, 7, 8]]
>>> C = [[7]]
>>> block_diag(A, B, C)
[[1 0 0 0 0 0]
[0 1 0 0 0 0]
[0 0 3 4 5 0]
[0 0 6 7 8 0]
[0 0 0 0 0 7]]

>>> block_diag(1.0, [2, 3], [[4, 5], [6, 7]])
array([[1., 0., 0., 0., 0.],

[0., 2., 3., 0., 0.],
[0., 0., 0., 4., 5.],
[0., 0., 0., 6., 7.]])

468 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.linalg.circulant(c)
Construct a circulant matrix.

Parameters c : (N,) array_like
1-D array, the first column of the matrix.

Returns A : (N, N) ndarray
A circulant matrix whose first column is c.

See also:

toeplitz Toeplitz matrix

hankel Hankel matrix

Notes

New in version 0.8.0.

Examples

>>> from scipy.linalg import circulant
>>> circulant([1, 2, 3])
array([[1, 3, 2],

[2, 1, 3],
[3, 2, 1]])

scipy.linalg.companion(a)
Create a companion matrix.

Create the companion matrix [R73] associated with the polynomial whose coefficients are given in a.

Parameters a : (N,) array_like
1-D array of polynomial coefficients. The length of a must be at least two, and a[0]
must not be zero.

Returns c : (N-1, N-1) ndarray
The first row of c is -a[1:]/a[0], and the first sub-diagonal is all ones. The data-
type of the array is the same as the data-type of 1.0*a[0].

Raises ValueError
If any of the following are true: a) a.ndim != 1; b) a.size < 2; c) a[0] ==
0.

Notes

New in version 0.8.0.

References

[R73]

Examples

>>> from scipy.linalg import companion
>>> companion([1, -10, 31, -30])
array([[10., -31., 30.],

[1., 0., 0.],
[0., 1., 0.]])

scipy.linalg.dft(n, scale=None)
Discrete Fourier transform matrix.

5.9. Linear algebra (scipy.linalg) 469

SciPy Reference Guide, Release 0.16.0

Create the matrix that computes the discrete Fourier transform of a sequence [R74]. The n-th primitive root of
unity used to generate the matrix is exp(-2*pi*i/n), where i = sqrt(-1).

Parameters n : int
Size the matrix to create.

scale : str, optional
Must be None, ‘sqrtn’, or ‘n’. If scale is ‘sqrtn’, the matrix is divided by sqrt(n). If
scale is ‘n’, the matrix is divided by n. If scale is None (the default), the matrix is
not normalized, and the return value is simply the Vandermonde matrix of the roots of
unity.

Returns m : (n, n) ndarray
The DFT matrix.

Notes

When scale is None, multiplying a vector by the matrix returned by dft is mathematically equivalent to (but
much less efficient than) the calculation performed by scipy.fftpack.fft.

New in version 0.14.0.

References

[R74]

Examples

>>> from scipy.linalg import dft
>>> np.set_printoptions(precision=5, suppress=True)
>>> x = np.array([1, 2, 3, 0, 3, 2, 1, 0])
>>> m = dft(8)
>>> m.dot(x) # Compute the DFT of x
array([12.+0.j, -2.-2.j, 0.-4.j, -2.+2.j, 4.+0.j, -2.-2.j,

-0.+4.j, -2.+2.j])

Verify that m.dot(x) is the same as fft(x).

>>> from scipy.fftpack import fft
>>> fft(x) # Same result as m.dot(x)
array([12.+0.j, -2.-2.j, 0.-4.j, -2.+2.j, 4.+0.j, -2.-2.j,

0.+4.j, -2.+2.j])

scipy.linalg.hadamard(n, dtype=<type ‘int’>)
Construct a Hadamard matrix.

Constructs an n-by-n Hadamard matrix, using Sylvester’s construction. n must be a power of 2.

Parameters n : int
The order of the matrix. n must be a power of 2.

dtype : dtype, optional
The data type of the array to be constructed.

Returns H : (n, n) ndarray
The Hadamard matrix.

Notes

New in version 0.8.0.

470 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.linalg import hadamard
>>> hadamard(2, dtype=complex)
array([[1.+0.j, 1.+0.j],

[1.+0.j, -1.-0.j]])
>>> hadamard(4)
array([[1, 1, 1, 1],

[1, -1, 1, -1],
[1, 1, -1, -1],
[1, -1, -1, 1]])

scipy.linalg.hankel(c, r=None)
Construct a Hankel matrix.

The Hankel matrix has constant anti-diagonals, with c as its first column and r as its last row. If r is not given,
then r = zeros_like(c) is assumed.

Parameters c : array_like
First column of the matrix. Whatever the actual shape of c, it will be converted to a
1-D array.

r : array_like, optional
Last row of the matrix. If None, r = zeros_like(c) is assumed. r[0] is ignored;
the last row of the returned matrix is [c[-1], r[1:]]. Whatever the actual shape
of r, it will be converted to a 1-D array.

Returns A : (len(c), len(r)) ndarray
The Hankel matrix. Dtype is the same as (c[0] + r[0]).dtype.

See also:

toeplitz Toeplitz matrix

circulant circulant matrix

Examples

>>> from scipy.linalg import hankel
>>> hankel([1, 17, 99])
array([[1, 17, 99],

[17, 99, 0],
[99, 0, 0]])

>>> hankel([1,2,3,4], [4,7,7,8,9])
array([[1, 2, 3, 4, 7],

[2, 3, 4, 7, 7],
[3, 4, 7, 7, 8],
[4, 7, 7, 8, 9]])

scipy.linalg.helmert(n, full=False)
Create a Helmert matrix of order n.

This has applications in statistics, compositional or simplicial analysis, and in Aitchison geometry.

Parameters n : int
The size of the array to create.

full : bool, optional
If True the (n, n) ndarray will be returned. Otherwise the submatrix that does not
include the first row will be returned. Default: False.

Returns M : ndarray
The Helmert matrix. The shape is (n, n) or (n-1, n) depending on the full argument.

5.9. Linear algebra (scipy.linalg) 471

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.linalg import helmert
>>> helmert(5, full=True)
array([[0.4472136 , 0.4472136 , 0.4472136 , 0.4472136 , 0.4472136],

[0.70710678, -0.70710678, 0. , 0. , 0.],
[0.40824829, 0.40824829, -0.81649658, 0. , 0.],
[0.28867513, 0.28867513, 0.28867513, -0.8660254 , 0.],
[0.2236068 , 0.2236068 , 0.2236068 , 0.2236068 , -0.89442719]])

scipy.linalg.hilbert(n)
Create a Hilbert matrix of order n.

Returns the n by n array with entries h[i,j] = 1 / (i + j + 1).

Parameters n : int
The size of the array to create.

Returns h : (n, n) ndarray
The Hilbert matrix.

See also:

invhilbertCompute the inverse of a Hilbert matrix.

Notes

New in version 0.10.0.

Examples

>>> from scipy.linalg import hilbert
>>> hilbert(3)
array([[1. , 0.5 , 0.33333333],

[0.5 , 0.33333333, 0.25],
[0.33333333, 0.25 , 0.2]])

scipy.linalg.invhilbert(n, exact=False)
Compute the inverse of the Hilbert matrix of order n.

The entries in the inverse of a Hilbert matrix are integers. When n is greater than 14, some entries in the inverse
exceed the upper limit of 64 bit integers. The exact argument provides two options for dealing with these large
integers.

Parameters n : int
The order of the Hilbert matrix.

exact : bool, optional
If False, the data type of the array that is returned is np.float64, and the array is an
approximation of the inverse. If True, the array is the exact integer inverse array. To
represent the exact inverse when n > 14, the returned array is an object array of long
integers. For n <= 14, the exact inverse is returned as an array with data type np.int64.

Returns invh : (n, n) ndarray
The data type of the array is np.float64 if exact is False. If exact is True, the data type
is either np.int64 (for n <= 14) or object (for n > 14). In the latter case, the objects in
the array will be long integers.

See also:

hilbert Create a Hilbert matrix.

472 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

New in version 0.10.0.

Examples

>>> from scipy.linalg import invhilbert
>>> invhilbert(4)
array([[16., -120., 240., -140.],

[-120., 1200., -2700., 1680.],
[240., -2700., 6480., -4200.],
[-140., 1680., -4200., 2800.]])

>>> invhilbert(4, exact=True)
array([[16, -120, 240, -140],

[-120, 1200, -2700, 1680],
[240, -2700, 6480, -4200],
[-140, 1680, -4200, 2800]], dtype=int64)

>>> invhilbert(16)[7,7]
4.2475099528537506e+19
>>> invhilbert(16, exact=True)[7,7]
42475099528537378560L

scipy.linalg.leslie(f, s)
Create a Leslie matrix.

Given the length n array of fecundity coefficients f and the length n-1 array of survival coefficents s, return the
associated Leslie matrix.

Parameters f : (N,) array_like
The “fecundity” coefficients.

s : (N-1,) array_like
The “survival” coefficients, has to be 1-D. The length of s must be one less than the
length of f, and it must be at least 1.

Returns L : (N, N) ndarray
The array is zero except for the first row, which is f, and the first sub-diagonal, which
is s. The data-type of the array will be the data-type of f[0]+s[0].

Notes

New in version 0.8.0.

The Leslie matrix is used to model discrete-time, age-structured population growth [R81] [R82]. In a population
with n age classes, two sets of parameters define a Leslie matrix: the n “fecundity coefficients”, which give the
number of offspring per-capita produced by each age class, and the n - 1 “survival coefficients”, which give the
per-capita survival rate of each age class.

References

[R81], [R82]

Examples

>>> from scipy.linalg import leslie
>>> leslie([0.1, 2.0, 1.0, 0.1], [0.2, 0.8, 0.7])
array([[0.1, 2. , 1. , 0.1],

[0.2, 0. , 0. , 0.],
[0. , 0.8, 0. , 0.],
[0. , 0. , 0.7, 0.]])

5.9. Linear algebra (scipy.linalg) 473

SciPy Reference Guide, Release 0.16.0

scipy.linalg.pascal(n, kind=’symmetric’, exact=True)
Returns the n x n Pascal matrix.

The Pascal matrix is a matrix containing the binomial coefficients as its elements.

Parameters n : int
The size of the matrix to create; that is, the result is an n x n matrix.

kind : str, optional
Must be one of ‘symmetric’, ‘lower’, or ‘upper’. Default is ‘symmetric’.

exact : bool, optional
If exact is True, the result is either an array of type numpy.uint64 (if n < 35) or an
object array of Python long integers. If exact is False, the coefficients in the matrix
are computed using scipy.special.comb with exact=False. The result will be
a floating point array, and the values in the array will not be the exact coefficients, but
this version is much faster than exact=True.

Returns p : (n, n) ndarray
The Pascal matrix.

See also:

invpascal

Notes

See http://en.wikipedia.org/wiki/Pascal_matrix for more information about Pascal matrices.

New in version 0.11.0.

Examples

>>> from scipy.linalg import pascal
>>> pascal(4)
array([[1, 1, 1, 1],

[1, 2, 3, 4],
[1, 3, 6, 10],
[1, 4, 10, 20]], dtype=uint64)

>>> pascal(4, kind='lower')
array([[1, 0, 0, 0],

[1, 1, 0, 0],
[1, 2, 1, 0],
[1, 3, 3, 1]], dtype=uint64)

>>> pascal(50)[-1, -1]
25477612258980856902730428600L
>>> from scipy.special import comb
>>> comb(98, 49, exact=True)
25477612258980856902730428600L

scipy.linalg.invpascal(n, kind=’symmetric’, exact=True)
Returns the inverse of the n x n Pascal matrix.

The Pascal matrix is a matrix containing the binomial coefficients as its elements.

Parameters n : int
The size of the matrix to create; that is, the result is an n x n matrix.

kind : str, optional
Must be one of ‘symmetric’, ‘lower’, or ‘upper’. Default is ‘symmetric’.

exact : bool, optional
If exact is True, the result is either an array of type numpy.int64 (if n <= 35) or
an object array of Python integers. If exact is False, the coefficients in the matrix
are computed using scipy.special.comb with exact=False. The result will be

474 Chapter 5. Reference

http://en.wikipedia.org/wiki/Pascal_matrix

SciPy Reference Guide, Release 0.16.0

a floating point array, and for large n, the values in the array will not be the exact
coefficients.

Returns invp : (n, n) ndarray
The inverse of the Pascal matrix.

See also:

pascal

Notes

New in version 0.16.0.

References

[R79], [R80]

Examples

>>> from scipy.linalg import invpascal, pascal
>>> invp = invpascal(5)
>>> invp
array([[5, -10, 10, -5, 1],

[-10, 30, -35, 19, -4],
[10, -35, 46, -27, 6],
[-5, 19, -27, 17, -4],
[1, -4, 6, -4, 1]])

>>> p = pascal(5)
>>> p.dot(invp)
array([[1., 0., 0., 0., 0.],

[0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1.]])

An example of the use of kind and exact:

>>> invpascal(5, kind='lower', exact=False)
array([[1., -0., 0., -0., 0.],

[-1., 1., -0., 0., -0.],
[1., -2., 1., -0., 0.],
[-1., 3., -3., 1., -0.],
[1., -4., 6., -4., 1.]])

scipy.linalg.toeplitz(c, r=None)
Construct a Toeplitz matrix.

The Toeplitz matrix has constant diagonals, with c as its first column and r as its first row. If r is not given, r
== conjugate(c) is assumed.

Parameters c : array_like
First column of the matrix. Whatever the actual shape of c, it will be converted to a
1-D array.

r : array_like, optional
First row of the matrix. If None, r = conjugate(c) is assumed; in this case, if
c[0] is real, the result is a Hermitian matrix. r[0] is ignored; the first row of the returned
matrix is [c[0], r[1:]]. Whatever the actual shape of r, it will be converted to a
1-D array.

Returns A : (len(c), len(r)) ndarray

5.9. Linear algebra (scipy.linalg) 475

SciPy Reference Guide, Release 0.16.0

The Toeplitz matrix. Dtype is the same as (c[0] + r[0]).dtype.

See also:

circulant circulant matrix

hankel Hankel matrix

Notes

The behavior when c or r is a scalar, or when c is complex and r is None, was changed in version 0.8.0. The
behavior in previous versions was undocumented and is no longer supported.

Examples

>>> from scipy.linalg import toeplitz
>>> toeplitz([1,2,3], [1,4,5,6])
array([[1, 4, 5, 6],

[2, 1, 4, 5],
[3, 2, 1, 4]])

>>> toeplitz([1.0, 2+3j, 4-1j])
array([[1.+0.j, 2.-3.j, 4.+1.j],

[2.+3.j, 1.+0.j, 2.-3.j],
[4.-1.j, 2.+3.j, 1.+0.j]])

scipy.linalg.tri(N, M=None, k=0, dtype=None)
Construct (N, M) matrix filled with ones at and below the k-th diagonal.

The matrix has A[i,j] == 1 for i <= j + k

Parameters N : int
The size of the first dimension of the matrix.

M : int or None, optional
The size of the second dimension of the matrix. If M is None, M = N is assumed.

k : int, optional
Number of subdiagonal below which matrix is filled with ones. k = 0 is the main
diagonal, k < 0 subdiagonal and k > 0 superdiagonal.

dtype : dtype, optional
Data type of the matrix.

Returns tri : (N, M) ndarray
Tri matrix.

Examples

>>> from scipy.linalg import tri
>>> tri(3, 5, 2, dtype=int)
array([[1, 1, 1, 0, 0],

[1, 1, 1, 1, 0],
[1, 1, 1, 1, 1]])

>>> tri(3, 5, -1, dtype=int)
array([[0, 0, 0, 0, 0],

[1, 0, 0, 0, 0],
[1, 1, 0, 0, 0]])

5.9.7 Low-level routines

476 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

get_blas_funcs(names[, arrays, dtype]) Return available BLAS function objects from names.
get_lapack_funcs(names[, arrays, dtype]) Return available LAPACK function objects from names.
find_best_blas_type([arrays, dtype]) Find best-matching BLAS/LAPACK type.

scipy.linalg.get_blas_funcs(names, arrays=(), dtype=None)
Return available BLAS function objects from names.

Arrays are used to determine the optimal prefix of BLAS routines.

Parameters names : str or sequence of str
Name(s) of BLAS functions without type prefix.

arrays : sequence of ndarrays, optional
Arrays can be given to determine optimal prefix of BLAS routines. If not given,
double-precision routines will be used, otherwise the most generic type in arrays will
be used.

dtype : str or dtype, optional
Data-type specifier. Not used if arrays is non-empty.

Returns funcs : list
List containing the found function(s).

Notes

This routine automatically chooses between Fortran/C interfaces. Fortran code is used whenever possible for
arrays with column major order. In all other cases, C code is preferred.

In BLAS, the naming convention is that all functions start with a type prefix, which depends on the type of
the principal matrix. These can be one of {‘s’, ‘d’, ‘c’, ‘z’} for the numpy types {float32, float64, complex64,
complex128} respectively. The code and the dtype are stored in attributes typecode and dtype of the returned
functions.

scipy.linalg.get_lapack_funcs(names, arrays=(), dtype=None)
Return available LAPACK function objects from names.

Arrays are used to determine the optimal prefix of LAPACK routines.

Parameters names : str or sequence of str
Name(s) of LAPACK functions without type prefix.

arrays : sequence of ndarrays, optional
Arrays can be given to determine optimal prefix of LAPACK routines. If not given,
double-precision routines will be used, otherwise the most generic type in arrays will
be used.

dtype : str or dtype, optional
Data-type specifier. Not used if arrays is non-empty.

Returns funcs : list
List containing the found function(s).

Notes

This routine automatically chooses between Fortran/C interfaces. Fortran code is used whenever possible for
arrays with column major order. In all other cases, C code is preferred.

In LAPACK, the naming convention is that all functions start with a type prefix, which depends on the type of
the principal matrix. These can be one of {‘s’, ‘d’, ‘c’, ‘z’} for the numpy types {float32, float64, complex64,
complex128} respectevely, and are stored in attribute typecode of the returned functions.

scipy.linalg.find_best_blas_type(arrays=(), dtype=None)
Find best-matching BLAS/LAPACK type.

5.9. Linear algebra (scipy.linalg) 477

SciPy Reference Guide, Release 0.16.0

Arrays are used to determine the optimal prefix of BLAS routines.

Parameters arrays : sequence of ndarrays, optional
Arrays can be given to determine optimal prefix of BLAS routines. If not given,
double-precision routines will be used, otherwise the most generic type in arrays will
be used.

dtype : str or dtype, optional
Data-type specifier. Not used if arrays is non-empty.

Returns prefix : str
BLAS/LAPACK prefix character.

dtype : dtype
Inferred Numpy data type.

prefer_fortran : bool
Whether to prefer Fortran order routines over C order.

See also:

scipy.linalg.blas – Low-level BLAS functions

scipy.linalg.lapack – Low-level LAPACK functions

scipy.linalg.cython_blas – Low-level BLAS functions for Cython

scipy.linalg.cython_lapack – Low-level LAPACK functions for Cython

5.10 Low-level BLAS functions

This module contains low-level functions from the BLAS library.

New in version 0.12.0.

Warning: These functions do little to no error checking. It is possible to cause crashes by mis-using them, so
prefer using the higher-level routines in scipy.linalg.

5.11 Finding functions

get_blas_funcs(names[, arrays, dtype]) Return available BLAS function objects from names.
find_best_blas_type([arrays, dtype]) Find best-matching BLAS/LAPACK type.

scipy.linalg.blas.get_blas_funcs(names, arrays=(), dtype=None)
Return available BLAS function objects from names.

Arrays are used to determine the optimal prefix of BLAS routines.

Parameters names : str or sequence of str
Name(s) of BLAS functions without type prefix.

arrays : sequence of ndarrays, optional
Arrays can be given to determine optimal prefix of BLAS routines. If not given,
double-precision routines will be used, otherwise the most generic type in arrays will
be used.

dtype : str or dtype, optional
Data-type specifier. Not used if arrays is non-empty.

Returns funcs : list

478 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

List containing the found function(s).

Notes

This routine automatically chooses between Fortran/C interfaces. Fortran code is used whenever possible for
arrays with column major order. In all other cases, C code is preferred.

In BLAS, the naming convention is that all functions start with a type prefix, which depends on the type of
the principal matrix. These can be one of {‘s’, ‘d’, ‘c’, ‘z’} for the numpy types {float32, float64, complex64,
complex128} respectively. The code and the dtype are stored in attributes typecode and dtype of the returned
functions.

scipy.linalg.blas.find_best_blas_type(arrays=(), dtype=None)
Find best-matching BLAS/LAPACK type.

Arrays are used to determine the optimal prefix of BLAS routines.

Parameters arrays : sequence of ndarrays, optional
Arrays can be given to determine optimal prefix of BLAS routines. If not given,
double-precision routines will be used, otherwise the most generic type in arrays will
be used.

dtype : str or dtype, optional
Data-type specifier. Not used if arrays is non-empty.

Returns prefix : str
BLAS/LAPACK prefix character.

dtype : dtype
Inferred Numpy data type.

prefer_fortran : bool
Whether to prefer Fortran order routines over C order.

5.12 BLAS Level 1 functions

caxpy(x,y,[n,a,offx,incx,offy,incy]) Wrapper for caxpy.
ccopy(x,y,[n,offx,incx,offy,incy]) Wrapper for ccopy.
cdotc(x,y,[n,offx,incx,offy,incy]) Wrapper for cdotc.
cdotu(x,y,[n,offx,incx,offy,incy]) Wrapper for cdotu.
crotg(a,b) Wrapper for crotg.
cscal(a,x,[n,offx,incx]) Wrapper for cscal.
csrot(...) Wrapper for csrot.
csscal(a,x,[n,offx,incx,overwrite_x]) Wrapper for csscal.
cswap(x,y,[n,offx,incx,offy,incy]) Wrapper for cswap.
dasum(x,[n,offx,incx]) Wrapper for dasum.
daxpy(x,y,[n,a,offx,incx,offy,incy]) Wrapper for daxpy.
dcopy(x,y,[n,offx,incx,offy,incy]) Wrapper for dcopy.
ddot(x,y,[n,offx,incx,offy,incy]) Wrapper for ddot.
dnrm2(x,[n,offx,incx]) Wrapper for dnrm2.
drot(...) Wrapper for drot.
drotg(a,b) Wrapper for drotg.
drotm(...) Wrapper for drotm.
drotmg(d1,d2,x1,y1) Wrapper for drotmg.
dscal(a,x,[n,offx,incx]) Wrapper for dscal.
dswap(x,y,[n,offx,incx,offy,incy]) Wrapper for dswap.

Continued on next page

5.12. BLAS Level 1 functions 479

SciPy Reference Guide, Release 0.16.0

Table 5.75 – continued from previous page
dzasum(x,[n,offx,incx]) Wrapper for dzasum.
dznrm2(x,[n,offx,incx]) Wrapper for dznrm2.
icamax(x,[n,offx,incx]) Wrapper for icamax.
idamax(x,[n,offx,incx]) Wrapper for idamax.
isamax(x,[n,offx,incx]) Wrapper for isamax.
izamax(x,[n,offx,incx]) Wrapper for izamax.
sasum(x,[n,offx,incx]) Wrapper for sasum.
saxpy(x,y,[n,a,offx,incx,offy,incy]) Wrapper for saxpy.
scasum(x,[n,offx,incx]) Wrapper for scasum.
scnrm2(x,[n,offx,incx]) Wrapper for scnrm2.
scopy(x,y,[n,offx,incx,offy,incy]) Wrapper for scopy.
sdot(x,y,[n,offx,incx,offy,incy]) Wrapper for sdot.
snrm2(x,[n,offx,incx]) Wrapper for snrm2.
srot(...) Wrapper for srot.
srotg(a,b) Wrapper for srotg.
srotm(...) Wrapper for srotm.
srotmg(d1,d2,x1,y1) Wrapper for srotmg.
sscal(a,x,[n,offx,incx]) Wrapper for sscal.
sswap(x,y,[n,offx,incx,offy,incy]) Wrapper for sswap.
zaxpy(x,y,[n,a,offx,incx,offy,incy]) Wrapper for zaxpy.
zcopy(x,y,[n,offx,incx,offy,incy]) Wrapper for zcopy.
zdotc(x,y,[n,offx,incx,offy,incy]) Wrapper for zdotc.
zdotu(x,y,[n,offx,incx,offy,incy]) Wrapper for zdotu.
zdrot(...) Wrapper for zdrot.
zdscal(a,x,[n,offx,incx,overwrite_x]) Wrapper for zdscal.
zrotg(a,b) Wrapper for zrotg.
zscal(a,x,[n,offx,incx]) Wrapper for zscal.
zswap(x,y,[n,offx,incx,offy,incy]) Wrapper for zswap.

scipy.linalg.blas.caxpy(x, y[, n, a, offx, incx, offy, incy]) = <fortran object>
Wrapper for caxpy.

Parameters x : input rank-1 array(‘F’) with bounds (*)
y : input rank-1 array(‘F’) with bounds (*)

Returns z : rank-1 array(‘F’) with bounds (*) and y storage
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

a : input complex, optional
Default: (1.0, 0.0)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

offy : input int, optional
Default: 0

incy : input int, optional
Default: 1

scipy.linalg.blas.ccopy(x, y[, n, offx, incx, offy, incy]) = <fortran object>
Wrapper for ccopy.

Parameters x : input rank-1 array(‘F’) with bounds (*)

480 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

y : input rank-1 array(‘F’) with bounds (*)
Returns y : rank-1 array(‘F’) with bounds (*)
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

offy : input int, optional
Default: 0

incy : input int, optional
Default: 1

scipy.linalg.blas.cdotc(x, y[, n, offx, incx, offy, incy]) = <fortran cdotc>
Wrapper for cdotc.

Parameters x : input rank-1 array(‘F’) with bounds (*)
y : input rank-1 array(‘F’) with bounds (*)

Returns xy : complex
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

offy : input int, optional
Default: 0

incy : input int, optional
Default: 1

scipy.linalg.blas.cdotu(x, y[, n, offx, incx, offy, incy]) = <fortran cdotu>
Wrapper for cdotu.

Parameters x : input rank-1 array(‘F’) with bounds (*)
y : input rank-1 array(‘F’) with bounds (*)

Returns xy : complex
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

offy : input int, optional
Default: 0

incy : input int, optional
Default: 1

scipy.linalg.blas.crotg(a, b) = <fortran object>
Wrapper for crotg.

Parameters a : input complex
b : input complex

Returns c : complex
s : complex

5.12. BLAS Level 1 functions 481

SciPy Reference Guide, Release 0.16.0

scipy.linalg.blas.cscal(a, x[, n, offx, incx]) = <fortran object>
Wrapper for cscal.

Parameters a : input complex
x : input rank-1 array(‘F’) with bounds (*)

Returns x : rank-1 array(‘F’) with bounds (*)
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

scipy.linalg.blas.csrot(x, y, c, s[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) = <fortran
object>

Wrapper for csrot.

Parameters x : input rank-1 array(‘F’) with bounds (*)
y : input rank-1 array(‘F’) with bounds (*)
c : input float
s : input float

Returns x : rank-1 array(‘F’) with bounds (*)
y : rank-1 array(‘F’) with bounds (*)

Other Parameters
n : input int, optional

Default: (len(x)-1-offx)/abs(incx)+1
overwrite_x : input int, optional

Default: 0
offx : input int, optional

Default: 0
incx : input int, optional

Default: 1
overwrite_y : input int, optional

Default: 0
offy : input int, optional

Default: 0
incy : input int, optional

Default: 1

scipy.linalg.blas.csscal(a, x[, n, offx, incx, overwrite_x]) = <fortran object>
Wrapper for csscal.

Parameters a : input float
x : input rank-1 array(‘F’) with bounds (*)

Returns x : rank-1 array(‘F’) with bounds (*)
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

overwrite_x : input int, optional
Default: 0

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

482 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.linalg.blas.cswap(x, y[, n, offx, incx, offy, incy]) = <fortran object>
Wrapper for cswap.

Parameters x : input rank-1 array(‘F’) with bounds (*)
y : input rank-1 array(‘F’) with bounds (*)

Returns x : rank-1 array(‘F’) with bounds (*)
y : rank-1 array(‘F’) with bounds (*)

Other Parameters
n : input int, optional

Default: (len(x)-offx)/abs(incx)
offx : input int, optional

Default: 0
incx : input int, optional

Default: 1
offy : input int, optional

Default: 0
incy : input int, optional

Default: 1

scipy.linalg.blas.dasum(x[, n, offx, incx]) = <fortran dasum>
Wrapper for dasum.

Parameters x : input rank-1 array(‘d’) with bounds (*)
Returns s : float
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

scipy.linalg.blas.daxpy(x, y[, n, a, offx, incx, offy, incy]) = <fortran object>
Wrapper for daxpy.

Parameters x : input rank-1 array(‘d’) with bounds (*)
y : input rank-1 array(‘d’) with bounds (*)

Returns z : rank-1 array(‘d’) with bounds (*) and y storage
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

a : input float, optional
Default: 1.0

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

offy : input int, optional
Default: 0

incy : input int, optional
Default: 1

scipy.linalg.blas.dcopy(x, y[, n, offx, incx, offy, incy]) = <fortran object>
Wrapper for dcopy.

Parameters x : input rank-1 array(‘d’) with bounds (*)
y : input rank-1 array(‘d’) with bounds (*)

5.12. BLAS Level 1 functions 483

SciPy Reference Guide, Release 0.16.0

Returns y : rank-1 array(‘d’) with bounds (*)
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

offy : input int, optional
Default: 0

incy : input int, optional
Default: 1

scipy.linalg.blas.ddot(x, y[, n, offx, incx, offy, incy]) = <fortran ddot>
Wrapper for ddot.

Parameters x : input rank-1 array(‘d’) with bounds (*)
y : input rank-1 array(‘d’) with bounds (*)

Returns xy : float
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

offy : input int, optional
Default: 0

incy : input int, optional
Default: 1

scipy.linalg.blas.dnrm2(x[, n, offx, incx]) = <fortran dnrm2>
Wrapper for dnrm2.

Parameters x : input rank-1 array(‘d’) with bounds (*)
Returns n2 : float
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

scipy.linalg.blas.drot(x, y, c, s[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) = <fortran
object>

Wrapper for drot.

Parameters x : input rank-1 array(‘d’) with bounds (*)
y : input rank-1 array(‘d’) with bounds (*)
c : input float
s : input float

Returns x : rank-1 array(‘d’) with bounds (*)
y : rank-1 array(‘d’) with bounds (*)

Other Parameters
n : input int, optional

Default: (len(x)-1-offx)/abs(incx)+1

484 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

overwrite_x : input int, optional
Default: 0

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

overwrite_y : input int, optional
Default: 0

offy : input int, optional
Default: 0

incy : input int, optional
Default: 1

scipy.linalg.blas.drotg(a, b) = <fortran object>
Wrapper for drotg.

Parameters a : input float
b : input float

Returns c : float
s : float

scipy.linalg.blas.drotm(x, y, param[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) = <for-
tran object>

Wrapper for drotm.

Parameters x : input rank-1 array(‘d’) with bounds (*)
y : input rank-1 array(‘d’) with bounds (*)
param : input rank-1 array(‘d’) with bounds (5)

Returns x : rank-1 array(‘d’) with bounds (*)
y : rank-1 array(‘d’) with bounds (*)

Other Parameters
n : input int, optional

Default: (len(x)-offx)/abs(incx)
overwrite_x : input int, optional

Default: 0
offx : input int, optional

Default: 0
incx : input int, optional

Default: 1
overwrite_y : input int, optional

Default: 0
offy : input int, optional

Default: 0
incy : input int, optional

Default: 1

scipy.linalg.blas.drotmg(d1, d2, x1, y1) = <fortran object>
Wrapper for drotmg.

Parameters d1 : input float
d2 : input float
x1 : input float
y1 : input float

Returns param : rank-1 array(‘d’) with bounds (5)

scipy.linalg.blas.dscal(a, x[, n, offx, incx]) = <fortran object>
Wrapper for dscal.

5.12. BLAS Level 1 functions 485

SciPy Reference Guide, Release 0.16.0

Parameters a : input float
x : input rank-1 array(‘d’) with bounds (*)

Returns x : rank-1 array(‘d’) with bounds (*)
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

scipy.linalg.blas.dswap(x, y[, n, offx, incx, offy, incy]) = <fortran object>
Wrapper for dswap.

Parameters x : input rank-1 array(‘d’) with bounds (*)
y : input rank-1 array(‘d’) with bounds (*)

Returns x : rank-1 array(‘d’) with bounds (*)
y : rank-1 array(‘d’) with bounds (*)

Other Parameters
n : input int, optional

Default: (len(x)-offx)/abs(incx)
offx : input int, optional

Default: 0
incx : input int, optional

Default: 1
offy : input int, optional

Default: 0
incy : input int, optional

Default: 1

scipy.linalg.blas.dzasum(x[, n, offx, incx]) = <fortran dzasum>
Wrapper for dzasum.

Parameters x : input rank-1 array(‘D’) with bounds (*)
Returns s : float
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

scipy.linalg.blas.dznrm2(x[, n, offx, incx]) = <fortran dznrm2>
Wrapper for dznrm2.

Parameters x : input rank-1 array(‘D’) with bounds (*)
Returns n2 : float
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

486 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.linalg.blas.icamax(x[, n, offx, incx]) = <fortran object>
Wrapper for icamax.

Parameters x : input rank-1 array(‘F’) with bounds (*)
Returns k : int
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

scipy.linalg.blas.idamax(x[, n, offx, incx]) = <fortran object>
Wrapper for idamax.

Parameters x : input rank-1 array(‘d’) with bounds (*)
Returns k : int
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

scipy.linalg.blas.isamax(x[, n, offx, incx]) = <fortran object>
Wrapper for isamax.

Parameters x : input rank-1 array(‘f’) with bounds (*)
Returns k : int
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

scipy.linalg.blas.izamax(x[, n, offx, incx]) = <fortran object>
Wrapper for izamax.

Parameters x : input rank-1 array(‘D’) with bounds (*)
Returns k : int
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

scipy.linalg.blas.sasum(x[, n, offx, incx]) = <fortran sasum>
Wrapper for sasum.

Parameters x : input rank-1 array(‘f’) with bounds (*)
Returns s : float

5.12. BLAS Level 1 functions 487

SciPy Reference Guide, Release 0.16.0

Other Parameters
n : input int, optional

Default: (len(x)-offx)/abs(incx)
offx : input int, optional

Default: 0
incx : input int, optional

Default: 1

scipy.linalg.blas.saxpy(x, y[, n, a, offx, incx, offy, incy]) = <fortran object>
Wrapper for saxpy.

Parameters x : input rank-1 array(‘f’) with bounds (*)
y : input rank-1 array(‘f’) with bounds (*)

Returns z : rank-1 array(‘f’) with bounds (*) and y storage
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

a : input float, optional
Default: 1.0

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

offy : input int, optional
Default: 0

incy : input int, optional
Default: 1

scipy.linalg.blas.scasum(x[, n, offx, incx]) = <fortran scasum>
Wrapper for scasum.

Parameters x : input rank-1 array(‘F’) with bounds (*)
Returns s : float
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

scipy.linalg.blas.scnrm2(x[, n, offx, incx]) = <fortran scnrm2>
Wrapper for scnrm2.

Parameters x : input rank-1 array(‘F’) with bounds (*)
Returns n2 : float
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

scipy.linalg.blas.scopy(x, y[, n, offx, incx, offy, incy]) = <fortran object>
Wrapper for scopy.

488 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters x : input rank-1 array(‘f’) with bounds (*)
y : input rank-1 array(‘f’) with bounds (*)

Returns y : rank-1 array(‘f’) with bounds (*)
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

offy : input int, optional
Default: 0

incy : input int, optional
Default: 1

scipy.linalg.blas.sdot(x, y[, n, offx, incx, offy, incy]) = <fortran sdot>
Wrapper for sdot.

Parameters x : input rank-1 array(‘f’) with bounds (*)
y : input rank-1 array(‘f’) with bounds (*)

Returns xy : float
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

offy : input int, optional
Default: 0

incy : input int, optional
Default: 1

scipy.linalg.blas.snrm2(x[, n, offx, incx]) = <fortran snrm2>
Wrapper for snrm2.

Parameters x : input rank-1 array(‘f’) with bounds (*)
Returns n2 : float
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

scipy.linalg.blas.srot(x, y, c, s[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) = <fortran
object>

Wrapper for srot.

Parameters x : input rank-1 array(‘f’) with bounds (*)
y : input rank-1 array(‘f’) with bounds (*)
c : input float
s : input float

Returns x : rank-1 array(‘f’) with bounds (*)
y : rank-1 array(‘f’) with bounds (*)

5.12. BLAS Level 1 functions 489

SciPy Reference Guide, Release 0.16.0

Other Parameters
n : input int, optional

Default: (len(x)-1-offx)/abs(incx)+1
overwrite_x : input int, optional

Default: 0
offx : input int, optional

Default: 0
incx : input int, optional

Default: 1
overwrite_y : input int, optional

Default: 0
offy : input int, optional

Default: 0
incy : input int, optional

Default: 1

scipy.linalg.blas.srotg(a, b) = <fortran object>
Wrapper for srotg.

Parameters a : input float
b : input float

Returns c : float
s : float

scipy.linalg.blas.srotm(x, y, param[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) = <for-
tran object>

Wrapper for srotm.

Parameters x : input rank-1 array(‘f’) with bounds (*)
y : input rank-1 array(‘f’) with bounds (*)
param : input rank-1 array(‘f’) with bounds (5)

Returns x : rank-1 array(‘f’) with bounds (*)
y : rank-1 array(‘f’) with bounds (*)

Other Parameters
n : input int, optional

Default: (len(x)-offx)/abs(incx)
overwrite_x : input int, optional

Default: 0
offx : input int, optional

Default: 0
incx : input int, optional

Default: 1
overwrite_y : input int, optional

Default: 0
offy : input int, optional

Default: 0
incy : input int, optional

Default: 1

scipy.linalg.blas.srotmg(d1, d2, x1, y1) = <fortran object>
Wrapper for srotmg.

Parameters d1 : input float
d2 : input float
x1 : input float
y1 : input float

Returns param : rank-1 array(‘f’) with bounds (5)

490 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.linalg.blas.sscal(a, x[, n, offx, incx]) = <fortran object>
Wrapper for sscal.

Parameters a : input float
x : input rank-1 array(‘f’) with bounds (*)

Returns x : rank-1 array(‘f’) with bounds (*)
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

scipy.linalg.blas.sswap(x, y[, n, offx, incx, offy, incy]) = <fortran object>
Wrapper for sswap.

Parameters x : input rank-1 array(‘f’) with bounds (*)
y : input rank-1 array(‘f’) with bounds (*)

Returns x : rank-1 array(‘f’) with bounds (*)
y : rank-1 array(‘f’) with bounds (*)

Other Parameters
n : input int, optional

Default: (len(x)-offx)/abs(incx)
offx : input int, optional

Default: 0
incx : input int, optional

Default: 1
offy : input int, optional

Default: 0
incy : input int, optional

Default: 1

scipy.linalg.blas.zaxpy(x, y[, n, a, offx, incx, offy, incy]) = <fortran object>
Wrapper for zaxpy.

Parameters x : input rank-1 array(‘D’) with bounds (*)
y : input rank-1 array(‘D’) with bounds (*)

Returns z : rank-1 array(‘D’) with bounds (*) and y storage
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

a : input complex, optional
Default: (1.0, 0.0)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

offy : input int, optional
Default: 0

incy : input int, optional
Default: 1

scipy.linalg.blas.zcopy(x, y[, n, offx, incx, offy, incy]) = <fortran object>
Wrapper for zcopy.

5.12. BLAS Level 1 functions 491

SciPy Reference Guide, Release 0.16.0

Parameters x : input rank-1 array(‘D’) with bounds (*)
y : input rank-1 array(‘D’) with bounds (*)

Returns y : rank-1 array(‘D’) with bounds (*)
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

offy : input int, optional
Default: 0

incy : input int, optional
Default: 1

scipy.linalg.blas.zdotc(x, y[, n, offx, incx, offy, incy]) = <fortran zdotc>
Wrapper for zdotc.

Parameters x : input rank-1 array(‘D’) with bounds (*)
y : input rank-1 array(‘D’) with bounds (*)

Returns xy : complex
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

offy : input int, optional
Default: 0

incy : input int, optional
Default: 1

scipy.linalg.blas.zdotu(x, y[, n, offx, incx, offy, incy]) = <fortran zdotu>
Wrapper for zdotu.

Parameters x : input rank-1 array(‘D’) with bounds (*)
y : input rank-1 array(‘D’) with bounds (*)

Returns xy : complex
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

offy : input int, optional
Default: 0

incy : input int, optional
Default: 1

scipy.linalg.blas.zdrot(x, y, c, s[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) = <fortran
object>

Wrapper for zdrot.

492 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters x : input rank-1 array(‘D’) with bounds (*)
y : input rank-1 array(‘D’) with bounds (*)
c : input float
s : input float

Returns x : rank-1 array(‘D’) with bounds (*)
y : rank-1 array(‘D’) with bounds (*)

Other Parameters
n : input int, optional

Default: (len(x)-1-offx)/abs(incx)+1
overwrite_x : input int, optional

Default: 0
offx : input int, optional

Default: 0
incx : input int, optional

Default: 1
overwrite_y : input int, optional

Default: 0
offy : input int, optional

Default: 0
incy : input int, optional

Default: 1

scipy.linalg.blas.zdscal(a, x[, n, offx, incx, overwrite_x]) = <fortran object>
Wrapper for zdscal.

Parameters a : input float
x : input rank-1 array(‘D’) with bounds (*)

Returns x : rank-1 array(‘D’) with bounds (*)
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

overwrite_x : input int, optional
Default: 0

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

scipy.linalg.blas.zrotg(a, b) = <fortran object>
Wrapper for zrotg.

Parameters a : input complex
b : input complex

Returns c : complex
s : complex

scipy.linalg.blas.zscal(a, x[, n, offx, incx]) = <fortran object>
Wrapper for zscal.

Parameters a : input complex
x : input rank-1 array(‘D’) with bounds (*)

Returns x : rank-1 array(‘D’) with bounds (*)
Other Parameters

n : input int, optional
Default: (len(x)-offx)/abs(incx)

offx : input int, optional
Default: 0

5.12. BLAS Level 1 functions 493

SciPy Reference Guide, Release 0.16.0

incx : input int, optional
Default: 1

scipy.linalg.blas.zswap(x, y[, n, offx, incx, offy, incy]) = <fortran object>
Wrapper for zswap.

Parameters x : input rank-1 array(‘D’) with bounds (*)
y : input rank-1 array(‘D’) with bounds (*)

Returns x : rank-1 array(‘D’) with bounds (*)
y : rank-1 array(‘D’) with bounds (*)

Other Parameters
n : input int, optional

Default: (len(x)-offx)/abs(incx)
offx : input int, optional

Default: 0
incx : input int, optional

Default: 1
offy : input int, optional

Default: 0
incy : input int, optional

Default: 1

5.13 BLAS Level 2 functions

cgemv(...) Wrapper for cgemv.
cgerc(...) Wrapper for cgerc.
cgeru(...) Wrapper for cgeru.
chemv(...) Wrapper for chemv.
ctrmv(...) Wrapper for ctrmv.
csyr(alpha,x,[lower,incx,offx,n,a,overwrite_a]) Wrapper for csyr.
cher(alpha,x,[lower,incx,offx,n,a,overwrite_a]) Wrapper for cher.
cher2(...) Wrapper for cher2.
dgemv(...) Wrapper for dgemv.
dger(...) Wrapper for dger.
dsymv(...) Wrapper for dsymv.
dtrmv(...) Wrapper for dtrmv.
dsyr(alpha,x,[lower,incx,offx,n,a,overwrite_a]) Wrapper for dsyr.
dsyr2(...) Wrapper for dsyr2.
sgemv(...) Wrapper for sgemv.
sger(...) Wrapper for sger.
ssymv(...) Wrapper for ssymv.
strmv(...) Wrapper for strmv.
ssyr(alpha,x,[lower,incx,offx,n,a,overwrite_a]) Wrapper for ssyr.
ssyr2(...) Wrapper for ssyr2.
zgemv(...) Wrapper for zgemv.
zgerc(...) Wrapper for zgerc.
zgeru(...) Wrapper for zgeru.
zhemv(...) Wrapper for zhemv.
ztrmv(...) Wrapper for ztrmv.
zsyr(alpha,x,[lower,incx,offx,n,a,overwrite_a]) Wrapper for zsyr.

Continued on next page

494 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.76 – continued from previous page
zher(alpha,x,[lower,incx,offx,n,a,overwrite_a]) Wrapper for zher.
zher2(...) Wrapper for zher2.

scipy.linalg.blas.cgemv(alpha, a, x[, beta, y, offx, incx, offy, incy, trans, overwrite_y]) = <fortran
object>

Wrapper for cgemv.

Parameters alpha : input complex
a : input rank-2 array(‘F’) with bounds (m,n)
x : input rank-1 array(‘F’) with bounds (*)

Returns y : rank-1 array(‘F’) with bounds (ly)
Other Parameters

beta : input complex, optional
Default: (0.0, 0.0)

y : input rank-1 array(‘F’) with bounds (ly)
overwrite_y : input int, optional

Default: 0
offx : input int, optional

Default: 0
incx : input int, optional

Default: 1
offy : input int, optional

Default: 0
incy : input int, optional

Default: 1
trans : input int, optional

Default: 0

scipy.linalg.blas.cgerc(alpha, x, y[, incx, incy, a, overwrite_x, overwrite_y, overwrite_a]) = <for-
tran object>

Wrapper for cgerc.

Parameters alpha : input complex
x : input rank-1 array(‘F’) with bounds (m)
y : input rank-1 array(‘F’) with bounds (n)

Returns a : rank-2 array(‘F’) with bounds (m,n)
Other Parameters

overwrite_x : input int, optional
Default: 1

incx : input int, optional
Default: 1

overwrite_y : input int, optional
Default: 1

incy : input int, optional
Default: 1

a : input rank-2 array(‘F’) with bounds (m,n), optional
Default: (0.0,0.0)

overwrite_a : input int, optional
Default: 0

scipy.linalg.blas.cgeru(alpha, x, y[, incx, incy, a, overwrite_x, overwrite_y, overwrite_a]) = <for-
tran object>

Wrapper for cgeru.

5.13. BLAS Level 2 functions 495

SciPy Reference Guide, Release 0.16.0

Parameters alpha : input complex
x : input rank-1 array(‘F’) with bounds (m)
y : input rank-1 array(‘F’) with bounds (n)

Returns a : rank-2 array(‘F’) with bounds (m,n)
Other Parameters

overwrite_x : input int, optional
Default: 1

incx : input int, optional
Default: 1

overwrite_y : input int, optional
Default: 1

incy : input int, optional
Default: 1

a : input rank-2 array(‘F’) with bounds (m,n), optional
Default: (0.0,0.0)

overwrite_a : input int, optional
Default: 0

scipy.linalg.blas.chemv(alpha, a, x[, beta, y, offx, incx, offy, incy, lower, overwrite_y]) = <fortran
object>

Wrapper for chemv.

Parameters alpha : input complex
a : input rank-2 array(‘F’) with bounds (n,n)
x : input rank-1 array(‘F’) with bounds (*)

Returns y : rank-1 array(‘F’) with bounds (ly)
Other Parameters

beta : input complex, optional
Default: (0.0, 0.0)

y : input rank-1 array(‘F’) with bounds (ly)
overwrite_y : input int, optional

Default: 0
offx : input int, optional

Default: 0
incx : input int, optional

Default: 1
offy : input int, optional

Default: 0
incy : input int, optional

Default: 1
lower : input int, optional

Default: 0

scipy.linalg.blas.ctrmv(a, x[, offx, incx, lower, trans, unitdiag, overwrite_x]) = <fortran object>
Wrapper for ctrmv.

Parameters a : input rank-2 array(‘F’) with bounds (n,n)
x : input rank-1 array(‘F’) with bounds (*)

Returns x : rank-1 array(‘F’) with bounds (*)
Other Parameters

overwrite_x : input int, optional
Default: 0

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

496 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

lower : input int, optional
Default: 0

trans : input int, optional
Default: 0

unitdiag : input int, optional
Default: 0

scipy.linalg.blas.csyr(alpha, x[, lower, incx, offx, n, a, overwrite_a]) = <fortran object>
Wrapper for csyr.

Parameters alpha : input complex
x : input rank-1 array(‘F’) with bounds (*)

Returns a : rank-2 array(‘F’) with bounds (n,n)
Other Parameters

lower : input int, optional
Default: 0

incx : input int, optional
Default: 1

offx : input int, optional
Default: 0

n : input int, optional
Default: (len(x)-1-offx)/abs(incx)+1

a : input rank-2 array(‘F’) with bounds (n,n)
overwrite_a : input int, optional

Default: 0

scipy.linalg.blas.cher(alpha, x[, lower, incx, offx, n, a, overwrite_a]) = <fortran object>
Wrapper for cher.

Parameters alpha : input complex
x : input rank-1 array(‘F’) with bounds (*)

Returns a : rank-2 array(‘F’) with bounds (n,n)
Other Parameters

lower : input int, optional
Default: 0

incx : input int, optional
Default: 1

offx : input int, optional
Default: 0

n : input int, optional
Default: (len(x)-1-offx)/abs(incx)+1

a : input rank-2 array(‘F’) with bounds (n,n)
overwrite_a : input int, optional

Default: 0

scipy.linalg.blas.cher2(alpha, x, y[, lower, incx, offx, incy, offy, n, a, overwrite_a]) = <fortran
object>

Wrapper for cher2.

Parameters alpha : input complex
x : input rank-1 array(‘F’) with bounds (*)
y : input rank-1 array(‘F’) with bounds (*)

Returns a : rank-2 array(‘F’) with bounds (n,n)
Other Parameters

lower : input int, optional
Default: 0

incx : input int, optional

5.13. BLAS Level 2 functions 497

SciPy Reference Guide, Release 0.16.0

Default: 1
offx : input int, optional

Default: 0
incy : input int, optional

Default: 1
offy : input int, optional

Default: 0
n : input int, optional

Default: ((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-
offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1)

a : input rank-2 array(‘F’) with bounds (n,n)
overwrite_a : input int, optional

Default: 0

scipy.linalg.blas.dgemv(alpha, a, x[, beta, y, offx, incx, offy, incy, trans, overwrite_y]) = <fortran
object>

Wrapper for dgemv.

Parameters alpha : input float
a : input rank-2 array(‘d’) with bounds (m,n)
x : input rank-1 array(‘d’) with bounds (*)

Returns y : rank-1 array(‘d’) with bounds (ly)
Other Parameters

beta : input float, optional
Default: 0.0

y : input rank-1 array(‘d’) with bounds (ly)
overwrite_y : input int, optional

Default: 0
offx : input int, optional

Default: 0
incx : input int, optional

Default: 1
offy : input int, optional

Default: 0
incy : input int, optional

Default: 1
trans : input int, optional

Default: 0

scipy.linalg.blas.dger(alpha, x, y[, incx, incy, a, overwrite_x, overwrite_y, overwrite_a]) = <for-
tran object>

Wrapper for dger.

Parameters alpha : input float
x : input rank-1 array(‘d’) with bounds (m)
y : input rank-1 array(‘d’) with bounds (n)

Returns a : rank-2 array(‘d’) with bounds (m,n)
Other Parameters

overwrite_x : input int, optional
Default: 1

incx : input int, optional
Default: 1

overwrite_y : input int, optional
Default: 1

incy : input int, optional
Default: 1

498 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

a : input rank-2 array(‘d’) with bounds (m,n), optional
Default: 0.0

overwrite_a : input int, optional
Default: 0

scipy.linalg.blas.dsymv(alpha, a, x[, beta, y, offx, incx, offy, incy, lower, overwrite_y]) = <fortran
object>

Wrapper for dsymv.

Parameters alpha : input float
a : input rank-2 array(‘d’) with bounds (n,n)
x : input rank-1 array(‘d’) with bounds (*)

Returns y : rank-1 array(‘d’) with bounds (ly)
Other Parameters

beta : input float, optional
Default: 0.0

y : input rank-1 array(‘d’) with bounds (ly)
overwrite_y : input int, optional

Default: 0
offx : input int, optional

Default: 0
incx : input int, optional

Default: 1
offy : input int, optional

Default: 0
incy : input int, optional

Default: 1
lower : input int, optional

Default: 0

scipy.linalg.blas.dtrmv(a, x[, offx, incx, lower, trans, unitdiag, overwrite_x]) = <fortran object>
Wrapper for dtrmv.

Parameters a : input rank-2 array(‘d’) with bounds (n,n)
x : input rank-1 array(‘d’) with bounds (*)

Returns x : rank-1 array(‘d’) with bounds (*)
Other Parameters

overwrite_x : input int, optional
Default: 0

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

lower : input int, optional
Default: 0

trans : input int, optional
Default: 0

unitdiag : input int, optional
Default: 0

scipy.linalg.blas.dsyr(alpha, x[, lower, incx, offx, n, a, overwrite_a]) = <fortran object>
Wrapper for dsyr.

Parameters alpha : input float
x : input rank-1 array(‘d’) with bounds (*)

Returns a : rank-2 array(‘d’) with bounds (n,n)

5.13. BLAS Level 2 functions 499

SciPy Reference Guide, Release 0.16.0

Other Parameters
lower : input int, optional

Default: 0
incx : input int, optional

Default: 1
offx : input int, optional

Default: 0
n : input int, optional

Default: (len(x)-1-offx)/abs(incx)+1
a : input rank-2 array(‘d’) with bounds (n,n)
overwrite_a : input int, optional

Default: 0

scipy.linalg.blas.dsyr2(alpha, x, y[, lower, incx, offx, incy, offy, n, a, overwrite_a]) = <fortran
object>

Wrapper for dsyr2.

Parameters alpha : input float
x : input rank-1 array(‘d’) with bounds (*)
y : input rank-1 array(‘d’) with bounds (*)

Returns a : rank-2 array(‘d’) with bounds (n,n)
Other Parameters

lower : input int, optional
Default: 0

incx : input int, optional
Default: 1

offx : input int, optional
Default: 0

incy : input int, optional
Default: 1

offy : input int, optional
Default: 0

n : input int, optional
Default: ((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-
offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1)

a : input rank-2 array(‘d’) with bounds (n,n)
overwrite_a : input int, optional

Default: 0

scipy.linalg.blas.sgemv(alpha, a, x[, beta, y, offx, incx, offy, incy, trans, overwrite_y]) = <fortran
object>

Wrapper for sgemv.

Parameters alpha : input float
a : input rank-2 array(‘f’) with bounds (m,n)
x : input rank-1 array(‘f’) with bounds (*)

Returns y : rank-1 array(‘f’) with bounds (ly)
Other Parameters

beta : input float, optional
Default: 0.0

y : input rank-1 array(‘f’) with bounds (ly)
overwrite_y : input int, optional

Default: 0
offx : input int, optional

Default: 0
incx : input int, optional

500 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Default: 1
offy : input int, optional

Default: 0
incy : input int, optional

Default: 1
trans : input int, optional

Default: 0

scipy.linalg.blas.sger(alpha, x, y[, incx, incy, a, overwrite_x, overwrite_y, overwrite_a]) = <for-
tran object>

Wrapper for sger.

Parameters alpha : input float
x : input rank-1 array(‘f’) with bounds (m)
y : input rank-1 array(‘f’) with bounds (n)

Returns a : rank-2 array(‘f’) with bounds (m,n)
Other Parameters

overwrite_x : input int, optional
Default: 1

incx : input int, optional
Default: 1

overwrite_y : input int, optional
Default: 1

incy : input int, optional
Default: 1

a : input rank-2 array(‘f’) with bounds (m,n), optional
Default: 0.0

overwrite_a : input int, optional
Default: 0

scipy.linalg.blas.ssymv(alpha, a, x[, beta, y, offx, incx, offy, incy, lower, overwrite_y]) = <fortran
object>

Wrapper for ssymv.

Parameters alpha : input float
a : input rank-2 array(‘f’) with bounds (n,n)
x : input rank-1 array(‘f’) with bounds (*)

Returns y : rank-1 array(‘f’) with bounds (ly)
Other Parameters

beta : input float, optional
Default: 0.0

y : input rank-1 array(‘f’) with bounds (ly)
overwrite_y : input int, optional

Default: 0
offx : input int, optional

Default: 0
incx : input int, optional

Default: 1
offy : input int, optional

Default: 0
incy : input int, optional

Default: 1
lower : input int, optional

Default: 0

scipy.linalg.blas.strmv(a, x[, offx, incx, lower, trans, unitdiag, overwrite_x]) = <fortran object>
Wrapper for strmv.

5.13. BLAS Level 2 functions 501

SciPy Reference Guide, Release 0.16.0

Parameters a : input rank-2 array(‘f’) with bounds (n,n)
x : input rank-1 array(‘f’) with bounds (*)

Returns x : rank-1 array(‘f’) with bounds (*)
Other Parameters

overwrite_x : input int, optional
Default: 0

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

lower : input int, optional
Default: 0

trans : input int, optional
Default: 0

unitdiag : input int, optional
Default: 0

scipy.linalg.blas.ssyr(alpha, x[, lower, incx, offx, n, a, overwrite_a]) = <fortran object>
Wrapper for ssyr.

Parameters alpha : input float
x : input rank-1 array(‘f’) with bounds (*)

Returns a : rank-2 array(‘f’) with bounds (n,n)
Other Parameters

lower : input int, optional
Default: 0

incx : input int, optional
Default: 1

offx : input int, optional
Default: 0

n : input int, optional
Default: (len(x)-1-offx)/abs(incx)+1

a : input rank-2 array(‘f’) with bounds (n,n)
overwrite_a : input int, optional

Default: 0

scipy.linalg.blas.ssyr2(alpha, x, y[, lower, incx, offx, incy, offy, n, a, overwrite_a]) = <fortran
object>

Wrapper for ssyr2.

Parameters alpha : input float
x : input rank-1 array(‘f’) with bounds (*)
y : input rank-1 array(‘f’) with bounds (*)

Returns a : rank-2 array(‘f’) with bounds (n,n)
Other Parameters

lower : input int, optional
Default: 0

incx : input int, optional
Default: 1

offx : input int, optional
Default: 0

incy : input int, optional
Default: 1

offy : input int, optional
Default: 0

n : input int, optional

502 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Default: ((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-
offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1)

a : input rank-2 array(‘f’) with bounds (n,n)
overwrite_a : input int, optional

Default: 0

scipy.linalg.blas.zgemv(alpha, a, x[, beta, y, offx, incx, offy, incy, trans, overwrite_y]) = <fortran
object>

Wrapper for zgemv.

Parameters alpha : input complex
a : input rank-2 array(‘D’) with bounds (m,n)
x : input rank-1 array(‘D’) with bounds (*)

Returns y : rank-1 array(‘D’) with bounds (ly)
Other Parameters

beta : input complex, optional
Default: (0.0, 0.0)

y : input rank-1 array(‘D’) with bounds (ly)
overwrite_y : input int, optional

Default: 0
offx : input int, optional

Default: 0
incx : input int, optional

Default: 1
offy : input int, optional

Default: 0
incy : input int, optional

Default: 1
trans : input int, optional

Default: 0

scipy.linalg.blas.zgerc(alpha, x, y[, incx, incy, a, overwrite_x, overwrite_y, overwrite_a]) = <for-
tran object>

Wrapper for zgerc.

Parameters alpha : input complex
x : input rank-1 array(‘D’) with bounds (m)
y : input rank-1 array(‘D’) with bounds (n)

Returns a : rank-2 array(‘D’) with bounds (m,n)
Other Parameters

overwrite_x : input int, optional
Default: 1

incx : input int, optional
Default: 1

overwrite_y : input int, optional
Default: 1

incy : input int, optional
Default: 1

a : input rank-2 array(‘D’) with bounds (m,n), optional
Default: (0.0,0.0)

overwrite_a : input int, optional
Default: 0

scipy.linalg.blas.zgeru(alpha, x, y[, incx, incy, a, overwrite_x, overwrite_y, overwrite_a]) = <for-
tran object>

Wrapper for zgeru.

5.13. BLAS Level 2 functions 503

SciPy Reference Guide, Release 0.16.0

Parameters alpha : input complex
x : input rank-1 array(‘D’) with bounds (m)
y : input rank-1 array(‘D’) with bounds (n)

Returns a : rank-2 array(‘D’) with bounds (m,n)
Other Parameters

overwrite_x : input int, optional
Default: 1

incx : input int, optional
Default: 1

overwrite_y : input int, optional
Default: 1

incy : input int, optional
Default: 1

a : input rank-2 array(‘D’) with bounds (m,n), optional
Default: (0.0,0.0)

overwrite_a : input int, optional
Default: 0

scipy.linalg.blas.zhemv(alpha, a, x[, beta, y, offx, incx, offy, incy, lower, overwrite_y]) = <fortran
object>

Wrapper for zhemv.

Parameters alpha : input complex
a : input rank-2 array(‘D’) with bounds (n,n)
x : input rank-1 array(‘D’) with bounds (*)

Returns y : rank-1 array(‘D’) with bounds (ly)
Other Parameters

beta : input complex, optional
Default: (0.0, 0.0)

y : input rank-1 array(‘D’) with bounds (ly)
overwrite_y : input int, optional

Default: 0
offx : input int, optional

Default: 0
incx : input int, optional

Default: 1
offy : input int, optional

Default: 0
incy : input int, optional

Default: 1
lower : input int, optional

Default: 0

scipy.linalg.blas.ztrmv(a, x[, offx, incx, lower, trans, unitdiag, overwrite_x]) = <fortran object>
Wrapper for ztrmv.

Parameters a : input rank-2 array(‘D’) with bounds (n,n)
x : input rank-1 array(‘D’) with bounds (*)

Returns x : rank-1 array(‘D’) with bounds (*)
Other Parameters

overwrite_x : input int, optional
Default: 0

offx : input int, optional
Default: 0

incx : input int, optional
Default: 1

504 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

lower : input int, optional
Default: 0

trans : input int, optional
Default: 0

unitdiag : input int, optional
Default: 0

scipy.linalg.blas.zsyr(alpha, x[, lower, incx, offx, n, a, overwrite_a]) = <fortran object>
Wrapper for zsyr.

Parameters alpha : input complex
x : input rank-1 array(‘D’) with bounds (*)

Returns a : rank-2 array(‘D’) with bounds (n,n)
Other Parameters

lower : input int, optional
Default: 0

incx : input int, optional
Default: 1

offx : input int, optional
Default: 0

n : input int, optional
Default: (len(x)-1-offx)/abs(incx)+1

a : input rank-2 array(‘D’) with bounds (n,n)
overwrite_a : input int, optional

Default: 0

scipy.linalg.blas.zher(alpha, x[, lower, incx, offx, n, a, overwrite_a]) = <fortran object>
Wrapper for zher.

Parameters alpha : input complex
x : input rank-1 array(‘D’) with bounds (*)

Returns a : rank-2 array(‘D’) with bounds (n,n)
Other Parameters

lower : input int, optional
Default: 0

incx : input int, optional
Default: 1

offx : input int, optional
Default: 0

n : input int, optional
Default: (len(x)-1-offx)/abs(incx)+1

a : input rank-2 array(‘D’) with bounds (n,n)
overwrite_a : input int, optional

Default: 0

scipy.linalg.blas.zher2(alpha, x, y[, lower, incx, offx, incy, offy, n, a, overwrite_a]) = <fortran
object>

Wrapper for zher2.

Parameters alpha : input complex
x : input rank-1 array(‘D’) with bounds (*)
y : input rank-1 array(‘D’) with bounds (*)

Returns a : rank-2 array(‘D’) with bounds (n,n)
Other Parameters

lower : input int, optional
Default: 0

incx : input int, optional

5.13. BLAS Level 2 functions 505

SciPy Reference Guide, Release 0.16.0

Default: 1
offx : input int, optional

Default: 0
incy : input int, optional

Default: 1
offy : input int, optional

Default: 0
n : input int, optional

Default: ((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-
offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1)

a : input rank-2 array(‘D’) with bounds (n,n)
overwrite_a : input int, optional

Default: 0

5.14 BLAS Level 3 functions

cgemm(...) Wrapper for cgemm.
chemm(alpha,a,b,[beta,c,side,lower,overwrite_c]) Wrapper for chemm.
cherk(alpha,a,[beta,c,trans,lower,overwrite_c]) Wrapper for cherk.
cher2k(...) Wrapper for cher2k.
csymm(alpha,a,b,[beta,c,side,lower,overwrite_c]) Wrapper for csymm.
csyrk(alpha,a,[beta,c,trans,lower,overwrite_c]) Wrapper for csyrk.
csyr2k(...) Wrapper for csyr2k.
dgemm(...) Wrapper for dgemm.
dsymm(alpha,a,b,[beta,c,side,lower,overwrite_c]) Wrapper for dsymm.
dsyrk(alpha,a,[beta,c,trans,lower,overwrite_c]) Wrapper for dsyrk.
dsyr2k(...) Wrapper for dsyr2k.
sgemm(...) Wrapper for sgemm.
ssymm(alpha,a,b,[beta,c,side,lower,overwrite_c]) Wrapper for ssymm.
ssyrk(alpha,a,[beta,c,trans,lower,overwrite_c]) Wrapper for ssyrk.
ssyr2k(...) Wrapper for ssyr2k.
zgemm(...) Wrapper for zgemm.
zhemm(alpha,a,b,[beta,c,side,lower,overwrite_c]) Wrapper for zhemm.
zherk(alpha,a,[beta,c,trans,lower,overwrite_c]) Wrapper for zherk.
zher2k(...) Wrapper for zher2k.
zsymm(alpha,a,b,[beta,c,side,lower,overwrite_c]) Wrapper for zsymm.
zsyrk(alpha,a,[beta,c,trans,lower,overwrite_c]) Wrapper for zsyrk.
zsyr2k(...) Wrapper for zsyr2k.

scipy.linalg.blas.cgemm(alpha, a, b[, beta, c, trans_a, trans_b, overwrite_c]) = <fortran object>
Wrapper for cgemm.

Parameters alpha : input complex
a : input rank-2 array(‘F’) with bounds (lda,ka)
b : input rank-2 array(‘F’) with bounds (ldb,kb)

Returns c : rank-2 array(‘F’) with bounds (m,n)
Other Parameters

beta : input complex, optional
Default: (0.0, 0.0)

c : input rank-2 array(‘F’) with bounds (m,n)
overwrite_c : input int, optional

506 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Default: 0
trans_a : input int, optional

Default: 0
trans_b : input int, optional

Default: 0

scipy.linalg.blas.chemm(alpha, a, b[, beta, c, side, lower, overwrite_c]) = <fortran object>
Wrapper for chemm.

Parameters alpha : input complex
a : input rank-2 array(‘F’) with bounds (lda,ka)
b : input rank-2 array(‘F’) with bounds (ldb,kb)

Returns c : rank-2 array(‘F’) with bounds (m,n)
Other Parameters

beta : input complex, optional
Default: (0.0, 0.0)

c : input rank-2 array(‘F’) with bounds (m,n)
overwrite_c : input int, optional

Default: 0
side : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.blas.cherk(alpha, a[, beta, c, trans, lower, overwrite_c]) = <fortran object>
Wrapper for cherk.

Parameters alpha : input complex
a : input rank-2 array(‘F’) with bounds (lda,ka)

Returns c : rank-2 array(‘F’) with bounds (n,n)
Other Parameters

beta : input complex, optional
Default: (0.0, 0.0)

c : input rank-2 array(‘F’) with bounds (n,n)
overwrite_c : input int, optional

Default: 0
trans : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.blas.cher2k(alpha, a, b[, beta, c, trans, lower, overwrite_c]) = <fortran object>
Wrapper for cher2k.

Parameters alpha : input complex
a : input rank-2 array(‘F’) with bounds (lda,ka)
b : input rank-2 array(‘F’) with bounds (ldb,kb)

Returns c : rank-2 array(‘F’) with bounds (n,n)
Other Parameters

beta : input complex, optional
Default: (0.0, 0.0)

c : input rank-2 array(‘F’) with bounds (n,n)
overwrite_c : input int, optional

Default: 0
trans : input int, optional

Default: 0
lower : input int, optional

5.14. BLAS Level 3 functions 507

SciPy Reference Guide, Release 0.16.0

Default: 0

scipy.linalg.blas.csymm(alpha, a, b[, beta, c, side, lower, overwrite_c]) = <fortran object>
Wrapper for csymm.

Parameters alpha : input complex
a : input rank-2 array(‘F’) with bounds (lda,ka)
b : input rank-2 array(‘F’) with bounds (ldb,kb)

Returns c : rank-2 array(‘F’) with bounds (m,n)
Other Parameters

beta : input complex, optional
Default: (0.0, 0.0)

c : input rank-2 array(‘F’) with bounds (m,n)
overwrite_c : input int, optional

Default: 0
side : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.blas.csyrk(alpha, a[, beta, c, trans, lower, overwrite_c]) = <fortran object>
Wrapper for csyrk.

Parameters alpha : input complex
a : input rank-2 array(‘F’) with bounds (lda,ka)

Returns c : rank-2 array(‘F’) with bounds (n,n)
Other Parameters

beta : input complex, optional
Default: (0.0, 0.0)

c : input rank-2 array(‘F’) with bounds (n,n)
overwrite_c : input int, optional

Default: 0
trans : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.blas.csyr2k(alpha, a, b[, beta, c, trans, lower, overwrite_c]) = <fortran object>
Wrapper for csyr2k.

Parameters alpha : input complex
a : input rank-2 array(‘F’) with bounds (lda,ka)
b : input rank-2 array(‘F’) with bounds (ldb,kb)

Returns c : rank-2 array(‘F’) with bounds (n,n)
Other Parameters

beta : input complex, optional
Default: (0.0, 0.0)

c : input rank-2 array(‘F’) with bounds (n,n)
overwrite_c : input int, optional

Default: 0
trans : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.blas.dgemm(alpha, a, b[, beta, c, trans_a, trans_b, overwrite_c]) = <fortran object>
Wrapper for dgemm.

508 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters alpha : input float
a : input rank-2 array(‘d’) with bounds (lda,ka)
b : input rank-2 array(‘d’) with bounds (ldb,kb)

Returns c : rank-2 array(‘d’) with bounds (m,n)
Other Parameters

beta : input float, optional
Default: 0.0

c : input rank-2 array(‘d’) with bounds (m,n)
overwrite_c : input int, optional

Default: 0
trans_a : input int, optional

Default: 0
trans_b : input int, optional

Default: 0

scipy.linalg.blas.dsymm(alpha, a, b[, beta, c, side, lower, overwrite_c]) = <fortran object>
Wrapper for dsymm.

Parameters alpha : input float
a : input rank-2 array(‘d’) with bounds (lda,ka)
b : input rank-2 array(‘d’) with bounds (ldb,kb)

Returns c : rank-2 array(‘d’) with bounds (m,n)
Other Parameters

beta : input float, optional
Default: 0.0

c : input rank-2 array(‘d’) with bounds (m,n)
overwrite_c : input int, optional

Default: 0
side : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.blas.dsyrk(alpha, a[, beta, c, trans, lower, overwrite_c]) = <fortran object>
Wrapper for dsyrk.

Parameters alpha : input float
a : input rank-2 array(‘d’) with bounds (lda,ka)

Returns c : rank-2 array(‘d’) with bounds (n,n)
Other Parameters

beta : input float, optional
Default: 0.0

c : input rank-2 array(‘d’) with bounds (n,n)
overwrite_c : input int, optional

Default: 0
trans : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.blas.dsyr2k(alpha, a, b[, beta, c, trans, lower, overwrite_c]) = <fortran object>
Wrapper for dsyr2k.

Parameters alpha : input float
a : input rank-2 array(‘d’) with bounds (lda,ka)
b : input rank-2 array(‘d’) with bounds (ldb,kb)

Returns c : rank-2 array(‘d’) with bounds (n,n)

5.14. BLAS Level 3 functions 509

SciPy Reference Guide, Release 0.16.0

Other Parameters
beta : input float, optional

Default: 0.0
c : input rank-2 array(‘d’) with bounds (n,n)
overwrite_c : input int, optional

Default: 0
trans : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.blas.sgemm(alpha, a, b[, beta, c, trans_a, trans_b, overwrite_c]) = <fortran object>
Wrapper for sgemm.

Parameters alpha : input float
a : input rank-2 array(‘f’) with bounds (lda,ka)
b : input rank-2 array(‘f’) with bounds (ldb,kb)

Returns c : rank-2 array(‘f’) with bounds (m,n)
Other Parameters

beta : input float, optional
Default: 0.0

c : input rank-2 array(‘f’) with bounds (m,n)
overwrite_c : input int, optional

Default: 0
trans_a : input int, optional

Default: 0
trans_b : input int, optional

Default: 0

scipy.linalg.blas.ssymm(alpha, a, b[, beta, c, side, lower, overwrite_c]) = <fortran object>
Wrapper for ssymm.

Parameters alpha : input float
a : input rank-2 array(‘f’) with bounds (lda,ka)
b : input rank-2 array(‘f’) with bounds (ldb,kb)

Returns c : rank-2 array(‘f’) with bounds (m,n)
Other Parameters

beta : input float, optional
Default: 0.0

c : input rank-2 array(‘f’) with bounds (m,n)
overwrite_c : input int, optional

Default: 0
side : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.blas.ssyrk(alpha, a[, beta, c, trans, lower, overwrite_c]) = <fortran object>
Wrapper for ssyrk.

Parameters alpha : input float
a : input rank-2 array(‘f’) with bounds (lda,ka)

Returns c : rank-2 array(‘f’) with bounds (n,n)
Other Parameters

beta : input float, optional
Default: 0.0

510 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

c : input rank-2 array(‘f’) with bounds (n,n)
overwrite_c : input int, optional

Default: 0
trans : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.blas.ssyr2k(alpha, a, b[, beta, c, trans, lower, overwrite_c]) = <fortran object>
Wrapper for ssyr2k.

Parameters alpha : input float
a : input rank-2 array(‘f’) with bounds (lda,ka)
b : input rank-2 array(‘f’) with bounds (ldb,kb)

Returns c : rank-2 array(‘f’) with bounds (n,n)
Other Parameters

beta : input float, optional
Default: 0.0

c : input rank-2 array(‘f’) with bounds (n,n)
overwrite_c : input int, optional

Default: 0
trans : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.blas.zgemm(alpha, a, b[, beta, c, trans_a, trans_b, overwrite_c]) = <fortran object>
Wrapper for zgemm.

Parameters alpha : input complex
a : input rank-2 array(‘D’) with bounds (lda,ka)
b : input rank-2 array(‘D’) with bounds (ldb,kb)

Returns c : rank-2 array(‘D’) with bounds (m,n)
Other Parameters

beta : input complex, optional
Default: (0.0, 0.0)

c : input rank-2 array(‘D’) with bounds (m,n)
overwrite_c : input int, optional

Default: 0
trans_a : input int, optional

Default: 0
trans_b : input int, optional

Default: 0

scipy.linalg.blas.zhemm(alpha, a, b[, beta, c, side, lower, overwrite_c]) = <fortran object>
Wrapper for zhemm.

Parameters alpha : input complex
a : input rank-2 array(‘D’) with bounds (lda,ka)
b : input rank-2 array(‘D’) with bounds (ldb,kb)

Returns c : rank-2 array(‘D’) with bounds (m,n)
Other Parameters

beta : input complex, optional
Default: (0.0, 0.0)

c : input rank-2 array(‘D’) with bounds (m,n)
overwrite_c : input int, optional

Default: 0

5.14. BLAS Level 3 functions 511

SciPy Reference Guide, Release 0.16.0

side : input int, optional
Default: 0

lower : input int, optional
Default: 0

scipy.linalg.blas.zherk(alpha, a[, beta, c, trans, lower, overwrite_c]) = <fortran object>
Wrapper for zherk.

Parameters alpha : input complex
a : input rank-2 array(‘D’) with bounds (lda,ka)

Returns c : rank-2 array(‘D’) with bounds (n,n)
Other Parameters

beta : input complex, optional
Default: (0.0, 0.0)

c : input rank-2 array(‘D’) with bounds (n,n)
overwrite_c : input int, optional

Default: 0
trans : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.blas.zher2k(alpha, a, b[, beta, c, trans, lower, overwrite_c]) = <fortran object>
Wrapper for zher2k.

Parameters alpha : input complex
a : input rank-2 array(‘D’) with bounds (lda,ka)
b : input rank-2 array(‘D’) with bounds (ldb,kb)

Returns c : rank-2 array(‘D’) with bounds (n,n)
Other Parameters

beta : input complex, optional
Default: (0.0, 0.0)

c : input rank-2 array(‘D’) with bounds (n,n)
overwrite_c : input int, optional

Default: 0
trans : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.blas.zsymm(alpha, a, b[, beta, c, side, lower, overwrite_c]) = <fortran object>
Wrapper for zsymm.

Parameters alpha : input complex
a : input rank-2 array(‘D’) with bounds (lda,ka)
b : input rank-2 array(‘D’) with bounds (ldb,kb)

Returns c : rank-2 array(‘D’) with bounds (m,n)
Other Parameters

beta : input complex, optional
Default: (0.0, 0.0)

c : input rank-2 array(‘D’) with bounds (m,n)
overwrite_c : input int, optional

Default: 0
side : input int, optional

Default: 0
lower : input int, optional

Default: 0

512 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.linalg.blas.zsyrk(alpha, a[, beta, c, trans, lower, overwrite_c]) = <fortran object>
Wrapper for zsyrk.

Parameters alpha : input complex
a : input rank-2 array(‘D’) with bounds (lda,ka)

Returns c : rank-2 array(‘D’) with bounds (n,n)
Other Parameters

beta : input complex, optional
Default: (0.0, 0.0)

c : input rank-2 array(‘D’) with bounds (n,n)
overwrite_c : input int, optional

Default: 0
trans : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.blas.zsyr2k(alpha, a, b[, beta, c, trans, lower, overwrite_c]) = <fortran object>
Wrapper for zsyr2k.

Parameters alpha : input complex
a : input rank-2 array(‘D’) with bounds (lda,ka)
b : input rank-2 array(‘D’) with bounds (ldb,kb)

Returns c : rank-2 array(‘D’) with bounds (n,n)
Other Parameters

beta : input complex, optional
Default: (0.0, 0.0)

c : input rank-2 array(‘D’) with bounds (n,n)
overwrite_c : input int, optional

Default: 0
trans : input int, optional

Default: 0
lower : input int, optional

Default: 0

5.15 Low-level LAPACK functions

This module contains low-level functions from the LAPACK library.

New in version 0.12.0.

Warning: These functions do little to no error checking. It is possible to cause crashes by mis-using them, so
prefer using the higher-level routines in scipy.linalg.

5.16 Finding functions

get_lapack_funcs(names[, arrays, dtype]) Return available LAPACK function objects from names.

5.17 All functions

5.17. All functions 513

SciPy Reference Guide, Release 0.16.0

sgbsv(kl,ku,ab,b,[overwrite_ab,overwrite_b]) Wrapper for sgbsv.
dgbsv(kl,ku,ab,b,[overwrite_ab,overwrite_b]) Wrapper for dgbsv.
cgbsv(kl,ku,ab,b,[overwrite_ab,overwrite_b]) Wrapper for cgbsv.
zgbsv(kl,ku,ab,b,[overwrite_ab,overwrite_b]) Wrapper for zgbsv.
sgbtrf(ab,kl,ku,[m,n,ldab,overwrite_ab]) Wrapper for sgbtrf.
dgbtrf(ab,kl,ku,[m,n,ldab,overwrite_ab]) Wrapper for dgbtrf.
cgbtrf(ab,kl,ku,[m,n,ldab,overwrite_ab]) Wrapper for cgbtrf.
zgbtrf(ab,kl,ku,[m,n,ldab,overwrite_ab]) Wrapper for zgbtrf.
sgbtrs(...) Wrapper for sgbtrs.
dgbtrs(...) Wrapper for dgbtrs.
cgbtrs(...) Wrapper for cgbtrs.
zgbtrs(...) Wrapper for zgbtrs.
sgebal(a,[scale,permute,overwrite_a]) Wrapper for sgebal.
dgebal(a,[scale,permute,overwrite_a]) Wrapper for dgebal.
cgebal(a,[scale,permute,overwrite_a]) Wrapper for cgebal.
zgebal(a,[scale,permute,overwrite_a]) Wrapper for zgebal.
sgees(...) Wrapper for sgees.
dgees(...) Wrapper for dgees.
cgees(...) Wrapper for cgees.
zgees(...) Wrapper for zgees.
sgeev(...) Wrapper for sgeev.
dgeev(...) Wrapper for dgeev.
cgeev(...) Wrapper for cgeev.
zgeev(...) Wrapper for zgeev.
sgeev_lwork(n,[compute_vl,compute_vr]) Wrapper for sgeev_lwork.
dgeev_lwork(n,[compute_vl,compute_vr]) Wrapper for dgeev_lwork.
cgeev_lwork(n,[compute_vl,compute_vr]) Wrapper for cgeev_lwork.
zgeev_lwork(n,[compute_vl,compute_vr]) Wrapper for zgeev_lwork.
sgegv(...) Wrapper for sgegv.
dgegv(...) Wrapper for dgegv.
cgegv(...) Wrapper for cgegv.
zgegv(...) Wrapper for zgegv.
sgehrd(a,[lo,hi,lwork,overwrite_a]) Wrapper for sgehrd.
dgehrd(a,[lo,hi,lwork,overwrite_a]) Wrapper for dgehrd.
cgehrd(a,[lo,hi,lwork,overwrite_a]) Wrapper for cgehrd.
zgehrd(a,[lo,hi,lwork,overwrite_a]) Wrapper for zgehrd.
sgehrd_lwork(n,[lo,hi]) Wrapper for sgehrd_lwork.
dgehrd_lwork(n,[lo,hi]) Wrapper for dgehrd_lwork.
cgehrd_lwork(n,[lo,hi]) Wrapper for cgehrd_lwork.
zgehrd_lwork(n,[lo,hi]) Wrapper for zgehrd_lwork.
sgelss(a,b,[cond,lwork,overwrite_a,overwrite_b]) Wrapper for sgelss.
dgelss(a,b,[cond,lwork,overwrite_a,overwrite_b]) Wrapper for dgelss.
cgelss(a,b,[cond,lwork,overwrite_a,overwrite_b]) Wrapper for cgelss.
zgelss(a,b,[cond,lwork,overwrite_a,overwrite_b]) Wrapper for zgelss.
sgelss_lwork(m,n,nrhs,[cond,lwork]) Wrapper for sgelss_lwork.
dgelss_lwork(m,n,nrhs,[cond,lwork]) Wrapper for dgelss_lwork.
cgelss_lwork(m,n,nrhs,[cond,lwork]) Wrapper for cgelss_lwork.
zgelss_lwork(m,n,nrhs,[cond,lwork]) Wrapper for zgelss_lwork.
sgelsd(...) Wrapper for sgelsd.
dgelsd(...) Wrapper for dgelsd.

Continued on next page

514 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.79 – continued from previous page
cgelsd(...) Wrapper for cgelsd.
zgelsd(...) Wrapper for zgelsd.
sgelsd_lwork(m,n,nrhs,[cond,lwork]) Wrapper for sgelsd_lwork.
dgelsd_lwork(m,n,nrhs,[cond,lwork]) Wrapper for dgelsd_lwork.
cgelsd_lwork(m,n,nrhs,[cond,lwork]) Wrapper for cgelsd_lwork.
zgelsd_lwork(m,n,nrhs,[cond,lwork]) Wrapper for zgelsd_lwork.
sgelsy(...) Wrapper for sgelsy.
dgelsy(...) Wrapper for dgelsy.
cgelsy(...) Wrapper for cgelsy.
zgelsy(...) Wrapper for zgelsy.
sgelsy_lwork(m,n,nrhs,cond,[lwork]) Wrapper for sgelsy_lwork.
dgelsy_lwork(m,n,nrhs,cond,[lwork]) Wrapper for dgelsy_lwork.
cgelsy_lwork(m,n,nrhs,cond,[lwork]) Wrapper for cgelsy_lwork.
zgelsy_lwork(m,n,nrhs,cond,[lwork]) Wrapper for zgelsy_lwork.
sgeqp3(a,[lwork,overwrite_a]) Wrapper for sgeqp3.
dgeqp3(a,[lwork,overwrite_a]) Wrapper for dgeqp3.
cgeqp3(a,[lwork,overwrite_a]) Wrapper for cgeqp3.
zgeqp3(a,[lwork,overwrite_a]) Wrapper for zgeqp3.
sgeqrf(a,[lwork,overwrite_a]) Wrapper for sgeqrf.
dgeqrf(a,[lwork,overwrite_a]) Wrapper for dgeqrf.
cgeqrf(a,[lwork,overwrite_a]) Wrapper for cgeqrf.
zgeqrf(a,[lwork,overwrite_a]) Wrapper for zgeqrf.
sgerqf(a,[lwork,overwrite_a]) Wrapper for sgerqf.
dgerqf(a,[lwork,overwrite_a]) Wrapper for dgerqf.
cgerqf(a,[lwork,overwrite_a]) Wrapper for cgerqf.
zgerqf(a,[lwork,overwrite_a]) Wrapper for zgerqf.
sgesdd(...) Wrapper for sgesdd.
dgesdd(...) Wrapper for dgesdd.
cgesdd(...) Wrapper for cgesdd.
zgesdd(...) Wrapper for zgesdd.
sgesdd_lwork(m,n,[compute_uv,full_matrices]) Wrapper for sgesdd_lwork.
dgesdd_lwork(m,n,[compute_uv,full_matrices]) Wrapper for dgesdd_lwork.
cgesdd_lwork(m,n,[compute_uv,full_matrices]) Wrapper for cgesdd_lwork.
zgesdd_lwork(m,n,[compute_uv,full_matrices]) Wrapper for zgesdd_lwork.
sgesv(a,b,[overwrite_a,overwrite_b]) Wrapper for sgesv.
dgesv(a,b,[overwrite_a,overwrite_b]) Wrapper for dgesv.
cgesv(a,b,[overwrite_a,overwrite_b]) Wrapper for cgesv.
zgesv(a,b,[overwrite_a,overwrite_b]) Wrapper for zgesv.
sgetrf(a,[overwrite_a]) Wrapper for sgetrf.
dgetrf(a,[overwrite_a]) Wrapper for dgetrf.
cgetrf(a,[overwrite_a]) Wrapper for cgetrf.
zgetrf(a,[overwrite_a]) Wrapper for zgetrf.
sgetri(lu,piv,[lwork,overwrite_lu]) Wrapper for sgetri.
dgetri(lu,piv,[lwork,overwrite_lu]) Wrapper for dgetri.
cgetri(lu,piv,[lwork,overwrite_lu]) Wrapper for cgetri.
zgetri(lu,piv,[lwork,overwrite_lu]) Wrapper for zgetri.
sgetri_lwork(n) Wrapper for sgetri_lwork.
dgetri_lwork(n) Wrapper for dgetri_lwork.
cgetri_lwork(n) Wrapper for cgetri_lwork.
zgetri_lwork(n) Wrapper for zgetri_lwork.

Continued on next page

5.17. All functions 515

SciPy Reference Guide, Release 0.16.0

Table 5.79 – continued from previous page
sgetrs(lu,piv,b,[trans,overwrite_b]) Wrapper for sgetrs.
dgetrs(lu,piv,b,[trans,overwrite_b]) Wrapper for dgetrs.
cgetrs(lu,piv,b,[trans,overwrite_b]) Wrapper for cgetrs.
zgetrs(lu,piv,b,[trans,overwrite_b]) Wrapper for zgetrs.
sgges(...) Wrapper for sgges.
dgges(...) Wrapper for dgges.
cgges(...) Wrapper for cgges.
zgges(...) Wrapper for zgges.
sggev(...) Wrapper for sggev.
dggev(...) Wrapper for dggev.
cggev(...) Wrapper for cggev.
zggev(...) Wrapper for zggev.
chbevd(...) Wrapper for chbevd.
zhbevd(...) Wrapper for zhbevd.
chbevx(...) Wrapper for chbevx.
zhbevx(...) Wrapper for zhbevx.
cheev(a,[compute_v,lower,lwork,overwrite_a]) Wrapper for cheev.
zheev(a,[compute_v,lower,lwork,overwrite_a]) Wrapper for zheev.
cheevd(a,[compute_v,lower,lwork,overwrite_a]) Wrapper for cheevd.
zheevd(a,[compute_v,lower,lwork,overwrite_a]) Wrapper for zheevd.
cheevr(...) Wrapper for cheevr.
zheevr(...) Wrapper for zheevr.
chegv(...) Wrapper for chegv.
zhegv(...) Wrapper for zhegv.
chegvd(...) Wrapper for chegvd.
zhegvd(...) Wrapper for zhegvd.
chegvx(...) Wrapper for chegvx.
zhegvx(...) Wrapper for zhegvx.
slarf(v,tau,c,work,[side,incv,overwrite_c]) Wrapper for slarf.
dlarf(v,tau,c,work,[side,incv,overwrite_c]) Wrapper for dlarf.
clarf(v,tau,c,work,[side,incv,overwrite_c]) Wrapper for clarf.
zlarf(v,tau,c,work,[side,incv,overwrite_c]) Wrapper for zlarf.
slarfg(n,alpha,x,[incx,overwrite_x]) Wrapper for slarfg.
dlarfg(n,alpha,x,[incx,overwrite_x]) Wrapper for dlarfg.
clarfg(n,alpha,x,[incx,overwrite_x]) Wrapper for clarfg.
zlarfg(n,alpha,x,[incx,overwrite_x]) Wrapper for zlarfg.
slartg(f,g) Wrapper for slartg.
dlartg(f,g) Wrapper for dlartg.
clartg(f,g) Wrapper for clartg.
zlartg(f,g) Wrapper for zlartg.
dlasd4(i,d,z,[rho]) Wrapper for dlasd4.
slasd4(i,d,z,[rho]) Wrapper for slasd4.
slaswp(a,piv,[k1,k2,off,inc,overwrite_a]) Wrapper for slaswp.
dlaswp(a,piv,[k1,k2,off,inc,overwrite_a]) Wrapper for dlaswp.
claswp(a,piv,[k1,k2,off,inc,overwrite_a]) Wrapper for claswp.
zlaswp(a,piv,[k1,k2,off,inc,overwrite_a]) Wrapper for zlaswp.
slauum(c,[lower,overwrite_c]) Wrapper for slauum.
dlauum(c,[lower,overwrite_c]) Wrapper for dlauum.
clauum(c,[lower,overwrite_c]) Wrapper for clauum.
zlauum(c,[lower,overwrite_c]) Wrapper for zlauum.

Continued on next page

516 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.79 – continued from previous page
spbsv(ab,b,[lower,ldab,overwrite_ab,overwrite_b]) Wrapper for spbsv.
dpbsv(ab,b,[lower,ldab,overwrite_ab,overwrite_b]) Wrapper for dpbsv.
cpbsv(ab,b,[lower,ldab,overwrite_ab,overwrite_b]) Wrapper for cpbsv.
zpbsv(ab,b,[lower,ldab,overwrite_ab,overwrite_b]) Wrapper for zpbsv.
spbtrf(ab,[lower,ldab,overwrite_ab]) Wrapper for spbtrf.
dpbtrf(ab,[lower,ldab,overwrite_ab]) Wrapper for dpbtrf.
cpbtrf(ab,[lower,ldab,overwrite_ab]) Wrapper for cpbtrf.
zpbtrf(ab,[lower,ldab,overwrite_ab]) Wrapper for zpbtrf.
spbtrs(ab,b,[lower,ldab,overwrite_b]) Wrapper for spbtrs.
dpbtrs(ab,b,[lower,ldab,overwrite_b]) Wrapper for dpbtrs.
cpbtrs(ab,b,[lower,ldab,overwrite_b]) Wrapper for cpbtrs.
zpbtrs(ab,b,[lower,ldab,overwrite_b]) Wrapper for zpbtrs.
sposv(a,b,[lower,overwrite_a,overwrite_b]) Wrapper for sposv.
dposv(a,b,[lower,overwrite_a,overwrite_b]) Wrapper for dposv.
cposv(a,b,[lower,overwrite_a,overwrite_b]) Wrapper for cposv.
zposv(a,b,[lower,overwrite_a,overwrite_b]) Wrapper for zposv.
spotrf(a,[lower,clean,overwrite_a]) Wrapper for spotrf.
dpotrf(a,[lower,clean,overwrite_a]) Wrapper for dpotrf.
cpotrf(a,[lower,clean,overwrite_a]) Wrapper for cpotrf.
zpotrf(a,[lower,clean,overwrite_a]) Wrapper for zpotrf.
spotri(c,[lower,overwrite_c]) Wrapper for spotri.
dpotri(c,[lower,overwrite_c]) Wrapper for dpotri.
cpotri(c,[lower,overwrite_c]) Wrapper for cpotri.
zpotri(c,[lower,overwrite_c]) Wrapper for zpotri.
spotrs(c,b,[lower,overwrite_b]) Wrapper for spotrs.
dpotrs(c,b,[lower,overwrite_b]) Wrapper for dpotrs.
cpotrs(c,b,[lower,overwrite_b]) Wrapper for cpotrs.
zpotrs(c,b,[lower,overwrite_b]) Wrapper for zpotrs.
crot(...) Wrapper for crot.
zrot(...) Wrapper for zrot.
strsyl(a,b,c,[trana,tranb,isgn,overwrite_c]) Wrapper for strsyl.
dtrsyl(a,b,c,[trana,tranb,isgn,overwrite_c]) Wrapper for dtrsyl.
ctrsyl(a,b,c,[trana,tranb,isgn,overwrite_c]) Wrapper for ctrsyl.
ztrsyl(a,b,c,[trana,tranb,isgn,overwrite_c]) Wrapper for ztrsyl.
strtri(c,[lower,unitdiag,overwrite_c]) Wrapper for strtri.
dtrtri(c,[lower,unitdiag,overwrite_c]) Wrapper for dtrtri.
ctrtri(c,[lower,unitdiag,overwrite_c]) Wrapper for ctrtri.
ztrtri(c,[lower,unitdiag,overwrite_c]) Wrapper for ztrtri.
strtrs(...) Wrapper for strtrs.
dtrtrs(...) Wrapper for dtrtrs.
ctrtrs(...) Wrapper for ctrtrs.
ztrtrs(...) Wrapper for ztrtrs.
cunghr(a,tau,[lo,hi,lwork,overwrite_a]) Wrapper for cunghr.
zunghr(a,tau,[lo,hi,lwork,overwrite_a]) Wrapper for zunghr.
cungqr(a,tau,[lwork,overwrite_a]) Wrapper for cungqr.
zungqr(a,tau,[lwork,overwrite_a]) Wrapper for zungqr.
cungrq(a,tau,[lwork,overwrite_a]) Wrapper for cungrq.
zungrq(a,tau,[lwork,overwrite_a]) Wrapper for zungrq.
cunmqr(side,trans,a,tau,c,lwork,[overwrite_c]) Wrapper for cunmqr.
zunmqr(side,trans,a,tau,c,lwork,[overwrite_c]) Wrapper for zunmqr.

Continued on next page

5.17. All functions 517

SciPy Reference Guide, Release 0.16.0

Table 5.79 – continued from previous page
sgtsv(...) Wrapper for sgtsv.
dgtsv(...) Wrapper for dgtsv.
cgtsv(...) Wrapper for cgtsv.
zgtsv(...) Wrapper for zgtsv.
sptsv(...) Wrapper for sptsv.
dptsv(...) Wrapper for dptsv.
cptsv(...) Wrapper for cptsv.
zptsv(...) Wrapper for zptsv.
slamch(cmach) Wrapper for slamch.
dlamch(cmach) Wrapper for dlamch.
sorghr(a,tau,[lo,hi,lwork,overwrite_a]) Wrapper for sorghr.
dorghr(a,tau,[lo,hi,lwork,overwrite_a]) Wrapper for dorghr.
sorgqr(a,tau,[lwork,overwrite_a]) Wrapper for sorgqr.
dorgqr(a,tau,[lwork,overwrite_a]) Wrapper for dorgqr.
sorgrq(a,tau,[lwork,overwrite_a]) Wrapper for sorgrq.
dorgrq(a,tau,[lwork,overwrite_a]) Wrapper for dorgrq.
sormqr(side,trans,a,tau,c,lwork,[overwrite_c]) Wrapper for sormqr.
dormqr(side,trans,a,tau,c,lwork,[overwrite_c]) Wrapper for dormqr.
ssbev(ab,[compute_v,lower,ldab,overwrite_ab]) Wrapper for ssbev.
dsbev(ab,[compute_v,lower,ldab,overwrite_ab]) Wrapper for dsbev.
ssbevd(...) Wrapper for ssbevd.
dsbevd(...) Wrapper for dsbevd.
ssbevx(...) Wrapper for ssbevx.
dsbevx(...) Wrapper for dsbevx.
ssyev(a,[compute_v,lower,lwork,overwrite_a]) Wrapper for ssyev.
dsyev(a,[compute_v,lower,lwork,overwrite_a]) Wrapper for dsyev.
ssyevd(a,[compute_v,lower,lwork,overwrite_a]) Wrapper for ssyevd.
dsyevd(a,[compute_v,lower,lwork,overwrite_a]) Wrapper for dsyevd.
ssyevr(...) Wrapper for ssyevr.
dsyevr(...) Wrapper for dsyevr.
ssygv(...) Wrapper for ssygv.
dsygv(...) Wrapper for dsygv.
ssygvd(...) Wrapper for ssygvd.
dsygvd(...) Wrapper for dsygvd.
ssygvx(...) Wrapper for ssygvx.
dsygvx(...) Wrapper for dsygvx.
slange(norm,a) Wrapper for slange.
dlange(norm,a) Wrapper for dlange.
clange(norm,a) Wrapper for clange.
zlange(norm,a) Wrapper for zlange.

scipy.linalg.lapack.sgbsv(kl, ku, ab, b[, overwrite_ab, overwrite_b]) = <fortran object>
Wrapper for sgbsv.

Parameters kl : input int
ku : input int
ab : input rank-2 array(‘f’) with bounds (2*kl+ku+1,n)
b : input rank-2 array(‘f’) with bounds (n,nrhs)

Returns lub : rank-2 array(‘f’) with bounds (2*kl+ku+1,n) and ab storage
piv : rank-1 array(‘i’) with bounds (n)
x : rank-2 array(‘f’) with bounds (n,nrhs) and b storage
info : int

518 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Other Parameters
overwrite_ab : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.dgbsv(kl, ku, ab, b[, overwrite_ab, overwrite_b]) = <fortran object>
Wrapper for dgbsv.

Parameters kl : input int
ku : input int
ab : input rank-2 array(‘d’) with bounds (2*kl+ku+1,n)
b : input rank-2 array(‘d’) with bounds (n,nrhs)

Returns lub : rank-2 array(‘d’) with bounds (2*kl+ku+1,n) and ab storage
piv : rank-1 array(‘i’) with bounds (n)
x : rank-2 array(‘d’) with bounds (n,nrhs) and b storage
info : int

Other Parameters
overwrite_ab : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.cgbsv(kl, ku, ab, b[, overwrite_ab, overwrite_b]) = <fortran object>
Wrapper for cgbsv.

Parameters kl : input int
ku : input int
ab : input rank-2 array(‘F’) with bounds (2*kl+ku+1,n)
b : input rank-2 array(‘F’) with bounds (n,nrhs)

Returns lub : rank-2 array(‘F’) with bounds (2*kl+ku+1,n) and ab storage
piv : rank-1 array(‘i’) with bounds (n)
x : rank-2 array(‘F’) with bounds (n,nrhs) and b storage
info : int

Other Parameters
overwrite_ab : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.zgbsv(kl, ku, ab, b[, overwrite_ab, overwrite_b]) = <fortran object>
Wrapper for zgbsv.

Parameters kl : input int
ku : input int
ab : input rank-2 array(‘D’) with bounds (2*kl+ku+1,n)
b : input rank-2 array(‘D’) with bounds (n,nrhs)

Returns lub : rank-2 array(‘D’) with bounds (2*kl+ku+1,n) and ab storage
piv : rank-1 array(‘i’) with bounds (n)
x : rank-2 array(‘D’) with bounds (n,nrhs) and b storage
info : int

Other Parameters
overwrite_ab : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

5.17. All functions 519

SciPy Reference Guide, Release 0.16.0

scipy.linalg.lapack.sgbtrf(ab, kl, ku[, m, n, ldab, overwrite_ab]) = <fortran object>
Wrapper for sgbtrf.

Parameters ab : input rank-2 array(‘f’) with bounds (ldab,*)
kl : input int
ku : input int

Returns lu : rank-2 array(‘f’) with bounds (ldab,*) and ab storage
ipiv : rank-1 array(‘i’) with bounds (MIN(m,n))
info : int

Other Parameters
m : input int, optional

Default: shape(ab,1)
n : input int, optional

Default: shape(ab,1)
overwrite_ab : input int, optional

Default: 0
ldab : input int, optional

Default: shape(ab,0)

scipy.linalg.lapack.dgbtrf(ab, kl, ku[, m, n, ldab, overwrite_ab]) = <fortran object>
Wrapper for dgbtrf.

Parameters ab : input rank-2 array(‘d’) with bounds (ldab,*)
kl : input int
ku : input int

Returns lu : rank-2 array(‘d’) with bounds (ldab,*) and ab storage
ipiv : rank-1 array(‘i’) with bounds (MIN(m,n))
info : int

Other Parameters
m : input int, optional

Default: shape(ab,1)
n : input int, optional

Default: shape(ab,1)
overwrite_ab : input int, optional

Default: 0
ldab : input int, optional

Default: shape(ab,0)

scipy.linalg.lapack.cgbtrf(ab, kl, ku[, m, n, ldab, overwrite_ab]) = <fortran object>
Wrapper for cgbtrf.

Parameters ab : input rank-2 array(‘F’) with bounds (ldab,*)
kl : input int
ku : input int

Returns lu : rank-2 array(‘F’) with bounds (ldab,*) and ab storage
ipiv : rank-1 array(‘i’) with bounds (MIN(m,n))
info : int

Other Parameters
m : input int, optional

Default: shape(ab,1)
n : input int, optional

Default: shape(ab,1)
overwrite_ab : input int, optional

Default: 0
ldab : input int, optional

Default: shape(ab,0)

520 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.linalg.lapack.zgbtrf(ab, kl, ku[, m, n, ldab, overwrite_ab]) = <fortran object>
Wrapper for zgbtrf.

Parameters ab : input rank-2 array(‘D’) with bounds (ldab,*)
kl : input int
ku : input int

Returns lu : rank-2 array(‘D’) with bounds (ldab,*) and ab storage
ipiv : rank-1 array(‘i’) with bounds (MIN(m,n))
info : int

Other Parameters
m : input int, optional

Default: shape(ab,1)
n : input int, optional

Default: shape(ab,1)
overwrite_ab : input int, optional

Default: 0
ldab : input int, optional

Default: shape(ab,0)

scipy.linalg.lapack.sgbtrs(ab, kl, ku, b, ipiv[, trans, n, ldab, ldb, overwrite_b]) = <fortran ob-
ject>

Wrapper for sgbtrs.

Parameters ab : input rank-2 array(‘f’) with bounds (ldab,*)
kl : input int
ku : input int
b : input rank-2 array(‘f’) with bounds (ldb,*)
ipiv : input rank-1 array(‘i’) with bounds (n)

Returns x : rank-2 array(‘f’) with bounds (ldb,*) and b storage
info : int

Other Parameters
overwrite_b : input int, optional

Default: 0
trans : input int, optional

Default: 0
n : input int, optional

Default: shape(ab,1)
ldab : input int, optional

Default: shape(ab,0)
ldb : input int, optional

Default: shape(b,0)

scipy.linalg.lapack.dgbtrs(ab, kl, ku, b, ipiv[, trans, n, ldab, ldb, overwrite_b]) = <fortran ob-
ject>

Wrapper for dgbtrs.

Parameters ab : input rank-2 array(‘d’) with bounds (ldab,*)
kl : input int
ku : input int
b : input rank-2 array(‘d’) with bounds (ldb,*)
ipiv : input rank-1 array(‘i’) with bounds (n)

Returns x : rank-2 array(‘d’) with bounds (ldb,*) and b storage
info : int

Other Parameters
overwrite_b : input int, optional

Default: 0
trans : input int, optional

5.17. All functions 521

SciPy Reference Guide, Release 0.16.0

Default: 0
n : input int, optional

Default: shape(ab,1)
ldab : input int, optional

Default: shape(ab,0)
ldb : input int, optional

Default: shape(b,0)

scipy.linalg.lapack.cgbtrs(ab, kl, ku, b, ipiv[, trans, n, ldab, ldb, overwrite_b]) = <fortran ob-
ject>

Wrapper for cgbtrs.

Parameters ab : input rank-2 array(‘F’) with bounds (ldab,*)
kl : input int
ku : input int
b : input rank-2 array(‘F’) with bounds (ldb,*)
ipiv : input rank-1 array(‘i’) with bounds (n)

Returns x : rank-2 array(‘F’) with bounds (ldb,*) and b storage
info : int

Other Parameters
overwrite_b : input int, optional

Default: 0
trans : input int, optional

Default: 0
n : input int, optional

Default: shape(ab,1)
ldab : input int, optional

Default: shape(ab,0)
ldb : input int, optional

Default: shape(b,0)

scipy.linalg.lapack.zgbtrs(ab, kl, ku, b, ipiv[, trans, n, ldab, ldb, overwrite_b]) = <fortran ob-
ject>

Wrapper for zgbtrs.

Parameters ab : input rank-2 array(‘D’) with bounds (ldab,*)
kl : input int
ku : input int
b : input rank-2 array(‘D’) with bounds (ldb,*)
ipiv : input rank-1 array(‘i’) with bounds (n)

Returns x : rank-2 array(‘D’) with bounds (ldb,*) and b storage
info : int

Other Parameters
overwrite_b : input int, optional

Default: 0
trans : input int, optional

Default: 0
n : input int, optional

Default: shape(ab,1)
ldab : input int, optional

Default: shape(ab,0)
ldb : input int, optional

Default: shape(b,0)

scipy.linalg.lapack.sgebal(a[, scale, permute, overwrite_a]) = <fortran object>
Wrapper for sgebal.

522 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters a : input rank-2 array(‘f’) with bounds (m,n)
Returns ba : rank-2 array(‘f’) with bounds (m,n) and a storage

lo : int
hi : int
pivscale : rank-1 array(‘f’) with bounds (n)
info : int

Other Parameters
scale : input int, optional

Default: 0
permute : input int, optional

Default: 0
overwrite_a : input int, optional

Default: 0

scipy.linalg.lapack.dgebal(a[, scale, permute, overwrite_a]) = <fortran object>
Wrapper for dgebal.

Parameters a : input rank-2 array(‘d’) with bounds (m,n)
Returns ba : rank-2 array(‘d’) with bounds (m,n) and a storage

lo : int
hi : int
pivscale : rank-1 array(‘d’) with bounds (n)
info : int

Other Parameters
scale : input int, optional

Default: 0
permute : input int, optional

Default: 0
overwrite_a : input int, optional

Default: 0

scipy.linalg.lapack.cgebal(a[, scale, permute, overwrite_a]) = <fortran object>
Wrapper for cgebal.

Parameters a : input rank-2 array(‘F’) with bounds (m,n)
Returns ba : rank-2 array(‘F’) with bounds (m,n) and a storage

lo : int
hi : int
pivscale : rank-1 array(‘f’) with bounds (n)
info : int

Other Parameters
scale : input int, optional

Default: 0
permute : input int, optional

Default: 0
overwrite_a : input int, optional

Default: 0

scipy.linalg.lapack.zgebal(a[, scale, permute, overwrite_a]) = <fortran object>
Wrapper for zgebal.

Parameters a : input rank-2 array(‘D’) with bounds (m,n)
Returns ba : rank-2 array(‘D’) with bounds (m,n) and a storage

lo : int
hi : int
pivscale : rank-1 array(‘d’) with bounds (n)
info : int

5.17. All functions 523

SciPy Reference Guide, Release 0.16.0

Other Parameters
scale : input int, optional

Default: 0
permute : input int, optional

Default: 0
overwrite_a : input int, optional

Default: 0

scipy.linalg.lapack.sgees(sselect, a[, compute_v, sort_t, lwork, sselect_extra_args, overwrite_a])
= <fortran object>

Wrapper for sgees.

Parameters sselect : call-back function
a : input rank-2 array(‘f’) with bounds (n,n)

Returns t : rank-2 array(‘f’) with bounds (n,n) and a storage
sdim : int
wr : rank-1 array(‘f’) with bounds (n)
wi : rank-1 array(‘f’) with bounds (n)
vs : rank-2 array(‘f’) with bounds (ldvs,n)
work : rank-1 array(‘f’) with bounds (MAX(lwork,1))
info : int

Other Parameters
compute_v : input int, optional

Default: 1
sort_t : input int, optional

Default: 0
sselect_extra_args : input tuple, optional

Default: ()
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*n

Notes

Call-back functions:

def sselect(arg1,arg2): return sselect
Required arguments:
arg1 : input float
arg2 : input float

Return objects:
sselect : int

scipy.linalg.lapack.dgees(dselect, a[, compute_v, sort_t, lwork, dselect_extra_args, overwrite_a
]) = <fortran object>

Wrapper for dgees.

Parameters dselect : call-back function
a : input rank-2 array(‘d’) with bounds (n,n)

Returns t : rank-2 array(‘d’) with bounds (n,n) and a storage
sdim : int
wr : rank-1 array(‘d’) with bounds (n)
wi : rank-1 array(‘d’) with bounds (n)
vs : rank-2 array(‘d’) with bounds (ldvs,n)
work : rank-1 array(‘d’) with bounds (MAX(lwork,1))
info : int

524 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Other Parameters
compute_v : input int, optional

Default: 1
sort_t : input int, optional

Default: 0
dselect_extra_args : input tuple, optional

Default: ()
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*n

Notes

Call-back functions:

def dselect(arg1,arg2): return dselect
Required arguments:
arg1 : input float
arg2 : input float

Return objects:
dselect : int

scipy.linalg.lapack.cgees(cselect, a[, compute_v, sort_t, lwork, cselect_extra_args, overwrite_a
]) = <fortran object>

Wrapper for cgees.

Parameters cselect : call-back function
a : input rank-2 array(‘F’) with bounds (n,n)

Returns t : rank-2 array(‘F’) with bounds (n,n) and a storage
sdim : int
w : rank-1 array(‘F’) with bounds (n)
vs : rank-2 array(‘F’) with bounds (ldvs,n)
work : rank-1 array(‘F’) with bounds (MAX(lwork,1))
info : int

Other Parameters
compute_v : input int, optional

Default: 1
sort_t : input int, optional

Default: 0
cselect_extra_args : input tuple, optional

Default: ()
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*n

Notes

Call-back functions:

def cselect(arg): return cselect
Required arguments:
arg : input complex

Return objects:
cselect : int

5.17. All functions 525

SciPy Reference Guide, Release 0.16.0

scipy.linalg.lapack.zgees(zselect, a[, compute_v, sort_t, lwork, zselect_extra_args, overwrite_a])
= <fortran object>

Wrapper for zgees.

Parameters zselect : call-back function
a : input rank-2 array(‘D’) with bounds (n,n)

Returns t : rank-2 array(‘D’) with bounds (n,n) and a storage
sdim : int
w : rank-1 array(‘D’) with bounds (n)
vs : rank-2 array(‘D’) with bounds (ldvs,n)
work : rank-1 array(‘D’) with bounds (MAX(lwork,1))
info : int

Other Parameters
compute_v : input int, optional

Default: 1
sort_t : input int, optional

Default: 0
zselect_extra_args : input tuple, optional

Default: ()
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*n

Notes

Call-back functions:

def zselect(arg): return zselect
Required arguments:
arg : input complex

Return objects:
zselect : int

scipy.linalg.lapack.sgeev(a[, compute_vl, compute_vr, lwork, overwrite_a]) = <fortran object>
Wrapper for sgeev.

Parameters a : input rank-2 array(‘f’) with bounds (n,n)
Returns wr : rank-1 array(‘f’) with bounds (n)

wi : rank-1 array(‘f’) with bounds (n)
vl : rank-2 array(‘f’) with bounds (ldvl,n)
vr : rank-2 array(‘f’) with bounds (ldvr,n)
info : int

Other Parameters
compute_vl : input int, optional

Default: 1
compute_vr : input int, optional

Default: 1
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 4*n

scipy.linalg.lapack.dgeev(a[, compute_vl, compute_vr, lwork, overwrite_a]) = <fortran object>
Wrapper for dgeev.

Parameters a : input rank-2 array(‘d’) with bounds (n,n)

526 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Returns wr : rank-1 array(‘d’) with bounds (n)
wi : rank-1 array(‘d’) with bounds (n)
vl : rank-2 array(‘d’) with bounds (ldvl,n)
vr : rank-2 array(‘d’) with bounds (ldvr,n)
info : int

Other Parameters
compute_vl : input int, optional

Default: 1
compute_vr : input int, optional

Default: 1
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 4*n

scipy.linalg.lapack.cgeev(a[, compute_vl, compute_vr, lwork, overwrite_a]) = <fortran object>
Wrapper for cgeev.

Parameters a : input rank-2 array(‘F’) with bounds (n,n)
Returns w : rank-1 array(‘F’) with bounds (n)

vl : rank-2 array(‘F’) with bounds (ldvl,n)
vr : rank-2 array(‘F’) with bounds (ldvr,n)
info : int

Other Parameters
compute_vl : input int, optional

Default: 1
compute_vr : input int, optional

Default: 1
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 2*n

scipy.linalg.lapack.zgeev(a[, compute_vl, compute_vr, lwork, overwrite_a]) = <fortran object>
Wrapper for zgeev.

Parameters a : input rank-2 array(‘D’) with bounds (n,n)
Returns w : rank-1 array(‘D’) with bounds (n)

vl : rank-2 array(‘D’) with bounds (ldvl,n)
vr : rank-2 array(‘D’) with bounds (ldvr,n)
info : int

Other Parameters
compute_vl : input int, optional

Default: 1
compute_vr : input int, optional

Default: 1
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 2*n

scipy.linalg.lapack.sgeev_lwork(n[, compute_vl, compute_vr]) = <fortran object>
Wrapper for sgeev_lwork.

Parameters n : input int
Returns work : float

info : int

5.17. All functions 527

SciPy Reference Guide, Release 0.16.0

Other Parameters
compute_vl : input int, optional

Default: 1
compute_vr : input int, optional

Default: 1

scipy.linalg.lapack.dgeev_lwork(n[, compute_vl, compute_vr]) = <fortran object>
Wrapper for dgeev_lwork.

Parameters n : input int
Returns work : float

info : int
Other Parameters

compute_vl : input int, optional
Default: 1

compute_vr : input int, optional
Default: 1

scipy.linalg.lapack.cgeev_lwork(n[, compute_vl, compute_vr]) = <fortran object>
Wrapper for cgeev_lwork.

Parameters n : input int
Returns work : complex

info : int
Other Parameters

compute_vl : input int, optional
Default: 1

compute_vr : input int, optional
Default: 1

scipy.linalg.lapack.zgeev_lwork(n[, compute_vl, compute_vr]) = <fortran object>
Wrapper for zgeev_lwork.

Parameters n : input int
Returns work : complex

info : int
Other Parameters

compute_vl : input int, optional
Default: 1

compute_vr : input int, optional
Default: 1

scipy.linalg.lapack.sgegv(a, b[, compute_vl, compute_vr, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for sgegv.

Parameters a : input rank-2 array(‘f’) with bounds (n,n)
b : input rank-2 array(‘f’) with bounds (n,n)

Returns alphar : rank-1 array(‘f’) with bounds (n)
alphai : rank-1 array(‘f’) with bounds (n)
beta : rank-1 array(‘f’) with bounds (n)
vl : rank-2 array(‘f’) with bounds (ldvl,n)
vr : rank-2 array(‘f’) with bounds (ldvr,n)
info : int

Other Parameters
compute_vl : input int, optional

Default: 1
compute_vr : input int, optional

528 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Default: 1
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
lwork : input int, optional

Default: 8*n

scipy.linalg.lapack.dgegv(a, b[, compute_vl, compute_vr, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for dgegv.

Parameters a : input rank-2 array(‘d’) with bounds (n,n)
b : input rank-2 array(‘d’) with bounds (n,n)

Returns alphar : rank-1 array(‘d’) with bounds (n)
alphai : rank-1 array(‘d’) with bounds (n)
beta : rank-1 array(‘d’) with bounds (n)
vl : rank-2 array(‘d’) with bounds (ldvl,n)
vr : rank-2 array(‘d’) with bounds (ldvr,n)
info : int

Other Parameters
compute_vl : input int, optional

Default: 1
compute_vr : input int, optional

Default: 1
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
lwork : input int, optional

Default: 8*n

scipy.linalg.lapack.cgegv(a, b[, compute_vl, compute_vr, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for cgegv.

Parameters a : input rank-2 array(‘F’) with bounds (n,n)
b : input rank-2 array(‘F’) with bounds (n,n)

Returns alpha : rank-1 array(‘F’) with bounds (n)
beta : rank-1 array(‘F’) with bounds (n)
vl : rank-2 array(‘F’) with bounds (ldvl,n)
vr : rank-2 array(‘F’) with bounds (ldvr,n)
info : int

Other Parameters
compute_vl : input int, optional

Default: 1
compute_vr : input int, optional

Default: 1
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
lwork : input int, optional

Default: 2*n

5.17. All functions 529

SciPy Reference Guide, Release 0.16.0

scipy.linalg.lapack.zgegv(a, b[, compute_vl, compute_vr, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for zgegv.

Parameters a : input rank-2 array(‘D’) with bounds (n,n)
b : input rank-2 array(‘D’) with bounds (n,n)

Returns alpha : rank-1 array(‘D’) with bounds (n)
beta : rank-1 array(‘D’) with bounds (n)
vl : rank-2 array(‘D’) with bounds (ldvl,n)
vr : rank-2 array(‘D’) with bounds (ldvr,n)
info : int

Other Parameters
compute_vl : input int, optional

Default: 1
compute_vr : input int, optional

Default: 1
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
lwork : input int, optional

Default: 2*n

scipy.linalg.lapack.sgehrd(a[, lo, hi, lwork, overwrite_a]) = <fortran object>
Wrapper for sgehrd.

Parameters a : input rank-2 array(‘f’) with bounds (n,n)
Returns ht : rank-2 array(‘f’) with bounds (n,n) and a storage

tau : rank-1 array(‘f’) with bounds (n - 1)
info : int

Other Parameters
lo : input int, optional

Default: 0
hi : input int, optional

Default: n-1
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: MAX(n,1)

scipy.linalg.lapack.dgehrd(a[, lo, hi, lwork, overwrite_a]) = <fortran object>
Wrapper for dgehrd.

Parameters a : input rank-2 array(‘d’) with bounds (n,n)
Returns ht : rank-2 array(‘d’) with bounds (n,n) and a storage

tau : rank-1 array(‘d’) with bounds (n - 1)
info : int

Other Parameters
lo : input int, optional

Default: 0
hi : input int, optional

Default: n-1
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: MAX(n,1)

530 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.linalg.lapack.cgehrd(a[, lo, hi, lwork, overwrite_a]) = <fortran object>
Wrapper for cgehrd.

Parameters a : input rank-2 array(‘F’) with bounds (n,n)
Returns ht : rank-2 array(‘F’) with bounds (n,n) and a storage

tau : rank-1 array(‘F’) with bounds (n - 1)
info : int

Other Parameters
lo : input int, optional

Default: 0
hi : input int, optional

Default: n-1
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: MAX(n,1)

scipy.linalg.lapack.zgehrd(a[, lo, hi, lwork, overwrite_a]) = <fortran object>
Wrapper for zgehrd.

Parameters a : input rank-2 array(‘D’) with bounds (n,n)
Returns ht : rank-2 array(‘D’) with bounds (n,n) and a storage

tau : rank-1 array(‘D’) with bounds (n - 1)
info : int

Other Parameters
lo : input int, optional

Default: 0
hi : input int, optional

Default: n-1
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: MAX(n,1)

scipy.linalg.lapack.sgehrd_lwork(n[, lo, hi]) = <fortran object>
Wrapper for sgehrd_lwork.

Parameters n : input int
Returns work : float

info : int
Other Parameters

lo : input int, optional
Default: 0

hi : input int, optional
Default: n-1

scipy.linalg.lapack.dgehrd_lwork(n[, lo, hi]) = <fortran object>
Wrapper for dgehrd_lwork.

Parameters n : input int
Returns work : float

info : int
Other Parameters

lo : input int, optional
Default: 0

hi : input int, optional
Default: n-1

5.17. All functions 531

SciPy Reference Guide, Release 0.16.0

scipy.linalg.lapack.cgehrd_lwork(n[, lo, hi]) = <fortran object>
Wrapper for cgehrd_lwork.

Parameters n : input int
Returns work : complex

info : int
Other Parameters

lo : input int, optional
Default: 0

hi : input int, optional
Default: n-1

scipy.linalg.lapack.zgehrd_lwork(n[, lo, hi]) = <fortran object>
Wrapper for zgehrd_lwork.

Parameters n : input int
Returns work : complex

info : int
Other Parameters

lo : input int, optional
Default: 0

hi : input int, optional
Default: n-1

scipy.linalg.lapack.sgelss(a, b[, cond, lwork, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for sgelss.

Parameters a : input rank-2 array(‘f’) with bounds (m,n)
b : input rank-2 array(‘f’) with bounds (maxmn,nrhs)

Returns v : rank-2 array(‘f’) with bounds (m,n) and a storage
x : rank-2 array(‘f’) with bounds (maxmn,nrhs) and b storage
s : rank-1 array(‘f’) with bounds (minmn)
rank : int
work : rank-1 array(‘f’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
cond : input float, optional

Default: -1.0
lwork : input int, optional

Default: 3*minmn+MAX(2*minmn,MAX(maxmn,nrhs))

scipy.linalg.lapack.dgelss(a, b[, cond, lwork, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for dgelss.

Parameters a : input rank-2 array(‘d’) with bounds (m,n)
b : input rank-2 array(‘d’) with bounds (maxmn,nrhs)

Returns v : rank-2 array(‘d’) with bounds (m,n) and a storage
x : rank-2 array(‘d’) with bounds (maxmn,nrhs) and b storage
s : rank-1 array(‘d’) with bounds (minmn)
rank : int
work : rank-1 array(‘d’) with bounds (MAX(lwork,1))
info : int

532 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Other Parameters
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
cond : input float, optional

Default: -1.0
lwork : input int, optional

Default: 3*minmn+MAX(2*minmn,MAX(maxmn,nrhs))

scipy.linalg.lapack.cgelss(a, b[, cond, lwork, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for cgelss.

Parameters a : input rank-2 array(‘F’) with bounds (m,n)
b : input rank-2 array(‘F’) with bounds (maxmn,nrhs)

Returns v : rank-2 array(‘F’) with bounds (m,n) and a storage
x : rank-2 array(‘F’) with bounds (maxmn,nrhs) and b storage
s : rank-1 array(‘f’) with bounds (minmn)
rank : int
work : rank-1 array(‘F’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
cond : input float, optional

Default: -1.0
lwork : input int, optional

Default: 2*minmn+MAX(maxmn,nrhs)

scipy.linalg.lapack.zgelss(a, b[, cond, lwork, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for zgelss.

Parameters a : input rank-2 array(‘D’) with bounds (m,n)
b : input rank-2 array(‘D’) with bounds (maxmn,nrhs)

Returns v : rank-2 array(‘D’) with bounds (m,n) and a storage
x : rank-2 array(‘D’) with bounds (maxmn,nrhs) and b storage
s : rank-1 array(‘d’) with bounds (minmn)
rank : int
work : rank-1 array(‘D’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
cond : input float, optional

Default: -1.0
lwork : input int, optional

Default: 2*minmn+MAX(maxmn,nrhs)

scipy.linalg.lapack.sgelss_lwork(m, n, nrhs[, cond, lwork]) = <fortran object>
Wrapper for sgelss_lwork.

5.17. All functions 533

SciPy Reference Guide, Release 0.16.0

Parameters m : input int
n : input int
nrhs : input int

Returns work : float
info : int

Other Parameters
cond : input float, optional

Default: -1.0
lwork : input int, optional

Default: -1

scipy.linalg.lapack.dgelss_lwork(m, n, nrhs[, cond, lwork]) = <fortran object>
Wrapper for dgelss_lwork.

Parameters m : input int
n : input int
nrhs : input int

Returns work : float
info : int

Other Parameters
cond : input float, optional

Default: -1.0
lwork : input int, optional

Default: -1

scipy.linalg.lapack.cgelss_lwork(m, n, nrhs[, cond, lwork]) = <fortran object>
Wrapper for cgelss_lwork.

Parameters m : input int
n : input int
nrhs : input int

Returns work : complex
info : int

Other Parameters
cond : input float, optional

Default: -1.0
lwork : input int, optional

Default: -1

scipy.linalg.lapack.zgelss_lwork(m, n, nrhs[, cond, lwork]) = <fortran object>
Wrapper for zgelss_lwork.

Parameters m : input int
n : input int
nrhs : input int

Returns work : complex
info : int

Other Parameters
cond : input float, optional

Default: -1.0
lwork : input int, optional

Default: -1

scipy.linalg.lapack.sgelsd(a, b, lwork, size_iwork[, cond, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for sgelsd.

534 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters a : input rank-2 array(‘f’) with bounds (m,n)
b : input rank-2 array(‘f’) with bounds (maxmn,nrhs)
lwork : input int
size_iwork : input int

Returns x : rank-2 array(‘f’) with bounds (maxmn,nrhs) and b storage
s : rank-1 array(‘f’) with bounds (minmn)
rank : int
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
cond : input float, optional

Default: -1.0

scipy.linalg.lapack.dgelsd(a, b, lwork, size_iwork[, cond, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for dgelsd.

Parameters a : input rank-2 array(‘d’) with bounds (m,n)
b : input rank-2 array(‘d’) with bounds (maxmn,nrhs)
lwork : input int
size_iwork : input int

Returns x : rank-2 array(‘d’) with bounds (maxmn,nrhs) and b storage
s : rank-1 array(‘d’) with bounds (minmn)
rank : int
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
cond : input float, optional

Default: -1.0

scipy.linalg.lapack.cgelsd(a, b, lwork, size_rwork, size_iwork[, cond, overwrite_a, overwrite_b
]) = <fortran object>

Wrapper for cgelsd.

Parameters a : input rank-2 array(‘F’) with bounds (m,n)
b : input rank-2 array(‘F’) with bounds (maxmn,nrhs)
lwork : input int
size_rwork : input int
size_iwork : input int

Returns x : rank-2 array(‘F’) with bounds (maxmn,nrhs) and b storage
s : rank-1 array(‘f’) with bounds (minmn)
rank : int
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
cond : input float, optional

Default: -1.0

5.17. All functions 535

SciPy Reference Guide, Release 0.16.0

scipy.linalg.lapack.zgelsd(a, b, lwork, size_rwork, size_iwork[, cond, overwrite_a, overwrite_b
]) = <fortran object>

Wrapper for zgelsd.

Parameters a : input rank-2 array(‘D’) with bounds (m,n)
b : input rank-2 array(‘D’) with bounds (maxmn,nrhs)
lwork : input int
size_rwork : input int
size_iwork : input int

Returns x : rank-2 array(‘D’) with bounds (maxmn,nrhs) and b storage
s : rank-1 array(‘d’) with bounds (minmn)
rank : int
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
cond : input float, optional

Default: -1.0

scipy.linalg.lapack.sgelsd_lwork(m, n, nrhs[, cond, lwork]) = <fortran object>
Wrapper for sgelsd_lwork.

Parameters m : input int
n : input int
nrhs : input int

Returns work : float
iwork : int
info : int

Other Parameters
cond : input float, optional

Default: -1.0
lwork : input int, optional

Default: -1

scipy.linalg.lapack.dgelsd_lwork(m, n, nrhs[, cond, lwork]) = <fortran object>
Wrapper for dgelsd_lwork.

Parameters m : input int
n : input int
nrhs : input int

Returns work : float
iwork : int
info : int

Other Parameters
cond : input float, optional

Default: -1.0
lwork : input int, optional

Default: -1

scipy.linalg.lapack.cgelsd_lwork(m, n, nrhs[, cond, lwork]) = <fortran object>
Wrapper for cgelsd_lwork.

Parameters m : input int
n : input int
nrhs : input int

536 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Returns work : complex
rwork : float
iwork : int
info : int

Other Parameters
cond : input float, optional

Default: -1.0
lwork : input int, optional

Default: -1

scipy.linalg.lapack.zgelsd_lwork(m, n, nrhs[, cond, lwork]) = <fortran object>
Wrapper for zgelsd_lwork.

Parameters m : input int
n : input int
nrhs : input int

Returns work : complex
rwork : float
iwork : int
info : int

Other Parameters
cond : input float, optional

Default: -1.0
lwork : input int, optional

Default: -1

scipy.linalg.lapack.sgelsy(a, b, jptv, cond, lwork[, overwrite_a, overwrite_b]) = <fortran ob-
ject>

Wrapper for sgelsy.

Parameters a : input rank-2 array(‘f’) with bounds (m,n)
b : input rank-2 array(‘f’) with bounds (maxmn,nrhs)
jptv : input rank-1 array(‘i’) with bounds (n)
cond : input float
lwork : input int

Returns v : rank-2 array(‘f’) with bounds (m,n) and a storage
x : rank-2 array(‘f’) with bounds (maxmn,nrhs) and b storage
j : rank-1 array(‘i’) with bounds (n) and jptv storage
rank : int
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.dgelsy(a, b, jptv, cond, lwork[, overwrite_a, overwrite_b]) = <fortran ob-
ject>

Wrapper for dgelsy.

Parameters a : input rank-2 array(‘d’) with bounds (m,n)
b : input rank-2 array(‘d’) with bounds (maxmn,nrhs)
jptv : input rank-1 array(‘i’) with bounds (n)
cond : input float
lwork : input int

5.17. All functions 537

SciPy Reference Guide, Release 0.16.0

Returns v : rank-2 array(‘d’) with bounds (m,n) and a storage
x : rank-2 array(‘d’) with bounds (maxmn,nrhs) and b storage
j : rank-1 array(‘i’) with bounds (n) and jptv storage
rank : int
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.cgelsy(a, b, jptv, cond, lwork[, overwrite_a, overwrite_b]) = <fortran ob-
ject>

Wrapper for cgelsy.

Parameters a : input rank-2 array(‘F’) with bounds (m,n)
b : input rank-2 array(‘F’) with bounds (maxmn,nrhs)
jptv : input rank-1 array(‘i’) with bounds (n)
cond : input float
lwork : input int

Returns v : rank-2 array(‘F’) with bounds (m,n) and a storage
x : rank-2 array(‘F’) with bounds (maxmn,nrhs) and b storage
j : rank-1 array(‘i’) with bounds (n) and jptv storage
rank : int
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.zgelsy(a, b, jptv, cond, lwork[, overwrite_a, overwrite_b]) = <fortran ob-
ject>

Wrapper for zgelsy.

Parameters a : input rank-2 array(‘D’) with bounds (m,n)
b : input rank-2 array(‘D’) with bounds (maxmn,nrhs)
jptv : input rank-1 array(‘i’) with bounds (n)
cond : input float
lwork : input int

Returns v : rank-2 array(‘D’) with bounds (m,n) and a storage
x : rank-2 array(‘D’) with bounds (maxmn,nrhs) and b storage
j : rank-1 array(‘i’) with bounds (n) and jptv storage
rank : int
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.sgelsy_lwork(m, n, nrhs, cond[, lwork]) = <fortran object>
Wrapper for sgelsy_lwork.

Parameters m : input int
n : input int
nrhs : input int

538 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

cond : input float
Returns work : float

info : int
Other Parameters

lwork : input int, optional
Default: -1

scipy.linalg.lapack.dgelsy_lwork(m, n, nrhs, cond[, lwork]) = <fortran object>
Wrapper for dgelsy_lwork.

Parameters m : input int
n : input int
nrhs : input int
cond : input float

Returns work : float
info : int

Other Parameters
lwork : input int, optional

Default: -1

scipy.linalg.lapack.cgelsy_lwork(m, n, nrhs, cond[, lwork]) = <fortran object>
Wrapper for cgelsy_lwork.

Parameters m : input int
n : input int
nrhs : input int
cond : input float

Returns work : complex
info : int

Other Parameters
lwork : input int, optional

Default: -1

scipy.linalg.lapack.zgelsy_lwork(m, n, nrhs, cond[, lwork]) = <fortran object>
Wrapper for zgelsy_lwork.

Parameters m : input int
n : input int
nrhs : input int
cond : input float

Returns work : complex
info : int

Other Parameters
lwork : input int, optional

Default: -1

scipy.linalg.lapack.sgeqp3(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for sgeqp3.

Parameters a : input rank-2 array(‘f’) with bounds (m,n)
Returns qr : rank-2 array(‘f’) with bounds (m,n) and a storage

jpvt : rank-1 array(‘i’) with bounds (n)
tau : rank-1 array(‘f’) with bounds (MIN(m,n))
work : rank-1 array(‘f’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0

5.17. All functions 539

SciPy Reference Guide, Release 0.16.0

lwork : input int, optional
Default: 3*(n+1)

scipy.linalg.lapack.dgeqp3(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for dgeqp3.

Parameters a : input rank-2 array(‘d’) with bounds (m,n)
Returns qr : rank-2 array(‘d’) with bounds (m,n) and a storage

jpvt : rank-1 array(‘i’) with bounds (n)
tau : rank-1 array(‘d’) with bounds (MIN(m,n))
work : rank-1 array(‘d’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*(n+1)

scipy.linalg.lapack.cgeqp3(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for cgeqp3.

Parameters a : input rank-2 array(‘F’) with bounds (m,n)
Returns qr : rank-2 array(‘F’) with bounds (m,n) and a storage

jpvt : rank-1 array(‘i’) with bounds (n)
tau : rank-1 array(‘F’) with bounds (MIN(m,n))
work : rank-1 array(‘F’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*(n+1)

scipy.linalg.lapack.zgeqp3(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for zgeqp3.

Parameters a : input rank-2 array(‘D’) with bounds (m,n)
Returns qr : rank-2 array(‘D’) with bounds (m,n) and a storage

jpvt : rank-1 array(‘i’) with bounds (n)
tau : rank-1 array(‘D’) with bounds (MIN(m,n))
work : rank-1 array(‘D’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*(n+1)

scipy.linalg.lapack.sgeqrf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for sgeqrf.

Parameters a : input rank-2 array(‘f’) with bounds (m,n)
Returns qr : rank-2 array(‘f’) with bounds (m,n) and a storage

tau : rank-1 array(‘f’) with bounds (MIN(m,n))
work : rank-1 array(‘f’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

540 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Default: 0
lwork : input int, optional

Default: 3*n

scipy.linalg.lapack.dgeqrf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for dgeqrf.

Parameters a : input rank-2 array(‘d’) with bounds (m,n)
Returns qr : rank-2 array(‘d’) with bounds (m,n) and a storage

tau : rank-1 array(‘d’) with bounds (MIN(m,n))
work : rank-1 array(‘d’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*n

scipy.linalg.lapack.cgeqrf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for cgeqrf.

Parameters a : input rank-2 array(‘F’) with bounds (m,n)
Returns qr : rank-2 array(‘F’) with bounds (m,n) and a storage

tau : rank-1 array(‘F’) with bounds (MIN(m,n))
work : rank-1 array(‘F’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*n

scipy.linalg.lapack.zgeqrf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for zgeqrf.

Parameters a : input rank-2 array(‘D’) with bounds (m,n)
Returns qr : rank-2 array(‘D’) with bounds (m,n) and a storage

tau : rank-1 array(‘D’) with bounds (MIN(m,n))
work : rank-1 array(‘D’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*n

scipy.linalg.lapack.sgerqf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for sgerqf.

Parameters a : input rank-2 array(‘f’) with bounds (m,n)
Returns qr : rank-2 array(‘f’) with bounds (m,n) and a storage

tau : rank-1 array(‘f’) with bounds (MIN(m,n))
work : rank-1 array(‘f’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

5.17. All functions 541

SciPy Reference Guide, Release 0.16.0

Default: 3*m

scipy.linalg.lapack.dgerqf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for dgerqf.

Parameters a : input rank-2 array(‘d’) with bounds (m,n)
Returns qr : rank-2 array(‘d’) with bounds (m,n) and a storage

tau : rank-1 array(‘d’) with bounds (MIN(m,n))
work : rank-1 array(‘d’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*m

scipy.linalg.lapack.cgerqf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for cgerqf.

Parameters a : input rank-2 array(‘F’) with bounds (m,n)
Returns qr : rank-2 array(‘F’) with bounds (m,n) and a storage

tau : rank-1 array(‘F’) with bounds (MIN(m,n))
work : rank-1 array(‘F’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*m

scipy.linalg.lapack.zgerqf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for zgerqf.

Parameters a : input rank-2 array(‘D’) with bounds (m,n)
Returns qr : rank-2 array(‘D’) with bounds (m,n) and a storage

tau : rank-1 array(‘D’) with bounds (MIN(m,n))
work : rank-1 array(‘D’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*m

scipy.linalg.lapack.sgesdd(a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran ob-
ject>

Wrapper for sgesdd.

Parameters a : input rank-2 array(‘f’) with bounds (m,n)
Returns u : rank-2 array(‘f’) with bounds (u0,u1)

s : rank-1 array(‘f’) with bounds (minmn)
vt : rank-2 array(‘f’) with bounds (vt0,vt1)
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
compute_uv : input int, optional

Default: 1

542 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

full_matrices : input int, optional
Default: 1

lwork : input int, optional
Default: (compute_uv?4*minmn*minmn+MAX(m,n)+9*minmn:MAX(14*minmn+4,10*minmn+2+25*(25+8))+MAX(m,n))

scipy.linalg.lapack.dgesdd(a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran ob-
ject>

Wrapper for dgesdd.

Parameters a : input rank-2 array(‘d’) with bounds (m,n)
Returns u : rank-2 array(‘d’) with bounds (u0,u1)

s : rank-1 array(‘d’) with bounds (minmn)
vt : rank-2 array(‘d’) with bounds (vt0,vt1)
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
compute_uv : input int, optional

Default: 1
full_matrices : input int, optional

Default: 1
lwork : input int, optional

Default: (compute_uv?4*minmn*minmn+MAX(m,n)+9*minmn:MAX(14*minmn+4,10*minmn+2+25*(25+8))+MAX(m,n))

scipy.linalg.lapack.cgesdd(a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran ob-
ject>

Wrapper for cgesdd.

Parameters a : input rank-2 array(‘F’) with bounds (m,n)
Returns u : rank-2 array(‘F’) with bounds (u0,u1)

s : rank-1 array(‘f’) with bounds (minmn)
vt : rank-2 array(‘F’) with bounds (vt0,vt1)
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
compute_uv : input int, optional

Default: 1
full_matrices : input int, optional

Default: 1
lwork : input int, optional

Default: (compute_uv?2*minmn*minmn+MAX(m,n)+2*minmn:2*minmn+MAX(m,n))

scipy.linalg.lapack.zgesdd(a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran ob-
ject>

Wrapper for zgesdd.

Parameters a : input rank-2 array(‘D’) with bounds (m,n)
Returns u : rank-2 array(‘D’) with bounds (u0,u1)

s : rank-1 array(‘d’) with bounds (minmn)
vt : rank-2 array(‘D’) with bounds (vt0,vt1)
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
compute_uv : input int, optional

Default: 1

5.17. All functions 543

SciPy Reference Guide, Release 0.16.0

full_matrices : input int, optional
Default: 1

lwork : input int, optional
Default: (compute_uv?2*minmn*minmn+MAX(m,n)+2*minmn:2*minmn+MAX(m,n))

scipy.linalg.lapack.sgesdd_lwork(m, n[, compute_uv, full_matrices]) = <fortran object>
Wrapper for sgesdd_lwork.

Parameters m : input int
n : input int

Returns work : float
info : int

Other Parameters
compute_uv : input int, optional

Default: 1
full_matrices : input int, optional

Default: 1

scipy.linalg.lapack.dgesdd_lwork(m, n[, compute_uv, full_matrices]) = <fortran object>
Wrapper for dgesdd_lwork.

Parameters m : input int
n : input int

Returns work : float
info : int

Other Parameters
compute_uv : input int, optional

Default: 1
full_matrices : input int, optional

Default: 1

scipy.linalg.lapack.cgesdd_lwork(m, n[, compute_uv, full_matrices]) = <fortran object>
Wrapper for cgesdd_lwork.

Parameters m : input int
n : input int

Returns work : complex
info : int

Other Parameters
compute_uv : input int, optional

Default: 1
full_matrices : input int, optional

Default: 1

scipy.linalg.lapack.zgesdd_lwork(m, n[, compute_uv, full_matrices]) = <fortran object>
Wrapper for zgesdd_lwork.

Parameters m : input int
n : input int

Returns work : complex
info : int

Other Parameters
compute_uv : input int, optional

Default: 1
full_matrices : input int, optional

Default: 1

544 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.linalg.lapack.sgesv(a, b[, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for sgesv.

Parameters a : input rank-2 array(‘f’) with bounds (n,n)
b : input rank-2 array(‘f’) with bounds (n,nrhs)

Returns lu : rank-2 array(‘f’) with bounds (n,n) and a storage
piv : rank-1 array(‘i’) with bounds (n)
x : rank-2 array(‘f’) with bounds (n,nrhs) and b storage
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.dgesv(a, b[, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for dgesv.

Parameters a : input rank-2 array(‘d’) with bounds (n,n)
b : input rank-2 array(‘d’) with bounds (n,nrhs)

Returns lu : rank-2 array(‘d’) with bounds (n,n) and a storage
piv : rank-1 array(‘i’) with bounds (n)
x : rank-2 array(‘d’) with bounds (n,nrhs) and b storage
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.cgesv(a, b[, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for cgesv.

Parameters a : input rank-2 array(‘F’) with bounds (n,n)
b : input rank-2 array(‘F’) with bounds (n,nrhs)

Returns lu : rank-2 array(‘F’) with bounds (n,n) and a storage
piv : rank-1 array(‘i’) with bounds (n)
x : rank-2 array(‘F’) with bounds (n,nrhs) and b storage
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.zgesv(a, b[, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for zgesv.

Parameters a : input rank-2 array(‘D’) with bounds (n,n)
b : input rank-2 array(‘D’) with bounds (n,nrhs)

Returns lu : rank-2 array(‘D’) with bounds (n,n) and a storage
piv : rank-1 array(‘i’) with bounds (n)
x : rank-2 array(‘D’) with bounds (n,nrhs) and b storage
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0

5.17. All functions 545

SciPy Reference Guide, Release 0.16.0

overwrite_b : input int, optional
Default: 0

scipy.linalg.lapack.sgetrf(a[, overwrite_a]) = <fortran object>
Wrapper for sgetrf.

Parameters a : input rank-2 array(‘f’) with bounds (m,n)
Returns lu : rank-2 array(‘f’) with bounds (m,n) and a storage

piv : rank-1 array(‘i’) with bounds (MIN(m,n))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0

scipy.linalg.lapack.dgetrf(a[, overwrite_a]) = <fortran object>
Wrapper for dgetrf.

Parameters a : input rank-2 array(‘d’) with bounds (m,n)
Returns lu : rank-2 array(‘d’) with bounds (m,n) and a storage

piv : rank-1 array(‘i’) with bounds (MIN(m,n))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0

scipy.linalg.lapack.cgetrf(a[, overwrite_a]) = <fortran object>
Wrapper for cgetrf.

Parameters a : input rank-2 array(‘F’) with bounds (m,n)
Returns lu : rank-2 array(‘F’) with bounds (m,n) and a storage

piv : rank-1 array(‘i’) with bounds (MIN(m,n))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0

scipy.linalg.lapack.zgetrf(a[, overwrite_a]) = <fortran object>
Wrapper for zgetrf.

Parameters a : input rank-2 array(‘D’) with bounds (m,n)
Returns lu : rank-2 array(‘D’) with bounds (m,n) and a storage

piv : rank-1 array(‘i’) with bounds (MIN(m,n))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0

scipy.linalg.lapack.sgetri(lu, piv[, lwork, overwrite_lu]) = <fortran object>
Wrapper for sgetri.

Parameters lu : input rank-2 array(‘f’) with bounds (n,n)
piv : input rank-1 array(‘i’) with bounds (n)

Returns inv_a : rank-2 array(‘f’) with bounds (n,n) and lu storage
info : int

Other Parameters
overwrite_lu : input int, optional

Default: 0
lwork : input int, optional

Default: 3*n

546 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.linalg.lapack.dgetri(lu, piv[, lwork, overwrite_lu]) = <fortran object>
Wrapper for dgetri.

Parameters lu : input rank-2 array(‘d’) with bounds (n,n)
piv : input rank-1 array(‘i’) with bounds (n)

Returns inv_a : rank-2 array(‘d’) with bounds (n,n) and lu storage
info : int

Other Parameters
overwrite_lu : input int, optional

Default: 0
lwork : input int, optional

Default: 3*n

scipy.linalg.lapack.cgetri(lu, piv[, lwork, overwrite_lu]) = <fortran object>
Wrapper for cgetri.

Parameters lu : input rank-2 array(‘F’) with bounds (n,n)
piv : input rank-1 array(‘i’) with bounds (n)

Returns inv_a : rank-2 array(‘F’) with bounds (n,n) and lu storage
info : int

Other Parameters
overwrite_lu : input int, optional

Default: 0
lwork : input int, optional

Default: 3*n

scipy.linalg.lapack.zgetri(lu, piv[, lwork, overwrite_lu]) = <fortran object>
Wrapper for zgetri.

Parameters lu : input rank-2 array(‘D’) with bounds (n,n)
piv : input rank-1 array(‘i’) with bounds (n)

Returns inv_a : rank-2 array(‘D’) with bounds (n,n) and lu storage
info : int

Other Parameters
overwrite_lu : input int, optional

Default: 0
lwork : input int, optional

Default: 3*n

scipy.linalg.lapack.sgetri_lwork(n) = <fortran object>
Wrapper for sgetri_lwork.

Parameters n : input int
Returns work : float

info : int

scipy.linalg.lapack.dgetri_lwork(n) = <fortran object>
Wrapper for dgetri_lwork.

Parameters n : input int
Returns work : float

info : int

scipy.linalg.lapack.cgetri_lwork(n) = <fortran object>
Wrapper for cgetri_lwork.

Parameters n : input int
Returns work : complex

info : int

5.17. All functions 547

SciPy Reference Guide, Release 0.16.0

scipy.linalg.lapack.zgetri_lwork(n) = <fortran object>
Wrapper for zgetri_lwork.

Parameters n : input int
Returns work : complex

info : int

scipy.linalg.lapack.sgetrs(lu, piv, b[, trans, overwrite_b]) = <fortran object>
Wrapper for sgetrs.

Parameters lu : input rank-2 array(‘f’) with bounds (n,n)
piv : input rank-1 array(‘i’) with bounds (n)
b : input rank-2 array(‘f’) with bounds (n,nrhs)

Returns x : rank-2 array(‘f’) with bounds (n,nrhs) and b storage
info : int

Other Parameters
overwrite_b : input int, optional

Default: 0
trans : input int, optional

Default: 0

scipy.linalg.lapack.dgetrs(lu, piv, b[, trans, overwrite_b]) = <fortran object>
Wrapper for dgetrs.

Parameters lu : input rank-2 array(‘d’) with bounds (n,n)
piv : input rank-1 array(‘i’) with bounds (n)
b : input rank-2 array(‘d’) with bounds (n,nrhs)

Returns x : rank-2 array(‘d’) with bounds (n,nrhs) and b storage
info : int

Other Parameters
overwrite_b : input int, optional

Default: 0
trans : input int, optional

Default: 0

scipy.linalg.lapack.cgetrs(lu, piv, b[, trans, overwrite_b]) = <fortran object>
Wrapper for cgetrs.

Parameters lu : input rank-2 array(‘F’) with bounds (n,n)
piv : input rank-1 array(‘i’) with bounds (n)
b : input rank-2 array(‘F’) with bounds (n,nrhs)

Returns x : rank-2 array(‘F’) with bounds (n,nrhs) and b storage
info : int

Other Parameters
overwrite_b : input int, optional

Default: 0
trans : input int, optional

Default: 0

scipy.linalg.lapack.zgetrs(lu, piv, b[, trans, overwrite_b]) = <fortran object>
Wrapper for zgetrs.

Parameters lu : input rank-2 array(‘D’) with bounds (n,n)
piv : input rank-1 array(‘i’) with bounds (n)
b : input rank-2 array(‘D’) with bounds (n,nrhs)

Returns x : rank-2 array(‘D’) with bounds (n,nrhs) and b storage
info : int

548 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Other Parameters
overwrite_b : input int, optional

Default: 0
trans : input int, optional

Default: 0

scipy.linalg.lapack.sgges(sselect, a, b[, jobvsl, jobvsr, sort_t, ldvsl, ldvsr, lwork, sse-
lect_extra_args, overwrite_a, overwrite_b]) = <fortran object>

Wrapper for sgges.

Parameters sselect : call-back function
a : input rank-2 array(‘f’) with bounds (lda,*)
b : input rank-2 array(‘f’) with bounds (ldb,*)

Returns a : rank-2 array(‘f’) with bounds (lda,*)
b : rank-2 array(‘f’) with bounds (ldb,*)
sdim : int
alphar : rank-1 array(‘f’) with bounds (n)
alphai : rank-1 array(‘f’) with bounds (n)
beta : rank-1 array(‘f’) with bounds (n)
vsl : rank-2 array(‘f’) with bounds (ldvsl,n)
vsr : rank-2 array(‘f’) with bounds (ldvsr,n)
work : rank-1 array(‘f’) with bounds (MAX(lwork,1))
info : int

Other Parameters
jobvsl : input int, optional

Default: 1
jobvsr : input int, optional

Default: 1
sort_t : input int, optional

Default: 0
sselect_extra_args : input tuple, optional

Default: ()
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
ldvsl : input int, optional

Default: ((jobvsl==1)?n:1)
ldvsr : input int, optional

Default: ((jobvsr==1)?n:1)
lwork : input int, optional

Default: 8*n+16

Notes

Call-back functions:

def sselect(alphar,alphai,beta): return sselect
Required arguments:
alphar : input float
alphai : input float
beta : input float

Return objects:
sselect : int

5.17. All functions 549

SciPy Reference Guide, Release 0.16.0

scipy.linalg.lapack.dgges(dselect, a, b[, jobvsl, jobvsr, sort_t, ldvsl, ldvsr, lwork, dse-
lect_extra_args, overwrite_a, overwrite_b]) = <fortran object>

Wrapper for dgges.

Parameters dselect : call-back function
a : input rank-2 array(‘d’) with bounds (lda,*)
b : input rank-2 array(‘d’) with bounds (ldb,*)

Returns a : rank-2 array(‘d’) with bounds (lda,*)
b : rank-2 array(‘d’) with bounds (ldb,*)
sdim : int
alphar : rank-1 array(‘d’) with bounds (n)
alphai : rank-1 array(‘d’) with bounds (n)
beta : rank-1 array(‘d’) with bounds (n)
vsl : rank-2 array(‘d’) with bounds (ldvsl,n)
vsr : rank-2 array(‘d’) with bounds (ldvsr,n)
work : rank-1 array(‘d’) with bounds (MAX(lwork,1))
info : int

Other Parameters
jobvsl : input int, optional

Default: 1
jobvsr : input int, optional

Default: 1
sort_t : input int, optional

Default: 0
dselect_extra_args : input tuple, optional

Default: ()
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
ldvsl : input int, optional

Default: ((jobvsl==1)?n:1)
ldvsr : input int, optional

Default: ((jobvsr==1)?n:1)
lwork : input int, optional

Default: 8*n+16

Notes

Call-back functions:

def dselect(alphar,alphai,beta): return dselect
Required arguments:
alphar : input float
alphai : input float
beta : input float

Return objects:
dselect : int

scipy.linalg.lapack.cgges(cselect, a, b[, jobvsl, jobvsr, sort_t, ldvsl, ldvsr, lwork, cse-
lect_extra_args, overwrite_a, overwrite_b]) = <fortran object>

Wrapper for cgges.

Parameters cselect : call-back function
a : input rank-2 array(‘F’) with bounds (lda,*)
b : input rank-2 array(‘F’) with bounds (ldb,*)

550 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Returns a : rank-2 array(‘F’) with bounds (lda,*)
b : rank-2 array(‘F’) with bounds (ldb,*)
sdim : int
alpha : rank-1 array(‘F’) with bounds (n)
beta : rank-1 array(‘F’) with bounds (n)
vsl : rank-2 array(‘F’) with bounds (ldvsl,n)
vsr : rank-2 array(‘F’) with bounds (ldvsr,n)
work : rank-1 array(‘F’) with bounds (MAX(lwork,1))
info : int

Other Parameters
jobvsl : input int, optional

Default: 1
jobvsr : input int, optional

Default: 1
sort_t : input int, optional

Default: 0
cselect_extra_args : input tuple, optional

Default: ()
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
ldvsl : input int, optional

Default: ((jobvsl==1)?n:1)
ldvsr : input int, optional

Default: ((jobvsr==1)?n:1)
lwork : input int, optional

Default: 2*n

Notes

Call-back functions:

def cselect(alpha,beta): return cselect
Required arguments:
alpha : input complex
beta : input complex

Return objects:
cselect : int

scipy.linalg.lapack.zgges(zselect, a, b[, jobvsl, jobvsr, sort_t, ldvsl, ldvsr, lwork, zse-
lect_extra_args, overwrite_a, overwrite_b]) = <fortran object>

Wrapper for zgges.

Parameters zselect : call-back function
a : input rank-2 array(‘D’) with bounds (lda,*)
b : input rank-2 array(‘D’) with bounds (ldb,*)

Returns a : rank-2 array(‘D’) with bounds (lda,*)
b : rank-2 array(‘D’) with bounds (ldb,*)
sdim : int
alpha : rank-1 array(‘D’) with bounds (n)
beta : rank-1 array(‘D’) with bounds (n)
vsl : rank-2 array(‘D’) with bounds (ldvsl,n)
vsr : rank-2 array(‘D’) with bounds (ldvsr,n)
work : rank-1 array(‘D’) with bounds (MAX(lwork,1))
info : int

5.17. All functions 551

SciPy Reference Guide, Release 0.16.0

Other Parameters
jobvsl : input int, optional

Default: 1
jobvsr : input int, optional

Default: 1
sort_t : input int, optional

Default: 0
zselect_extra_args : input tuple, optional

Default: ()
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
ldvsl : input int, optional

Default: ((jobvsl==1)?n:1)
ldvsr : input int, optional

Default: ((jobvsr==1)?n:1)
lwork : input int, optional

Default: 2*n

Notes

Call-back functions:

def zselect(alpha,beta): return zselect
Required arguments:
alpha : input complex
beta : input complex

Return objects:
zselect : int

scipy.linalg.lapack.sggev(a, b[, compute_vl, compute_vr, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for sggev.

Parameters a : input rank-2 array(‘f’) with bounds (n,n)
b : input rank-2 array(‘f’) with bounds (n,n)

Returns alphar : rank-1 array(‘f’) with bounds (n)
alphai : rank-1 array(‘f’) with bounds (n)
beta : rank-1 array(‘f’) with bounds (n)
vl : rank-2 array(‘f’) with bounds (ldvl,n)
vr : rank-2 array(‘f’) with bounds (ldvr,n)
work : rank-1 array(‘f’) with bounds (MAX(lwork,1))
info : int

Other Parameters
compute_vl : input int, optional

Default: 1
compute_vr : input int, optional

Default: 1
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
lwork : input int, optional

Default: 8*n

552 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.linalg.lapack.dggev(a, b[, compute_vl, compute_vr, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for dggev.

Parameters a : input rank-2 array(‘d’) with bounds (n,n)
b : input rank-2 array(‘d’) with bounds (n,n)

Returns alphar : rank-1 array(‘d’) with bounds (n)
alphai : rank-1 array(‘d’) with bounds (n)
beta : rank-1 array(‘d’) with bounds (n)
vl : rank-2 array(‘d’) with bounds (ldvl,n)
vr : rank-2 array(‘d’) with bounds (ldvr,n)
work : rank-1 array(‘d’) with bounds (MAX(lwork,1))
info : int

Other Parameters
compute_vl : input int, optional

Default: 1
compute_vr : input int, optional

Default: 1
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
lwork : input int, optional

Default: 8*n

scipy.linalg.lapack.cggev(a, b[, compute_vl, compute_vr, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for cggev.

Parameters a : input rank-2 array(‘F’) with bounds (n,n)
b : input rank-2 array(‘F’) with bounds (n,n)

Returns alpha : rank-1 array(‘F’) with bounds (n)
beta : rank-1 array(‘F’) with bounds (n)
vl : rank-2 array(‘F’) with bounds (ldvl,n)
vr : rank-2 array(‘F’) with bounds (ldvr,n)
work : rank-1 array(‘F’) with bounds (MAX(lwork,1))
info : int

Other Parameters
compute_vl : input int, optional

Default: 1
compute_vr : input int, optional

Default: 1
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
lwork : input int, optional

Default: 2*n

scipy.linalg.lapack.zggev(a, b[, compute_vl, compute_vr, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for zggev.

Parameters a : input rank-2 array(‘D’) with bounds (n,n)
b : input rank-2 array(‘D’) with bounds (n,n)

5.17. All functions 553

SciPy Reference Guide, Release 0.16.0

Returns alpha : rank-1 array(‘D’) with bounds (n)
beta : rank-1 array(‘D’) with bounds (n)
vl : rank-2 array(‘D’) with bounds (ldvl,n)
vr : rank-2 array(‘D’) with bounds (ldvr,n)
work : rank-1 array(‘D’) with bounds (MAX(lwork,1))
info : int

Other Parameters
compute_vl : input int, optional

Default: 1
compute_vr : input int, optional

Default: 1
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
lwork : input int, optional

Default: 2*n

scipy.linalg.lapack.chbevd(ab[, compute_v, lower, ldab, lrwork, liwork, overwrite_ab]) = <for-
tran object>

Wrapper for chbevd.

Parameters ab : input rank-2 array(‘F’) with bounds (ldab,*)
Returns w : rank-1 array(‘f’) with bounds (n)

z : rank-2 array(‘F’) with bounds (ldz,ldz)
info : int

Other Parameters
overwrite_ab : input int, optional

Default: 1
compute_v : input int, optional

Default: 1
lower : input int, optional

Default: 0
ldab : input int, optional

Default: shape(ab,0)
lrwork : input int, optional

Default: (compute_v?1+5*n+2*n*n:n)
liwork : input int, optional

Default: (compute_v?3+5*n:1)

scipy.linalg.lapack.zhbevd(ab[, compute_v, lower, ldab, lrwork, liwork, overwrite_ab]) = <for-
tran object>

Wrapper for zhbevd.

Parameters ab : input rank-2 array(‘D’) with bounds (ldab,*)
Returns w : rank-1 array(‘d’) with bounds (n)

z : rank-2 array(‘D’) with bounds (ldz,ldz)
info : int

Other Parameters
overwrite_ab : input int, optional

Default: 1
compute_v : input int, optional

Default: 1
lower : input int, optional

Default: 0
ldab : input int, optional

554 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Default: shape(ab,0)
lrwork : input int, optional

Default: (compute_v?1+5*n+2*n*n:n)
liwork : input int, optional

Default: (compute_v?3+5*n:1)

scipy.linalg.lapack.chbevx(ab, vl, vu, il, iu[, ldab, compute_v, range, lower, abstol, mmax, over-
write_ab]) = <fortran object>

Wrapper for chbevx.

Parameters ab : input rank-2 array(‘F’) with bounds (ldab,*)
vl : input float
vu : input float
il : input int
iu : input int

Returns w : rank-1 array(‘f’) with bounds (n)
z : rank-2 array(‘F’) with bounds (ldz,mmax)
m : int
ifail : rank-1 array(‘i’) with bounds ((compute_v?n:1))
info : int

Other Parameters
overwrite_ab : input int, optional

Default: 1
ldab : input int, optional

Default: shape(ab,0)
compute_v : input int, optional

Default: 1
range : input int, optional

Default: 0
lower : input int, optional

Default: 0
abstol : input float, optional

Default: 0.0
mmax : input int, optional

Default: (compute_v?(range==2?(iu-il+1):n):1)

scipy.linalg.lapack.zhbevx(ab, vl, vu, il, iu[, ldab, compute_v, range, lower, abstol, mmax, over-
write_ab]) = <fortran object>

Wrapper for zhbevx.

Parameters ab : input rank-2 array(‘D’) with bounds (ldab,*)
vl : input float
vu : input float
il : input int
iu : input int

Returns w : rank-1 array(‘d’) with bounds (n)
z : rank-2 array(‘D’) with bounds (ldz,mmax)
m : int
ifail : rank-1 array(‘i’) with bounds ((compute_v?n:1))
info : int

Other Parameters
overwrite_ab : input int, optional

Default: 1
ldab : input int, optional

Default: shape(ab,0)
compute_v : input int, optional

5.17. All functions 555

SciPy Reference Guide, Release 0.16.0

Default: 1
range : input int, optional

Default: 0
lower : input int, optional

Default: 0
abstol : input float, optional

Default: 0.0
mmax : input int, optional

Default: (compute_v?(range==2?(iu-il+1):n):1)

scipy.linalg.lapack.cheev(a[, compute_v, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for cheev.

Parameters a : input rank-2 array(‘F’) with bounds (n,n)
Returns w : rank-1 array(‘f’) with bounds (n)

v : rank-2 array(‘F’) with bounds (n,n) and a storage
info : int

Other Parameters
compute_v : input int, optional

Default: 1
lower : input int, optional

Default: 0
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 2*n-1

scipy.linalg.lapack.zheev(a[, compute_v, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for zheev.

Parameters a : input rank-2 array(‘D’) with bounds (n,n)
Returns w : rank-1 array(‘d’) with bounds (n)

v : rank-2 array(‘D’) with bounds (n,n) and a storage
info : int

Other Parameters
compute_v : input int, optional

Default: 1
lower : input int, optional

Default: 0
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 2*n-1

scipy.linalg.lapack.cheevd(a[, compute_v, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for cheevd.

Parameters a : input rank-2 array(‘F’) with bounds (n,n)
Returns w : rank-1 array(‘f’) with bounds (n)

v : rank-2 array(‘F’) with bounds (n,n) and a storage
info : int

Other Parameters
compute_v : input int, optional

Default: 1
lower : input int, optional

Default: 0
overwrite_a : input int, optional

556 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Default: 0
lwork : input int, optional

Default: (compute_v?2*n+n*n:n+1)

scipy.linalg.lapack.zheevd(a[, compute_v, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for zheevd.

Parameters a : input rank-2 array(‘D’) with bounds (n,n)
Returns w : rank-1 array(‘d’) with bounds (n)

v : rank-2 array(‘D’) with bounds (n,n) and a storage
info : int

Other Parameters
compute_v : input int, optional

Default: 1
lower : input int, optional

Default: 0
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: (compute_v?2*n+n*n:n+1)

scipy.linalg.lapack.cheevr(a[, jobz, range, uplo, il, iu, lwork, overwrite_a]) = <fortran object>
Wrapper for cheevr.

Parameters a : input rank-2 array(‘F’) with bounds (n,n)
Returns w : rank-1 array(‘f’) with bounds (n)

z : rank-2 array(‘F’) with bounds (n,m)
info : int

Other Parameters
jobz : input string(len=1), optional

Default: ‘V’
range : input string(len=1), optional

Default: ‘A’
uplo : input string(len=1), optional

Default: ‘L’
overwrite_a : input int, optional

Default: 0
il : input int, optional

Default: 1
iu : input int, optional

Default: n
lwork : input int, optional

Default: 18*n

scipy.linalg.lapack.zheevr(a[, jobz, range, uplo, il, iu, lwork, overwrite_a]) = <fortran object>
Wrapper for zheevr.

Parameters a : input rank-2 array(‘D’) with bounds (n,n)
Returns w : rank-1 array(‘d’) with bounds (n)

z : rank-2 array(‘D’) with bounds (n,m)
info : int

Other Parameters
jobz : input string(len=1), optional

Default: ‘V’
range : input string(len=1), optional

Default: ‘A’
uplo : input string(len=1), optional

5.17. All functions 557

SciPy Reference Guide, Release 0.16.0

Default: ‘L’
overwrite_a : input int, optional

Default: 0
il : input int, optional

Default: 1
iu : input int, optional

Default: n
lwork : input int, optional

Default: 18*n

scipy.linalg.lapack.chegv(a, b[, itype, jobz, uplo, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for chegv.

Parameters a : input rank-2 array(‘F’) with bounds (n,n)
b : input rank-2 array(‘F’) with bounds (n,n)

Returns a : rank-2 array(‘F’) with bounds (n,n)
w : rank-1 array(‘f’) with bounds (n)
info : int

Other Parameters
itype : input int, optional

Default: 1
jobz : input string(len=1), optional

Default: ‘V’
uplo : input string(len=1), optional

Default: ‘L’
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.zhegv(a, b[, itype, jobz, uplo, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for zhegv.

Parameters a : input rank-2 array(‘D’) with bounds (n,n)
b : input rank-2 array(‘D’) with bounds (n,n)

Returns a : rank-2 array(‘D’) with bounds (n,n)
w : rank-1 array(‘d’) with bounds (n)
info : int

Other Parameters
itype : input int, optional

Default: 1
jobz : input string(len=1), optional

Default: ‘V’
uplo : input string(len=1), optional

Default: ‘L’
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.chegvd(a, b[, itype, jobz, uplo, lwork, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for chegvd.

Parameters a : input rank-2 array(‘F’) with bounds (n,n)
b : input rank-2 array(‘F’) with bounds (n,n)

558 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Returns a : rank-2 array(‘F’) with bounds (n,n)
w : rank-1 array(‘f’) with bounds (n)
info : int

Other Parameters
itype : input int, optional

Default: 1
jobz : input string(len=1), optional

Default: ‘V’
uplo : input string(len=1), optional

Default: ‘L’
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
lwork : input int, optional

Default: 2*n+n*n

scipy.linalg.lapack.zhegvd(a, b[, itype, jobz, uplo, lwork, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for zhegvd.

Parameters a : input rank-2 array(‘D’) with bounds (n,n)
b : input rank-2 array(‘D’) with bounds (n,n)

Returns a : rank-2 array(‘D’) with bounds (n,n)
w : rank-1 array(‘d’) with bounds (n)
info : int

Other Parameters
itype : input int, optional

Default: 1
jobz : input string(len=1), optional

Default: ‘V’
uplo : input string(len=1), optional

Default: ‘L’
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
lwork : input int, optional

Default: 2*n+n*n

scipy.linalg.lapack.chegvx(a, b, iu[, itype, jobz, uplo, il, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for chegvx.

Parameters a : input rank-2 array(‘F’) with bounds (n,n)
b : input rank-2 array(‘F’) with bounds (n,n)
iu : input int

Returns w : rank-1 array(‘f’) with bounds (n)
z : rank-2 array(‘F’) with bounds (n,m)
ifail : rank-1 array(‘i’) with bounds (n)
info : int

Other Parameters
itype : input int, optional

Default: 1
jobz : input string(len=1), optional

Default: ‘V’

5.17. All functions 559

SciPy Reference Guide, Release 0.16.0

uplo : input string(len=1), optional
Default: ‘L’

overwrite_a : input int, optional
Default: 0

overwrite_b : input int, optional
Default: 0

il : input int, optional
Default: 1

lwork : input int, optional
Default: 18*n-1

scipy.linalg.lapack.zhegvx(a, b, iu[, itype, jobz, uplo, il, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for zhegvx.

Parameters a : input rank-2 array(‘D’) with bounds (n,n)
b : input rank-2 array(‘D’) with bounds (n,n)
iu : input int

Returns w : rank-1 array(‘d’) with bounds (n)
z : rank-2 array(‘D’) with bounds (n,m)
ifail : rank-1 array(‘i’) with bounds (n)
info : int

Other Parameters
itype : input int, optional

Default: 1
jobz : input string(len=1), optional

Default: ‘V’
uplo : input string(len=1), optional

Default: ‘L’
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
il : input int, optional

Default: 1
lwork : input int, optional

Default: 18*n-1

scipy.linalg.lapack.slarf(v, tau, c, work[, side, incv, overwrite_c]) = <fortran object>
Wrapper for slarf.

Parameters v : input rank-1 array(‘f’) with bounds (*)
tau : input float
c : input rank-2 array(‘f’) with bounds (m,n)
work : input rank-1 array(‘f’) with bounds (*)

Returns c : rank-2 array(‘f’) with bounds (m,n)
Other Parameters

side : input string(len=1), optional
Default: ‘L’

incv : input int, optional
Default: 1

overwrite_c : input int, optional
Default: 0

scipy.linalg.lapack.dlarf(v, tau, c, work[, side, incv, overwrite_c]) = <fortran object>
Wrapper for dlarf.

560 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters v : input rank-1 array(‘d’) with bounds (*)
tau : input float
c : input rank-2 array(‘d’) with bounds (m,n)
work : input rank-1 array(‘d’) with bounds (*)

Returns c : rank-2 array(‘d’) with bounds (m,n)
Other Parameters

side : input string(len=1), optional
Default: ‘L’

incv : input int, optional
Default: 1

overwrite_c : input int, optional
Default: 0

scipy.linalg.lapack.clarf(v, tau, c, work[, side, incv, overwrite_c]) = <fortran object>
Wrapper for clarf.

Parameters v : input rank-1 array(‘F’) with bounds (*)
tau : input complex
c : input rank-2 array(‘F’) with bounds (m,n)
work : input rank-1 array(‘F’) with bounds (*)

Returns c : rank-2 array(‘F’) with bounds (m,n)
Other Parameters

side : input string(len=1), optional
Default: ‘L’

incv : input int, optional
Default: 1

overwrite_c : input int, optional
Default: 0

scipy.linalg.lapack.zlarf(v, tau, c, work[, side, incv, overwrite_c]) = <fortran object>
Wrapper for zlarf.

Parameters v : input rank-1 array(‘D’) with bounds (*)
tau : input complex
c : input rank-2 array(‘D’) with bounds (m,n)
work : input rank-1 array(‘D’) with bounds (*)

Returns c : rank-2 array(‘D’) with bounds (m,n)
Other Parameters

side : input string(len=1), optional
Default: ‘L’

incv : input int, optional
Default: 1

overwrite_c : input int, optional
Default: 0

scipy.linalg.lapack.slarfg(n, alpha, x[, incx, overwrite_x]) = <fortran object>
Wrapper for slarfg.

Parameters n : input int
alpha : input float
x : input rank-1 array(‘f’) with bounds (*)

Returns alpha : float
x : rank-1 array(‘f’) with bounds (*)
tau : float

Other Parameters
overwrite_x : input int, optional

Default: 0

5.17. All functions 561

SciPy Reference Guide, Release 0.16.0

incx : input int, optional
Default: 1

scipy.linalg.lapack.dlarfg(n, alpha, x[, incx, overwrite_x]) = <fortran object>
Wrapper for dlarfg.

Parameters n : input int
alpha : input float
x : input rank-1 array(‘d’) with bounds (*)

Returns alpha : float
x : rank-1 array(‘d’) with bounds (*)
tau : float

Other Parameters
overwrite_x : input int, optional

Default: 0
incx : input int, optional

Default: 1

scipy.linalg.lapack.clarfg(n, alpha, x[, incx, overwrite_x]) = <fortran object>
Wrapper for clarfg.

Parameters n : input int
alpha : input complex
x : input rank-1 array(‘F’) with bounds (*)

Returns alpha : complex
x : rank-1 array(‘F’) with bounds (*)
tau : complex

Other Parameters
overwrite_x : input int, optional

Default: 0
incx : input int, optional

Default: 1

scipy.linalg.lapack.zlarfg(n, alpha, x[, incx, overwrite_x]) = <fortran object>
Wrapper for zlarfg.

Parameters n : input int
alpha : input complex
x : input rank-1 array(‘D’) with bounds (*)

Returns alpha : complex
x : rank-1 array(‘D’) with bounds (*)
tau : complex

Other Parameters
overwrite_x : input int, optional

Default: 0
incx : input int, optional

Default: 1

scipy.linalg.lapack.slartg(f, g) = <fortran object>
Wrapper for slartg.

Parameters f : input float
g : input float

Returns cs : float
sn : float
r : float

562 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.linalg.lapack.dlartg(f, g) = <fortran object>
Wrapper for dlartg.

Parameters f : input float
g : input float

Returns cs : float
sn : float
r : float

scipy.linalg.lapack.clartg(f, g) = <fortran object>
Wrapper for clartg.

Parameters f : input complex
g : input complex

Returns cs : float
sn : complex
r : complex

scipy.linalg.lapack.zlartg(f, g) = <fortran object>
Wrapper for zlartg.

Parameters f : input complex
g : input complex

Returns cs : float
sn : complex
r : complex

scipy.linalg.lapack.dlasd4(i, d, z[, rho]) = <fortran object>
Wrapper for dlasd4.

Parameters i : input int
d : input rank-1 array(‘d’) with bounds (n)
z : input rank-1 array(‘d’) with bounds (n)

Returns delta : rank-1 array(‘d’) with bounds (n)
sigma : float
work : rank-1 array(‘d’) with bounds (n)
info : int

Other Parameters
rho : input float, optional

Default: 1.0

scipy.linalg.lapack.slasd4(i, d, z[, rho]) = <fortran object>
Wrapper for slasd4.

Parameters i : input int
d : input rank-1 array(‘f’) with bounds (n)
z : input rank-1 array(‘f’) with bounds (n)

Returns delta : rank-1 array(‘f’) with bounds (n)
sigma : float
work : rank-1 array(‘f’) with bounds (n)
info : int

Other Parameters
rho : input float, optional

Default: 1.0

scipy.linalg.lapack.slaswp(a, piv[, k1, k2, off, inc, overwrite_a]) = <fortran object>
Wrapper for slaswp.

5.17. All functions 563

SciPy Reference Guide, Release 0.16.0

Parameters a : input rank-2 array(‘f’) with bounds (nrows,n)
piv : input rank-1 array(‘i’) with bounds (*)

Returns a : rank-2 array(‘f’) with bounds (nrows,n)
Other Parameters

overwrite_a : input int, optional
Default: 0

k1 : input int, optional
Default: 0

k2 : input int, optional
Default: len(piv)-1

off : input int, optional
Default: 0

inc : input int, optional
Default: 1

scipy.linalg.lapack.dlaswp(a, piv[, k1, k2, off, inc, overwrite_a]) = <fortran object>
Wrapper for dlaswp.

Parameters a : input rank-2 array(‘d’) with bounds (nrows,n)
piv : input rank-1 array(‘i’) with bounds (*)

Returns a : rank-2 array(‘d’) with bounds (nrows,n)
Other Parameters

overwrite_a : input int, optional
Default: 0

k1 : input int, optional
Default: 0

k2 : input int, optional
Default: len(piv)-1

off : input int, optional
Default: 0

inc : input int, optional
Default: 1

scipy.linalg.lapack.claswp(a, piv[, k1, k2, off, inc, overwrite_a]) = <fortran object>
Wrapper for claswp.

Parameters a : input rank-2 array(‘F’) with bounds (nrows,n)
piv : input rank-1 array(‘i’) with bounds (*)

Returns a : rank-2 array(‘F’) with bounds (nrows,n)
Other Parameters

overwrite_a : input int, optional
Default: 0

k1 : input int, optional
Default: 0

k2 : input int, optional
Default: len(piv)-1

off : input int, optional
Default: 0

inc : input int, optional
Default: 1

scipy.linalg.lapack.zlaswp(a, piv[, k1, k2, off, inc, overwrite_a]) = <fortran object>
Wrapper for zlaswp.

Parameters a : input rank-2 array(‘D’) with bounds (nrows,n)
piv : input rank-1 array(‘i’) with bounds (*)

Returns a : rank-2 array(‘D’) with bounds (nrows,n)

564 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Other Parameters
overwrite_a : input int, optional

Default: 0
k1 : input int, optional

Default: 0
k2 : input int, optional

Default: len(piv)-1
off : input int, optional

Default: 0
inc : input int, optional

Default: 1

scipy.linalg.lapack.slauum(c[, lower, overwrite_c]) = <fortran object>
Wrapper for slauum.

Parameters c : input rank-2 array(‘f’) with bounds (n,n)
Returns a : rank-2 array(‘f’) with bounds (n,n) and c storage

info : int
Other Parameters

overwrite_c : input int, optional
Default: 0

lower : input int, optional
Default: 0

scipy.linalg.lapack.dlauum(c[, lower, overwrite_c]) = <fortran object>
Wrapper for dlauum.

Parameters c : input rank-2 array(‘d’) with bounds (n,n)
Returns a : rank-2 array(‘d’) with bounds (n,n) and c storage

info : int
Other Parameters

overwrite_c : input int, optional
Default: 0

lower : input int, optional
Default: 0

scipy.linalg.lapack.clauum(c[, lower, overwrite_c]) = <fortran object>
Wrapper for clauum.

Parameters c : input rank-2 array(‘F’) with bounds (n,n)
Returns a : rank-2 array(‘F’) with bounds (n,n) and c storage

info : int
Other Parameters

overwrite_c : input int, optional
Default: 0

lower : input int, optional
Default: 0

scipy.linalg.lapack.zlauum(c[, lower, overwrite_c]) = <fortran object>
Wrapper for zlauum.

Parameters c : input rank-2 array(‘D’) with bounds (n,n)
Returns a : rank-2 array(‘D’) with bounds (n,n) and c storage

info : int
Other Parameters

overwrite_c : input int, optional
Default: 0

lower : input int, optional

5.17. All functions 565

SciPy Reference Guide, Release 0.16.0

Default: 0

scipy.linalg.lapack.spbsv(ab, b[, lower, ldab, overwrite_ab, overwrite_b]) = <fortran object>
Wrapper for spbsv.

Parameters ab : input rank-2 array(‘f’) with bounds (ldab,n)
b : input rank-2 array(‘f’) with bounds (ldb,nrhs)

Returns c : rank-2 array(‘f’) with bounds (ldab,n) and ab storage
x : rank-2 array(‘f’) with bounds (ldb,nrhs) and b storage
info : int

Other Parameters
lower : input int, optional

Default: 0
overwrite_ab : input int, optional

Default: 0
ldab : input int, optional

Default: shape(ab,0)
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.dpbsv(ab, b[, lower, ldab, overwrite_ab, overwrite_b]) = <fortran object>
Wrapper for dpbsv.

Parameters ab : input rank-2 array(‘d’) with bounds (ldab,n)
b : input rank-2 array(‘d’) with bounds (ldb,nrhs)

Returns c : rank-2 array(‘d’) with bounds (ldab,n) and ab storage
x : rank-2 array(‘d’) with bounds (ldb,nrhs) and b storage
info : int

Other Parameters
lower : input int, optional

Default: 0
overwrite_ab : input int, optional

Default: 0
ldab : input int, optional

Default: shape(ab,0)
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.cpbsv(ab, b[, lower, ldab, overwrite_ab, overwrite_b]) = <fortran object>
Wrapper for cpbsv.

Parameters ab : input rank-2 array(‘F’) with bounds (ldab,n)
b : input rank-2 array(‘F’) with bounds (ldb,nrhs)

Returns c : rank-2 array(‘F’) with bounds (ldab,n) and ab storage
x : rank-2 array(‘F’) with bounds (ldb,nrhs) and b storage
info : int

Other Parameters
lower : input int, optional

Default: 0
overwrite_ab : input int, optional

Default: 0
ldab : input int, optional

Default: shape(ab,0)
overwrite_b : input int, optional

Default: 0

566 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.linalg.lapack.zpbsv(ab, b[, lower, ldab, overwrite_ab, overwrite_b]) = <fortran object>
Wrapper for zpbsv.

Parameters ab : input rank-2 array(‘D’) with bounds (ldab,n)
b : input rank-2 array(‘D’) with bounds (ldb,nrhs)

Returns c : rank-2 array(‘D’) with bounds (ldab,n) and ab storage
x : rank-2 array(‘D’) with bounds (ldb,nrhs) and b storage
info : int

Other Parameters
lower : input int, optional

Default: 0
overwrite_ab : input int, optional

Default: 0
ldab : input int, optional

Default: shape(ab,0)
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.spbtrf(ab[, lower, ldab, overwrite_ab]) = <fortran object>
Wrapper for spbtrf.

Parameters ab : input rank-2 array(‘f’) with bounds (ldab,n)
Returns c : rank-2 array(‘f’) with bounds (ldab,n) and ab storage

info : int
Other Parameters

lower : input int, optional
Default: 0

overwrite_ab : input int, optional
Default: 0

ldab : input int, optional
Default: shape(ab,0)

scipy.linalg.lapack.dpbtrf(ab[, lower, ldab, overwrite_ab]) = <fortran object>
Wrapper for dpbtrf.

Parameters ab : input rank-2 array(‘d’) with bounds (ldab,n)
Returns c : rank-2 array(‘d’) with bounds (ldab,n) and ab storage

info : int
Other Parameters

lower : input int, optional
Default: 0

overwrite_ab : input int, optional
Default: 0

ldab : input int, optional
Default: shape(ab,0)

scipy.linalg.lapack.cpbtrf(ab[, lower, ldab, overwrite_ab]) = <fortran object>
Wrapper for cpbtrf.

Parameters ab : input rank-2 array(‘F’) with bounds (ldab,n)
Returns c : rank-2 array(‘F’) with bounds (ldab,n) and ab storage

info : int
Other Parameters

lower : input int, optional
Default: 0

overwrite_ab : input int, optional
Default: 0

5.17. All functions 567

SciPy Reference Guide, Release 0.16.0

ldab : input int, optional
Default: shape(ab,0)

scipy.linalg.lapack.zpbtrf(ab[, lower, ldab, overwrite_ab]) = <fortran object>
Wrapper for zpbtrf.

Parameters ab : input rank-2 array(‘D’) with bounds (ldab,n)
Returns c : rank-2 array(‘D’) with bounds (ldab,n) and ab storage

info : int
Other Parameters

lower : input int, optional
Default: 0

overwrite_ab : input int, optional
Default: 0

ldab : input int, optional
Default: shape(ab,0)

scipy.linalg.lapack.spbtrs(ab, b[, lower, ldab, overwrite_b]) = <fortran object>
Wrapper for spbtrs.

Parameters ab : input rank-2 array(‘f’) with bounds (ldab,n)
b : input rank-2 array(‘f’) with bounds (ldb,nrhs)

Returns x : rank-2 array(‘f’) with bounds (ldb,nrhs) and b storage
info : int

Other Parameters
lower : input int, optional

Default: 0
ldab : input int, optional

Default: shape(ab,0)
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.dpbtrs(ab, b[, lower, ldab, overwrite_b]) = <fortran object>
Wrapper for dpbtrs.

Parameters ab : input rank-2 array(‘d’) with bounds (ldab,n)
b : input rank-2 array(‘d’) with bounds (ldb,nrhs)

Returns x : rank-2 array(‘d’) with bounds (ldb,nrhs) and b storage
info : int

Other Parameters
lower : input int, optional

Default: 0
ldab : input int, optional

Default: shape(ab,0)
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.cpbtrs(ab, b[, lower, ldab, overwrite_b]) = <fortran object>
Wrapper for cpbtrs.

Parameters ab : input rank-2 array(‘F’) with bounds (ldab,n)
b : input rank-2 array(‘F’) with bounds (ldb,nrhs)

Returns x : rank-2 array(‘F’) with bounds (ldb,nrhs) and b storage
info : int

Other Parameters
lower : input int, optional

Default: 0
ldab : input int, optional

568 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Default: shape(ab,0)
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.zpbtrs(ab, b[, lower, ldab, overwrite_b]) = <fortran object>
Wrapper for zpbtrs.

Parameters ab : input rank-2 array(‘D’) with bounds (ldab,n)
b : input rank-2 array(‘D’) with bounds (ldb,nrhs)

Returns x : rank-2 array(‘D’) with bounds (ldb,nrhs) and b storage
info : int

Other Parameters
lower : input int, optional

Default: 0
ldab : input int, optional

Default: shape(ab,0)
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.sposv(a, b[, lower, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for sposv.

Parameters a : input rank-2 array(‘f’) with bounds (n,n)
b : input rank-2 array(‘f’) with bounds (n,nrhs)

Returns c : rank-2 array(‘f’) with bounds (n,n) and a storage
x : rank-2 array(‘f’) with bounds (n,nrhs) and b storage
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.lapack.dposv(a, b[, lower, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for dposv.

Parameters a : input rank-2 array(‘d’) with bounds (n,n)
b : input rank-2 array(‘d’) with bounds (n,nrhs)

Returns c : rank-2 array(‘d’) with bounds (n,n) and a storage
x : rank-2 array(‘d’) with bounds (n,nrhs) and b storage
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.lapack.cposv(a, b[, lower, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for cposv.

Parameters a : input rank-2 array(‘F’) with bounds (n,n)
b : input rank-2 array(‘F’) with bounds (n,nrhs)

5.17. All functions 569

SciPy Reference Guide, Release 0.16.0

Returns c : rank-2 array(‘F’) with bounds (n,n) and a storage
x : rank-2 array(‘F’) with bounds (n,nrhs) and b storage
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.lapack.zposv(a, b[, lower, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for zposv.

Parameters a : input rank-2 array(‘D’) with bounds (n,n)
b : input rank-2 array(‘D’) with bounds (n,nrhs)

Returns c : rank-2 array(‘D’) with bounds (n,n) and a storage
x : rank-2 array(‘D’) with bounds (n,nrhs) and b storage
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.lapack.spotrf(a[, lower, clean, overwrite_a]) = <fortran object>
Wrapper for spotrf.

Parameters a : input rank-2 array(‘f’) with bounds (n,n)
Returns c : rank-2 array(‘f’) with bounds (n,n) and a storage

info : int
Other Parameters

overwrite_a : input int, optional
Default: 0

lower : input int, optional
Default: 0

clean : input int, optional
Default: 1

scipy.linalg.lapack.dpotrf(a[, lower, clean, overwrite_a]) = <fortran object>
Wrapper for dpotrf.

Parameters a : input rank-2 array(‘d’) with bounds (n,n)
Returns c : rank-2 array(‘d’) with bounds (n,n) and a storage

info : int
Other Parameters

overwrite_a : input int, optional
Default: 0

lower : input int, optional
Default: 0

clean : input int, optional
Default: 1

scipy.linalg.lapack.cpotrf(a[, lower, clean, overwrite_a]) = <fortran object>
Wrapper for cpotrf.

570 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters a : input rank-2 array(‘F’) with bounds (n,n)
Returns c : rank-2 array(‘F’) with bounds (n,n) and a storage

info : int
Other Parameters

overwrite_a : input int, optional
Default: 0

lower : input int, optional
Default: 0

clean : input int, optional
Default: 1

scipy.linalg.lapack.zpotrf(a[, lower, clean, overwrite_a]) = <fortran object>
Wrapper for zpotrf.

Parameters a : input rank-2 array(‘D’) with bounds (n,n)
Returns c : rank-2 array(‘D’) with bounds (n,n) and a storage

info : int
Other Parameters

overwrite_a : input int, optional
Default: 0

lower : input int, optional
Default: 0

clean : input int, optional
Default: 1

scipy.linalg.lapack.spotri(c[, lower, overwrite_c]) = <fortran object>
Wrapper for spotri.

Parameters c : input rank-2 array(‘f’) with bounds (n,n)
Returns inv_a : rank-2 array(‘f’) with bounds (n,n) and c storage

info : int
Other Parameters

overwrite_c : input int, optional
Default: 0

lower : input int, optional
Default: 0

scipy.linalg.lapack.dpotri(c[, lower, overwrite_c]) = <fortran object>
Wrapper for dpotri.

Parameters c : input rank-2 array(‘d’) with bounds (n,n)
Returns inv_a : rank-2 array(‘d’) with bounds (n,n) and c storage

info : int
Other Parameters

overwrite_c : input int, optional
Default: 0

lower : input int, optional
Default: 0

scipy.linalg.lapack.cpotri(c[, lower, overwrite_c]) = <fortran object>
Wrapper for cpotri.

Parameters c : input rank-2 array(‘F’) with bounds (n,n)
Returns inv_a : rank-2 array(‘F’) with bounds (n,n) and c storage

info : int
Other Parameters

overwrite_c : input int, optional
Default: 0

5.17. All functions 571

SciPy Reference Guide, Release 0.16.0

lower : input int, optional
Default: 0

scipy.linalg.lapack.zpotri(c[, lower, overwrite_c]) = <fortran object>
Wrapper for zpotri.

Parameters c : input rank-2 array(‘D’) with bounds (n,n)
Returns inv_a : rank-2 array(‘D’) with bounds (n,n) and c storage

info : int
Other Parameters

overwrite_c : input int, optional
Default: 0

lower : input int, optional
Default: 0

scipy.linalg.lapack.spotrs(c, b[, lower, overwrite_b]) = <fortran object>
Wrapper for spotrs.

Parameters c : input rank-2 array(‘f’) with bounds (n,n)
b : input rank-2 array(‘f’) with bounds (n,nrhs)

Returns x : rank-2 array(‘f’) with bounds (n,nrhs) and b storage
info : int

Other Parameters
overwrite_b : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.lapack.dpotrs(c, b[, lower, overwrite_b]) = <fortran object>
Wrapper for dpotrs.

Parameters c : input rank-2 array(‘d’) with bounds (n,n)
b : input rank-2 array(‘d’) with bounds (n,nrhs)

Returns x : rank-2 array(‘d’) with bounds (n,nrhs) and b storage
info : int

Other Parameters
overwrite_b : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.lapack.cpotrs(c, b[, lower, overwrite_b]) = <fortran object>
Wrapper for cpotrs.

Parameters c : input rank-2 array(‘F’) with bounds (n,n)
b : input rank-2 array(‘F’) with bounds (n,nrhs)

Returns x : rank-2 array(‘F’) with bounds (n,nrhs) and b storage
info : int

Other Parameters
overwrite_b : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.lapack.zpotrs(c, b[, lower, overwrite_b]) = <fortran object>
Wrapper for zpotrs.

Parameters c : input rank-2 array(‘D’) with bounds (n,n)
b : input rank-2 array(‘D’) with bounds (n,nrhs)

572 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Returns x : rank-2 array(‘D’) with bounds (n,nrhs) and b storage
info : int

Other Parameters
overwrite_b : input int, optional

Default: 0
lower : input int, optional

Default: 0

scipy.linalg.lapack.crot(x, y, c, s[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) = <fortran
object>

Wrapper for crot.

Parameters x : input rank-1 array(‘F’) with bounds (*)
y : input rank-1 array(‘F’) with bounds (*)
c : input float
s : input complex

Returns x : rank-1 array(‘F’) with bounds (*)
y : rank-1 array(‘F’) with bounds (*)

Other Parameters
n : input int, optional

Default: (len(x)-1-offx)/abs(incx)+1
overwrite_x : input int, optional

Default: 0
offx : input int, optional

Default: 0
incx : input int, optional

Default: 1
overwrite_y : input int, optional

Default: 0
offy : input int, optional

Default: 0
incy : input int, optional

Default: 1

scipy.linalg.lapack.zrot(x, y, c, s[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) = <fortran
object>

Wrapper for zrot.

Parameters x : input rank-1 array(‘D’) with bounds (*)
y : input rank-1 array(‘D’) with bounds (*)
c : input float
s : input complex

Returns x : rank-1 array(‘D’) with bounds (*)
y : rank-1 array(‘D’) with bounds (*)

Other Parameters
n : input int, optional

Default: (len(x)-1-offx)/abs(incx)+1
overwrite_x : input int, optional

Default: 0
offx : input int, optional

Default: 0
incx : input int, optional

Default: 1
overwrite_y : input int, optional

Default: 0
offy : input int, optional

5.17. All functions 573

SciPy Reference Guide, Release 0.16.0

Default: 0
incy : input int, optional

Default: 1

scipy.linalg.lapack.strsyl(a, b, c[, trana, tranb, isgn, overwrite_c]) = <fortran object>
Wrapper for strsyl.

Parameters a : input rank-2 array(‘f’) with bounds (m,m)
b : input rank-2 array(‘f’) with bounds (n,n)
c : input rank-2 array(‘f’) with bounds (m,n)

Returns x : rank-2 array(‘f’) with bounds (m,n) and c storage
scale : float
info : int

Other Parameters
trana : input string(len=1), optional

Default: ‘N’
tranb : input string(len=1), optional

Default: ‘N’
isgn : input int, optional

Default: 1
overwrite_c : input int, optional

Default: 0

scipy.linalg.lapack.dtrsyl(a, b, c[, trana, tranb, isgn, overwrite_c]) = <fortran object>
Wrapper for dtrsyl.

Parameters a : input rank-2 array(‘d’) with bounds (m,m)
b : input rank-2 array(‘d’) with bounds (n,n)
c : input rank-2 array(‘d’) with bounds (m,n)

Returns x : rank-2 array(‘d’) with bounds (m,n) and c storage
scale : float
info : int

Other Parameters
trana : input string(len=1), optional

Default: ‘N’
tranb : input string(len=1), optional

Default: ‘N’
isgn : input int, optional

Default: 1
overwrite_c : input int, optional

Default: 0

scipy.linalg.lapack.ctrsyl(a, b, c[, trana, tranb, isgn, overwrite_c]) = <fortran object>
Wrapper for ctrsyl.

Parameters a : input rank-2 array(‘F’) with bounds (m,m)
b : input rank-2 array(‘F’) with bounds (n,n)
c : input rank-2 array(‘F’) with bounds (m,n)

Returns x : rank-2 array(‘F’) with bounds (m,n) and c storage
scale : float
info : int

Other Parameters
trana : input string(len=1), optional

Default: ‘N’
tranb : input string(len=1), optional

Default: ‘N’
isgn : input int, optional

574 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Default: 1
overwrite_c : input int, optional

Default: 0

scipy.linalg.lapack.ztrsyl(a, b, c[, trana, tranb, isgn, overwrite_c]) = <fortran object>
Wrapper for ztrsyl.

Parameters a : input rank-2 array(‘D’) with bounds (m,m)
b : input rank-2 array(‘D’) with bounds (n,n)
c : input rank-2 array(‘D’) with bounds (m,n)

Returns x : rank-2 array(‘D’) with bounds (m,n) and c storage
scale : float
info : int

Other Parameters
trana : input string(len=1), optional

Default: ‘N’
tranb : input string(len=1), optional

Default: ‘N’
isgn : input int, optional

Default: 1
overwrite_c : input int, optional

Default: 0

scipy.linalg.lapack.strtri(c[, lower, unitdiag, overwrite_c]) = <fortran object>
Wrapper for strtri.

Parameters c : input rank-2 array(‘f’) with bounds (n,n)
Returns inv_c : rank-2 array(‘f’) with bounds (n,n) and c storage

info : int
Other Parameters

overwrite_c : input int, optional
Default: 0

lower : input int, optional
Default: 0

unitdiag : input int, optional
Default: 0

scipy.linalg.lapack.dtrtri(c[, lower, unitdiag, overwrite_c]) = <fortran object>
Wrapper for dtrtri.

Parameters c : input rank-2 array(‘d’) with bounds (n,n)
Returns inv_c : rank-2 array(‘d’) with bounds (n,n) and c storage

info : int
Other Parameters

overwrite_c : input int, optional
Default: 0

lower : input int, optional
Default: 0

unitdiag : input int, optional
Default: 0

scipy.linalg.lapack.ctrtri(c[, lower, unitdiag, overwrite_c]) = <fortran object>
Wrapper for ctrtri.

Parameters c : input rank-2 array(‘F’) with bounds (n,n)
Returns inv_c : rank-2 array(‘F’) with bounds (n,n) and c storage

info : int

5.17. All functions 575

SciPy Reference Guide, Release 0.16.0

Other Parameters
overwrite_c : input int, optional

Default: 0
lower : input int, optional

Default: 0
unitdiag : input int, optional

Default: 0

scipy.linalg.lapack.ztrtri(c[, lower, unitdiag, overwrite_c]) = <fortran object>
Wrapper for ztrtri.

Parameters c : input rank-2 array(‘D’) with bounds (n,n)
Returns inv_c : rank-2 array(‘D’) with bounds (n,n) and c storage

info : int
Other Parameters

overwrite_c : input int, optional
Default: 0

lower : input int, optional
Default: 0

unitdiag : input int, optional
Default: 0

scipy.linalg.lapack.strtrs(a, b[, lower, trans, unitdiag, lda, overwrite_b]) = <fortran object>
Wrapper for strtrs.

Parameters a : input rank-2 array(‘f’) with bounds (lda,n)
b : input rank-2 array(‘f’) with bounds (ldb,nrhs)

Returns x : rank-2 array(‘f’) with bounds (ldb,nrhs) and b storage
info : int

Other Parameters
lower : input int, optional

Default: 0
trans : input int, optional

Default: 0
unitdiag : input int, optional

Default: 0
lda : input int, optional

Default: shape(a,0)
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.dtrtrs(a, b[, lower, trans, unitdiag, lda, overwrite_b]) = <fortran object>
Wrapper for dtrtrs.

Parameters a : input rank-2 array(‘d’) with bounds (lda,n)
b : input rank-2 array(‘d’) with bounds (ldb,nrhs)

Returns x : rank-2 array(‘d’) with bounds (ldb,nrhs) and b storage
info : int

Other Parameters
lower : input int, optional

Default: 0
trans : input int, optional

Default: 0
unitdiag : input int, optional

Default: 0
lda : input int, optional

Default: shape(a,0)

576 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

overwrite_b : input int, optional
Default: 0

scipy.linalg.lapack.ctrtrs(a, b[, lower, trans, unitdiag, lda, overwrite_b]) = <fortran object>
Wrapper for ctrtrs.

Parameters a : input rank-2 array(‘F’) with bounds (lda,n)
b : input rank-2 array(‘F’) with bounds (ldb,nrhs)

Returns x : rank-2 array(‘F’) with bounds (ldb,nrhs) and b storage
info : int

Other Parameters
lower : input int, optional

Default: 0
trans : input int, optional

Default: 0
unitdiag : input int, optional

Default: 0
lda : input int, optional

Default: shape(a,0)
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.ztrtrs(a, b[, lower, trans, unitdiag, lda, overwrite_b]) = <fortran object>
Wrapper for ztrtrs.

Parameters a : input rank-2 array(‘D’) with bounds (lda,n)
b : input rank-2 array(‘D’) with bounds (ldb,nrhs)

Returns x : rank-2 array(‘D’) with bounds (ldb,nrhs) and b storage
info : int

Other Parameters
lower : input int, optional

Default: 0
trans : input int, optional

Default: 0
unitdiag : input int, optional

Default: 0
lda : input int, optional

Default: shape(a,0)
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.cunghr(a, tau[, lo, hi, lwork, overwrite_a]) = <fortran object>
Wrapper for cunghr.

Parameters a : input rank-2 array(‘F’) with bounds (n,n)
tau : input rank-1 array(‘F’) with bounds (n - 1)

Returns ht : rank-2 array(‘F’) with bounds (n,n) and a storage
info : int

Other Parameters
lo : input int, optional

Default: 0
hi : input int, optional

Default: n-1
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: hi-lo

5.17. All functions 577

SciPy Reference Guide, Release 0.16.0

scipy.linalg.lapack.zunghr(a, tau[, lo, hi, lwork, overwrite_a]) = <fortran object>
Wrapper for zunghr.

Parameters a : input rank-2 array(‘D’) with bounds (n,n)
tau : input rank-1 array(‘D’) with bounds (n - 1)

Returns ht : rank-2 array(‘D’) with bounds (n,n) and a storage
info : int

Other Parameters
lo : input int, optional

Default: 0
hi : input int, optional

Default: n-1
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: hi-lo

scipy.linalg.lapack.cungqr(a, tau[, lwork, overwrite_a]) = <fortran object>
Wrapper for cungqr.

Parameters a : input rank-2 array(‘F’) with bounds (m,n)
tau : input rank-1 array(‘F’) with bounds (k)

Returns q : rank-2 array(‘F’) with bounds (m,n) and a storage
work : rank-1 array(‘F’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*n

scipy.linalg.lapack.zungqr(a, tau[, lwork, overwrite_a]) = <fortran object>
Wrapper for zungqr.

Parameters a : input rank-2 array(‘D’) with bounds (m,n)
tau : input rank-1 array(‘D’) with bounds (k)

Returns q : rank-2 array(‘D’) with bounds (m,n) and a storage
work : rank-1 array(‘D’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*n

scipy.linalg.lapack.cungrq(a, tau[, lwork, overwrite_a]) = <fortran object>
Wrapper for cungrq.

Parameters a : input rank-2 array(‘F’) with bounds (m,n)
tau : input rank-1 array(‘F’) with bounds (k)

Returns q : rank-2 array(‘F’) with bounds (m,n) and a storage
work : rank-1 array(‘F’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

578 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Default: 3*m

scipy.linalg.lapack.zungrq(a, tau[, lwork, overwrite_a]) = <fortran object>
Wrapper for zungrq.

Parameters a : input rank-2 array(‘D’) with bounds (m,n)
tau : input rank-1 array(‘D’) with bounds (k)

Returns q : rank-2 array(‘D’) with bounds (m,n) and a storage
work : rank-1 array(‘D’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*m

scipy.linalg.lapack.cunmqr(side, trans, a, tau, c, lwork[, overwrite_c]) = <fortran object>
Wrapper for cunmqr.

Parameters side : input string(len=1)
trans : input string(len=1)
a : input rank-2 array(‘F’) with bounds (lda,k)
tau : input rank-1 array(‘F’) with bounds (k)
c : input rank-2 array(‘F’) with bounds (ldc,n)
lwork : input int

Returns cq : rank-2 array(‘F’) with bounds (ldc,n) and c storage
work : rank-1 array(‘F’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_c : input int, optional

Default: 0

scipy.linalg.lapack.zunmqr(side, trans, a, tau, c, lwork[, overwrite_c]) = <fortran object>
Wrapper for zunmqr.

Parameters side : input string(len=1)
trans : input string(len=1)
a : input rank-2 array(‘D’) with bounds (lda,k)
tau : input rank-1 array(‘D’) with bounds (k)
c : input rank-2 array(‘D’) with bounds (ldc,n)
lwork : input int

Returns cq : rank-2 array(‘D’) with bounds (ldc,n) and c storage
work : rank-1 array(‘D’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_c : input int, optional

Default: 0

scipy.linalg.lapack.sgtsv(dl, d, du, b[, overwrite_dl, overwrite_d, overwrite_du, overwrite_b]) =
<fortran object>

Wrapper for sgtsv.

Parameters dl : input rank-1 array(‘f’) with bounds (n - 1)
d : input rank-1 array(‘f’) with bounds (*)
du : input rank-1 array(‘f’) with bounds (n - 1)
b : input rank-2 array(‘f’) with bounds (,)

5.17. All functions 579

SciPy Reference Guide, Release 0.16.0

Returns du2 : rank-1 array(‘f’) with bounds (n - 1) and dl storage
d : rank-1 array(‘f’) with bounds (*)
du : rank-1 array(‘f’) with bounds (n - 1)
x : rank-2 array(‘f’) with bounds (,) and b storage
info : int

Other Parameters
overwrite_dl : input int, optional

Default: 0
overwrite_d : input int, optional

Default: 0
overwrite_du : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.dgtsv(dl, d, du, b[, overwrite_dl, overwrite_d, overwrite_du, overwrite_b]) =
<fortran object>

Wrapper for dgtsv.

Parameters dl : input rank-1 array(‘d’) with bounds (n - 1)
d : input rank-1 array(‘d’) with bounds (*)
du : input rank-1 array(‘d’) with bounds (n - 1)
b : input rank-2 array(‘d’) with bounds (,)

Returns du2 : rank-1 array(‘d’) with bounds (n - 1) and dl storage
d : rank-1 array(‘d’) with bounds (*)
du : rank-1 array(‘d’) with bounds (n - 1)
x : rank-2 array(‘d’) with bounds (,) and b storage
info : int

Other Parameters
overwrite_dl : input int, optional

Default: 0
overwrite_d : input int, optional

Default: 0
overwrite_du : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.cgtsv(dl, d, du, b[, overwrite_dl, overwrite_d, overwrite_du, overwrite_b]) =
<fortran object>

Wrapper for cgtsv.

Parameters dl : input rank-1 array(‘F’) with bounds (n - 1)
d : input rank-1 array(‘F’) with bounds (*)
du : input rank-1 array(‘F’) with bounds (n - 1)
b : input rank-2 array(‘F’) with bounds (,)

Returns du2 : rank-1 array(‘F’) with bounds (n - 1) and dl storage
d : rank-1 array(‘F’) with bounds (*)
du : rank-1 array(‘F’) with bounds (n - 1)
x : rank-2 array(‘F’) with bounds (,) and b storage
info : int

Other Parameters
overwrite_dl : input int, optional

Default: 0
overwrite_d : input int, optional

Default: 0

580 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

overwrite_du : input int, optional
Default: 0

overwrite_b : input int, optional
Default: 0

scipy.linalg.lapack.zgtsv(dl, d, du, b[, overwrite_dl, overwrite_d, overwrite_du, overwrite_b]) =
<fortran object>

Wrapper for zgtsv.

Parameters dl : input rank-1 array(‘D’) with bounds (n - 1)
d : input rank-1 array(‘D’) with bounds (*)
du : input rank-1 array(‘D’) with bounds (n - 1)
b : input rank-2 array(‘D’) with bounds (,)

Returns du2 : rank-1 array(‘D’) with bounds (n - 1) and dl storage
d : rank-1 array(‘D’) with bounds (*)
du : rank-1 array(‘D’) with bounds (n - 1)
x : rank-2 array(‘D’) with bounds (,) and b storage
info : int

Other Parameters
overwrite_dl : input int, optional

Default: 0
overwrite_d : input int, optional

Default: 0
overwrite_du : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.sptsv(d, e, b[, overwrite_d, overwrite_e, overwrite_b]) = <fortran object>
Wrapper for sptsv.

Parameters d : input rank-1 array(‘f’) with bounds (*)
e : input rank-1 array(‘f’) with bounds (n - 1)
b : input rank-2 array(‘f’) with bounds (,)

Returns d : rank-1 array(‘f’) with bounds (*)
du : rank-1 array(‘f’) with bounds (n - 1) and e storage
x : rank-2 array(‘f’) with bounds (,) and b storage
info : int

Other Parameters
overwrite_d : input int, optional

Default: 0
overwrite_e : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.dptsv(d, e, b[, overwrite_d, overwrite_e, overwrite_b]) = <fortran object>
Wrapper for dptsv.

Parameters d : input rank-1 array(‘d’) with bounds (*)
e : input rank-1 array(‘d’) with bounds (n - 1)
b : input rank-2 array(‘d’) with bounds (,)

Returns d : rank-1 array(‘d’) with bounds (*)
du : rank-1 array(‘d’) with bounds (n - 1) and e storage
x : rank-2 array(‘d’) with bounds (,) and b storage
info : int

5.17. All functions 581

SciPy Reference Guide, Release 0.16.0

Other Parameters
overwrite_d : input int, optional

Default: 0
overwrite_e : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.cptsv(d, e, b[, overwrite_d, overwrite_e, overwrite_b]) = <fortran object>
Wrapper for cptsv.

Parameters d : input rank-1 array(‘f’) with bounds (*)
e : input rank-1 array(‘F’) with bounds (n - 1)
b : input rank-2 array(‘F’) with bounds (,)

Returns d : rank-1 array(‘f’) with bounds (*)
du : rank-1 array(‘F’) with bounds (n - 1) and e storage
x : rank-2 array(‘F’) with bounds (,) and b storage
info : int

Other Parameters
overwrite_d : input int, optional

Default: 0
overwrite_e : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.zptsv(d, e, b[, overwrite_d, overwrite_e, overwrite_b]) = <fortran object>
Wrapper for zptsv.

Parameters d : input rank-1 array(‘d’) with bounds (*)
e : input rank-1 array(‘D’) with bounds (n - 1)
b : input rank-2 array(‘D’) with bounds (,)

Returns d : rank-1 array(‘d’) with bounds (*)
du : rank-1 array(‘D’) with bounds (n - 1) and e storage
x : rank-2 array(‘D’) with bounds (,) and b storage
info : int

Other Parameters
overwrite_d : input int, optional

Default: 0
overwrite_e : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.slamch(cmach) = <fortran slamch>
Wrapper for slamch.

Parameters cmach : input string(len=1)
Returns slamch : float

scipy.linalg.lapack.dlamch(cmach) = <fortran dlamch>
Wrapper for dlamch.

Parameters cmach : input string(len=1)
Returns dlamch : float

scipy.linalg.lapack.sorghr(a, tau[, lo, hi, lwork, overwrite_a]) = <fortran object>
Wrapper for sorghr.

582 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters a : input rank-2 array(‘f’) with bounds (n,n)
tau : input rank-1 array(‘f’) with bounds (n - 1)

Returns ht : rank-2 array(‘f’) with bounds (n,n) and a storage
info : int

Other Parameters
lo : input int, optional

Default: 0
hi : input int, optional

Default: n-1
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: hi-lo

scipy.linalg.lapack.dorghr(a, tau[, lo, hi, lwork, overwrite_a]) = <fortran object>
Wrapper for dorghr.

Parameters a : input rank-2 array(‘d’) with bounds (n,n)
tau : input rank-1 array(‘d’) with bounds (n - 1)

Returns ht : rank-2 array(‘d’) with bounds (n,n) and a storage
info : int

Other Parameters
lo : input int, optional

Default: 0
hi : input int, optional

Default: n-1
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: hi-lo

scipy.linalg.lapack.sorgqr(a, tau[, lwork, overwrite_a]) = <fortran object>
Wrapper for sorgqr.

Parameters a : input rank-2 array(‘f’) with bounds (m,n)
tau : input rank-1 array(‘f’) with bounds (k)

Returns q : rank-2 array(‘f’) with bounds (m,n) and a storage
work : rank-1 array(‘f’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*n

scipy.linalg.lapack.dorgqr(a, tau[, lwork, overwrite_a]) = <fortran object>
Wrapper for dorgqr.

Parameters a : input rank-2 array(‘d’) with bounds (m,n)
tau : input rank-1 array(‘d’) with bounds (k)

Returns q : rank-2 array(‘d’) with bounds (m,n) and a storage
work : rank-1 array(‘d’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

5.17. All functions 583

SciPy Reference Guide, Release 0.16.0

Default: 3*n

scipy.linalg.lapack.sorgrq(a, tau[, lwork, overwrite_a]) = <fortran object>
Wrapper for sorgrq.

Parameters a : input rank-2 array(‘f’) with bounds (m,n)
tau : input rank-1 array(‘f’) with bounds (k)

Returns q : rank-2 array(‘f’) with bounds (m,n) and a storage
work : rank-1 array(‘f’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*m

scipy.linalg.lapack.dorgrq(a, tau[, lwork, overwrite_a]) = <fortran object>
Wrapper for dorgrq.

Parameters a : input rank-2 array(‘d’) with bounds (m,n)
tau : input rank-1 array(‘d’) with bounds (k)

Returns q : rank-2 array(‘d’) with bounds (m,n) and a storage
work : rank-1 array(‘d’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*m

scipy.linalg.lapack.sormqr(side, trans, a, tau, c, lwork[, overwrite_c]) = <fortran object>
Wrapper for sormqr.

Parameters side : input string(len=1)
trans : input string(len=1)
a : input rank-2 array(‘f’) with bounds (lda,k)
tau : input rank-1 array(‘f’) with bounds (k)
c : input rank-2 array(‘f’) with bounds (ldc,n)
lwork : input int

Returns cq : rank-2 array(‘f’) with bounds (ldc,n) and c storage
work : rank-1 array(‘f’) with bounds (MAX(lwork,1))
info : int

Other Parameters
overwrite_c : input int, optional

Default: 0

scipy.linalg.lapack.dormqr(side, trans, a, tau, c, lwork[, overwrite_c]) = <fortran object>
Wrapper for dormqr.

Parameters side : input string(len=1)
trans : input string(len=1)
a : input rank-2 array(‘d’) with bounds (lda,k)
tau : input rank-1 array(‘d’) with bounds (k)
c : input rank-2 array(‘d’) with bounds (ldc,n)
lwork : input int

Returns cq : rank-2 array(‘d’) with bounds (ldc,n) and c storage
work : rank-1 array(‘d’) with bounds (MAX(lwork,1))
info : int

584 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Other Parameters
overwrite_c : input int, optional

Default: 0

scipy.linalg.lapack.ssbev(ab[, compute_v, lower, ldab, overwrite_ab]) = <fortran object>
Wrapper for ssbev.

Parameters ab : input rank-2 array(‘f’) with bounds (ldab,*)
Returns w : rank-1 array(‘f’) with bounds (n)

z : rank-2 array(‘f’) with bounds (ldz,ldz)
info : int

Other Parameters
overwrite_ab : input int, optional

Default: 1
compute_v : input int, optional

Default: 1
lower : input int, optional

Default: 0
ldab : input int, optional

Default: shape(ab,0)

scipy.linalg.lapack.dsbev(ab[, compute_v, lower, ldab, overwrite_ab]) = <fortran object>
Wrapper for dsbev.

Parameters ab : input rank-2 array(‘d’) with bounds (ldab,*)
Returns w : rank-1 array(‘d’) with bounds (n)

z : rank-2 array(‘d’) with bounds (ldz,ldz)
info : int

Other Parameters
overwrite_ab : input int, optional

Default: 1
compute_v : input int, optional

Default: 1
lower : input int, optional

Default: 0
ldab : input int, optional

Default: shape(ab,0)

scipy.linalg.lapack.ssbevd(ab[, compute_v, lower, ldab, liwork, overwrite_ab]) = <fortran ob-
ject>

Wrapper for ssbevd.

Parameters ab : input rank-2 array(‘f’) with bounds (ldab,*)
Returns w : rank-1 array(‘f’) with bounds (n)

z : rank-2 array(‘f’) with bounds (ldz,ldz)
info : int

Other Parameters
overwrite_ab : input int, optional

Default: 1
compute_v : input int, optional

Default: 1
lower : input int, optional

Default: 0
ldab : input int, optional

Default: shape(ab,0)
liwork : input int, optional

Default: (compute_v?3+5*n:1)

5.17. All functions 585

SciPy Reference Guide, Release 0.16.0

scipy.linalg.lapack.dsbevd(ab[, compute_v, lower, ldab, liwork, overwrite_ab]) = <fortran ob-
ject>

Wrapper for dsbevd.

Parameters ab : input rank-2 array(‘d’) with bounds (ldab,*)
Returns w : rank-1 array(‘d’) with bounds (n)

z : rank-2 array(‘d’) with bounds (ldz,ldz)
info : int

Other Parameters
overwrite_ab : input int, optional

Default: 1
compute_v : input int, optional

Default: 1
lower : input int, optional

Default: 0
ldab : input int, optional

Default: shape(ab,0)
liwork : input int, optional

Default: (compute_v?3+5*n:1)

scipy.linalg.lapack.ssbevx(ab, vl, vu, il, iu[, ldab, compute_v, range, lower, abstol, mmax, over-
write_ab]) = <fortran object>

Wrapper for ssbevx.

Parameters ab : input rank-2 array(‘f’) with bounds (ldab,*)
vl : input float
vu : input float
il : input int
iu : input int

Returns w : rank-1 array(‘f’) with bounds (n)
z : rank-2 array(‘f’) with bounds (ldz,mmax)
m : int
ifail : rank-1 array(‘i’) with bounds ((compute_v?n:1))
info : int

Other Parameters
overwrite_ab : input int, optional

Default: 1
ldab : input int, optional

Default: shape(ab,0)
compute_v : input int, optional

Default: 1
range : input int, optional

Default: 0
lower : input int, optional

Default: 0
abstol : input float, optional

Default: 0.0
mmax : input int, optional

Default: (compute_v?(range==2?(iu-il+1):n):1)

scipy.linalg.lapack.dsbevx(ab, vl, vu, il, iu[, ldab, compute_v, range, lower, abstol, mmax, over-
write_ab]) = <fortran object>

Wrapper for dsbevx.

Parameters ab : input rank-2 array(‘d’) with bounds (ldab,*)
vl : input float
vu : input float

586 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

il : input int
iu : input int

Returns w : rank-1 array(‘d’) with bounds (n)
z : rank-2 array(‘d’) with bounds (ldz,mmax)
m : int
ifail : rank-1 array(‘i’) with bounds ((compute_v?n:1))
info : int

Other Parameters
overwrite_ab : input int, optional

Default: 1
ldab : input int, optional

Default: shape(ab,0)
compute_v : input int, optional

Default: 1
range : input int, optional

Default: 0
lower : input int, optional

Default: 0
abstol : input float, optional

Default: 0.0
mmax : input int, optional

Default: (compute_v?(range==2?(iu-il+1):n):1)

scipy.linalg.lapack.ssyev(a[, compute_v, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for ssyev.

Parameters a : input rank-2 array(‘f’) with bounds (n,n)
Returns w : rank-1 array(‘f’) with bounds (n)

v : rank-2 array(‘f’) with bounds (n,n) and a storage
info : int

Other Parameters
compute_v : input int, optional

Default: 1
lower : input int, optional

Default: 0
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*n-1

scipy.linalg.lapack.dsyev(a[, compute_v, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for dsyev.

Parameters a : input rank-2 array(‘d’) with bounds (n,n)
Returns w : rank-1 array(‘d’) with bounds (n)

v : rank-2 array(‘d’) with bounds (n,n) and a storage
info : int

Other Parameters
compute_v : input int, optional

Default: 1
lower : input int, optional

Default: 0
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: 3*n-1

5.17. All functions 587

SciPy Reference Guide, Release 0.16.0

scipy.linalg.lapack.ssyevd(a[, compute_v, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for ssyevd.

Parameters a : input rank-2 array(‘f’) with bounds (n,n)
Returns w : rank-1 array(‘f’) with bounds (n)

v : rank-2 array(‘f’) with bounds (n,n) and a storage
info : int

Other Parameters
compute_v : input int, optional

Default: 1
lower : input int, optional

Default: 0
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: (compute_v?1+6*n+2*n*n:2*n+1)

scipy.linalg.lapack.dsyevd(a[, compute_v, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for dsyevd.

Parameters a : input rank-2 array(‘d’) with bounds (n,n)
Returns w : rank-1 array(‘d’) with bounds (n)

v : rank-2 array(‘d’) with bounds (n,n) and a storage
info : int

Other Parameters
compute_v : input int, optional

Default: 1
lower : input int, optional

Default: 0
overwrite_a : input int, optional

Default: 0
lwork : input int, optional

Default: (compute_v?1+6*n+2*n*n:2*n+1)

scipy.linalg.lapack.ssyevr(a[, jobz, range, uplo, il, iu, lwork, overwrite_a]) = <fortran object>
Wrapper for ssyevr.

Parameters a : input rank-2 array(‘f’) with bounds (n,n)
Returns w : rank-1 array(‘f’) with bounds (n)

z : rank-2 array(‘f’) with bounds (n,m)
info : int

Other Parameters
jobz : input string(len=1), optional

Default: ‘V’
range : input string(len=1), optional

Default: ‘A’
uplo : input string(len=1), optional

Default: ‘L’
overwrite_a : input int, optional

Default: 0
il : input int, optional

Default: 1
iu : input int, optional

Default: n
lwork : input int, optional

Default: 26*n

588 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.linalg.lapack.dsyevr(a[, jobz, range, uplo, il, iu, lwork, overwrite_a]) = <fortran object>
Wrapper for dsyevr.

Parameters a : input rank-2 array(‘d’) with bounds (n,n)
Returns w : rank-1 array(‘d’) with bounds (n)

z : rank-2 array(‘d’) with bounds (n,m)
info : int

Other Parameters
jobz : input string(len=1), optional

Default: ‘V’
range : input string(len=1), optional

Default: ‘A’
uplo : input string(len=1), optional

Default: ‘L’
overwrite_a : input int, optional

Default: 0
il : input int, optional

Default: 1
iu : input int, optional

Default: n
lwork : input int, optional

Default: 26*n

scipy.linalg.lapack.ssygv(a, b[, itype, jobz, uplo, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for ssygv.

Parameters a : input rank-2 array(‘f’) with bounds (n,n)
b : input rank-2 array(‘f’) with bounds (n,n)

Returns a : rank-2 array(‘f’) with bounds (n,n)
w : rank-1 array(‘f’) with bounds (n)
info : int

Other Parameters
itype : input int, optional

Default: 1
jobz : input string(len=1), optional

Default: ‘V’
uplo : input string(len=1), optional

Default: ‘L’
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0

scipy.linalg.lapack.dsygv(a, b[, itype, jobz, uplo, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for dsygv.

Parameters a : input rank-2 array(‘d’) with bounds (n,n)
b : input rank-2 array(‘d’) with bounds (n,n)

Returns a : rank-2 array(‘d’) with bounds (n,n)
w : rank-1 array(‘d’) with bounds (n)
info : int

Other Parameters
itype : input int, optional

Default: 1
jobz : input string(len=1), optional

Default: ‘V’

5.17. All functions 589

SciPy Reference Guide, Release 0.16.0

uplo : input string(len=1), optional
Default: ‘L’

overwrite_a : input int, optional
Default: 0

overwrite_b : input int, optional
Default: 0

scipy.linalg.lapack.ssygvd(a, b[, itype, jobz, uplo, lwork, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for ssygvd.

Parameters a : input rank-2 array(‘f’) with bounds (n,n)
b : input rank-2 array(‘f’) with bounds (n,n)

Returns a : rank-2 array(‘f’) with bounds (n,n)
w : rank-1 array(‘f’) with bounds (n)
info : int

Other Parameters
itype : input int, optional

Default: 1
jobz : input string(len=1), optional

Default: ‘V’
uplo : input string(len=1), optional

Default: ‘L’
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
lwork : input int, optional

Default: 1+6*n+2*n*n

scipy.linalg.lapack.dsygvd(a, b[, itype, jobz, uplo, lwork, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for dsygvd.

Parameters a : input rank-2 array(‘d’) with bounds (n,n)
b : input rank-2 array(‘d’) with bounds (n,n)

Returns a : rank-2 array(‘d’) with bounds (n,n)
w : rank-1 array(‘d’) with bounds (n)
info : int

Other Parameters
itype : input int, optional

Default: 1
jobz : input string(len=1), optional

Default: ‘V’
uplo : input string(len=1), optional

Default: ‘L’
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
lwork : input int, optional

Default: 1+6*n+2*n*n

scipy.linalg.lapack.ssygvx(a, b, iu[, itype, jobz, uplo, il, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for ssygvx.

590 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters a : input rank-2 array(‘f’) with bounds (n,n)
b : input rank-2 array(‘f’) with bounds (n,n)
iu : input int

Returns w : rank-1 array(‘f’) with bounds (n)
z : rank-2 array(‘f’) with bounds (n,m)
ifail : rank-1 array(‘i’) with bounds (n)
info : int

Other Parameters
itype : input int, optional

Default: 1
jobz : input string(len=1), optional

Default: ‘V’
uplo : input string(len=1), optional

Default: ‘L’
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
il : input int, optional

Default: 1
lwork : input int, optional

Default: 8*n

scipy.linalg.lapack.dsygvx(a, b, iu[, itype, jobz, uplo, il, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for dsygvx.

Parameters a : input rank-2 array(‘d’) with bounds (n,n)
b : input rank-2 array(‘d’) with bounds (n,n)
iu : input int

Returns w : rank-1 array(‘d’) with bounds (n)
z : rank-2 array(‘d’) with bounds (n,m)
ifail : rank-1 array(‘i’) with bounds (n)
info : int

Other Parameters
itype : input int, optional

Default: 1
jobz : input string(len=1), optional

Default: ‘V’
uplo : input string(len=1), optional

Default: ‘L’
overwrite_a : input int, optional

Default: 0
overwrite_b : input int, optional

Default: 0
il : input int, optional

Default: 1
lwork : input int, optional

Default: 8*n

scipy.linalg.lapack.slange(norm, a) = <fortran slange>
Wrapper for slange.

Parameters norm : input string(len=1)
a : input rank-2 array(‘f’) with bounds (m,n)

Returns n2 : float

5.17. All functions 591

SciPy Reference Guide, Release 0.16.0

scipy.linalg.lapack.dlange(norm, a) = <fortran dlange>
Wrapper for dlange.

Parameters norm : input string(len=1)
a : input rank-2 array(‘d’) with bounds (m,n)

Returns n2 : float

scipy.linalg.lapack.clange(norm, a) = <fortran clange>
Wrapper for clange.

Parameters norm : input string(len=1)
a : input rank-2 array(‘F’) with bounds (m,n)

Returns n2 : float

scipy.linalg.lapack.zlange(norm, a) = <fortran zlange>
Wrapper for zlange.

Parameters norm : input string(len=1)
a : input rank-2 array(‘D’) with bounds (m,n)

Returns n2 : float

5.18 BLAS Functions for Cython

Usable from Cython via:

cimport scipy.linalg.cython_blas

These wrappers do not check for alignment of arrays. Alignment should be checked before these wrappers are used.

Raw function pointers (Fortran-style pointer arguments):

• caxpy

• ccopy

• cdotc

• cdotu

• cgbmv

• cgemm

• cgemv

• cgerc

• cgeru

• chbmv

• chemm

• chemv

• cher

• cher2

• cher2k

• cherk

592 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• chpmv

• chpr

• chpr2

• crotg

• cscal

• csrot

• csscal

• cswap

• csymm

• csyr2k

• csyrk

• ctbmv

• ctbsv

• ctpmv

• ctpsv

• ctrmm

• ctrmv

• ctrsm

• ctrsv

• dasum

• daxpy

• dcabs1

• dcopy

• ddot

• dgbmv

• dgemm

• dgemv

• dger

• dnrm2

• drot

• drotg

• drotm

• drotmg

• dsbmv

• dscal

• dsdot

5.18. BLAS Functions for Cython 593

SciPy Reference Guide, Release 0.16.0

• dspmv

• dspr

• dspr2

• dswap

• dsymm

• dsymv

• dsyr

• dsyr2

• dsyr2k

• dsyrk

• dtbmv

• dtbsv

• dtpmv

• dtpsv

• dtrmm

• dtrmv

• dtrsm

• dtrsv

• dzasum

• dznrm2

• icamax

• idamax

• isamax

• izamax

• lsame

• sasum

• saxpy

• scasum

• scnrm2

• scopy

• sdot

• sdsdot

• sgbmv

• sgemm

• sgemv

• sger

594 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• snrm2

• srot

• srotg

• srotm

• srotmg

• ssbmv

• sscal

• sspmv

• sspr

• sspr2

• sswap

• ssymm

• ssymv

• ssyr

• ssyr2

• ssyr2k

• ssyrk

• stbmv

• stbsv

• stpmv

• stpsv

• strmm

• strmv

• strsm

• strsv

• zaxpy

• zcopy

• zdotc

• zdotu

• zdrot

• zdscal

• zgbmv

• zgemm

• zgemv

• zgerc

• zgeru

5.18. BLAS Functions for Cython 595

SciPy Reference Guide, Release 0.16.0

• zhbmv

• zhemm

• zhemv

• zher

• zher2

• zher2k

• zherk

• zhpmv

• zhpr

• zhpr2

• zrotg

• zscal

• zswap

• zsymm

• zsyr2k

• zsyrk

• ztbmv

• ztbsv

• ztpmv

• ztpsv

• ztrmm

• ztrmv

• ztrsm

• ztrsv

5.19 LAPACK functions for Cython

Usable from Cython via:

cimport scipy.linalg.cython_lapack

This module provides Cython-level wrappers for all primary routines included in LAPACK 3.1.0 except for zcgesv
since its interface is not consistent from LAPACK 3.1.0 to 3.5.0. It also provides some of the fixed-api auxiliary
routines.

These wrappers do not check for alignment of arrays. Alignment should be checked before these wrappers are used.

Raw function pointers (Fortran-style pointer arguments):

• cbdsqr

• cgbbrd

596 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• cgbcon

• cgbequ

• cgbrfs

• cgbsv

• cgbsvx

• cgbtf2

• cgbtrf

• cgbtrs

• cgebak

• cgebal

• cgebd2

• cgebrd

• cgecon

• cgeequ

• cgees

• cgeesx

• cgeev

• cgeevx

• cgegs

• cgegv

• cgehd2

• cgehrd

• cgelq2

• cgelqf

• cgels

• cgelsd

• cgelss

• cgelsx

• cgelsy

• cgeql2

• cgeqlf

• cgeqp3

• cgeqpf

• cgeqr2

• cgeqrf

• cgerfs

5.19. LAPACK functions for Cython 597

SciPy Reference Guide, Release 0.16.0

• cgerq2

• cgerqf

• cgesc2

• cgesdd

• cgesv

• cgesvd

• cgesvx

• cgetc2

• cgetf2

• cgetrf

• cgetri

• cgetrs

• cggbak

• cggbal

• cgges

• cggesx

• cggev

• cggevx

• cggglm

• cgghrd

• cgglse

• cggqrf

• cggrqf

• cggsvd

• cggsvp

• cgtcon

• cgtrfs

• cgtsv

• cgtsvx

• cgttrf

• cgttrs

• cgtts2

• chbev

• chbevd

• chbevx

• chbgst

598 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• chbgv

• chbgvd

• chbgvx

• chbtrd

• checon

• cheev

• cheevd

• cheevr

• cheevx

• chegs2

• chegst

• chegv

• chegvd

• chegvx

• cherfs

• chesv

• chesvx

• chetd2

• chetf2

• chetrd

• chetrf

• chetri

• chetrs

• chgeqz

• chpcon

• chpev

• chpevd

• chpevx

• chpgst

• chpgv

• chpgvd

• chpgvx

• chprfs

• chpsv

• chpsvx

• chptrd

5.19. LAPACK functions for Cython 599

SciPy Reference Guide, Release 0.16.0

• chptrf

• chptri

• chptrs

• chsein

• chseqr

• clabrd

• clacgv

• clacn2

• clacon

• clacp2

• clacpy

• clacrm

• clacrt

• cladiv

• claed0

• claed7

• claed8

• claein

• claesy

• claev2

• clag2z

• clags2

• clagtm

• clahef

• clahqr

• clahr2

• clahrd

• claic1

• clals0

• clalsa

• clalsd

• clangb

• clange

• clangt

• clanhb

• clanhe

600 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• clanhp

• clanhs

• clanht

• clansb

• clansp

• clansy

• clantb

• clantp

• clantr

• clapll

• clapmt

• claqgb

• claqge

• claqhb

• claqhe

• claqhp

• claqp2

• claqps

• claqr0

• claqr1

• claqr2

• claqr3

• claqr4

• claqr5

• claqsb

• claqsp

• claqsy

• clar1v

• clar2v

• clarcm

• clarf

• clarfb

• clarfg

• clarft

• clarfx

• clargv

5.19. LAPACK functions for Cython 601

SciPy Reference Guide, Release 0.16.0

• clarnv

• clarrv

• clartg

• clartv

• clarz

• clarzb

• clarzt

• clascl

• claset

• clasr

• classq

• claswp

• clasyf

• clatbs

• clatdf

• clatps

• clatrd

• clatrs

• clatrz

• clatzm

• clauu2

• clauum

• cpbcon

• cpbequ

• cpbrfs

• cpbstf

• cpbsv

• cpbsvx

• cpbtf2

• cpbtrf

• cpbtrs

• cpocon

• cpoequ

• cporfs

• cposv

• cposvx

602 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• cpotf2

• cpotrf

• cpotri

• cpotrs

• cppcon

• cppequ

• cpprfs

• cppsv

• cppsvx

• cpptrf

• cpptri

• cpptrs

• cptcon

• cpteqr

• cptrfs

• cptsv

• cptsvx

• cpttrf

• cpttrs

• cptts2

• crot

• cspcon

• cspmv

• cspr

• csprfs

• cspsv

• cspsvx

• csptrf

• csptri

• csptrs

• csrscl

• cstedc

• cstegr

• cstein

• cstemr

• csteqr

5.19. LAPACK functions for Cython 603

SciPy Reference Guide, Release 0.16.0

• csycon

• csymv

• csyr

• csyrfs

• csysv

• csysvx

• csytf2

• csytrf

• csytri

• csytrs

• ctbcon

• ctbrfs

• ctbtrs

• ctgevc

• ctgex2

• ctgexc

• ctgsen

• ctgsja

• ctgsna

• ctgsy2

• ctgsyl

• ctpcon

• ctprfs

• ctptri

• ctptrs

• ctrcon

• ctrevc

• ctrexc

• ctrrfs

• ctrsen

• ctrsna

• ctrsyl

• ctrti2

• ctrtri

• ctrtrs

• ctzrqf

604 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• ctzrzf

• cung2l

• cung2r

• cungbr

• cunghr

• cungl2

• cunglq

• cungql

• cungqr

• cungr2

• cungrq

• cungtr

• cunm2l

• cunm2r

• cunmbr

• cunmhr

• cunml2

• cunmlq

• cunmql

• cunmqr

• cunmr2

• cunmr3

• cunmrq

• cunmrz

• cunmtr

• cupgtr

• cupmtr

• dbdsdc

• dbdsqr

• ddisna

• dgbbrd

• dgbcon

• dgbequ

• dgbrfs

• dgbsv

• dgbsvx

5.19. LAPACK functions for Cython 605

SciPy Reference Guide, Release 0.16.0

• dgbtf2

• dgbtrf

• dgbtrs

• dgebak

• dgebal

• dgebd2

• dgebrd

• dgecon

• dgeequ

• dgees

• dgeesx

• dgeev

• dgeevx

• dgegs

• dgegv

• dgehd2

• dgehrd

• dgelq2

• dgelqf

• dgels

• dgelsd

• dgelss

• dgelsx

• dgelsy

• dgeql2

• dgeqlf

• dgeqp3

• dgeqpf

• dgeqr2

• dgeqrf

• dgerfs

• dgerq2

• dgerqf

• dgesc2

• dgesdd

• dgesv

606 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• dgesvd

• dgesvx

• dgetc2

• dgetf2

• dgetrf

• dgetri

• dgetrs

• dggbak

• dggbal

• dgges

• dggesx

• dggev

• dggevx

• dggglm

• dgghrd

• dgglse

• dggqrf

• dggrqf

• dggsvd

• dggsvp

• dgtcon

• dgtrfs

• dgtsv

• dgtsvx

• dgttrf

• dgttrs

• dgtts2

• dhgeqz

• dhsein

• dhseqr

• disnan

• dlabad

• dlabrd

• dlacn2

• dlacon

• dlacpy

5.19. LAPACK functions for Cython 607

SciPy Reference Guide, Release 0.16.0

• dladiv

• dlae2

• dlaebz

• dlaed0

• dlaed1

• dlaed2

• dlaed3

• dlaed4

• dlaed5

• dlaed6

• dlaed7

• dlaed8

• dlaed9

• dlaeda

• dlaein

• dlaev2

• dlaexc

• dlag2

• dlag2s

• dlags2

• dlagtf

• dlagtm

• dlagts

• dlagv2

• dlahqr

• dlahr2

• dlahrd

• dlaic1

• dlaln2

• dlals0

• dlalsa

• dlalsd

• dlamch

• dlamrg

• dlaneg

• dlangb

608 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• dlange

• dlangt

• dlanhs

• dlansb

• dlansp

• dlanst

• dlansy

• dlantb

• dlantp

• dlantr

• dlanv2

• dlapll

• dlapmt

• dlapy2

• dlapy3

• dlaqgb

• dlaqge

• dlaqp2

• dlaqps

• dlaqr0

• dlaqr1

• dlaqr2

• dlaqr3

• dlaqr4

• dlaqr5

• dlaqsb

• dlaqsp

• dlaqsy

• dlaqtr

• dlar1v

• dlar2v

• dlarf

• dlarfb

• dlarfg

• dlarft

• dlarfx

5.19. LAPACK functions for Cython 609

SciPy Reference Guide, Release 0.16.0

• dlargv

• dlarnv

• dlarra

• dlarrb

• dlarrc

• dlarrd

• dlarre

• dlarrf

• dlarrj

• dlarrk

• dlarrr

• dlarrv

• dlartg

• dlartv

• dlaruv

• dlarz

• dlarzb

• dlarzt

• dlas2

• dlascl

• dlasd0

• dlasd1

• dlasd2

• dlasd3

• dlasd4

• dlasd5

• dlasd6

• dlasd7

• dlasd8

• dlasda

• dlasdq

• dlasdt

• dlaset

• dlasq1

• dlasq2

• dlasq6

610 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• dlasr

• dlasrt

• dlassq

• dlasv2

• dlaswp

• dlasy2

• dlasyf

• dlatbs

• dlatdf

• dlatps

• dlatrd

• dlatrs

• dlatrz

• dlatzm

• dlauu2

• dlauum

• dopgtr

• dopmtr

• dorg2l

• dorg2r

• dorgbr

• dorghr

• dorgl2

• dorglq

• dorgql

• dorgqr

• dorgr2

• dorgrq

• dorgtr

• dorm2l

• dorm2r

• dormbr

• dormhr

• dorml2

• dormlq

• dormql

5.19. LAPACK functions for Cython 611

SciPy Reference Guide, Release 0.16.0

• dormqr

• dormr2

• dormr3

• dormrq

• dormrz

• dormtr

• dpbcon

• dpbequ

• dpbrfs

• dpbstf

• dpbsv

• dpbsvx

• dpbtf2

• dpbtrf

• dpbtrs

• dpocon

• dpoequ

• dporfs

• dposv

• dposvx

• dpotf2

• dpotrf

• dpotri

• dpotrs

• dppcon

• dppequ

• dpprfs

• dppsv

• dppsvx

• dpptrf

• dpptri

• dpptrs

• dptcon

• dpteqr

• dptrfs

• dptsv

612 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• dptsvx

• dpttrf

• dpttrs

• dptts2

• drscl

• dsbev

• dsbevd

• dsbevx

• dsbgst

• dsbgv

• dsbgvd

• dsbgvx

• dsbtrd

• dsgesv

• dspcon

• dspev

• dspevd

• dspevx

• dspgst

• dspgv

• dspgvd

• dspgvx

• dsprfs

• dspsv

• dspsvx

• dsptrd

• dsptrf

• dsptri

• dsptrs

• dstebz

• dstedc

• dstegr

• dstein

• dstemr

• dsteqr

• dsterf

5.19. LAPACK functions for Cython 613

SciPy Reference Guide, Release 0.16.0

• dstev

• dstevd

• dstevr

• dstevx

• dsycon

• dsyev

• dsyevd

• dsyevr

• dsyevx

• dsygs2

• dsygst

• dsygv

• dsygvd

• dsygvx

• dsyrfs

• dsysv

• dsysvx

• dsytd2

• dsytf2

• dsytrd

• dsytrf

• dsytri

• dsytrs

• dtbcon

• dtbrfs

• dtbtrs

• dtgevc

• dtgex2

• dtgexc

• dtgsen

• dtgsja

• dtgsna

• dtgsy2

• dtgsyl

• dtpcon

• dtprfs

614 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• dtptri

• dtptrs

• dtrcon

• dtrevc

• dtrexc

• dtrrfs

• dtrsen

• dtrsna

• dtrsyl

• dtrti2

• dtrtri

• dtrtrs

• dtzrqf

• dtzrzf

• dzsum1

• icmax1

• ieeeck

• ilaver

• izmax1

• sbdsdc

• sbdsqr

• scsum1

• sdisna

• sgbbrd

• sgbcon

• sgbequ

• sgbrfs

• sgbsv

• sgbsvx

• sgbtf2

• sgbtrf

• sgbtrs

• sgebak

• sgebal

• sgebd2

• sgebrd

5.19. LAPACK functions for Cython 615

SciPy Reference Guide, Release 0.16.0

• sgecon

• sgeequ

• sgees

• sgeesx

• sgeev

• sgeevx

• sgegs

• sgegv

• sgehd2

• sgehrd

• sgelq2

• sgelqf

• sgels

• sgelsd

• sgelss

• sgelsx

• sgelsy

• sgeql2

• sgeqlf

• sgeqp3

• sgeqpf

• sgeqr2

• sgeqrf

• sgerfs

• sgerq2

• sgerqf

• sgesc2

• sgesdd

• sgesv

• sgesvd

• sgesvx

• sgetc2

• sgetf2

• sgetrf

• sgetri

• sgetrs

616 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• sggbak

• sggbal

• sgges

• sggesx

• sggev

• sggevx

• sggglm

• sgghrd

• sgglse

• sggqrf

• sggrqf

• sggsvd

• sggsvp

• sgtcon

• sgtrfs

• sgtsv

• sgtsvx

• sgttrf

• sgttrs

• sgtts2

• shgeqz

• shsein

• shseqr

• slabad

• slabrd

• slacn2

• slacon

• slacpy

• sladiv

• slae2

• slaebz

• slaed0

• slaed1

• slaed2

• slaed3

• slaed4

5.19. LAPACK functions for Cython 617

SciPy Reference Guide, Release 0.16.0

• slaed5

• slaed6

• slaed7

• slaed8

• slaed9

• slaeda

• slaein

• slaev2

• slaexc

• slag2

• slag2d

• slags2

• slagtf

• slagtm

• slagts

• slagv2

• slahqr

• slahr2

• slahrd

• slaic1

• slaln2

• slals0

• slalsa

• slalsd

• slamch

• slamrg

• slangb

• slange

• slangt

• slanhs

• slansb

• slansp

• slanst

• slansy

• slantb

• slantp

618 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• slantr

• slanv2

• slapll

• slapmt

• slapy2

• slapy3

• slaqgb

• slaqge

• slaqp2

• slaqps

• slaqr0

• slaqr1

• slaqr2

• slaqr3

• slaqr4

• slaqr5

• slaqsb

• slaqsp

• slaqsy

• slaqtr

• slar1v

• slar2v

• slarf

• slarfb

• slarfg

• slarft

• slarfx

• slargv

• slarnv

• slarra

• slarrb

• slarrc

• slarrd

• slarre

• slarrf

• slarrj

5.19. LAPACK functions for Cython 619

SciPy Reference Guide, Release 0.16.0

• slarrk

• slarrr

• slarrv

• slartg

• slartv

• slaruv

• slarz

• slarzb

• slarzt

• slas2

• slascl

• slasd0

• slasd1

• slasd2

• slasd3

• slasd4

• slasd5

• slasd6

• slasd7

• slasd8

• slasda

• slasdq

• slasdt

• slaset

• slasq1

• slasq2

• slasq6

• slasr

• slasrt

• slassq

• slasv2

• slaswp

• slasy2

• slasyf

• slatbs

• slatdf

620 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• slatps

• slatrd

• slatrs

• slatrz

• slatzm

• slauu2

• slauum

• sopgtr

• sopmtr

• sorg2l

• sorg2r

• sorgbr

• sorghr

• sorgl2

• sorglq

• sorgql

• sorgqr

• sorgr2

• sorgrq

• sorgtr

• sorm2l

• sorm2r

• sormbr

• sormhr

• sorml2

• sormlq

• sormql

• sormqr

• sormr2

• sormr3

• sormrq

• sormrz

• sormtr

• spbcon

• spbequ

• spbrfs

5.19. LAPACK functions for Cython 621

SciPy Reference Guide, Release 0.16.0

• spbstf

• spbsv

• spbsvx

• spbtf2

• spbtrf

• spbtrs

• spocon

• spoequ

• sporfs

• sposv

• sposvx

• spotf2

• spotrf

• spotri

• spotrs

• sppcon

• sppequ

• spprfs

• sppsv

• sppsvx

• spptrf

• spptri

• spptrs

• sptcon

• spteqr

• sptrfs

• sptsv

• sptsvx

• spttrf

• spttrs

• sptts2

• srscl

• ssbev

• ssbevd

• ssbevx

• ssbgst

622 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• ssbgv

• ssbgvd

• ssbgvx

• ssbtrd

• sspcon

• sspev

• sspevd

• sspevx

• sspgst

• sspgv

• sspgvd

• sspgvx

• ssprfs

• sspsv

• sspsvx

• ssptrd

• ssptrf

• ssptri

• ssptrs

• sstebz

• sstedc

• sstegr

• sstein

• sstemr

• ssteqr

• ssterf

• sstev

• sstevd

• sstevr

• sstevx

• ssycon

• ssyev

• ssyevd

• ssyevr

• ssyevx

• ssygs2

5.19. LAPACK functions for Cython 623

SciPy Reference Guide, Release 0.16.0

• ssygst

• ssygv

• ssygvd

• ssygvx

• ssyrfs

• ssysv

• ssysvx

• ssytd2

• ssytf2

• ssytrd

• ssytrf

• ssytri

• ssytrs

• stbcon

• stbrfs

• stbtrs

• stgevc

• stgex2

• stgexc

• stgsen

• stgsja

• stgsna

• stgsy2

• stgsyl

• stpcon

• stprfs

• stptri

• stptrs

• strcon

• strevc

• strexc

• strrfs

• strsen

• strsna

• strsyl

• strti2

624 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• strtri

• strtrs

• stzrqf

• stzrzf

• zbdsqr

• zdrscl

• zgbbrd

• zgbcon

• zgbequ

• zgbrfs

• zgbsv

• zgbsvx

• zgbtf2

• zgbtrf

• zgbtrs

• zgebak

• zgebal

• zgebd2

• zgebrd

• zgecon

• zgeequ

• zgees

• zgeesx

• zgeev

• zgeevx

• zgegs

• zgegv

• zgehd2

• zgehrd

• zgelq2

• zgelqf

• zgels

• zgelsd

• zgelss

• zgelsx

• zgelsy

5.19. LAPACK functions for Cython 625

SciPy Reference Guide, Release 0.16.0

• zgeql2

• zgeqlf

• zgeqp3

• zgeqpf

• zgeqr2

• zgeqrf

• zgerfs

• zgerq2

• zgerqf

• zgesc2

• zgesdd

• zgesv

• zgesvd

• zgesvx

• zgetc2

• zgetf2

• zgetrf

• zgetri

• zgetrs

• zggbak

• zggbal

• zgges

• zggesx

• zggev

• zggevx

• zggglm

• zgghrd

• zgglse

• zggqrf

• zggrqf

• zggsvd

• zggsvp

• zgtcon

• zgtrfs

• zgtsv

• zgtsvx

626 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• zgttrf

• zgttrs

• zgtts2

• zhbev

• zhbevd

• zhbevx

• zhbgst

• zhbgv

• zhbgvd

• zhbgvx

• zhbtrd

• zhecon

• zheev

• zheevd

• zheevr

• zheevx

• zhegs2

• zhegst

• zhegv

• zhegvd

• zhegvx

• zherfs

• zhesv

• zhesvx

• zhetd2

• zhetf2

• zhetrd

• zhetrf

• zhetri

• zhetrs

• zhgeqz

• zhpcon

• zhpev

• zhpevd

• zhpevx

• zhpgst

5.19. LAPACK functions for Cython 627

SciPy Reference Guide, Release 0.16.0

• zhpgv

• zhpgvd

• zhpgvx

• zhprfs

• zhpsv

• zhpsvx

• zhptrd

• zhptrf

• zhptri

• zhptrs

• zhsein

• zhseqr

• zlabrd

• zlacgv

• zlacn2

• zlacon

• zlacp2

• zlacpy

• zlacrm

• zlacrt

• zladiv

• zlaed0

• zlaed7

• zlaed8

• zlaein

• zlaesy

• zlaev2

• zlag2c

• zlags2

• zlagtm

• zlahef

• zlahqr

• zlahr2

• zlahrd

• zlaic1

• zlals0

628 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• zlalsa

• zlalsd

• zlangb

• zlange

• zlangt

• zlanhb

• zlanhe

• zlanhp

• zlanhs

• zlanht

• zlansb

• zlansp

• zlansy

• zlantb

• zlantp

• zlantr

• zlapll

• zlapmt

• zlaqgb

• zlaqge

• zlaqhb

• zlaqhe

• zlaqhp

• zlaqp2

• zlaqps

• zlaqr0

• zlaqr1

• zlaqr2

• zlaqr3

• zlaqr4

• zlaqr5

• zlaqsb

• zlaqsp

• zlaqsy

• zlar1v

• zlar2v

5.19. LAPACK functions for Cython 629

SciPy Reference Guide, Release 0.16.0

• zlarcm

• zlarf

• zlarfb

• zlarfg

• zlarft

• zlarfx

• zlargv

• zlarnv

• zlarrv

• zlartg

• zlartv

• zlarz

• zlarzb

• zlarzt

• zlascl

• zlaset

• zlasr

• zlassq

• zlaswp

• zlasyf

• zlatbs

• zlatdf

• zlatps

• zlatrd

• zlatrs

• zlatrz

• zlatzm

• zlauu2

• zlauum

• zpbcon

• zpbequ

• zpbrfs

• zpbstf

• zpbsv

• zpbsvx

• zpbtf2

630 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• zpbtrf

• zpbtrs

• zpocon

• zpoequ

• zporfs

• zposv

• zposvx

• zpotf2

• zpotrf

• zpotri

• zpotrs

• zppcon

• zppequ

• zpprfs

• zppsv

• zppsvx

• zpptrf

• zpptri

• zpptrs

• zptcon

• zpteqr

• zptrfs

• zptsv

• zptsvx

• zpttrf

• zpttrs

• zptts2

• zrot

• zspcon

• zspmv

• zspr

• zsprfs

• zspsv

• zspsvx

• zsptrf

• zsptri

5.19. LAPACK functions for Cython 631

SciPy Reference Guide, Release 0.16.0

• zsptrs

• zstedc

• zstegr

• zstein

• zstemr

• zsteqr

• zsycon

• zsymv

• zsyr

• zsyrfs

• zsysv

• zsysvx

• zsytf2

• zsytrf

• zsytri

• zsytrs

• ztbcon

• ztbrfs

• ztbtrs

• ztgevc

• ztgex2

• ztgexc

• ztgsen

• ztgsja

• ztgsna

• ztgsy2

• ztgsyl

• ztpcon

• ztprfs

• ztptri

• ztptrs

• ztrcon

• ztrevc

• ztrexc

• ztrrfs

• ztrsen

632 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

• ztrsna

• ztrsyl

• ztrti2

• ztrtri

• ztrtrs

• ztzrqf

• ztzrzf

• zung2l

• zung2r

• zungbr

• zunghr

• zungl2

• zunglq

• zungql

• zungqr

• zungr2

• zungrq

• zungtr

• zunm2l

• zunm2r

• zunmbr

• zunmhr

• zunml2

• zunmlq

• zunmql

• zunmqr

• zunmr2

• zunmr3

• zunmrq

• zunmrz

• zunmtr

• zupgtr

• zupmtr

5.19. LAPACK functions for Cython 633

SciPy Reference Guide, Release 0.16.0

5.20 Interpolative matrix decomposition (scipy.linalg.interpolative)

New in version 0.13.

An interpolative decomposition (ID) of a matrix 𝐴 ∈ 𝐶𝑚×𝑛 of rank 𝑘 ≤ min{𝑚,𝑛} is a factorization

𝐴Π =
[︀
𝐴Π1 𝐴Π2

]︀
= 𝐴Π1

[︀
𝐼 𝑇

]︀
,

where Π = [Π1,Π2] is a permutation matrix with Π1 ∈ {0, 1}𝑛×𝑘, i.e., 𝐴Π2 = 𝐴Π1𝑇 . This can equivalently be
written as 𝐴 = 𝐵𝑃 , where 𝐵 = 𝐴Π1 and 𝑃 = [𝐼, 𝑇]ΠT are the skeleton and interpolation matrices, respectively.

If 𝐴 does not have exact rank 𝑘, then there exists an approximation in the form of an ID such that 𝐴 = 𝐵𝑃 + 𝐸,
where ‖𝐸‖ ∼ 𝜎𝑘+1 is on the order of the (𝑘 + 1)-th largest singular value of 𝐴. Note that 𝜎𝑘+1 is the best possible
error for a rank-𝑘 approximation and, in fact, is achieved by the singular value decomposition (SVD) 𝐴 ≈ 𝑈𝑆𝑉 *,
where 𝑈 ∈ 𝐶𝑚×𝑘 and 𝑉 ∈ 𝐶𝑛×𝑘 have orthonormal columns and 𝑆 = diag(𝜎𝑖) ∈ 𝐶𝑘×𝑘 is diagonal with nonnegative
entries. The principal advantages of using an ID over an SVD are that:

• it is cheaper to construct;

• it preserves the structure of 𝐴; and

• it is more efficient to compute with in light of the identity submatrix of 𝑃 .

5.20.1 Routines

Main functionality:

interp_decomp(A, eps_or_k[, rand]) Compute ID of a matrix.
reconstruct_matrix_from_id(B, idx, proj) Reconstruct matrix from its ID.
reconstruct_interp_matrix(idx, proj) Reconstruct interpolation matrix from ID.
reconstruct_skel_matrix(A, k, idx) Reconstruct skeleton matrix from ID.
id_to_svd(B, idx, proj) Convert ID to SVD.
svd(A, eps_or_k[, rand]) Compute SVD of a matrix via an ID.
estimate_spectral_norm(A[, its]) Estimate spectral norm of a matrix by the randomized power method.
estimate_spectral_norm_diff(A, B[, its]) Estimate spectral norm of the difference of two matrices by the randomized power method.
estimate_rank(A, eps) Estimate matrix rank to a specified relative precision using randomized methods.

scipy.linalg.interpolative.interp_decomp(A, eps_or_k, rand=True)
Compute ID of a matrix.

An ID of a matrix A is a factorization defined by a rank k, a column index array idx, and interpolation coefficients
proj such that:

numpy.dot(A[:,idx[:k]], proj) = A[:,idx[k:]]

The original matrix can then be reconstructed as:

numpy.hstack([A[:,idx[:k]],
numpy.dot(A[:,idx[:k]], proj)]

)[:,numpy.argsort(idx)]

or via the routine reconstruct_matrix_from_id. This can equivalently be written as:

numpy.dot(A[:,idx[:k]],
numpy.hstack([numpy.eye(k), proj])

)[:,np.argsort(idx)]

634 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

in terms of the skeleton and interpolation matrices:

B = A[:,idx[:k]]

and:

P = numpy.hstack([numpy.eye(k), proj])[:,np.argsort(idx)]

respectively. See also reconstruct_interp_matrix and reconstruct_skel_matrix.

The ID can be computed to any relative precision or rank (depending on the value of eps_or_k). If a precision
is specified (eps_or_k < 1), then this function has the output signature:

k, idx, proj = interp_decomp(A, eps_or_k)

Otherwise, if a rank is specified (eps_or_k >= 1), then the output signature is:

idx, proj = interp_decomp(A, eps_or_k)

Parameters A : numpy.ndarray or scipy.sparse.linalg.LinearOperator with
rmatvec

Matrix to be factored
eps_or_k : float or int

Relative error (if eps_or_k < 1) or rank (if eps_or_k >= 1) of approximation.
rand : bool, optional

Whether to use random sampling if A is of type numpy.ndarray
(randomized algorithms are always used if A is of type
scipy.sparse.linalg.LinearOperator).

Returns k : int
Rank required to achieve specified relative precision if eps_or_k < 1.

idx : numpy.ndarray
Column index array.

proj : numpy.ndarray
Interpolation coefficients.

scipy.linalg.interpolative.reconstruct_matrix_from_id(B, idx, proj)
Reconstruct matrix from its ID.

A matrix A with skeleton matrix B and ID indices and coefficients idx and proj, respectively, can be reconstructed
as:

numpy.hstack([B, numpy.dot(B, proj)])[:,numpy.argsort(idx)]

See also reconstruct_interp_matrix and reconstruct_skel_matrix.

Parameters B : numpy.ndarray
Skeleton matrix.

idx : numpy.ndarray
Column index array.

proj : numpy.ndarray
Interpolation coefficients.

Returns numpy.ndarray
Reconstructed matrix.

scipy.linalg.interpolative.reconstruct_interp_matrix(idx, proj)
Reconstruct interpolation matrix from ID.

The interpolation matrix can be reconstructed from the ID indices and coefficients idx and proj, respectively, as:

5.20. Interpolative matrix decomposition (scipy.linalg.interpolative) 635

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

SciPy Reference Guide, Release 0.16.0

P = numpy.hstack([numpy.eye(proj.shape[0]), proj])[:,numpy.argsort(idx)]

The original matrix can then be reconstructed from its skeleton matrix B via:

numpy.dot(B, P)

See also reconstruct_matrix_from_id and reconstruct_skel_matrix.

Parameters idx : numpy.ndarray
Column index array.

proj : numpy.ndarray
Interpolation coefficients.

Returns numpy.ndarray
Interpolation matrix.

scipy.linalg.interpolative.reconstruct_skel_matrix(A, k, idx)
Reconstruct skeleton matrix from ID.

The skeleton matrix can be reconstructed from the original matrix A and its ID rank and indices k and idx,
respectively, as:

B = A[:,idx[:k]]

The original matrix can then be reconstructed via:

numpy.hstack([B, numpy.dot(B, proj)])[:,numpy.argsort(idx)]

See also reconstruct_matrix_from_id and reconstruct_interp_matrix.

Parameters A : numpy.ndarray
Original matrix.

k : int
Rank of ID.

idx : numpy.ndarray
Column index array.

Returns numpy.ndarray
Skeleton matrix.

scipy.linalg.interpolative.id_to_svd(B, idx, proj)
Convert ID to SVD.

The SVD reconstruction of a matrix with skeleton matrix B and ID indices and coefficients idx and proj, respec-
tively, is:

U, S, V = id_to_svd(B, idx, proj)
A = numpy.dot(U, numpy.dot(numpy.diag(S), V.conj().T))

See also svd.

Parameters B : numpy.ndarray
Skeleton matrix.

idx : numpy.ndarray
Column index array.

proj : numpy.ndarray
Interpolation coefficients.

Returns U : numpy.ndarray
Left singular vectors.

S : numpy.ndarray
Singular values.

V : numpy.ndarray

636 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

SciPy Reference Guide, Release 0.16.0

Right singular vectors.

scipy.linalg.interpolative.svd(A, eps_or_k, rand=True)
Compute SVD of a matrix via an ID.

An SVD of a matrix A is a factorization:

A = numpy.dot(U, numpy.dot(numpy.diag(S), V.conj().T))

where U and V have orthonormal columns and S is nonnegative.

The SVD can be computed to any relative precision or rank (depending on the value of eps_or_k).

See also interp_decomp and id_to_svd.

Parameters A : numpy.ndarray or scipy.sparse.linalg.LinearOperator
Matrix to be factored, given as either a numpy.ndarray or a
scipy.sparse.linalg.LinearOperator with the matvec and rmatvec
methods (to apply the matrix and its adjoint).

eps_or_k : float or int
Relative error (if eps_or_k < 1) or rank (if eps_or_k >= 1) of approximation.

rand : bool, optional
Whether to use random sampling if A is of type numpy.ndarray
(randomized algorithms are always used if A is of type
scipy.sparse.linalg.LinearOperator).

Returns U : numpy.ndarray
Left singular vectors.

S : numpy.ndarray
Singular values.

V : numpy.ndarray
Right singular vectors.

scipy.linalg.interpolative.estimate_spectral_norm(A, its=20)
Estimate spectral norm of a matrix by the randomized power method.

Parameters A : scipy.sparse.linalg.LinearOperator
Matrix given as a scipy.sparse.linalg.LinearOperator with the matvec
and rmatvec methods (to apply the matrix and its adjoint).

its : int, optional
Number of power method iterations.

Returns float
Spectral norm estimate.

scipy.linalg.interpolative.estimate_spectral_norm_diff(A, B, its=20)
Estimate spectral norm of the difference of two matrices by the randomized power method.

Parameters A : scipy.sparse.linalg.LinearOperator
First matrix given as a scipy.sparse.linalg.LinearOperator with the
matvec and rmatvec methods (to apply the matrix and its adjoint).

B : scipy.sparse.linalg.LinearOperator
Second matrix given as a scipy.sparse.linalg.LinearOperator with the
matvec and rmatvec methods (to apply the matrix and its adjoint).

its : int, optional
Number of power method iterations.

Returns float
Spectral norm estimate of matrix difference.

scipy.linalg.interpolative.estimate_rank(A, eps)
Estimate matrix rank to a specified relative precision using randomized methods.

5.20. Interpolative matrix decomposition (scipy.linalg.interpolative) 637

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

SciPy Reference Guide, Release 0.16.0

The matrix A can be given as either a numpy.ndarray or a
scipy.sparse.linalg.LinearOperator, with different algorithms used for each case. If A is
of type numpy.ndarray, then the output rank is typically about 8 higher than the actual numerical rank.

Parameters A : numpy.ndarray or scipy.sparse.linalg.LinearOperator
Matrix whose rank is to be estimated, given as either a numpy.ndarray or a
scipy.sparse.linalg.LinearOperator with the rmatvec method (to ap-
ply the matrix adjoint).

eps : float
Relative error for numerical rank definition.

Returns int
Estimated matrix rank.

Support functions:

seed([seed]) Seed the internal random number generator used in this ID package.
rand(*shape) Generate standard uniform pseudorandom numbers via a very efficient lagged Fibonacci method.

scipy.linalg.interpolative.seed(seed=None)
Seed the internal random number generator used in this ID package.

The generator is a lagged Fibonacci method with 55-element internal state.

Parameters seed : int, sequence, ‘default’, optional
If ‘default’, the random seed is reset to a default value.
If seed is a sequence containing 55 floating-point numbers in range [0,1], these are
used to set the internal state of the generator.
If the value is an integer, the internal state is obtained from
numpy.random.RandomState (MT19937) with the integer used as the
initial seed.
If seed is omitted (None), numpy.random is used to initialize the generator.

scipy.linalg.interpolative.rand(*shape)
Generate standard uniform pseudorandom numbers via a very efficient lagged Fibonacci method.

This routine is used for all random number generation in this package and can affect ID and SVD results.

Parameters shape
Shape of output array

5.20.2 References

This module uses the ID software package [R439] by Martinsson, Rokhlin, Shkolnisky, and Tygert, which is a Fortran
library for computing IDs using various algorithms, including the rank-revealing QR approach of [R440] and the more
recent randomized methods described in [R441], [R442], and [R443]. This module exposes its functionality in a way
convenient for Python users. Note that this module does not add any functionality beyond that of organizing a simpler
and more consistent interface.

We advise the user to consult also the documentation for the ID package.

5.20.3 Tutorial

Initializing

The first step is to import scipy.linalg.interpolative by issuing the command:

638 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState
https://cims.nyu.edu/~tygert/id_doc.pdf

SciPy Reference Guide, Release 0.16.0

>>> import scipy.linalg.interpolative as sli

Now let’s build a matrix. For this, we consider a Hilbert matrix, which is well know to have low rank:

>>> from scipy.linalg import hilbert
>>> n = 1000
>>> A = hilbert(n)

We can also do this explicitly via:

>>> import numpy as np
>>> n = 1000
>>> A = np.empty((n, n), order='F')
>>> for j in range(n):
>>> for i in range(m):
>>> A[i,j] = 1. / (i + j + 1)

Note the use of the flag order=’F’ in numpy.empty. This instantiates the matrix in Fortran-contiguous order and
is important for avoiding data copying when passing to the backend.

We then define multiplication routines for the matrix by regarding it as a
scipy.sparse.linalg.LinearOperator:

>>> from scipy.sparse.linalg import aslinearoperator
>>> L = aslinearoperator(A)

This automatically sets up methods describing the action of the matrix and its adjoint on a vector.

Computing an ID

We have several choices of algorithm to compute an ID. These fall largely according to two dichotomies:

1. how the matrix is represented, i.e., via its entries or via its action on a vector; and

2. whether to approximate it to a fixed relative precision or to a fixed rank.

We step through each choice in turn below.

In all cases, the ID is represented by three parameters:

1. a rank k;

2. an index array idx; and

3. interpolation coefficients proj.

The ID is specified by the relation np.dot(A[:,idx[:k]], proj) == A[:,idx[k:]].

From matrix entries

We first consider a matrix given in terms of its entries.

To compute an ID to a fixed precision, type:

>>> k, idx, proj = sli.interp_decomp(A, eps)

5.20. Interpolative matrix decomposition (scipy.linalg.interpolative) 639

http://docs.scipy.org/doc/numpy/reference/generated/numpy.empty.html#numpy.empty

SciPy Reference Guide, Release 0.16.0

where eps < 1 is the desired precision.

To compute an ID to a fixed rank, use:

>>> idx, proj = sli.interp_decomp(A, k)

where k >= 1 is the desired rank.

Both algorithms use random sampling and are usually faster than the corresponding older, deterministic algorithms,
which can be accessed via the commands:

>>> k, idx, proj = sli.interp_decomp(A, eps, rand=False)

and:

>>> idx, proj = sli.interp_decomp(A, k, rand=False)

respectively.

From matrix action

Now consider a matrix given in terms of its action on a vector as a scipy.sparse.linalg.LinearOperator.

To compute an ID to a fixed precision, type:

>>> k, idx, proj = sli.interp_decomp(L, eps)

To compute an ID to a fixed rank, use:

>>> idx, proj = sli.interp_decomp(L, k)

These algorithms are randomized.

Reconstructing an ID

The ID routines above do not output the skeleton and interpolation matrices explicitly but instead return the relevant
information in a more compact (and sometimes more useful) form. To build these matrices, write:

>>> B = sli.reconstruct_skel_matrix(A, k, idx)

for the skeleton matrix and:

>>> P = sli.reconstruct_interp_matrix(idx, proj)

for the interpolation matrix. The ID approximation can then be computed as:

>>> C = np.dot(B, P)

This can also be constructed directly using:

>>> C = sli.reconstruct_matrix_from_id(B, idx, proj)

640 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

without having to first compute P.

Alternatively, this can be done explicitly as well using:

>>> B = A[:,idx[:k]]
>>> P = np.hstack([np.eye(k), proj])[:,np.argsort(idx)]
>>> C = np.dot(B, P)

Computing an SVD

An ID can be converted to an SVD via the command:

>>> U, S, V = sli.id_to_svd(B, idx, proj)

The SVD approximation is then:

>>> C = np.dot(U, np.dot(np.diag(S), np.dot(V.conj().T)))

The SVD can also be computed “fresh” by combining both the ID and conversion steps into one command. Following
the various ID algorithms above, there are correspondingly various SVD algorithms that one can employ.

From matrix entries

We consider first SVD algorithms for a matrix given in terms of its entries.

To compute an SVD to a fixed precision, type:

>>> U, S, V = sli.svd(A, eps)

To compute an SVD to a fixed rank, use:

>>> U, S, V = sli.svd(A, k)

Both algorithms use random sampling; for the determinstic versions, issue the keyword rand=False as above.

From matrix action

Now consider a matrix given in terms of its action on a vector.

To compute an SVD to a fixed precision, type:

>>> U, S, V = sli.svd(L, eps)

To compute an SVD to a fixed rank, use:

>>> U, S, V = sli.svd(L, k)

5.20. Interpolative matrix decomposition (scipy.linalg.interpolative) 641

SciPy Reference Guide, Release 0.16.0

Utility routines

Several utility routines are also available.

To estimate the spectral norm of a matrix, use:

>>> snorm = sli.estimate_spectral_norm(A)

This algorithm is based on the randomized power method and thus requires only matrix-vector products. The num-
ber of iterations to take can be set using the keyword its (default: its=20). The matrix is interpreted as a
scipy.sparse.linalg.LinearOperator, but it is also valid to supply it as a numpy.ndarray, in which
case it is trivially converted using scipy.sparse.linalg.aslinearoperator.

The same algorithm can also estimate the spectral norm of the difference of two matrices A1 and A2 as follows:

>>> diff = sli.estimate_spectral_norm_diff(A1, A2)

This is often useful for checking the accuracy of a matrix approximation.

Some routines in scipy.linalg.interpolative require estimating the rank of a matrix as well. This can be
done with either:

>>> k = sli.estimate_rank(A, eps)

or:

>>> k = sli.estimate_rank(L, eps)

depending on the representation. The parameter eps controls the definition of the numerical rank.

Finally, the random number generation required for all randomized routines can be controlled via
scipy.linalg.interpolative.seed. To reset the seed values to their original values, use:

>>> sli.seed('default')

To specify the seed values, use:

>>> sli.seed(s)

where s must be an integer or array of 55 floats. If an integer, the array of floats is obtained by using
np.random.rand with the given integer seed.

To simply generate some random numbers, type:

>>> sli.rand(n)

where n is the number of random numbers to generate.

Remarks

The above functions all automatically detect the appropriate interface and work with both real and complex data types,
passing input arguments to the proper backend routine.

642 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

SciPy Reference Guide, Release 0.16.0

5.21 Miscellaneous routines (scipy.misc)

Various utilities that don’t have another home.

Note that the Python Imaging Library (PIL) is not a dependency of SciPy and therefore the pilutil module is not
available on systems that don’t have PIL installed.

ascent() Get an 8-bit grayscale bit-depth, 512 x 512 derived image for easy use in demos
bytescale(data[, cmin, cmax, high, low]) Byte scales an array (image).
central_diff_weights(Np[, ndiv]) Return weights for an Np-point central derivative.
comb(N, k[, exact, repetition]) The number of combinations of N things taken k at a time.
derivative(func, x0[, dx, n, args, order]) Find the n-th derivative of a function at a point.
face([gray]) Get a 1024 x 768, color image of a raccoon face.
factorial(n[, exact]) The factorial function, n! = special.gamma(n+1).
factorial2(n[, exact]) Double factorial.
factorialk(n, k[, exact]) n(!!...!) = multifactorial of order k
fromimage(im[, flatten]) Return a copy of a PIL image as a numpy array.
imfilter(arr, ftype) Simple filtering of an image.
imread(name[, flatten]) Read an image from a file as an array.
imresize(arr, size[, interp, mode]) Resize an image.
imrotate(arr, angle[, interp]) Rotate an image counter-clockwise by angle degrees.
imsave(name, arr[, format]) Save an array as an image.
imshow(arr) Simple showing of an image through an external viewer.
info([object, maxwidth, output, toplevel]) Get help information for a function, class, or module.
lena() Get classic image processing example image, Lena, at 8-bit grayscale bit-depth, 512 x 512 size.
logsumexp(a[, axis, b, keepdims]) Compute the log of the sum of exponentials of input elements.
pade(an, m) Return Pade approximation to a polynomial as the ratio of two polynomials.
toimage(arr[, high, low, cmin, cmax, pal, ...]) Takes a numpy array and returns a PIL image.
who([vardict]) Print the Numpy arrays in the given dictionary.

scipy.misc.ascent()
Get an 8-bit grayscale bit-depth, 512 x 512 derived image for easy use in demos

The image is derived from accent-to-the-top.jpg at http://www.public-domain-image.com/people-public-
domain-images-pictures/

Parameters None
Returns ascent : ndarray

convenient image to use for testing and demonstration

Examples

>>> import scipy.misc
>>> ascent = scipy.misc.ascent()
>>> ascent.shape
(512, 512)
>>> ascent.max()
255

>>> import matplotlib.pyplot as plt
>>> plt.gray()
>>> plt.imshow(ascent)
>>> plt.show()

5.21. Miscellaneous routines (scipy.misc) 643

http://www.public-domain-image.com/people-public-domain-images-pictures/
http://www.public-domain-image.com/people-public-domain-images-pictures/

SciPy Reference Guide, Release 0.16.0

0 100 200 300 400 500

0

100

200

300

400

500

scipy.misc.bytescale(data, cmin=None, cmax=None, high=255, low=0)
Byte scales an array (image).

Byte scaling means converting the input image to uint8 dtype and scaling the range to (low, high) (default
0-255). If the input image already has dtype uint8, no scaling is done.

Parameters data : ndarray
PIL image data array.

cmin : scalar, optional
Bias scaling of small values. Default is data.min().

cmax : scalar, optional
Bias scaling of large values. Default is data.max().

high : scalar, optional
Scale max value to high. Default is 255.

low : scalar, optional
Scale min value to low. Default is 0.

Returns img_array : uint8 ndarray
The byte-scaled array.

Examples

>>> img = array([[91.06794177, 3.39058326, 84.4221549],
[73.88003259, 80.91433048, 4.88878881],
[51.53875334, 34.45808177, 27.5873488]])

>>> bytescale(img)
array([[255, 0, 236],

[205, 225, 4],
[140, 90, 70]], dtype=uint8)

>>> bytescale(img, high=200, low=100)
array([[200, 100, 192],

[180, 188, 102],
[155, 135, 128]], dtype=uint8)

>>> bytescale(img, cmin=0, cmax=255)
array([[91, 3, 84],

[74, 81, 5],
[52, 34, 28]], dtype=uint8)

644 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.misc.central_diff_weights(Np, ndiv=1)
Return weights for an Np-point central derivative.

Assumes equally-spaced function points.

If weights are in the vector w, then derivative is w[0] * f(x-ho*dx) + ... + w[-1] * f(x+h0*dx)

Parameters Np : int
Number of points for the central derivative.

ndiv : int, optional
Number of divisions. Default is 1.

Notes

Can be inaccurate for large number of points.

scipy.misc.comb(N, k, exact=False, repetition=False)
The number of combinations of N things taken k at a time.

This is often expressed as “N choose k”.

Parameters N : int, ndarray
Number of things.

k : int, ndarray
Number of elements taken.

exact : bool, optional
If exact is False, then floating point precision is used, otherwise exact long integer is
computed.

repetition : bool, optional
If repetition is True, then the number of combinations with repetition is computed.

Returns val : int, ndarray
The total number of combinations.

Notes

•Array arguments accepted only for exact=False case.

•If k > N, N < 0, or k < 0, then a 0 is returned.

Examples

>>> from scipy.special import comb
>>> k = np.array([3, 4])
>>> n = np.array([10, 10])
>>> comb(n, k, exact=False)
array([120., 210.])
>>> comb(10, 3, exact=True)
120L
>>> comb(10, 3, exact=True, repetition=True)
220L

scipy.misc.derivative(func, x0, dx=1.0, n=1, args=(), order=3)
Find the n-th derivative of a function at a point.

Given a function, use a central difference formula with spacing dx to compute the n-th derivative at x0.

Parameters func : function
Input function.

x0 : float
The point at which n-th derivative is found.

dx : int, optional

5.21. Miscellaneous routines (scipy.misc) 645

SciPy Reference Guide, Release 0.16.0

Spacing.
n : int, optional

Order of the derivative. Default is 1.
args : tuple, optional

Arguments
order : int, optional

Number of points to use, must be odd.

Notes

Decreasing the step size too small can result in round-off error.

Examples

>>> def f(x):
... return x**3 + x**2
...
>>> derivative(f, 1.0, dx=1e-6)
4.9999999999217337

scipy.misc.face(gray=False)
Get a 1024 x 768, color image of a raccoon face.

raccoon-procyon-lotor.jpg at http://www.public-domain-image.com

Parameters gray : bool, optional
If True then return color image, otherwise return an 8-bit gray-scale

Returns face : ndarray
image of a racoon face

Examples

>>> import scipy.misc
>>> face = scipy.misc.face()
>>> face.shape
(768, 1024, 3)
>>> face.max()
230
>>> face.dtype
dtype('uint8')

>>> import matplotlib.pyplot as plt
>>> plt.gray()
>>> plt.imshow(face)
>>> plt.show()

646 Chapter 5. Reference

http://www.public-domain-image.com

SciPy Reference Guide, Release 0.16.0

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

scipy.misc.factorial(n, exact=False)
The factorial function, n! = special.gamma(n+1).

If exact is 0, then floating point precision is used, otherwise exact long integer is computed.

•Array argument accepted only for exact=False case.

•If n<0, the return value is 0.

Parameters n : int or array_like of ints
Calculate n!. Arrays are only supported with exact set to False. If n < 0, the return
value is 0.

exact : bool, optional
The result can be approximated rapidly using the gamma-formula above. If exact is
set to True, calculate the answer exactly using integer arithmetic. Default is False.

Returns nf : float or int
Factorial of n, as an integer or a float depending on exact.

Examples

>>> from scipy.special import factorial
>>> arr = np.array([3,4,5])
>>> factorial(arr, exact=False)
array([6., 24., 120.])
>>> factorial(5, exact=True)
120L

scipy.misc.factorial2(n, exact=False)
Double factorial.

This is the factorial with every second value skipped, i.e., 7!! = 7 * 5 * 3 * 1. It can be approximated
numerically as:

n!! = special.gamma(n/2+1)*2**((m+1)/2)/sqrt(pi) n odd
= 2**(n/2) * (n/2)! n even

Parameters n : int or array_like
Calculate n!!. Arrays are only supported with exact set to False. If n < 0, the
return value is 0.

5.21. Miscellaneous routines (scipy.misc) 647

SciPy Reference Guide, Release 0.16.0

exact : bool, optional
The result can be approximated rapidly using the gamma-formula above (default). If
exact is set to True, calculate the answer exactly using integer arithmetic.

Returns nff : float or int
Double factorial of n, as an int or a float depending on exact.

Examples

>>> from scipy.special import factorial2
>>> factorial2(7, exact=False)
array(105.00000000000001)
>>> factorial2(7, exact=True)
105L

scipy.misc.factorialk(n, k, exact=True)
n(!!...!) = multifactorial of order k k times

Parameters n : int
Calculate multifactorial. If n < 0, the return value is 0.

k : int
Order of multifactorial.

exact : bool, optional
If exact is set to True, calculate the answer exactly using integer arithmetic.

Returns val : int
Multi factorial of n.

Raises NotImplementedError
Raises when exact is False

Examples

>>> from scipy.special import factorialk
>>> factorialk(5, 1, exact=True)
120L
>>> factorialk(5, 3, exact=True)
10L

scipy.misc.fromimage(im, flatten=0)
Return a copy of a PIL image as a numpy array.

Parameters im : PIL image
Input image.

flatten : bool
If true, convert the output to grey-scale.

Returns fromimage : ndarray
The different colour bands/channels are stored in the third dimension, such that a
grey-image is MxN, an RGB-image MxNx3 and an RGBA-image MxNx4.

scipy.misc.imfilter(arr, ftype)
Simple filtering of an image.

Parameters arr : ndarray
The array of Image in which the filter is to be applied.

ftype : str
The filter that has to be applied. Legal values are: ‘blur’, ‘contour’, ‘de-
tail’, ‘edge_enhance’, ‘edge_enhance_more’, ‘emboss’, ‘find_edges’, ‘smooth’,
‘smooth_more’, ‘sharpen’.

Returns imfilter : ndarray
The array with filter applied.

648 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Raises ValueError
Unknown filter type. If the filter you are trying to apply is unsupported.

scipy.misc.imread(name, flatten=0)
Read an image from a file as an array.

Parameters name : str or file object
The file name or file object to be read.

flatten : bool, optional
If True, flattens the color layers into a single gray-scale layer.

Returns imread : ndarray
The array obtained by reading image from file imfile.

Notes

The image is flattened by calling convert(‘F’) on the resulting image object.

scipy.misc.imresize(arr, size, interp=’bilinear’, mode=None)
Resize an image.

Parameters arr : ndarray
The array of image to be resized.

size : int, float or tuple
•int - Percentage of current size.
•float - Fraction of current size.
•tuple - Size of the output image.

interp : str, optional
Interpolation to use for re-sizing (‘nearest’, ‘bilinear’, ‘bicubic’ or ‘cubic’).

mode : str, optional
The PIL image mode (‘P’, ‘L’, etc.) to convert arr before resizing.

Returns imresize : ndarray
The resized array of image.

See also:

toimage Implicitly used to convert arr according to mode.

scipy.ndimage.zoom
More generic implementation that does not use PIL.

scipy.misc.imrotate(arr, angle, interp=’bilinear’)
Rotate an image counter-clockwise by angle degrees.

Parameters arr : ndarray
Input array of image to be rotated.

angle : float
The angle of rotation.

interp : str, optional
Interpolation

•‘nearest’ : for nearest neighbor
•‘bilinear’ : for bilinear
•‘cubic’ : cubic
•‘bicubic’ : for bicubic

Returns imrotate : ndarray
The rotated array of image.

scipy.misc.imsave(name, arr, format=None)
Save an array as an image.

5.21. Miscellaneous routines (scipy.misc) 649

SciPy Reference Guide, Release 0.16.0

Parameters name : str or file object
Output file name or file object.

arr : ndarray, MxN or MxNx3 or MxNx4
Array containing image values. If the shape is MxN, the array represents a grey-level
image. Shape MxNx3 stores the red, green and blue bands along the last dimension.
An alpha layer may be included, specified as the last colour band of an MxNx4 array.

format : str
Image format. If omitted, the format to use is determined from the file name extension.
If a file object was used instead of a file name, this parameter should always be used.

Examples

Construct an array of gradient intensity values and save to file:

>>> x = np.zeros((255, 255))
>>> x = np.zeros((255, 255), dtype=np.uint8)
>>> x[:] = np.arange(255)
>>> imsave('/tmp/gradient.png', x)

Construct an array with three colour bands (R, G, B) and store to file:

>>> rgb = np.zeros((255, 255, 3), dtype=np.uint8)
>>> rgb[..., 0] = np.arange(255)
>>> rgb[..., 1] = 55
>>> rgb[..., 2] = 1 - np.arange(255)
>>> imsave('/tmp/rgb_gradient.png', rgb)

scipy.misc.imshow(arr)
Simple showing of an image through an external viewer.

Uses the image viewer specified by the environment variable SCIPY_PIL_IMAGE_VIEWER, or if that is not
defined then see, to view a temporary file generated from array data.

Parameters arr : ndarray
Array of image data to show.

Returns None

Examples

>>> a = np.tile(np.arange(255), (255,1))
>>> from scipy import misc
>>> misc.pilutil.imshow(a)

scipy.misc.info(object=None, maxwidth=76, output=<open file ‘<stdout>’, mode ‘w’ at
0x7fa42a301150>, toplevel=’scipy’)

Get help information for a function, class, or module.

Parameters object : object or str, optional
Input object or name to get information about. If object is a numpy object, its docstring
is given. If it is a string, available modules are searched for matching objects. If None,
information about info itself is returned.

maxwidth : int, optional
Printing width.

output : file like object, optional
File like object that the output is written to, default is stdout. The object has to be
opened in ‘w’ or ‘a’ mode.

toplevel : str, optional
Start search at this level.

650 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

See also:

source, lookfor

Notes

When used interactively with an object, np.info(obj) is equivalent to help(obj) on the Python prompt
or obj? on the IPython prompt.

Examples

>>> np.info(np.polyval)
polyval(p, x)

Evaluate the polynomial p at x.
...

When using a string for object it is possible to get multiple results.

>>> np.info('fft')

*** Found in numpy ***
Core FFT routines
...

*** Found in numpy.fft ***
fft(a, n=None, axis=-1)
...

*** Repeat reference found in numpy.fft.fftpack ***
*** Total of 3 references found. ***

scipy.misc.lena()
Get classic image processing example image, Lena, at 8-bit grayscale bit-depth, 512 x 512 size.

Parameters None
Returns lena : ndarray

Lena image

Notes

Though safe for work in most places, this sexualized image is drawn from Playboy and makes some viewers
uncomfortable. It has been very widely used as an example in image processing and is therefore made available
for compatibility. For new code that needs an example image we recommend face or ascent.

Examples

>>> import scipy.misc
>>> lena = scipy.misc.lena()
>>> lena.shape
(512, 512)
>>> lena.max()
245
>>> lena.dtype
dtype('int32')

>>> import matplotlib.pyplot as plt
>>> plt.gray()
>>> plt.imshow(lena)
>>> plt.show()

5.21. Miscellaneous routines (scipy.misc) 651

SciPy Reference Guide, Release 0.16.0

0 100 200 300 400 500

0

100

200

300

400

500

scipy.misc.logsumexp(a, axis=None, b=None, keepdims=False)
Compute the log of the sum of exponentials of input elements.

Parameters a : array_like
Input array.

axis : None or int or tuple of ints, optional
Axis or axes over which the sum is taken. By default axis is None, and all elements
are summed. Tuple of ints is not accepted if NumPy version is lower than 1.7.0.
New in version 0.11.0.

keepdims : bool, optional
If this is set to True, the axes which are reduced are left in the result as dimensions
with size one. With this option, the result will broadcast correctly against the original
array.
New in version 0.15.0.

b : array-like, optional
Scaling factor for exp(a) must be of the same shape as a or broadcastable to a.
New in version 0.12.0.

Returns res : ndarray
The result, np.log(np.sum(np.exp(a))) calculated in a numerically more
stable way. If b is given then np.log(np.sum(b*np.exp(a))) is returned.

See also:

numpy.logaddexp, numpy.logaddexp2

Notes

Numpy has a logaddexp function which is very similar to logsumexp, but only handles two arguments. lo-
gaddexp.reduce is similar to this function, but may be less stable.

Examples

>>> from scipy.misc import logsumexp
>>> a = np.arange(10)
>>> np.log(np.sum(np.exp(a)))
9.4586297444267107
>>> logsumexp(a)
9.4586297444267107

652 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.logaddexp.html#numpy.logaddexp
http://docs.scipy.org/doc/numpy/reference/generated/numpy.logaddexp2.html#numpy.logaddexp2

SciPy Reference Guide, Release 0.16.0

With weights

>>> a = np.arange(10)
>>> b = np.arange(10, 0, -1)
>>> logsumexp(a, b=b)
9.9170178533034665
>>> np.log(np.sum(b*np.exp(a)))
9.9170178533034647

scipy.misc.pade(an, m)
Return Pade approximation to a polynomial as the ratio of two polynomials.

Parameters an : (N,) array_like
Taylor series coefficients.

m : int
The order of the returned approximating polynomials.

Returns p, q : Polynomial class
The pade approximation of the polynomial defined by an is p(x)/q(x).

Examples

>>> from scipy import misc
>>> e_exp = [1.0, 1.0, 1.0/2.0, 1.0/6.0, 1.0/24.0, 1.0/120.0]
>>> p, q = misc.pade(e_exp, 2)

>>> e_exp.reverse()
>>> e_poly = np.poly1d(e_exp)

Compare e_poly(x) and the pade approximation p(x)/q(x)

>>> e_poly(1)
2.7166666666666668

>>> p(1)/q(1)
2.7179487179487181

scipy.misc.toimage(arr, high=255, low=0, cmin=None, cmax=None, pal=None, mode=None, chan-
nel_axis=None)

Takes a numpy array and returns a PIL image.

The mode of the PIL image depends on the array shape and the pal and mode keywords.

For 2-D arrays, if pal is a valid (N,3) byte-array giving the RGB values (from 0 to 255) then mode=’P’,
otherwise mode=’L’, unless mode is given as ‘F’ or ‘I’ in which case a float and/or integer array is made.

Notes

For 3-D arrays, the channel_axis argument tells which dimension of the array holds the channel data.

For 3-D arrays if one of the dimensions is 3, the mode is ‘RGB’ by default or ‘YCbCr’ if selected.

The numpy array must be either 2 dimensional or 3 dimensional.

scipy.misc.who(vardict=None)
Print the Numpy arrays in the given dictionary.

If there is no dictionary passed in or vardict is None then returns Numpy arrays in the globals() dictionary (all
Numpy arrays in the namespace).

Parameters vardict : dict, optional
A dictionary possibly containing ndarrays. Default is globals().

Returns out : None

5.21. Miscellaneous routines (scipy.misc) 653

SciPy Reference Guide, Release 0.16.0

Returns ‘None’.

Notes

Prints out the name, shape, bytes and type of all of the ndarrays present in vardict.

Examples

>>> a = np.arange(10)
>>> b = np.ones(20)
>>> np.who()
Name Shape Bytes Type
===
a 10 40 int32
b 20 160 float64
Upper bound on total bytes = 200

>>> d = {'x': np.arange(2.0), 'y': np.arange(3.0), 'txt': 'Some str',
... 'idx':5}
>>> np.who(d)
Name Shape Bytes Type
===
y 3 24 float64
x 2 16 float64
Upper bound on total bytes = 40

5.22 Multi-dimensional image processing (scipy.ndimage)

This package contains various functions for multi-dimensional image processing.

5.22.1 Filters scipy.ndimage.filters

convolve(input, weights[, output, mode, ...]) Multidimensional convolution.
convolve1d(input, weights[, axis, output, ...]) Calculate a one-dimensional convolution along the given axis.
correlate(input, weights[, output, mode, ...]) Multi-dimensional correlation.
correlate1d(input, weights[, axis, output, ...]) Calculate a one-dimensional correlation along the given axis.
gaussian_filter(input, sigma[, order, ...]) Multidimensional Gaussian filter.
gaussian_filter1d(input, sigma[, axis, ...]) One-dimensional Gaussian filter.
gaussian_gradient_magnitude(input, sigma[, ...]) Multidimensional gradient magnitude using Gaussian derivatives.
gaussian_laplace(input, sigma[, output, ...]) Multidimensional Laplace filter using gaussian second derivatives.
generic_filter(input, function[, size, ...]) Calculates a multi-dimensional filter using the given function.
generic_filter1d(input, function, filter_size) Calculate a one-dimensional filter along the given axis.
generic_gradient_magnitude(input, derivative) Gradient magnitude using a provided gradient function.
generic_laplace(input, derivative2[, ...]) N-dimensional Laplace filter using a provided second derivative function
laplace(input[, output, mode, cval]) N-dimensional Laplace filter based on approximate second derivatives.
maximum_filter(input[, size, footprint, ...]) Calculates a multi-dimensional maximum filter.
maximum_filter1d(input, size[, axis, ...]) Calculate a one-dimensional maximum filter along the given axis.
median_filter(input[, size, footprint, ...]) Calculates a multidimensional median filter.
minimum_filter(input[, size, footprint, ...]) Calculates a multi-dimensional minimum filter.
minimum_filter1d(input, size[, axis, ...]) Calculate a one-dimensional minimum filter along the given axis.
percentile_filter(input, percentile[, size, ...]) Calculates a multi-dimensional percentile filter.

Continued on next page

654 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.83 – continued from previous page
prewitt(input[, axis, output, mode, cval]) Calculate a Prewitt filter.
rank_filter(input, rank[, size, footprint, ...]) Calculates a multi-dimensional rank filter.
sobel(input[, axis, output, mode, cval]) Calculate a Sobel filter.
uniform_filter(input[, size, output, mode, ...]) Multi-dimensional uniform filter.
uniform_filter1d(input, size[, axis, ...]) Calculate a one-dimensional uniform filter along the given axis.

scipy.ndimage.filters.convolve(input, weights, output=None, mode=’reflect’, cval=0.0, ori-
gin=0)

Multidimensional convolution.

The array is convolved with the given kernel.

Parameters input : array_like
Input array to filter.

weights : array_like
Array of weights, same number of dimensions as input

output : ndarray, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional
the mode parameter determines how the array borders are handled. For ‘constant’
mode, values beyond borders are set to be cval. Default is ‘reflect’.

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : array_like, optional
The origin parameter controls the placement of the filter. Default is 0.

Returns result : ndarray
The result of convolution of input with weights.

See also:

correlate Correlate an image with a kernel.

Notes

Each value in result is 𝐶𝑖 =
∑︀

𝑗 𝐼𝑖+𝑗−𝑘𝑊𝑗 , where W is the weights kernel, j is the n-D spatial index over 𝑊 , I
is the input and k is the coordinate of the center of W, specified by origin in the input parameters.

Examples

Perhaps the simplest case to understand is mode=’constant’, cval=0.0, because in this case borders
(i.e. where the weights kernel, centered on any one value, extends beyond an edge of input.

>>> a = np.array([[1, 2, 0, 0],
.... [5, 3, 0, 4],
.... [0, 0, 0, 7],
.... [9, 3, 0, 0]])
>>> k = np.array([[1,1,1],[1,1,0],[1,0,0]])
>>> from scipy import ndimage
>>> ndimage.convolve(a, k, mode='constant', cval=0.0)
array([[11, 10, 7, 4],

[10, 3, 11, 11],
[15, 12, 14, 7],
[12, 3, 7, 0]])

Setting cval=1.0 is equivalent to padding the outer edge of input with 1.0’s (and then extracting only the
original region of the result).

5.22. Multi-dimensional image processing (scipy.ndimage) 655

SciPy Reference Guide, Release 0.16.0

>>> ndimage.convolve(a, k, mode='constant', cval=1.0)
array([[13, 11, 8, 7],

[11, 3, 11, 14],
[16, 12, 14, 10],
[15, 6, 10, 5]])

With mode=’reflect’ (the default), outer values are reflected at the edge of input to fill in missing values.

>>> b = np.array([[2, 0, 0],
[1, 0, 0],
[0, 0, 0]])

>>> k = np.array([[0,1,0],[0,1,0],[0,1,0]])
>>> ndimage.convolve(b, k, mode='reflect')
array([[5, 0, 0],

[3, 0, 0],
[1, 0, 0]])

This includes diagonally at the corners.

>>> k = np.array([[1,0,0],[0,1,0],[0,0,1]])
>>> ndimage.convolve(b, k)
array([[4, 2, 0],

[3, 2, 0],
[1, 1, 0]])

With mode=’nearest’, the single nearest value in to an edge in input is repeated as many times as needed
to match the overlapping weights.

>>> c = np.array([[2, 0, 1],
[1, 0, 0],
[0, 0, 0]])

>>> k = np.array([[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0]])

>>> ndimage.convolve(c, k, mode='nearest')
array([[7, 0, 3],

[5, 0, 2],
[3, 0, 1]])

scipy.ndimage.filters.convolve1d(input, weights, axis=-1, output=None, mode=’reflect’,
cval=0.0, origin=0)

Calculate a one-dimensional convolution along the given axis.

The lines of the array along the given axis are convolved with the given weights.

Parameters input : array_like
Input array to filter.

weights : ndarray
One-dimensional sequence of numbers.

axis : int, optional
The axis of input along which to calculate. Default is -1.

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

656 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Value to fill past edges of input if mode is ‘constant’. Default is 0.0
origin : scalar, optional

The origin parameter controls the placement of the filter. Default 0.0.
Returns convolve1d : ndarray

Convolved array with same shape as input

scipy.ndimage.filters.correlate(input, weights, output=None, mode=’reflect’, cval=0.0, ori-
gin=0)

Multi-dimensional correlation.

The array is correlated with the given kernel.

Parameters input : array-like
input array to filter

weights : ndarray
array of weights, same number of dimensions as input

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is
the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0

See also:

convolve Convolve an image with a kernel.

scipy.ndimage.filters.correlate1d(input, weights, axis=-1, output=None, mode=’reflect’,
cval=0.0, origin=0)

Calculate a one-dimensional correlation along the given axis.

The lines of the array along the given axis are correlated with the given weights.

Parameters input : array_like
Input array to filter.

weights : array
One-dimensional sequence of numbers.

axis : int, optional
The axis of input along which to calculate. Default is -1.

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0.0.

scipy.ndimage.filters.gaussian_filter(input, sigma, order=0, output=None, mode=’reflect’,
cval=0.0, truncate=4.0)

Multidimensional Gaussian filter.

Parameters input : array_like
Input array to filter.

5.22. Multi-dimensional image processing (scipy.ndimage) 657

SciPy Reference Guide, Release 0.16.0

sigma : scalar or sequence of scalars
Standard deviation for Gaussian kernel. The standard deviations of the Gaussian filter
are given for each axis as a sequence, or as a single number, in which case it is equal
for all axes.

order : {0, 1, 2, 3} or sequence from same set, optional
The order of the filter along each axis is given as a sequence of integers, or as a single
number. An order of 0 corresponds to convolution with a Gaussian kernel. An order
of 1, 2, or 3 corresponds to convolution with the first, second or third derivatives of a
Gaussian. Higher order derivatives are not implemented

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

truncate : float
Truncate the filter at this many standard deviations. Default is 4.0.

Returns gaussian_filter : ndarray
Returned array of same shape as input.

Notes

The multidimensional filter is implemented as a sequence of one-dimensional convolution filters. The interme-
diate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision,
the results may be imprecise because intermediate results may be stored with insufficient precision.

scipy.ndimage.filters.gaussian_filter1d(input, sigma, axis=-1, order=0, output=None,
mode=’reflect’, cval=0.0, truncate=4.0)

One-dimensional Gaussian filter.

Parameters input : array_like
Input array to filter.

sigma : scalar
standard deviation for Gaussian kernel

axis : int, optional
The axis of input along which to calculate. Default is -1.

order : {0, 1, 2, 3}, optional
An order of 0 corresponds to convolution with a Gaussian kernel. An order of 1, 2, or
3 corresponds to convolution with the first, second or third derivatives of a Gaussian.
Higher order derivatives are not implemented

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

truncate : float, optional
Truncate the filter at this many standard deviations. Default is 4.0.

Returns gaussian_filter1d : ndarray

scipy.ndimage.filters.gaussian_gradient_magnitude(input, sigma, output=None,
mode=’reflect’, cval=0.0,
**kwargs)

Multidimensional gradient magnitude using Gaussian derivatives.

658 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters input : array_like
Input array to filter.

sigma : scalar or sequence of scalars
The standard deviations of the Gaussian filter are given for each axis as a sequence, or
as a single number, in which case it is equal for all axes..

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

Extra keyword arguments will be passed to gaussian_filter().

scipy.ndimage.filters.gaussian_laplace(input, sigma, output=None, mode=’reflect’,
cval=0.0, **kwargs)

Multidimensional Laplace filter using gaussian second derivatives.

Parameters input : array_like
Input array to filter.

sigma : scalar or sequence of scalars
The standard deviations of the Gaussian filter are given for each axis as a sequence, or
as a single number, in which case it is equal for all axes.

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

Extra keyword arguments will be passed to gaussian_filter().

scipy.ndimage.filters.generic_filter(input, function, size=None, footprint=None, out-
put=None, mode=’reflect’, cval=0.0, origin=0, ex-
tra_arguments=(), extra_keywords=None)

Calculates a multi-dimensional filter using the given function.

At each element the provided function is called. The input values within the filter footprint at that element are
passed to the function as a 1D array of double values.

Parameters input : array_like
Input array to filter.

function : callable
Function to apply at each element.

size : scalar or tuple, optional
See footprint, below

footprint : array, optional
Either size or footprint must be defined. size gives the shape that is taken from the
input array, at every element position, to define the input to the filter function. foot-
print is a boolean array that specifies (implicitly) a shape, but also which of the el-
ements within this shape will get passed to the filter function. Thus size=(n,m)
is equivalent to footprint=np.ones((n,m)). We adjust size to the number of
dimensions of the input array, so that, if the input array is shape (10,10,10), and size
is 2, then the actual size used is (2,2,2).

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional

5.22. Multi-dimensional image processing (scipy.ndimage) 659

SciPy Reference Guide, Release 0.16.0

The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0.0.

extra_arguments : sequence, optional
Sequence of extra positional arguments to pass to passed function

extra_keywords : dict, optional
dict of extra keyword arguments to pass to passed function

scipy.ndimage.filters.generic_filter1d(input, function, filter_size, axis=-1, out-
put=None, mode=’reflect’, cval=0.0, origin=0,
extra_arguments=(), extra_keywords=None)

Calculate a one-dimensional filter along the given axis.

generic_filter1d iterates over the lines of the array, calling the given function at each line. The arguments
of the line are the input line, and the output line. The input and output lines are 1D double arrays. The input line
is extended appropriately according to the filter size and origin. The output line must be modified in-place with
the result.

Parameters input : array_like
Input array to filter.

function : callable
Function to apply along given axis.

filter_size : scalar
Length of the filter.

axis : int, optional
The axis of input along which to calculate. Default is -1.

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0.0.

extra_arguments : sequence, optional
Sequence of extra positional arguments to pass to passed function

extra_keywords : dict, optional
dict of extra keyword arguments to pass to passed function

scipy.ndimage.filters.generic_gradient_magnitude(input, derivative, output=None,
mode=’reflect’, cval=0.0,
extra_arguments=(), ex-
tra_keywords=None)

Gradient magnitude using a provided gradient function.

Parameters input : array_like
Input array to filter.

derivative : callable
Callable with the following signature:

derivative(input, axis, output, mode, cval,

*extra_arguments, **extra_keywords)

660 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

See extra_arguments, extra_keywords below. derivative can assume that input and
output are ndarrays. Note that the output from derivative is modified inplace; be
careful to copy important inputs before returning them.

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

extra_keywords : dict, optional
dict of extra keyword arguments to pass to passed function

extra_arguments : sequence, optional
Sequence of extra positional arguments to pass to passed function

scipy.ndimage.filters.generic_laplace(input, derivative2, output=None, mode=’reflect’,
cval=0.0, extra_arguments=(), ex-
tra_keywords=None)

N-dimensional Laplace filter using a provided second derivative function

Parameters input : array_like
Input array to filter.

derivative2 : callable
Callable with the following signature:

derivative2(input, axis, output, mode, cval,

*extra_arguments, **extra_keywords)

See extra_arguments, extra_keywords below.
output : array, optional

The output parameter passes an array in which to store the filter output.
mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

extra_keywords : dict, optional
dict of extra keyword arguments to pass to passed function

extra_arguments : sequence, optional
Sequence of extra positional arguments to pass to passed function

scipy.ndimage.filters.laplace(input, output=None, mode=’reflect’, cval=0.0)
N-dimensional Laplace filter based on approximate second derivatives.

Parameters input : array_like
Input array to filter.

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

scipy.ndimage.filters.maximum_filter(input, size=None, footprint=None, output=None,
mode=’reflect’, cval=0.0, origin=0)

Calculates a multi-dimensional maximum filter.

5.22. Multi-dimensional image processing (scipy.ndimage) 661

SciPy Reference Guide, Release 0.16.0

Parameters input : array_like
Input array to filter.

size : scalar or tuple, optional
See footprint, below

footprint : array, optional
Either size or footprint must be defined. size gives the shape that is taken from the
input array, at every element position, to define the input to the filter function. foot-
print is a boolean array that specifies (implicitly) a shape, but also which of the el-
ements within this shape will get passed to the filter function. Thus size=(n,m)
is equivalent to footprint=np.ones((n,m)). We adjust size to the number of
dimensions of the input array, so that, if the input array is shape (10,10,10), and size
is 2, then the actual size used is (2,2,2).

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0.0.

scipy.ndimage.filters.maximum_filter1d(input, size, axis=-1, output=None, mode=’reflect’,
cval=0.0, origin=0)

Calculate a one-dimensional maximum filter along the given axis.

The lines of the array along the given axis are filtered with a maximum filter of given size.

Parameters input : array_like
Input array to filter.

size : int
Length along which to calculate the 1-D maximum.

axis : int, optional
The axis of input along which to calculate. Default is -1.

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0.0.

Returns maximum1d : ndarray, None
Maximum-filtered array with same shape as input. None if output is not None

Notes

This function implements the MAXLIST algorithm [R102], as described by Richard Harter [R103], and has a
guaranteed O(n) performance, n being the input length, regardless of filter size.

References

[R102], [R103]

662 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.ndimage.filters.median_filter(input, size=None, footprint=None, output=None,
mode=’reflect’, cval=0.0, origin=0)

Calculates a multidimensional median filter.

Parameters input : array_like
Input array to filter.

size : scalar or tuple, optional
See footprint, below

footprint : array, optional
Either size or footprint must be defined. size gives the shape that is taken from the
input array, at every element position, to define the input to the filter function. foot-
print is a boolean array that specifies (implicitly) a shape, but also which of the el-
ements within this shape will get passed to the filter function. Thus size=(n,m)
is equivalent to footprint=np.ones((n,m)). We adjust size to the number of
dimensions of the input array, so that, if the input array is shape (10,10,10), and size
is 2, then the actual size used is (2,2,2).

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0.0.

Returns median_filter : ndarray
Return of same shape as input.

scipy.ndimage.filters.minimum_filter(input, size=None, footprint=None, output=None,
mode=’reflect’, cval=0.0, origin=0)

Calculates a multi-dimensional minimum filter.

Parameters input : array_like
Input array to filter.

size : scalar or tuple, optional
See footprint, below

footprint : array, optional
Either size or footprint must be defined. size gives the shape that is taken from the
input array, at every element position, to define the input to the filter function. foot-
print is a boolean array that specifies (implicitly) a shape, but also which of the el-
ements within this shape will get passed to the filter function. Thus size=(n,m)
is equivalent to footprint=np.ones((n,m)). We adjust size to the number of
dimensions of the input array, so that, if the input array is shape (10,10,10), and size
is 2, then the actual size used is (2,2,2).

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0.0.

5.22. Multi-dimensional image processing (scipy.ndimage) 663

SciPy Reference Guide, Release 0.16.0

scipy.ndimage.filters.minimum_filter1d(input, size, axis=-1, output=None, mode=’reflect’,
cval=0.0, origin=0)

Calculate a one-dimensional minimum filter along the given axis.

The lines of the array along the given axis are filtered with a minimum filter of given size.

Parameters input : array_like
Input array to filter.

size : int
length along which to calculate 1D minimum

axis : int, optional
The axis of input along which to calculate. Default is -1.

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0.0.

Notes

This function implements the MINLIST algorithm [R104], as described by Richard Harter [R105], and has a
guaranteed O(n) performance, n being the input length, regardless of filter size.

References

[R104], [R105]

scipy.ndimage.filters.percentile_filter(input, percentile, size=None, footprint=None, out-
put=None, mode=’reflect’, cval=0.0, origin=0)

Calculates a multi-dimensional percentile filter.

Parameters input : array_like
Input array to filter.

percentile : scalar
The percentile parameter may be less then zero, i.e., percentile = -20 equals percentile
= 80

size : scalar or tuple, optional
See footprint, below

footprint : array, optional
Either size or footprint must be defined. size gives the shape that is taken from the
input array, at every element position, to define the input to the filter function. foot-
print is a boolean array that specifies (implicitly) a shape, but also which of the el-
ements within this shape will get passed to the filter function. Thus size=(n,m)
is equivalent to footprint=np.ones((n,m)). We adjust size to the number of
dimensions of the input array, so that, if the input array is shape (10,10,10), and size
is 2, then the actual size used is (2,2,2).

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

664 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0.0.

scipy.ndimage.filters.prewitt(input, axis=-1, output=None, mode=’reflect’, cval=0.0)
Calculate a Prewitt filter.

Parameters input : array_like
Input array to filter.

axis : int, optional
The axis of input along which to calculate. Default is -1.

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

scipy.ndimage.filters.rank_filter(input, rank, size=None, footprint=None, output=None,
mode=’reflect’, cval=0.0, origin=0)

Calculates a multi-dimensional rank filter.

Parameters input : array_like
Input array to filter.

rank : int
The rank parameter may be less then zero, i.e., rank = -1 indicates the largest element.

size : scalar or tuple, optional
See footprint, below

footprint : array, optional
Either size or footprint must be defined. size gives the shape that is taken from the
input array, at every element position, to define the input to the filter function. foot-
print is a boolean array that specifies (implicitly) a shape, but also which of the el-
ements within this shape will get passed to the filter function. Thus size=(n,m)
is equivalent to footprint=np.ones((n,m)). We adjust size to the number of
dimensions of the input array, so that, if the input array is shape (10,10,10), and size
is 2, then the actual size used is (2,2,2).

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0.0.

scipy.ndimage.filters.sobel(input, axis=-1, output=None, mode=’reflect’, cval=0.0)
Calculate a Sobel filter.

Parameters input : array_like
Input array to filter.

axis : int, optional
The axis of input along which to calculate. Default is -1.

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional

5.22. Multi-dimensional image processing (scipy.ndimage) 665

SciPy Reference Guide, Release 0.16.0

The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

scipy.ndimage.filters.uniform_filter(input, size=3, output=None, mode=’reflect’, cval=0.0,
origin=0)

Multi-dimensional uniform filter.

Parameters input : array_like
Input array to filter.

size : int or sequence of ints, optional
The sizes of the uniform filter are given for each axis as a sequence, or as a single
number, in which case the size is equal for all axes.

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0.0.

Notes

The multi-dimensional filter is implemented as a sequence of one-dimensional uniform filters. The intermediate
arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the
results may be imprecise because intermediate results may be stored with insufficient precision.

scipy.ndimage.filters.uniform_filter1d(input, size, axis=-1, output=None, mode=’reflect’,
cval=0.0, origin=0)

Calculate a one-dimensional uniform filter along the given axis.

The lines of the array along the given axis are filtered with a uniform filter of given size.

Parameters input : array_like
Input array to filter.

size : int
length of uniform filter

axis : int, optional
The axis of input along which to calculate. Default is -1.

output : array, optional
The output parameter passes an array in which to store the filter output.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0.0.

5.22.2 Fourier filters scipy.ndimage.fourier

fourier_ellipsoid(input, size[, n, axis, output]) Multi-dimensional ellipsoid fourier filter.
Continued on next page

666 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.84 – continued from previous page
fourier_gaussian(input, sigma[, n, axis, output]) Multi-dimensional Gaussian fourier filter.
fourier_shift(input, shift[, n, axis, output]) Multi-dimensional fourier shift filter.
fourier_uniform(input, size[, n, axis, output]) Multi-dimensional uniform fourier filter.

scipy.ndimage.fourier.fourier_ellipsoid(input, size, n=-1, axis=-1, output=None)
Multi-dimensional ellipsoid fourier filter.

The array is multiplied with the fourier transform of a ellipsoid of given sizes.

Parameters input : array_like
The input array.

size : float or sequence
The size of the box used for filtering. If a float, size is the same for all axes. If a
sequence, size has to contain one value for each axis.

n : int, optional
If n is negative (default), then the input is assumed to be the result of a complex fft. If
n is larger than or equal to zero, the input is assumed to be the result of a real fft, and n
gives the length of the array before transformation along the real transform direction.

axis : int, optional
The axis of the real transform.

output : ndarray, optional
If given, the result of filtering the input is placed in this array. None is returned in this
case.

Returns fourier_ellipsoid : ndarray or None
The filtered input. If output is given as a parameter, None is returned.

Notes

This function is implemented for arrays of rank 1, 2, or 3.

scipy.ndimage.fourier.fourier_gaussian(input, sigma, n=-1, axis=-1, output=None)
Multi-dimensional Gaussian fourier filter.

The array is multiplied with the fourier transform of a Gaussian kernel.

Parameters input : array_like
The input array.

sigma : float or sequence
The sigma of the Gaussian kernel. If a float, sigma is the same for all axes. If a
sequence, sigma has to contain one value for each axis.

n : int, optional
If n is negative (default), then the input is assumed to be the result of a complex fft. If
n is larger than or equal to zero, the input is assumed to be the result of a real fft, and n
gives the length of the array before transformation along the real transform direction.

axis : int, optional
The axis of the real transform.

output : ndarray, optional
If given, the result of filtering the input is placed in this array. None is returned in this
case.

Returns fourier_gaussian : ndarray or None
The filtered input. If output is given as a parameter, None is returned.

scipy.ndimage.fourier.fourier_shift(input, shift, n=-1, axis=-1, output=None)
Multi-dimensional fourier shift filter.

The array is multiplied with the fourier transform of a shift operation.

5.22. Multi-dimensional image processing (scipy.ndimage) 667

SciPy Reference Guide, Release 0.16.0

Parameters input : array_like
The input array.

shift : float or sequence
The size of the box used for filtering. If a float, shift is the same for all axes. If a
sequence, shift has to contain one value for each axis.

n : int, optional
If n is negative (default), then the input is assumed to be the result of a complex fft. If
n is larger than or equal to zero, the input is assumed to be the result of a real fft, and n
gives the length of the array before transformation along the real transform direction.

axis : int, optional
The axis of the real transform.

output : ndarray, optional
If given, the result of shifting the input is placed in this array. None is returned in this
case.

Returns fourier_shift : ndarray or None
The shifted input. If output is given as a parameter, None is returned.

scipy.ndimage.fourier.fourier_uniform(input, size, n=-1, axis=-1, output=None)
Multi-dimensional uniform fourier filter.

The array is multiplied with the fourier transform of a box of given size.

Parameters input : array_like
The input array.

size : float or sequence
The size of the box used for filtering. If a float, size is the same for all axes. If a
sequence, size has to contain one value for each axis.

n : int, optional
If n is negative (default), then the input is assumed to be the result of a complex fft. If
n is larger than or equal to zero, the input is assumed to be the result of a real fft, and n
gives the length of the array before transformation along the real transform direction.

axis : int, optional
The axis of the real transform.

output : ndarray, optional
If given, the result of filtering the input is placed in this array. None is returned in this
case.

Returns fourier_uniform : ndarray or None
The filtered input. If output is given as a parameter, None is returned.

5.22.3 Interpolation scipy.ndimage.interpolation

affine_transform(input, matrix[, offset, ...]) Apply an affine transformation.
geometric_transform(input, mapping[, ...]) Apply an arbritrary geometric transform.
map_coordinates(input, coordinates[, ...]) Map the input array to new coordinates by interpolation.
rotate(input, angle[, axes, reshape, ...]) Rotate an array.
shift(input, shift[, output, order, mode, ...]) Shift an array.
spline_filter(input[, order, output]) Multi-dimensional spline filter.
spline_filter1d(input[, order, axis, output]) Calculates a one-dimensional spline filter along the given axis.
zoom(input, zoom[, output, order, mode, ...]) Zoom an array.

668 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.ndimage.interpolation.affine_transform(input, matrix, offset=0.0, out-
put_shape=None, output=None, or-
der=3, mode=’constant’, cval=0.0,
prefilter=True)

Apply an affine transformation.

The given matrix and offset are used to find for each point in the output the corresponding coordinates in the input
by an affine transformation. The value of the input at those coordinates is determined by spline interpolation of
the requested order. Points outside the boundaries of the input are filled according to the given mode.

Parameters input : ndarray
The input array.

matrix : ndarray
The matrix must be two-dimensional or can also be given as a one-dimensional se-
quence or array. In the latter case, it is assumed that the matrix is diagonal. A more
efficient algorithms is then applied that exploits the separability of the problem.

offset : float or sequence, optional
The offset into the array where the transform is applied. If a float, offset is the same
for each axis. If a sequence, offset should contain one value for each axis.

output_shape : tuple of ints, optional
Shape tuple.

output : ndarray or dtype, optional
The array in which to place the output, or the dtype of the returned array.

order : int, optional
The order of the spline interpolation, default is 3. The order has to be in the range 0-5.

mode : str, optional
Points outside the boundaries of the input are filled according to the given mode (‘con-
stant’, ‘nearest’, ‘reflect’ or ‘wrap’). Default is ‘constant’.

cval : scalar, optional
Value used for points outside the boundaries of the input if mode=’constant’.
Default is 0.0

prefilter : bool, optional
The parameter prefilter determines if the input is pre-filtered with spline_filter
before interpolation (necessary for spline interpolation of order > 1). If False, it is
assumed that the input is already filtered. Default is True.

Returns affine_transform : ndarray or None
The transformed input. If output is given as a parameter, None is returned.

scipy.ndimage.interpolation.geometric_transform(input, mapping, output_shape=None,
output=None, order=3,
mode=’constant’, cval=0.0, pre-
filter=True, extra_arguments=(),
extra_keywords={})

Apply an arbritrary geometric transform.

The given mapping function is used to find, for each point in the output, the corresponding coordinates in the
input. The value of the input at those coordinates is determined by spline interpolation of the requested order.

Parameters input : array_like
The input array.

mapping : callable
A callable object that accepts a tuple of length equal to the output array rank, and
returns the corresponding input coordinates as a tuple of length equal to the input
array rank.

output_shape : tuple of ints, optional
Shape tuple.

output : ndarray or dtype, optional

5.22. Multi-dimensional image processing (scipy.ndimage) 669

SciPy Reference Guide, Release 0.16.0

The array in which to place the output, or the dtype of the returned array.
order : int, optional

The order of the spline interpolation, default is 3. The order has to be in the range 0-5.
mode : str, optional

Points outside the boundaries of the input are filled according to the given mode (‘con-
stant’, ‘nearest’, ‘reflect’ or ‘wrap’). Default is ‘constant’.

cval : scalar, optional
Value used for points outside the boundaries of the input if mode=’constant’.
Default is 0.0

prefilter : bool, optional
The parameter prefilter determines if the input is pre-filtered with spline_filter
before interpolation (necessary for spline interpolation of order > 1). If False, it is
assumed that the input is already filtered. Default is True.

extra_arguments : tuple, optional
Extra arguments passed to mapping.

extra_keywords : dict, optional
Extra keywords passed to mapping.

Returns return_value : ndarray or None
The filtered input. If output is given as a parameter, None is returned.

See also:

map_coordinates, affine_transform, spline_filter1d

Examples

>>> from scipy import ndimage
>>> a = np.arange(12.).reshape((4, 3))
>>> def shift_func(output_coords):
... return (output_coords[0] - 0.5, output_coords[1] - 0.5)
...
>>> ndimage.geometric_transform(a, shift_func)
array([[0. , 0. , 0.],

[0. , 1.362, 2.738],
[0. , 4.812, 6.187],
[0. , 8.263, 9.637]])

scipy.ndimage.interpolation.map_coordinates(input, coordinates, output=None, order=3,
mode=’constant’, cval=0.0, prefilter=True)

Map the input array to new coordinates by interpolation.

The array of coordinates is used to find, for each point in the output, the corresponding coordinates in the input.
The value of the input at those coordinates is determined by spline interpolation of the requested order.

The shape of the output is derived from that of the coordinate array by dropping the first axis. The values of the
array along the first axis are the coordinates in the input array at which the output value is found.

Parameters input : ndarray
The input array.

coordinates : array_like
The coordinates at which input is evaluated.

output : ndarray or dtype, optional
The array in which to place the output, or the dtype of the returned array.

order : int, optional
The order of the spline interpolation, default is 3. The order has to be in the range 0-5.

mode : str, optional
Points outside the boundaries of the input are filled according to the given mode (‘con-
stant’, ‘nearest’, ‘reflect’ or ‘wrap’). Default is ‘constant’.

670 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

cval : scalar, optional
Value used for points outside the boundaries of the input if mode=’constant’.
Default is 0.0

prefilter : bool, optional
The parameter prefilter determines if the input is pre-filtered with spline_filter
before interpolation (necessary for spline interpolation of order > 1). If False, it is
assumed that the input is already filtered. Default is True.

Returns map_coordinates : ndarray
The result of transforming the input. The shape of the output is derived from that of
coordinates by dropping the first axis.

See also:

spline_filter, geometric_transform, scipy.interpolate

Examples

>>> from scipy import ndimage
>>> a = np.arange(12.).reshape((4, 3))
>>> a
array([[0., 1., 2.],

[3., 4., 5.],
[6., 7., 8.],
[9., 10., 11.]])

>>> ndimage.map_coordinates(a, [[0.5, 2], [0.5, 1]], order=1)
[2. 7.]

Above, the interpolated value of a[0.5, 0.5] gives output[0], while a[2, 1] is output[1].

>>> inds = np.array([[0.5, 2], [0.5, 4]])
>>> ndimage.map_coordinates(a, inds, order=1, cval=-33.3)
array([2. , -33.3])
>>> ndimage.map_coordinates(a, inds, order=1, mode='nearest')
array([2., 8.])
>>> ndimage.map_coordinates(a, inds, order=1, cval=0, output=bool)
array([True, False], dtype=bool

scipy.ndimage.interpolation.rotate(input, angle, axes=(1, 0), reshape=True, output=None, or-
der=3, mode=’constant’, cval=0.0, prefilter=True)

Rotate an array.

The array is rotated in the plane defined by the two axes given by the axes parameter using spline interpolation
of the requested order.

Parameters input : ndarray
The input array.

angle : float
The rotation angle in degrees.

axes : tuple of 2 ints, optional
The two axes that define the plane of rotation. Default is the first two axes.

reshape : bool, optional
If reshape is true, the output shape is adapted so that the input array is contained
completely in the output. Default is True.

output : ndarray or dtype, optional
The array in which to place the output, or the dtype of the returned array.

order : int, optional
The order of the spline interpolation, default is 3. The order has to be in the range 0-5.

mode : str, optional

5.22. Multi-dimensional image processing (scipy.ndimage) 671

SciPy Reference Guide, Release 0.16.0

Points outside the boundaries of the input are filled according to the given mode (‘con-
stant’, ‘nearest’, ‘reflect’ or ‘wrap’). Default is ‘constant’.

cval : scalar, optional
Value used for points outside the boundaries of the input if mode=’constant’.
Default is 0.0

prefilter : bool, optional
The parameter prefilter determines if the input is pre-filtered with spline_filter
before interpolation (necessary for spline interpolation of order > 1). If False, it is
assumed that the input is already filtered. Default is True.

Returns rotate : ndarray or None
The rotated input. If output is given as a parameter, None is returned.

scipy.ndimage.interpolation.shift(input, shift, output=None, order=3, mode=’constant’,
cval=0.0, prefilter=True)

Shift an array.

The array is shifted using spline interpolation of the requested order. Points outside the boundaries of the input
are filled according to the given mode.

Parameters input : ndarray
The input array.

shift : float or sequence, optional
The shift along the axes. If a float, shift is the same for each axis. If a sequence,
shift should contain one value for each axis.

output : ndarray or dtype, optional
The array in which to place the output, or the dtype of the returned array.

order : int, optional
The order of the spline interpolation, default is 3. The order has to be in the range 0-5.

mode : str, optional
Points outside the boundaries of the input are filled according to the given mode (‘con-
stant’, ‘nearest’, ‘reflect’ or ‘wrap’). Default is ‘constant’.

cval : scalar, optional
Value used for points outside the boundaries of the input if mode=’constant’.
Default is 0.0

prefilter : bool, optional
The parameter prefilter determines if the input is pre-filtered with spline_filter
before interpolation (necessary for spline interpolation of order > 1). If False, it is
assumed that the input is already filtered. Default is True.

Returns shift : ndarray or None
The shifted input. If output is given as a parameter, None is returned.

scipy.ndimage.interpolation.spline_filter(input, order=3, output=<type
‘numpy.float64’>)

Multi-dimensional spline filter.

For more details, see spline_filter1d.

See also:

spline_filter1d

Notes

The multi-dimensional filter is implemented as a sequence of one-dimensional spline filters. The intermediate
arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the
results may be imprecise because intermediate results may be stored with insufficient precision.

672 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.ndimage.interpolation.spline_filter1d(input, order=3, axis=-1, output=<type
‘numpy.float64’>)

Calculates a one-dimensional spline filter along the given axis.

The lines of the array along the given axis are filtered by a spline filter. The order of the spline must be >= 2 and
<= 5.

Parameters input : array_like
The input array.

order : int, optional
The order of the spline, default is 3.

axis : int, optional
The axis along which the spline filter is applied. Default is the last axis.

output : ndarray or dtype, optional
The array in which to place the output, or the dtype of the returned array. Default is
numpy.float64.

Returns spline_filter1d : ndarray or None
The filtered input. If output is given as a parameter, None is returned.

scipy.ndimage.interpolation.zoom(input, zoom, output=None, order=3, mode=’constant’,
cval=0.0, prefilter=True)

Zoom an array.

The array is zoomed using spline interpolation of the requested order.

Parameters input : ndarray
The input array.

zoom : float or sequence, optional
The zoom factor along the axes. If a float, zoom is the same for each axis. If a
sequence, zoom should contain one value for each axis.

output : ndarray or dtype, optional
The array in which to place the output, or the dtype of the returned array.

order : int, optional
The order of the spline interpolation, default is 3. The order has to be in the range 0-5.

mode : str, optional
Points outside the boundaries of the input are filled according to the given mode (‘con-
stant’, ‘nearest’, ‘reflect’ or ‘wrap’). Default is ‘constant’.

cval : scalar, optional
Value used for points outside the boundaries of the input if mode=’constant’.
Default is 0.0

prefilter : bool, optional
The parameter prefilter determines if the input is pre-filtered with spline_filter
before interpolation (necessary for spline interpolation of order > 1). If False, it is
assumed that the input is already filtered. Default is True.

Returns zoom : ndarray or None
The zoomed input. If output is given as a parameter, None is returned.

5.22.4 Measurements scipy.ndimage.measurements

center_of_mass(input[, labels, index]) Calculate the center of mass of the values of an array at labels.
extrema(input[, labels, index]) Calculate the minimums and maximums of the values of an array at labels, along with their positions.
find_objects(input[, max_label]) Find objects in a labeled array.
histogram(input, min, max, bins[, labels, index]) Calculate the histogram of the values of an array, optionally at labels.
label(input[, structure, output]) Label features in an array.

Continued on next page

5.22. Multi-dimensional image processing (scipy.ndimage) 673

SciPy Reference Guide, Release 0.16.0

Table 5.86 – continued from previous page
labeled_comprehension(input, labels, index, ...) Roughly equivalent to [func(input[labels == i]) for i in index].
maximum(input[, labels, index]) Calculate the maximum of the values of an array over labeled regions.
maximum_position(input[, labels, index]) Find the positions of the maximums of the values of an array at labels.
mean(input[, labels, index]) Calculate the mean of the values of an array at labels.
minimum(input[, labels, index]) Calculate the minimum of the values of an array over labeled regions.
minimum_position(input[, labels, index]) Find the positions of the minimums of the values of an array at labels.
standard_deviation(input[, labels, index]) Calculate the standard deviation of the values of an n-D image array, optionally at specified sub-regions.
sum(input[, labels, index]) Calculate the sum of the values of the array.
variance(input[, labels, index]) Calculate the variance of the values of an n-D image array, optionally at specified sub-regions.
watershed_ift(input, markers[, structure, ...]) Apply watershed from markers using image foresting transform algorithm.

scipy.ndimage.measurements.center_of_mass(input, labels=None, index=None)
Calculate the center of mass of the values of an array at labels.

Parameters input : ndarray
Data from which to calculate center-of-mass.

labels : ndarray, optional
Labels for objects in input, as generated by ndimage.label. Only used with index.
Dimensions must be the same as input.

index : int or sequence of ints, optional
Labels for which to calculate centers-of-mass. If not specified, all labels greater than
zero are used. Only used with labels.

Returns center_of_mass : tuple, or list of tuples
Coordinates of centers-of-mass.

Examples

>>> a = np.array(([0,0,0,0],
[0,1,1,0],
[0,1,1,0],
[0,1,1,0]))

>>> from scipy import ndimage
>>> ndimage.measurements.center_of_mass(a)
(2.0, 1.5)

Calculation of multiple objects in an image

>>> b = np.array(([0,1,1,0],
[0,1,0,0],
[0,0,0,0],
[0,0,1,1],
[0,0,1,1]))

>>> lbl = ndimage.label(b)[0]
>>> ndimage.measurements.center_of_mass(b, lbl, [1,2])
[(0.33333333333333331, 1.3333333333333333), (3.5, 2.5)]

scipy.ndimage.measurements.extrema(input, labels=None, index=None)
Calculate the minimums and maximums of the values of an array at labels, along with their positions.

Parameters input : ndarray
Nd-image data to process.

labels : ndarray, optional
Labels of features in input. If not None, must be same shape as input.

index : int or sequence of ints, optional
Labels to include in output. If None (default), all values where non-zero labels are
used.

674 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Returns minimums, maximums : int or ndarray
Values of minimums and maximums in each feature.

min_positions, max_positions : tuple or list of tuples
Each tuple gives the n-D coordinates of the corresponding minimum or maximum.

See also:

maximum, minimum, maximum_position, minimum_position, center_of_mass

Examples

>>> a = np.array([[1, 2, 0, 0],
[5, 3, 0, 4],
[0, 0, 0, 7],
[9, 3, 0, 0]])

>>> from scipy import ndimage
>>> ndimage.extrema(a)
(0, 9, (0, 2), (3, 0))

Features to process can be specified using labels and index:

>>> lbl, nlbl = ndimage.label(a)
>>> ndimage.extrema(a, lbl, index=np.arange(1, nlbl+1))
(array([1, 4, 3]),
array([5, 7, 9]),
[(0, 0), (1, 3), (3, 1)],
[(1, 0), (2, 3), (3, 0)])

If no index is given, non-zero labels are processed:

>>> ndimage.extrema(a, lbl)
(1, 9, (0, 0), (3, 0))

scipy.ndimage.measurements.find_objects(input, max_label=0)
Find objects in a labeled array.

Parameters input : ndarray of ints
Array containing objects defined by different labels. Labels with value 0 are ignored.

max_label : int, optional
Maximum label to be searched for in input. If max_label is not given, the positions of
all objects are returned.

Returns object_slices : list of tuples
A list of tuples, with each tuple containing N slices (with N the dimension of the input
array). Slices correspond to the minimal parallelepiped that contains the object. If a
number is missing, None is returned instead of a slice.

See also:

label, center_of_mass

Notes

This function is very useful for isolating a volume of interest inside a 3-D array, that cannot be “seen through”.

Examples

>>> a = np.zeros((6,6), dtype=np.int)
>>> a[2:4, 2:4] = 1
>>> a[4, 4] = 1
>>> a[:2, :3] = 2
>>> a[0, 5] = 3

5.22. Multi-dimensional image processing (scipy.ndimage) 675

SciPy Reference Guide, Release 0.16.0

>>> a
array([[2, 2, 2, 0, 0, 3],

[2, 2, 2, 0, 0, 0],
[0, 0, 1, 1, 0, 0],
[0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0]])

>>> ndimage.find_objects(a)
[(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None)), (slice(0, 1, None), slice(5, 6, None))]
>>> ndimage.find_objects(a, max_label=2)
[(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None))]
>>> ndimage.find_objects(a == 1, max_label=2)
[(slice(2, 5, None), slice(2, 5, None)), None]

>>> loc = ndimage.find_objects(a)[0]
>>> a[loc]
array([[1, 1, 0]

[1, 1, 0]
[0, 0, 1]])

scipy.ndimage.measurements.histogram(input, min, max, bins, labels=None, index=None)
Calculate the histogram of the values of an array, optionally at labels.

Histogram calculates the frequency of values in an array within bins determined by min, max, and bins. The
labels and index keywords can limit the scope of the histogram to specified sub-regions within the array.

Parameters input : array_like
Data for which to calculate histogram.

min, max : int
Minimum and maximum values of range of histogram bins.

bins : int
Number of bins.

labels : array_like, optional
Labels for objects in input. If not None, must be same shape as input.

index : int or sequence of ints, optional
Label or labels for which to calculate histogram. If None, all values where label is
greater than zero are used

Returns hist : ndarray
Histogram counts.

Examples

>>> a = np.array([[0. , 0.2146, 0.5962, 0.],
[0. , 0.7778, 0. , 0.],
[0. , 0. , 0. , 0.],
[0. , 0. , 0.7181, 0.2787],
[0. , 0. , 0.6573, 0.3094]])

>>> from scipy import ndimage
>>> ndimage.measurements.histogram(a, 0, 1, 10)
array([13, 0, 2, 1, 0, 1, 1, 2, 0, 0])

With labels and no indices, non-zero elements are counted:

>>> lbl, nlbl = ndimage.label(a)
>>> ndimage.measurements.histogram(a, 0, 1, 10, lbl)
array([0, 0, 2, 1, 0, 1, 1, 2, 0, 0])

Indices can be used to count only certain objects:

676 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> ndimage.measurements.histogram(a, 0, 1, 10, lbl, 2)
array([0, 0, 1, 1, 0, 0, 1, 1, 0, 0])

scipy.ndimage.measurements.label(input, structure=None, output=None)
Label features in an array.

Parameters input : array_like
An array-like object to be labeled. Any non-zero values in input are counted as fea-
tures and zero values are considered the background.

structure : array_like, optional
A structuring element that defines feature connections. structure must be symmetric.
If no structuring element is provided, one is automatically generated with a squared
connectivity equal to one. That is, for a 2-D input array, the default structuring element
is:

[[0,1,0],
[1,1,1],
[0,1,0]]

output : (None, data-type, array_like), optional
If output is a data type, it specifies the type of the resulting labeled feature array If
output is an array-like object, then output will be updated with the labeled features
from this function. This function can operate in-place, by passing output=input. Note
that the output must be able to store the largest label, or this function will raise an
Exception.

Returns label : ndarray or int
An integer ndarray where each unique feature in input has a unique label in the re-
turned array.

num_features : int
How many objects were found.
If output is None, this function returns a tuple of (labeled_array, num_features).
If output is a ndarray, then it will be updated with values in labeled_array and only
num_features will be returned by this function.

See also:

find_objects
generate a list of slices for the labeled features (or objects); useful for finding features’ position
or dimensions

Examples

Create an image with some features, then label it using the default (cross-shaped) structuring element:

>>> a = np.array([[0,0,1,1,0,0],
... [0,0,0,1,0,0],
... [1,1,0,0,1,0],
... [0,0,0,1,0,0]])
>>> labeled_array, num_features = label(a)

Each of the 4 features are labeled with a different integer:

>>> print(num_features)
4
>>> print(labeled_array)
array([[0, 0, 1, 1, 0, 0],

[0, 0, 0, 1, 0, 0],

5.22. Multi-dimensional image processing (scipy.ndimage) 677

SciPy Reference Guide, Release 0.16.0

[2, 2, 0, 0, 3, 0],
[0, 0, 0, 4, 0, 0]])

Generate a structuring element that will consider features connected even if they touch diagonally:

>>> s = generate_binary_structure(2,2)

or,

>>> s = [[1,1,1],
[1,1,1],
[1,1,1]]

Label the image using the new structuring element:

>>> labeled_array, num_features = label(a, structure=s)

Show the 2 labeled features (note that features 1, 3, and 4 from above are now considered a single feature):

>>> print(num_features)
2
>>> print(labeled_array)
array([[0, 0, 1, 1, 0, 0],

[0, 0, 0, 1, 0, 0],
[2, 2, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0]])

scipy.ndimage.measurements.labeled_comprehension(input, labels, index, func, out_dtype,
default, pass_positions=False)

Roughly equivalent to [func(input[labels == i]) for i in index].

Sequentially applies an arbitrary function (that works on array_like input) to subsets of an n-D image array
specified by labels and index. The option exists to provide the function with positional parameters as the second
argument.

Parameters input : array_like
Data from which to select labels to process.

labels : array_like or None
Labels to objects in input. If not None, array must be same shape as input. If None,
func is applied to raveled input.

index : int, sequence of ints or None
Subset of labels to which to apply func. If a scalar, a single value is returned. If None,
func is applied to all non-zero values of labels.

func : callable
Python function to apply to labels from input.

out_dtype : dtype
Dtype to use for result.

default : int, float or None
Default return value when a element of index does not exist in labels.

pass_positions : bool, optional
If True, pass linear indices to func as a second argument. Default is False.

Returns result : ndarray
Result of applying func to each of labels to input in index.

Examples

>>> a = np.array([[1, 2, 0, 0],
[5, 3, 0, 4],
[0, 0, 0, 7],

678 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

[9, 3, 0, 0]])
>>> from scipy import ndimage
>>> lbl, nlbl = ndimage.label(a)
>>> lbls = np.arange(1, nlbl+1)
>>> ndimage.labeled_comprehension(a, lbl, lbls, np.mean, float, 0)
array([2.75, 5.5 , 6.])

Falling back to default:

>>> lbls = np.arange(1, nlbl+2)
>>> ndimage.labeled_comprehension(a, lbl, lbls, np.mean, float, -1)
array([2.75, 5.5 , 6. , -1.])

Passing positions:

>>> def fn(val, pos):
... print("fn says: %s : %s" % (val, pos))
... return (val.sum()) if (pos.sum() % 2 == 0) else (-val.sum())
...
>>> ndimage.labeled_comprehension(a, lbl, lbls, fn, float, 0, True)
fn says: [1 2 5 3] : [0 1 4 5]
fn says: [4 7] : [7 11]
fn says: [9 3] : [12 13]
array([11., 11., -12.])

scipy.ndimage.measurements.maximum(input, labels=None, index=None)
Calculate the maximum of the values of an array over labeled regions.

Parameters input : array_like
Array_like of values. For each region specified by labels, the maximal values of input
over the region is computed.

labels : array_like, optional
An array of integers marking different regions over which the maximum value of input
is to be computed. labels must have the same shape as input. If labels is not specified,
the maximum over the whole array is returned.

index : array_like, optional
A list of region labels that are taken into account for computing the maxima. If index
is None, the maximum over all elements where labels is non-zero is returned.

Returns output : float or list of floats
List of maxima of input over the regions determined by labels and whose index is in
index. If index or labels are not specified, a float is returned: the maximal value of
input if labels is None, and the maximal value of elements where labels is greater than
zero if index is None.

See also:

label, minimum, median, maximum_position, extrema, sum, mean, variance,
standard_deviation

Notes

The function returns a Python list and not a Numpy array, use np.array to convert the list to an array.

Examples

>>> a = np.arange(16).reshape((4,4))
>>> a
array([[0, 1, 2, 3],

[4, 5, 6, 7],

5.22. Multi-dimensional image processing (scipy.ndimage) 679

SciPy Reference Guide, Release 0.16.0

[8, 9, 10, 11],
[12, 13, 14, 15]])

>>> labels = np.zeros_like(a)
>>> labels[:2,:2] = 1
>>> labels[2:, 1:3] = 2
>>> labels
array([[1, 1, 0, 0],

[1, 1, 0, 0],
[0, 2, 2, 0],
[0, 2, 2, 0]])

>>> from scipy import ndimage
>>> ndimage.maximum(a)
15.0
>>> ndimage.maximum(a, labels=labels, index=[1,2])
[5.0, 14.0]
>>> ndimage.maximum(a, labels=labels)
14.0

>>> b = np.array([[1, 2, 0, 0],
[5, 3, 0, 4],
[0, 0, 0, 7],
[9, 3, 0, 0]])

>>> labels, labels_nb = ndimage.label(b)
>>> labels
array([[1, 1, 0, 0],

[1, 1, 0, 2],
[0, 0, 0, 2],
[3, 3, 0, 0]])

>>> ndimage.maximum(b, labels=labels, index=np.arange(1, labels_nb + 1))
[5.0, 7.0, 9.0]

scipy.ndimage.measurements.maximum_position(input, labels=None, index=None)
Find the positions of the maximums of the values of an array at labels.

For each region specified by labels, the position of the maximum value of input within the region is returned.

Parameters input : array_like
Array_like of values.

labels : array_like, optional
An array of integers marking different regions over which the position of the max-
imum value of input is to be computed. labels must have the same shape as input.
If labels is not specified, the location of the first maximum over the whole array is
returned.
The labels argument only works when index is specified.

index : array_like, optional
A list of region labels that are taken into account for finding the location of the max-
ima. If index is None, the first maximum over all elements where labels is non-zero is
returned.
The index argument only works when labels is specified.

Returns output : list of tuples of ints
List of tuples of ints that specify the location of maxima of input over the regions
determined by labels and whose index is in index.
If index or labels are not specified, a tuple of ints is returned specifying the location
of the first maximal value of input.

See also:

680 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

label, minimum, median, maximum_position, extrema, sum, mean, variance,
standard_deviation

scipy.ndimage.measurements.mean(input, labels=None, index=None)
Calculate the mean of the values of an array at labels.

Parameters input : array_like
Array on which to compute the mean of elements over distinct regions.

labels : array_like, optional
Array of labels of same shape, or broadcastable to the same shape as input. All ele-
ments sharing the same label form one region over which the mean of the elements is
computed.

index : int or sequence of ints, optional
Labels of the objects over which the mean is to be computed. Default is None, in
which case the mean for all values where label is greater than 0 is calculated.

Returns out : list
Sequence of same length as index, with the mean of the different regions labeled by
the labels in index.

See also:

ndimage.variance, ndimage.standard_deviation, ndimage.minimum,
ndimage.maximum, ndimage.sum, ndimage.label

Examples

>>> a = np.arange(25).reshape((5,5))
>>> labels = np.zeros_like(a)
>>> labels[3:5,3:5] = 1
>>> index = np.unique(labels)
>>> labels
array([[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 1, 1],
[0, 0, 0, 1, 1]])

>>> index
array([0, 1])
>>> ndimage.mean(a, labels=labels, index=index)
[10.285714285714286, 21.0]

scipy.ndimage.measurements.minimum(input, labels=None, index=None)
Calculate the minimum of the values of an array over labeled regions.

Parameters input : array_like
Array_like of values. For each region specified by labels, the minimal values of input
over the region is computed.

labels : array_like, optional
An array_like of integers marking different regions over which the minimum value of
input is to be computed. labels must have the same shape as input. If labels is not
specified, the minimum over the whole array is returned.

index : array_like, optional
A list of region labels that are taken into account for computing the minima. If index
is None, the minimum over all elements where labels is non-zero is returned.

Returns minimum : float or list of floats
List of minima of input over the regions determined by labels and whose index is in
index. If index or labels are not specified, a float is returned: the minimal value of

5.22. Multi-dimensional image processing (scipy.ndimage) 681

SciPy Reference Guide, Release 0.16.0

input if labels is None, and the minimal value of elements where labels is greater than
zero if index is None.

See also:

label, maximum, median, minimum_position, extrema, sum, mean, variance,
standard_deviation

Notes

The function returns a Python list and not a Numpy array, use np.array to convert the list to an array.

Examples

>>> a = np.array([[1, 2, 0, 0],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])
>>> labels, labels_nb = ndimage.label(a)
>>> labels
array([[1, 1, 0, 0],

[1, 1, 0, 2],
[0, 0, 0, 2],
[3, 3, 0, 0]])

>>> ndimage.minimum(a, labels=labels, index=np.arange(1, labels_nb + 1))
[1.0, 4.0, 3.0]
>>> ndimage.minimum(a)
0.0
>>> ndimage.minimum(a, labels=labels)
1.0

scipy.ndimage.measurements.minimum_position(input, labels=None, index=None)
Find the positions of the minimums of the values of an array at labels.

Parameters input : array_like
Array_like of values.

labels : array_like, optional
An array of integers marking different regions over which the position of the minimum
value of input is to be computed. labels must have the same shape as input. If labels
is not specified, the location of the first minimum over the whole array is returned.
The labels argument only works when index is specified.

index : array_like, optional
A list of region labels that are taken into account for finding the location of the minima.
If index is None, the first minimum over all elements where labels is non-zero is
returned.
The index argument only works when labels is specified.

Returns output : list of tuples of ints
Tuple of ints or list of tuples of ints that specify the location of minima of input over
the regions determined by labels and whose index is in index.
If index or labels are not specified, a tuple of ints is returned specifying the location
of the first minimal value of input.

See also:

label, minimum, median, maximum_position, extrema, sum, mean, variance,
standard_deviation

scipy.ndimage.measurements.standard_deviation(input, labels=None, index=None)
Calculate the standard deviation of the values of an n-D image array, optionally at specified sub-regions.

682 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters input : array_like
Nd-image data to process.

labels : array_like, optional
Labels to identify sub-regions in input. If not None, must be same shape as input.

index : int or sequence of ints, optional
labels to include in output. If None (default), all values where labels is non-zero are
used.

Returns standard_deviation : float or ndarray
Values of standard deviation, for each sub-region if labels and index are specified.

See also:

label, variance, maximum, minimum, extrema

Examples

>>> a = np.array([[1, 2, 0, 0],
[5, 3, 0, 4],
[0, 0, 0, 7],
[9, 3, 0, 0]])

>>> from scipy import ndimage
>>> ndimage.standard_deviation(a)
2.7585095613392387

Features to process can be specified using labels and index:

>>> lbl, nlbl = ndimage.label(a)
>>> ndimage.standard_deviation(a, lbl, index=np.arange(1, nlbl+1))
array([1.479, 1.5 , 3.])

If no index is given, non-zero labels are processed:

>>> ndimage.standard_deviation(a, lbl)
2.4874685927665499

scipy.ndimage.measurements.sum(input, labels=None, index=None)
Calculate the sum of the values of the array.

Parameters input : array_like
Values of input inside the regions defined by labels are summed together.

labels : array_like of ints, optional
Assign labels to the values of the array. Has to have the same shape as input.

index : array_like, optional
A single label number or a sequence of label numbers of the objects to be measured.

Returns sum : ndarray or scalar
An array of the sums of values of input inside the regions defined by labels with the
same shape as index. If ‘index’ is None or scalar, a scalar is returned.

See also:

mean, median

Examples

>>> input = [0,1,2,3]
>>> labels = [1,1,2,2]
>>> sum(input, labels, index=[1,2])
[1.0, 5.0]
>>> sum(input, labels, index=1)
1

5.22. Multi-dimensional image processing (scipy.ndimage) 683

SciPy Reference Guide, Release 0.16.0

>>> sum(input, labels)
6

scipy.ndimage.measurements.variance(input, labels=None, index=None)
Calculate the variance of the values of an n-D image array, optionally at specified sub-regions.

Parameters input : array_like
Nd-image data to process.

labels : array_like, optional
Labels defining sub-regions in input. If not None, must be same shape as input.

index : int or sequence of ints, optional
labels to include in output. If None (default), all values where labels is non-zero are
used.

Returns variance : float or ndarray
Values of variance, for each sub-region if labels and index are specified.

See also:

label, standard_deviation, maximum, minimum, extrema

Examples

>>> a = np.array([[1, 2, 0, 0],
[5, 3, 0, 4],
[0, 0, 0, 7],
[9, 3, 0, 0]])

>>> from scipy import ndimage
>>> ndimage.variance(a)
7.609375

Features to process can be specified using labels and index:

>>> lbl, nlbl = ndimage.label(a)
>>> ndimage.variance(a, lbl, index=np.arange(1, nlbl+1))
array([2.1875, 2.25 , 9.])

If no index is given, all non-zero labels are processed:

>>> ndimage.variance(a, lbl)
6.1875

scipy.ndimage.measurements.watershed_ift(input, markers, structure=None, output=None)
Apply watershed from markers using image foresting transform algorithm.

Parameters input : array_like
Input.

markers : array_like
Markers are points within each watershed that form the beginning of the process.
Negative markers are considered background markers which are processed after the
other markers.

structure : structure element, optional
A structuring element defining the connectivity of the object can be provided. If None,
an element is generated with a squared connectivity equal to one.

output : ndarray, optional
An output array can optionally be provided. The same shape as input.

Returns watershed_ift : ndarray
Output. Same shape as input.

684 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

References

[R106]

5.22.5 Morphology scipy.ndimage.morphology

binary_closing(input[, structure, ...]) Multi-dimensional binary closing with the given structuring element.
binary_dilation(input[, structure, ...]) Multi-dimensional binary dilation with the given structuring element.
binary_erosion(input[, structure, ...]) Multi-dimensional binary erosion with a given structuring element.
binary_fill_holes(input[, structure, ...]) Fill the holes in binary objects.
binary_hit_or_miss(input[, structure1, ...]) Multi-dimensional binary hit-or-miss transform.
binary_opening(input[, structure, ...]) Multi-dimensional binary opening with the given structuring element.
binary_propagation(input[, structure, mask, ...]) Multi-dimensional binary propagation with the given structuring element.
black_tophat(input[, size, footprint, ...]) Multi-dimensional black tophat filter.
distance_transform_bf(input[, metric, ...]) Distance transform function by a brute force algorithm.
distance_transform_cdt(input[, metric, ...]) Distance transform for chamfer type of transforms.
distance_transform_edt(input[, sampling, ...]) Exact euclidean distance transform.
generate_binary_structure(rank, connectivity) Generate a binary structure for binary morphological operations.
grey_closing(input[, size, footprint, ...]) Multi-dimensional greyscale closing.
grey_dilation(input[, size, footprint, ...]) Calculate a greyscale dilation, using either a structuring element, or a footprint corresponding to a flat structuring element.
grey_erosion(input[, size, footprint, ...]) Calculate a greyscale erosion, using either a structuring element, or a footprint corresponding to a flat structuring element.
grey_opening(input[, size, footprint, ...]) Multi-dimensional greyscale opening.
iterate_structure(structure, iterations[, ...]) Iterate a structure by dilating it with itself.
morphological_gradient(input[, size, ...]) Multi-dimensional morphological gradient.
morphological_laplace(input[, size, ...]) Multi-dimensional morphological laplace.
white_tophat(input[, size, footprint, ...]) Multi-dimensional white tophat filter.

scipy.ndimage.morphology.binary_closing(input, structure=None, iterations=1, output=None,
origin=0)

Multi-dimensional binary closing with the given structuring element.

The closing of an input image by a structuring element is the erosion of the dilation of the image by the struc-
turing element.

Parameters input : array_like
Binary array_like to be closed. Non-zero (True) elements form the subset to be closed.

structure : array_like, optional
Structuring element used for the closing. Non-zero elements are considered True. If
no structuring element is provided an element is generated with a square connectivity
equal to one (i.e., only nearest neighbors are connected to the center, diagonally-
connected elements are not considered neighbors).

iterations : {int, float}, optional
The dilation step of the closing, then the erosion step are each repeated iterations
times (one, by default). If iterations is less than 1, each operations is repeated until
the result does not change anymore.

output : ndarray, optional
Array of the same shape as input, into which the output is placed. By default, a new
array is created.

origin : int or tuple of ints, optional
Placement of the filter, by default 0.

Returns binary_closing : ndarray of bools
Closing of the input by the structuring element.

5.22. Multi-dimensional image processing (scipy.ndimage) 685

SciPy Reference Guide, Release 0.16.0

See also:

grey_closing, binary_opening, binary_dilation, binary_erosion,
generate_binary_structure

Notes

Closing [R107] is a mathematical morphology operation [R108] that consists in the succession of a dilation
and an erosion of the input with the same structuring element. Closing therefore fills holes smaller than the
structuring element.

Together with opening (binary_opening), closing can be used for noise removal.

References

[R107], [R108]

Examples

>>> a = np.zeros((5,5), dtype=np.int)
>>> a[1:-1, 1:-1] = 1; a[2,2] = 0
>>> a
array([[0, 0, 0, 0, 0],

[0, 1, 1, 1, 0],
[0, 1, 0, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])

>>> # Closing removes small holes
>>> ndimage.binary_closing(a).astype(np.int)
array([[0, 0, 0, 0, 0],

[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])

>>> # Closing is the erosion of the dilation of the input
>>> ndimage.binary_dilation(a).astype(np.int)
array([[0, 1, 1, 1, 0],

[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[0, 1, 1, 1, 0]])

>>> ndimage.binary_erosion(ndimage.binary_dilation(a)).astype(np.int)
array([[0, 0, 0, 0, 0],

[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])

>>> a = np.zeros((7,7), dtype=np.int)
>>> a[1:6, 2:5] = 1; a[1:3,3] = 0
>>> a
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 1, 0, 0],
[0, 0, 1, 0, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> # In addition to removing holes, closing can also
>>> # coarsen boundaries with fine hollows.

686 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> ndimage.binary_closing(a).astype(np.int)
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> ndimage.binary_closing(a, structure=np.ones((2,2))).astype(np.int)
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

scipy.ndimage.morphology.binary_dilation(input, structure=None, iterations=1, mask=None,
output=None, border_value=0, origin=0,
brute_force=False)

Multi-dimensional binary dilation with the given structuring element.

Parameters input : array_like
Binary array_like to be dilated. Non-zero (True) elements form the subset to be di-
lated.

structure : array_like, optional
Structuring element used for the dilation. Non-zero elements are considered True. If
no structuring element is provided an element is generated with a square connectivity
equal to one.

iterations : {int, float}, optional
The dilation is repeated iterations times (one, by default). If iterations is less than 1,
the dilation is repeated until the result does not change anymore.

mask : array_like, optional
If a mask is given, only those elements with a True value at the corresponding mask
element are modified at each iteration.

output : ndarray, optional
Array of the same shape as input, into which the output is placed. By default, a new
array is created.

origin : int or tuple of ints, optional
Placement of the filter, by default 0.

border_value : int (cast to 0 or 1), optional
Value at the border in the output array.

Returns binary_dilation : ndarray of bools
Dilation of the input by the structuring element.

See also:

grey_dilation, binary_erosion, binary_closing, binary_opening,
generate_binary_structure

Notes

Dilation [R109] is a mathematical morphology operation [R110] that uses a structuring element for expanding
the shapes in an image. The binary dilation of an image by a structuring element is the locus of the points
covered by the structuring element, when its center lies within the non-zero points of the image.

5.22. Multi-dimensional image processing (scipy.ndimage) 687

SciPy Reference Guide, Release 0.16.0

References

[R109], [R110]

Examples

>>> a = np.zeros((5, 5))
>>> a[2, 2] = 1
>>> a
array([[0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])

>>> ndimage.binary_dilation(a)
array([[False, False, False, False, False],

[False, False, True, False, False],
[False, True, True, True, False],
[False, False, True, False, False],
[False, False, False, False, False]], dtype=bool)

>>> ndimage.binary_dilation(a).astype(a.dtype)
array([[0., 0., 0., 0., 0.],

[0., 0., 1., 0., 0.],
[0., 1., 1., 1., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0.]])

>>> # 3x3 structuring element with connectivity 1, used by default
>>> struct1 = ndimage.generate_binary_structure(2, 1)
>>> struct1
array([[False, True, False],

[True, True, True],
[False, True, False]], dtype=bool)

>>> # 3x3 structuring element with connectivity 2
>>> struct2 = ndimage.generate_binary_structure(2, 2)
>>> struct2
array([[True, True, True],

[True, True, True],
[True, True, True]], dtype=bool)

>>> ndimage.binary_dilation(a, structure=struct1).astype(a.dtype)
array([[0., 0., 0., 0., 0.],

[0., 0., 1., 0., 0.],
[0., 1., 1., 1., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0.]])

>>> ndimage.binary_dilation(a, structure=struct2).astype(a.dtype)
array([[0., 0., 0., 0., 0.],

[0., 1., 1., 1., 0.],
[0., 1., 1., 1., 0.],
[0., 1., 1., 1., 0.],
[0., 0., 0., 0., 0.]])

>>> ndimage.binary_dilation(a, structure=struct1,\
... iterations=2).astype(a.dtype)
array([[0., 0., 1., 0., 0.],

[0., 1., 1., 1., 0.],
[1., 1., 1., 1., 1.],
[0., 1., 1., 1., 0.],
[0., 0., 1., 0., 0.]])

688 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.ndimage.morphology.binary_erosion(input, structure=None, iterations=1, mask=None,
output=None, border_value=0, origin=0,
brute_force=False)

Multi-dimensional binary erosion with a given structuring element.

Binary erosion is a mathematical morphology operation used for image processing.

Parameters input : array_like
Binary image to be eroded. Non-zero (True) elements form the subset to be eroded.

structure : array_like, optional
Structuring element used for the erosion. Non-zero elements are considered True. If
no structuring element is provided, an element is generated with a square connectivity
equal to one.

iterations : {int, float}, optional
The erosion is repeated iterations times (one, by default). If iterations is less than 1,
the erosion is repeated until the result does not change anymore.

mask : array_like, optional
If a mask is given, only those elements with a True value at the corresponding mask
element are modified at each iteration.

output : ndarray, optional
Array of the same shape as input, into which the output is placed. By default, a new
array is created.

origin : int or tuple of ints, optional
Placement of the filter, by default 0.

border_value : int (cast to 0 or 1), optional
Value at the border in the output array.

Returns binary_erosion : ndarray of bools
Erosion of the input by the structuring element.

See also:

grey_erosion, binary_dilation, binary_closing, binary_opening,
generate_binary_structure

Notes

Erosion [R111] is a mathematical morphology operation [R112] that uses a structuring element for shrinking
the shapes in an image. The binary erosion of an image by a structuring element is the locus of the points where
a superimposition of the structuring element centered on the point is entirely contained in the set of non-zero
elements of the image.

References

[R111], [R112]

Examples

>>> a = np.zeros((7,7), dtype=np.int)
>>> a[1:6, 2:5] = 1
>>> a
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> ndimage.binary_erosion(a).astype(a.dtype)
array([[0, 0, 0, 0, 0, 0, 0],

5.22. Multi-dimensional image processing (scipy.ndimage) 689

SciPy Reference Guide, Release 0.16.0

[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> #Erosion removes objects smaller than the structure
>>> ndimage.binary_erosion(a, structure=np.ones((5,5))).astype(a.dtype)
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

scipy.ndimage.morphology.binary_fill_holes(input, structure=None, output=None, ori-
gin=0)

Fill the holes in binary objects.

Parameters input : array_like
n-dimensional binary array with holes to be filled

structure : array_like, optional
Structuring element used in the computation; large-size elements make computations
faster but may miss holes separated from the background by thin regions. The default
element (with a square connectivity equal to one) yields the intuitive result where all
holes in the input have been filled.

output : ndarray, optional
Array of the same shape as input, into which the output is placed. By default, a new
array is created.

origin : int, tuple of ints, optional
Position of the structuring element.

Returns out : ndarray
Transformation of the initial image input where holes have been filled.

See also:

binary_dilation, binary_propagation, label

Notes

The algorithm used in this function consists in invading the complementary of the shapes in input from the outer
boundary of the image, using binary dilations. Holes are not connected to the boundary and are therefore not
invaded. The result is the complementary subset of the invaded region.

References

[R113]

Examples

>>> a = np.zeros((5, 5), dtype=int)
>>> a[1:4, 1:4] = 1
>>> a[2,2] = 0
>>> a
array([[0, 0, 0, 0, 0],

[0, 1, 1, 1, 0],
[0, 1, 0, 1, 0],
[0, 1, 1, 1, 0],

690 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

[0, 0, 0, 0, 0]])
>>> ndimage.binary_fill_holes(a).astype(int)
array([[0, 0, 0, 0, 0],

[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])

>>> # Too big structuring element
>>> ndimage.binary_fill_holes(a, structure=np.ones((5,5))).astype(int)
array([[0, 0, 0, 0, 0],

[0, 1, 1, 1, 0],
[0, 1, 0, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])

scipy.ndimage.morphology.binary_hit_or_miss(input, structure1=None, structure2=None,
output=None, origin1=0, origin2=None)

Multi-dimensional binary hit-or-miss transform.

The hit-or-miss transform finds the locations of a given pattern inside the input image.

Parameters input : array_like (cast to booleans)
Binary image where a pattern is to be detected.

structure1 : array_like (cast to booleans), optional
Part of the structuring element to be fitted to the foreground (non-zero elements) of
input. If no value is provided, a structure of square connectivity 1 is chosen.

structure2 : array_like (cast to booleans), optional
Second part of the structuring element that has to miss completely the foreground. If
no value is provided, the complementary of structure1 is taken.

output : ndarray, optional
Array of the same shape as input, into which the output is placed. By default, a new
array is created.

origin1 : int or tuple of ints, optional
Placement of the first part of the structuring element structure1, by default 0 for a
centered structure.

origin2 : int or tuple of ints, optional
Placement of the second part of the structuring element structure2, by default 0 for a
centered structure. If a value is provided for origin1 and not for origin2, then origin2
is set to origin1.

Returns binary_hit_or_miss : ndarray
Hit-or-miss transform of input with the given structuring element (structure1, struc-
ture2).

See also:

ndimage.morphology, binary_erosion

References

[R114]

Examples

>>> a = np.zeros((7,7), dtype=np.int)
>>> a[1, 1] = 1; a[2:4, 2:4] = 1; a[4:6, 4:6] = 1
>>> a
array([[0, 0, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0],

5.22. Multi-dimensional image processing (scipy.ndimage) 691

SciPy Reference Guide, Release 0.16.0

[0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> structure1 = np.array([[1, 0, 0], [0, 1, 1], [0, 1, 1]])
>>> structure1
array([[1, 0, 0],

[0, 1, 1],
[0, 1, 1]])

>>> # Find the matches of structure1 in the array a
>>> ndimage.binary_hit_or_miss(a, structure1=structure1).astype(np.int)
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> # Change the origin of the filter
>>> # origin1=1 is equivalent to origin1=(1,1) here
>>> ndimage.binary_hit_or_miss(a, structure1=structure1,\
... origin1=1).astype(np.int)
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0]])

scipy.ndimage.morphology.binary_opening(input, structure=None, iterations=1, output=None,
origin=0)

Multi-dimensional binary opening with the given structuring element.

The opening of an input image by a structuring element is the dilation of the erosion of the image by the
structuring element.

Parameters input : array_like
Binary array_like to be opened. Non-zero (True) elements form the subset to be
opened.

structure : array_like, optional
Structuring element used for the opening. Non-zero elements are considered True. If
no structuring element is provided an element is generated with a square connectivity
equal to one (i.e., only nearest neighbors are connected to the center, diagonally-
connected elements are not considered neighbors).

iterations : {int, float}, optional
The erosion step of the opening, then the dilation step are each repeated iterations
times (one, by default). If iterations is less than 1, each operation is repeated until the
result does not change anymore.

output : ndarray, optional
Array of the same shape as input, into which the output is placed. By default, a new
array is created.

origin : int or tuple of ints, optional
Placement of the filter, by default 0.

Returns binary_opening : ndarray of bools
Opening of the input by the structuring element.

692 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

See also:

grey_opening, binary_closing, binary_erosion, binary_dilation,
generate_binary_structure

Notes

Opening [R115] is a mathematical morphology operation [R116] that consists in the succession of an erosion
and a dilation of the input with the same structuring element. Opening therefore removes objects smaller than
the structuring element.

Together with closing (binary_closing), opening can be used for noise removal.

References

[R115], [R116]

Examples

>>> a = np.zeros((5,5), dtype=np.int)
>>> a[1:4, 1:4] = 1; a[4, 4] = 1
>>> a
array([[0, 0, 0, 0, 0],

[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 1]])

>>> # Opening removes small objects
>>> ndimage.binary_opening(a, structure=np.ones((3,3))).astype(np.int)
array([[0, 0, 0, 0, 0],

[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])

>>> # Opening can also smooth corners
>>> ndimage.binary_opening(a).astype(np.int)
array([[0, 0, 0, 0, 0],

[0, 0, 1, 0, 0],
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0]])

>>> # Opening is the dilation of the erosion of the input
>>> ndimage.binary_erosion(a).astype(np.int)
array([[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])

>>> ndimage.binary_dilation(ndimage.binary_erosion(a)).astype(np.int)
array([[0, 0, 0, 0, 0],

[0, 0, 1, 0, 0],
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0]])

scipy.ndimage.morphology.binary_propagation(input, structure=None, mask=None, out-
put=None, border_value=0, origin=0)

Multi-dimensional binary propagation with the given structuring element.

Parameters input : array_like

5.22. Multi-dimensional image processing (scipy.ndimage) 693

SciPy Reference Guide, Release 0.16.0

Binary image to be propagated inside mask.
structure : array_like, optional

Structuring element used in the successive dilations. The output may depend on the
structuring element, especially if mask has several connex components. If no structur-
ing element is provided, an element is generated with a squared connectivity equal to
one.

mask : array_like, optional
Binary mask defining the region into which input is allowed to propagate.

output : ndarray, optional
Array of the same shape as input, into which the output is placed. By default, a new
array is created.

border_value : int (cast to 0 or 1), optional
Value at the border in the output array.

origin : int or tuple of ints, optional
Placement of the filter, by default 0.

Returns binary_propagation : ndarray
Binary propagation of input inside mask.

Notes

This function is functionally equivalent to calling binary_dilation with the number of iterations less then one:
iterative dilation until the result does not change anymore.

The succession of an erosion and propagation inside the original image can be used instead of an opening for
deleting small objects while keeping the contours of larger objects untouched.

References

[R117], [R118]

Examples

>>> input = np.zeros((8, 8), dtype=np.int)
>>> input[2, 2] = 1
>>> mask = np.zeros((8, 8), dtype=np.int)
>>> mask[1:4, 1:4] = mask[4, 4] = mask[6:8, 6:8] = 1
>>> input
array([[0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]])

>>> mask
array([[0, 0, 0, 0, 0, 0, 0, 0],

[0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 1, 1]])

>>> ndimage.binary_propagation(input, mask=mask).astype(np.int)
array([[0, 0, 0, 0, 0, 0, 0, 0],

[0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],

694 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

[0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]])

>>> ndimage.binary_propagation(input, mask=mask,\
... structure=np.ones((3,3))).astype(np.int)
array([[0, 0, 0, 0, 0, 0, 0, 0],

[0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]])

>>> # Comparison between opening and erosion+propagation
>>> a = np.zeros((6,6), dtype=np.int)
>>> a[2:5, 2:5] = 1; a[0, 0] = 1; a[5, 5] = 1
>>> a
array([[1, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 1]])

>>> ndimage.binary_opening(a).astype(np.int)
array([[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0]])

>>> b = ndimage.binary_erosion(a)
>>> b.astype(int)
array([[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]])

>>> ndimage.binary_propagation(b, mask=a).astype(np.int)
array([[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0]])

scipy.ndimage.morphology.black_tophat(input, size=None, footprint=None, structure=None,
output=None, mode=’reflect’, cval=0.0, origin=0)

Multi-dimensional black tophat filter.

Parameters input : array_like
Input.

size : tuple of ints, optional
Shape of a flat and full structuring element used for the filter. Optional if footprint or
structure is provided.

5.22. Multi-dimensional image processing (scipy.ndimage) 695

SciPy Reference Guide, Release 0.16.0

footprint : array of ints, optional
Positions of non-infinite elements of a flat structuring element used for the black
tophat filter.

structure : array of ints, optional
Structuring element used for the filter. structure may be a non-flat structuring element.

output : array, optional
An array used for storing the output of the filter may be provided.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0

Returns black_tophat : ndarray
Result of the filter of input with structure.

See also:

white_tophat, grey_opening, grey_closing

scipy.ndimage.morphology.distance_transform_bf(input, metric=’euclidean’, sam-
pling=None, return_distances=True,
return_indices=False, distances=None,
indices=None)

Distance transform function by a brute force algorithm.

This function calculates the distance transform of the input, by replacing each background element (zero values),
with its shortest distance to the foreground (any element non-zero).

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result.

Parameters input : array_like
Input

metric : str, optional
Three types of distance metric are supported: ‘euclidean’, ‘taxicab’ and ‘chessboard’.

sampling : {int, sequence of ints}, optional
This parameter is only used in the case of the euclidean metric distance transform.
The sampling along each axis can be given by the sampling parameter which should be
a sequence of length equal to the input rank, or a single number in which the sampling
is assumed to be equal along all axes.

return_distances : bool, optional
The return_distances flag can be used to indicate if the distance transform is returned.
The default is True.

return_indices : bool, optional
The return_indices flags can be used to indicate if the feature transform is returned.
The default is False.

distances : float64 ndarray, optional
Optional output array to hold distances (if return_distances is True).

indices : int64 ndarray, optional
Optional output array to hold indices (if return_indices is True).

Returns distances : ndarray
Distance array if return_distances is True.

indices : ndarray
Indices array if return_indices is True.

696 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

This function employs a slow brute force algorithm, see also the function distance_transform_cdt for more
efficient taxicab and chessboard algorithms.

scipy.ndimage.morphology.distance_transform_cdt(input, metric=’chessboard’,
return_distances=True, re-
turn_indices=False, distances=None,
indices=None)

Distance transform for chamfer type of transforms.

Parameters input : array_like
Input

metric : {‘chessboard’, ‘taxicab’}, optional
The metric determines the type of chamfering that is done. If the metric is equal
to ‘taxicab’ a structure is generated using generate_binary_structure with a squared
distance equal to 1. If the metric is equal to ‘chessboard’, a metric is generated using
generate_binary_structure with a squared distance equal to the dimensionality of the
array. These choices correspond to the common interpretations of the ‘taxicab’ and
the ‘chessboard’ distance metrics in two dimensions.
The default for metric is ‘chessboard’.

return_distances, return_indices : bool, optional
The return_distances, and return_indices flags can be used to indicate if the distance
transform, the feature transform, or both must be returned.
If the feature transform is returned (return_indices=True), the index of the
closest background element is returned along the first axis of the result.
The return_distances default is True, and the return_indices default is False.

distances, indices : ndarrays of int32, optional
The distances and indices arguments can be used to give optional output arrays that
must be the same shape as input.

scipy.ndimage.morphology.distance_transform_edt(input, sampling=None, re-
turn_distances=True, re-
turn_indices=False, distances=None,
indices=None)

Exact euclidean distance transform.

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result.

Parameters input : array_like
Input data to transform. Can be any type but will be converted into binary: 1 wherever
input equates to True, 0 elsewhere.

sampling : float or int, or sequence of same, optional
Spacing of elements along each dimension. If a sequence, must be of length equal
to the input rank; if a single number, this is used for all axes. If not specified, a grid
spacing of unity is implied.

return_distances : bool, optional
Whether to return distance matrix. At least one of return_distances/return_indices
must be True. Default is True.

return_indices : bool, optional
Whether to return indices matrix. Default is False.

distances : ndarray, optional
Used for output of distance array, must be of type float64.

indices : ndarray, optional
Used for output of indices, must be of type int32.

Returns distance_transform_edt : ndarray or list of ndarrays

5.22. Multi-dimensional image processing (scipy.ndimage) 697

SciPy Reference Guide, Release 0.16.0

Either distance matrix, index matrix, or a list of the two, depending on return_x flags
and distance and indices input parameters.

Notes

The euclidean distance transform gives values of the euclidean distance:

n
y_i = sqrt(sum (x[i]-b[i])**2)

i

where b[i] is the background point (value 0) with the smallest Euclidean distance to input points x[i], and n is
the number of dimensions.

Examples

>>> a = np.array(([0,1,1,1,1],
[0,0,1,1,1],
[0,1,1,1,1],
[0,1,1,1,0],
[0,1,1,0,0]))

>>> from scipy import ndimage
>>> ndimage.distance_transform_edt(a)
array([[0. , 1. , 1.4142, 2.2361, 3.],

[0. , 0. , 1. , 2. , 2.],
[0. , 1. , 1.4142, 1.4142, 1.],
[0. , 1. , 1.4142, 1. , 0.],
[0. , 1. , 1. , 0. , 0.]])

With a sampling of 2 units along x, 1 along y:

>>> ndimage.distance_transform_edt(a, sampling=[2,1])
array([[0. , 1. , 2. , 2.8284, 3.6056],

[0. , 0. , 1. , 2. , 3.],
[0. , 1. , 2. , 2.2361, 2.],
[0. , 1. , 2. , 1. , 0.],
[0. , 1. , 1. , 0. , 0.]])

Asking for indices as well:

>>> edt, inds = ndimage.distance_transform_edt(a, return_indices=True)
>>> inds
array([[[0, 0, 1, 1, 3],

[1, 1, 1, 1, 3],
[2, 2, 1, 3, 3],
[3, 3, 4, 4, 3],
[4, 4, 4, 4, 4]],

[[0, 0, 1, 1, 4],
[0, 1, 1, 1, 4],
[0, 0, 1, 4, 4],
[0, 0, 3, 3, 4],
[0, 0, 3, 3, 4]]])

With arrays provided for inplace outputs:

>>> indices = np.zeros(((np.ndim(a),) + a.shape), dtype=np.int32)
>>> ndimage.distance_transform_edt(a, return_indices=True, indices=indices)
array([[0. , 1. , 1.4142, 2.2361, 3.],

[0. , 0. , 1. , 2. , 2.],
[0. , 1. , 1.4142, 1.4142, 1.],
[0. , 1. , 1.4142, 1. , 0.],

698 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

[0. , 1. , 1. , 0. , 0.]])
>>> indices
array([[[0, 0, 1, 1, 3],

[1, 1, 1, 1, 3],
[2, 2, 1, 3, 3],
[3, 3, 4, 4, 3],
[4, 4, 4, 4, 4]],

[[0, 0, 1, 1, 4],
[0, 1, 1, 1, 4],
[0, 0, 1, 4, 4],
[0, 0, 3, 3, 4],
[0, 0, 3, 3, 4]]])

scipy.ndimage.morphology.generate_binary_structure(rank, connectivity)
Generate a binary structure for binary morphological operations.

Parameters rank : int
Number of dimensions of the array to which the structuring element will be applied,
as returned by np.ndim.

connectivity : int
connectivity determines which elements of the output array belong to the structure, i.e.
are considered as neighbors of the central element. Elements up to a squared distance
of connectivity from the center are considered neighbors. connectivity may range from
1 (no diagonal elements are neighbors) to rank (all elements are neighbors).

Returns output : ndarray of bools
Structuring element which may be used for binary morphological operations, with
rank dimensions and all dimensions equal to 3.

See also:

iterate_structure, binary_dilation, binary_erosion

Notes

generate_binary_structure can only create structuring elements with dimensions equal to 3, i.e. min-
imal dimensions. For larger structuring elements, that are useful e.g. for eroding large objects, one may either
use iterate_structure, or create directly custom arrays with numpy functions such as numpy.ones.

Examples

>>> struct = ndimage.generate_binary_structure(2, 1)
>>> struct
array([[False, True, False],

[True, True, True],
[False, True, False]], dtype=bool)

>>> a = np.zeros((5,5))
>>> a[2, 2] = 1
>>> a
array([[0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])

>>> b = ndimage.binary_dilation(a, structure=struct).astype(a.dtype)
>>> b
array([[0., 0., 0., 0., 0.],

[0., 0., 1., 0., 0.],
[0., 1., 1., 1., 0.],
[0., 0., 1., 0., 0.],

5.22. Multi-dimensional image processing (scipy.ndimage) 699

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html#numpy.ones

SciPy Reference Guide, Release 0.16.0

[0., 0., 0., 0., 0.]])
>>> ndimage.binary_dilation(b, structure=struct).astype(a.dtype)
array([[0., 0., 1., 0., 0.],

[0., 1., 1., 1., 0.],
[1., 1., 1., 1., 1.],
[0., 1., 1., 1., 0.],
[0., 0., 1., 0., 0.]])

>>> struct = ndimage.generate_binary_structure(2, 2)
>>> struct
array([[True, True, True],

[True, True, True],
[True, True, True]], dtype=bool)

>>> struct = ndimage.generate_binary_structure(3, 1)
>>> struct # no diagonal elements
array([[[False, False, False],

[False, True, False],
[False, False, False]],

[[False, True, False],
[True, True, True],
[False, True, False]],

[[False, False, False],
[False, True, False],
[False, False, False]]], dtype=bool)

scipy.ndimage.morphology.grey_closing(input, size=None, footprint=None, structure=None,
output=None, mode=’reflect’, cval=0.0, origin=0)

Multi-dimensional greyscale closing.

A greyscale closing consists in the succession of a greyscale dilation, and a greyscale erosion.

Parameters input : array_like
Array over which the grayscale closing is to be computed.

size : tuple of ints
Shape of a flat and full structuring element used for the grayscale closing. Optional if
footprint or structure is provided.

footprint : array of ints, optional
Positions of non-infinite elements of a flat structuring element used for the grayscale
closing.

structure : array of ints, optional
Structuring element used for the grayscale closing. structure may be a non-flat struc-
turing element.

output : array, optional
An array used for storing the ouput of the closing may be provided.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0

Returns grey_closing : ndarray
Result of the grayscale closing of input with structure.

See also:

binary_closing, grey_dilation, grey_erosion, grey_opening,
generate_binary_structure

700 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The action of a grayscale closing with a flat structuring element amounts to smoothen deep local minima,
whereas binary closing fills small holes.

References

[R119]

Examples

>>> a = np.arange(36).reshape((6,6))
>>> a[3,3] = 0
>>> a
array([[0, 1, 2, 3, 4, 5],

[6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 0, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35]])

>>> ndimage.grey_closing(a, size=(3,3))
array([[7, 7, 8, 9, 10, 11],

[7, 7, 8, 9, 10, 11],
[13, 13, 14, 15, 16, 17],
[19, 19, 20, 20, 22, 23],
[25, 25, 26, 27, 28, 29],
[31, 31, 32, 33, 34, 35]])

>>> # Note that the local minimum a[3,3] has disappeared

scipy.ndimage.morphology.grey_dilation(input, size=None, footprint=None, structure=None,
output=None, mode=’reflect’, cval=0.0, origin=0)

Calculate a greyscale dilation, using either a structuring element, or a footprint corresponding to a flat structuring
element.

Grayscale dilation is a mathematical morphology operation. For the simple case of a full and flat structuring
element, it can be viewed as a maximum filter over a sliding window.

Parameters input : array_like
Array over which the grayscale dilation is to be computed.

size : tuple of ints
Shape of a flat and full structuring element used for the grayscale dilation. Optional if
footprint or structure is provided.

footprint : array of ints, optional
Positions of non-infinite elements of a flat structuring element used for the grayscale
dilation. Non-zero values give the set of neighbors of the center over which the maxi-
mum is chosen.

structure : array of ints, optional
Structuring element used for the grayscale dilation. structure may be a non-flat struc-
turing element.

output : array, optional
An array used for storing the ouput of the dilation may be provided.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0

5.22. Multi-dimensional image processing (scipy.ndimage) 701

SciPy Reference Guide, Release 0.16.0

Returns grey_dilation : ndarray
Grayscale dilation of input.

See also:

binary_dilation, grey_erosion, grey_closing, grey_opening,
generate_binary_structure, ndimage.maximum_filter

Notes

The grayscale dilation of an image input by a structuring element s defined over a domain E is given by:

(input+s)(x) = max {input(y) + s(x-y), for y in E}

In particular, for structuring elements defined as s(y) = 0 for y in E, the grayscale dilation computes the maximum
of the input image inside a sliding window defined by E.

Grayscale dilation [R120] is a mathematical morphology operation [R121].

References

[R120], [R121]

Examples

>>> a = np.zeros((7,7), dtype=np.int)
>>> a[2:5, 2:5] = 1
>>> a[4,4] = 2; a[2,3] = 3
>>> a
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 3, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> ndimage.grey_dilation(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],

[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 3, 3, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> ndimage.grey_dilation(a, footprint=np.ones((3,3)))
array([[0, 0, 0, 0, 0, 0, 0],

[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 3, 3, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> s = ndimage.generate_binary_structure(2,1)
>>> s
array([[False, True, False],

[True, True, True],
[False, True, False]], dtype=bool)

>>> ndimage.grey_dilation(a, footprint=s)
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 3, 1, 0, 0],
[0, 1, 3, 3, 3, 1, 0],

702 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

[0, 1, 1, 3, 2, 1, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 0, 1, 1, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> ndimage.grey_dilation(a, size=(3,3), structure=np.ones((3,3)))
array([[1, 1, 1, 1, 1, 1, 1],

[1, 2, 4, 4, 4, 2, 1],
[1, 2, 4, 4, 4, 2, 1],
[1, 2, 4, 4, 4, 3, 1],
[1, 2, 2, 3, 3, 3, 1],
[1, 2, 2, 3, 3, 3, 1],
[1, 1, 1, 1, 1, 1, 1]])

scipy.ndimage.morphology.grey_erosion(input, size=None, footprint=None, structure=None,
output=None, mode=’reflect’, cval=0.0, origin=0)

Calculate a greyscale erosion, using either a structuring element, or a footprint corresponding to a flat structuring
element.

Grayscale erosion is a mathematical morphology operation. For the simple case of a full and flat structuring
element, it can be viewed as a minimum filter over a sliding window.

Parameters input : array_like
Array over which the grayscale erosion is to be computed.

size : tuple of ints
Shape of a flat and full structuring element used for the grayscale erosion. Optional if
footprint or structure is provided.

footprint : array of ints, optional
Positions of non-infinite elements of a flat structuring element used for the grayscale
erosion. Non-zero values give the set of neighbors of the center over which the mini-
mum is chosen.

structure : array of ints, optional
Structuring element used for the grayscale erosion. structure may be a non-flat struc-
turing element.

output : array, optional
An array used for storing the ouput of the erosion may be provided.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0

Returns output : ndarray
Grayscale erosion of input.

See also:

binary_erosion, grey_dilation, grey_opening, grey_closing,
generate_binary_structure, ndimage.minimum_filter

Notes

The grayscale erosion of an image input by a structuring element s defined over a domain E is given by:

(input+s)(x) = min {input(y) - s(x-y), for y in E}

In particular, for structuring elements defined as s(y) = 0 for y in E, the grayscale erosion computes the minimum
of the input image inside a sliding window defined by E.

5.22. Multi-dimensional image processing (scipy.ndimage) 703

SciPy Reference Guide, Release 0.16.0

Grayscale erosion [R122] is a mathematical morphology operation [R123].

References

[R122], [R123]

Examples

>>> a = np.zeros((7,7), dtype=np.int)
>>> a[1:6, 1:6] = 3
>>> a[4,4] = 2; a[2,3] = 1
>>> a
array([[0, 0, 0, 0, 0, 0, 0],

[0, 3, 3, 3, 3, 3, 0],
[0, 3, 3, 1, 3, 3, 0],
[0, 3, 3, 3, 3, 3, 0],
[0, 3, 3, 3, 2, 3, 0],
[0, 3, 3, 3, 3, 3, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> ndimage.grey_erosion(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 3, 2, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> footprint = ndimage.generate_binary_structure(2, 1)
>>> footprint
array([[False, True, False],

[True, True, True],
[False, True, False]], dtype=bool)

>>> # Diagonally-connected elements are not considered neighbors
>>> ndimage.grey_erosion(a, size=(3,3), footprint=footprint)
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 3, 1, 2, 0, 0],
[0, 0, 3, 2, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

scipy.ndimage.morphology.grey_opening(input, size=None, footprint=None, structure=None,
output=None, mode=’reflect’, cval=0.0, origin=0)

Multi-dimensional greyscale opening.

A greyscale opening consists in the succession of a greyscale erosion, and a greyscale dilation.

Parameters input : array_like
Array over which the grayscale opening is to be computed.

size : tuple of ints
Shape of a flat and full structuring element used for the grayscale opening. Optional
if footprint or structure is provided.

footprint : array of ints, optional
Positions of non-infinite elements of a flat structuring element used for the grayscale
opening.

structure : array of ints, optional
Structuring element used for the grayscale opening. structure may be a non-flat struc-
turing element.

704 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

output : array, optional
An array used for storing the ouput of the opening may be provided.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0

Returns grey_opening : ndarray
Result of the grayscale opening of input with structure.

See also:

binary_opening, grey_dilation, grey_erosion, grey_closing,
generate_binary_structure

Notes

The action of a grayscale opening with a flat structuring element amounts to smoothen high local maxima,
whereas binary opening erases small objects.

References

[R124]

Examples

>>> a = np.arange(36).reshape((6,6))
>>> a[3, 3] = 50
>>> a
array([[0, 1, 2, 3, 4, 5],

[6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 50, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35]])

>>> ndimage.grey_opening(a, size=(3,3))
array([[0, 1, 2, 3, 4, 4],

[6, 7, 8, 9, 10, 10],
[12, 13, 14, 15, 16, 16],
[18, 19, 20, 22, 22, 22],
[24, 25, 26, 27, 28, 28],
[24, 25, 26, 27, 28, 28]])

>>> # Note that the local maximum a[3,3] has disappeared

scipy.ndimage.morphology.iterate_structure(structure, iterations, origin=None)
Iterate a structure by dilating it with itself.

Parameters structure : array_like
Structuring element (an array of bools, for example), to be dilated with itself.

iterations : int
number of dilations performed on the structure with itself

origin : optional
If origin is None, only the iterated structure is returned. If not, a tuple of the iterated
structure and the modified origin is returned.

Returns iterate_structure : ndarray of bools
A new structuring element obtained by dilating structure (iterations - 1) times with
itself.

5.22. Multi-dimensional image processing (scipy.ndimage) 705

SciPy Reference Guide, Release 0.16.0

See also:

generate_binary_structure

Examples

>>> struct = ndimage.generate_binary_structure(2, 1)
>>> struct.astype(int)
array([[0, 1, 0],

[1, 1, 1],
[0, 1, 0]])

>>> ndimage.iterate_structure(struct, 2).astype(int)
array([[0, 0, 1, 0, 0],

[0, 1, 1, 1, 0],
[1, 1, 1, 1, 1],
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0]])

>>> ndimage.iterate_structure(struct, 3).astype(int)
array([[0, 0, 0, 1, 0, 0, 0],

[0, 0, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0]])

scipy.ndimage.morphology.morphological_gradient(input, size=None, footprint=None,
structure=None, output=None,
mode=’reflect’, cval=0.0, origin=0)

Multi-dimensional morphological gradient.

The morphological gradient is calculated as the difference between a dilation and an erosion of the input with a
given structuring element.

Parameters input : array_like
Array over which to compute the morphlogical gradient.

size : tuple of ints
Shape of a flat and full structuring element used for the mathematical morphology
operations. Optional if footprint or structure is provided. A larger size yields a more
blurred gradient.

footprint : array of ints, optional
Positions of non-infinite elements of a flat structuring element used for the morphol-
ogy operations. Larger footprints give a more blurred morphological gradient.

structure : array of ints, optional
Structuring element used for the morphology operations. structure may be a non-flat
structuring element.

output : array, optional
An array used for storing the ouput of the morphological gradient may be provided.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0

Returns morphological_gradient : ndarray
Morphological gradient of input.

706 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

See also:

grey_dilation, grey_erosion, ndimage.gaussian_gradient_magnitude

Notes

For a flat structuring element, the morphological gradient computed at a given point corresponds to the maximal
difference between elements of the input among the elements covered by the structuring element centered on
the point.

References

[R125]

Examples

>>> a = np.zeros((7,7), dtype=np.int)
>>> a[2:5, 2:5] = 1
>>> ndimage.morphological_gradient(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],

[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 0, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> # The morphological gradient is computed as the difference
>>> # between a dilation and an erosion
>>> ndimage.grey_dilation(a, size=(3,3)) -\
... ndimage.grey_erosion(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],

[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 0, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> a = np.zeros((7,7), dtype=np.int)
>>> a[2:5, 2:5] = 1
>>> a[4,4] = 2; a[2,3] = 3
>>> a
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 3, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> ndimage.morphological_gradient(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],

[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 2, 3, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 0, 0, 0, 0, 0, 0]])

scipy.ndimage.morphology.morphological_laplace(input, size=None, footprint=None,
structure=None, output=None,
mode=’reflect’, cval=0.0, origin=0)

5.22. Multi-dimensional image processing (scipy.ndimage) 707

SciPy Reference Guide, Release 0.16.0

Multi-dimensional morphological laplace.

Parameters input : array_like
Input.

size : int or sequence of ints, optional
See structure.

footprint : bool or ndarray, optional
See structure.

structure : structure, optional
Either size, footprint, or the structure must be provided.

output : ndarray, optional
An output array can optionally be provided.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled. For ‘constant’
mode, values beyond borders are set to be cval. Default is ‘reflect’.

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0

origin : origin, optional
The origin parameter controls the placement of the filter.

Returns morphological_laplace : ndarray
Output

scipy.ndimage.morphology.white_tophat(input, size=None, footprint=None, structure=None,
output=None, mode=’reflect’, cval=0.0, origin=0)

Multi-dimensional white tophat filter.

Parameters input : array_like
Input.

size : tuple of ints
Shape of a flat and full structuring element used for the filter. Optional if footprint or
structure is provided.

footprint : array of ints, optional
Positions of elements of a flat structuring element used for the white tophat filter.

structure : array of ints, optional
Structuring element used for the filter. structure may be a non-flat structuring element.

output : array, optional
An array used for storing the output of the filter may be provided.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the
value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

origin : scalar, optional
The origin parameter controls the placement of the filter. Default is 0.

Returns output : ndarray
Result of the filter of input with structure.

See also:

black_tophat

5.22.6 Utility

imread(fname[, flatten, mode]) Read an image from a file as an array.

708 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.ndimage.imread(fname, flatten=False, mode=None)
Read an image from a file as an array.

Parameters fname : str
Image file name, e.g. test.jpg, or a file object.

flatten : bool, optional
If true, convert the output to grey-scale. Default is False.

mode : str, optional
mode to convert image to, e.g. RGB.

Returns img_array : ndarray
The different colour bands/channels are stored in the third dimension, such that a
grey-image is MxN, an RGB-image MxNx3 and an RGBA-image MxNx4.

Raises ImportError
If the Python Imaging Library (PIL) can not be imported.

5.23 Orthogonal distance regression (scipy.odr)

5.23.1 Package Content

Data(x[, y, we, wd, fix, meta]) The data to fit.
RealData(x[, y, sx, sy, covx, covy, fix, meta]) The data, with weightings as actual standard deviations and/or covariances.
Model(fcn[, fjacb, fjacd, extra_args, ...]) The Model class stores information about the function you wish to fit.
ODR(data, model[, beta0, delta0, ifixb, ...]) The ODR class gathers all information and coordinates the running of the main fitting routine.
Output(output) The Output class stores the output of an ODR run.
odr(fcn, beta0, y, x[, we, wd, fjacb, ...]) Low-level function for ODR.
odr_error Exception indicating an error in fitting.
odr_stop Exception stopping fitting.

class scipy.odr.Data(x, y=None, we=None, wd=None, fix=None, meta={})
The data to fit.

Parameters x : array_like
Input data for regression.

y : array_like, optional
Input data for regression.

we : array_like, optional
If we is a scalar, then that value is used for all data points (and all dimensions of
the response variable). If we is a rank-1 array of length q (the dimensionality of the
response variable), then this vector is the diagonal of the covariant weighting matrix
for all data points. If we is a rank-1 array of length n (the number of data points),
then the i’th element is the weight for the i’th response variable observation (single-
dimensional only). If we is a rank-2 array of shape (q, q), then this is the full covariant
weighting matrix broadcast to each observation. If we is a rank-2 array of shape (q, n),
then we[:,i] is the diagonal of the covariant weighting matrix for the i’th observation.
If we is a rank-3 array of shape (q, q, n), then we[:,:,i] is the full specification of
the covariant weighting matrix for each observation. If the fit is implicit, then only a
positive scalar value is used.

wd : array_like, optional
If wd is a scalar, then that value is used for all data points (and all dimensions of the
input variable). If wd = 0, then the covariant weighting matrix for each observation
is set to the identity matrix (so each dimension of each observation has the same

5.23. Orthogonal distance regression (scipy.odr) 709

SciPy Reference Guide, Release 0.16.0

weight). If wd is a rank-1 array of length m (the dimensionality of the input variable),
then this vector is the diagonal of the covariant weighting matrix for all data points.
If wd is a rank-1 array of length n (the number of data points), then the i’th element
is the weight for the i’th input variable observation (single-dimensional only). If wd
is a rank-2 array of shape (m, m), then this is the full covariant weighting matrix
broadcast to each observation. If wd is a rank-2 array of shape (m, n), then wd[:,i]
is the diagonal of the covariant weighting matrix for the i’th observation. If wd is a
rank-3 array of shape (m, m, n), then wd[:,:,i] is the full specification of the covariant
weighting matrix for each observation.

fix : array_like of ints, optional
The fix argument is the same as ifixx in the class ODR. It is an array of integers with
the same shape as data.x that determines which input observations are treated as fixed.
One can use a sequence of length m (the dimensionality of the input observations) to
fix some dimensions for all observations. A value of 0 fixes the observation, a value >
0 makes it free.

meta : dict, optional
Free-form dictionary for metadata.

Notes

Each argument is attached to the member of the instance of the same name. The structures of x and y are
described in the Model class docstring. If y is an integer, then the Data instance can only be used to fit with
implicit models where the dimensionality of the response is equal to the specified value of y.

The we argument weights the effect a deviation in the response variable has on the fit. The wd argument weights
the effect a deviation in the input variable has on the fit. To handle multidimensional inputs and responses easily,
the structure of these arguments has the n’th dimensional axis first. These arguments heavily use the structured
arguments feature of ODRPACK to conveniently and flexibly support all options. See the ODRPACK User’s
Guide for a full explanation of how these weights are used in the algorithm. Basically, a higher value of the
weight for a particular data point makes a deviation at that point more detrimental to the fit.

Methods

set_meta(**kwds) Update the metadata dictionary with the keywords and data provided by keywords.

Data.set_meta(**kwds)
Update the metadata dictionary with the keywords and data provided by keywords.

Examples

>>> data.set_meta(lab="Ph 7; Lab 26", title="Ag110 + Ag108 Decay")

class scipy.odr.RealData(x, y=None, sx=None, sy=None, covx=None, covy=None, fix=None,
meta={})

The data, with weightings as actual standard deviations and/or covariances.

Parameters x : array_like
x

y : array_like, optional
y

sx, sy : array_like, optional
Standard deviations of x. sx are standard deviations of x and are converted to weights
by dividing 1.0 by their squares.

sy : array_like, optional
Standard deviations of y. sy are standard deviations of y and are converted to weights
by dividing 1.0 by their squares.

710 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

covx : array_like, optional
Covariance of x covx is an array of covariance matrices of x and are converted to
weights by performing a matrix inversion on each observation’s covariance matrix.

covy : array_like, optional
Covariance of y covy is an array of covariance matrices and are converted to weights
by performing a matrix inversion on each observation’s covariance matrix.

fix : array_like, optional
The argument and member fix is the same as Data.fix and ODR.ifixx: It is an array
of integers with the same shape as x that determines which input observations are
treated as fixed. One can use a sequence of length m (the dimensionality of the input
observations) to fix some dimensions for all observations. A value of 0 fixes the
observation, a value > 0 makes it free.

meta : dict, optional
Free-form dictionary for metadata.

Notes

The weights wd and we are computed from provided values as follows:

sx and sy are converted to weights by dividing 1.0 by their squares. For example, wd =
1./numpy.power(‘sx‘, 2).

covx and covy are arrays of covariance matrices and are converted to weights by performing a matrix inversion
on each observation’s covariance matrix. For example, we[i] = numpy.linalg.inv(covy[i]).

These arguments follow the same structured argument conventions as wd and we only restricted by their natures:
sx and sy can’t be rank-3, but covx and covy can be.

Only set either sx or covx (not both). Setting both will raise an exception. Same with sy and covy.

Methods

set_meta(**kwds) Update the metadata dictionary with the keywords and data provided by keywords.

RealData.set_meta(**kwds)
Update the metadata dictionary with the keywords and data provided by keywords.

Examples

>>> data.set_meta(lab="Ph 7; Lab 26", title="Ag110 + Ag108 Decay")

class scipy.odr.Model(fcn, fjacb=None, fjacd=None, extra_args=None, estimate=None, implicit=0,
meta=None)

The Model class stores information about the function you wish to fit.

It stores the function itself, at the least, and optionally stores functions which compute the Jacobians used
during fitting. Also, one can provide a function that will provide reasonable starting values for the fit parameters
possibly given the set of data.

Parameters fcn : function
fcn(beta, x) –> y

fjacb : function
Jacobian of fcn wrt the fit parameters beta.
fjacb(beta, x) –> @f_i(x,B)/@B_j

fjacd : function
Jacobian of fcn wrt the (possibly multidimensional) input variable.
fjacd(beta, x) –> @f_i(x,B)/@x_j

extra_args : tuple, optional

5.23. Orthogonal distance regression (scipy.odr) 711

SciPy Reference Guide, Release 0.16.0

If specified, extra_args should be a tuple of extra arguments to pass to fcn, fjacb, and
fjacd. Each will be called by apply(fcn, (beta, x) + extra_args)

estimate : array_like of rank-1
Provides estimates of the fit parameters from the data
estimate(data) –> estbeta

implicit : boolean
If TRUE, specifies that the model is implicit; i.e fcn(beta, x) ~= 0 and there is no y
data to fit against

meta : dict, optional
freeform dictionary of metadata for the model

Notes

Note that the fcn, fjacb, and fjacd operate on NumPy arrays and return a NumPy array. The estimate object takes
an instance of the Data class.

Here are the rules for the shapes of the argument and return arrays of the callback functions:

x if the input data is single-dimensional, then x is rank-1 array; i.e. x = array([1, 2, 3,
...]); x.shape = (n,) If the input data is multi-dimensional, then x is a rank-2 ar-
ray; i.e., x = array([[1, 2, ...], [2, 4, ...]]); x.shape = (m, n). In
all cases, it has the same shape as the input data array passed to odr. m is the dimensionality of
the input data, n is the number of observations.

y if the response variable is single-dimensional, then y is a rank-1 array, i.e., y = array([2,
4, ...]); y.shape = (n,). If the response variable is multi-dimensional, then y is a
rank-2 array, i.e., y = array([[2, 4, ...], [3, 6, ...]]); y.shape = (q,
n) where q is the dimensionality of the response variable.

beta rank-1 array of length p where p is the number of parameters; i.e. beta = array([B_1,
B_2, ..., B_p])

fjacb if the response variable is multi-dimensional, then the return array’s shape is (q, p, n) such that
fjacb(x,beta)[l,k,i] = d f_l(X,B)/d B_k evaluated at the i’th data point. If q
== 1, then the return array is only rank-2 and with shape (p, n).

fjacd as with fjacb, only the return array’s shape is (q, m, n) such that fjacd(x,beta)[l,j,i]
= d f_l(X,B)/d X_j at the i’th data point. If q == 1, then the return array’s shape is (m,
n). If m == 1, the shape is (q, n). If m == q == 1, the shape is (n,).

Methods

set_meta(**kwds) Update the metadata dictionary with the keywords and data provided here.

Model.set_meta(**kwds)
Update the metadata dictionary with the keywords and data provided here.

Examples

set_meta(name=”Exponential”, equation=”y = a exp(b x) + c”)

class scipy.odr.ODR(data, model, beta0=None, delta0=None, ifixb=None, ifixx=None, job=None,
iprint=None, errfile=None, rptfile=None, ndigit=None, taufac=None, sstol=None,
partol=None, maxit=None, stpb=None, stpd=None, sclb=None, scld=None,
work=None, iwork=None)

The ODR class gathers all information and coordinates the running of the main fitting routine.

Members of instances of the ODR class have the same names as the arguments to the initialization routine.

712 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters data : Data class instance
instance of the Data class

model : Model class instance
instance of the Model class

Other Parameters
beta0 : array_like of rank-1

a rank-1 sequence of initial parameter values. Optional if model provides an “esti-
mate” function to estimate these values.

delta0 : array_like of floats of rank-1, optional
a (double-precision) float array to hold the initial values of the errors in the input
variables. Must be same shape as data.x

ifixb : array_like of ints of rank-1, optional
sequence of integers with the same length as beta0 that determines which parameters
are held fixed. A value of 0 fixes the parameter, a value > 0 makes the parameter free.

ifixx : array_like of ints with same shape as data.x, optional
an array of integers with the same shape as data.x that determines which input obser-
vations are treated as fixed. One can use a sequence of length m (the dimensionality
of the input observations) to fix some dimensions for all observations. A value of 0
fixes the observation, a value > 0 makes it free.

job : int, optional
an integer telling ODRPACK what tasks to perform. See p. 31 of the ODRPACK
User’s Guide if you absolutely must set the value here. Use the method set_job post-
initialization for a more readable interface.

iprint : int, optional
an integer telling ODRPACK what to print. See pp. 33-34 of the ODRPACK User’s
Guide if you absolutely must set the value here. Use the method set_iprint post-
initialization for a more readable interface.

errfile : str, optional
string with the filename to print ODRPACK errors to. Do Not Open This File Yourself!

rptfile : str, optional
string with the filename to print ODRPACK summaries to. Do Not Open This File
Yourself!

ndigit : int, optional
integer specifying the number of reliable digits in the computation of the function.

taufac : float, optional
float specifying the initial trust region. The default value is 1. The initial trust region
is equal to taufac times the length of the first computed Gauss-Newton step. taufac
must be less than 1.

sstol : float, optional
float specifying the tolerance for convergence based on the relative change in the sum-
of-squares. The default value is eps**(1/2) where eps is the smallest value such that 1
+ eps > 1 for double precision computation on the machine. sstol must be less than 1.

partol : float, optional
float specifying the tolerance for convergence based on the relative change in the
estimated parameters. The default value is eps**(2/3) for explicit models and
eps**(1/3) for implicit models. partol must be less than 1.

maxit : int, optional
integer specifying the maximum number of iterations to perform. For first runs, maxit
is the total number of iterations performed and defaults to 50. For restarts, maxit is
the number of additional iterations to perform and defaults to 10.

stpb : array_like, optional
sequence (len(stpb) == len(beta0)) of relative step sizes to compute finite
difference derivatives wrt the parameters.

stpd : optional

5.23. Orthogonal distance regression (scipy.odr) 713

SciPy Reference Guide, Release 0.16.0

array (stpd.shape == data.x.shape or stpd.shape == (m,)) of rela-
tive step sizes to compute finite difference derivatives wrt the input variable errors. If
stpd is a rank-1 array with length m (the dimensionality of the input variable), then
the values are broadcast to all observations.

sclb : array_like, optional
sequence (len(stpb) == len(beta0)) of scaling factors for the parameters.
The purpose of these scaling factors are to scale all of the parameters to around unity.
Normally appropriate scaling factors are computed if this argument is not specified.
Specify them yourself if the automatic procedure goes awry.

scld : array_like, optional
array (scld.shape == data.x.shape or scld.shape == (m,)) of scaling factors for the
errors in the input variables. Again, these factors are automatically computed if you
do not provide them. If scld.shape == (m,), then the scaling factors are broadcast to
all observations.

work : ndarray, optional
array to hold the double-valued working data for ODRPACK. When restarting, takes
the value of self.output.work.

iwork : ndarray, optional
array to hold the integer-valued working data for ODRPACK. When restarting, takes
the value of self.output.iwork.

Attributes

data (Data) The data for this fit
model (Model) The model used in fit
out-
put

(Output) An instance if the Output class containing all of the returned data from an invocation of
ODR.run() or ODR.restart()

Methods

restart([iter]) Restarts the run with iter more iterations.
run() Run the fitting routine with all of the information given.
set_iprint([init, so_init, iter, so_iter, ...]) Set the iprint parameter for the printing of computation reports.
set_job([fit_type, deriv, var_calc, ...]) Sets the “job” parameter is a hopefully comprehensible way.

ODR.restart(iter=None)
Restarts the run with iter more iterations.

Parameters iter : int, optional
ODRPACK’s default for the number of new iterations is 10.

Returns output : Output instance
This object is also assigned to the attribute .output .

ODR.run()
Run the fitting routine with all of the information given.

Returns output : Output instance
This object is also assigned to the attribute .output .

ODR.set_iprint(init=None, so_init=None, iter=None, so_iter=None, iter_step=None, final=None,
so_final=None)

Set the iprint parameter for the printing of computation reports.

If any of the arguments are specified here, then they are set in the iprint member. If iprint is not set
manually or with this method, then ODRPACK defaults to no printing. If no filename is specified with the
member rptfile, then ODRPACK prints to stdout. One can tell ODRPACK to print to stdout in addition

714 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

to the specified filename by setting the so_* arguments to this function, but one cannot specify to print to
stdout but not a file since one can do that by not specifying a rptfile filename.

There are three reports: initialization, iteration, and final reports. They are represented by the arguments
init, iter, and final respectively. The permissible values are 0, 1, and 2 representing “no report”, “short
report”, and “long report” respectively.

The argument iter_step (0 <= iter_step <= 9) specifies how often to make the iteration report; the report
will be made for every iter_step’th iteration starting with iteration one. If iter_step == 0, then no iteration
report is made, regardless of the other arguments.

If the rptfile is None, then any so_* arguments supplied will raise an exception.

ODR.set_job(fit_type=None, deriv=None, var_calc=None, del_init=None, restart=None)
Sets the “job” parameter is a hopefully comprehensible way.

If an argument is not specified, then the value is left as is. The default value from class initialization is for
all of these options set to 0.

Parameters fit_type : {0, 1, 2} int
0 -> explicit ODR
1 -> implicit ODR
2 -> ordinary least-squares

deriv : {0, 1, 2, 3} int
0 -> forward finite differences
1 -> central finite differences
2 -> user-supplied derivatives (Jacobians) with results

checked by ODRPACK
3 -> user-supplied derivatives, no checking

var_calc : {0, 1, 2} int
0 -> calculate asymptotic covariance matrix and fit

parameter uncertainties (V_B, s_B) using derivatives recomputed
at the final solution

1 -> calculate V_B and s_B using derivatives from last iteration
2 -> do not calculate V_B and s_B

del_init : {0, 1} int
0 -> initial input variable offsets set to 0
1 -> initial offsets provided by user in variable “work”

restart : {0, 1} int
0 -> fit is not a restart
1 -> fit is a restart

Notes

The permissible values are different from those given on pg. 31 of the ODRPACK User’s Guide only in
that one cannot specify numbers greater than the last value for each variable.

If one does not supply functions to compute the Jacobians, the fitting procedure will change deriv to 0,
finite differences, as a default. To initialize the input variable offsets by yourself, set del_init to 1 and put
the offsets into the “work” variable correctly.

class scipy.odr.Output(output)
The Output class stores the output of an ODR run.

Notes

Takes one argument for initialization, the return value from the function odr. The attributes listed as “optional”
above are only present if odr was run with full_output=1.

5.23. Orthogonal distance regression (scipy.odr) 715

SciPy Reference Guide, Release 0.16.0

Attributes

beta (ndarray) Estimated parameter values, of shape (q,).
sd_beta (ndarray) Standard errors of the estimated parameters, of shape (p,).
cov_beta (ndarray) Covariance matrix of the estimated parameters, of shape (p,p).
delta (ndarray, optional) Array of estimated errors in input variables, of same shape as x.
eps (ndarray, optional) Array of estimated errors in response variables, of same shape as y.
xplus (ndarray, optional) Array of x + delta.
y (ndarray, optional) Array y = fcn(x + delta).
res_var (float, optional) Residual variance.
sum_sqare (float, optional) Sum of squares error.
sum_square_delta (float, optional) Sum of squares of delta error.
sum_square_eps (float, optional) Sum of squares of eps error.
inv_condnum (float, optional) Inverse condition number (cf. ODRPACK UG p. 77).
rel_error (float, optional) Relative error in function values computed within fcn.
work (ndarray, optional) Final work array.
work_ind (dict, optional) Indices into work for drawing out values (cf. ODRPACK UG p. 83).
info (int, optional) Reason for returning, as output by ODRPACK (cf. ODRPACK UG p.

38).
stopreason (list of str, optional) info interpreted into English.

Methods

pprint() Pretty-print important results.

Output.pprint()
Pretty-print important results.

scipy.odr.odr(fcn, beta0, y, x, we=None, wd=None, fjacb=None, fjacd=None, extra_args=None,
ifixx=None, ifixb=None, job=0, iprint=0, errfile=None, rptfile=None, ndigit=0, tau-
fac=0.0, sstol=-1.0, partol=-1.0, maxit=-1, stpb=None, stpd=None, sclb=None,
scld=None, work=None, iwork=None, full_output=0)

Low-level function for ODR.

See also:

ODR, Model, Data, RealData

Notes

This is a function performing the same operation as the ODR, Model and Data classes together. The parameters
of this function are explained in the class documentation.

exception scipy.odr.odr_error
Exception indicating an error in fitting.

This is raised by scipy.odr if an error occurs during fitting.

exception scipy.odr.odr_stop
Exception stopping fitting.

You can raise this exception in your objective function to tell scipy.odr to stop fitting.

716 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

5.23.2 Usage information

Introduction

Why Orthogonal Distance Regression (ODR)? Sometimes one has measurement errors in the explanatory (a.k.a.,
“independent”) variable(s), not just the response (a.k.a., “dependent”) variable(s). Ordinary Least Squares (OLS)
fitting procedures treat the data for explanatory variables as fixed, i.e., not subject to error of any kind. Furthermore,
OLS procedures require that the response variables be an explicit function of the explanatory variables; sometimes
making the equation explicit is impractical and/or introduces errors. ODR can handle both of these cases with ease,
and can even reduce to the OLS case if that is sufficient for the problem.

ODRPACK is a FORTRAN-77 library for performing ODR with possibly non-linear fitting functions. It uses a mod-
ified trust-region Levenberg-Marquardt-type algorithm [R468] to estimate the function parameters. The fitting func-
tions are provided by Python functions operating on NumPy arrays. The required derivatives may be provided by
Python functions as well, or may be estimated numerically. ODRPACK can do explicit or implicit ODR fits, or it
can do OLS. Input and output variables may be multi-dimensional. Weights can be provided to account for different
variances of the observations, and even covariances between dimensions of the variables.

The scipy.odr package offers an object-oriented interface to ODRPACK, in addition to the low-level odr function.

Additional background information about ODRPACK can be found in the ODRPACK User’s Guide, reading which is
recommended.

Basic usage

1. Define the function you want to fit against.:

def f(B, x):
'''Linear function y = m*x + b'''
B is a vector of the parameters.
x is an array of the current x values.
x is in the same format as the x passed to Data or RealData.
#
Return an array in the same format as y passed to Data or RealData.
return B[0]*x + B[1]

2. Create a Model.:

linear = Model(f)

3. Create a Data or RealData instance.:

mydata = Data(x, y, wd=1./power(sx,2), we=1./power(sy,2))

or, when the actual covariances are known:

mydata = RealData(x, y, sx=sx, sy=sy)

4. Instantiate ODR with your data, model and initial parameter estimate.:

myodr = ODR(mydata, linear, beta0=[1., 2.])

5. Run the fit.:

myoutput = myodr.run()

6. Examine output.:

5.23. Orthogonal distance regression (scipy.odr) 717

http://docs.scipy.org/doc/external/odrpack_guide.pdf

SciPy Reference Guide, Release 0.16.0

myoutput.pprint()

References

5.24 Optimization and root finding (scipy.optimize)

5.24.1 Optimization

Local Optimization

minimize(fun, x0[, args, method, jac, hess, ...]) Minimization of scalar function of one or more variables.
minimize_scalar(fun[, bracket, bounds, ...]) Minimization of scalar function of one variable.
OptimizeResult Represents the optimization result.

scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None,
bounds=None, constraints=(), tol=None, callback=None, options=None)

Minimization of scalar function of one or more variables.

In general, the optimization problems are of the form:

minimize f(x)

subject to:

g_i(x) >= 0, i = 1,...,m h_j(x) = 0, j = 1,...,p

Where x is a vector of one or more variables. g_i(x) are the inequality constraints. h_j(x) are the equality
constrains.

Optionally, the lower and upper bounds for each element in x can also be specified using the bounds argument.

Parameters fun : callable
Objective function.

x0 : ndarray
Initial guess.

args : tuple, optional
Extra arguments passed to the objective function and its derivatives (Jacobian, Hes-
sian).

method : str or callable, optional
Type of solver. Should be one of

•‘Nelder-Mead’ (see here)
•‘Powell’ (see here)
•‘CG’ (see here)
•‘BFGS’ (see here)
•‘Newton-CG’ (see here)
•‘L-BFGS-B’ (see here)
•‘TNC’ (see here)
•‘COBYLA’ (see here)
•‘SLSQP’ (see here)
•‘dogleg’ (see here)
•‘trust-ncg’ (see here)
•custom - a callable object (added in version 0.14.0), see below for description.

If not given, chosen to be one of BFGS, L-BFGS-B, SLSQP, depending if the prob-
lem has constraints or bounds.

718 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

jac : bool or callable, optional
Jacobian (gradient) of objective function. Only for CG, BFGS, Newton-CG, L-BFGS-
B, TNC, SLSQP, dogleg, trust-ncg. If jac is a Boolean and is True, fun is assumed
to return the gradient along with the objective function. If False, the gradient will
be estimated numerically. jac can also be a callable returning the gradient of the
objective. In this case, it must accept the same arguments as fun.

hess, hessp : callable, optional
Hessian (matrix of second-order derivatives) of objective function or Hessian of ob-
jective function times an arbitrary vector p. Only for Newton-CG, dogleg, trust-ncg.
Only one of hessp or hess needs to be given. If hess is provided, then hessp will be
ignored. If neither hess nor hessp is provided, then the Hessian product will be ap-
proximated using finite differences on jac. hessp must compute the Hessian times an
arbitrary vector.

bounds : sequence, optional
Bounds for variables (only for L-BFGS-B, TNC and SLSQP). (min, max) pairs
for each element in x, defining the bounds on that parameter. Use None for one of
min or max when there is no bound in that direction.

constraints : dict or sequence of dict, optional
Constraints definition (only for COBYLA and SLSQP). Each constraint is defined in
a dictionary with fields:

type [str] Constraint type: ‘eq’ for equality, ‘ineq’ for inequality.
fun [callable] The function defining the constraint.
jac [callable, optional] The Jacobian of fun (only for SLSQP).
args [sequence, optional] Extra arguments to be passed to the function

and Jacobian.
Equality constraint means that the constraint function result is to be zero whereas
inequality means that it is to be non-negative. Note that COBYLA only supports
inequality constraints.

tol : float, optional
Tolerance for termination. For detailed control, use solver-specific options.

options : dict, optional
A dictionary of solver options. All methods accept the following generic options:

maxiter [int] Maximum number of iterations to perform.
disp [bool] Set to True to print convergence messages.

For method-specific options, see show_options.
callback : callable, optional

Called after each iteration, as callback(xk), where xk is the current parameter
vector.

Returns res : OptimizeResult
The optimization result represented as a OptimizeResult object. Important at-
tributes are: x the solution array, success a Boolean flag indicating if the optimizer
exited successfully and message which describes the cause of the termination. See
OptimizeResult for a description of other attributes.

See also:

minimize_scalar
Interface to minimization algorithms for scalar univariate functions

show_options
Additional options accepted by the solvers

5.24. Optimization and root finding (scipy.optimize) 719

SciPy Reference Guide, Release 0.16.0

Notes

This section describes the available solvers that can be selected by the ‘method’ parameter. The default method
is BFGS.

Unconstrained minimization

Method Nelder-Mead uses the Simplex algorithm [R142], [R143]. This algorithm has been successful in many
applications but other algorithms using the first and/or second derivatives information might be preferred for
their better performances and robustness in general.

Method Powell is a modification of Powell’s method [R144], [R145] which is a conjugate direction method.
It performs sequential one-dimensional minimizations along each vector of the directions set (direc field in
options and info), which is updated at each iteration of the main minimization loop. The function need not be
differentiable, and no derivatives are taken.

Method CG uses a nonlinear conjugate gradient algorithm by Polak and Ribiere, a variant of the Fletcher-Reeves
method described in [R146] pp. 120-122. Only the first derivatives are used.

Method BFGS uses the quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) [R146] pp.
136. It uses the first derivatives only. BFGS has proven good performance even for non-smooth optimizations.
This method also returns an approximation of the Hessian inverse, stored as hess_inv in the OptimizeResult
object.

Method Newton-CG uses a Newton-CG algorithm [R146] pp. 168 (also known as the truncated Newton method).
It uses a CG method to the compute the search direction. See also TNC method for a box-constrained minimiza-
tion with a similar algorithm.

Method dogleg uses the dog-leg trust-region algorithm [R146] for unconstrained minimization. This algorithm
requires the gradient and Hessian; furthermore the Hessian is required to be positive definite.

Method trust-ncg uses the Newton conjugate gradient trust-region algorithm [R146] for unconstrained mini-
mization. This algorithm requires the gradient and either the Hessian or a function that computes the product of
the Hessian with a given vector.

Constrained minimization

Method L-BFGS-B uses the L-BFGS-B algorithm [R147], [R148] for bound constrained minimization.

Method TNC uses a truncated Newton algorithm [R146], [R149] to minimize a function with variables subject
to bounds. This algorithm uses gradient information; it is also called Newton Conjugate-Gradient. It differs
from the Newton-CG method described above as it wraps a C implementation and allows each variable to be
given upper and lower bounds.

Method COBYLA uses the Constrained Optimization BY Linear Approximation (COBYLA) method [R150], 1,
2. The algorithm is based on linear approximations to the objective function and each constraint. The method
wraps a FORTRAN implementation of the algorithm. The constraints functions ‘fun’ may return either a single
number or an array or list of numbers.

Method SLSQP uses Sequential Least SQuares Programming to minimize a function of several variables with
any combination of bounds, equality and inequality constraints. The method wraps the SLSQP Optimization
subroutine originally implemented by Dieter Kraft 3. Note that the wrapper handles infinite values in bounds by
converting them into large floating values.

Custom minimizers
1 Powell M J D. Direct search algorithms for optimization calculations. 1998. Acta Numerica 7: 287-336.
2 Powell M J D. A view of algorithms for optimization without derivatives. 2007.Cambridge University Technical Report DAMTP 2007/NA03
3 Kraft, D. A software package for sequential quadratic programming. 1988. Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace Center –

Institute for Flight Mechanics, Koln, Germany.

720 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

It may be useful to pass a custom minimization method, for example when using a frontend to this method such
as scipy.optimize.basinhopping or a different library. You can simply pass a callable as the method
parameter.

The callable is called as method(fun, x0, args, **kwargs, **options) where kwargs corre-
sponds to any other parameters passed to minimize (such as callback, hess, etc.), except the options dict,
which has its contents also passed as method parameters pair by pair. Also, if jac has been passed as a bool type,
jac and fun are mangled so that fun returns just the function values and jac is converted to a function returning
the Jacobian. The method shall return an OptimizeResult object.

The provided method callable must be able to accept (and possibly ignore) arbitrary parameters; the set of
parameters accepted by minimize may expand in future versions and then these parameters will be passed to
the method. You can find an example in the scipy.optimize tutorial.

New in version 0.11.0.

References

[R142], [R143], [R144], [R145], [R146], [R147], [R148], [R149], [R150], 10, 11, 12

Examples

Let us consider the problem of minimizing the Rosenbrock function. This function (and its respective deriva-
tives) is implemented in rosen (resp. rosen_der, rosen_hess) in the scipy.optimize.

>>> from scipy.optimize import minimize, rosen, rosen_der

A simple application of the Nelder-Mead method is:

>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
>>> res = minimize(rosen, x0, method='Nelder-Mead')
>>> res.x
[1. 1. 1. 1. 1.]

Now using the BFGS algorithm, using the first derivative and a few options:

>>> res = minimize(rosen, x0, method='BFGS', jac=rosen_der,
... options={'gtol': 1e-6, 'disp': True})
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 52
Function evaluations: 64
Gradient evaluations: 64

>>> res.x
array([1. 1. 1. 1. 1.])
>>> print(res.message)
Optimization terminated successfully.
>>> res.hess_inv
[[0.00749589 0.01255155 0.02396251 0.04750988 0.09495377]
[0.01255155 0.02510441 0.04794055 0.09502834 0.18996269]
[0.02396251 0.04794055 0.09631614 0.19092151 0.38165151]
[0.04750988 0.09502834 0.19092151 0.38341252 0.7664427]
[0.09495377 0.18996269 0.38165151 0.7664427 1.53713523]]

Next, consider a minimization problem with several constraints (namely Example 16.4 from [R146]). The
objective function is:

>>> fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2

There are three constraints defined as:

5.24. Optimization and root finding (scipy.optimize) 721

SciPy Reference Guide, Release 0.16.0

>>> cons = ({'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2},
... {'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6},
... {'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2})

And variables must be positive, hence the following bounds:

>>> bnds = ((0, None), (0, None))

The optimization problem is solved using the SLSQP method as:

>>> res = minimize(fun, (2, 0), method='SLSQP', bounds=bnds,
... constraints=cons)

It should converge to the theoretical solution (1.4 ,1.7).

scipy.optimize.minimize_scalar(fun, bracket=None, bounds=None, args=(), method=’brent’,
tol=None, options=None)

Minimization of scalar function of one variable.

Parameters fun : callable
Objective function. Scalar function, must return a scalar.

bracket : sequence, optional
For methods ‘brent’ and ‘golden’, bracket defines the bracketing interval and can
either have three items (a, b, c) so that a < b < c and fun(b) < fun(a), fun(c) or two
items a and c which are assumed to be a starting interval for a downhill bracket search
(see bracket); it doesn’t always mean that the obtained solution will satisfy a <= x
<= c.

bounds : sequence, optional
For method ‘bounded’, bounds is mandatory and must have two items corresponding
to the optimization bounds.

args : tuple, optional
Extra arguments passed to the objective function.

method : str or callable, optional
Type of solver. Should be one of

•‘Brent’ (see here)
•‘Bounded’ (see here)
•‘Golden’ (see here)
•custom - a callable object (added in version 0.14.0), see below

tol : float, optional
Tolerance for termination. For detailed control, use solver-specific options.

options : dict, optional
A dictionary of solver options.

maxiter [int] Maximum number of iterations to perform.
disp [bool] Set to True to print convergence messages.

See show_options for solver-specific options.
Returns res : OptimizeResult

The optimization result represented as a OptimizeResult object. Important at-
tributes are: x the solution array, success a Boolean flag indicating if the optimizer
exited successfully and message which describes the cause of the termination. See
OptimizeResult for a description of other attributes.

See also:

minimize Interface to minimization algorithms for scalar multivariate functions

722 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

show_options
Additional options accepted by the solvers

Notes

This section describes the available solvers that can be selected by the ‘method’ parameter. The default method
is Brent.

Method Brent uses Brent’s algorithm to find a local minimum. The algorithm uses inverse parabolic interpolation
when possible to speed up convergence of the golden section method.

Method Golden uses the golden section search technique. It uses analog of the bisection method to decrease the
bracketed interval. It is usually preferable to use the Brent method.

Method Bounded can perform bounded minimization. It uses the Brent method to find a local minimum in the
interval x1 < xopt < x2.

Custom minimizers

It may be useful to pass a custom minimization method, for example when using some library frontend to
minimize_scalar. You can simply pass a callable as the method parameter.

The callable is called as method(fun, args, **kwargs, **options) where kwargs corresponds
to any other parameters passed to minimize (such as bracket, tol, etc.), except the options dict, which has
its contents also passed as method parameters pair by pair. The method shall return an OptimizeResult
object.

The provided method callable must be able to accept (and possibly ignore) arbitrary parameters; the set of
parameters accepted by minimize may expand in future versions and then these parameters will be passed to
the method. You can find an example in the scipy.optimize tutorial.

New in version 0.11.0.

Examples

Consider the problem of minimizing the following function.

>>> def f(x):
... return (x - 2) * x * (x + 2)**2

Using the Brent method, we find the local minimum as:

>>> from scipy.optimize import minimize_scalar
>>> res = minimize_scalar(f)
>>> res.x
1.28077640403

Using the Bounded method, we find a local minimum with specified bounds as:

>>> res = minimize_scalar(f, bounds=(-3, -1), method='bounded')
>>> res.x
-2.0000002026

class scipy.optimize.OptimizeResult
Represents the optimization result.

Notes

There may be additional attributes not listed above depending of the specific solver. Since this class is essentially
a subclass of dict with attribute accessors, one can see which attributes are available using the keys() method.

5.24. Optimization and root finding (scipy.optimize) 723

SciPy Reference Guide, Release 0.16.0

Attributes

x (ndarray) The solution of the optimization.
success (bool) Whether or not the optimizer exited successfully.
status (int) Termination status of the optimizer. Its value depends on the underlying solver. Refer

to message for details.
message (str) Description of the cause of the termination.
fun, jac,
hess,
hess_inv

(ndarray) Values of objective function, Jacobian, Hessian or its inverse (if available). The
Hessians may be approximations, see the documentation of the function in question.

nfev, njev,
nhev

(int) Number of evaluations of the objective functions and of its Jacobian and Hessian.

nit (int) Number of iterations performed by the optimizer.
maxcv (float) The maximum constraint violation.

Methods

clear(() -> None. Remove all items from D.)
copy(() -> a shallow copy of D)
fromkeys(...) v defaults to None.
get((k[,d]) -> D[k] if k in D, ...)
has_key((k) -> True if D has a key k, else False)
items(() -> list of D’s (key, value) pairs, ...)
iteritems(() -> an iterator over the (key, ...)
iterkeys(() -> an iterator over the keys of D)
itervalues(...)
keys(() -> list of D’s keys)
pop((k[,d]) -> v, ...) If key is not found, d is returned if given, otherwise KeyError is raised
popitem(() -> (k, v), ...) 2-tuple; but raise KeyError if D is empty.
setdefault((k[,d]) -> D.get(k,d), ...)
update(([E, ...) If E present and has a .keys() method, does: for k in E: D[k] = E[k]
values(() -> list of D’s values)
viewitems(...)
viewkeys(...)
viewvalues(...)

OptimizeResult.clear()→ None. Remove all items from D.

OptimizeResult.copy()→ a shallow copy of D

static OptimizeResult.fromkeys(S[, v])→ New dict with keys from S and values equal to v.
v defaults to None.

OptimizeResult.get(k[, d])→ D[k] if k in D, else d. d defaults to None.

OptimizeResult.has_key(k)→ True if D has a key k, else False

OptimizeResult.items()→ list of D’s (key, value) pairs, as 2-tuples

OptimizeResult.iteritems()→ an iterator over the (key, value) items of D

724 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

OptimizeResult.iterkeys()→ an iterator over the keys of D

OptimizeResult.itervalues()→ an iterator over the values of D

OptimizeResult.keys()→ list of D’s keys

OptimizeResult.pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

OptimizeResult.popitem()→ (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

OptimizeResult.setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

OptimizeResult.update([E], **F)→ None. Update D from dict/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

OptimizeResult.values()→ list of D’s values

OptimizeResult.viewitems()→ a set-like object providing a view on D’s items

OptimizeResult.viewkeys()→ a set-like object providing a view on D’s keys

OptimizeResult.viewvalues()→ an object providing a view on D’s values

The minimize function supports the following methods:

minimize(method=’Nelder-Mead’)

scipy.optimize.minimize(fun, x0, args=(), method=’Nelder-Mead’, tol=None, callback=None, op-
tions={‘disp’: False, ‘maxiter’: None, ‘return_all’: False, ‘func’: None,
‘maxfev’: None, ‘xtol’: 0.0001, ‘ftol’: 0.0001})

Minimization of scalar function of one or more variables using the Nelder-Mead algorithm.

See also:

For documentation for the rest of the parameters, see scipy.optimize.minimize

Options disp : bool
Set to True to print convergence messages.

xtol : float
Relative error in solution xopt acceptable for convergence.

ftol : float
Relative error in fun(xopt) acceptable for convergence.

maxiter : int
Maximum number of iterations to perform.

maxfev : int
Maximum number of function evaluations to make.

5.24. Optimization and root finding (scipy.optimize) 725

SciPy Reference Guide, Release 0.16.0

minimize(method=’Powell’)

scipy.optimize.minimize(fun, x0, args=(), method=’Powell’, tol=None, callback=None, op-
tions={‘disp’: False, ‘return_all’: False, ‘maxiter’: None, ‘direc’: None,
‘func’: None, ‘maxfev’: None, ‘xtol’: 0.0001, ‘ftol’: 0.0001})

Minimization of scalar function of one or more variables using the modified Powell algorithm.

See also:

For documentation for the rest of the parameters, see scipy.optimize.minimize

Options disp : bool
Set to True to print convergence messages.

xtol : float
Relative error in solution xopt acceptable for convergence.

ftol : float
Relative error in fun(xopt) acceptable for convergence.

maxiter : int
Maximum number of iterations to perform.

maxfev : int
Maximum number of function evaluations to make.

direc : ndarray
Initial set of direction vectors for the Powell method.

minimize(method=’CG’)

scipy.optimize.minimize(fun, x0, args=(), method=’CG’, jac=None, tol=None, callback=None, op-
tions={‘disp’: False, ‘gtol’: 1e-05, ‘eps’: 1.4901161193847656e-08, ‘re-
turn_all’: False, ‘maxiter’: None, ‘norm’: inf})

Minimization of scalar function of one or more variables using the conjugate gradient algorithm.

See also:

For documentation for the rest of the parameters, see scipy.optimize.minimize

Options disp : bool
Set to True to print convergence messages.

maxiter : int
Maximum number of iterations to perform.

gtol : float
Gradient norm must be less than gtol before successful termination.

norm : float
Order of norm (Inf is max, -Inf is min).

eps : float or ndarray
If jac is approximated, use this value for the step size.

minimize(method=’BFGS’)

scipy.optimize.minimize(fun, x0, args=(), method=’BFGS’, jac=None, tol=None, callback=None,
options={‘disp’: False, ‘gtol’: 1e-05, ‘eps’: 1.4901161193847656e-08,
‘return_all’: False, ‘maxiter’: None, ‘norm’: inf})

Minimization of scalar function of one or more variables using the BFGS algorithm.

See also:

For documentation for the rest of the parameters, see scipy.optimize.minimize

Options disp : bool
Set to True to print convergence messages.

726 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

maxiter : int
Maximum number of iterations to perform.

gtol : float
Gradient norm must be less than gtol before successful termination.

norm : float
Order of norm (Inf is max, -Inf is min).

eps : float or ndarray
If jac is approximated, use this value for the step size.

minimize(method=’Newton-CG’)

scipy.optimize.minimize(fun, x0, args=(), method=’Newton-CG’, jac=None, hess=None,
hessp=None, tol=None, callback=None, options={‘disp’: False, ‘xtol’:
1e-05, ‘eps’: 1.4901161193847656e-08, ‘return_all’: False, ‘maxiter’:
None})

Minimization of scalar function of one or more variables using the Newton-CG algorithm.

Note that the jac parameter (Jacobian) is required.

See also:

For documentation for the rest of the parameters, see scipy.optimize.minimize

Options disp : bool
Set to True to print convergence messages.

xtol : float
Average relative error in solution xopt acceptable for convergence.

maxiter : int
Maximum number of iterations to perform.

eps : float or ndarray
If jac is approximated, use this value for the step size.

minimize(method=’L-BFGS-B’)

scipy.optimize.minimize(fun, x0, args=(), method=’L-BFGS-B’, jac=None, bounds=None,
tol=None, callback=None, options={‘disp’: None, ‘iprint’: -1, ‘gtol’: 1e-
05, ‘eps’: 1e-08, ‘maxiter’: 15000, ‘ftol’: 2.220446049250313e-09, ‘max-
cor’: 10, ‘maxfun’: 15000})

Minimize a scalar function of one or more variables using the L-BFGS-B algorithm.

See also:

For documentation for the rest of the parameters, see scipy.optimize.minimize

Options disp : bool
Set to True to print convergence messages.

maxcor : int
The maximum number of variable metric corrections used to define the limited mem-
ory matrix. (The limited memory BFGS method does not store the full hessian but
uses this many terms in an approximation to it.)

factr : float
The iteration stops when (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1}
<= factr * eps, where eps is the machine precision, which is automatically
generated by the code. Typical values for factr are: 1e12 for low accuracy; 1e7 for
moderate accuracy; 10.0 for extremely high accuracy.

ftol : float
The iteration stops when (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1}
<= ftol.

5.24. Optimization and root finding (scipy.optimize) 727

SciPy Reference Guide, Release 0.16.0

gtol : float
The iteration will stop when max{|proj g_i | i = 1, ..., n} <= gtol
where pg_i is the i-th component of the projected gradient.

eps : float
Step size used for numerical approximation of the jacobian.

disp : int
Set to True to print convergence messages.

maxfun : int
Maximum number of function evaluations.

maxiter : int
Maximum number of iterations.

minimize(method=’TNC’)

scipy.optimize.minimize(fun, x0, args=(), method=’TNC’, jac=None, bounds=None, tol=None, call-
back=None, options={‘disp’: False, ‘minfev’: 0, ‘scale’: None, ‘rescale’:
-1, ‘offset’: None, ‘gtol’: -1, ‘eps’: 1e-08, ‘eta’: -1, ‘maxiter’: None, ‘max-
CGit’: -1, ‘mesg_num’: None, ‘ftol’: -1, ‘xtol’: -1, ‘stepmx’: 0, ‘accuracy’:
0})

Minimize a scalar function of one or more variables using a truncated Newton (TNC) algorithm.

See also:

For documentation for the rest of the parameters, see scipy.optimize.minimize

Options eps : float
Step size used for numerical approximation of the jacobian.

scale : list of floats
Scaling factors to apply to each variable. If None, the factors are up-low for interval
bounded variables and 1+|x] fo the others. Defaults to None

offset : float
Value to subtract from each variable. If None, the offsets are (up+low)/2 for interval
bounded variables and x for the others.

disp : bool
Set to True to print convergence messages.

maxCGit : int
Maximum number of hessian*vector evaluations per main iteration. If max-
CGit == 0, the direction chosen is -gradient if maxCGit < 0, maxCGit is set to
max(1,min(50,n/2)). Defaults to -1.

maxiter : int
Maximum number of function evaluation. if None, maxiter is set to max(100,
10*len(x0)). Defaults to None.

eta : float
Severity of the line search. if < 0 or > 1, set to 0.25. Defaults to -1.

stepmx : float
Maximum step for the line search. May be increased during call. If too small, it will
be set to 10.0. Defaults to 0.

accuracy : float
Relative precision for finite difference calculations. If <= machine_precision, set to
sqrt(machine_precision). Defaults to 0.

minfev : float
Minimum function value estimate. Defaults to 0.

ftol : float
Precision goal for the value of f in the stoping criterion. If ftol < 0.0, ftol is set to 0.0
defaults to -1.

xtol : float

728 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Precision goal for the value of x in the stopping criterion (after applying x scaling
factors). If xtol < 0.0, xtol is set to sqrt(machine_precision). Defaults to -1.

gtol : float
Precision goal for the value of the projected gradient in the stopping criterion (after
applying x scaling factors). If gtol < 0.0, gtol is set to 1e-2 * sqrt(accuracy). Setting it
to 0.0 is not recommended. Defaults to -1.

rescale : float
Scaling factor (in log10) used to trigger f value rescaling. If 0, rescale at each iteration.
If a large value, never rescale. If < 0, rescale is set to 1.3.

minimize(method=’COBYLA’)

scipy.optimize.minimize(fun, x0, args=(), method=’COBYLA’, constraints=(), tol=None, call-
back=None, options={‘iprint’: 1, ‘disp’: False, ‘maxiter’: 1000, ‘catol’:
0.0002, ‘rhobeg’: 1.0})

Minimize a scalar function of one or more variables using the Constrained Optimization BY Linear Approxi-
mation (COBYLA) algorithm.

See also:

For documentation for the rest of the parameters, see scipy.optimize.minimize

Options rhobeg : float
Reasonable initial changes to the variables.

tol : float
Final accuracy in the optimization (not precisely guaranteed). This is a lower bound
on the size of the trust region.

disp : bool
Set to True to print convergence messages. If False, verbosity is ignored as set to 0.

maxiter : int
Maximum number of function evaluations.

catol : float
Tolerance (absolute) for constraint violations

minimize(method=’SLSQP’)

scipy.optimize.minimize(fun, x0, args=(), method=’SLSQP’, jac=None, bounds=None, con-
straints=(), tol=None, callback=None, options={‘disp’: False, ‘iprint’: 1,
‘eps’: 1.4901161193847656e-08, ‘func’: None, ‘maxiter’: 100, ‘ftol’: 1e-
06})

Minimize a scalar function of one or more variables using Sequential Least SQuares Programming (SLSQP).

See also:

For documentation for the rest of the parameters, see scipy.optimize.minimize

Options ftol : float
Precision goal for the value of f in the stopping criterion.

eps : float
Step size used for numerical approximation of the jacobian.

disp : bool
Set to True to print convergence messages. If False, verbosity is ignored and set to 0.

maxiter : int
Maximum number of iterations.

5.24. Optimization and root finding (scipy.optimize) 729

SciPy Reference Guide, Release 0.16.0

minimize(method=’dogleg’)

scipy.optimize.minimize(fun, x0, args=(), method=’dogleg’, jac=None, hess=None, tol=None, call-
back=None, options={})

Minimization of scalar function of one or more variables using the dog-leg trust-region algorithm.

See also:

For documentation for the rest of the parameters, see scipy.optimize.minimize

Options initial_trust_radius : float
Initial trust-region radius.

max_trust_radius : float
Maximum value of the trust-region radius. No steps that are longer than this value
will be proposed.

eta : float
Trust region related acceptance stringency for proposed steps.

gtol : float
Gradient norm must be less than gtol before successful termination.

minimize(method=’trust-ncg’)

scipy.optimize.minimize(fun, x0, args=(), method=’trust-ncg’, jac=None, hess=None, hessp=None,
tol=None, callback=None, options={})

Minimization of scalar function of one or more variables using the Newton conjugate gradient trust-region
algorithm.

See also:

For documentation for the rest of the parameters, see scipy.optimize.minimize

Options initial_trust_radius : float
Initial trust-region radius.

max_trust_radius : float
Maximum value of the trust-region radius. No steps that are longer than this value
will be proposed.

eta : float
Trust region related acceptance stringency for proposed steps.

gtol : float
Gradient norm must be less than gtol before successful termination.

The minimize_scalar function supports the following methods:

minimize_scalar(method=’brent’)

scipy.optimize.minimize_scalar(fun, args=(), method=’brent’, tol=None, options={‘xtol’: 1.48e-
08, ‘brack’: None, ‘func’: None, ‘maxiter’: 500})

See also:

For documentation for the rest of the parameters, see scipy.optimize.minimize_scalar

Options maxiter : int
Maximum number of iterations to perform.

xtol : float
Relative error in solution xopt acceptable for convergence.

730 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

Uses inverse parabolic interpolation when possible to speed up convergence of golden section method.

minimize_scalar(method=’bounded’)

scipy.optimize.minimize_scalar(fun, bounds=None, args=(), method=’bounded’, tol=None, op-
tions={‘disp’: 0, ‘maxiter’: 500, ‘func’: None, ‘xatol’: 1e-05})

See also:

For documentation for the rest of the parameters, see scipy.optimize.minimize_scalar

Options maxiter : int
Maximum number of iterations to perform.

disp : bool
Set to True to print convergence messages.

xatol : float
Absolute error in solution xopt acceptable for convergence.

minimize_scalar(method=’golden’)

scipy.optimize.minimize_scalar(fun, args=(), method=’golden’, tol=None, options={‘xtol’:
1.4901161193847656e-08, ‘brack’: None, ‘func’: None})

See also:

For documentation for the rest of the parameters, see scipy.optimize.minimize_scalar

Options maxiter : int
Maximum number of iterations to perform.

xtol : float
Relative error in solution xopt acceptable for convergence.

The specific optimization method interfaces below in this subsection are not recommended for use in new scripts; all
of these methods are accessible via a newer, more consistent interface provided by the functions above.

General-purpose multivariate methods:

fmin(func, x0[, args, xtol, ftol, maxiter, ...]) Minimize a function using the downhill simplex algorithm.
fmin_powell(func, x0[, args, xtol, ftol, ...]) Minimize a function using modified Powell’s method.
fmin_cg(f, x0[, fprime, args, gtol, norm, ...]) Minimize a function using a nonlinear conjugate gradient algorithm.
fmin_bfgs(f, x0[, fprime, args, gtol, norm, ...]) Minimize a function using the BFGS algorithm.
fmin_ncg(f, x0, fprime[, fhess_p, fhess, ...]) Unconstrained minimization of a function using the Newton-CG method.

scipy.optimize.fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None,
full_output=0, disp=1, retall=0, callback=None)

Minimize a function using the downhill simplex algorithm.

This algorithm only uses function values, not derivatives or second derivatives.

Parameters func : callable func(x,*args)
The objective function to be minimized.

x0 : ndarray
Initial guess.

args : tuple, optional
Extra arguments passed to func, i.e. f(x,*args).

callback : callable, optional

5.24. Optimization and root finding (scipy.optimize) 731

SciPy Reference Guide, Release 0.16.0

Called after each iteration, as callback(xk), where xk is the current parameter vector.
xtol : float, optional

Relative error in xopt acceptable for convergence.
ftol : number, optional

Relative error in func(xopt) acceptable for convergence.
maxiter : int, optional

Maximum number of iterations to perform.
maxfun : number, optional

Maximum number of function evaluations to make.
full_output : bool, optional

Set to True if fopt and warnflag outputs are desired.
disp : bool, optional

Set to True to print convergence messages.
retall : bool, optional

Set to True to return list of solutions at each iteration.
Returns xopt : ndarray

Parameter that minimizes function.
fopt : float

Value of function at minimum: fopt = func(xopt).
iter : int

Number of iterations performed.
funcalls : int

Number of function calls made.
warnflag : int

1 : Maximum number of function evaluations made. 2 : Maximum number of itera-
tions reached.

allvecs : list
Solution at each iteration.

See also:

minimize Interface to minimization algorithms for multivariate functions. See the ‘Nelder-Mead’ method
in particular.

Notes

Uses a Nelder-Mead simplex algorithm to find the minimum of function of one or more variables.

This algorithm has a long history of successful use in applications. But it will usually be slower than an algorithm
that uses first or second derivative information. In practice it can have poor performance in high-dimensional
problems and is not robust to minimizing complicated functions. Additionally, there currently is no complete
theory describing when the algorithm will successfully converge to the minimum, or how fast it will if it does.

References

[R136], [R137]

scipy.optimize.fmin_powell(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, max-
fun=None, full_output=0, disp=1, retall=0, callback=None, di-
rec=None)

Minimize a function using modified Powell’s method. This method only uses function values, not derivatives.

Parameters func : callable f(x,*args)
Objective function to be minimized.

x0 : ndarray
Initial guess.

args : tuple, optional

732 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Extra arguments passed to func.
callback : callable, optional

An optional user-supplied function, called after each iteration. Called as
callback(xk), where xk is the current parameter vector.

direc : ndarray, optional
Initial direction set.

xtol : float, optional
Line-search error tolerance.

ftol : float, optional
Relative error in func(xopt) acceptable for convergence.

maxiter : int, optional
Maximum number of iterations to perform.

maxfun : int, optional
Maximum number of function evaluations to make.

full_output : bool, optional
If True, fopt, xi, direc, iter, funcalls, and warnflag are returned.

disp : bool, optional
If True, print convergence messages.

retall : bool, optional
If True, return a list of the solution at each iteration.

Returns xopt : ndarray
Parameter which minimizes func.

fopt : number
Value of function at minimum: fopt = func(xopt).

direc : ndarray
Current direction set.

iter : int
Number of iterations.

funcalls : int
Number of function calls made.

warnflag : int
Integer warning flag:

1 : Maximum number of function evaluations. 2 : Maximum number
of iterations.

allvecs : list
List of solutions at each iteration.

See also:

minimize Interface to unconstrained minimization algorithms for multivariate functions. See the ‘Powell’
method in particular.

Notes

Uses a modification of Powell’s method to find the minimum of a function of N variables. Powell’s method is a
conjugate direction method.

The algorithm has two loops. The outer loop merely iterates over the inner loop. The inner loop minimizes over
each current direction in the direction set. At the end of the inner loop, if certain conditions are met, the direction
that gave the largest decrease is dropped and replaced with the difference between the current estiamted x and
the estimated x from the beginning of the inner-loop.

The technical conditions for replacing the direction of greatest increase amount to checking that

1.No further gain can be made along the direction of greatest increase from that iteration.

5.24. Optimization and root finding (scipy.optimize) 733

SciPy Reference Guide, Release 0.16.0

2.The direction of greatest increase accounted for a large sufficient fraction of the decrease in the function
value from that iteration of the inner loop.

References

Powell M.J.D. (1964) An efficient method for finding the minimum of a function of several variables without
calculating derivatives, Computer Journal, 7 (2):155-162.

Press W., Teukolsky S.A., Vetterling W.T., and Flannery B.P.: Numerical Recipes (any edition), Cambridge
University Press

scipy.optimize.fmin_cg(f, x0, fprime=None, args=(), gtol=1e-05, norm=inf,
epsilon=1.4901161193847656e-08, maxiter=None, full_output=0, disp=1,
retall=0, callback=None)

Minimize a function using a nonlinear conjugate gradient algorithm.

Parameters f : callable, f(x, *args)
Objective function to be minimized. Here x must be a 1-D array of the variables
that are to be changed in the search for a minimum, and args are the other (fixed)
parameters of f.

x0 : ndarray
A user-supplied initial estimate of xopt, the optimal value of x. It must be a 1-D array
of values.

fprime : callable, fprime(x, *args), optional
A function that returns the gradient of f at x. Here x and args are as described above
for f. The returned value must be a 1-D array. Defaults to None, in which case the
gradient is approximated numerically (see epsilon, below).

args : tuple, optional
Parameter values passed to f and fprime. Must be supplied whenever additional fixed
parameters are needed to completely specify the functions f and fprime.

gtol : float, optional
Stop when the norm of the gradient is less than gtol.

norm : float, optional
Order to use for the norm of the gradient (-np.Inf is min, np.Inf is max).

epsilon : float or ndarray, optional
Step size(s) to use when fprime is approximated numerically. Can be a scalar or a
1-D array. Defaults to sqrt(eps), with eps the floating point machine precision.
Usually sqrt(eps) is about 1.5e-8.

maxiter : int, optional
Maximum number of iterations to perform. Default is 200 * len(x0).

full_output : bool, optional
If True, return fopt, func_calls, grad_calls, and warnflag in addition to xopt. See the
Returns section below for additional information on optional return values.

disp : bool, optional
If True, return a convergence message, followed by xopt.

retall : bool, optional
If True, add to the returned values the results of each iteration.

callback : callable, optional
An optional user-supplied function, called after each iteration. Called as
callback(xk), where xk is the current value of x0.

Returns xopt : ndarray
Parameters which minimize f, i.e. f(xopt) == fopt.

fopt : float, optional
Minimum value found, f(xopt). Only returned if full_output is True.

func_calls : int, optional
The number of function_calls made. Only returned if full_output is True.

734 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

grad_calls : int, optional
The number of gradient calls made. Only returned if full_output is True.

warnflag : int, optional
Integer value with warning status, only returned if full_output is True.
0 : Success.
1 : The maximum number of iterations was exceeded.
2 [Gradient and/or function calls were not changing. May indicate] that

precision was lost, i.e., the routine did not converge.
allvecs : list of ndarray, optional

List of arrays, containing the results at each iteration. Only returned if retall is True.

See also:

minimize common interface to all scipy.optimize algorithms for unconstrained and constrained mini-
mization of multivariate functions. It provides an alternative way to call fmin_cg, by specifying
method=’CG’.

Notes

This conjugate gradient algorithm is based on that of Polak and Ribiere [R138].

Conjugate gradient methods tend to work better when:

1.f has a unique global minimizing point, and no local minima or other stationary points,

2.f is, at least locally, reasonably well approximated by a quadratic function of the variables,

3.f is continuous and has a continuous gradient,

4.fprime is not too large, e.g., has a norm less than 1000,

5.The initial guess, x0, is reasonably close to f ‘s global minimizing point, xopt.

References

[R138]

Examples

Example 1: seek the minimum value of the expression a*u**2 + b*u*v + c*v**2 + d*u + e*v +
f for given values of the parameters and an initial guess (u, v) = (0, 0).

>>> args = (2, 3, 7, 8, 9, 10) # parameter values
>>> def f(x, *args):
... u, v = x
... a, b, c, d, e, f = args
... return a*u**2 + b*u*v + c*v**2 + d*u + e*v + f
>>> def gradf(x, *args):
... u, v = x
... a, b, c, d, e, f = args
... gu = 2*a*u + b*v + d # u-component of the gradient
... gv = b*u + 2*c*v + e # v-component of the gradient
... return np.asarray((gu, gv))
>>> x0 = np.asarray((0, 0)) # Initial guess.
>>> from scipy import optimize
>>> res1 = optimize.fmin_cg(f, x0, fprime=gradf, args=args)
>>> print('res1 = ', res1)
Optimization terminated successfully.

Current function value: 1.617021
Iterations: 2
Function evaluations: 5

5.24. Optimization and root finding (scipy.optimize) 735

SciPy Reference Guide, Release 0.16.0

Gradient evaluations: 5
res1 = [-1.80851064 -0.25531915]

Example 2: solve the same problem using the minimize function. (This myopts dictionary shows all of the
available options, although in practice only non-default values would be needed. The returned value will be a
dictionary.)

>>> opts = {'maxiter' : None, # default value.
... 'disp' : True, # non-default value.
... 'gtol' : 1e-5, # default value.
... 'norm' : np.inf, # default value.
... 'eps' : 1.4901161193847656e-08} # default value.
>>> res2 = optimize.minimize(f, x0, jac=gradf, args=args,
... method='CG', options=opts)
Optimization terminated successfully.

Current function value: 1.617021
Iterations: 2
Function evaluations: 5
Gradient evaluations: 5

>>> res2.x # minimum found
array([-1.80851064 -0.25531915])

scipy.optimize.fmin_bfgs(f, x0, fprime=None, args=(), gtol=1e-05, norm=inf,
epsilon=1.4901161193847656e-08, maxiter=None, full_output=0,
disp=1, retall=0, callback=None)

Minimize a function using the BFGS algorithm.

Parameters f : callable f(x,*args)
Objective function to be minimized.

x0 : ndarray
Initial guess.

fprime : callable f’(x,*args), optional
Gradient of f.

args : tuple, optional
Extra arguments passed to f and fprime.

gtol : float, optional
Gradient norm must be less than gtol before successful termination.

norm : float, optional
Order of norm (Inf is max, -Inf is min)

epsilon : int or ndarray, optional
If fprime is approximated, use this value for the step size.

callback : callable, optional
An optional user-supplied function to call after each iteration. Called as callback(xk),
where xk is the current parameter vector.

maxiter : int, optional
Maximum number of iterations to perform.

full_output : bool, optional
If True,return fopt, func_calls, grad_calls, and warnflag in addition to xopt.

disp : bool, optional
Print convergence message if True.

retall : bool, optional
Return a list of results at each iteration if True.

Returns xopt : ndarray
Parameters which minimize f, i.e. f(xopt) == fopt.

fopt : float
Minimum value.

736 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

gopt : ndarray
Value of gradient at minimum, f’(xopt), which should be near 0.

Bopt : ndarray
Value of 1/f’‘(xopt), i.e. the inverse hessian matrix.

func_calls : int
Number of function_calls made.

grad_calls : int
Number of gradient calls made.

warnflag : integer
1 : Maximum number of iterations exceeded. 2 : Gradient and/or function calls not
changing.

allvecs : list
OptimizeResult at each iteration. Only returned if retall is True.

See also:

minimize Interface to minimization algorithms for multivariate functions. See the ‘BFGS’ method in par-
ticular.

Notes

Optimize the function, f, whose gradient is given by fprime using the quasi-Newton method of Broyden,
Fletcher, Goldfarb, and Shanno (BFGS)

References

Wright, and Nocedal ‘Numerical Optimization’, 1999, pg. 198.

scipy.optimize.fmin_ncg(f, x0, fprime, fhess_p=None, fhess=None, args=(), avextol=1e-05,
epsilon=1.4901161193847656e-08, maxiter=None, full_output=0, disp=1,
retall=0, callback=None)

Unconstrained minimization of a function using the Newton-CG method.

Parameters f : callable f(x, *args)
Objective function to be minimized.

x0 : ndarray
Initial guess.

fprime : callable f’(x, *args)
Gradient of f.

fhess_p : callable fhess_p(x, p, *args), optional
Function which computes the Hessian of f times an arbitrary vector, p.

fhess : callable fhess(x, *args), optional
Function to compute the Hessian matrix of f.

args : tuple, optional
Extra arguments passed to f, fprime, fhess_p, and fhess (the same set of extra argu-
ments is supplied to all of these functions).

epsilon : float or ndarray, optional
If fhess is approximated, use this value for the step size.

callback : callable, optional
An optional user-supplied function which is called after each iteration. Called as
callback(xk), where xk is the current parameter vector.

avextol : float, optional
Convergence is assumed when the average relative error in the minimizer falls below
this amount.

maxiter : int, optional
Maximum number of iterations to perform.

full_output : bool, optional

5.24. Optimization and root finding (scipy.optimize) 737

SciPy Reference Guide, Release 0.16.0

If True, return the optional outputs.
disp : bool, optional

If True, print convergence message.
retall : bool, optional

If True, return a list of results at each iteration.
Returns xopt : ndarray

Parameters which minimize f, i.e. f(xopt) == fopt.
fopt : float

Value of the function at xopt, i.e. fopt = f(xopt).
fcalls : int

Number of function calls made.
gcalls : int

Number of gradient calls made.
hcalls : int

Number of hessian calls made.
warnflag : int

Warnings generated by the algorithm. 1 : Maximum number of iterations exceeded.
allvecs : list

The result at each iteration, if retall is True (see below).

See also:

minimize Interface to minimization algorithms for multivariate functions. See the ‘Newton-CG’ method in
particular.

Notes

Only one of fhess_p or fhess need to be given. If fhess is provided, then fhess_p will be ignored. If neither
fhess nor fhess_p is provided, then the hessian product will be approximated using finite differences on fprime.
fhess_p must compute the hessian times an arbitrary vector. If it is not given, finite-differences on fprime are
used to compute it.

Newton-CG methods are also called truncated Newton methods. This function differs from
scipy.optimize.fmin_tnc because

1.scipy.optimize.fmin_ncg is written purely in python using numpy
and scipy while scipy.optimize.fmin_tnc calls a C function.

2.scipy.optimize.fmin_ncg is only for unconstrained minimization
while scipy.optimize.fmin_tnc is for unconstrained minimization or box constrained mini-
mization. (Box constraints give lower and upper bounds for each variable separately.)

References

Wright & Nocedal, ‘Numerical Optimization’, 1999, pg. 140.

Constrained multivariate methods:

fmin_l_bfgs_b(func, x0[, fprime, args, ...]) Minimize a function func using the L-BFGS-B algorithm.
fmin_tnc(func, x0[, fprime, args, ...]) Minimize a function with variables subject to bounds, using gradient information in a truncated Newton algorithm.
fmin_cobyla(func, x0, cons[, args, ...]) Minimize a function using the Constrained Optimization BY Linear Approximation (COBYLA) method.
fmin_slsqp(func, x0[, eqcons, f_eqcons, ...]) Minimize a function using Sequential Least SQuares Programming
differential_evolution(func, bounds[, args, ...]) Finds the global minimum of a multivariate function.

scipy.optimize.fmin_l_bfgs_b(func, x0, fprime=None, args=(), approx_grad=0, bounds=None,
m=10, factr=10000000.0, pgtol=1e-05, epsilon=1e-08, iprint=-1,
maxfun=15000, maxiter=15000, disp=None, callback=None)

738 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Minimize a function func using the L-BFGS-B algorithm.

Parameters func : callable f(x,*args)
Function to minimise.

x0 : ndarray
Initial guess.

fprime : callable fprime(x,*args), optional
The gradient of func. If None, then func returns the function value and the gradient (f,
g = func(x, *args)), unless approx_grad is True in which case func returns
only f.

args : sequence, optional
Arguments to pass to func and fprime.

approx_grad : bool, optional
Whether to approximate the gradient numerically (in which case func returns only the
function value).

bounds : list, optional
(min, max) pairs for each element in x, defining the bounds on that parameter.
Use None or +-inf for one of min or max when there is no bound in that direction.

m : int, optional
The maximum number of variable metric corrections used to define the limited mem-
ory matrix. (The limited memory BFGS method does not store the full hessian but
uses this many terms in an approximation to it.)

factr : float, optional
The iteration stops when (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1}
<= factr * eps, where eps is the machine precision, which is automatically
generated by the code. Typical values for factr are: 1e12 for low accuracy; 1e7 for
moderate accuracy; 10.0 for extremely high accuracy.

pgtol : float, optional
The iteration will stop when max{|proj g_i | i = 1, ..., n} <=
pgtol where pg_i is the i-th component of the projected gradient.

epsilon : float, optional
Step size used when approx_grad is True, for numerically calculating the gradient

iprint : int, optional
Controls the frequency of output. iprint < 0 means no output; iprint ==
0 means write messages to stdout; iprint > 1 in addition means write logging
information to a file named iterate.dat in the current working directory.

disp : int, optional
If zero, then no output. If a positive number, then this over-rides iprint (i.e., iprint gets
the value of disp).

maxfun : int, optional
Maximum number of function evaluations.

maxiter : int, optional
Maximum number of iterations.

callback : callable, optional
Called after each iteration, as callback(xk), where xk is the current parameter
vector.

Returns x : array_like
Estimated position of the minimum.

f : float
Value of func at the minimum.

d : dict
Information dictionary.

•d[’warnflag’] is
–0 if converged,

5.24. Optimization and root finding (scipy.optimize) 739

SciPy Reference Guide, Release 0.16.0

–1 if too many function evaluations or too many iterations,
–2 if stopped for another reason, given in d[’task’]

•d[’grad’] is the gradient at the minimum (should be 0 ish)
•d[’funcalls’] is the number of function calls made.
•d[’nit’] is the number of iterations.

See also:

minimize Interface to minimization algorithms for multivariate functions. See the ‘L-BFGS-B’ method in
particular.

Notes

License of L-BFGS-B (FORTRAN code):

The version included here (in fortran code) is 3.0 (released April 25, 2011). It was written by Ciyou Zhu,
Richard Byrd, and Jorge Nocedal <nocedal@ece.nwu.edu>. It carries the following condition for use:

This software is freely available, but we expect that all publications describing work using this software, or all
commercial products using it, quote at least one of the references given below. This software is released under
the BSD License.

References

•R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound Constrained Optimization,
(1995), SIAM Journal on Scientific and Statistical Computing, 16, 5, pp. 1190-1208.

•C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for
large scale bound constrained optimization (1997), ACM Transactions on Mathematical Software, 23, 4,
pp. 550 - 560.

•J.L. Morales and J. Nocedal. L-BFGS-B: Remark on Algorithm 778: L-BFGS-B, FORTRAN routines
for large scale bound constrained optimization (2011), ACM Transactions on Mathematical Software, 38,
1.

scipy.optimize.fmin_tnc(func, x0, fprime=None, args=(), approx_grad=0, bounds=None,
epsilon=1e-08, scale=None, offset=None, messages=15, maxCGit=-
1, maxfun=None, eta=-1, stepmx=0, accuracy=0, fmin=0, ftol=-1,
xtol=-1, pgtol=-1, rescale=-1, disp=None, callback=None)

Minimize a function with variables subject to bounds, using gradient information in a truncated Newton algo-
rithm. This method wraps a C implementation of the algorithm.

Parameters func : callable func(x, *args)
Function to minimize. Must do one of:

1.Return f and g, where f is the value of the function and g its gradient (a list of
floats).

2.Return the function value but supply gradient function separately as fprime.
3.Return the function value and set approx_grad=True.

If the function returns None, the minimization is aborted.
x0 : array_like

Initial estimate of minimum.
fprime : callable fprime(x, *args), optional

Gradient of func. If None, then either func must return the function value and the
gradient (f,g = func(x, *args)) or approx_grad must be True.

args : tuple, optional
Arguments to pass to function.

approx_grad : bool, optional
If true, approximate the gradient numerically.

740 Chapter 5. Reference

mailto:nocedal@ece.nwu.edu

SciPy Reference Guide, Release 0.16.0

bounds : list, optional
(min, max) pairs for each element in x0, defining the bounds on that parameter. Use
None or +/-inf for one of min or max when there is no bound in that direction.

epsilon : float, optional
Used if approx_grad is True. The stepsize in a finite difference approximation for
fprime.

scale : array_like, optional
Scaling factors to apply to each variable. If None, the factors are up-low for interval
bounded variables and 1+|x| for the others. Defaults to None.

offset : array_like, optional
Value to subtract from each variable. If None, the offsets are (up+low)/2 for interval
bounded variables and x for the others.

messages : int, optional
Bit mask used to select messages display during minimization values defined in the
MSGS dict. Defaults to MGS_ALL.

disp : int, optional
Integer interface to messages. 0 = no message, 5 = all messages

maxCGit : int, optional
Maximum number of hessian*vector evaluations per main iteration. If max-
CGit == 0, the direction chosen is -gradient if maxCGit < 0, maxCGit is set to
max(1,min(50,n/2)). Defaults to -1.

maxfun : int, optional
Maximum number of function evaluation. if None, maxfun is set to max(100,
10*len(x0)). Defaults to None.

eta : float, optional
Severity of the line search. if < 0 or > 1, set to 0.25. Defaults to -1.

stepmx : float, optional
Maximum step for the line search. May be increased during call. If too small, it will
be set to 10.0. Defaults to 0.

accuracy : float, optional
Relative precision for finite difference calculations. If <= machine_precision, set to
sqrt(machine_precision). Defaults to 0.

fmin : float, optional
Minimum function value estimate. Defaults to 0.

ftol : float, optional
Precision goal for the value of f in the stoping criterion. If ftol < 0.0, ftol is set to 0.0
defaults to -1.

xtol : float, optional
Precision goal for the value of x in the stopping criterion (after applying x scaling
factors). If xtol < 0.0, xtol is set to sqrt(machine_precision). Defaults to -1.

pgtol : float, optional
Precision goal for the value of the projected gradient in the stopping criterion (after
applying x scaling factors). If pgtol < 0.0, pgtol is set to 1e-2 * sqrt(accuracy). Setting
it to 0.0 is not recommended. Defaults to -1.

rescale : float, optional
Scaling factor (in log10) used to trigger f value rescaling. If 0, rescale at each iteration.
If a large value, never rescale. If < 0, rescale is set to 1.3.

callback : callable, optional
Called after each iteration, as callback(xk), where xk is the current parameter vector.

Returns x : ndarray
The solution.

nfeval : int
The number of function evaluations.

rc : int

5.24. Optimization and root finding (scipy.optimize) 741

SciPy Reference Guide, Release 0.16.0

Return code, see below

See also:

minimize Interface to minimization algorithms for multivariate functions. See the ‘TNC’ method in partic-
ular.

Notes

The underlying algorithm is truncated Newton, also called Newton Conjugate-Gradient. This method differs
from scipy.optimize.fmin_ncg in that

1.It wraps a C implementation of the algorithm

2.It allows each variable to be given an upper and lower bound.

The algorithm incoporates the bound constraints by determining the descent direction as in an unconstrained
truncated Newton, but never taking a step-size large enough to leave the space of feasible x’s. The algorithm
keeps track of a set of currently active constraints, and ignores them when computing the minimum allowable
step size. (The x’s associated with the active constraint are kept fixed.) If the maximum allowable step size is
zero then a new constraint is added. At the end of each iteration one of the constraints may be deemed no longer
active and removed. A constraint is considered no longer active is if it is currently active but the gradient for
that variable points inward from the constraint. The specific constraint removed is the one associated with the
variable of largest index whose constraint is no longer active.

Return codes are defined as follows:

-1 : Infeasible (lower bound > upper bound)
0 : Local minimum reached (|pg| ~= 0)
1 : Converged (|f_n-f_(n-1)| ~= 0)
2 : Converged (|x_n-x_(n-1)| ~= 0)
3 : Max. number of function evaluations reached
4 : Linear search failed
5 : All lower bounds are equal to the upper bounds
6 : Unable to progress
7 : User requested end of minimization

References

Wright S., Nocedal J. (2006), ‘Numerical Optimization’

Nash S.G. (1984), “Newton-Type Minimization Via the Lanczos Method”, SIAM Journal of Numerical Analysis
21, pp. 770-778

scipy.optimize.fmin_cobyla(func, x0, cons, args=(), consargs=None, rhobeg=1.0, rhoend=0.0001,
iprint=1, maxfun=1000, disp=None, catol=0.0002)

Minimize a function using the Constrained Optimization BY Linear Approximation (COBYLA) method. This
method wraps a FORTRAN implentation of the algorithm.

Parameters func : callable
Function to minimize. In the form func(x, *args).

x0 : ndarray
Initial guess.

cons : sequence
Constraint functions; must all be >=0 (a single function if only 1 constraint). Each
function takes the parameters x as its first argument, and it can return either a single
number or an array or list of numbers.

args : tuple, optional
Extra arguments to pass to function.

consargs : tuple, optional

742 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Extra arguments to pass to constraint functions (default of None means use same extra
arguments as those passed to func). Use () for no extra arguments.

rhobeg : float, optional
Reasonable initial changes to the variables.

rhoend : float, optional
Final accuracy in the optimization (not precisely guaranteed). This is a lower bound
on the size of the trust region.

iprint : {0, 1, 2, 3}, optional
Controls the frequency of output; 0 implies no output. Deprecated.

disp : {0, 1, 2, 3}, optional
Over-rides the iprint interface. Preferred.

maxfun : int, optional
Maximum number of function evaluations.

catol : float, optional
Absolute tolerance for constraint violations.

Returns x : ndarray
The argument that minimises f.

See also:

minimize Interface to minimization algorithms for multivariate functions. See the ‘COBYLA’ method in
particular.

Notes

This algorithm is based on linear approximations to the objective function and each constraint. We briefly
describe the algorithm.

Suppose the function is being minimized over k variables. At the jth iteration the algorithm has k+1 points v_1,
..., v_(k+1), an approximate solution x_j, and a radius RHO_j. (i.e. linear plus a constant) approximations to the
objective function and constraint functions such that their function values agree with the linear approximation
on the k+1 points v_1,.., v_(k+1). This gives a linear program to solve (where the linear approximations of the
constraint functions are constrained to be non-negative).

However the linear approximations are likely only good approximations near the current simplex, so the linear
program is given the further requirement that the solution, which will become x_(j+1), must be within RHO_j
from x_j. RHO_j only decreases, never increases. The initial RHO_j is rhobeg and the final RHO_j is rhoend.
In this way COBYLA’s iterations behave like a trust region algorithm.

Additionally, the linear program may be inconsistent, or the approximation may give poor improvement. For
details about how these issues are resolved, as well as how the points v_i are updated, refer to the source code
or the references below.

References

Powell M.J.D. (1994), “A direct search optimization method that models the objective and constraint functions
by linear interpolation.”, in Advances in Optimization and Numerical Analysis, eds. S. Gomez and J-P Hennart,
Kluwer Academic (Dordrecht), pp. 51-67

Powell M.J.D. (1998), “Direct search algorithms for optimization calculations”, Acta Numerica 7, 287-336

Powell M.J.D. (2007), “A view of algorithms for optimization without derivatives”, Cambridge University Tech-
nical Report DAMTP 2007/NA03

Examples

Minimize the objective function f(x,y) = x*y subject to the constraints x**2 + y**2 < 1 and y > 0:

5.24. Optimization and root finding (scipy.optimize) 743

SciPy Reference Guide, Release 0.16.0

>>> def objective(x):
... return x[0]*x[1]
...
>>> def constr1(x):
... return 1 - (x[0]**2 + x[1]**2)
...
>>> def constr2(x):
... return x[1]
...
>>> from scipy.optimize import fmin_cobyla
>>> fmin_cobyla(objective, [0.0, 0.1], [constr1, constr2], rhoend=1e-7)

Normal return from subroutine COBYLA

NFVALS = 64 F =-5.000000E-01 MAXCV = 1.998401E-14
X =-7.071069E-01 7.071067E-01

array([-0.70710685, 0.70710671])

The exact solution is (-sqrt(2)/2, sqrt(2)/2).

scipy.optimize.fmin_slsqp(func, x0, eqcons=(), f_eqcons=None, ieqcons=(), f_ieqcons=None,
bounds=(), fprime=None, fprime_eqcons=None, fprime_ieqcons=None,
args=(), iter=100, acc=1e-06, iprint=1, disp=None, full_output=0,
epsilon=1.4901161193847656e-08, callback=None)

Minimize a function using Sequential Least SQuares Programming

Python interface function for the SLSQP Optimization subroutine originally implemented by Dieter Kraft.

Parameters func : callable f(x,*args)
Objective function.

x0 : 1-D ndarray of float
Initial guess for the independent variable(s).

eqcons : list, optional
A list of functions of length n such that eqcons[j](x,*args) == 0.0 in a successfully
optimized problem.

f_eqcons : callable f(x,*args), optional
Returns a 1-D array in which each element must equal 0.0 in a successfully optimized
problem. If f_eqcons is specified, eqcons is ignored.

ieqcons : list, optional
A list of functions of length n such that ieqcons[j](x,*args) >= 0.0 in a successfully
optimized problem.

f_ieqcons : callable f(x,*args), optional
Returns a 1-D ndarray in which each element must be greater or equal to 0.0 in a
successfully optimized problem. If f_ieqcons is specified, ieqcons is ignored.

bounds : list, optional
A list of tuples specifying the lower and upper bound for each independent variable
[(xl0, xu0),(xl1, xu1),...] Infinite values will be interpreted as large floating values.

fprime : callable f(x,*args), optional
A function that evaluates the partial derivatives of func.

fprime_eqcons : callable f(x,*args), optional
A function of the form f(x, *args) that returns the m by n array of equality constraint
normals. If not provided, the normals will be approximated. The array returned by
fprime_eqcons should be sized as (len(eqcons), len(x0)).

fprime_ieqcons : callable f(x,*args), optional
A function of the form f(x, *args) that returns the m by n array of inequality constraint
normals. If not provided, the normals will be approximated. The array returned by
fprime_ieqcons should be sized as (len(ieqcons), len(x0)).

744 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

args : sequence, optional
Additional arguments passed to func and fprime.

iter : int, optional
The maximum number of iterations.

acc : float, optional
Requested accuracy.

iprint : int, optional
The verbosity of fmin_slsqp :

•iprint <= 0 : Silent operation
•iprint == 1 : Print summary upon completion (default)
•iprint >= 2 : Print status of each iterate and summary

disp : int, optional
Over-rides the iprint interface (preferred).

full_output : bool, optional
If False, return only the minimizer of func (default). Otherwise, output final objective
function and summary information.

epsilon : float, optional
The step size for finite-difference derivative estimates.

callback : callable, optional
Called after each iteration, as callback(x), where x is the current parameter vec-
tor.

Returns out : ndarray of float
The final minimizer of func.

fx : ndarray of float, if full_output is true
The final value of the objective function.

its : int, if full_output is true
The number of iterations.

imode : int, if full_output is true
The exit mode from the optimizer (see below).

smode : string, if full_output is true
Message describing the exit mode from the optimizer.

See also:

minimize Interface to minimization algorithms for multivariate functions. See the ‘SLSQP’ method in
particular.

Notes

Exit modes are defined as follows

-1 : Gradient evaluation required (g & a)
0 : Optimization terminated successfully.
1 : Function evaluation required (f & c)
2 : More equality constraints than independent variables
3 : More than 3*n iterations in LSQ subproblem
4 : Inequality constraints incompatible
5 : Singular matrix E in LSQ subproblem
6 : Singular matrix C in LSQ subproblem
7 : Rank-deficient equality constraint subproblem HFTI
8 : Positive directional derivative for linesearch
9 : Iteration limit exceeded

5.24. Optimization and root finding (scipy.optimize) 745

SciPy Reference Guide, Release 0.16.0

Examples

Examples are given in the tutorial.

scipy.optimize.differential_evolution(func, bounds, args=(), strategy=’best1bin’, max-
iter=None, popsize=15, tol=0.01, mutation=(0.5,
1), recombination=0.7, seed=None, callback=None,
disp=False, polish=True, init=’latinhypercube’)

Finds the global minimum of a multivariate function. Differential Evolution is stochastic in nature (does not
use gradient methods) to find the minimium, and can search large areas of candidate space, but often requires
larger numbers of function evaluations than conventional gradient based techniques.

The algorithm is due to Storn and Price [R133].

Parameters func : callable
The objective function to be minimized. Must be in the form f(x, *args), where
x is the argument in the form of a 1-D array and args is a tuple of any additional
fixed parameters needed to completely specify the function.

bounds : sequence
Bounds for variables. (min, max) pairs for each element in x, defining the
lower and upper bounds for the optimizing argument of func. It is required to have
len(bounds) == len(x). len(bounds) is used to determine the number of
parameters in x.

args : tuple, optional
Any additional fixed parameters needed to completely specify the objective function.

strategy : str, optional
The differential evolution strategy to use. Should be one of:

•‘best1bin’
•‘best1exp’
•‘rand1exp’
•‘randtobest1exp’
•‘best2exp’
•‘rand2exp’
•‘randtobest1bin’
•‘best2bin’
•‘rand2bin’
•‘rand1bin’

The default is ‘best1bin’.
maxiter : int, optional

The maximum number of times the entire population is evolved. The maximum num-
ber of function evaluations is: maxiter * popsize * len(x)

popsize : int, optional
A multiplier for setting the total population size. The population has popsize *
len(x) individuals.

tol : float, optional
When the mean of the population energies, multiplied by tol, divided by the standard
deviation of the population energies is greater than 1 the solving process terminates:
convergence = mean(pop) * tol / stdev(pop) > 1

mutation : float or tuple(float, float), optional
The mutation constant. If specified as a float it should be in the range [0, 2]. If spec-
ified as a tuple (min, max) dithering is employed. Dithering randomly changes
the mutation constant on a generation by generation basis. The mutation constant for
that generation is taken from U[min, max). Dithering can help speed convergence
significantly. Increasing the mutation constant increases the search radius, but will
slow down convergence.

recombination : float, optional

746 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The recombination constant, should be in the range [0, 1]. Increasing this value allows
a larger number of mutants to progress into the next generation, but at the risk of
population stability.

seed : int or np.random.RandomState, optional
If seed is not specified the np.RandomState singleton is used. If seed is an int, a
new np.random.RandomState instance is used, seeded with seed. If seed is already a
np.random.RandomState instance, then that np.random.RandomState instance is used.
Specify seed for repeatable minimizations.

disp : bool, optional
Display status messages

callback : callable, callback(xk, convergence=val), optional
A function to follow the progress of the minimization. xk is the current value of
x0. val represents the fractional value of the population convergence. When val is
greater than one the function halts. If callback returns True, then the minimization is
halted (any polishing is still carried out).

polish : bool, optional
If True (default), then scipy.optimize.minimize with the L-BFGS-B method
is used to polish the best population member at the end, which can improve the mini-
mization slightly.

init : string, optional
Specify how the population initialization is performed. Should be one of:

•‘latinhypercube’
•‘random’

The default is ‘latinhypercube’. Latin Hypercube sampling tries to maximize coverage
of the available parameter space. ‘random’ initializes the population randomly - this
has the drawback that clustering can occur, preventing the whole of parameter space
being covered.

Returns res : OptimizeResult
The optimization result represented as a OptimizeResult object. Important at-
tributes are: x the solution array, success a Boolean flag indicating if the optimizer
exited successfully and message which describes the cause of the termination. See
OptimizeResult for a description of other attributes. If polish was employed,
then OptimizeResult also contains the jac attribute.

Notes

Differential evolution is a stochastic population based method that is useful for global optimization problems. At
each pass through the population the algorithm mutates each candidate solution by mixing with other candidate
solutions to create a trial candidate. There are several strategies [R134] for creating trial candidates, which
suit some problems more than others. The ‘best1bin’ strategy is a good starting point for many systems. In
this strategy two members of the population are randomly chosen. Their difference is used to mutate the best
member (the best in best1bin), 𝑏0, so far:

𝑏′ = 𝑏0 + 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 * (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[𝑟𝑎𝑛𝑑0] − 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[𝑟𝑎𝑛𝑑1])

A trial vector is then constructed. Starting with a randomly chosen ‘i’th parameter the trial is sequentially filled
(in modulo) with parameters from b’ or the original candidate. The choice of whether to use b’ or the original
candidate is made with a binomial distribution (the ‘bin’ in ‘best1bin’) - a random number in [0, 1) is generated.
If this number is less than the recombination constant then the parameter is loaded from b’, otherwise it is loaded
from the original candidate. The final parameter is always loaded from b’. Once the trial candidate is built its
fitness is assessed. If the trial is better than the original candidate then it takes its place. If it is also better than
the best overall candidate it also replaces that. To improve your chances of finding a global minimum use higher
popsize values, with higher mutation and (dithering), but lower recombination values. This has the effect of
widening the search radius, but slowing convergence.

New in version 0.15.0.

5.24. Optimization and root finding (scipy.optimize) 747

SciPy Reference Guide, Release 0.16.0

References

[R133], [R134], [R135]

Examples

Let us consider the problem of minimizing the Rosenbrock function. This function is implemented in rosen
in scipy.optimize.

>>> from scipy.optimize import rosen, differential_evolution
>>> bounds = [(0,2), (0, 2), (0, 2), (0, 2), (0, 2)]
>>> result = differential_evolution(rosen, bounds)
>>> result.x, result.fun
(array([1., 1., 1., 1., 1.]), 1.9216496320061384e-19)

Next find the minimum of the Ackley function (http://en.wikipedia.org/wiki/Test_functions_for_optimization).

>>> from scipy.optimize import differential_evolution
>>> import numpy as np
>>> def ackley(x):
... arg1 = -0.2 * np.sqrt(0.5 * (x[0] ** 2 + x[1] ** 2))
... arg2 = 0.5 * (np.cos(2. * np.pi * x[0]) + np.cos(2. * np.pi * x[1]))
... return -20. * np.exp(arg1) - np.exp(arg2) + 20. + np.e
>>> bounds = [(-5, 5), (-5, 5)]
>>> result = differential_evolution(ackley, bounds)
>>> result.x, result.fun
(array([0., 0.]), 4.4408920985006262e-16)

Univariate (scalar) minimization methods:

fminbound(func, x1, x2[, args, xtol, ...]) Bounded minimization for scalar functions.
brent(func[, args, brack, tol, full_output, ...]) Given a function of one-variable and a possible bracketing interval, return the minimum of the function isolated to a fractional precision of tol.
golden(func[, args, brack, tol, full_output]) Return the minimum of a function of one variable.

scipy.optimize.fminbound(func, x1, x2, args=(), xtol=1e-05, maxfun=500, full_output=0, disp=1)
Bounded minimization for scalar functions.

Parameters func : callable f(x,*args)
Objective function to be minimized (must accept and return scalars).

x1, x2 : float or array scalar
The optimization bounds.

args : tuple, optional
Extra arguments passed to function.

xtol : float, optional
The convergence tolerance.

maxfun : int, optional
Maximum number of function evaluations allowed.

full_output : bool, optional
If True, return optional outputs.

disp : int, optional
If non-zero, print messages.

0 : no message printing. 1 : non-convergence notification messages
only. 2 : print a message on convergence too. 3 : print iteration results.

Returns xopt : ndarray
Parameters (over given interval) which minimize the objective function.

fval : number
The function value at the minimum point.

748 Chapter 5. Reference

http://en.wikipedia.org/wiki/Test_functions_for_optimization

SciPy Reference Guide, Release 0.16.0

ierr : int
An error flag (0 if converged, 1 if maximum number of function calls reached).

numfunc : int
The number of function calls made.

See also:

minimize_scalar
Interface to minimization algorithms for scalar univariate functions. See the ‘Bounded’ method
in particular.

Notes

Finds a local minimizer of the scalar function func in the interval x1 < xopt < x2 using Brent’s method. (See
brent for auto-bracketing).

scipy.optimize.brent(func, args=(), brack=None, tol=1.48e-08, full_output=0, maxiter=500)
Given a function of one-variable and a possible bracketing interval, return the minimum of the function isolated
to a fractional precision of tol.

Parameters func : callable f(x,*args)
Objective function.

args : tuple, optional
Additional arguments (if present).

brack : tuple, optional
Triple (a,b,c) where (a<b<c) and func(b) < func(a),func(c). If bracket consists of two
numbers (a,c) then they are assumed to be a starting interval for a downhill bracket
search (see bracket); it doesn’t always mean that the obtained solution will satisfy
a<=x<=c.

tol : float, optional
Stop if between iteration change is less than tol.

full_output : bool, optional
If True, return all output args (xmin, fval, iter, funcalls).

maxiter : int, optional
Maximum number of iterations in solution.

Returns xmin : ndarray
Optimum point.

fval : float
Optimum value.

iter : int
Number of iterations.

funcalls : int
Number of objective function evaluations made.

See also:

minimize_scalar
Interface to minimization algorithms for scalar univariate functions. See the ‘Brent’ method in
particular.

Notes

Uses inverse parabolic interpolation when possible to speed up convergence of golden section method.

scipy.optimize.golden(func, args=(), brack=None, tol=1.4901161193847656e-08, full_output=0)
Return the minimum of a function of one variable.

5.24. Optimization and root finding (scipy.optimize) 749

SciPy Reference Guide, Release 0.16.0

Given a function of one variable and a possible bracketing interval, return the minimum of the function isolated
to a fractional precision of tol.

Parameters func : callable func(x,*args)
Objective function to minimize.

args : tuple, optional
Additional arguments (if present), passed to func.

brack : tuple, optional
Triple (a,b,c), where (a<b<c) and func(b) < func(a),func(c). If bracket consists of two
numbers (a, c), then they are assumed to be a starting interval for a downhill bracket
search (see bracket); it doesn’t always mean that obtained solution will satisfy
a<=x<=c.

tol : float, optional
x tolerance stop criterion

full_output : bool, optional
If True, return optional outputs.

See also:

minimize_scalar
Interface to minimization algorithms for scalar univariate functions. See the ‘Golden’ method in
particular.

Notes

Uses analog of bisection method to decrease the bracketed interval.

Equation (Local) Minimizers

leastsq(func, x0[, args, Dfun, full_output, ...]) Minimize the sum of squares of a set of equations.
nnls(A, b) Solve argmin_x || Ax - b ||_2 for x>=0.

scipy.optimize.leastsq(func, x0, args=(), Dfun=None, full_output=0, col_deriv=0, ftol=1.49012e-
08, xtol=1.49012e-08, gtol=0.0, maxfev=0, epsfcn=None, factor=100,
diag=None)

Minimize the sum of squares of a set of equations.

x = arg min(sum(func(y)**2,axis=0))
y

Parameters func : callable
should take at least one (possibly length N vector) argument and returns M floating
point numbers. It must not return NaNs or fitting might fail.

x0 : ndarray
The starting estimate for the minimization.

args : tuple, optional
Any extra arguments to func are placed in this tuple.

Dfun : callable, optional
A function or method to compute the Jacobian of func with derivatives across the
rows. If this is None, the Jacobian will be estimated.

full_output : bool, optional
non-zero to return all optional outputs.

col_deriv : bool, optional

750 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

non-zero to specify that the Jacobian function computes derivatives down the columns
(faster, because there is no transpose operation).

ftol : float, optional
Relative error desired in the sum of squares.

xtol : float, optional
Relative error desired in the approximate solution.

gtol : float, optional
Orthogonality desired between the function vector and the columns of the Jacobian.

maxfev : int, optional
The maximum number of calls to the function. If Dfun is provided then the default
maxfev is 100*(N+1) where N is the number of elements in x0, otherwise the default
maxfev is 200*(N+1).

epsfcn : float, optional
A variable used in determining a suitable step length for the forward- difference ap-
proximation of the Jacobian (for Dfun=None). Normally the actual step length will
be sqrt(epsfcn)*x If epsfcn is less than the machine precision, it is assumed that the
relative errors are of the order of the machine precision.

factor : float, optional
A parameter determining the initial step bound (factor * || diag * x||).
Should be in interval (0.1, 100).

diag : sequence, optional
N positive entries that serve as a scale factors for the variables.

Returns x : ndarray
The solution (or the result of the last iteration for an unsuccessful call).

cov_x : ndarray
Uses the fjac and ipvt optional outputs to construct an estimate of the jacobian around
the solution. None if a singular matrix encountered (indicates very flat curvature in
some direction). This matrix must be multiplied by the residual variance to get the
covariance of the parameter estimates – see curve_fit.

infodict : dict
a dictionary of optional outputs with the key s:
nfev The number of function calls
fvec The function evaluated at the output
fjac A permutation of the R matrix of a QR factorization of the final ap-

proximate Jacobian matrix, stored column wise. Together with ipvt,
the covariance of the estimate can be approximated.

ipvt An integer array of length N which defines a permutation matrix, p,
such that fjac*p = q*r, where r is upper triangular with diagonal ele-
ments of nonincreasing magnitude. Column j of p is column ipvt(j) of
the identity matrix.

qtf The vector (transpose(q) * fvec).
mesg : str

A string message giving information about the cause of failure.
ier : int

An integer flag. If it is equal to 1, 2, 3 or 4, the solution was found. Otherwise, the
solution was not found. In either case, the optional output variable ‘mesg’ gives more
information.

Notes

“leastsq” is a wrapper around MINPACK’s lmdif and lmder algorithms.

cov_x is a Jacobian approximation to the Hessian of the least squares objective function. This approximation
assumes that the objective function is based on the difference between some observed target data (ydata) and a
(non-linear) function of the parameters f(xdata, params)

5.24. Optimization and root finding (scipy.optimize) 751

SciPy Reference Guide, Release 0.16.0

func(params) = ydata - f(xdata, params)

so that the objective function is

min sum((ydata - f(xdata, params))**2, axis=0)
params

scipy.optimize.nnls(A, b)
Solve argmin_x || Ax - b ||_2 for x>=0. This is a wrapper for a FORTAN non-negative least squares
solver.

Parameters A : ndarray
Matrix A as shown above.

b : ndarray
Right-hand side vector.

Returns x : ndarray
Solution vector.

rnorm : float
The residual, || Ax-b ||_2.

Notes

The FORTRAN code was published in the book below. The algorithm is an active set method. It solves the
KKT (Karush-Kuhn-Tucker) conditions for the non-negative least squares problem.

References

Lawson C., Hanson R.J., (1987) Solving Least Squares Problems, SIAM

Global Optimization

basinhopping(func, x0[, niter, T, stepsize, ...]) Find the global minimum of a function using the basin-hopping algorithm
brute(func, ranges[, args, Ns, full_output, ...]) Minimize a function over a given range by brute force.
differential_evolution(func, bounds[, args, ...]) Finds the global minimum of a multivariate function.

scipy.optimize.basinhopping(func, x0, niter=100, T=1.0, stepsize=0.5, minimizer_kwargs=None,
take_step=None, accept_test=None, callback=None, interval=50,
disp=False, niter_success=None)

Find the global minimum of a function using the basin-hopping algorithm

Parameters func : callable f(x, *args)
Function to be optimized. args can be passed as an optional item in the dict
minimizer_kwargs

x0 : ndarray
Initial guess.

niter : integer, optional
The number of basin hopping iterations

T : float, optional
The “temperature” parameter for the accept or reject criterion. Higher “temperatures”
mean that larger jumps in function value will be accepted. For best results T should
be comparable to the separation (in function value) between local minima.

stepsize : float, optional
initial step size for use in the random displacement.

minimizer_kwargs : dict, optional

752 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Extra keyword arguments to be passed to the minimizer
scipy.optimize.minimize() Some important options could be:

method [str] The minimization method (e.g. "L-BFGS-B")
args [tuple] Extra arguments passed to the objective function (func)

and its derivatives (Jacobian, Hessian).
take_step : callable take_step(x), optional

Replace the default step taking routine with this routine. The default step taking rou-
tine is a random displacement of the coordinates, but other step taking algorithms
may be better for some systems. take_step can optionally have the attribute
take_step.stepsize. If this attribute exists, then basinhopping will adjust
take_step.stepsize in order to try to optimize the global minimum search.

accept_test : callable, accept_test(f_new=f_new, x_new=x_new,
f_old=fold, x_old=x_old), optional

Define a test which will be used to judge whether or not to accept the step. This will
be used in addition to the Metropolis test based on “temperature” T. The acceptable
return values are True, False, or "force accept". If the latter, then this will
override any other tests in order to accept the step. This can be used, for example, to
forcefully escape from a local minimum that basinhopping is trapped in.

callback : callable, callback(x, f, accept), optional
A callback function which will be called for all minima found. x and f are the coor-
dinates and function value of the trial minimum, and accept is whether or not that
minimum was accepted. This can be used, for example, to save the lowest N min-
ima found. Also, callback can be used to specify a user defined stop criterion by
optionally returning True to stop the basinhopping routine.

interval : integer, optional
interval for how often to update the stepsize

disp : bool, optional
Set to True to print status messages

niter_success : integer, optional
Stop the run if the global minimum candidate remains the same for this number of
iterations.

Returns res : OptimizeResult
The optimization result represented as a OptimizeResult object. Important at-
tributes are: x the solution array, fun the value of the function at the solution, and
message which describes the cause of the termination. See OptimizeResult for
a description of other attributes.

See also:

minimize The local minimization function called once for each basinhopping step. minimizer_kwargs
is passed to this routine.

Notes

Basin-hopping is a stochastic algorithm which attempts to find the global minimum of a smooth scalar function
of one or more variables [R127] [R128] [R129] [R130]. The algorithm in its current form was described by
David Wales and Jonathan Doye [R128] http://www-wales.ch.cam.ac.uk/.

The algorithm is iterative with each cycle composed of the following features

1.random perturbation of the coordinates

2.local minimization

3.accept or reject the new coordinates based on the minimized function value

5.24. Optimization and root finding (scipy.optimize) 753

http://www-wales.ch.cam.ac.uk/

SciPy Reference Guide, Release 0.16.0

The acceptance test used here is the Metropolis criterion of standard Monte Carlo algorithms, although there are
many other possibilities [R129].

This global minimization method has been shown to be extremely efficient for a wide variety of problems in
physics and chemistry. It is particularly useful when the function has many minima separated by large barriers.
See the Cambridge Cluster Database http://www-wales.ch.cam.ac.uk/CCD.html for databases of molecular sys-
tems that have been optimized primarily using basin-hopping. This database includes minimization problems
exceeding 300 degrees of freedom.

See the free software program GMIN (http://www-wales.ch.cam.ac.uk/GMIN) for a Fortran implementation of
basin-hopping. This implementation has many different variations of the procedure described above, including
more advanced step taking algorithms and alternate acceptance criterion.

For stochastic global optimization there is no way to determine if the true global minimum has actually been
found. Instead, as a consistency check, the algorithm can be run from a number of different random starting
points to ensure the lowest minimum found in each example has converged to the global minimum. For this
reason basinhopping will by default simply run for the number of iterations niter and return the lowest
minimum found. It is left to the user to ensure that this is in fact the global minimum.

Choosing stepsize: This is a crucial parameter in basinhopping and depends on the problem being
solved. Ideally it should be comparable to the typical separation between local minima of the function being
optimized. basinhopping will, by default, adjust stepsize to find an optimal value, but this may take
many iterations. You will get quicker results if you set a sensible value for stepsize.

Choosing T: The parameter T is the temperature used in the metropolis criterion. Basinhopping steps are ac-
cepted with probability 1 if func(xnew) < func(xold), or otherwise with probability:

exp(-(func(xnew) - func(xold)) / T)

So, for best results, T should to be comparable to the typical difference in function values between local minima.

New in version 0.12.0.

References

[R127], [R128], [R129], [R130]

Examples

The following example is a one-dimensional minimization problem, with many local minima superimposed on
a parabola.

>>> from scipy.optimize import basinhopping
>>> func = lambda x: np.cos(14.5 * x - 0.3) + (x + 0.2) * x
>>> x0=[1.]

Basinhopping, internally, uses a local minimization algorithm. We will use the parameter
minimizer_kwargs to tell basinhopping which algorithm to use and how to set up that minimizer.
This parameter will be passed to scipy.optimize.minimize().

>>> minimizer_kwargs = {"method": "BFGS"}
>>> ret = basinhopping(func, x0, minimizer_kwargs=minimizer_kwargs,
... niter=200)
>>> print("global minimum: x = %.4f, f(x0) = %.4f" % (ret.x, ret.fun))
global minimum: x = -0.1951, f(x0) = -1.0009

Next consider a two-dimensional minimization problem. Also, this time we will use gradient information to
significantly speed up the search.

754 Chapter 5. Reference

http://www-wales.ch.cam.ac.uk/CCD.html
http://www-wales.ch.cam.ac.uk/GMIN

SciPy Reference Guide, Release 0.16.0

>>> def func2d(x):
... f = np.cos(14.5 * x[0] - 0.3) + (x[1] + 0.2) * x[1] + (x[0] +
... 0.2) * x[0]
... df = np.zeros(2)
... df[0] = -14.5 * np.sin(14.5 * x[0] - 0.3) + 2. * x[0] + 0.2
... df[1] = 2. * x[1] + 0.2
... return f, df

We’ll also use a different local minimization algorithm. Also we must tell the minimizer that our function returns
both energy and gradient (jacobian)

>>> minimizer_kwargs = {"method":"L-BFGS-B", "jac":True}
>>> x0 = [1.0, 1.0]
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
... niter=200)
>>> print("global minimum: x = [%.4f, %.4f], f(x0) = %.4f" % (ret.x[0],
... ret.x[1],
... ret.fun))
global minimum: x = [-0.1951, -0.1000], f(x0) = -1.0109

Here is an example using a custom step taking routine. Imagine you want the first coordinate to take larger steps
then the rest of the coordinates. This can be implemented like so:

>>> class MyTakeStep(object):
... def __init__(self, stepsize=0.5):
... self.stepsize = stepsize
... def __call__(self, x):
... s = self.stepsize
... x[0] += np.random.uniform(-2.*s, 2.*s)
... x[1:] += np.random.uniform(-s, s, x[1:].shape)
... return x

Since MyTakeStep.stepsize exists basinhopping will adjust the magnitude of stepsize to optimize the
search. We’ll use the same 2-D function as before

>>> mytakestep = MyTakeStep()
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
... niter=200, take_step=mytakestep)
>>> print("global minimum: x = [%.4f, %.4f], f(x0) = %.4f" % (ret.x[0],
... ret.x[1],
... ret.fun))
global minimum: x = [-0.1951, -0.1000], f(x0) = -1.0109

Now let’s do an example using a custom callback function which prints the value of every minimum found

>>> def print_fun(x, f, accepted):
... print("at minimum %.4f accepted %d" % (f, int(accepted)))

We’ll run it for only 10 basinhopping steps this time.

>>> np.random.seed(1)
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
... niter=10, callback=print_fun)
at minimum 0.4159 accepted 1
at minimum -0.9073 accepted 1
at minimum -0.1021 accepted 1
at minimum -0.1021 accepted 1
at minimum 0.9102 accepted 1
at minimum 0.9102 accepted 1
at minimum 2.2945 accepted 0

5.24. Optimization and root finding (scipy.optimize) 755

SciPy Reference Guide, Release 0.16.0

at minimum -0.1021 accepted 1
at minimum -1.0109 accepted 1
at minimum -1.0109 accepted 1

The minimum at -1.0109 is actually the global minimum, found already on the 8th iteration.

Now let’s implement bounds on the problem using a custom accept_test:

>>> class MyBounds(object):
... def __init__(self, xmax=[1.1,1.1], xmin=[-1.1,-1.1]):
... self.xmax = np.array(xmax)
... self.xmin = np.array(xmin)
... def __call__(self, **kwargs):
... x = kwargs["x_new"]
... tmax = bool(np.all(x <= self.xmax))
... tmin = bool(np.all(x >= self.xmin))
... return tmax and tmin

>>> mybounds = MyBounds()
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
... niter=10, accept_test=mybounds)

scipy.optimize.brute(func, ranges, args=(), Ns=20, full_output=0, finish=<function fmin at
0x7fa41234d9b0>, disp=False)

Minimize a function over a given range by brute force.

Uses the “brute force” method, i.e. computes the function’s value at each point of a multidimensional grid of
points, to find the global minimum of the function.

The function is evaluated everywhere in the range with the datatype of the first call to the function, as en-
forced by the vectorize NumPy function. The value and type of the function evaluation returned when
full_output=True are affected in addition by the finish argument (see Notes).

Parameters func : callable
The objective function to be minimized. Must be in the form f(x, *args), where
x is the argument in the form of a 1-D array and args is a tuple of any additional
fixed parameters needed to completely specify the function.

ranges : tuple
Each component of the ranges tuple must be either a “slice object” or a range tuple
of the form (low, high). The program uses these to create the grid of points on
which the objective function will be computed. See Note 2 for more detail.

args : tuple, optional
Any additional fixed parameters needed to completely specify the function.

Ns : int, optional
Number of grid points along the axes, if not otherwise specified. See Note2.

full_output : bool, optional
If True, return the evaluation grid and the objective function’s values on it.

finish : callable, optional
An optimization function that is called with the result of brute force minimization as
initial guess. finish should take func and the initial guess as positional arguments, and
take args as keyword arguments. It may additionally take full_output and/or disp as
keyword arguments. Use None if no “polishing” function is to be used. See Notes for
more details.

disp : bool, optional
Set to True to print convergence messages.

Returns x0 : ndarray
A 1-D array containing the coordinates of a point at which the objective function had
its minimum value. (See Note 1 for which point is returned.)

756 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

fval : float
Function value at the point x0. (Returned when full_output is True.)

grid : tuple
Representation of the evaluation grid. It has the same length as x0. (Returned when
full_output is True.)

Jout : ndarray
Function values at each point of the evaluation grid, i.e., Jout = func(*grid).
(Returned when full_output is True.)

See also:

basinhopping, differential_evolution

Notes

Note 1: The program finds the gridpoint at which the lowest value of the objective function occurs. If finish is
None, that is the point returned. When the global minimum occurs within (or not very far outside) the grid’s
boundaries, and the grid is fine enough, that point will be in the neighborhood of the gobal minimum.

However, users often employ some other optimization program to “polish” the gridpoint values, i.e., to seek
a more precise (local) minimum near brute’s best gridpoint. The brute function’s finish option provides
a convenient way to do that. Any polishing program used must take brute’s output as its initial guess as a
positional argument, and take brute’s input values for args as keyword arguments, otherwise an error will be
raised. It may additionally take full_output and/or disp as keyword arguments.

brute assumes that the finish function returns either an OptimizeResult object or a tuple in the form:
(xmin, Jmin, ... , statuscode), where xmin is the minimizing value of the argument, Jmin is
the minimum value of the objective function, ”...” may be some other returned values (which are not used by
brute), and statuscode is the status code of the finish program.

Note that when finish is not None, the values returned are those of the finish program, not the gridpoint ones.
Consequently, while brute confines its search to the input grid points, the finish program’s results usually will
not coincide with any gridpoint, and may fall outside the grid’s boundary.

Note 2: The grid of points is a numpy.mgrid object. For brute the ranges and Ns inputs have the following
effect. Each component of the ranges tuple can be either a slice object or a two-tuple giving a range of values,
such as (0, 5). If the component is a slice object, brute uses it directly. If the component is a two-tuple range,
brute internally converts it to a slice object that interpolates Ns points from its low-value to its high-value,
inclusive.

Examples

We illustrate the use of brute to seek the global minimum of a function of two variables that is given as the
sum of a positive-definite quadratic and two deep “Gaussian-shaped” craters. Specifically, define the objective
function f as the sum of three other functions, f = f1 + f2 + f3. We suppose each of these has a signature
(z, *params), where z = (x, y), and params and the functions are as defined below.

>>> params = (2, 3, 7, 8, 9, 10, 44, -1, 2, 26, 1, -2, 0.5)
>>> def f1(z, *params):
... x, y = z
... a, b, c, d, e, f, g, h, i, j, k, l, scale = params
... return (a * x**2 + b * x * y + c * y**2 + d*x + e*y + f)

>>> def f2(z, *params):
... x, y = z
... a, b, c, d, e, f, g, h, i, j, k, l, scale = params
... return (-g*np.exp(-((x-h)**2 + (y-i)**2) / scale))

5.24. Optimization and root finding (scipy.optimize) 757

http://docs.scipy.org/doc/numpy/reference/generated/numpy.mgrid.html#numpy.mgrid

SciPy Reference Guide, Release 0.16.0

>>> def f3(z, *params):
... x, y = z
... a, b, c, d, e, f, g, h, i, j, k, l, scale = params
... return (-j*np.exp(-((x-k)**2 + (y-l)**2) / scale))

>>> def f(z, *params):
... return f1(z, *params) + f2(z, *params) + f3(z, *params)

Thus, the objective function may have local minima near the minimum of each of the three functions of which
it is composed. To use fmin to polish its gridpoint result, we may then continue as follows:

>>> rranges = (slice(-4, 4, 0.25), slice(-4, 4, 0.25))
>>> from scipy import optimize
>>> resbrute = optimize.brute(f, rranges, args=params, full_output=True,
... finish=optimize.fmin)
>>> resbrute[0] # global minimum
array([-1.05665192, 1.80834843])
>>> resbrute[1] # function value at global minimum
-3.4085818767

Note that if finish had been set to None, we would have gotten the gridpoint [-1.0 1.75] where the rounded
function value is -2.892.

scipy.optimize.differential_evolution(func, bounds, args=(), strategy=’best1bin’, max-
iter=None, popsize=15, tol=0.01, mutation=(0.5,
1), recombination=0.7, seed=None, callback=None,
disp=False, polish=True, init=’latinhypercube’)

Finds the global minimum of a multivariate function. Differential Evolution is stochastic in nature (does not
use gradient methods) to find the minimium, and can search large areas of candidate space, but often requires
larger numbers of function evaluations than conventional gradient based techniques.

The algorithm is due to Storn and Price [R133].

Parameters func : callable
The objective function to be minimized. Must be in the form f(x, *args), where
x is the argument in the form of a 1-D array and args is a tuple of any additional
fixed parameters needed to completely specify the function.

bounds : sequence
Bounds for variables. (min, max) pairs for each element in x, defining the
lower and upper bounds for the optimizing argument of func. It is required to have
len(bounds) == len(x). len(bounds) is used to determine the number of
parameters in x.

args : tuple, optional
Any additional fixed parameters needed to completely specify the objective function.

strategy : str, optional
The differential evolution strategy to use. Should be one of:

•‘best1bin’
•‘best1exp’
•‘rand1exp’
•‘randtobest1exp’
•‘best2exp’
•‘rand2exp’
•‘randtobest1bin’
•‘best2bin’
•‘rand2bin’
•‘rand1bin’

The default is ‘best1bin’.

758 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

maxiter : int, optional
The maximum number of times the entire population is evolved. The maximum num-
ber of function evaluations is: maxiter * popsize * len(x)

popsize : int, optional
A multiplier for setting the total population size. The population has popsize *
len(x) individuals.

tol : float, optional
When the mean of the population energies, multiplied by tol, divided by the standard
deviation of the population energies is greater than 1 the solving process terminates:
convergence = mean(pop) * tol / stdev(pop) > 1

mutation : float or tuple(float, float), optional
The mutation constant. If specified as a float it should be in the range [0, 2]. If spec-
ified as a tuple (min, max) dithering is employed. Dithering randomly changes
the mutation constant on a generation by generation basis. The mutation constant for
that generation is taken from U[min, max). Dithering can help speed convergence
significantly. Increasing the mutation constant increases the search radius, but will
slow down convergence.

recombination : float, optional
The recombination constant, should be in the range [0, 1]. Increasing this value allows
a larger number of mutants to progress into the next generation, but at the risk of
population stability.

seed : int or np.random.RandomState, optional
If seed is not specified the np.RandomState singleton is used. If seed is an int, a
new np.random.RandomState instance is used, seeded with seed. If seed is already a
np.random.RandomState instance, then that np.random.RandomState instance is used.
Specify seed for repeatable minimizations.

disp : bool, optional
Display status messages

callback : callable, callback(xk, convergence=val), optional
A function to follow the progress of the minimization. xk is the current value of
x0. val represents the fractional value of the population convergence. When val is
greater than one the function halts. If callback returns True, then the minimization is
halted (any polishing is still carried out).

polish : bool, optional
If True (default), then scipy.optimize.minimize with the L-BFGS-B method
is used to polish the best population member at the end, which can improve the mini-
mization slightly.

init : string, optional
Specify how the population initialization is performed. Should be one of:

•‘latinhypercube’
•‘random’

The default is ‘latinhypercube’. Latin Hypercube sampling tries to maximize coverage
of the available parameter space. ‘random’ initializes the population randomly - this
has the drawback that clustering can occur, preventing the whole of parameter space
being covered.

Returns res : OptimizeResult
The optimization result represented as a OptimizeResult object. Important at-
tributes are: x the solution array, success a Boolean flag indicating if the optimizer
exited successfully and message which describes the cause of the termination. See
OptimizeResult for a description of other attributes. If polish was employed,
then OptimizeResult also contains the jac attribute.

5.24. Optimization and root finding (scipy.optimize) 759

SciPy Reference Guide, Release 0.16.0

Notes

Differential evolution is a stochastic population based method that is useful for global optimization problems. At
each pass through the population the algorithm mutates each candidate solution by mixing with other candidate
solutions to create a trial candidate. There are several strategies [R134] for creating trial candidates, which
suit some problems more than others. The ‘best1bin’ strategy is a good starting point for many systems. In
this strategy two members of the population are randomly chosen. Their difference is used to mutate the best
member (the best in best1bin), 𝑏0, so far:

𝑏′ = 𝑏0 + 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 * (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[𝑟𝑎𝑛𝑑0] − 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[𝑟𝑎𝑛𝑑1])

A trial vector is then constructed. Starting with a randomly chosen ‘i’th parameter the trial is sequentially filled
(in modulo) with parameters from b’ or the original candidate. The choice of whether to use b’ or the original
candidate is made with a binomial distribution (the ‘bin’ in ‘best1bin’) - a random number in [0, 1) is generated.
If this number is less than the recombination constant then the parameter is loaded from b’, otherwise it is loaded
from the original candidate. The final parameter is always loaded from b’. Once the trial candidate is built its
fitness is assessed. If the trial is better than the original candidate then it takes its place. If it is also better than
the best overall candidate it also replaces that. To improve your chances of finding a global minimum use higher
popsize values, with higher mutation and (dithering), but lower recombination values. This has the effect of
widening the search radius, but slowing convergence.

New in version 0.15.0.

References

[R133], [R134], [R135]

Examples

Let us consider the problem of minimizing the Rosenbrock function. This function is implemented in rosen
in scipy.optimize.

>>> from scipy.optimize import rosen, differential_evolution
>>> bounds = [(0,2), (0, 2), (0, 2), (0, 2), (0, 2)]
>>> result = differential_evolution(rosen, bounds)
>>> result.x, result.fun
(array([1., 1., 1., 1., 1.]), 1.9216496320061384e-19)

Next find the minimum of the Ackley function (http://en.wikipedia.org/wiki/Test_functions_for_optimization).

>>> from scipy.optimize import differential_evolution
>>> import numpy as np
>>> def ackley(x):
... arg1 = -0.2 * np.sqrt(0.5 * (x[0] ** 2 + x[1] ** 2))
... arg2 = 0.5 * (np.cos(2. * np.pi * x[0]) + np.cos(2. * np.pi * x[1]))
... return -20. * np.exp(arg1) - np.exp(arg2) + 20. + np.e
>>> bounds = [(-5, 5), (-5, 5)]
>>> result = differential_evolution(ackley, bounds)
>>> result.x, result.fun
(array([0., 0.]), 4.4408920985006262e-16)

Rosenbrock function

rosen(x) The Rosenbrock function.
rosen_der(x) The derivative (i.e.
rosen_hess(x) The Hessian matrix of the Rosenbrock function.
rosen_hess_prod(x, p) Product of the Hessian matrix of the Rosenbrock function with a vector.

760 Chapter 5. Reference

http://en.wikipedia.org/wiki/Test_functions_for_optimization

SciPy Reference Guide, Release 0.16.0

scipy.optimize.rosen(x)
The Rosenbrock function.

The function computed is:

sum(100.0*(x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0

Parameters x : array_like
1-D array of points at which the Rosenbrock function is to be computed.

Returns f : float
The value of the Rosenbrock function.

See also:

rosen_der, rosen_hess, rosen_hess_prod

scipy.optimize.rosen_der(x)
The derivative (i.e. gradient) of the Rosenbrock function.

Parameters x : array_like
1-D array of points at which the derivative is to be computed.

Returns rosen_der : (N,) ndarray
The gradient of the Rosenbrock function at x.

See also:

rosen, rosen_hess, rosen_hess_prod

scipy.optimize.rosen_hess(x)
The Hessian matrix of the Rosenbrock function.

Parameters x : array_like
1-D array of points at which the Hessian matrix is to be computed.

Returns rosen_hess : ndarray
The Hessian matrix of the Rosenbrock function at x.

See also:

rosen, rosen_der, rosen_hess_prod

scipy.optimize.rosen_hess_prod(x, p)
Product of the Hessian matrix of the Rosenbrock function with a vector.

Parameters x : array_like
1-D array of points at which the Hessian matrix is to be computed.

p : array_like
1-D array, the vector to be multiplied by the Hessian matrix.

Returns rosen_hess_prod : ndarray
The Hessian matrix of the Rosenbrock function at x multiplied by the vector p.

See also:

rosen, rosen_der, rosen_hess

5.24.2 Fitting

curve_fit(f, xdata, ydata[, p0, sigma, ...]) Use non-linear least squares to fit a function, f, to data.

5.24. Optimization and root finding (scipy.optimize) 761

SciPy Reference Guide, Release 0.16.0

scipy.optimize.curve_fit(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False,
check_finite=True, **kw)

Use non-linear least squares to fit a function, f, to data.

Assumes ydata = f(xdata, *params) + eps

Parameters f : callable
The model function, f(x, ...). It must take the independent variable as the first argument
and the parameters to fit as separate remaining arguments.

xdata : An M-length sequence or an (k,M)-shaped array
for functions with k predictors. The independent variable where the data is measured.

ydata : M-length sequence
The dependent data — nominally f(xdata, ...)

p0 : None, scalar, or N-length sequence, optional
Initial guess for the parameters. If None, then the initial values will all be 1 (if the
number of parameters for the function can be determined using introspection, other-
wise a ValueError is raised).

sigma : None or M-length sequence, optional
If not None, the uncertainties in the ydata array. These are used as weights in the least-
squares problem i.e. minimising np.sum(((f(xdata, *popt) - ydata)
/ sigma)**2) If None, the uncertainties are assumed to be 1.

absolute_sigma : bool, optional
If False, sigma denotes relative weights of the data points. The returned covariance
matrix pcov is based on estimated errors in the data, and is not affected by the overall
magnitude of the values in sigma. Only the relative magnitudes of the sigma values
matter.
If True, sigma describes one standard deviation errors of the input data points. The
estimated covariance in pcov is based on these values.

check_finite : bool, optional
If True, check that the input arrays do not contain nans of infs, and raise a ValueError
if they do. Setting this parameter to False may silently produce nonsensical results if
the input arrays do contain nans. Default is True.

Returns popt : array
Optimal values for the parameters so that the sum of the squared error of f(xdata,
*popt) - ydata is minimized

pcov : 2d array
The estimated covariance of popt. The diagonals provide the variance of the parameter
estimate. To compute one standard deviation errors on the parameters use perr =
np.sqrt(np.diag(pcov)).
How the sigma parameter affects the estimated covariance depends on absolute_sigma
argument, as described above.

Raises OptimizeWarning
if covariance of the parameters can not be estimated.

ValueError
if ydata and xdata contain NaNs.

See also:

leastsq

Notes

The algorithm uses the Levenberg-Marquardt algorithm through leastsq. Additional keyword arguments are
passed directly to that algorithm.

762 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> import numpy as np
>>> from scipy.optimize import curve_fit
>>> def func(x, a, b, c):
... return a * np.exp(-b * x) + c

>>> xdata = np.linspace(0, 4, 50)
>>> y = func(xdata, 2.5, 1.3, 0.5)
>>> ydata = y + 0.2 * np.random.normal(size=len(xdata))

>>> popt, pcov = curve_fit(func, xdata, ydata)

5.24.3 Root finding

Scalar functions

brentq(f, a, b[, args, xtol, rtol, maxiter, ...]) Find a root of a function in given interval.
brenth(f, a, b[, args, xtol, rtol, maxiter, ...]) Find root of f in [a,b].
ridder(f, a, b[, args, xtol, rtol, maxiter, ...]) Find a root of a function in an interval.
bisect(f, a, b[, args, xtol, rtol, maxiter, ...]) Find root of a function within an interval.
newton(func, x0[, fprime, args, tol, ...]) Find a zero using the Newton-Raphson or secant method.

scipy.optimize.brentq(f, a, b, args=(), xtol=1e-12, rtol=4.4408920985006262e-16, maxiter=100,
full_output=False, disp=True)

Find a root of a function in given interval.

Return float, a zero of f between a and b. f must be a continuous function, and [a,b] must be a sign changing
interval.

Description: Uses the classic Brent (1973) method to find a zero of the function f on the sign changing interval [a
, b]. Generally considered the best of the rootfinding routines here. It is a safe version of the secant method that
uses inverse quadratic extrapolation. Brent’s method combines root bracketing, interval bisection, and inverse
quadratic interpolation. It is sometimes known as the van Wijngaarden-Dekker-Brent method. Brent (1973)
claims convergence is guaranteed for functions computable within [a,b].

[Brent1973] provides the classic description of the algorithm. Another description can be found
in a recent edition of Numerical Recipes, including [PressEtal1992]. Another description is at
http://mathworld.wolfram.com/BrentsMethod.html. It should be easy to understand the algorithm just by read-
ing our code. Our code diverges a bit from standard presentations: we choose a different formula for the
extrapolation step.

Parameters f : function
Python function returning a number. f must be continuous, and f(a) and f(b) must have
opposite signs.

a : number
One end of the bracketing interval [a,b].

b : number
The other end of the bracketing interval [a,b].

xtol : number, optional
The routine converges when a root is known to lie within xtol of the value return.
Should be >= 0. The routine modifies this to take into account the relative precision
of doubles.

rtol : number, optional

5.24. Optimization and root finding (scipy.optimize) 763

http://mathworld.wolfram.com/BrentsMethod.html

SciPy Reference Guide, Release 0.16.0

The routine converges when a root is known to lie within rtol times the value returned
of the value returned. Should be >= 0. Defaults to np.finfo(float).eps * 2.

maxiter : number, optional
if convergence is not achieved in maxiter iterations, an error is raised. Must be >= 0.

args : tuple, optional
containing extra arguments for the function f. f is called by apply(f,
(x)+args).

full_output : bool, optional
If full_output is False, the root is returned. If full_output is True, the return value is
(x, r), where x is the root, and r is a RootResults object.

disp : bool, optional
If True, raise RuntimeError if the algorithm didn’t converge.

Returns x0 : float
Zero of f between a and b.

r : RootResults (present if full_output = True)
Object containing information about the convergence. In particular, r.converged
is True if the routine converged.

See also:

multivariate
fmin, fmin_powell, fmin_cg, fmin_bfgs, fmin_ncg

nonlinear leastsq

constrained
fmin_l_bfgs_b, fmin_tnc, fmin_cobyla

global basinhopping, brute, differential_evolution

local fminbound, brent, golden, bracket

n-dimensional
fsolve

one-dimensional
brentq, brenth, ridder, bisect, newton

scalar fixed_point

Notes

f must be continuous. f(a) and f(b) must have opposite signs.

References

[Brent1973], [PressEtal1992]

scipy.optimize.brenth(f, a, b, args=(), xtol=1e-12, rtol=4.4408920985006262e-16, maxiter=100,
full_output=False, disp=True)

Find root of f in [a,b].

A variation on the classic Brent routine to find a zero of the function f between the arguments a and b that uses
hyperbolic extrapolation instead of inverse quadratic extrapolation. There was a paper back in the 1980’s ... f(a)
and f(b) cannot have the same signs. Generally on a par with the brent routine, but not as heavily tested. It is a
safe version of the secant method that uses hyperbolic extrapolation. The version here is by Chuck Harris.

Parameters f : function
Python function returning a number. f must be continuous, and f(a) and f(b) must have
opposite signs.

a : number

764 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

One end of the bracketing interval [a,b].
b : number

The other end of the bracketing interval [a,b].
xtol : number, optional

The routine converges when a root is known to lie within xtol of the value return.
Should be >= 0. The routine modifies this to take into account the relative precision
of doubles.

rtol : number, optional
The routine converges when a root is known to lie within rtol times the value returned
of the value returned. Should be >= 0. Defaults to np.finfo(float).eps * 2.

maxiter : number, optional
if convergence is not achieved in maxiter iterations, an error is raised. Must be >= 0.

args : tuple, optional
containing extra arguments for the function f. f is called by apply(f,
(x)+args).

full_output : bool, optional
If full_output is False, the root is returned. If full_output is True, the return value is
(x, r), where x is the root, and r is a RootResults object.

disp : bool, optional
If True, raise RuntimeError if the algorithm didn’t converge.

Returns x0 : float
Zero of f between a and b.

r : RootResults (present if full_output = True)
Object containing information about the convergence. In particular, r.converged
is True if the routine converged.

See also:

fmin, fmin_powell, fmin_cg

leastsq nonlinear least squares minimizer

fmin_l_bfgs_b, fmin_tnc, fmin_cobyla, basinhopping, differential_evolution,
brute, fminbound, brent, golden, bracket

fsolve n-dimensional root-finding

brentq, brenth, ridder, bisect, newton

fixed_point
scalar fixed-point finder

scipy.optimize.ridder(f, a, b, args=(), xtol=1e-12, rtol=4.4408920985006262e-16, maxiter=100,
full_output=False, disp=True)

Find a root of a function in an interval.

Parameters f : function
Python function returning a number. f must be continuous, and f(a) and f(b) must have
opposite signs.

a : number
One end of the bracketing interval [a,b].

b : number
The other end of the bracketing interval [a,b].

xtol : number, optional
The routine converges when a root is known to lie within xtol of the value return.
Should be >= 0. The routine modifies this to take into account the relative precision
of doubles.

rtol : number, optional

5.24. Optimization and root finding (scipy.optimize) 765

SciPy Reference Guide, Release 0.16.0

The routine converges when a root is known to lie within rtol times the value returned
of the value returned. Should be >= 0. Defaults to np.finfo(float).eps * 2.

maxiter : number, optional
if convergence is not achieved in maxiter iterations, an error is raised. Must be >= 0.

args : tuple, optional
containing extra arguments for the function f. f is called by apply(f,
(x)+args).

full_output : bool, optional
If full_output is False, the root is returned. If full_output is True, the return value is
(x, r), where x is the root, and r is a RootResults object.

disp : bool, optional
If True, raise RuntimeError if the algorithm didn’t converge.

Returns x0 : float
Zero of f between a and b.

r : RootResults (present if full_output = True)
Object containing information about the convergence. In particular, r.converged
is True if the routine converged.

See also:

brentq, brenth, bisect, newton

fixed_point
scalar fixed-point finder

Notes

Uses [Ridders1979] method to find a zero of the function f between the arguments a and b. Ridders’ method
is faster than bisection, but not generally as fast as the Brent rountines. [Ridders1979] provides the classic
description and source of the algorithm. A description can also be found in any recent edition of Numerical
Recipes.

The routine used here diverges slightly from standard presentations in order to be a bit more careful of tolerance.

References

[Ridders1979]

scipy.optimize.bisect(f, a, b, args=(), xtol=1e-12, rtol=4.4408920985006262e-16, maxiter=100,
full_output=False, disp=True)

Find root of a function within an interval.

Basic bisection routine to find a zero of the function f between the arguments a and b. f(a) and f(b) cannot have
the same signs. Slow but sure.

Parameters f : function
Python function returning a number. f must be continuous, and f(a) and f(b) must
have opposite signs.

a : number
One end of the bracketing interval [a,b].

b : number
The other end of the bracketing interval [a,b].

xtol : number, optional
The routine converges when a root is known to lie within xtol of the value return.
Should be >= 0. The routine modifies this to take into account the relative precision
of doubles.

rtol : number, optional
The routine converges when a root is known to lie within rtol times the value returned
of the value returned. Should be >= 0. Defaults to np.finfo(float).eps * 2.

766 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

maxiter : number, optional
if convergence is not achieved in maxiter iterations, an error is raised. Must be >= 0.

args : tuple, optional
containing extra arguments for the function f. f is called by apply(f,
(x)+args).

full_output : bool, optional
If full_output is False, the root is returned. If full_output is True, the return value is
(x, r), where x is the root, and r is a RootResults object.

disp : bool, optional
If True, raise RuntimeError if the algorithm didn’t converge.

Returns x0 : float
Zero of f between a and b.

r : RootResults (present if full_output = True)
Object containing information about the convergence. In particular, r.converged
is True if the routine converged.

See also:

brentq, brenth, bisect, newton

fixed_point
scalar fixed-point finder

fsolve n-dimensional root-finding

scipy.optimize.newton(func, x0, fprime=None, args=(), tol=1.48e-08, maxiter=50, fprime2=None)
Find a zero using the Newton-Raphson or secant method.

Find a zero of the function func given a nearby starting point x0. The Newton-Raphson method is used if the
derivative fprime of func is provided, otherwise the secant method is used. If the second order derivate fprime2
of func is provided, parabolic Halley’s method is used.

Parameters func : function
The function whose zero is wanted. It must be a function of a single variable of the
form f(x,a,b,c...), where a,b,c... are extra arguments that can be passed in the args
parameter.

x0 : float
An initial estimate of the zero that should be somewhere near the actual zero.

fprime : function, optional
The derivative of the function when available and convenient. If it is None (default),
then the secant method is used.

args : tuple, optional
Extra arguments to be used in the function call.

tol : float, optional
The allowable error of the zero value.

maxiter : int, optional
Maximum number of iterations.

fprime2 : function, optional
The second order derivative of the function when available and convenient. If it is
None (default), then the normal Newton-Raphson or the secant method is used. If it
is given, parabolic Halley’s method is used.

Returns zero : float
Estimated location where function is zero.

See also:

brentq, brenth, ridder, bisect

fsolve find zeroes in n dimensions.

5.24. Optimization and root finding (scipy.optimize) 767

SciPy Reference Guide, Release 0.16.0

Notes

The convergence rate of the Newton-Raphson method is quadratic, the Halley method is cubic, and the secant
method is sub-quadratic. This means that if the function is well behaved the actual error in the estimated zero
is approximately the square (cube for Halley) of the requested tolerance up to roundoff error. However, the
stopping criterion used here is the step size and there is no guarantee that a zero has been found. Consequently
the result should be verified. Safer algorithms are brentq, brenth, ridder, and bisect, but they all require that the
root first be bracketed in an interval where the function changes sign. The brentq algorithm is recommended for
general use in one dimensional problems when such an interval has been found.

Fixed point finding:

fixed_point(func, x0[, args, xtol, maxiter]) Find a fixed point of the function.

scipy.optimize.fixed_point(func, x0, args=(), xtol=1e-08, maxiter=500)
Find a fixed point of the function.

Given a function of one or more variables and a starting point, find a fixed-point of the function: i.e. where
func(x0) == x0.

Parameters func : function
Function to evaluate.

x0 : array_like
Fixed point of function.

args : tuple, optional
Extra arguments to func.

xtol : float, optional
Convergence tolerance, defaults to 1e-08.

maxiter : int, optional
Maximum number of iterations, defaults to 500.

Notes

Uses Steffensen’s Method using Aitken’s Del^2 convergence acceleration. See Burden, Faires, “Numerical
Analysis”, 5th edition, pg. 80

Examples

>>> from scipy import optimize
>>> def func(x, c1, c2):
... return np.sqrt(c1/(x+c2))
>>> c1 = np.array([10,12.])
>>> c2 = np.array([3, 5.])
>>> optimize.fixed_point(func, [1.2, 1.3], args=(c1,c2))
array([1.4920333 , 1.37228132])

Multidimensional

General nonlinear solvers:

root(fun, x0[, args, method, jac, tol, ...]) Find a root of a vector function.
fsolve(func, x0[, args, fprime, ...]) Find the roots of a function.
broyden1(F, xin[, iter, alpha, ...]) Find a root of a function, using Broyden’s first Jacobian approximation.
broyden2(F, xin[, iter, alpha, ...]) Find a root of a function, using Broyden’s second Jacobian approximation.

768 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.optimize.root(fun, x0, args=(), method=’hybr’, jac=None, tol=None, callback=None, op-
tions=None)

Find a root of a vector function.

Parameters fun : callable
A vector function to find a root of.

x0 : ndarray
Initial guess.

args : tuple, optional
Extra arguments passed to the objective function and its Jacobian.

method : str, optional
Type of solver. Should be one of

•‘hybr’ (see here)
•‘lm’ (see here)
•‘broyden1’ (see here)
•‘broyden2’ (see here)
•‘anderson’ (see here)
•‘linearmixing’ (see here)
•‘diagbroyden’ (see here)
•‘excitingmixing’ (see here)
•‘krylov’ (see here)
•‘df-sane’ (see here)

jac : bool or callable, optional
If jac is a Boolean and is True, fun is assumed to return the value of Jacobian along
with the objective function. If False, the Jacobian will be estimated numerically. jac
can also be a callable returning the Jacobian of fun. In this case, it must accept the
same arguments as fun.

tol : float, optional
Tolerance for termination. For detailed control, use solver-specific options.

callback : function, optional
Optional callback function. It is called on every iteration as callback(x, f)
where x is the current solution and f the corresponding residual. For all methods but
‘hybr’ and ‘lm’.

options : dict, optional
A dictionary of solver options. E.g. xtol or maxiter, see show_options() for
details.

Returns sol : OptimizeResult
The solution represented as a OptimizeResult object. Important attributes are:
x the solution array, success a Boolean flag indicating if the algorithm exited
successfully and message which describes the cause of the termination. See
OptimizeResult for a description of other attributes.

See also:

show_options
Additional options accepted by the solvers

Notes

This section describes the available solvers that can be selected by the ‘method’ parameter. The default method
is hybr.

Method hybr uses a modification of the Powell hybrid method as implemented in MINPACK [R153].

Method lm solves the system of nonlinear equations in a least squares sense using a modification of the
Levenberg-Marquardt algorithm as implemented in MINPACK [R153].

5.24. Optimization and root finding (scipy.optimize) 769

SciPy Reference Guide, Release 0.16.0

Method df-sane is a derivative-free spectral method. [R155]

Methods broyden1, broyden2, anderson, linearmixing, diagbroyden, excitingmixing, krylov are inexact Newton
methods, with backtracking or full line searches [R154]. Each method corresponds to a particular Jacobian
approximations. See nonlin for details.

•Method broyden1 uses Broyden’s first Jacobian approximation, it is known as Broyden’s good method.

•Method broyden2 uses Broyden’s second Jacobian approximation, it is known as Broyden’s bad method.

•Method anderson uses (extended) Anderson mixing.

•Method Krylov uses Krylov approximation for inverse Jacobian. It is suitable for large-scale problem.

•Method diagbroyden uses diagonal Broyden Jacobian approximation.

•Method linearmixing uses a scalar Jacobian approximation.

•Method excitingmixing uses a tuned diagonal Jacobian approximation.

Warning: The algorithms implemented for methods diagbroyden, linearmixing and excitingmixing may be
useful for specific problems, but whether they will work may depend strongly on the problem.

New in version 0.11.0.

References

[R153], [R154], [R155]

Examples

The following functions define a system of nonlinear equations and its jacobian.

>>> def fun(x):
... return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0,
... 0.5 * (x[1] - x[0])**3 + x[1]]

>>> def jac(x):
... return np.array([[1 + 1.5 * (x[0] - x[1])**2,
... -1.5 * (x[0] - x[1])**2],
... [-1.5 * (x[1] - x[0])**2,
... 1 + 1.5 * (x[1] - x[0])**2]])

A solution can be obtained as follows.

>>> from scipy import optimize
>>> sol = optimize.root(fun, [0, 0], jac=jac, method='hybr')
>>> sol.x
array([0.8411639, 0.1588361])

scipy.optimize.fsolve(func, x0, args=(), fprime=None, full_output=0, col_deriv=0, xtol=1.49012e-
08, maxfev=0, band=None, epsfcn=None, factor=100, diag=None)

Find the roots of a function.

Return the roots of the (non-linear) equations defined by func(x) = 0 given a starting estimate.

Parameters func : callable f(x, *args)
A function that takes at least one (possibly vector) argument.

x0 : ndarray
The starting estimate for the roots of func(x) = 0.

args : tuple, optional
Any extra arguments to func.

770 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

fprime : callable(x), optional
A function to compute the Jacobian of func with derivatives across the rows. By
default, the Jacobian will be estimated.

full_output : bool, optional
If True, return optional outputs.

col_deriv : bool, optional
Specify whether the Jacobian function computes derivatives down the columns (faster,
because there is no transpose operation).

xtol : float, optional
The calculation will terminate if the relative error between two consecutive iterates is
at most xtol.

maxfev : int, optional
The maximum number of calls to the function. If zero, then 100*(N+1) is the
maximum where N is the number of elements in x0.

band : tuple, optional
If set to a two-sequence containing the number of sub- and super-diagonals within
the band of the Jacobi matrix, the Jacobi matrix is considered banded (only for
fprime=None).

epsfcn : float, optional
A suitable step length for the forward-difference approximation of the Jacobian (for
fprime=None). If epsfcn is less than the machine precision, it is assumed that the
relative errors in the functions are of the order of the machine precision.

factor : float, optional
A parameter determining the initial step bound (factor * || diag * x||).
Should be in the interval (0.1, 100).

diag : sequence, optional
N positive entries that serve as a scale factors for the variables.

Returns x : ndarray
The solution (or the result of the last iteration for an unsuccessful call).

infodict : dict
A dictionary of optional outputs with the keys:
nfev number of function calls
njev number of Jacobian calls
fvec function evaluated at the output
fjac the orthogonal matrix, q, produced by the QR factorization of the final

approximate Jacobian matrix, stored column wise
r upper triangular matrix produced by QR factorization of the same ma-

trix
qtf the vector (transpose(q) * fvec)

ier : int
An integer flag. Set to 1 if a solution was found, otherwise refer to mesg for more
information.

mesg : str
If no solution is found, mesg details the cause of failure.

See also:

root Interface to root finding algorithms for multivariate

functions.

Notes

fsolve is a wrapper around MINPACK’s hybrd and hybrj algorithms.

5.24. Optimization and root finding (scipy.optimize) 771

SciPy Reference Guide, Release 0.16.0

scipy.optimize.broyden1(F, xin, iter=None, alpha=None, reduction_method=’restart’,
max_rank=None, verbose=False, maxiter=None, f_tol=None,
f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None,
line_search=’armijo’, callback=None, **kw)

Find a root of a function, using Broyden’s first Jacobian approximation.

This method is also known as “Broyden’s good method”.

Parameters F : function(x) -> f
Function whose root to find; should take and return an array-like object.

x0 : array_like
Initial guess for the solution

alpha : float, optional
Initial guess for the Jacobian is (-1/alpha).

reduction_method : str or tuple, optional
Method used in ensuring that the rank of the Broyden matrix stays low. Can either be
a string giving the name of the method, or a tuple of the form (method, param1,
param2, ...) that gives the name of the method and values for additional param-
eters.
Methods available:

•restart: drop all matrix columns. Has no extra parameters.
•simple: drop oldest matrix column. Has no extra parameters.
•svd: keep only the most significant SVD components. Takes an extra parameter,
to_retain, which determines the number of SVD components to retain when
rank reduction is done. Default is max_rank - 2.

max_rank : int, optional
Maximum rank for the Broyden matrix. Default is infinity (ie., no rank reduction).

iter : int, optional
Number of iterations to make. If omitted (default), make as many as required to meet
tolerances.

verbose : bool, optional
Print status to stdout on every iteration.

maxiter : int, optional
Maximum number of iterations to make. If more are needed to meet convergence,
NoConvergence is raised.

f_tol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.

f_rtol : float, optional
Relative tolerance for the residual. If omitted, not used.

x_tol : float, optional
Absolute minimum step size, as determined from the Jacobian approximation. If the
step size is smaller than this, optimization is terminated as successful. If omitted, not
used.

x_rtol : float, optional
Relative minimum step size. If omitted, not used.

tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.

line_search : {None, ‘armijo’ (default), ‘wolfe’}, optional
Which type of a line search to use to determine the step size in the direction given by
the Jacobian approximation. Defaults to ‘armijo’.

callback : function, optional
Optional callback function. It is called on every iteration as callback(x, f)
where x is the current solution and f the corresponding residual.

Returns sol : ndarray
An array (of similar array type as x0) containing the final solution.

772 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Raises NoConvergence
When a solution was not found.

Notes

This algorithm implements the inverse Jacobian Quasi-Newton update

𝐻+ = 𝐻 + (𝑑𝑥−𝐻𝑑𝑓)𝑑𝑥†𝐻/(𝑑𝑥†𝐻𝑑𝑓)

which corresponds to Broyden’s first Jacobian update

𝐽+ = 𝐽 + (𝑑𝑓 − 𝐽𝑑𝑥)𝑑𝑥†/𝑑𝑥†𝑑𝑥

References

[R131]

scipy.optimize.broyden2(F, xin, iter=None, alpha=None, reduction_method=’restart’,
max_rank=None, verbose=False, maxiter=None, f_tol=None,
f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None,
line_search=’armijo’, callback=None, **kw)

Find a root of a function, using Broyden’s second Jacobian approximation.

This method is also known as “Broyden’s bad method”.

Parameters F : function(x) -> f
Function whose root to find; should take and return an array-like object.

x0 : array_like
Initial guess for the solution

alpha : float, optional
Initial guess for the Jacobian is (-1/alpha).

reduction_method : str or tuple, optional
Method used in ensuring that the rank of the Broyden matrix stays low. Can either be
a string giving the name of the method, or a tuple of the form (method, param1,
param2, ...) that gives the name of the method and values for additional param-
eters.
Methods available:

•restart: drop all matrix columns. Has no extra parameters.
•simple: drop oldest matrix column. Has no extra parameters.
•svd: keep only the most significant SVD components. Takes an extra parameter,
to_retain, which determines the number of SVD components to retain when
rank reduction is done. Default is max_rank - 2.

max_rank : int, optional
Maximum rank for the Broyden matrix. Default is infinity (ie., no rank reduction).

iter : int, optional
Number of iterations to make. If omitted (default), make as many as required to meet
tolerances.

verbose : bool, optional
Print status to stdout on every iteration.

maxiter : int, optional
Maximum number of iterations to make. If more are needed to meet convergence,
NoConvergence is raised.

f_tol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.

f_rtol : float, optional
Relative tolerance for the residual. If omitted, not used.

x_tol : float, optional

5.24. Optimization and root finding (scipy.optimize) 773

SciPy Reference Guide, Release 0.16.0

Absolute minimum step size, as determined from the Jacobian approximation. If the
step size is smaller than this, optimization is terminated as successful. If omitted, not
used.

x_rtol : float, optional
Relative minimum step size. If omitted, not used.

tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.

line_search : {None, ‘armijo’ (default), ‘wolfe’}, optional
Which type of a line search to use to determine the step size in the direction given by
the Jacobian approximation. Defaults to ‘armijo’.

callback : function, optional
Optional callback function. It is called on every iteration as callback(x, f)
where x is the current solution and f the corresponding residual.

Returns sol : ndarray
An array (of similar array type as x0) containing the final solution.

Raises NoConvergence
When a solution was not found.

Notes

This algorithm implements the inverse Jacobian Quasi-Newton update

𝐻+ = 𝐻 + (𝑑𝑥−𝐻𝑑𝑓)𝑑𝑓†/(𝑑𝑓†𝑑𝑓)

corresponding to Broyden’s second method.

References

[R132]

The root function supports the following methods:

root(method=’hybr’)

scipy.optimize.root(fun, x0, args=(), method=’hybr’, jac=None, tol=None, callback=None, op-
tions={‘full_output’: 0, ‘col_deriv’: 0, ‘diag’: None, ‘factor’: 100, ‘eps’: None,
‘band’: None, ‘func’: None, ‘maxfev’: 0, ‘xtol’: 1.49012e-08})

Find the roots of a multivariate function using MINPACK’s hybrd and hybrj routines (modified Powell method).

See also:

For documentation for the rest of the parameters, see scipy.optimize.root

Options col_deriv : bool
Specify whether the Jacobian function computes derivatives down the columns (faster,
because there is no transpose operation).

xtol : float
The calculation will terminate if the relative error between two consecutive iterates is
at most xtol.

maxfev : int
The maximum number of calls to the function. If zero, then 100*(N+1) is the
maximum where N is the number of elements in x0.

band : tuple
If set to a two-sequence containing the number of sub- and super-diagonals within
the band of the Jacobi matrix, the Jacobi matrix is considered banded (only for
fprime=None).

eps : float

774 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

A suitable step length for the forward-difference approximation of the Jacobian (for
fprime=None). If eps is less than the machine precision, it is assumed that the
relative errors in the functions are of the order of the machine precision.

factor : float
A parameter determining the initial step bound (factor * || diag * x||).
Should be in the interval (0.1, 100).

diag : sequence
N positive entries that serve as a scale factors for the variables.

root(method=’lm’)

scipy.optimize.root(fun, x0, args=(), method=’lm’, jac=None, tol=None, callback=None, op-
tions={‘col_deriv’: 0, ‘diag’: None, ‘factor’: 100, ‘gtol’: 0.0, ‘eps’: 0.0, ‘func’:
None, ‘maxiter’: 0, ‘xtol’: 1.49012e-08, ‘ftol’: 1.49012e-08})

Solve for least squares with Levenberg-Marquardt

See also:

For documentation for the rest of the parameters, see scipy.optimize.root

Options col_deriv : bool
non-zero to specify that the Jacobian function computes derivatives down the columns
(faster, because there is no transpose operation).

ftol : float
Relative error desired in the sum of squares.

xtol : float
Relative error desired in the approximate solution.

gtol : float
Orthogonality desired between the function vector and the columns of the Jacobian.

maxiter : int
The maximum number of calls to the function. If zero, then 100*(N+1) is the maxi-
mum where N is the number of elements in x0.

epsfcn : float
A suitable step length for the forward-difference approximation of the Jacobian (for
Dfun=None). If epsfcn is less than the machine precision, it is assumed that the rela-
tive errors in the functions are of the order of the machine precision.

factor : float
A parameter determining the initial step bound (factor * || diag * x||).
Should be in interval (0.1, 100).

diag : sequence
N positive entries that serve as a scale factors for the variables.

root(method=’broyden1’)

scipy.optimize.root(fun, x0, args=(), method=’broyden1’, tol=None, callback=None, options={})

See also:

For documentation for the rest of the parameters, see scipy.optimize.root

Options nit : int, optional
Number of iterations to make. If omitted (default), make as many as required to meet
tolerances.

disp : bool, optional
Print status to stdout on every iteration.

maxiter : int, optional

5.24. Optimization and root finding (scipy.optimize) 775

SciPy Reference Guide, Release 0.16.0

Maximum number of iterations to make. If more are needed to meet convergence,
NoConvergence is raised.

ftol : float, optional
Relative tolerance for the residual. If omitted, not used.

fatol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.

xtol : float, optional
Relative minimum step size. If omitted, not used.

xatol : float, optional
Absolute minimum step size, as determined from the Jacobian approximation. If the
step size is smaller than this, optimization is terminated as successful. If omitted, not
used.

tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.

line_search : {None, ‘armijo’ (default), ‘wolfe’}, optional
Which type of a line search to use to determine the step size in the direction given by
the Jacobian approximation. Defaults to ‘armijo’.

jac_options : dict, optional
Options for the respective Jacobian approximation.

alpha [float, optional] Initial guess for the Jacobian is (-
1/alpha).

reduction_method
[str or tuple, optional] Method used in ensuring that
the rank of the Broyden matrix stays low. Can either
be a string giving the name of the method, or a tuple
of the form (method, param1, param2, ...)
that gives the name of the method and values for addi-
tional parameters.
Methods available:

•restart: drop all matrix columns. Has no

extra parameters.
•simple: drop oldest matrix column. Has no

extra parameters.
•svd: keep only the most significant SVD

components.
Extra parameters:

–to_retain: number of SVD components to

retain
when
rank
re-
duc-
tion
is
done.
De-
fault

776 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

is
max_rank
- 2.

max_rank [int, optional] Maximum rank for the Broyden matrix.
Default is infinity (ie., no rank reduction).

root(method=’broyden2’)

scipy.optimize.root(fun, x0, args=(), method=’broyden2’, tol=None, callback=None, options={})

See also:

For documentation for the rest of the parameters, see scipy.optimize.root

Options nit : int, optional
Number of iterations to make. If omitted (default), make as many as re-
quired to meet tolerances.

disp : bool, optional
Print status to stdout on every iteration.

maxiter : int, optional
Maximum number of iterations to make. If more are needed to meet con-
vergence, NoConvergence is raised.

ftol : float, optional
Relative tolerance for the residual. If omitted, not used.

fatol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is
6e-6.

xtol : float, optional
Relative minimum step size. If omitted, not used.

xatol : float, optional
Absolute minimum step size, as determined from the Jacobian approxima-
tion. If the step size is smaller than this, optimization is terminated as suc-
cessful. If omitted, not used.

tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.

line_search : {None, ‘armijo’ (default), ‘wolfe’}, optional
Which type of a line search to use to determine the step size in the direction
given by the Jacobian approximation. Defaults to ‘armijo’.

jac_options : dict, optional
Options for the respective Jacobian approximation.
alpha [float, optional] Initial guess for the Jacobian is (-1/alpha).reduction_method

[str or tuple, optional] Method used in ensuring that the
rank of the Broyden matrix stays low. Can either be a
string giving the name of the method, or a tuple of the form
(method, param1, param2, ...) that gives the
name of the method and values for additional parameters.
Methods available:

•restart: drop all matrix columns. Has no

extra parameters.
•simple: drop oldest matrix column. Has no

extra parameters.

5.24. Optimization and root finding (scipy.optimize) 777

SciPy Reference Guide, Release 0.16.0

•svd: keep only the most significant SVD

components.
Extra parameters:

–to_retain: number of SVD components to

retain
when
rank
re-
duc-
tion
is
done.
De-
fault
is
max_rank
- 2.max_rank [int, optional] Maximum rank for the Broyden matrix. De-

fault is infinity (ie., no rank reduction).

root(method=’anderson’)

scipy.optimize.root(fun, x0, args=(), method=’anderson’, tol=None, callback=None, options={})

See also:

For documentation for the rest of the parameters, see scipy.optimize.root

Options nit : int, optional
Number of iterations to make. If omitted (default), make as many as re-
quired to meet tolerances.

disp : bool, optional
Print status to stdout on every iteration.

maxiter : int, optional
Maximum number of iterations to make. If more are needed to meet con-
vergence, NoConvergence is raised.

ftol : float, optional
Relative tolerance for the residual. If omitted, not used.

fatol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is
6e-6.

xtol : float, optional
Relative minimum step size. If omitted, not used.

xatol : float, optional
Absolute minimum step size, as determined from the Jacobian approxima-
tion. If the step size is smaller than this, optimization is terminated as suc-
cessful. If omitted, not used.

tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.

line_search : {None, ‘armijo’ (default), ‘wolfe’}, optional
Which type of a line search to use to determine the step size in the direction
given by the Jacobian approximation. Defaults to ‘armijo’.

778 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

jac_options : dict, optional
Options for the respective Jacobian approximation.
alpha [float, optional] Initial guess for the Jacobian is (-1/alpha).M [float, optional] Number of previous vectors to retain. De-

faults to 5.w0 [float, optional] Regularization parameter for numerical sta-
bility. Compared to unity, good values of the order of 0.01.

root(method=’linearmixing’)

scipy.optimize.root(fun, x0, args=(), method=’linearmixing’, tol=None, callback=None, options={})

See also:

For documentation for the rest of the parameters, see scipy.optimize.root

Options nit : int, optional
Number of iterations to make. If omitted (default), make as many as re-
quired to meet tolerances.

disp : bool, optional
Print status to stdout on every iteration.

maxiter : int, optional
Maximum number of iterations to make. If more are needed to meet con-
vergence, NoConvergence is raised.

ftol : float, optional
Relative tolerance for the residual. If omitted, not used.

fatol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is
6e-6.

xtol : float, optional
Relative minimum step size. If omitted, not used.

xatol : float, optional
Absolute minimum step size, as determined from the Jacobian approxima-
tion. If the step size is smaller than this, optimization is terminated as suc-
cessful. If omitted, not used.

tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.

line_search : {None, ‘armijo’ (default), ‘wolfe’}, optional
Which type of a line search to use to determine the step size in the direction
given by the Jacobian approximation. Defaults to ‘armijo’.

jac_options : dict, optional
Options for the respective Jacobian approximation.
alpha [float, optional] initial guess for the jacobian is (-1/alpha).

root(method=’diagbroyden’)

scipy.optimize.root(fun, x0, args=(), method=’diagbroyden’, tol=None, callback=None, options={})

See also:

For documentation for the rest of the parameters, see scipy.optimize.root

Options nit : int, optional
Number of iterations to make. If omitted (default), make as many as re-
quired to meet tolerances.

disp : bool, optional

5.24. Optimization and root finding (scipy.optimize) 779

SciPy Reference Guide, Release 0.16.0

Print status to stdout on every iteration.
maxiter : int, optional

Maximum number of iterations to make. If more are needed to meet con-
vergence, NoConvergence is raised.

ftol : float, optional
Relative tolerance for the residual. If omitted, not used.

fatol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is
6e-6.

xtol : float, optional
Relative minimum step size. If omitted, not used.

xatol : float, optional
Absolute minimum step size, as determined from the Jacobian approxima-
tion. If the step size is smaller than this, optimization is terminated as suc-
cessful. If omitted, not used.

tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.

line_search : {None, ‘armijo’ (default), ‘wolfe’}, optional
Which type of a line search to use to determine the step size in the direction
given by the Jacobian approximation. Defaults to ‘armijo’.

jac_options : dict, optional
Options for the respective Jacobian approximation.
alpha [float, optional] initial guess for the jacobian is (-1/alpha).

root(method=’excitingmixing’)

scipy.optimize.root(fun, x0, args=(), method=’excitingmixing’, tol=None, callback=None, op-
tions={})

See also:

For documentation for the rest of the parameters, see scipy.optimize.root

Options nit : int, optional
Number of iterations to make. If omitted (default), make as many as re-
quired to meet tolerances.

disp : bool, optional
Print status to stdout on every iteration.

maxiter : int, optional
Maximum number of iterations to make. If more are needed to meet con-
vergence, NoConvergence is raised.

ftol : float, optional
Relative tolerance for the residual. If omitted, not used.

fatol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is
6e-6.

xtol : float, optional
Relative minimum step size. If omitted, not used.

xatol : float, optional
Absolute minimum step size, as determined from the Jacobian approxima-
tion. If the step size is smaller than this, optimization is terminated as suc-
cessful. If omitted, not used.

tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.

line_search : {None, ‘armijo’ (default), ‘wolfe’}, optional

780 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Which type of a line search to use to determine the step size in the direction
given by the Jacobian approximation. Defaults to ‘armijo’.

jac_options : dict, optional
Options for the respective Jacobian approximation.
alpha [float, optional] Initial Jacobian approximation is (-1/alpha).alphamax [float, optional] The entries of the diagonal Jacobian are kept

in the range [alpha, alphamax].

root(method=’krylov’)

scipy.optimize.root(fun, x0, args=(), method=’krylov’, tol=None, callback=None, options={})

See also:

For documentation for the rest of the parameters, see scipy.optimize.root

Options nit : int, optional
Number of iterations to make. If omitted (default), make as many as re-
quired to meet tolerances.

disp : bool, optional
Print status to stdout on every iteration.

maxiter : int, optional
Maximum number of iterations to make. If more are needed to meet con-
vergence, NoConvergence is raised.

ftol : float, optional
Relative tolerance for the residual. If omitted, not used.

fatol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is
6e-6.

xtol : float, optional
Relative minimum step size. If omitted, not used.

xatol : float, optional
Absolute minimum step size, as determined from the Jacobian approxima-
tion. If the step size is smaller than this, optimization is terminated as suc-
cessful. If omitted, not used.

tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.

line_search : {None, ‘armijo’ (default), ‘wolfe’}, optional
Which type of a line search to use to determine the step size in the direction
given by the Jacobian approximation. Defaults to ‘armijo’.

jac_options : dict, optional
Options for the respective Jacobian approximation.
rdiff [float, optional] Relative step size to use in numerical differ-

entiation.method [{‘lgmres’, ‘gmres’, ‘bicgstab’, ‘cgs’, ‘minres’} or function]
Krylov method to use to approximate the Jacobian. Can be a
string, or a function implementing the same interface as the
iterative solvers in scipy.sparse.linalg.
The default is scipy.sparse.linalg.lgmres.inner_M [LinearOperator or InverseJacobian] Preconditioner for the
inner Krylov iteration. Note that you can use also inverse
Jacobians as (adaptive) preconditioners. For example,

>>> jac = BroydenFirst()
>>> kjac = KrylovJacobian(inner_M=jac.inverse).

5.24. Optimization and root finding (scipy.optimize) 781

SciPy Reference Guide, Release 0.16.0

If the preconditioner has a method named ‘update’, it will be
called as update(x, f) after each nonlinear step, with x
giving the current point, and f the current function value.inner_tol, inner_maxiter, ...
Parameters to pass on to the “inner” Krylov solver. See
scipy.sparse.linalg.gmres for details.outer_k [int, optional] Size of the subspace kept across LGMRES
nonlinear iterations.
See scipy.sparse.linalg.lgmres for details.

root(method=’df-sane’)

scipy.optimize.root(fun, x0, args=(), method=’df-sane’, tol=None, callback=None, options={‘disp’:
False, ‘fnorm’: None, ‘sigma_0’: 1.0, ‘eta_strategy’: None, ‘sigma_eps’: 1e-10,
‘M’: 10, ‘line_search’: ‘cruz’, ‘fatol’: 1e-300, ‘func’: None, ‘maxfev’: 1000,
‘ftol’: 1e-08})

Solve nonlinear equation with the DF-SANE method

See also:

For documentation for the rest of the parameters, see scipy.optimize.root

Options ftol : float, optional
Relative norm tolerance.

fatol : float, optional
Absolute norm tolerance. Algorithm terminates when ||func(x)|| <
fatol + ftol ||func(x_0)||.

fnorm : callable, optional
Norm to use in the convergence check. If None, 2-norm is used.

maxfev : int, optional
Maximum number of function evaluations.

disp : bool, optional
Whether to print convergence process to stdout.

eta_strategy : callable, optional
Choice of the eta_k parameter, which gives slack for growth of
||F||**2. Called as eta_k = eta_strategy(k, x, F) with
k the iteration number, x the current iterate and F the current residual.
Should satisfy eta_k > 0 and sum(eta, k=0..inf) < inf. De-
fault: ||F||**2 / (1 + k)**2.

sigma_eps : float, optional
The spectral coefficient is constrained to sigma_eps < sigma <
1/sigma_eps. Default: 1e-10

sigma_0 : float, optional
Initial spectral coefficient. Default: 1.0

M : int, optional
Number of iterates to include in the nonmonotonic line search. Default: 10

line_search : {‘cruz’, ‘cheng’}
Type of line search to employ. ‘cruz’ is the original one defined in [Martinez
& Raydan. Math. Comp. 75, 1429 (2006)], ‘cheng’ is a modified search
defined in [Cheng & Li. IMA J. Numer. Anal. 29, 814 (2009)]. Default:
‘cruz’

References

[R509], [R510], [R511]

Large-scale nonlinear solvers:

782 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

newton_krylov(F, xin[, iter, rdiff, method, ...]) Find a root of a function, using Krylov approximation for inverse Jacobian.
anderson(F, xin[, iter, alpha, w0, M, ...]) Find a root of a function, using (extended) Anderson mixing.

scipy.optimize.newton_krylov(F, xin, iter=None, rdiff=None, method=’lgmres’, in-
ner_maxiter=20, inner_M=None, outer_k=10, verbose=False,
maxiter=None, f_tol=None, f_rtol=None, x_tol=None,
x_rtol=None, tol_norm=None, line_search=’armijo’, call-
back=None, **kw)

Find a root of a function, using Krylov approximation for inverse Jacobian.

This method is suitable for solving large-scale problems.

Parameters F : function(x) -> f
Function whose root to find; should take and return an array-like object.

x0 : array_like
Initial guess for the solution

rdiff : float, optional
Relative step size to use in numerical differentiation.

method : {‘lgmres’, ‘gmres’, ‘bicgstab’, ‘cgs’, ‘minres’} or function
Krylov method to use to approximate the Jacobian. Can be a string,
or a function implementing the same interface as the iterative solvers in
scipy.sparse.linalg.
The default is scipy.sparse.linalg.lgmres.

inner_M : LinearOperator or InverseJacobian
Preconditioner for the inner Krylov iteration. Note that you can use also
inverse Jacobians as (adaptive) preconditioners. For example,

>>> from scipy.optimize.nonlin import BroydenFirst, KrylovJacobian
>>> from scipy.optimize.nonlin import InverseJacobian
>>> jac = BroydenFirst()
>>> kjac = KrylovJacobian(inner_M=InverseJacobian(jac))

If the preconditioner has a method named ‘update’, it will be called as
update(x, f) after each nonlinear step, with x giving the current point,
and f the current function value.

inner_tol, inner_maxiter, ...
Parameters to pass on to the “inner” Krylov solver. See
scipy.sparse.linalg.gmres for details.

outer_k : int, optional
Size of the subspace kept across LGMRES nonlinear iterations. See
scipy.sparse.linalg.lgmres for details.

iter : int, optional
Number of iterations to make. If omitted (default), make as many as re-
quired to meet tolerances.

verbose : bool, optional
Print status to stdout on every iteration.

maxiter : int, optional
Maximum number of iterations to make. If more are needed to meet con-
vergence, NoConvergence is raised.

f_tol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is
6e-6.

f_rtol : float, optional
Relative tolerance for the residual. If omitted, not used.

5.24. Optimization and root finding (scipy.optimize) 783

SciPy Reference Guide, Release 0.16.0

x_tol : float, optional
Absolute minimum step size, as determined from the Jacobian approxima-
tion. If the step size is smaller than this, optimization is terminated as suc-
cessful. If omitted, not used.

x_rtol : float, optional
Relative minimum step size. If omitted, not used.

tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.

line_search : {None, ‘armijo’ (default), ‘wolfe’}, optional
Which type of a line search to use to determine the step size in the direction
given by the Jacobian approximation. Defaults to ‘armijo’.

callback : function, optional
Optional callback function. It is called on every iteration as
callback(x, f) where x is the current solution and f the correspond-
ing residual.Returns sol : ndarray
An array (of similar array type as x0) containing the final solution.Raises NoConvergence
When a solution was not found.

See also:

scipy.sparse.linalg.gmres, scipy.sparse.linalg.lgmres

Notes

This function implements a Newton-Krylov solver. The basic idea is to compute the inverse of the Jacobian
with an iterative Krylov method. These methods require only evaluating the Jacobian-vector products, which
are conveniently approximated by a finite difference:

𝐽𝑣 ≈ (𝑓(𝑥 + 𝜔 * 𝑣/|𝑣|) − 𝑓(𝑥))/𝜔

Due to the use of iterative matrix inverses, these methods can deal with large nonlinear problems.

Scipy’s scipy.sparse.linalg module offers a selection of Krylov solvers to choose from. The default
here is lgmres, which is a variant of restarted GMRES iteration that reuses some of the information obtained in
the previous Newton steps to invert Jacobians in subsequent steps.

For a review on Newton-Krylov methods, see for example [R151], and for the LGMRES sparse inverse method,
see [R152].

References

[R151], [R152]

scipy.optimize.anderson(F, xin, iter=None, alpha=None, w0=0.01, M=5, verbose=False,
maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None,
tol_norm=None, line_search=’armijo’, callback=None, **kw)

Find a root of a function, using (extended) Anderson mixing.

The Jacobian is formed by for a ‘best’ solution in the space spanned by last M vectors. As a result, only a MxM
matrix inversions and MxN multiplications are required. [Ey]

Parameters F : function(x) -> f
Function whose root to find; should take and return an array-like object.

x0 : array_like
Initial guess for the solution

alpha : float, optional
Initial guess for the Jacobian is (-1/alpha).

M : float, optional

784 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Number of previous vectors to retain. Defaults to 5.
w0 : float, optional

Regularization parameter for numerical stability. Compared to unity, good
values of the order of 0.01.

iter : int, optional
Number of iterations to make. If omitted (default), make as many as re-
quired to meet tolerances.

verbose : bool, optional
Print status to stdout on every iteration.

maxiter : int, optional
Maximum number of iterations to make. If more are needed to meet con-
vergence, NoConvergence is raised.

f_tol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is
6e-6.

f_rtol : float, optional
Relative tolerance for the residual. If omitted, not used.

x_tol : float, optional
Absolute minimum step size, as determined from the Jacobian approxima-
tion. If the step size is smaller than this, optimization is terminated as suc-
cessful. If omitted, not used.

x_rtol : float, optional
Relative minimum step size. If omitted, not used.

tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.

line_search : {None, ‘armijo’ (default), ‘wolfe’}, optional
Which type of a line search to use to determine the step size in the direction
given by the Jacobian approximation. Defaults to ‘armijo’.

callback : function, optional
Optional callback function. It is called on every iteration as
callback(x, f) where x is the current solution and f the correspond-
ing residual.Returns sol : ndarray
An array (of similar array type as x0) containing the final solution.Raises NoConvergence
When a solution was not found.

References

[Ey]

Simple iterations:

excitingmixing(F, xin[, iter, alpha, ...]) Find a root of a function, using a tuned diagonal Jacobian approximation.
linearmixing(F, xin[, iter, alpha, verbose, ...]) Find a root of a function, using a scalar Jacobian approximation.
diagbroyden(F, xin[, iter, alpha, verbose, ...]) Find a root of a function, using diagonal Broyden Jacobian approximation.

scipy.optimize.excitingmixing(F, xin, iter=None, alpha=None, alphamax=1.0, verbose=False,
maxiter=None, f_tol=None, f_rtol=None, x_tol=None,
x_rtol=None, tol_norm=None, line_search=’armijo’, call-
back=None, **kw)

Find a root of a function, using a tuned diagonal Jacobian approximation.

The Jacobian matrix is diagonal and is tuned on each iteration.

5.24. Optimization and root finding (scipy.optimize) 785

SciPy Reference Guide, Release 0.16.0

Warning: This algorithm may be useful for specific problems, but whether it will work may depend strongly
on the problem.

Parameters F : function(x) -> f
Function whose root to find; should take and return an array-like object.

x0 : array_like
Initial guess for the solution

alpha : float, optional
Initial Jacobian approximation is (-1/alpha).

alphamax : float, optional
The entries of the diagonal Jacobian are kept in the range [alpha,
alphamax].

iter : int, optional
Number of iterations to make. If omitted (default), make as many as re-
quired to meet tolerances.

verbose : bool, optional
Print status to stdout on every iteration.

maxiter : int, optional
Maximum number of iterations to make. If more are needed to meet con-
vergence, NoConvergence is raised.

f_tol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is
6e-6.

f_rtol : float, optional
Relative tolerance for the residual. If omitted, not used.

x_tol : float, optional
Absolute minimum step size, as determined from the Jacobian approxima-
tion. If the step size is smaller than this, optimization is terminated as suc-
cessful. If omitted, not used.

x_rtol : float, optional
Relative minimum step size. If omitted, not used.

tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.

line_search : {None, ‘armijo’ (default), ‘wolfe’}, optional
Which type of a line search to use to determine the step size in the direction
given by the Jacobian approximation. Defaults to ‘armijo’.

callback : function, optional
Optional callback function. It is called on every iteration as
callback(x, f) where x is the current solution and f the correspond-
ing residual.Returns sol : ndarray
An array (of similar array type as x0) containing the final solution.Raises NoConvergence
When a solution was not found.

scipy.optimize.linearmixing(F, xin, iter=None, alpha=None, verbose=False, max-
iter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None,
tol_norm=None, line_search=’armijo’, callback=None, **kw)

Find a root of a function, using a scalar Jacobian approximation.

Warning: This algorithm may be useful for specific problems, but whether it will work may depend strongly
on the problem.

Parameters F : function(x) -> f
Function whose root to find; should take and return an array-like object.

786 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

x0 : array_like
Initial guess for the solution

alpha : float, optional
The Jacobian approximation is (-1/alpha).

iter : int, optional
Number of iterations to make. If omitted (default), make as many as re-
quired to meet tolerances.

verbose : bool, optional
Print status to stdout on every iteration.

maxiter : int, optional
Maximum number of iterations to make. If more are needed to meet con-
vergence, NoConvergence is raised.

f_tol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is
6e-6.

f_rtol : float, optional
Relative tolerance for the residual. If omitted, not used.

x_tol : float, optional
Absolute minimum step size, as determined from the Jacobian approxima-
tion. If the step size is smaller than this, optimization is terminated as suc-
cessful. If omitted, not used.

x_rtol : float, optional
Relative minimum step size. If omitted, not used.

tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.

line_search : {None, ‘armijo’ (default), ‘wolfe’}, optional
Which type of a line search to use to determine the step size in the direction
given by the Jacobian approximation. Defaults to ‘armijo’.

callback : function, optional
Optional callback function. It is called on every iteration as
callback(x, f) where x is the current solution and f the correspond-
ing residual.Returns sol : ndarray
An array (of similar array type as x0) containing the final solution.Raises NoConvergence
When a solution was not found.

scipy.optimize.diagbroyden(F, xin, iter=None, alpha=None, verbose=False, maxiter=None,
f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None,
line_search=’armijo’, callback=None, **kw)

Find a root of a function, using diagonal Broyden Jacobian approximation.

The Jacobian approximation is derived from previous iterations, by retaining only the diagonal of Broyden
matrices.

Warning: This algorithm may be useful for specific problems, but whether it will work may depend strongly
on the problem.

Parameters F : function(x) -> f
Function whose root to find; should take and return an array-like object.

x0 : array_like
Initial guess for the solution

alpha : float, optional
Initial guess for the Jacobian is (-1/alpha).

iter : int, optional

5.24. Optimization and root finding (scipy.optimize) 787

SciPy Reference Guide, Release 0.16.0

Number of iterations to make. If omitted (default), make as many as re-
quired to meet tolerances.

verbose : bool, optional
Print status to stdout on every iteration.

maxiter : int, optional
Maximum number of iterations to make. If more are needed to meet con-
vergence, NoConvergence is raised.

f_tol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is
6e-6.

f_rtol : float, optional
Relative tolerance for the residual. If omitted, not used.

x_tol : float, optional
Absolute minimum step size, as determined from the Jacobian approxima-
tion. If the step size is smaller than this, optimization is terminated as suc-
cessful. If omitted, not used.

x_rtol : float, optional
Relative minimum step size. If omitted, not used.

tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.

line_search : {None, ‘armijo’ (default), ‘wolfe’}, optional
Which type of a line search to use to determine the step size in the direction
given by the Jacobian approximation. Defaults to ‘armijo’.

callback : function, optional
Optional callback function. It is called on every iteration as
callback(x, f) where x is the current solution and f the correspond-
ing residual.Returns sol : ndarray
An array (of similar array type as x0) containing the final solution.Raises NoConvergence
When a solution was not found.

Additional information on the nonlinear solvers

5.24.4 Linear Programming

Simplex Algorithm:

linprog(c[, A_ub, b_ub, A_eq, b_eq, bounds, ...]) Minimize a linear objective function subject to linear equality and inequality constraints.

scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None,
method=’simplex’, callback=None, options=None)

Minimize a linear objective function subject to linear equality and inequality constraints.

Linear Programming is intended to solve the following problem form:

Minimize: c^T * x
Subject to: A_ub * x <= b_ub

A_eq * x == b_eq

Parameters c : array_like
Coefficients of the linear objective function to be minimized.

A_ub : array_like, optional
2-D array which, when matrix-multiplied by x, gives the values of the
upper-bound inequality constraints at x.

788 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

b_ub : array_like, optional
1-D array of values representing the upper-bound of each inequality con-
straint (row) in A_ub.

A_eq : array_like, optional
2-D array which, when matrix-multiplied by x, gives the values of the equal-
ity constraints at x.

b_eq : array_like, optional
1-D array of values representing the RHS of each equality constraint (row)
in A_eq.

bounds : sequence, optional
(min, max) pairs for each element in x, defining the bounds on that
parameter. Use None for one of min or max when there is no bound in that
direction. By default bounds are (0, None) (non-negative) If a sequence
containing a single tuple is provided, then min and max will be applied to
all variables in the problem.

method : str, optional
Type of solver. At this time only ‘simplex’ is supported (see here).

callback : callable, optional
If a callback function is provide, it will be called within each iteration of
the simplex algorithm. The callback must have the signature callback(xk,
**kwargs) where xk is the current solution vector and kwargs is a dictionary
containing the following:

"tableau" : The current Simplex algorithm tableau
"nit" : The current iteration.
"pivot" : The pivot (row, column) used for the next iteration.
"phase" : Whether the algorithm is in Phase 1 or Phase 2.
"basis" : The indices of the columns of the basic variables.

options : dict, optional
A dictionary of solver options. All methods accept the following generic
options:

maxiter [int] Maximum number of iterations to per-
form.

disp [bool] Set to True to print convergence mes-
sages.

For method-specific options, see show_options(‘linprog’).Returns A scipy.optimize.OptimizeResult consisting of the following fields:
x [ndarray] The independent variable vector which optimizes

the linear programming problem.slack [ndarray] The values of the slack variables. Each slack vari-
able corresponds to an inequality constraint. If the slack is
zero, then the corresponding constraint is active.success [bool] Returns True if the algorithm succeeded in finding an
optimal solution.status [int] An integer representing the exit status of the optimiza-
tion:

0 : Optimization terminated successfully
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem appears to be unbounded

nit [int] The number of iterations performed.message [str] A string descriptor of the exit status of the optimization.

See also:

show_options
Additional options accepted by the solvers

5.24. Optimization and root finding (scipy.optimize) 789

SciPy Reference Guide, Release 0.16.0

Notes

This section describes the available solvers that can be selected by the ‘method’ parameter. The default method
is Simplex.

Method Simplex uses the Simplex algorithm (as it relates to Linear Programming, NOT the Nelder-Mead Sim-
plex) [R139], [R140]. This algorithm should be reasonably reliable and fast.

New in version 0.15.0.

References

[R139], [R140], [R141]

Examples

Consider the following problem:

Minimize: f = -1*x[0] + 4*x[1]
Subject to: -3*x[0] + 1*x[1] <= 6

1*x[0] + 2*x[1] <= 4
x[1] >= -3

where: -inf <= x[0] <= inf

This problem deviates from the standard linear programming problem. In standard form, linear programming
problems assume the variables x are non-negative. Since the variables don’t have standard bounds where 0 <=
x <= inf, the bounds of the variables must be explicitly set.

There are two upper-bound constraints, which can be expressed as

dot(A_ub, x) <= b_ub

The input for this problem is as follows:

>>> c = [-1, 4]
>>> A = [[-3, 1], [1, 2]]
>>> b = [6, 4]
>>> x0_bounds = (None, None)
>>> x1_bounds = (-3, None)
>>> from scipy.optimize import linprog
>>> res = linprog(c, A_ub=A, b_ub=b, bounds=(x0_bounds, x1_bounds),
... options={"disp": True})
>>> print(res)
Optimization terminated successfully.

Current function value: -11.428571
Iterations: 2

status: 0
success: True
fun: -11.428571428571429
x: array([-1.14285714, 2.57142857])
message: 'Optimization terminated successfully.'
nit: 2

Note the actual objective value is 11.428571. In this case we minimized the negative of the objective function.

The linprog function supports the following methods:

790 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

linprog(method=’Simplex’)

scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None,
method=’simplex’, callback=None, options={‘disp’: False, ‘bland’: False,
‘tol’: 1e-12, ‘maxiter’: 1000})

Solve the following linear programming problem via a two-phase simplex algorithm.

maximize: c^T * x
subject to: A_ub * x <= b_ub

A_eq * x == b_eq

Parameters c : array_like
Coefficients of the linear objective function to be maximized.

A_ub : array_like
2-D array which, when matrix-multiplied by x, gives the values of the
upper-bound inequality constraints at x.

b_ub : array_like
1-D array of values representing the upper-bound of each inequality con-
straint (row) in A_ub.

A_eq : array_like
2-D array which, when matrix-multiplied by x, gives the values of the equal-
ity constraints at x.

b_eq : array_like
1-D array of values representing the RHS of each equality constraint (row)
in A_eq.

bounds : array_like
The bounds for each independent variable in the solution, which can take
one of three forms:: None : The default bounds, all variables are non-
negative. (lb, ub) : If a 2-element sequence is provided, the same

lower bound (lb) and upper bound (ub) will be applied to all
variables.

[(lb_0, ub_0), (lb_1, ub_1), ...]
[If an n x 2 sequence is provided,] each variable x_i will be
bounded by lb[i] and ub[i].

Infinite bounds are specified using -np.inf (negative) or np.inf (positive).
callback : callable

If a callback function is provide, it will be called within each iteration of
the simplex algorithm. The callback must have the signature callback(xk,
**kwargs) where xk is the current solution vector and kwargs is a dictio-
nary containing the following:: “tableau” : The current Simplex algorithm
tableau “nit” : The current iteration. “pivot” : The pivot (row, column)
used for the next iteration. “phase” : Whether the algorithm is in Phase 1
or Phase 2. “bv” : A structured array containing a string representation of
each

basic variable and its current value.Returns A scipy.optimize.OptimizeResult consisting of the following fields:

x : ndarray
The independent variable vector which optimizes the linear
programming problem.

slack : ndarray
The values of the slack variables. Each slack variable corresponds
to an inequality constraint. If the slack is zero, then the
corresponding constraint is active.

success : bool

5.24. Optimization and root finding (scipy.optimize) 791

SciPy Reference Guide, Release 0.16.0

Returns True if the algorithm succeeded in finding an optimal
solution.

status : int
An integer representing the exit status of the optimization::
0 : Optimization terminated successfully
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem appears to be unbounded

nit : int
The number of iterations performed.

message : str
A string descriptor of the exit status of the optimization.

See also:

For documentation for the rest of the parameters, see scipy.optimize.linprog

Options maxiter : int
The maximum number of iterations to perform.

disp : bool
If True, print exit status message to sys.stdout

tol : float
The tolerance which determines when a solution is “close enough” to zero
in Phase 1 to be considered a basic feasible solution or close enough to
positive to to serve as an optimal solution.

bland : bool
If True, use Bland’s anti-cycling rule [3] to choose pivots to prevent cycling.
If False, choose pivots which should lead to a converged solution more
quickly. The latter method is subject to cycling (non-convergence) in rare
instances.

References

[R502], [R503], [R504]

Examples

Consider the following problem:

Minimize: f = -1*x[0] + 4*x[1]
Subject to: -3*x[0] + 1*x[1] <= 6

1*x[0] + 2*x[1] <= 4
x[1] >= -3

where: -inf <= x[0] <= inf

This problem deviates from the standard linear programming problem. In standard form, linear programming
problems assume the variables x are non-negative. Since the variables don’t have standard bounds where 0 <=
x <= inf, the bounds of the variables must be explicitly set.

There are two upper-bound constraints, which can be expressed as

dot(A_ub, x) <= b_ub

The input for this problem is as follows:

792 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> from scipy.optimize import linprog
>>> c = [-1, 4]
>>> A = [[-3, 1], [1, 2]]
>>> b = [6, 4]
>>> x0_bnds = (None, None)
>>> x1_bnds = (-3, None)
>>> res = linprog(c, A, b, bounds=(x0_bnds, x1_bnds))
>>> print(res)
Optimization terminated successfully.

Current function value: -22.000000
Iterations: 1

status: 0
x: array([10., -3.])
slack: array([39., 0.])
nit: 1
message: 'Optimization terminated successfully.'
fun: -22.0
success: True

5.24.5 Utilities

approx_fprime(xk, f, epsilon, *args) Finite-difference approximation of the gradient of a scalar function.
bracket(func[, xa, xb, args, grow_limit, ...]) Bracket the minimum of the function.
check_grad(func, grad, x0, *args, **kwargs) Check the correctness of a gradient function by comparing it against a (forward) finite-difference approximation of the gradient.
line_search(f, myfprime, xk, pk[, gfk, ...]) Find alpha that satisfies strong Wolfe conditions.
show_options([solver, method, disp]) Show documentation for additional options of optimization solvers.
LbfgsInvHessProduct(sk, yk) Linear operator for the L-BFGS approximate inverse Hessian.

scipy.optimize.approx_fprime(xk, f, epsilon, *args)
Finite-difference approximation of the gradient of a scalar function.

Parameters xk : array_like
The coordinate vector at which to determine the gradient of f.

f : callable
The function of which to determine the gradient (partial derivatives).
Should take xk as first argument, other arguments to f can be supplied in
*args. Should return a scalar, the value of the function at xk.

epsilon : array_like
Increment to xk to use for determining the function gradient. If a scalar,
uses the same finite difference delta for all partial derivatives. If an array,
should contain one value per element of xk.

*args : args, optional
Any other arguments that are to be passed to f.Returns grad : ndarray
The partial derivatives of f to xk.

See also:

check_gradCheck correctness of gradient function against approx_fprime.

Notes

The function gradient is determined by the forward finite difference formula:

5.24. Optimization and root finding (scipy.optimize) 793

SciPy Reference Guide, Release 0.16.0

f(xk[i] + epsilon[i]) - f(xk[i])
f'[i] = ---------------------------------

epsilon[i]

The main use of approx_fprime is in scalar function optimizers like fmin_bfgs, to determine numerically
the Jacobian of a function.

Examples

>>> from scipy import optimize
>>> def func(x, c0, c1):
... "Coordinate vector `x` should be an array of size two."
... return c0 * x[0]**2 + c1*x[1]**2

>>> x = np.ones(2)
>>> c0, c1 = (1, 200)
>>> eps = np.sqrt(np.finfo(np.float).eps)
>>> optimize.approx_fprime(x, func, [eps, np.sqrt(200) * eps], c0, c1)
array([2. , 400.00004198])

scipy.optimize.bracket(func, xa=0.0, xb=1.0, args=(), grow_limit=110.0, maxiter=1000)
Bracket the minimum of the function.

Given a function and distinct initial points, search in the downhill direction (as defined by the initital points) and
return new points xa, xb, xc that bracket the minimum of the function f(xa) > f(xb) < f(xc). It doesn’t always
mean that obtained solution will satisfy xa<=x<=xb

Parameters func : callable f(x,*args)
Objective function to minimize.

xa, xb : float, optional
Bracketing interval. Defaults xa to 0.0, and xb to 1.0.

args : tuple, optional
Additional arguments (if present), passed to func.

grow_limit : float, optional
Maximum grow limit. Defaults to 110.0

maxiter : int, optional
Maximum number of iterations to perform. Defaults to 1000.Returns xa, xb, xc : float
Bracket.

fa, fb, fc : float
Objective function values in bracket.

funcalls : int
Number of function evaluations made.

scipy.optimize.check_grad(func, grad, x0, *args, **kwargs)
Check the correctness of a gradient function by comparing it against a (forward) finite-difference approximation
of the gradient.

Parameters func : callable func(x0, *args)
Function whose derivative is to be checked.

grad : callable grad(x0, *args)
Gradient of func.

x0 : ndarray
Points to check grad against forward difference approximation of grad us-
ing func.

args : *args, optional

794 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Extra arguments passed to func and grad.
epsilon : float, optional

Step size used for the finite difference approximation. It defaults to
sqrt(numpy.finfo(float).eps), which is approximately 1.49e-
08.Returns err : float
The square root of the sum of squares (i.e. the 2-norm) of the difference
between grad(x0, *args) and the finite difference approximation of
grad using func at the points x0.

See also:

approx_fprime

Examples

>>> def func(x):
... return x[0]**2 - 0.5 * x[1]**3
>>> def grad(x):
... return [2 * x[0], -1.5 * x[1]**2]
>>> from scipy.optimize import check_grad
>>> check_grad(func, grad, [1.5, -1.5])
2.9802322387695312e-08

scipy.optimize.line_search(f, myfprime, xk, pk, gfk=None, old_fval=None, old_old_fval=None,
args=(), c1=0.0001, c2=0.9, amax=50)

Find alpha that satisfies strong Wolfe conditions.

Parameters f : callable f(x,*args)
Objective function.

myfprime : callable f’(x,*args)
Objective function gradient.

xk : ndarray
Starting point.

pk : ndarray
Search direction.

gfk : ndarray, optional
Gradient value for x=xk (xk being the current parameter estimate). Will be
recomputed if omitted.

old_fval : float, optional
Function value for x=xk. Will be recomputed if omitted.

old_old_fval : float, optional
Function value for the point preceding x=xk

args : tuple, optional
Additional arguments passed to objective function.

c1 : float, optional
Parameter for Armijo condition rule.

c2 : float, optional
Parameter for curvature condition rule.

amax : float, optional
Maximum step sizeReturns alpha : float or None
Alpha for which x_new = x0 + alpha * pk, or None if the line
search algorithm did not converge.

fc : int
Number of function evaluations made.

gc : int

5.24. Optimization and root finding (scipy.optimize) 795

SciPy Reference Guide, Release 0.16.0

Number of gradient evaluations made.
new_fval : float or None

New function value f(x_new)=f(x0+alpha*pk), or None if the line
search algorithm did not converge.

old_fval : float
Old function value f(x0).

new_slope : float or None
The local slope along the search direction at the new value
<myfprime(x_new), pk>, or None if the line search algorithm
did not converge.

Notes

Uses the line search algorithm to enforce strong Wolfe conditions. See Wright and Nocedal, ‘Numerical Opti-
mization’, 1999, pg. 59-60.

For the zoom phase it uses an algorithm by [...].

scipy.optimize.show_options(solver=None, method=None, disp=True)
Show documentation for additional options of optimization solvers.

These are method-specific options that can be supplied through the options dict.

Parameters solver : str
Type of optimization solver. One of ‘minimize’, ‘minimize_scalar’, ‘root’,
or ‘linprog’.

method : str, optional
If not given, shows all methods of the specified solver. Otherwise, show
only the options for the specified method. Valid values corresponds to meth-
ods’ names of respective solver (e.g. ‘BFGS’ for ‘minimize’).

disp : bool, optional
Whether to print the result rather than returning it.Returns text
Either None (for disp=False) or the text string (disp=True)

Notes

The solver-specific methods are:

scipy.optimize.minimize
•Nelder-Mead
•Powell
•CG
•BFGS
•Newton-CG
•L-BFGS-B
•TNC
•COBYLA
•SLSQP
•dogleg
•trust-ncg

scipy.optimize.root
•hybr
•lm
•broyden1
•broyden2
•anderson
•linearmixing

796 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

•diagbroyden
•excitingmixing
•krylov
•df-sane

scipy.optimize.minimize_scalar
•brent
•golden
•bounded

scipy.optimize.linprog
•simplex

class scipy.optimize.LbfgsInvHessProduct(sk, yk)
Linear operator for the L-BFGS approximate inverse Hessian.

This operator computes the product of a vector with the approximate inverse of the Hessian of the objective
function, using the L-BFGS limited memory approximation to the inverse Hessian, accumulated during the
optimization.

Parameters sk : array_like, shape=(n_corr, n)
Array of n_corr most recent updates to the solution vector. (See [1]).

yk : array_like, shape=(n_corr, n)
Array of n_corr most recent updates to the gradient. (See [1]).

References

[R126]

Attributes

H Hermitian adjoint.
T Transpose this linear operator.

LbfgsInvHessProduct.H
Hermitian adjoint.

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex
matrix, the Hermitian adjoint is equal to the conjugate transpose.

Can be abbreviated self.H instead of self.adjoint().

Returns A_H : LinearOperator
Hermitian adjoint of self.

LbfgsInvHessProduct.T
Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of
self.transpose().

Methods

__call__(x)
adjoint() Hermitian adjoint.
dot(x) Matrix-matrix or matrix-vector multiplication.
matmat(X) Matrix-matrix multiplication.
matvec(x) Matrix-vector multiplication.
rmatvec(x) Adjoint matrix-vector multiplication.

Continued on next page

5.24. Optimization and root finding (scipy.optimize) 797

SciPy Reference Guide, Release 0.16.0

Table 5.112 – continued from previous page
todense() Return a dense array representation of this operator.
transpose() Transpose this linear operator.

LbfgsInvHessProduct.__call__(x)

LbfgsInvHessProduct.adjoint()
Hermitian adjoint.

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex
matrix, the Hermitian adjoint is equal to the conjugate transpose.

Can be abbreviated self.H instead of self.adjoint().

Returns A_H : LinearOperator
Hermitian adjoint of self.

LbfgsInvHessProduct.dot(x)
Matrix-matrix or matrix-vector multiplication.

Parameters x : array_like
1-d or 2-d array, representing a vector or matrix.Returns Ax : array
1-d or 2-d array (depending on the shape of x) that represents the
result of applying this linear operator on x.

LbfgsInvHessProduct.matmat(X)
Matrix-matrix multiplication.

Performs the operation y=A*X where A is an MxN linear operator and X dense N*K matrix or ndarray.

Parameters X : {matrix, ndarray}
An array with shape (N,K).Returns Y : {matrix, ndarray}
A matrix or ndarray with shape (M,K) depending on the type of the
X argument.

Notes

This matmat wraps any user-specified matmat routine or overridden _matmat method to ensure that y has
the correct type.

LbfgsInvHessProduct.matvec(x)
Matrix-vector multiplication.

Performs the operation y=A*x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters x : {matrix, ndarray}
An array with shape (N,) or (N,1).Returns y : {matrix, ndarray}
A matrix or ndarray with shape (M,) or (M,1) depending on the type
and shape of the x argument.

Notes

This matvec wraps the user-specified matvec routine or overridden _matvec method to ensure that y has
the correct shape and type.

LbfgsInvHessProduct.rmatvec(x)
Adjoint matrix-vector multiplication.

798 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d
array.

Parameters x : {matrix, ndarray}
An array with shape (M,) or (M,1).Returns y : {matrix, ndarray}
A matrix or ndarray with shape (N,) or (N,1) depending on the type
and shape of the x argument.

Notes

This rmatvec wraps the user-specified rmatvec routine or overridden _rmatvec method to ensure that y
has the correct shape and type.

LbfgsInvHessProduct.todense()
Return a dense array representation of this operator.

Returns arr : ndarray, shape=(n, n)
An array with the same shape and containing the same data repre-
sented by this LinearOperator.

LbfgsInvHessProduct.transpose()
Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of
self.transpose().

This is a collection of general-purpose nonlinear multidimensional solvers. These solvers find x for which F(x) = 0.
Both x and F can be multidimensional.

5.25 Routines

Large-scale nonlinear solvers:

newton_krylov(F, xin[, iter, rdiff, method, ...]) Find a root of a function, using Krylov approximation for inverse Jacobian.
anderson(F, xin[, iter, alpha, w0, M, ...]) Find a root of a function, using (extended) Anderson mixing.

General nonlinear solvers:

broyden1(F, xin[, iter, alpha, ...]) Find a root of a function, using Broyden’s first Jacobian approximation.
broyden2(F, xin[, iter, alpha, ...]) Find a root of a function, using Broyden’s second Jacobian approximation.

Simple iterations:

excitingmixing(F, xin[, iter, alpha, ...]) Find a root of a function, using a tuned diagonal Jacobian approximation.
linearmixing(F, xin[, iter, alpha, verbose, ...]) Find a root of a function, using a scalar Jacobian approximation.
diagbroyden(F, xin[, iter, alpha, verbose, ...]) Find a root of a function, using diagonal Broyden Jacobian approximation.

5.25. Routines 799

SciPy Reference Guide, Release 0.16.0

5.26 Examples

5.26.1 Small problem

>>> def F(x):
... return np.cos(x) + x[::-1] - [1, 2, 3, 4]
>>> import scipy.optimize
>>> x = scipy.optimize.broyden1(F, [1,1,1,1], f_tol=1e-14)
>>> x
array([4.04674914, 3.91158389, 2.71791677, 1.61756251])
>>> np.cos(x) + x[::-1]
array([1., 2., 3., 4.])

5.26.2 Large problem

Suppose that we needed to solve the following integrodifferential equation on the square [0, 1] × [0, 1]:

∇2𝑃 = 10

(︂∫︁ 1

0

∫︁ 1

0

cosh(𝑃) 𝑑𝑥 𝑑𝑦

)︂2

with 𝑃 (𝑥, 1) = 1 and 𝑃 = 0 elsewhere on the boundary of the square.

The solution can be found using the newton_krylov solver:

import numpy as np
from scipy.optimize import newton_krylov
from numpy import cosh, zeros_like, mgrid, zeros

parameters
nx, ny = 75, 75
hx, hy = 1./(nx-1), 1./(ny-1)

P_left, P_right = 0, 0
P_top, P_bottom = 1, 0

def residual(P):
d2x = zeros_like(P)
d2y = zeros_like(P)

d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2]) / hx/hx
d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx
d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx

d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy
d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy
d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy

return d2x + d2y - 10*cosh(P).mean()**2

solve
guess = zeros((nx, ny), float)
sol = newton_krylov(residual, guess, method='lgmres', verbose=1)
print('Residual: %g' % abs(residual(sol)).max())

visualize

800 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

import matplotlib.pyplot as plt
x, y = mgrid[0:1:(nx*1j), 0:1:(ny*1j)]
plt.pcolor(x, y, sol)
plt.colorbar()
plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

5.27 Signal processing (scipy.signal)

5.27.1 Convolution

convolve(in1, in2[, mode]) Convolve two N-dimensional arrays.
correlate(in1, in2[, mode]) Cross-correlate two N-dimensional arrays.
fftconvolve(in1, in2[, mode]) Convolve two N-dimensional arrays using FFT.
convolve2d(in1, in2[, mode, boundary, fillvalue]) Convolve two 2-dimensional arrays.
correlate2d(in1, in2[, mode, boundary, ...]) Cross-correlate two 2-dimensional arrays.
sepfir2d((input, hrow, hcol) -> output) Description:

scipy.signal.convolve(in1, in2, mode=’full’)
Convolve two N-dimensional arrays.

Convolve in1 and in2, with the output size determined by the mode argument.

Parameters in1 : array_like
First input.

in2 : array_like
Second input. Should have the same number of dimensions as in1; if sizes
of in1 and in2 are not equal then in1 has to be the larger array.

mode : str {‘full’, ‘valid’, ‘same’}, optional
A string indicating the size of the output:
full The output is the full discrete linear convolution of the in-

puts. (Default)
valid The output consists only of those elements that do not rely

on the zero-padding.

5.27. Signal processing (scipy.signal) 801

SciPy Reference Guide, Release 0.16.0

same The output is the same size as in1, centered with respect to
the ‘full’ output.Returns convolve : array

An N-dimensional array containing a subset of the discrete linear convolu-
tion of in1 with in2.

See also:

numpy.polymul
performs polynomial multiplication (same operation, but also accepts poly1d objects)

Examples

Smooth a square pulse using a Hann window:

>>> from scipy import signal
>>> sig = np.repeat([0., 1., 0.], 100)
>>> win = signal.hann(50)
>>> filtered = signal.convolve(sig, win, mode='same') / sum(win)

>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_win, ax_filt) = plt.subplots(3, 1, sharex=True)
>>> ax_orig.plot(sig)
>>> ax_orig.set_title('Original pulse')
>>> ax_orig.margins(0, 0.1)
>>> ax_win.plot(win)
>>> ax_win.set_title('Filter impulse response')
>>> ax_win.margins(0, 0.1)
>>> ax_filt.plot(filtered)
>>> ax_filt.set_title('Filtered signal')
>>> ax_filt.margins(0, 0.1)
>>> fig.tight_layout()
>>> fig.show()

0.00.20.40.60.81.0
Original pulse

0.00.20.40.60.81.0
Filter impulse response

0 50 100 150 200 250
0.00.20.40.60.81.0

Filtered signal

scipy.signal.correlate(in1, in2, mode=’full’)
Cross-correlate two N-dimensional arrays.

Cross-correlate in1 and in2, with the output size determined by the mode argument.

802 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.polymul.html#numpy.polymul

SciPy Reference Guide, Release 0.16.0

Parameters in1 : array_like
First input.

in2 : array_like
Second input. Should have the same number of dimensions as in1; if sizes
of in1 and in2 are not equal then in1 has to be the larger array.

mode : str {‘full’, ‘valid’, ‘same’}, optional
A string indicating the size of the output:
full The output is the full discrete linear cross-correlation of the

inputs. (Default)
valid The output consists only of those elements that do not rely

on the zero-padding.
same The output is the same size as in1, centered with respect to

the ‘full’ output.Returns correlate : array
An N-dimensional array containing a subset of the discrete linear cross-
correlation of in1 with in2.

Notes

The correlation z of two d-dimensional arrays x and y is defined as:

z[...,k,...] = sum[..., i_l, ...]
x[..., i_l,...] * conj(y[..., i_l + k,...])

Examples

Implement a matched filter using cross-correlation, to recover a signal that has passed through a noisy channel.

>>> from scipy import signal
>>> sig = np.repeat([0., 1., 1., 0., 1., 0., 0., 1.], 128)
>>> sig_noise = sig + np.random.randn(len(sig))
>>> corr = signal.correlate(sig_noise, np.ones(128), mode='same') / 128

>>> import matplotlib.pyplot as plt
>>> clock = np.arange(64, len(sig), 128)
>>> fig, (ax_orig, ax_noise, ax_corr) = plt.subplots(3, 1, sharex=True)
>>> ax_orig.plot(sig)
>>> ax_orig.plot(clock, sig[clock], 'ro')
>>> ax_orig.set_title('Original signal')
>>> ax_noise.plot(sig_noise)
>>> ax_noise.set_title('Signal with noise')
>>> ax_corr.plot(corr)
>>> ax_corr.plot(clock, corr[clock], 'ro')
>>> ax_corr.axhline(0.5, ls=':')
>>> ax_corr.set_title('Cross-correlated with rectangular pulse')
>>> ax_orig.margins(0, 0.1)
>>> fig.tight_layout()
>>> fig.show()

5.27. Signal processing (scipy.signal) 803

SciPy Reference Guide, Release 0.16.0

0.00.20.40.60.81.0
Original signal

32
10
12
34

Signal with noise

0 200 400 600 800 1000
0.40.20.00.20.40.60.81.01.2

Cross-correlated with rectangular pulse

scipy.signal.fftconvolve(in1, in2, mode=’full’)
Convolve two N-dimensional arrays using FFT.

Convolve in1 and in2 using the fast Fourier transform method, with the output size determined by the mode
argument.

This is generally much faster than convolve for large arrays (n > ~500), but can be slower when only a few
output values are needed, and can only output float arrays (int or object array inputs will be cast to float).

Parameters in1 : array_like
First input.

in2 : array_like
Second input. Should have the same number of dimensions as in1; if sizes
of in1 and in2 are not equal then in1 has to be the larger array.

mode : str {‘full’, ‘valid’, ‘same’}, optional
A string indicating the size of the output:
full The output is the full discrete linear convolution of the in-

puts. (Default)
valid The output consists only of those elements that do not rely

on the zero-padding.
same The output is the same size as in1, centered with respect to

the ‘full’ output.Returns out : array
An N-dimensional array containing a subset of the discrete linear convolu-
tion of in1 with in2.

Examples

Autocorrelation of white noise is an impulse. (This is at least 100 times as fast as convolve.)

>>> from scipy import signal
>>> sig = np.random.randn(1000)
>>> autocorr = signal.fftconvolve(sig, sig[::-1], mode='full')

>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_mag) = plt.subplots(2, 1)
>>> ax_orig.plot(sig)
>>> ax_orig.set_title('White noise')
>>> ax_mag.plot(np.arange(-len(sig)+1,len(sig)), autocorr)

804 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> ax_mag.set_title('Autocorrelation')
>>> fig.tight_layout()
>>> fig.show()

Gaussian blur implemented using FFT convolution. Notice the dark borders around the image, due to the zero-
padding beyond its boundaries. The convolve2d function allows for other types of image boundaries, but is
far slower.

>>> from scipy import misc
>>> lena = misc.lena()
>>> kernel = np.outer(signal.gaussian(70, 8), signal.gaussian(70, 8))
>>> blurred = signal.fftconvolve(lena, kernel, mode='same')

>>> fig, (ax_orig, ax_kernel, ax_blurred) = plt.subplots(1, 3)
>>> ax_orig.imshow(lena, cmap='gray')
>>> ax_orig.set_title('Original')
>>> ax_orig.set_axis_off()
>>> ax_kernel.imshow(kernel, cmap='gray')
>>> ax_kernel.set_title('Gaussian kernel')
>>> ax_kernel.set_axis_off()
>>> ax_blurred.imshow(blurred, cmap='gray')
>>> ax_blurred.set_title('Blurred')
>>> ax_blurred.set_axis_off()
>>> fig.show()

0 200 400 600 800 1000
4
3
2
1
0
1
2
3
4

White noise

1000 500 0 500 1000
200

0
200
400
600
800

1000
1200

Autocorrelation

5.27. Signal processing (scipy.signal) 805

SciPy Reference Guide, Release 0.16.0

Original Gaussian kernel Blurred

scipy.signal.convolve2d(in1, in2, mode=’full’, boundary=’fill’, fillvalue=0)
Convolve two 2-dimensional arrays.

Convolve in1 and in2 with output size determined by mode, and boundary conditions determined by boundary
and fillvalue.

Parameters in1, in2 : array_like
Two-dimensional input arrays to be convolved.

mode : str {‘full’, ‘valid’, ‘same’}, optional
A string indicating the size of the output:
full The output is the full discrete linear convolution of the in-

puts. (Default)
valid The output consists only of those elements that do not rely

on the zero-padding.
same The output is the same size as in1, centered with respect to

the ‘full’ output.
boundary : str {‘fill’, ‘wrap’, ‘symm’}, optional

A flag indicating how to handle boundaries:
fill pad input arrays with fillvalue. (default)
wrap circular boundary conditions.
symm symmetrical boundary conditions.

fillvalue : scalar, optional
Value to fill pad input arrays with. Default is 0.Returns out : ndarray
A 2-dimensional array containing a subset of the discrete linear convolution
of in1 with in2.

Examples

Compute the gradient of an image by 2D convolution with a complex Scharr operator. (Horizontal operator is
real, vertical is imaginary.) Use symmetric boundary condition to avoid creating edges at the image boundaries.

>>> from scipy import signal
>>> from scipy import misc
>>> lena = misc.lena()
>>> scharr = np.array([[-3-3j, 0-10j, +3 -3j],
... [-10+0j, 0+ 0j, +10 +0j],
... [-3+3j, 0+10j, +3 +3j]]) # Gx + j*Gy
>>> grad = signal.convolve2d(lena, scharr, boundary='symm', mode='same')

806 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_mag, ax_ang) = plt.subplots(1, 3)
>>> ax_orig.imshow(lena, cmap='gray')
>>> ax_orig.set_title('Original')
>>> ax_orig.set_axis_off()
>>> ax_mag.imshow(np.absolute(grad), cmap='gray')
>>> ax_mag.set_title('Gradient magnitude')
>>> ax_mag.set_axis_off()
>>> ax_ang.imshow(np.angle(grad), cmap='hsv') # hsv is cyclic, like angles
>>> ax_ang.set_title('Gradient orientation')
>>> ax_ang.set_axis_off()
>>> fig.show()

Original Gradient magnitude Gradient orientation

scipy.signal.correlate2d(in1, in2, mode=’full’, boundary=’fill’, fillvalue=0)
Cross-correlate two 2-dimensional arrays.

Cross correlate in1 and in2 with output size determined by mode, and boundary conditions determined by
boundary and fillvalue.

Parameters in1, in2 : array_like
Two-dimensional input arrays to be convolved.

mode : str {‘full’, ‘valid’, ‘same’}, optional
A string indicating the size of the output:
full The output is the full discrete linear cross-correlation of the

inputs. (Default)
valid The output consists only of those elements that do not rely

on the zero-padding.
same The output is the same size as in1, centered with respect to

the ‘full’ output.
boundary : str {‘fill’, ‘wrap’, ‘symm’}, optional

A flag indicating how to handle boundaries:
fill pad input arrays with fillvalue. (default)
wrap circular boundary conditions.
symm symmetrical boundary conditions.

fillvalue : scalar, optional
Value to fill pad input arrays with. Default is 0.Returns correlate2d : ndarray
A 2-dimensional array containing a subset of the discrete linear cross-
correlation of in1 with in2.

5.27. Signal processing (scipy.signal) 807

SciPy Reference Guide, Release 0.16.0

Examples

Use 2D cross-correlation to find the location of a template in a noisy image:

>>> from scipy import signal
>>> from scipy import misc
>>> lena = misc.lena() - misc.lena().mean()
>>> template = np.copy(lena[235:295, 310:370]) # right eye
>>> template -= template.mean()
>>> lena = lena + np.random.randn(*lena.shape) * 50 # add noise
>>> corr = signal.correlate2d(lena, template, boundary='symm', mode='same')
>>> y, x = np.unravel_index(np.argmax(corr), corr.shape) # find the match

>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_template, ax_corr) = plt.subplots(1, 3)
>>> ax_orig.imshow(lena, cmap='gray')
>>> ax_orig.set_title('Original')
>>> ax_orig.set_axis_off()
>>> ax_template.imshow(template, cmap='gray')
>>> ax_template.set_title('Template')
>>> ax_template.set_axis_off()
>>> ax_corr.imshow(corr, cmap='gray')
>>> ax_corr.set_title('Cross-correlation')
>>> ax_corr.set_axis_off()
>>> ax_orig.plot(x, y, 'ro')
>>> fig.show()

Original Template Cross-correlation

scipy.signal.sepfir2d(input, hrow, hcol)→ output
Description:

Convolve the rank-2 input array with the separable filter defined by the rank-1 arrays hrow, and hcol.
Mirror symmetric boundary conditions are assumed. This function can be used to find an image given its
B-spline representation.

5.27.2 B-splines

808 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

bspline(x, n) B-spline basis function of order n.
cubic(x) A cubic B-spline.
quadratic(x) A quadratic B-spline.
gauss_spline(x, n) Gaussian approximation to B-spline basis function of order n.
cspline1d(signal[, lamb]) Compute cubic spline coefficients for rank-1 array.
qspline1d(signal[, lamb]) Compute quadratic spline coefficients for rank-1 array.
cspline2d((input {, lambda, precision}) -> ck) Description:
qspline2d((input {, lambda, precision}) -> qk) Description:
cspline1d_eval(cj, newx[, dx, x0]) Evaluate a spline at the new set of points.
qspline1d_eval(cj, newx[, dx, x0]) Evaluate a quadratic spline at the new set of points.
spline_filter(Iin[, lmbda]) Smoothing spline (cubic) filtering of a rank-2 array.

scipy.signal.bspline(x, n)
B-spline basis function of order n.

Notes

Uses numpy.piecewise and automatic function-generator.

scipy.signal.cubic(x)
A cubic B-spline.

This is a special case of bspline, and equivalent to bspline(x, 3).

scipy.signal.quadratic(x)
A quadratic B-spline.

This is a special case of bspline, and equivalent to bspline(x, 2).

scipy.signal.gauss_spline(x, n)
Gaussian approximation to B-spline basis function of order n.

scipy.signal.cspline1d(signal, lamb=0.0)
Compute cubic spline coefficients for rank-1 array.

Find the cubic spline coefficients for a 1-D signal assuming mirror-symmetric boundary conditions. To obtain
the signal back from the spline representation mirror-symmetric-convolve these coefficients with a length 3 FIR
window [1.0, 4.0, 1.0]/ 6.0 .

Parameters signal : ndarray
A rank-1 array representing samples of a signal.

lamb : float, optional
Smoothing coefficient, default is 0.0.Returns c : ndarray
Cubic spline coefficients.

scipy.signal.qspline1d(signal, lamb=0.0)
Compute quadratic spline coefficients for rank-1 array.

Find the quadratic spline coefficients for a 1-D signal assuming mirror-symmetric boundary conditions. To
obtain the signal back from the spline representation mirror-symmetric-convolve these coefficients with a length
3 FIR window [1.0, 6.0, 1.0]/ 8.0 .

Parameters signal : ndarray
A rank-1 array representing samples of a signal.

lamb : float, optional
Smoothing coefficient (must be zero for now).Returns c : ndarray
Cubic spline coefficients.

5.27. Signal processing (scipy.signal) 809

SciPy Reference Guide, Release 0.16.0

scipy.signal.cspline2d(input {, lambda, precision})→ ck
Description:

Return the third-order B-spline coefficients over a regularly spacedi input grid for the two-dimensional
input image. The lambda argument specifies the amount of smoothing. The precision argument allows
specifying the precision used when computing the infinite sum needed to apply mirror- symmetric bound-
ary conditions.

scipy.signal.qspline2d(input {, lambda, precision})→ qk
Description:

Return the second-order B-spline coefficients over a regularly spaced input grid for the two-dimensional
input image. The lambda argument specifies the amount of smoothing. The precision argument allows
specifying the precision used when computing the infinite sum needed to apply mirror- symmetric bound-
ary conditions.

scipy.signal.cspline1d_eval(cj, newx, dx=1.0, x0=0)
Evaluate a spline at the new set of points.

dx is the old sample-spacing while x0 was the old origin. In other-words the old-sample points (knot-points) for
which the cj represent spline coefficients were at equally-spaced points of:

oldx = x0 + j*dx j=0...N-1, with N=len(cj)

Edges are handled using mirror-symmetric boundary conditions.

scipy.signal.qspline1d_eval(cj, newx, dx=1.0, x0=0)
Evaluate a quadratic spline at the new set of points.

dx is the old sample-spacing while x0 was the old origin. In other-words the old-sample points (knot-points) for
which the cj represent spline coefficients were at equally-spaced points of:

oldx = x0 + j*dx j=0...N-1, with N=len(cj)

Edges are handled using mirror-symmetric boundary conditions.

scipy.signal.spline_filter(Iin, lmbda=5.0)
Smoothing spline (cubic) filtering of a rank-2 array.

Filter an input data set, Iin, using a (cubic) smoothing spline of fall-off lmbda.

5.27.3 Filtering

order_filter(a, domain, rank) Perform an order filter on an N-dimensional array.
medfilt(volume[, kernel_size]) Perform a median filter on an N-dimensional array.
medfilt2d(input[, kernel_size]) Median filter a 2-dimensional array.
wiener(im[, mysize, noise]) Perform a Wiener filter on an N-dimensional array.
symiirorder1((input, c0, z1 {, ...) Implement a smoothing IIR filter with mirror-symmetric boundary conditions using a cascade of first-order sections.
symiirorder2((input, r, omega {, ...) Implement a smoothing IIR filter with mirror-symmetric boundary conditions using a cascade of second-order sections.
lfilter(b, a, x[, axis, zi]) Filter data along one-dimension with an IIR or FIR filter.
lfiltic(b, a, y[, x]) Construct initial conditions for lfilter.
lfilter_zi(b, a) Compute an initial state zi for the lfilter function that corresponds to the steady state of the step response.
filtfilt(b, a, x[, axis, padtype, padlen, ...]) A forward-backward filter.
savgol_filter(x, window_length, polyorder[, ...]) Apply a Savitzky-Golay filter to an array.
deconvolve(signal, divisor) Deconvolves divisor out of signal.
sosfilt(sos, x[, axis, zi]) Filter data along one dimension using cascaded second-order sections

Continued on next page

810 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.118 – continued from previous page
sosfilt_zi(sos) Compute an initial state zi for the sosfilt function that corresponds to the steady state of the step response.
hilbert(x[, N, axis]) Compute the analytic signal, using the Hilbert transform.
hilbert2(x[, N]) Compute the ‘2-D’ analytic signal of x
decimate(x, q[, n, ftype, axis]) Downsample the signal by using a filter.
detrend(data[, axis, type, bp]) Remove linear trend along axis from data.
resample(x, num[, t, axis, window]) Resample x to num samples using Fourier method along the given axis.

scipy.signal.order_filter(a, domain, rank)
Perform an order filter on an N-dimensional array.

Perform an order filter on the array in. The domain argument acts as a mask centered over each pixel. The
non-zero elements of domain are used to select elements surrounding each input pixel which are placed in a list.
The list is sorted, and the output for that pixel is the element corresponding to rank in the sorted list.

Parameters a : ndarray
The N-dimensional input array.

domain : array_like
A mask array with the same number of dimensions as in. Each dimension
should have an odd number of elements.

rank : int
A non-negative integer which selects the element from the sorted list (0
corresponds to the smallest element, 1 is the next smallest element, etc.).Returns out : ndarray
The results of the order filter in an array with the same shape as in.

Examples

>>> from scipy import signal
>>> x = np.arange(25).reshape(5, 5)
>>> domain = np.identity(3)
>>> x
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])

>>> signal.order_filter(x, domain, 0)
array([[0., 0., 0., 0., 0.],

[0., 0., 1., 2., 0.],
[0., 5., 6., 7., 0.],
[0., 10., 11., 12., 0.],
[0., 0., 0., 0., 0.]])

>>> signal.order_filter(x, domain, 2)
array([[6., 7., 8., 9., 4.],

[11., 12., 13., 14., 9.],
[16., 17., 18., 19., 14.],
[21., 22., 23., 24., 19.],
[20., 21., 22., 23., 24.]])

scipy.signal.medfilt(volume, kernel_size=None)
Perform a median filter on an N-dimensional array.

Apply a median filter to the input array using a local window-size given by kernel_size.

Parameters volume : array_like
An N-dimensional input array.

kernel_size : array_like, optional

5.27. Signal processing (scipy.signal) 811

SciPy Reference Guide, Release 0.16.0

A scalar or an N-length list giving the size of the median filter window in
each dimension. Elements of kernel_size should be odd. If kernel_size is a
scalar, then this scalar is used as the size in each dimension. Default size is
3 for each dimension.Returns out : ndarray
An array the same size as input containing the median filtered result.

scipy.signal.medfilt2d(input, kernel_size=3)
Median filter a 2-dimensional array.

Apply a median filter to the input array using a local window-size given by kernel_size (must be odd).

Parameters input : array_like
A 2-dimensional input array.

kernel_size : array_like, optional
A scalar or a list of length 2, giving the size of the median filter window in
each dimension. Elements of kernel_size should be odd. If kernel_size is
a scalar, then this scalar is used as the size in each dimension. Default is a
kernel of size (3, 3).Returns out : ndarray
An array the same size as input containing the median filtered result.

scipy.signal.wiener(im, mysize=None, noise=None)
Perform a Wiener filter on an N-dimensional array.

Apply a Wiener filter to the N-dimensional array im.

Parameters im : ndarray
An N-dimensional array.

mysize : int or arraylike, optional
A scalar or an N-length list giving the size of the Wiener filter window in
each dimension. Elements of mysize should be odd. If mysize is a scalar,
then this scalar is used as the size in each dimension.

noise : float, optional
The noise-power to use. If None, then noise is estimated as the average of
the local variance of the input.Returns out : ndarray
Wiener filtered result with the same shape as im.

scipy.signal.symiirorder1(input, c0, z1 {, precision})→ output
Implement a smoothing IIR filter with mirror-symmetric boundary conditions using a cascade of first-order
sections. The second section uses a reversed sequence. This implements a system with the following transfer
function and mirror-symmetric boundary conditions:

c0
H(z) = ---------------------

(1-z1/z) (1 - z1 z)

The resulting signal will have mirror symmetric boundary conditions as well.

Parameters input : ndarray
The input signal.

c0, z1 : scalar
Parameters in the transfer function.

precision :
Specifies the precision for calculating initial conditions of the recursive fil-
ter based on mirror-symmetric input.Returns output : ndarray
The filtered signal.

812 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.signal.symiirorder2(input, r, omega {, precision})→ output
Implement a smoothing IIR filter with mirror-symmetric boundary conditions using a cascade of second-order
sections. The second section uses a reversed sequence. This implements the following transfer function:

cs^2
H(z) = ---------------------------------------

(1 - a2/z - a3/z^2) (1 - a2 z - a3 z^2)

where:

a2 = (2 r cos omega)
a3 = - r^2
cs = 1 - 2 r cos omega + r^2

Parameters input : ndarray
The input signal.

r, omega : scalar
Parameters in the transfer function.

precision :
Specifies the precision for calculating initial conditions of the recursive fil-
ter based on mirror-symmetric input.Returns output : ndarray
The filtered signal.

scipy.signal.lfilter(b, a, x, axis=-1, zi=None)
Filter data along one-dimension with an IIR or FIR filter.

Filter a data sequence, x, using a digital filter. This works for many fundamental data types (including Object
type). The filter is a direct form II transposed implementation of the standard difference equation (see Notes).

Parameters b : array_like
The numerator coefficient vector in a 1-D sequence.

a : array_like
The denominator coefficient vector in a 1-D sequence. If a[0] is not 1,
then both a and b are normalized by a[0].

x : array_like
An N-dimensional input array.

axis : int, optional
The axis of the input data array along which to apply the linear filter. The
filter is applied to each subarray along this axis. Default is -1.

zi : array_like, optional
Initial conditions for the filter delays. It is a vector (or array of vectors for
an N-dimensional input) of length max(len(a),len(b))-1. If zi is
None or is not given then initial rest is assumed. See lfiltic for more
information.Returns y : array
The output of the digital filter.

zf : array, optional
If zi is None, this is not returned, otherwise, zf holds the final filter delay
values.

Notes

The filter function is implemented as a direct II transposed structure. This means that the filter implements:

5.27. Signal processing (scipy.signal) 813

SciPy Reference Guide, Release 0.16.0

a[0]*y[n] = b[0]*x[n] + b[1]*x[n-1] + ... + b[nb]*x[n-nb]
- a[1]*y[n-1] - ... - a[na]*y[n-na]

using the following difference equations:

y[m] = b[0]*x[m] + z[0,m-1]
z[0,m] = b[1]*x[m] + z[1,m-1] - a[1]*y[m]
...
z[n-3,m] = b[n-2]*x[m] + z[n-2,m-1] - a[n-2]*y[m]
z[n-2,m] = b[n-1]*x[m] - a[n-1]*y[m]

where m is the output sample number and n=max(len(a),len(b)) is the model order.

The rational transfer function describing this filter in the z-transform domain is:

-1 -nb
b[0] + b[1]z + ... + b[nb] z

Y(z) = ---------------------------------- X(z)
-1 -na

a[0] + a[1]z + ... + a[na] z

scipy.signal.lfiltic(b, a, y, x=None)
Construct initial conditions for lfilter.

Given a linear filter (b, a) and initial conditions on the output y and the input x, return the initial conditions on
the state vector zi which is used by lfilter to generate the output given the input.

Parameters b : array_like
Linear filter term.

a : array_like
Linear filter term.

y : array_like
Initial conditions.
If N=len(a) - 1, then y = {y[-1], y[-2], ..., y[-N]}.
If y is too short, it is padded with zeros.

x : array_like, optional
Initial conditions.
If M=len(b) - 1, then x = {x[-1], x[-2], ..., x[-M]}.
If x is not given, its initial conditions are assumed zero.
If x is too short, it is padded with zeros.Returns zi : ndarray
The state vector zi. zi = {z_0[-1], z_1[-1], ...,
z_K-1[-1]}, where K = max(M,N).

See also:

lfilter

scipy.signal.lfilter_zi(b, a)
Compute an initial state zi for the lfilter function that corresponds to the steady state of the step response.

A typical use of this function is to set the initial state so that the output of the filter starts at the same value as
the first element of the signal to be filtered.

Parameters b, a : array_like (1-D)
The IIR filter coefficients. See lfilter for more information.Returns zi : 1-D ndarray
The initial state for the filter.

814 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

A linear filter with order m has a state space representation (A, B, C, D), for which the output y of the filter can
be expressed as:

z(n+1) = A*z(n) + B*x(n)
y(n) = C*z(n) + D*x(n)

where z(n) is a vector of length m, A has shape (m, m), B has shape (m, 1), C has shape (1, m) and D has shape
(1, 1) (assuming x(n) is a scalar). lfilter_zi solves:

zi = A*zi + B

In other words, it finds the initial condition for which the response to an input of all ones is a constant.

Given the filter coefficients a and b, the state space matrices for the transposed direct form II implementation of
the linear filter, which is the implementation used by scipy.signal.lfilter, are:

A = scipy.linalg.companion(a).T
B = b[1:] - a[1:]*b[0]

assuming a[0] is 1.0; if a[0] is not 1, a and b are first divided by a[0].

Examples

The following code creates a lowpass Butterworth filter. Then it applies that filter to an array whose values are
all 1.0; the output is also all 1.0, as expected for a lowpass filter. If the zi argument of lfilter had not been
given, the output would have shown the transient signal.

>>> from numpy import array, ones
>>> from scipy.signal import lfilter, lfilter_zi, butter
>>> b, a = butter(5, 0.25)
>>> zi = lfilter_zi(b, a)
>>> y, zo = lfilter(b, a, ones(10), zi=zi)
>>> y
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

Another example:

>>> x = array([0.5, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0])
>>> y, zf = lfilter(b, a, x, zi=zi*x[0])
>>> y
array([0.5 , 0.5 , 0.5 , 0.49836039, 0.48610528,

0.44399389, 0.35505241])

Note that the zi argument to lfilter was computed using lfilter_zi and scaled by x[0]. Then the output
y has no transient until the input drops from 0.5 to 0.0.

scipy.signal.filtfilt(b, a, x, axis=-1, padtype=’odd’, padlen=None, method=’pad’, irlen=None)
A forward-backward filter.

This function applies a linear filter twice, once forward and once backwards. The combined filter has linear
phase.

The function provides options for handling the edges of the signal.

When method is “pad”, the function pads the data along the given axis in one of three ways: odd, even or
constant. The odd and even extensions have the corresponding symmetry about the end point of the data. The
constant extension extends the data with the values at the end points. On both the forward and backward passes,

5.27. Signal processing (scipy.signal) 815

SciPy Reference Guide, Release 0.16.0

the initial condition of the filter is found by using lfilter_zi and scaling it by the end point of the extended
data.

When method is “gust”, Gustafsson’s method [R173] is used. Initial conditions are chosen for the forward and
backward passes so that the forward-backward filter gives the same result as the backward-forward filter.

Parameters b : (N,) array_like
The numerator coefficient vector of the filter.

a : (N,) array_like
The denominator coefficient vector of the filter. If a[0] is not 1, then both
a and b are normalized by a[0].

x : array_like
The array of data to be filtered.

axis : int, optional
The axis of x to which the filter is applied. Default is -1.

padtype : str or None, optional
Must be ‘odd’, ‘even’, ‘constant’, or None. This determines the type of
extension to use for the padded signal to which the filter is applied. If
padtype is None, no padding is used. The default is ‘odd’.

padlen : int or None, optional
The number of elements by which to extend x at both ends of axis before
applying the filter. This value must be less than x.shape[axis] - 1.
padlen=0 implies no padding. The default value is 3 * max(len(a),
len(b)).

method : str, optional
Determines the method for handling the edges of the signal, either “pad” or
“gust”. When method is “pad”, the signal is padded; the type of padding is
determined by padtype and padlen, and irlen is ignored. When method is
“gust”, Gustafsson’s method is used, and padtype and padlen are ignored.

irlen : int or None, optional
When method is “gust”, irlen specifies the length of the impulse response
of the filter. If irlen is None, no part of the impulse response is ignored. For
a long signal, specifying irlen can significantly improve the performance of
the filter.Returns y : ndarray
The filtered output, an array of type numpy.float64 with the same shape as
x.

See also:

lfilter_zi, lfilter

Notes

The option to use Gustaffson’s method was added in scipy version 0.16.0.

References

[R173]

Examples

The examples will use several functions from scipy.signal.

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

816 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

First we create a one second signal that is the sum of two pure sine waves, with frequencies 5 Hz and 250 Hz,
sampled at 2000 Hz.

>>> t = np.linspace(0, 1.0, 2001)
>>> xlow = np.sin(2 * np.pi * 5 * t)
>>> xhigh = np.sin(2 * np.pi * 250 * t)
>>> x = xlow + xhigh

Now create a lowpass Butterworth filter with a cutoff of 0.125 times the Nyquist rate, or 125 Hz, and apply it to
x with filtfilt. The result should be approximately xlow, with no phase shift.

>>> b, a = signal.butter(8, 0.125)
>>> y = signal.filtfilt(b, a, x, padlen=150)
>>> np.abs(y - xlow).max()
9.1086182074789912e-06

We get a fairly clean result for this artificial example because the odd extension is exact, and with the moderately
long padding, the filter’s transients have dissipated by the time the actual data is reached. In general, transient
effects at the edges are unavoidable.

The following example demonstrates the option method="gust".

First, create a filter.

>>> b, a = signal.ellip(4, 0.01, 120, 0.125) # Filter to be applied.
>>> np.random.seed(123456)

sig is a random input signal to be filtered.

>>> n = 60
>>> sig = np.random.randn(n)**3 + 3*np.random.randn(n).cumsum()

Apply filtfilt to sig, once using the Gustafsson method, and once using padding, and plot the results for
comparison.

>>> fgust = signal.filtfilt(b, a, sig, method="gust")
>>> fpad = signal.filtfilt(b, a, sig, padlen=50)
>>> plt.plot(sig, 'k-', label='input')
>>> plt.plot(fgust, 'b-', linewidth=4, label='gust')
>>> plt.plot(fpad, 'c-', linewidth=1.5, label='pad')
>>> plt.legend(loc='best')
>>> plt.show()

5.27. Signal processing (scipy.signal) 817

SciPy Reference Guide, Release 0.16.0

0 10 20 30 40 50 60
35
30
25
20
15
10

5
0
5

10

input
gust
pad

The irlen argument can be used to improve the performance of Gustafsson’s method.

Estimate the impulse response length of the filter.

>>> z, p, k = signal.tf2zpk(b, a)
>>> eps = 1e-9
>>> r = np.max(np.abs(p))
>>> approx_impulse_len = int(np.ceil(np.log(eps) / np.log(r)))
>>> approx_impulse_len
137

Apply the filter to a longer signal, with and without the irlen argument. The difference between y1 and y2 is
small. For long signals, using irlen gives a significant performance improvement.

>>> x = np.random.randn(5000)
>>> y1 = signal.filtfilt(b, a, x, method='gust')
>>> y2 = signal.filtfilt(b, a, x, method='gust', irlen=approx_impulse_len)
>>> print(np.max(np.abs(y1 - y2)))
1.80056858312e-10

scipy.signal.savgol_filter(x, window_length, polyorder, deriv=0, delta=1.0, axis=-1,
mode=’interp’, cval=0.0)

Apply a Savitzky-Golay filter to an array.

This is a 1-d filter. If x has dimension greater than 1, axis determines the axis along which the filter is applied.

Parameters x : array_like
The data to be filtered. If x is not a single or double precision floating point
array, it will be converted to type numpy.float64 before filtering.

window_length : int
The length of the filter window (i.e. the number of coefficients). win-
dow_length must be a positive odd integer.

polyorder : int
The order of the polynomial used to fit the samples. polyorder must be less
than window_length.

deriv : int, optional
The order of the derivative to compute. This must be a nonnegative integer.
The default is 0, which means to filter the data without differentiating.

818 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

delta : float, optional
The spacing of the samples to which the filter will be applied. This is only
used if deriv > 0. Default is 1.0.

axis : int, optional
The axis of the array x along which the filter is to be applied. Default is -1.

mode : str, optional
Must be ‘mirror’, ‘constant’, ‘nearest’, ‘wrap’ or ‘interp’. This determines
the type of extension to use for the padded signal to which the filter is ap-
plied. When mode is ‘constant’, the padding value is given by cval. See the
Notes for more details on ‘mirror’, ‘constant’, ‘wrap’, and ‘nearest’. When
the ‘interp’ mode is selected (the default), no extension is used. Instead, a
degree polyorder polynomial is fit to the last window_length values of the
edges, and this polynomial is used to evaluate the last window_length // 2
output values.

cval : scalar, optional
Value to fill past the edges of the input if mode is ‘constant’. Default is 0.0.Returns y : ndarray, same shape as x
The filtered data.

See also:

savgol_coeffs

Notes

Details on the mode options:

‘mirror’: Repeats the values at the edges in reverse order. The value closest to the edge is not
included.‘nearest’: The extension contains the nearest input value.‘constant’: The extension contains the value given by the cval argument.‘wrap’: The extension contains the values from the other end of the array.

For example, if the input is [1, 2, 3, 4, 5, 6, 7, 8], and window_length is 7, the following shows the extended
data for the various mode options (assuming cval is 0):

mode | Ext | Input | Ext
-----------+---------+------------------------+---------
'mirror' | 4 3 2 | 1 2 3 4 5 6 7 8 | 7 6 5
'nearest' | 1 1 1 | 1 2 3 4 5 6 7 8 | 8 8 8
'constant' | 0 0 0 | 1 2 3 4 5 6 7 8 | 0 0 0
'wrap' | 6 7 8 | 1 2 3 4 5 6 7 8 | 1 2 3

New in version 0.14.0.

Examples

>>> np.set_printoptions(precision=2) # For compact display.
>>> x = np.array([2, 2, 5, 2, 1, 0, 1, 4, 9])

Filter with a window length of 5 and a degree 2 polynomial. Use the defaults for all other parameters.

>>> y = savgol_filter(x, 5, 2)
array([1.66, 3.17, 3.54, 2.86, 0.66, 0.17, 1. , 4. , 9.])

Note that the last five values in x are samples of a parabola, so when mode=’interp’ (the default) is used with
polyorder=2, the last three values are unchanged. Compare that to, for example, mode=’nearest’:

5.27. Signal processing (scipy.signal) 819

SciPy Reference Guide, Release 0.16.0

>>> savgol_filter(x, 5, 2, mode='nearest')
array([1.74, 3.03, 3.54, 2.86, 0.66, 0.17, 1. , 4.6 , 7.97])

scipy.signal.deconvolve(signal, divisor)
Deconvolves divisor out of signal.

Returns the quotient and remainder such that signal = convolve(divisor, quotient) +
remainder

Parameters signal : array_like
Signal data, typically a recorded signal

divisor : array_like
Divisor data, typically an impulse response or filter that was applied to the
original signalReturns quotient : ndarray
Quotient, typically the recovered original signal

remainder : ndarray
Remainder

See also:

numpy.polydiv
performs polynomial division (same operation, but also accepts poly1d objects)

Examples

Deconvolve a signal that’s been filtered:

>>> from scipy import signal
>>> original = [0, 1, 0, 0, 1, 1, 0, 0]
>>> impulse_response = [2, 1]
>>> recorded = signal.convolve(impulse_response, original)
>>> recorded
array([0, 2, 1, 0, 2, 3, 1, 0, 0])
>>> recovered, remainder = signal.deconvolve(recorded, impulse_response)
>>> recovered
array([0., 1., 0., 0., 1., 1., 0., 0.])

scipy.signal.sosfilt(sos, x, axis=-1, zi=None)
Filter data along one dimension using cascaded second-order sections

Filter a data sequence, x, using a digital IIR filter defined by sos. This is implemented by performing lfilter
for each second-order section. See lfilter for details.

Parameters sos : array_like
Array of second-order filter coefficients, must have shape (n_sections,
6). Each row corresponds to a second-order section, with the first three
columns providing the numerator coefficients and the last three providing
the denominator coefficients.

x : array_like
An N-dimensional input array.

axis : int, optional
The axis of the input data array along which to apply the linear filter. The
filter is applied to each subarray along this axis. Default is -1.

zi : array_like, optional
Initial conditions for the cascaded filter delays. It is a (at least 2D) vector
of shape (n_sections, ..., 2, ...), where ..., 2, ... de-
notes the shape of x, but with x.shape[axis] replaced by 2. If zi is
None or is not given then initial rest (i.e. all zeros) is assumed. Note that

820 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.polydiv.html#numpy.polydiv

SciPy Reference Guide, Release 0.16.0

these initial conditions are not the same as the initial conditions given by
lfiltic or lfilter_zi.Returns y : ndarray
The output of the digital filter.

zf : ndarray, optional
If zi is None, this is not returned, otherwise, zf holds the final filter delay
values.

See also:

zpk2sos, sos2zpk, sosfilt_zi

Notes

The filter function is implemented as a series of second-order filters with direct-form II transposed structure. It
is designed to minimize numerical precision errors for high-order filters.

New in version 0.16.0.

Examples

Plot a 13th-order filter’s impulse response using both lfilter and sosfilt, showing the instability that
results from trying to do a 13th-order filter in a single stage (the numerical error pushes some poles outside of
the unit circle):

>>> import matplotlib.pyplot as plt
>>> from scipy import signal
>>> b, a = signal.ellip(13, 0.009, 80, 0.05, output='ba')
>>> sos = signal.ellip(13, 0.009, 80, 0.05, output='sos')
>>> x = np.zeros(700)
>>> x[0] = 1.
>>> y_tf = signal.lfilter(b, a, x)
>>> y_sos = signal.sosfilt(sos, x)
>>> plt.plot(y_tf, 'r', label='TF')
>>> plt.plot(y_sos, 'k', label='SOS')
>>> plt.legend(loc='best')
>>> plt.show()

0 100 200 300 400 500 600 700
0.3

0.2

0.1

0.0

0.1

0.2

0.3
TF
SOS

scipy.signal.sosfilt_zi(sos)
Compute an initial state zi for the sosfilt function that corresponds to the steady state of the step response.

5.27. Signal processing (scipy.signal) 821

SciPy Reference Guide, Release 0.16.0

A typical use of this function is to set the initial state so that the output of the filter starts at the same value as
the first element of the signal to be filtered.

Parameters sos : array_like
Array of second-order filter coefficients, must have shape (n_sections,
6). See sosfilt for the SOS filter format specification.Returns zi : ndarray
Initial conditions suitable for use with sosfilt, shape (n_sections,
2).

See also:

sosfilt, zpk2sos

Notes

New in version 0.16.0.

Examples

Filter a rectangular pulse that begins at time 0, with and without the use of the zi argument of
scipy.signal.sosfilt.

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> sos = signal.butter(9, 0.125, output='sos')
>>> zi = signal.sosfilt_zi(sos)
>>> x = (np.arange(250) < 100).astype(int)
>>> f1 = signal.sosfilt(sos, x)
>>> f2, zo = signal.sosfilt(sos, x, zi=zi)

>>> plt.plot(x, 'k--', label='x')
>>> plt.plot(f1, 'b', alpha=0.5, linewidth=2, label='filtered')
>>> plt.plot(f2, 'g', alpha=0.25, linewidth=4, label='filtered with zi')
>>> plt.legend(loc='best')
>>> plt.show()

0 50 100 150 200 250
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
x
filtered
filtered with zi

822 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.signal.hilbert(x, N=None, axis=-1)
Compute the analytic signal, using the Hilbert transform.

The transformation is done along the last axis by default.

Parameters x : array_like
Signal data. Must be real.

N : int, optional
Number of Fourier components. Default: x.shape[axis]

axis : int, optional
Axis along which to do the transformation. Default: -1.Returns xa : ndarray
Analytic signal of x, of each 1-D array along axis

Notes

The analytic signal x_a(t) of signal x(t) is:

𝑥𝑎 = 𝐹−1(𝐹 (𝑥)2𝑈) = 𝑥 + 𝑖𝑦

where F is the Fourier transform, U the unit step function, and y the Hilbert transform of x. [R186]

In other words, the negative half of the frequency spectrum is zeroed out, turning the real-valued signal into
a complex signal. The Hilbert transformed signal can be obtained from np.imag(hilbert(x)), and the
original signal from np.real(hilbert(x)).

References

[R186]

scipy.signal.hilbert2(x, N=None)
Compute the ‘2-D’ analytic signal of x

Parameters x : array_like
2-D signal data.

N : int or tuple of two ints, optional
Number of Fourier components. Default is x.shapeReturns xa : ndarray
Analytic signal of x taken along axes (0,1).

References

[R187]

scipy.signal.decimate(x, q, n=None, ftype=’iir’, axis=-1)
Downsample the signal by using a filter.

By default, an order 8 Chebyshev type I filter is used. A 30 point FIR filter with hamming window is used if
ftype is ‘fir’.

Parameters x : ndarray
The signal to be downsampled, as an N-dimensional array.

q : int
The downsampling factor.

n : int, optional
The order of the filter (1 less than the length for ‘fir’).

ftype : str {‘iir’, ‘fir’}, optional
The type of the lowpass filter.

axis : int, optional
The axis along which to decimate.Returns y : ndarray
The down-sampled signal.

5.27. Signal processing (scipy.signal) 823

SciPy Reference Guide, Release 0.16.0

See also:

resample

scipy.signal.detrend(data, axis=-1, type=’linear’, bp=0)
Remove linear trend along axis from data.

Parameters data : array_like
The input data.

axis : int, optional
The axis along which to detrend the data. By default this is the last axis
(-1).

type : {‘linear’, ‘constant’}, optional
The type of detrending. If type == ’linear’ (default), the result
of a linear least-squares fit to data is subtracted from data. If type ==
’constant’, only the mean of data is subtracted.

bp : array_like of ints, optional
A sequence of break points. If given, an individual linear fit is performed
for each part of data between two break points. Break points are specified
as indices into data.Returns ret : ndarray
The detrended input data.

Examples

>>> from scipy import signal
>>> randgen = np.random.RandomState(9)
>>> npoints = 1e3
>>> noise = randgen.randn(npoints)
>>> x = 3 + 2*np.linspace(0, 1, npoints) + noise
>>> (signal.detrend(x) - noise).max() < 0.01
True

scipy.signal.resample(x, num, t=None, axis=0, window=None)
Resample x to num samples using Fourier method along the given axis.

The resampled signal starts at the same value as x but is sampled with a spacing of len(x) / num *
(spacing of x). Because a Fourier method is used, the signal is assumed to be periodic.

Parameters x : array_like
The data to be resampled.

num : int
The number of samples in the resampled signal.

t : array_like, optional
If t is given, it is assumed to be the sample positions associated with the
signal data in x.

axis : int, optional
The axis of x that is resampled. Default is 0.

window : array_like, callable, string, float, or tuple, optional
Specifies the window applied to the signal in the Fourier domain. See below
for details.Returns resampled_x or (resampled_x, resampled_t)
Either the resampled array, or, if t was given, a tuple containing the resam-
pled array and the corresponding resampled positions.

824 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The argument window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding
to alleviate ringing in the resampled values for sampled signals you didn’t intend to be interpreted as band-
limited.

If window is a function, then it is called with a vector of inputs indicating the frequency bins (i.e. fft-
freq(x.shape[axis])).

If window is an array of the same length as x.shape[axis] it is assumed to be the window to be applied directly
in the Fourier domain (with dc and low-frequency first).

For any other type of window, the function scipy.signal.get_window is called to generate the window.

The first sample of the returned vector is the same as the first sample of the input vector. The spacing between
samples is changed from dx to dx * len(x) / num.

If t is not None, then it represents the old sample positions, and the new sample positions will be returned as
well as the new samples.

As noted, resample uses FFT transformations, which can be very slow if the number of input samples is large
and prime, see scipy.fftpack.fft.

5.27.4 Filter design

bilinear(b, a[, fs]) Return a digital filter from an analog one using a bilinear transform.
findfreqs(num, den, N) Find an array of frequencies for computing the response of a filter.
firwin(numtaps, cutoff[, width, window, ...]) FIR filter design using the window method.
firwin2(numtaps, freq, gain[, nfreqs, ...]) FIR filter design using the window method.
freqs(b, a[, worN, plot]) Compute frequency response of analog filter.
freqz(b[, a, worN, whole, plot]) Compute the frequency response of a digital filter.
group_delay(system[, w, whole]) Compute the group delay of a digital filter.
iirdesign(wp, ws, gpass, gstop[, analog, ...]) Complete IIR digital and analog filter design.
iirfilter(N, Wn[, rp, rs, btype, analog, ...]) IIR digital and analog filter design given order and critical points.
kaiser_atten(numtaps, width) Compute the attenuation of a Kaiser FIR filter.
kaiser_beta(a) Compute the Kaiser parameter beta, given the attenuation a.
kaiserord(ripple, width) Design a Kaiser window to limit ripple and width of transition region.
savgol_coeffs(window_length, polyorder[, ...]) Compute the coefficients for a 1-d Savitzky-Golay FIR filter.
remez(numtaps, bands, desired[, weight, Hz, ...]) Calculate the minimax optimal filter using the Remez exchange algorithm.
unique_roots(p[, tol, rtype]) Determine unique roots and their multiplicities from a list of roots.
residue(b, a[, tol, rtype]) Compute partial-fraction expansion of b(s) / a(s).
residuez(b, a[, tol, rtype]) Compute partial-fraction expansion of b(z) / a(z).
invres(r, p, k[, tol, rtype]) Compute b(s) and a(s) from partial fraction expansion.
invresz(r, p, k[, tol, rtype]) Compute b(z) and a(z) from partial fraction expansion.

scipy.signal.bilinear(b, a, fs=1.0)
Return a digital filter from an analog one using a bilinear transform.

The bilinear transform substitutes (z-1) / (z+1) for s.

scipy.signal.findfreqs(num, den, N)
Find an array of frequencies for computing the response of a filter.

Parameters num, den : array_like, 1-D
The polynomial coefficients of the numerator and denominator of the trans-
fer function of the filter or LTI system. The coefficients are ordered from

5.27. Signal processing (scipy.signal) 825

SciPy Reference Guide, Release 0.16.0

highest to lowest degree.
N : int

The length of the array to be computed.Returns w : (N,) ndarray
A 1-D array of frequencies, logarithmically spaced.

Examples

Find a set of nine frequencies that span the “interesting part” of the frequency response for the filter with the
transfer function

H(s) = s / (s^2 + 8s + 25)

>>> findfreqs([1, 0], [1, 8, 25], N=9)
array([1.00000000e-02, 3.16227766e-02, 1.00000000e-01,

3.16227766e-01, 1.00000000e+00, 3.16227766e+00,
1.00000000e+01, 3.16227766e+01, 1.00000000e+02])

scipy.signal.firwin(numtaps, cutoff, width=None, window=’hamming’, pass_zero=True, scale=True,
nyq=1.0)

FIR filter design using the window method.

This function computes the coefficients of a finite impulse response filter. The filter will have linear phase; it
will be Type I if numtaps is odd and Type II if numtaps is even.

Type II filters always have zero response at the Nyquist rate, so a ValueError exception is raised if firwin is
called with numtaps even and having a passband whose right end is at the Nyquist rate.

Parameters numtaps : int
Length of the filter (number of coefficients, i.e. the filter order + 1). num-
taps must be even if a passband includes the Nyquist frequency.

cutoff : float or 1D array_like
Cutoff frequency of filter (expressed in the same units as nyq) OR an array
of cutoff frequencies (that is, band edges). In the latter case, the frequencies
in cutoff should be positive and monotonically increasing between 0 and
nyq. The values 0 and nyq must not be included in cutoff.

width : float or None, optional
If width is not None, then assume it is the approximate width of the transi-
tion region (expressed in the same units as nyq) for use in Kaiser FIR filter
design. In this case, the window argument is ignored.

window : string or tuple of string and parameter values, optional
Desired window to use. See scipy.signal.get_window for a list of
windows and required parameters.

pass_zero : bool, optional
If True, the gain at the frequency 0 (i.e. the “DC gain”) is 1. Otherwise the
DC gain is 0.

scale : bool, optional
Set to True to scale the coefficients so that the frequency response is exactly
unity at a certain frequency. That frequency is either:

•0 (DC) if the first passband starts at 0 (i.e. pass_zero is True)•nyq (the Nyquist rate) if the first passband ends at nyq (i.e the
filter is a single band highpass filter); center of first passband
otherwise

nyq : float, optional
Nyquist frequency. Each frequency in cutoff must be between 0 and nyq.Returns h : (numtaps,) ndarray
Coefficients of length numtaps FIR filter.Raises ValueError

826 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

If any value in cutoff is less than or equal to 0 or greater than or equal to
nyq, if the values in cutoff are not strictly monotonically increasing, or if
numtaps is even but a passband includes the Nyquist frequency.

See also:

scipy.signal.firwin2

Examples

Low-pass from 0 to f:

>>> from scipy import signal
>>> signal.firwin(numtaps, f)

Use a specific window function:

>>> signal.firwin(numtaps, f, window='nuttall')

High-pass (‘stop’ from 0 to f):

>>> signal.firwin(numtaps, f, pass_zero=False)

Band-pass:

>>> signal.firwin(numtaps, [f1, f2], pass_zero=False)

Band-stop:

>>> signal.firwin(numtaps, [f1, f2])

Multi-band (passbands are [0, f1], [f2, f3] and [f4, 1]):

>>> signal.firwin(numtaps, [f1, f2, f3, f4])

Multi-band (passbands are [f1, f2] and [f3,f4]):

>>> signal.firwin(numtaps, [f1, f2, f3, f4], pass_zero=False)

scipy.signal.firwin2(numtaps, freq, gain, nfreqs=None, window=’hamming’, nyq=1.0, antisymmet-
ric=False)

FIR filter design using the window method.

From the given frequencies freq and corresponding gains gain, this function constructs an FIR filter with linear
phase and (approximately) the given frequency response.

Parameters numtaps : int
The number of taps in the FIR filter. numtaps must be less than nfreqs.

freq : array_like, 1D
The frequency sampling points. Typically 0.0 to 1.0 with 1.0 being Nyquist.
The Nyquist frequency can be redefined with the argument nyq. The values
in freq must be nondecreasing. A value can be repeated once to implement
a discontinuity. The first value in freq must be 0, and the last value must be
nyq.

gain : array_like
The filter gains at the frequency sampling points. Certain constraints to gain
values, depending on the filter type, are applied, see Notes for details.

nfreqs : int, optional

5.27. Signal processing (scipy.signal) 827

SciPy Reference Guide, Release 0.16.0

The size of the interpolation mesh used to construct the filter. For most
efficient behavior, this should be a power of 2 plus 1 (e.g, 129, 257, etc).
The default is one more than the smallest power of 2 that is not less than
numtaps. nfreqs must be greater than numtaps.

window : string or (string, float) or float, or None, optional
Window function to use. Default is “hamming”. See
scipy.signal.get_window for the complete list of possible
values. If None, no window function is applied.

nyq : float, optional
Nyquist frequency. Each frequency in freq must be between 0 and nyq
(inclusive).

antisymmetric : bool, optional
Whether resulting impulse response is symmetric/antisymmetric. See Notes
for more details.Returns taps : ndarray
The filter coefficients of the FIR filter, as a 1-D array of length numtaps.

See also:

scipy.signal.firwin

Notes

From the given set of frequencies and gains, the desired response is constructed in the frequency domain. The
inverse FFT is applied to the desired response to create the associated convolution kernel, and the first numtaps
coefficients of this kernel, scaled by window, are returned.

The FIR filter will have linear phase. The type of filter is determined by the value of ‘numtaps‘ and antisymmetric
flag. There are four possible combinations:

•odd numtaps, antisymmetric is False, type I filter is produced
•even numtaps, antisymmetric is False, type II filter is produced
•odd numtaps, antisymmetric is True, type III filter is produced
•even numtaps, antisymmetric is True, type IV filter is produced

Magnitude response of all but type I filters are subjects to following constraints:
•type II – zero at the Nyquist frequency
•type III – zero at zero and Nyquist frequencies
•type IV – zero at zero frequency

New in version 0.9.0.

References

[R175], [R176]

Examples

A lowpass FIR filter with a response that is 1 on [0.0, 0.5], and that decreases linearly on [0.5, 1.0] from 1 to 0:

>>> from scipy import signal
>>> taps = signal.firwin2(150, [0.0, 0.5, 1.0], [1.0, 1.0, 0.0])
>>> print(taps[72:78])
[-0.02286961 -0.06362756 0.57310236 0.57310236 -0.06362756 -0.02286961]

scipy.signal.freqs(b, a, worN=None, plot=None)
Compute frequency response of analog filter.

Given the numerator b and denominator a of a filter, compute its frequency response:

828 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

b[0]*(jw)**(nb-1) + b[1]*(jw)**(nb-2) + ... + b[nb-1]
H(w) = ---

a[0]*(jw)**(na-1) + a[1]*(jw)**(na-2) + ... + a[na-1]

Parameters b : ndarray
Numerator of a linear filter.

a : ndarray
Denominator of a linear filter.

worN : {None, int}, optional
If None, then compute at 200 frequencies around the interesting parts of the
response curve (determined by pole-zero locations). If a single integer, then
compute at that many frequencies. Otherwise, compute the response at the
angular frequencies (e.g. rad/s) given in worN.

plot : callable, optional
A callable that takes two arguments. If given, the return parameters w and h
are passed to plot. Useful for plotting the frequency response inside freqs.Returns w : ndarray
The angular frequencies at which h was computed.

h : ndarray
The frequency response.

See also:

freqz Compute the frequency response of a digital filter.

Notes

Using Matplotlib’s “plot” function as the callable for plot produces unexpected results, this plots the real part of
the complex transfer function, not the magnitude. Try lambda w, h: plot(w, abs(h)).

Examples

>>> from scipy.signal import freqs, iirfilter

>>> b, a = iirfilter(4, [1, 10], 1, 60, analog=True, ftype='cheby1')

>>> w, h = freqs(b, a, worN=np.logspace(-1, 2, 1000))

>>> import matplotlib.pyplot as plt
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.xlabel('Frequency')
>>> plt.ylabel('Amplitude response [dB]')
>>> plt.grid()
>>> plt.show()

5.27. Signal processing (scipy.signal) 829

SciPy Reference Guide, Release 0.16.0

10 1 100 101 102

Frequency

100

80

60

40

20

0

Am
pl

itu
de

 re
sp

on
se

 [d
B]

scipy.signal.freqz(b, a=1, worN=None, whole=0, plot=None)
Compute the frequency response of a digital filter.

Given the numerator b and denominator a of a digital filter, compute its frequency response:

jw -jw -jmw
jw B(e) b[0] + b[1]e + + b[m]e

H(e) = ---- = ------------------------------------
jw -jw -jnw

A(e) a[0] + a[1]e + + a[n]e

Parameters b : ndarray
numerator of a linear filter

a : ndarray
denominator of a linear filter

worN : {None, int, array_like}, optional
If None (default), then compute at 512 frequencies equally spaced around
the unit circle. If a single integer, then compute at that many frequencies.
If an array_like, compute the response at the frequencies given (in radi-
ans/sample).

whole : bool, optional
Normally, frequencies are computed from 0 to the Nyquist frequency, pi
radians/sample (upper-half of unit-circle). If whole is True, compute fre-
quencies from 0 to 2*pi radians/sample.

plot : callable
A callable that takes two arguments. If given, the return parameters w and h
are passed to plot. Useful for plotting the frequency response inside freqz.Returns w : ndarray
The normalized frequencies at which h was computed, in radians/sample.

h : ndarray
The frequency response.

Notes

Using Matplotlib’s “plot” function as the callable for plot produces unexpected results, this plots the real part of
the complex transfer function, not the magnitude. Try lambda w, h: plot(w, abs(h)).

830 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy import signal
>>> b = signal.firwin(80, 0.5, window=('kaiser', 8))
>>> w, h = signal.freqz(b)

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.title('Digital filter frequency response')
>>> ax1 = fig.add_subplot(111)

>>> plt.plot(w, 20 * np.log10(abs(h)), 'b')
>>> plt.ylabel('Amplitude [dB]', color='b')
>>> plt.xlabel('Frequency [rad/sample]')

>>> ax2 = ax1.twinx()
>>> angles = np.unwrap(np.angle(h))
>>> plt.plot(w, angles, 'g')
>>> plt.ylabel('Angle (radians)', color='g')
>>> plt.grid()
>>> plt.axis('tight')
>>> plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frequency [rad/sample]

140
120
100
80
60
40
20
0

20

Am
pl

itu
de

 [d
B]

Digital filter frequency response

70

60

50

40

30

20

10

0

An
gl

e (
ra

di
an

s)

scipy.signal.group_delay(system, w=None, whole=False)
Compute the group delay of a digital filter.

The group delay measures by how many samples amplitude envelopes of various spectral components of a signal
are delayed by a filter. It is formally defined as the derivative of continuous (unwrapped) phase:

d jw
D(w) = - -- arg H(e)

dw

Parameters system : tuple of array_like (b, a)
Numerator and denominator coefficients of a filter transfer function.

w : {None, int, array-like}, optional

5.27. Signal processing (scipy.signal) 831

SciPy Reference Guide, Release 0.16.0

If None (default), then compute at 512 frequencies equally spaced around
the unit circle. If a single integer, then compute at that many frequencies. If
array, compute the delay at the frequencies given (in radians/sample).

whole : bool, optional
Normally, frequencies are computed from 0 to the Nyquist frequency, pi
radians/sample (upper-half of unit-circle). If whole is True, compute fre-
quencies from 0 to 2*pi radians/sample.Returns w : ndarray
The normalized frequencies at which the group delay was computed, in
radians/sample.

gd : ndarray
The group delay.

See also:

freqz Frequency response of a digital filter

Notes

The similar function in MATLAB is called grpdelay.

If the transfer function 𝐻(𝑧) has zeros or poles on the unit circle, the group delay at corresponding frequencies
is undefined. When such a case arises the warning is raised and the group delay is set to 0 at those frequencies.

For the details of numerical computation of the group delay refer to [R177].

References

[R177]

Examples

>>> from scipy import signal
>>> b, a = signal.iirdesign(0.1, 0.3, 5, 50, ftype='cheby1')
>>> w, gd = signal.group_delay((b, a))

>>> import matplotlib.pyplot as plt
>>> plt.title('Digital filter group delay')
>>> plt.plot(w, gd)
>>> plt.ylabel('Group delay [samples]')
>>> plt.xlabel('Frequency [rad/sample]')
>>> plt.show()

832 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Frequency [rad/sample]

0

10

20

30

40

50

60

Gr
ou

p
de

lay
 [s

am
pl

es
]

Digital filter group delay

scipy.signal.iirdesign(wp, ws, gpass, gstop, analog=False, ftype=’ellip’, output=’ba’)
Complete IIR digital and analog filter design.

Given passband and stopband frequencies and gains, construct an analog or digital IIR filter of minimum order
for a given basic type. Return the output in numerator, denominator (‘ba’), pole-zero (‘zpk’) or second order
sections (‘sos’) form.

Parameters wp, ws : float
Passband and stopband edge frequencies. For digital filters, these are nor-
malized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample.
(wp and ws are thus in half-cycles / sample.) For example:

•Lowpass: wp = 0.2, ws = 0.3•Highpass: wp = 0.3, ws = 0.2•Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]•Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]
For analog filters, wp and ws are angular frequencies (e.g. rad/s).

gpass : float
The maximum loss in the passband (dB).

gstop : float
The minimum attenuation in the stopband (dB).

analog : bool, optional
When True, return an analog filter, otherwise a digital filter is returned.

ftype : str, optional
The type of IIR filter to design:

•Butterworth : ‘butter’•Chebyshev I : ‘cheby1’•Chebyshev II : ‘cheby2’•Cauer/elliptic: ‘ellip’•Bessel/Thomson: ‘bessel’
output : {‘ba’, ‘zpk’, ‘sos’}, optional

Type of output: numerator/denominator (‘ba’), pole-zero (‘zpk’), or
second-order sections (‘sos’). Default is ‘ba’.Returns b, a : ndarray, ndarray
Numerator (b) and denominator (a) polynomials of the IIR filter. Only re-
turned if output=’ba’.

z, p, k : ndarray, ndarray, float
Zeros, poles, and system gain of the IIR filter transfer function. Only re-
turned if output=’zpk’.

sos : ndarray

5.27. Signal processing (scipy.signal) 833

SciPy Reference Guide, Release 0.16.0

Second-order sections representation of the IIR filter. Only returned if
output==’sos’.

See also:

butter Filter design using order and critical points

cheby1, cheby2, ellip, bessel
buttord Find order and critical points from passband and stopband spec
cheb1ord, cheb2ord, ellipord
iirfilter General filter design using order and critical frequencies

Notes

The ’sos’ output parameter was added in 0.16.0.

scipy.signal.iirfilter(N, Wn, rp=None, rs=None, btype=’band’, analog=False, ftype=’butter’,
output=’ba’)

IIR digital and analog filter design given order and critical points.

Design an Nth order digital or analog filter and return the filter coefficients.

Parameters N : int
The order of the filter.

Wn : array_like
A scalar or length-2 sequence giving the critical frequencies. For digital
filters, Wn is normalized from 0 to 1, where 1 is the Nyquist frequency, pi
radians/sample. (Wn is thus in half-cycles / sample.) For analog filters, Wn
is an angular frequency (e.g. rad/s).

rp : float, optional
For Chebyshev and elliptic filters, provides the maximum ripple in the pass-
band. (dB)

rs : float, optional
For Chebyshev and elliptic filters, provides the minimum attenuation in the
stop band. (dB)

btype : {‘bandpass’, ‘lowpass’, ‘highpass’, ‘bandstop’}, optional
The type of filter. Default is ‘bandpass’.

analog : bool, optional
When True, return an analog filter, otherwise a digital filter is returned.

ftype : str, optional
The type of IIR filter to design:

•Butterworth : ‘butter’•Chebyshev I : ‘cheby1’•Chebyshev II : ‘cheby2’•Cauer/elliptic: ‘ellip’•Bessel/Thomson: ‘bessel’
output : {‘ba’, ‘zpk’, ‘sos’}, optional

Type of output: numerator/denominator (‘ba’), pole-zero (‘zpk’), or
second-order sections (‘sos’). Default is ‘ba’.Returns b, a : ndarray, ndarray
Numerator (b) and denominator (a) polynomials of the IIR filter. Only re-
turned if output=’ba’.

z, p, k : ndarray, ndarray, float
Zeros, poles, and system gain of the IIR filter transfer function. Only re-
turned if output=’zpk’.

sos : ndarray
Second-order sections representation of the IIR filter. Only returned if
output==’sos’.

See also:

834 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

butter Filter design using order and critical points

cheby1, cheby2, ellip, bessel
buttord Find order and critical points from passband and stopband spec
cheb1ord, cheb2ord, ellipord
iirdesign General filter design using passband and stopband spec

Notes

The ’sos’ output parameter was added in 0.16.0.

Examples

Generate a 17th-order Chebyshev II bandpass filter and plot the frequency response:

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.iirfilter(17, [50, 200], rs=60, btype='band',
... analog=True, ftype='cheby2')
>>> w, h = signal.freqs(b, a, 1000)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.semilogx(w, 20 * np.log10(abs(h)))
>>> ax.set_title('Chebyshev Type II bandpass frequency response')
>>> ax.set_xlabel('Frequency [radians / second]')
>>> ax.set_ylabel('Amplitude [dB]')
>>> ax.axis((10, 1000, -100, 10))
>>> ax.grid(which='both', axis='both')
>>> plt.show()

101 102 103

Frequency [radians / second]

100

80

60

40

20

0

Am
pl

itu
de

 [d
B]

Chebyshev Type II bandpass frequency response

scipy.signal.kaiser_atten(numtaps, width)
Compute the attenuation of a Kaiser FIR filter.

Given the number of taps N and the transition width width, compute the attenuation a in dB, given by Kaiser’s
formula:

a = 2.285 * (N - 1) * pi * width + 7.95

5.27. Signal processing (scipy.signal) 835

SciPy Reference Guide, Release 0.16.0

Parameters numtaps : int
The number of taps in the FIR filter.

width : float
The desired width of the transition region between passband and stopband
(or, in general, at any discontinuity) for the filter.Returns a : float
The attenuation of the ripple, in dB.

See also:

kaiserord, kaiser_beta

scipy.signal.kaiser_beta(a)
Compute the Kaiser parameter beta, given the attenuation a.

Parameters a : float
The desired attenuation in the stopband and maximum ripple in the pass-
band, in dB. This should be a positive number.Returns beta : float
The beta parameter to be used in the formula for a Kaiser window.

References

Oppenheim, Schafer, “Discrete-Time Signal Processing”, p.475-476.

scipy.signal.kaiserord(ripple, width)
Design a Kaiser window to limit ripple and width of transition region.

Parameters ripple : float
Positive number specifying maximum ripple in passband (dB) and mini-
mum ripple in stopband.

width : float
Width of transition region (normalized so that 1 corresponds to pi radians /
sample).Returns numtaps : int
The length of the kaiser window.

beta : float
The beta parameter for the kaiser window.

See also:

kaiser_beta, kaiser_atten

Notes

There are several ways to obtain the Kaiser window:
•signal.kaiser(numtaps, beta, sym=0)
•signal.get_window(beta, numtaps)
•signal.get_window((’kaiser’, beta), numtaps)

The empirical equations discovered by Kaiser are used.

References

Oppenheim, Schafer, “Discrete-Time Signal Processing”, p.475-476.

scipy.signal.savgol_coeffs(window_length, polyorder, deriv=0, delta=1.0, pos=None,
use=’conv’)

Compute the coefficients for a 1-d Savitzky-Golay FIR filter.

Parameters window_length : int
The length of the filter window (i.e. the number of coefficients). win-
dow_length must be an odd positive integer.

836 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

polyorder : int
The order of the polynomial used to fit the samples. polyorder must be less
than window_length.

deriv : int, optional
The order of the derivative to compute. This must be a nonnegative integer.
The default is 0, which means to filter the data without differentiating.

delta : float, optional
The spacing of the samples to which the filter will be applied. This is only
used if deriv > 0.

pos : int or None, optional
If pos is not None, it specifies evaluation position within the window. The
default is the middle of the window.

use : str, optional
Either ‘conv’ or ‘dot’. This argument chooses the order of the coefficients.
The default is ‘conv’, which means that the coefficients are ordered to be
used in a convolution. With use=’dot’, the order is reversed, so the filter is
applied by dotting the coefficients with the data set.Returns coeffs : 1-d ndarray
The filter coefficients.

See also:

savgol_filter

Notes

New in version 0.14.0.

References

A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures.
Analytical Chemistry, 1964, 36 (8), pp 1627-1639.

Examples

>>> from scipy.signal import savgol_coeffs
>>> savgol_coeffs(5, 2)
array([-0.08571429, 0.34285714, 0.48571429, 0.34285714, -0.08571429])
>>> savgol_coeffs(5, 2, deriv=1)
array([2.00000000e-01, 1.00000000e-01, 2.00607895e-16,

-1.00000000e-01, -2.00000000e-01])

Note that use=’dot’ simply reverses the coefficients.

>>> savgol_coeffs(5, 2, pos=3)
array([0.25714286, 0.37142857, 0.34285714, 0.17142857, -0.14285714])
>>> savgol_coeffs(5, 2, pos=3, use='dot')
array([-0.14285714, 0.17142857, 0.34285714, 0.37142857, 0.25714286])

x contains data from the parabola x = t**2, sampled at t = -1, 0, 1, 2, 3. c holds the coefficients that will compute
the derivative at the last position. When dotted with x the result should be 6.

>>> x = np.array([1, 0, 1, 4, 9])
>>> c = savgol_coeffs(5, 2, pos=4, deriv=1, use='dot')
>>> c.dot(x)
6.0000000000000018

5.27. Signal processing (scipy.signal) 837

SciPy Reference Guide, Release 0.16.0

scipy.signal.remez(numtaps, bands, desired, weight=None, Hz=1, type=’bandpass’, maxiter=25,
grid_density=16)

Calculate the minimax optimal filter using the Remez exchange algorithm.

Calculate the filter-coefficients for the finite impulse response (FIR) filter whose transfer function minimizes the
maximum error between the desired gain and the realized gain in the specified frequency bands using the Remez
exchange algorithm.

Parameters numtaps : int
The desired number of taps in the filter. The number of taps is the number
of terms in the filter, or the filter order plus one.

bands : array_like
A monotonic sequence containing the band edges in Hz. All elements must
be non-negative and less than half the sampling frequency as given by Hz.

desired : array_like
A sequence half the size of bands containing the desired gain in each of the
specified bands.

weight : array_like, optional
A relative weighting to give to each band region. The length of weight has
to be half the length of bands.

Hz : scalar, optional
The sampling frequency in Hz. Default is 1.

type : {‘bandpass’, ‘differentiator’, ‘hilbert’}, optional
The type of filter:

‘bandpass’ : flat response in bands. This is the default.
‘differentiator’ : frequency proportional response in bands.
‘hilbert’ [filter with odd symmetry, that is, type III]

(for even order) or type IV (for odd order)
linear phase filters.

maxiter : int, optional
Maximum number of iterations of the algorithm. Default is 25.

grid_density : int, optional
Grid density. The dense grid used in remez is of size (numtaps + 1)

* grid_density. Default is 16.Returns out : ndarray
A rank-1 array containing the coefficients of the optimal (in a minimax
sense) filter.

See also:

freqz Compute the frequency response of a digital filter.

References

[R196], [R197]

Examples

We want to construct a filter with a passband at 0.2-0.4 Hz, and stop bands at 0-0.1 Hz and 0.45-0.5 Hz. Note
that this means that the behavior in the frequency ranges between those bands is unspecified and may overshoot.

>>> from scipy import signal
>>> bpass = signal.remez(72, [0, 0.1, 0.2, 0.4, 0.45, 0.5], [0, 1, 0])
>>> freq, response = signal.freqz(bpass)
>>> ampl = np.abs(response)

838 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(111)
>>> ax1.semilogy(freq/(2*np.pi), ampl, 'b-') # freq in Hz
>>> plt.show()

0.0 0.1 0.2 0.3 0.4 0.5
10 6

10 5

10 4

10 3

10 2

10 1

100

101

scipy.signal.unique_roots(p, tol=0.001, rtype=’min’)
Determine unique roots and their multiplicities from a list of roots.

Parameters p : array_like
The list of roots.

tol : float, optional
The tolerance for two roots to be considered equal. Default is 1e-3.

rtype : {‘max’, ‘min, ‘avg’}, optional
How to determine the returned root if multiple roots are within tol of each
other.

•‘max’: pick the maximum of those roots.•‘min’: pick the minimum of those roots.•‘avg’: take the average of those roots.Returns pout : ndarray
The list of unique roots, sorted from low to high.

mult : ndarray
The multiplicity of each root.

Notes

This utility function is not specific to roots but can be used for any sequence of values for which uniqueness and
multiplicity has to be determined. For a more general routine, see numpy.unique.

Examples

>>> from scipy import signal
>>> vals = [0, 1.3, 1.31, 2.8, 1.25, 2.2, 10.3]
>>> uniq, mult = signal.unique_roots(vals, tol=2e-2, rtype='avg')

Check which roots have multiplicity larger than 1:

5.27. Signal processing (scipy.signal) 839

http://docs.scipy.org/doc/numpy/reference/generated/numpy.unique.html#numpy.unique

SciPy Reference Guide, Release 0.16.0

>>> uniq[mult > 1]
array([1.305])

scipy.signal.residue(b, a, tol=0.001, rtype=’avg’)
Compute partial-fraction expansion of b(s) / a(s).

If M = len(b) and N = len(a), then the partial-fraction expansion H(s) is defined as:

b(s) b[0] s**(M-1) + b[1] s**(M-2) + ... + b[M-1]
H(s) = ------ = --

a(s) a[0] s**(N-1) + a[1] s**(N-2) + ... + a[N-1]

r[0] r[1] r[-1]
= -------- + -------- + ... + --------- + k(s)
(s-p[0]) (s-p[1]) (s-p[-1])

If there are any repeated roots (closer together than tol), then H(s) has terms like:

r[i] r[i+1] r[i+n-1]
-------- + ----------- + ... + -----------
(s-p[i]) (s-p[i])**2 (s-p[i])**n

Returns r : ndarray
Residues.

p : ndarray
Poles.

k : ndarray
Coefficients of the direct polynomial term.

See also:

invres, numpy.poly, unique_roots

scipy.signal.residuez(b, a, tol=0.001, rtype=’avg’)
Compute partial-fraction expansion of b(z) / a(z).

If M = len(b) and N = len(a):

b(z) b[0] + b[1] z**(-1) + ... + b[M-1] z**(-M+1)
H(z) = ------ = --

a(z) a[0] + a[1] z**(-1) + ... + a[N-1] z**(-N+1)

r[0] r[-1]
= --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ...
(1-p[0]z**(-1)) (1-p[-1]z**(-1))

If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like:

r[i] r[i+1] r[i+n-1]
-------------- + ------------------ + ... + ------------------
(1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n

See also:

invresz, unique_roots

840 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.poly.html#numpy.poly

SciPy Reference Guide, Release 0.16.0

scipy.signal.invres(r, p, k, tol=0.001, rtype=’avg’)
Compute b(s) and a(s) from partial fraction expansion.

If M = len(b) and N = len(a):

b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1]
H(s) = ------ = --

a(s) a[0] x**(N-1) + a[1] x**(N-2) + ... + a[N-1]

r[0] r[1] r[-1]
= -------- + -------- + ... + --------- + k(s)
(s-p[0]) (s-p[1]) (s-p[-1])

If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like:

r[i] r[i+1] r[i+n-1]
-------- + ----------- + ... + -----------
(s-p[i]) (s-p[i])**2 (s-p[i])**n

Parameters r : ndarray
Residues.

p : ndarray
Poles.

k : ndarray
Coefficients of the direct polynomial term.

tol : float, optional
The tolerance for two roots to be considered equal. Default is 1e-3.

rtype : {‘max’, ‘min, ‘avg’}, optional
How to determine the returned root if multiple roots are within tol of each
other.

‘max’: pick the maximum of those roots.
‘min’: pick the minimum of those roots.
‘avg’: take the average of those roots.

See also:

residue, unique_roots

scipy.signal.invresz(r, p, k, tol=0.001, rtype=’avg’)
Compute b(z) and a(z) from partial fraction expansion.

If M = len(b) and N = len(a):

b(z) b[0] + b[1] z**(-1) + ... + b[M-1] z**(-M+1)
H(z) = ------ = --

a(z) a[0] + a[1] z**(-1) + ... + a[N-1] z**(-N+1)

r[0] r[-1]
= --------------- + ... + ---------------- + k[0] + k[1]z**(-1)...
(1-p[0]z**(-1)) (1-p[-1]z**(-1))

If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like:

r[i] r[i+1] r[i+n-1]
-------------- + ------------------ + ... + ------------------
(1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n

5.27. Signal processing (scipy.signal) 841

SciPy Reference Guide, Release 0.16.0

See also:

residuez, unique_roots, invres

Lower-level filter design functions:

abcd_normalize([A, B, C, D]) Check state-space matrices and ensure they are two-dimensional.
band_stop_obj(wp, ind, passb, stopb, gpass, ...) Band Stop Objective Function for order minimization.
besselap(N) Return (z,p,k) for analog prototype of an Nth order Bessel filter.
buttap(N) Return (z,p,k) for analog prototype of Nth order Butterworth filter.
cheb1ap(N, rp) Return (z,p,k) for Nth order Chebyshev type I analog lowpass filter.
cheb2ap(N, rs) Return (z,p,k) for Nth order Chebyshev type I analog lowpass filter.
cmplx_sort(p) Sort roots based on magnitude.
ellipap(N, rp, rs) Return (z,p,k) of Nth order elliptic analog lowpass filter.
lp2bp(b, a[, wo, bw]) Transform a lowpass filter prototype to a bandpass filter.
lp2bs(b, a[, wo, bw]) Transform a lowpass filter prototype to a bandstop filter.
lp2hp(b, a[, wo]) Transform a lowpass filter prototype to a highpass filter.
lp2lp(b, a[, wo]) Transform a lowpass filter prototype to a different frequency.
normalize(b, a) Normalize polynomial representation of a transfer function.

scipy.signal.abcd_normalize(A=None, B=None, C=None, D=None)
Check state-space matrices and ensure they are two-dimensional.

If enough information on the system is provided, that is, enough properly-shaped arrays are passed to the func-
tion, the missing ones are built from this information, ensuring the correct number of rows and columns. Other-
wise a ValueError is raised.

Parameters A, B, C, D : array_like, optional
State-space matrices. All of them are None (missing) by default.Returns A, B, C, D : array
Properly shaped state-space matrices.Raises ValueError
If not enough information on the system was provided.

scipy.signal.band_stop_obj(wp, ind, passb, stopb, gpass, gstop, type)
Band Stop Objective Function for order minimization.

Returns the non-integer order for an analog band stop filter.

Parameters wp : scalar
Edge of passband passb.

ind : int, {0, 1}
Index specifying which passb edge to vary (0 or 1).

passb : ndarray
Two element sequence of fixed passband edges.

stopb : ndarray
Two element sequence of fixed stopband edges.

gstop : float
Amount of attenuation in stopband in dB.

gpass : float
Amount of ripple in the passband in dB.

type : {‘butter’, ‘cheby’, ‘ellip’}
Type of filter.Returns n : scalar
Filter order (possibly non-integer).

scipy.signal.besselap(N)
Return (z,p,k) for analog prototype of an Nth order Bessel filter.

842 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The filter is normalized such that the filter asymptotes are the same as a Butterworth filter of the same order with
an angular (e.g. rad/s) cutoff frequency of 1.

Parameters N : int
The order of the Bessel filter to return zeros, poles and gain for. Values in
the range 0-25 are supported.Returns z : ndarray
Zeros. Is always an empty array.

p : ndarray
Poles.

k : scalar
Gain. Always 1.

scipy.signal.buttap(N)
Return (z,p,k) for analog prototype of Nth order Butterworth filter.

The filter will have an angular (e.g. rad/s) cutoff frequency of 1.

scipy.signal.cheb1ap(N, rp)
Return (z,p,k) for Nth order Chebyshev type I analog lowpass filter.

The returned filter prototype has rp decibels of ripple in the passband.

The filter’s angular (e.g. rad/s) cutoff frequency is normalized to 1, defined as the point at which the gain first
drops below -rp.

scipy.signal.cheb2ap(N, rs)
Return (z,p,k) for Nth order Chebyshev type I analog lowpass filter.

The returned filter prototype has rs decibels of ripple in the stopband.

The filter’s angular (e.g. rad/s) cutoff frequency is normalized to 1, defined as the point at which the gain first
reaches -rs.

scipy.signal.cmplx_sort(p)
Sort roots based on magnitude.

Parameters p : array_like
The roots to sort, as a 1-D array.Returns p_sorted : ndarray
Sorted roots.

indx : ndarray
Array of indices needed to sort the input p.

scipy.signal.ellipap(N, rp, rs)
Return (z,p,k) of Nth order elliptic analog lowpass filter.

The filter is a normalized prototype that has rp decibels of ripple in the passband and a stopband rs decibels
down.

The filter’s angular (e.g. rad/s) cutoff frequency is normalized to 1, defined as the point at which the gain first
drops below -rp.

References

Lutova, Tosic, and Evans, “Filter Design for Signal Processing”, Chapters 5 and 12.

scipy.signal.lp2bp(b, a, wo=1.0, bw=1.0)
Transform a lowpass filter prototype to a bandpass filter.

Return an analog band-pass filter with center frequency wo and bandwidth bw from an analog low-pass filter
prototype with unity cutoff frequency, in transfer function (‘ba’) representation.

5.27. Signal processing (scipy.signal) 843

SciPy Reference Guide, Release 0.16.0

scipy.signal.lp2bs(b, a, wo=1.0, bw=1.0)
Transform a lowpass filter prototype to a bandstop filter.

Return an analog band-stop filter with center frequency wo and bandwidth bw from an analog low-pass filter
prototype with unity cutoff frequency, in transfer function (‘ba’) representation.

scipy.signal.lp2hp(b, a, wo=1.0)
Transform a lowpass filter prototype to a highpass filter.

Return an analog high-pass filter with cutoff frequency wo from an analog low-pass filter prototype with unity
cutoff frequency, in transfer function (‘ba’) representation.

scipy.signal.lp2lp(b, a, wo=1.0)
Transform a lowpass filter prototype to a different frequency.

Return an analog low-pass filter with cutoff frequency wo from an analog low-pass filter prototype with unity
cutoff frequency, in transfer function (‘ba’) representation.

scipy.signal.normalize(b, a)
Normalize polynomial representation of a transfer function.

If values of b are too close to 0, they are removed. In that case, a BadCoefficients warning is emitted.

5.27.5 Matlab-style IIR filter design

butter(N, Wn[, btype, analog, output]) Butterworth digital and analog filter design.
buttord(wp, ws, gpass, gstop[, analog]) Butterworth filter order selection.
cheby1(N, rp, Wn[, btype, analog, output]) Chebyshev type I digital and analog filter design.
cheb1ord(wp, ws, gpass, gstop[, analog]) Chebyshev type I filter order selection.
cheby2(N, rs, Wn[, btype, analog, output]) Chebyshev type II digital and analog filter design.
cheb2ord(wp, ws, gpass, gstop[, analog]) Chebyshev type II filter order selection.
ellip(N, rp, rs, Wn[, btype, analog, output]) Elliptic (Cauer) digital and analog filter design.
ellipord(wp, ws, gpass, gstop[, analog]) Elliptic (Cauer) filter order selection.
bessel(N, Wn[, btype, analog, output]) Bessel/Thomson digital and analog filter design.

scipy.signal.butter(N, Wn, btype=’low’, analog=False, output=’ba’)
Butterworth digital and analog filter design.

Design an Nth order digital or analog Butterworth filter and return the filter coefficients.

Parameters N : int
The order of the filter.

Wn : array_like
A scalar or length-2 sequence giving the critical frequencies. For a Butter-
worth filter, this is the point at which the gain drops to 1/sqrt(2) that of the
passband (the “-3 dB point”). For digital filters, Wn is normalized from 0
to 1, where 1 is the Nyquist frequency, pi radians/sample. (Wn is thus in
half-cycles / sample.) For analog filters, Wn is an angular frequency (e.g.
rad/s).

btype : {‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}, optional
The type of filter. Default is ‘lowpass’.

analog : bool, optional
When True, return an analog filter, otherwise a digital filter is returned.

output : {‘ba’, ‘zpk’, ‘sos’}, optional
Type of output: numerator/denominator (‘ba’), pole-zero (‘zpk’), or
second-order sections (‘sos’). Default is ‘ba’.

844 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Returns b, a : ndarray, ndarray
Numerator (b) and denominator (a) polynomials of the IIR filter. Only re-
turned if output=’ba’.

z, p, k : ndarray, ndarray, float
Zeros, poles, and system gain of the IIR filter transfer function. Only re-
turned if output=’zpk’.

sos : ndarray
Second-order sections representation of the IIR filter. Only returned if
output==’sos’.

See also:

buttord

Notes

The Butterworth filter has maximally flat frequency response in the passband.

The ’sos’ output parameter was added in 0.16.0.

Examples

Plot the filter’s frequency response, showing the critical points:

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.butter(4, 100, 'low', analog=True)
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.title('Butterworth filter frequency response')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.axvline(100, color='green') # cutoff frequency
>>> plt.show()

101 102 103

Frequency [radians / second]

80

60

40

20

0

Am
pl

itu
de

 [d
B]

Butterworth filter frequency response

5.27. Signal processing (scipy.signal) 845

SciPy Reference Guide, Release 0.16.0

scipy.signal.buttord(wp, ws, gpass, gstop, analog=False)
Butterworth filter order selection.

Return the order of the lowest order digital or analog Butterworth filter that loses no more than gpass dB in the
passband and has at least gstop dB attenuation in the stopband.

Parameters wp, ws : float
Passband and stopband edge frequencies. For digital filters, these are nor-
malized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample.
(wp and ws are thus in half-cycles / sample.) For example:

•Lowpass: wp = 0.2, ws = 0.3•Highpass: wp = 0.3, ws = 0.2•Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]•Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]
For analog filters, wp and ws are angular frequencies (e.g. rad/s).

gpass : float
The maximum loss in the passband (dB).

gstop : float
The minimum attenuation in the stopband (dB).

analog : bool, optional
When True, return an analog filter, otherwise a digital filter is returned.Returns ord : int
The lowest order for a Butterworth filter which meets specs.

wn : ndarray or float
The Butterworth natural frequency (i.e. the “3dB frequency”). Should be
used with butter to give filter results.

See also:

butter Filter design using order and critical points
cheb1ord Find order and critical points from passband and stopband spec

cheb2ord, ellipord
iirfilter General filter design using order and critical frequencies
iirdesign General filter design using passband and stopband spec

Examples

Design an analog bandpass filter with passband within 3 dB from 20 to 50 rad/s, while rejecting at least -40 dB
below 14 and above 60 rad/s. Plot its frequency response, showing the passband and stopband constraints in
gray.

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> N, Wn = signal.buttord([20, 50], [14, 60], 3, 40, True)
>>> b, a = signal.butter(N, Wn, 'band', True)
>>> w, h = signal.freqs(b, a, np.logspace(1, 2, 500))
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.title('Butterworth bandpass filter fit to constraints')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.grid(which='both', axis='both')
>>> plt.fill([1, 14, 14, 1], [-40, -40, 99, 99], '0.9', lw=0) # stop
>>> plt.fill([20, 20, 50, 50], [-99, -3, -3, -99], '0.9', lw=0) # pass
>>> plt.fill([60, 60, 1e9, 1e9], [99, -40, -40, 99], '0.9', lw=0) # stop
>>> plt.axis([10, 100, -60, 3])
>>> plt.show()

846 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

101 102

Frequency [radians / second]

60

50

40

30

20

10

0

Am
pl

itu
de

 [d
B]

Butterworth bandpass filter fit to constraints

scipy.signal.cheby1(N, rp, Wn, btype=’low’, analog=False, output=’ba’)
Chebyshev type I digital and analog filter design.

Design an Nth order digital or analog Chebyshev type I filter and return the filter coefficients.

Parameters N : int
The order of the filter.

rp : float
The maximum ripple allowed below unity gain in the passband. Specified
in decibels, as a positive number.

Wn : array_like
A scalar or length-2 sequence giving the critical frequencies. For Type I
filters, this is the point in the transition band at which the gain first drops
below -rp. For digital filters, Wn is normalized from 0 to 1, where 1 is the
Nyquist frequency, pi radians/sample. (Wn is thus in half-cycles / sample.)
For analog filters, Wn is an angular frequency (e.g. rad/s).

btype : {‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}, optional
The type of filter. Default is ‘lowpass’.

analog : bool, optional
When True, return an analog filter, otherwise a digital filter is returned.

output : {‘ba’, ‘zpk’, ‘sos’}, optional
Type of output: numerator/denominator (‘ba’), pole-zero (‘zpk’), or
second-order sections (‘sos’). Default is ‘ba’.Returns b, a : ndarray, ndarray
Numerator (b) and denominator (a) polynomials of the IIR filter. Only re-
turned if output=’ba’.

z, p, k : ndarray, ndarray, float
Zeros, poles, and system gain of the IIR filter transfer function. Only re-
turned if output=’zpk’.

sos : ndarray
Second-order sections representation of the IIR filter. Only returned if
output==’sos’.

See also:

cheb1ord

5.27. Signal processing (scipy.signal) 847

SciPy Reference Guide, Release 0.16.0

Notes

The Chebyshev type I filter maximizes the rate of cutoff between the frequency response’s passband and stop-
band, at the expense of ripple in the passband and increased ringing in the step response.

Type I filters roll off faster than Type II (cheby2), but Type II filters do not have any ripple in the passband.

The equiripple passband has N maxima or minima (for example, a 5th-order filter has 3 maxima and 2 minima).
Consequently, the DC gain is unity for odd-order filters, or -rp dB for even-order filters.

The ’sos’ output parameter was added in 0.16.0.

Examples

Plot the filter’s frequency response, showing the critical points:

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.cheby1(4, 5, 100, 'low', analog=True)
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.title('Chebyshev Type I frequency response (rp=5)')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.axvline(100, color='green') # cutoff frequency
>>> plt.axhline(-5, color='green') # rp
>>> plt.show()

100 101 102 103

Frequency [radians / second]

100

80

60

40

20

0

Am
pl

itu
de

 [d
B]

Chebyshev Type I frequency response (rp=5)

scipy.signal.cheb1ord(wp, ws, gpass, gstop, analog=False)
Chebyshev type I filter order selection.

Return the order of the lowest order digital or analog Chebyshev Type I filter that loses no more than gpass dB
in the passband and has at least gstop dB attenuation in the stopband.

Parameters wp, ws : float

848 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Passband and stopband edge frequencies. For digital filters, these are nor-
malized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample.
(wp and ws are thus in half-cycles / sample.) For example:

•Lowpass: wp = 0.2, ws = 0.3•Highpass: wp = 0.3, ws = 0.2•Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]•Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]
For analog filters, wp and ws are angular frequencies (e.g. rad/s).

gpass : float
The maximum loss in the passband (dB).

gstop : float
The minimum attenuation in the stopband (dB).

analog : bool, optional
When True, return an analog filter, otherwise a digital filter is returned.Returns ord : int
The lowest order for a Chebyshev type I filter that meets specs.

wn : ndarray or float
The Chebyshev natural frequency (the “3dB frequency”) for use with
cheby1 to give filter results.

See also:

cheby1 Filter design using order and critical points
buttord Find order and critical points from passband and stopband spec

cheb2ord, ellipord
iirfilter General filter design using order and critical frequencies
iirdesign General filter design using passband and stopband spec

Examples

Design a digital lowpass filter such that the passband is within 3 dB up to 0.2*(fs/2), while rejecting at least -40
dB above 0.3*(fs/2). Plot its frequency response, showing the passband and stopband constraints in gray.

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> N, Wn = signal.cheb1ord(0.2, 0.3, 3, 40)
>>> b, a = signal.cheby1(N, 3, Wn, 'low')
>>> w, h = signal.freqz(b, a)
>>> plt.semilogx(w / np.pi, 20 * np.log10(abs(h)))
>>> plt.title('Chebyshev I lowpass filter fit to constraints')
>>> plt.xlabel('Normalized frequency')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.grid(which='both', axis='both')
>>> plt.fill([.01, 0.2, 0.2, .01], [-3, -3, -99, -99], '0.9', lw=0) # stop
>>> plt.fill([0.3, 0.3, 2, 2], [9, -40, -40, 9], '0.9', lw=0) # pass
>>> plt.axis([0.08, 1, -60, 3])
>>> plt.show()

5.27. Signal processing (scipy.signal) 849

SciPy Reference Guide, Release 0.16.0

10 1 100

Normalized frequency

60

50

40

30

20

10

0

Am
pl

itu
de

 [d
B]

Chebyshev I lowpass filter fit to constraints

scipy.signal.cheby2(N, rs, Wn, btype=’low’, analog=False, output=’ba’)
Chebyshev type II digital and analog filter design.

Design an Nth order digital or analog Chebyshev type II filter and return the filter coefficients.

Parameters N : int
The order of the filter.

rs : float
The minimum attenuation required in the stop band. Specified in decibels,
as a positive number.

Wn : array_like
A scalar or length-2 sequence giving the critical frequencies. For Type II
filters, this is the point in the transition band at which the gain first reaches
-rs. For digital filters, Wn is normalized from 0 to 1, where 1 is the Nyquist
frequency, pi radians/sample. (Wn is thus in half-cycles / sample.) For
analog filters, Wn is an angular frequency (e.g. rad/s).

btype : {‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}, optional
The type of filter. Default is ‘lowpass’.

analog : bool, optional
When True, return an analog filter, otherwise a digital filter is returned.

output : {‘ba’, ‘zpk’, ‘sos’}, optional
Type of output: numerator/denominator (‘ba’), pole-zero (‘zpk’), or
second-order sections (‘sos’). Default is ‘ba’.Returns b, a : ndarray, ndarray
Numerator (b) and denominator (a) polynomials of the IIR filter. Only re-
turned if output=’ba’.

z, p, k : ndarray, ndarray, float
Zeros, poles, and system gain of the IIR filter transfer function. Only re-
turned if output=’zpk’.

sos : ndarray
Second-order sections representation of the IIR filter. Only returned if
output==’sos’.

See also:

cheb2ord

850 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The Chebyshev type II filter maximizes the rate of cutoff between the frequency response’s passband and stop-
band, at the expense of ripple in the stopband and increased ringing in the step response.

Type II filters do not roll off as fast as Type I (cheby1).

The ’sos’ output parameter was added in 0.16.0.

Examples

Plot the filter’s frequency response, showing the critical points:

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.cheby2(4, 40, 100, 'low', analog=True)
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.title('Chebyshev Type II frequency response (rs=40)')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.axvline(100, color='green') # cutoff frequency
>>> plt.axhline(-40, color='green') # rs
>>> plt.show()

100 101 102 103

Frequency [radians / second]

80

60

40

20

0

Am
pl

itu
de

 [d
B]

Chebyshev Type II frequency response (rs=40)

scipy.signal.cheb2ord(wp, ws, gpass, gstop, analog=False)
Chebyshev type II filter order selection.

Return the order of the lowest order digital or analog Chebyshev Type II filter that loses no more than gpass dB
in the passband and has at least gstop dB attenuation in the stopband.

Parameters wp, ws : float
Passband and stopband edge frequencies. For digital filters, these are nor-
malized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample.
(wp and ws are thus in half-cycles / sample.) For example:

•Lowpass: wp = 0.2, ws = 0.3

5.27. Signal processing (scipy.signal) 851

SciPy Reference Guide, Release 0.16.0

•Highpass: wp = 0.3, ws = 0.2•Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]•Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]
For analog filters, wp and ws are angular frequencies (e.g. rad/s).

gpass : float
The maximum loss in the passband (dB).

gstop : float
The minimum attenuation in the stopband (dB).

analog : bool, optional
When True, return an analog filter, otherwise a digital filter is returned.Returns ord : int
The lowest order for a Chebyshev type II filter that meets specs.

wn : ndarray or float
The Chebyshev natural frequency (the “3dB frequency”) for use with
cheby2 to give filter results.

See also:

cheby2 Filter design using order and critical points
buttord Find order and critical points from passband and stopband spec

cheb1ord, ellipord
iirfilter General filter design using order and critical frequencies
iirdesign General filter design using passband and stopband spec

Examples

Design a digital bandstop filter which rejects -60 dB from 0.2*(fs/2) to 0.5*(fs/2), while staying within 3 dB
below 0.1*(fs/2) or above 0.6*(fs/2). Plot its frequency response, showing the passband and stopband constraints
in gray.

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> N, Wn = signal.cheb2ord([0.1, 0.6], [0.2, 0.5], 3, 60)
>>> b, a = signal.cheby2(N, 60, Wn, 'stop')
>>> w, h = signal.freqz(b, a)
>>> plt.semilogx(w / np.pi, 20 * np.log10(abs(h)))
>>> plt.title('Chebyshev II bandstop filter fit to constraints')
>>> plt.xlabel('Normalized frequency')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.grid(which='both', axis='both')
>>> plt.fill([.01, .1, .1, .01], [-3, -3, -99, -99], '0.9', lw=0) # stop
>>> plt.fill([.2, .2, .5, .5], [9, -60, -60, 9], '0.9', lw=0) # pass
>>> plt.fill([.6, .6, 2, 2], [-99, -3, -3, -99], '0.9', lw=0) # stop
>>> plt.axis([0.06, 1, -80, 3])
>>> plt.show()

852 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

10 1 100

Normalized frequency

80
70
60
50
40
30
20
10
0

Am
pl

itu
de

 [d
B]

Chebyshev II bandstop filter fit to constraints

scipy.signal.ellip(N, rp, rs, Wn, btype=’low’, analog=False, output=’ba’)
Elliptic (Cauer) digital and analog filter design.

Design an Nth order digital or analog elliptic filter and return the filter coefficients.

Parameters N : int
The order of the filter.

rp : float
The maximum ripple allowed below unity gain in the passband. Specified
in decibels, as a positive number.

rs : float
The minimum attenuation required in the stop band. Specified in decibels,
as a positive number.

Wn : array_like
A scalar or length-2 sequence giving the critical frequencies. For elliptic
filters, this is the point in the transition band at which the gain first drops
below -rp. For digital filters, Wn is normalized from 0 to 1, where 1 is the
Nyquist frequency, pi radians/sample. (Wn is thus in half-cycles / sample.)
For analog filters, Wn is an angular frequency (e.g. rad/s).

btype : {‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}, optional
The type of filter. Default is ‘lowpass’.

analog : bool, optional
When True, return an analog filter, otherwise a digital filter is returned.

output : {‘ba’, ‘zpk’, ‘sos’}, optional
Type of output: numerator/denominator (‘ba’), pole-zero (‘zpk’), or
second-order sections (‘sos’). Default is ‘ba’.Returns b, a : ndarray, ndarray
Numerator (b) and denominator (a) polynomials of the IIR filter. Only re-
turned if output=’ba’.

z, p, k : ndarray, ndarray, float
Zeros, poles, and system gain of the IIR filter transfer function. Only re-
turned if output=’zpk’.

sos : ndarray
Second-order sections representation of the IIR filter. Only returned if
output==’sos’.

See also:

5.27. Signal processing (scipy.signal) 853

SciPy Reference Guide, Release 0.16.0

ellipord

Notes

Also known as Cauer or Zolotarev filters, the elliptical filter maximizes the rate of transition between the fre-
quency response’s passband and stopband, at the expense of ripple in both, and increased ringing in the step
response.

As rp approaches 0, the elliptical filter becomes a Chebyshev type II filter (cheby2). As rs approaches 0, it
becomes a Chebyshev type I filter (cheby1). As both approach 0, it becomes a Butterworth filter (butter).

The equiripple passband has N maxima or minima (for example, a 5th-order filter has 3 maxima and 2 minima).
Consequently, the DC gain is unity for odd-order filters, or -rp dB for even-order filters.

The ’sos’ output parameter was added in 0.16.0.

Examples

Plot the filter’s frequency response, showing the critical points:

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.ellip(4, 5, 40, 100, 'low', analog=True)
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.title('Elliptic filter frequency response (rp=5, rs=40)')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.axvline(100, color='green') # cutoff frequency
>>> plt.axhline(-40, color='green') # rs
>>> plt.axhline(-5, color='green') # rp
>>> plt.show()

101 102 103

Frequency [radians / second]

100

80

60

40

20

0

Am
pl

itu
de

 [d
B]

Elliptic filter frequency response (rp=5, rs=40)

scipy.signal.ellipord(wp, ws, gpass, gstop, analog=False)
Elliptic (Cauer) filter order selection.

854 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Return the order of the lowest order digital or analog elliptic filter that loses no more than gpass dB in the
passband and has at least gstop dB attenuation in the stopband.

Parameters wp, ws : float
Passband and stopband edge frequencies. For digital filters, these are nor-
malized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample.
(wp and ws are thus in half-cycles / sample.) For example:

•Lowpass: wp = 0.2, ws = 0.3•Highpass: wp = 0.3, ws = 0.2•Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]•Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]
For analog filters, wp and ws are angular frequencies (e.g. rad/s).

gpass : float
The maximum loss in the passband (dB).

gstop : float
The minimum attenuation in the stopband (dB).

analog : bool, optional
When True, return an analog filter, otherwise a digital filter is returned.Returns ord : int
The lowest order for an Elliptic (Cauer) filter that meets specs.

wn : ndarray or float
The Chebyshev natural frequency (the “3dB frequency”) for use with
ellip to give filter results.

See also:

ellip Filter design using order and critical points
buttord Find order and critical points from passband and stopband spec

cheb1ord, cheb2ord
iirfilter General filter design using order and critical frequencies
iirdesign General filter design using passband and stopband spec

Examples

Design an analog highpass filter such that the passband is within 3 dB above 30 rad/s, while rejecting -60 dB at
10 rad/s. Plot its frequency response, showing the passband and stopband constraints in gray.

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> N, Wn = signal.ellipord(30, 10, 3, 60, True)
>>> b, a = signal.ellip(N, 3, 60, Wn, 'high', True)
>>> w, h = signal.freqs(b, a, np.logspace(0, 3, 500))
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.title('Elliptical highpass filter fit to constraints')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.grid(which='both', axis='both')
>>> plt.fill([.1, 10, 10, .1], [1e4, 1e4, -60, -60], '0.9', lw=0) # stop
>>> plt.fill([30, 30, 1e9, 1e9], [-99, -3, -3, -99], '0.9', lw=0) # pass
>>> plt.axis([1, 300, -80, 3])
>>> plt.show()

5.27. Signal processing (scipy.signal) 855

SciPy Reference Guide, Release 0.16.0

100 101 102

Frequency [radians / second]

80
70
60
50
40
30
20
10
0

Am
pl

itu
de

 [d
B]

Elliptical highpass filter fit to constraints

scipy.signal.bessel(N, Wn, btype=’low’, analog=False, output=’ba’)
Bessel/Thomson digital and analog filter design.

Design an Nth order digital or analog Bessel filter and return the filter coefficients.

Parameters N : int
The order of the filter.

Wn : array_like
A scalar or length-2 sequence giving the critical frequencies. For a Bessel
filter, this is defined as the point at which the asymptotes of the response are
the same as a Butterworth filter of the same order. For digital filters, Wn is
normalized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample.
(Wn is thus in half-cycles / sample.) For analog filters, Wn is an angular
frequency (e.g. rad/s).

btype : {‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}, optional
The type of filter. Default is ‘lowpass’.

analog : bool, optional
When True, return an analog filter, otherwise a digital filter is returned.

output : {‘ba’, ‘zpk’, ‘sos’}, optional
Type of output: numerator/denominator (‘ba’), pole-zero (‘zpk’), or
second-order sections (‘sos’). Default is ‘ba’.Returns b, a : ndarray, ndarray
Numerator (b) and denominator (a) polynomials of the IIR filter. Only re-
turned if output=’ba’.

z, p, k : ndarray, ndarray, float
Zeros, poles, and system gain of the IIR filter transfer function. Only re-
turned if output=’zpk’.

sos : ndarray
Second-order sections representation of the IIR filter. Only returned if
output==’sos’.

Notes

Also known as a Thomson filter, the analog Bessel filter has maximally flat group delay and maximally linear
phase response, with very little ringing in the step response.

As order increases, the Bessel filter approaches a Gaussian filter.

856 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The digital Bessel filter is generated using the bilinear transform, which does not preserve the phase response
of the analog filter. As such, it is only approximately correct at frequencies below about fs/4. To get maximally
flat group delay at higher frequencies, the analog Bessel filter must be transformed using phase-preserving
techniques.

For a given Wn, the lowpass and highpass filter have the same phase vs frequency curves; they are “phase-
matched”.

The ’sos’ output parameter was added in 0.16.0.

Examples

Plot the filter’s frequency response, showing the flat group delay and the relationship to the Butterworth’s cutoff
frequency:

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.butter(4, 100, 'low', analog=True)
>>> w, h = signal.freqs(b, a)
>>> plt.plot(w, 20 * np.log10(np.abs(h)), color='silver', ls='dashed')
>>> b, a = signal.bessel(4, 100, 'low', analog=True)
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(np.abs(h)))
>>> plt.title('Bessel filter frequency response (with Butterworth)')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.axvline(100, color='green') # cutoff frequency
>>> plt.show()

101 102 103

Frequency [radians / second]

80

60

40

20

0

Am
pl

itu
de

 [d
B]

Bessel filter frequency response (with Butterworth)

>>> plt.figure()
>>> plt.semilogx(w[1:], -np.diff(np.unwrap(np.angle(h)))/np.diff(w))
>>> plt.title('Bessel filter group delay')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Group delay [seconds]')

5.27. Signal processing (scipy.signal) 857

SciPy Reference Guide, Release 0.16.0

>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.show()

102 103

Frequency [radians / second]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Gr
ou

p
de

lay
 [s

ec
on

ds
]

Bessel filter group delay

5.27.6 Continuous-Time Linear Systems

freqresp(system[, w, n]) Calculate the frequency response of a continuous-time system.
lti(*system) Linear Time Invariant system base class.
StateSpace(*system) Linear Time Invariant system class in state-space form.
TransferFunction(*system) Linear Time Invariant system class in transfer function form.
ZerosPolesGain(*system) Linear Time Invariant system class in zeros, poles, gain form.
lsim(system, U, T[, X0, interp]) Simulate output of a continuous-time linear system.
lsim2(system[, U, T, X0]) Simulate output of a continuous-time linear system, by using the ODE solver scipy.integrate.odeint.
impulse(system[, X0, T, N]) Impulse response of continuous-time system.
impulse2(system[, X0, T, N]) Impulse response of a single-input, continuous-time linear system.
step(system[, X0, T, N]) Step response of continuous-time system.
step2(system[, X0, T, N]) Step response of continuous-time system.
bode(system[, w, n]) Calculate Bode magnitude and phase data of a continuous-time system.

scipy.signal.freqresp(system, w=None, n=10000)
Calculate the frequency response of a continuous-time system.

Parameters system : an instance of the LTI class or a tuple describing the system.
The following gives the number of elements in the tuple and the interpreta-
tion:

•2 (num, den)•3 (zeros, poles, gain)•4 (A, B, C, D)
w : array_like, optional

Array of frequencies (in rad/s). Magnitude and phase data is calculated for
every value in this array. If not given a reasonable set will be calculated.

n : int, optional
Number of frequency points to compute if w is not given. The n frequencies
are logarithmically spaced in an interval chosen to include the influence of

858 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

the poles and zeros of the system.Returns w : 1D ndarray
Frequency array [rad/s]

H : 1D ndarray
Array of complex magnitude values

Examples

Generating the Nyquist plot of a transfer function

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> s1 = signal.lti([], [1, 1, 1], [5])
transfer function: H(s) = 5 / (s-1)^3

>>> w, H = signal.freqresp(s1)

>>> plt.figure()
>>> plt.plot(H.real, H.imag, "b")
>>> plt.plot(H.real, -H.imag, "r")
>>> plt.show()

5 4 3 2 1 0 1 2
4
3
2
1
0
1
2
3
4

class scipy.signal.lti(*system)
Linear Time Invariant system base class.

Parameters *system : arguments
The lti class can be instantiated with either 2, 3 or 4 arguments. The
following gives the number of arguments and the corresponding subclass
that is created:

•2: TransferFunction: (numerator, denominator)•3: ZerosPolesGain: (zeros, poles, gain)•4: StateSpace: (A, B, C, D)
Each argument can be an array or a sequence.

5.27. Signal processing (scipy.signal) 859

SciPy Reference Guide, Release 0.16.0

Notes

lti instances do not exist directly. Instead, lti creates an instance of one of its subclasses: StateSpace,
TransferFunction or ZerosPolesGain.

Changing the value of properties that are not directly part of the current system representation (such as the
zeros of a StateSpace system) is very inefficient and may lead to numerical inaccuracies.

Attributes

A A matrix of the StateSpace system.
B B matrix of the StateSpace system.
C C matrix of the StateSpace system.
D D matrix of the StateSpace system.
den Denominator of the TransferFunction system.
gain Gain of the ZerosPolesGain system.
num Numerator of the TransferFunction system.
poles Poles of the ZerosPolesGain system.
zeros Zeros of the ZerosPolesGain system.

lti.A
A matrix of the StateSpace system.

lti.B
B matrix of the StateSpace system.

lti.C
C matrix of the StateSpace system.

lti.D
D matrix of the StateSpace system.

lti.den
Denominator of the TransferFunction system.

lti.gain
Gain of the ZerosPolesGain system.

lti.num
Numerator of the TransferFunction system.

lti.poles
Poles of the ZerosPolesGain system.

lti.zeros
Zeros of the ZerosPolesGain system.

Methods

bode([w, n]) Calculate Bode magnitude and phase data of a continuous-time system.
freqresp([w, n]) Calculate the frequency response of a continuous-time system.
impulse([X0, T, N]) Return the impulse response of a continuous-time system.
output(U, T[, X0]) Return the response of a continuous-time system to input U.
step([X0, T, N]) Return the step response of a continuous-time system.

lti.bode(w=None, n=100)
Calculate Bode magnitude and phase data of a continuous-time system.

860 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude [dB] and phase [deg]. See
scipy.signal.bode for details.

Notes

New in version 0.11.0.

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> s1 = signal.lti([1], [1, 1])
>>> w, mag, phase = s1.bode()

>>> plt.figure()
>>> plt.semilogx(w, mag) # Bode magnitude plot
>>> plt.figure()
>>> plt.semilogx(w, phase) # Bode phase plot
>>> plt.show()

10 2 10 1 100 101
25

20

15

10

5

0

5.27. Signal processing (scipy.signal) 861

SciPy Reference Guide, Release 0.16.0

10 2 10 1 100 101
90
80
70
60
50
40
30
20
10
0

lti.freqresp(w=None, n=10000)
Calculate the frequency response of a continuous-time system.

Returns a 2-tuple containing arrays of frequencies [rad/s] and complex magnitude. See
scipy.signal.freqresp for details.

lti.impulse(X0=None, T=None, N=None)
Return the impulse response of a continuous-time system. See scipy.signal.impulse for details.

lti.output(U, T, X0=None)
Return the response of a continuous-time system to input U. See scipy.signal.lsim for details.

lti.step(X0=None, T=None, N=None)
Return the step response of a continuous-time system. See scipy.signal.step for details.

class scipy.signal.StateSpace(*system)
Linear Time Invariant system class in state-space form.

Represents the system as the first order differential equation 𝑥̇ = 𝐴𝑥 + 𝐵𝑢.

Parameters *system : arguments
The StateSpace class can be instantiated with 1 or 4 arguments. The
following gives the number of input arguments and their interpretation:

•1: lti system: (StateSpace, TransferFunction or
ZerosPolesGain)•4: array_like: (A, B, C, D)

Notes

Changing the value of properties that are not part of the StateSpace system representation (such as zeros
or poles) is very inefficient and may lead to numerical inaccuracies.

Attributes

A
B
C
D

Continued on next page

862 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.125 – continued from previous page
den Denominator of the TransferFunction system.
gain Gain of the ZerosPolesGain system.
num Numerator of the TransferFunction system.
poles Poles of the ZerosPolesGain system.
zeros Zeros of the ZerosPolesGain system.

StateSpace.A

StateSpace.B

StateSpace.C

StateSpace.D

StateSpace.den
Denominator of the TransferFunction system.

StateSpace.gain
Gain of the ZerosPolesGain system.

StateSpace.num
Numerator of the TransferFunction system.

StateSpace.poles
Poles of the ZerosPolesGain system.

StateSpace.zeros
Zeros of the ZerosPolesGain system.

Methods

bode([w, n]) Calculate Bode magnitude and phase data of a continuous-time system.
freqresp([w, n]) Calculate the frequency response of a continuous-time system.
impulse([X0, T, N]) Return the impulse response of a continuous-time system.
output(U, T[, X0]) Return the response of a continuous-time system to input U.
step([X0, T, N]) Return the step response of a continuous-time system.
to_ss() Return a copy of the current StateSpace system.
to_tf(**kwargs) Convert system representation to TransferFunction.
to_zpk(**kwargs) Convert system representation to ZerosPolesGain.

StateSpace.bode(w=None, n=100)
Calculate Bode magnitude and phase data of a continuous-time system.

Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude [dB] and phase [deg]. See
scipy.signal.bode for details.

Notes

New in version 0.11.0.

5.27. Signal processing (scipy.signal) 863

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> s1 = signal.lti([1], [1, 1])
>>> w, mag, phase = s1.bode()

>>> plt.figure()
>>> plt.semilogx(w, mag) # Bode magnitude plot
>>> plt.figure()
>>> plt.semilogx(w, phase) # Bode phase plot
>>> plt.show()

10 2 10 1 100 101
25

20

15

10

5

0

10 2 10 1 100 101
90
80
70
60
50
40
30
20
10
0

StateSpace.freqresp(w=None, n=10000)
Calculate the frequency response of a continuous-time system.

864 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Returns a 2-tuple containing arrays of frequencies [rad/s] and complex magnitude. See
scipy.signal.freqresp for details.

StateSpace.impulse(X0=None, T=None, N=None)
Return the impulse response of a continuous-time system. See scipy.signal.impulse for details.

StateSpace.output(U, T, X0=None)
Return the response of a continuous-time system to input U. See scipy.signal.lsim for details.

StateSpace.step(X0=None, T=None, N=None)
Return the step response of a continuous-time system. See scipy.signal.step for details.

StateSpace.to_ss()
Return a copy of the current StateSpace system.

Returns sys : instance of StateSpace
The current system (copy)

StateSpace.to_tf(**kwargs)
Convert system representation to TransferFunction.

Parameters kwargs : dict, optional
Additional keywords passed to ss2zpkReturns sys : instance of TransferFunction
Transfer function of the current system

StateSpace.to_zpk(**kwargs)
Convert system representation to ZerosPolesGain.

Parameters kwargs : dict, optional
Additional keywords passed to ss2zpkReturns sys : instance of ZerosPolesGain
Zeros, poles, gain representation of the current system

class scipy.signal.TransferFunction(*system)
Linear Time Invariant system class in transfer function form.

Represents the system as the transfer function 𝐻(𝑠) =
∑︀

𝑖 𝑏[𝑖]𝑠
𝑖/
∑︀

𝑗 𝑎[𝑗]𝑠𝑖, where 𝑎 are elements of the
numerator num and 𝑏 are the elements of the denominator den.

Parameters *system : arguments
The TransferFunction class can be instantiated with 1 or 2 arguments.
The following gives the number of input arguments and their interpretation:

•1: lti system: (StateSpace, TransferFunction or
ZerosPolesGain)•2: array_like: (numerator, denominator)

Notes

Changing the value of properties that are not part of the TransferFunction system representation (such as
the A, B, C, D state-space matrices) is very inefficient and may lead to numerical inaccuracies.

Attributes

A A matrix of the StateSpace system.
B B matrix of the StateSpace system.
C C matrix of the StateSpace system.
D D matrix of the StateSpace system.
den
gain Gain of the ZerosPolesGain system.
num

Continued on next page

5.27. Signal processing (scipy.signal) 865

SciPy Reference Guide, Release 0.16.0

Table 5.127 – continued from previous page
poles Poles of the ZerosPolesGain system.
zeros Zeros of the ZerosPolesGain system.

TransferFunction.A
A matrix of the StateSpace system.

TransferFunction.B
B matrix of the StateSpace system.

TransferFunction.C
C matrix of the StateSpace system.

TransferFunction.D
D matrix of the StateSpace system.

TransferFunction.den

TransferFunction.gain
Gain of the ZerosPolesGain system.

TransferFunction.num

TransferFunction.poles
Poles of the ZerosPolesGain system.

TransferFunction.zeros
Zeros of the ZerosPolesGain system.

Methods

bode([w, n]) Calculate Bode magnitude and phase data of a continuous-time system.
freqresp([w, n]) Calculate the frequency response of a continuous-time system.
impulse([X0, T, N]) Return the impulse response of a continuous-time system.
output(U, T[, X0]) Return the response of a continuous-time system to input U.
step([X0, T, N]) Return the step response of a continuous-time system.
to_ss() Convert system representation to StateSpace.
to_tf() Return a copy of the current TransferFunction system.
to_zpk() Convert system representation to ZerosPolesGain.

TransferFunction.bode(w=None, n=100)
Calculate Bode magnitude and phase data of a continuous-time system.

Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude [dB] and phase [deg]. See
scipy.signal.bode for details.

Notes

New in version 0.11.0.

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

866 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> s1 = signal.lti([1], [1, 1])
>>> w, mag, phase = s1.bode()

>>> plt.figure()
>>> plt.semilogx(w, mag) # Bode magnitude plot
>>> plt.figure()
>>> plt.semilogx(w, phase) # Bode phase plot
>>> plt.show()

10 2 10 1 100 101
25

20

15

10

5

0

10 2 10 1 100 101
90
80
70
60
50
40
30
20
10
0

TransferFunction.freqresp(w=None, n=10000)
Calculate the frequency response of a continuous-time system.

Returns a 2-tuple containing arrays of frequencies [rad/s] and complex magnitude. See
scipy.signal.freqresp for details.

TransferFunction.impulse(X0=None, T=None, N=None)
Return the impulse response of a continuous-time system. See scipy.signal.impulse for details.

5.27. Signal processing (scipy.signal) 867

SciPy Reference Guide, Release 0.16.0

TransferFunction.output(U, T, X0=None)
Return the response of a continuous-time system to input U. See scipy.signal.lsim for details.

TransferFunction.step(X0=None, T=None, N=None)
Return the step response of a continuous-time system. See scipy.signal.step for details.

TransferFunction.to_ss()
Convert system representation to StateSpace.

Returns sys : instance of StateSpace
State space model of the current system

TransferFunction.to_tf()
Return a copy of the current TransferFunction system.

Returns sys : instance of TransferFunction
The current system (copy)

TransferFunction.to_zpk()
Convert system representation to ZerosPolesGain.

Returns sys : instance of ZerosPolesGain
Zeros, poles, gain representation of the current system

class scipy.signal.ZerosPolesGain(*system)
Linear Time Invariant system class in zeros, poles, gain form.

Represents the system as the transfer function 𝐻(𝑠) = 𝑘
∏︀

𝑖(𝑠 − 𝑧[𝑖])/
∏︀

𝑗(𝑠 − 𝑝[𝑗]), where 𝑘 is the gain, 𝑧
are the zeros and 𝑝 are the poles.

Parameters *system : arguments
The ZerosPolesGain class can be instantiated with 1 or 3 arguments.
The following gives the number of input arguments and their interpretation:

•1: lti system: (StateSpace, TransferFunction or
ZerosPolesGain)•3: array_like: (zeros, poles, gain)

Notes

Changing the value of properties that are not part of the ZerosPolesGain system representation (such as the
A, B, C, D state-space matrices) is very inefficient and may lead to numerical inaccuracies.

Attributes

A A matrix of the StateSpace system.
B B matrix of the StateSpace system.
C C matrix of the StateSpace system.
D D matrix of the StateSpace system.
den Denominator of the TransferFunction system.
gain
num Numerator of the TransferFunction system.
poles
zeros

ZerosPolesGain.A
A matrix of the StateSpace system.

ZerosPolesGain.B
B matrix of the StateSpace system.

868 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

ZerosPolesGain.C
C matrix of the StateSpace system.

ZerosPolesGain.D
D matrix of the StateSpace system.

ZerosPolesGain.den
Denominator of the TransferFunction system.

ZerosPolesGain.gain

ZerosPolesGain.num
Numerator of the TransferFunction system.

ZerosPolesGain.poles

ZerosPolesGain.zeros

Methods

bode([w, n]) Calculate Bode magnitude and phase data of a continuous-time system.
freqresp([w, n]) Calculate the frequency response of a continuous-time system.
impulse([X0, T, N]) Return the impulse response of a continuous-time system.
output(U, T[, X0]) Return the response of a continuous-time system to input U.
step([X0, T, N]) Return the step response of a continuous-time system.
to_ss() Convert system representation to StateSpace.
to_tf() Convert system representation to TransferFunction.
to_zpk() Return a copy of the current ‘ZerosPolesGain’ system.

ZerosPolesGain.bode(w=None, n=100)
Calculate Bode magnitude and phase data of a continuous-time system.

Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude [dB] and phase [deg]. See
scipy.signal.bode for details.

Notes

New in version 0.11.0.

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> s1 = signal.lti([1], [1, 1])
>>> w, mag, phase = s1.bode()

>>> plt.figure()
>>> plt.semilogx(w, mag) # Bode magnitude plot
>>> plt.figure()
>>> plt.semilogx(w, phase) # Bode phase plot
>>> plt.show()

5.27. Signal processing (scipy.signal) 869

SciPy Reference Guide, Release 0.16.0

10 2 10 1 100 101
25

20

15

10

5

0

10 2 10 1 100 101
90
80
70
60
50
40
30
20
10
0

ZerosPolesGain.freqresp(w=None, n=10000)
Calculate the frequency response of a continuous-time system.

Returns a 2-tuple containing arrays of frequencies [rad/s] and complex magnitude. See
scipy.signal.freqresp for details.

ZerosPolesGain.impulse(X0=None, T=None, N=None)
Return the impulse response of a continuous-time system. See scipy.signal.impulse for details.

ZerosPolesGain.output(U, T, X0=None)
Return the response of a continuous-time system to input U. See scipy.signal.lsim for details.

ZerosPolesGain.step(X0=None, T=None, N=None)
Return the step response of a continuous-time system. See scipy.signal.step for details.

ZerosPolesGain.to_ss()
Convert system representation to StateSpace.

Returns sys : instance of StateSpace

870 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

State space model of the current system

ZerosPolesGain.to_tf()
Convert system representation to TransferFunction.

Returns sys : instance of TransferFunction
Transfer function of the current system

ZerosPolesGain.to_zpk()
Return a copy of the current ‘ZerosPolesGain’ system.

Returns sys : instance of ZerosPolesGain
The current system (copy)

scipy.signal.lsim(system, U, T, X0=None, interp=True)
Simulate output of a continuous-time linear system.

Parameters system : an instance of the LTI class or a tuple describing the system.
The following gives the number of elements in the tuple and the interpreta-
tion:

•2: (num, den)•3: (zeros, poles, gain)•4: (A, B, C, D)
U : array_like

An input array describing the input at each time T (interpolation is assumed
between given times). If there are multiple inputs, then each column of the
rank-2 array represents an input. If U = 0 or None, a zero input is used.

T : array_like
The time steps at which the input is defined and at which the output is
desired. Must be nonnegative, increasing, and equally spaced.

X0 : array_like, optional
The initial conditions on the state vector (zero by default).

interp : bool, optional
Whether to use linear (True, the default) or zero-order-hold (False) interpo-
lation for the input array.Returns T : 1D ndarray
Time values for the output.

yout : 1D ndarray
System response.

xout : ndarray
Time evolution of the state vector.

Examples

Simulate a double integrator y” = u, with a constant input u = 1

>>> from scipy import signal
>>> system = signal.lti([[0., 1.], [0., 0.]], [[0.], [1.]], [[1., 0.]], 0.)
>>> t = np.linspace(0, 5)
>>> u = np.ones_like(t)
>>> tout, y, x = signal.lsim(system, u, t)
>>> import matplotlib.pyplot as plt
>>> plt.plot(t, y)

5.27. Signal processing (scipy.signal) 871

SciPy Reference Guide, Release 0.16.0

0 1 2 3 4 5
0

2

4

6

8

10

12

14

scipy.signal.lsim2(system, U=None, T=None, X0=None, **kwargs)
Simulate output of a continuous-time linear system, by using the ODE solver scipy.integrate.odeint.

Parameters system : an instance of the LTI class or a tuple describing the system.
The following gives the number of elements in the tuple and the interpreta-
tion:

•2: (num, den)•3: (zeros, poles, gain)•4: (A, B, C, D)
U : array_like (1D or 2D), optional

An input array describing the input at each time T. Linear interpolation is
used between given times. If there are multiple inputs, then each column of
the rank-2 array represents an input. If U is not given, the input is assumed
to be zero.

T : array_like (1D or 2D), optional
The time steps at which the input is defined and at which the output is
desired. The default is 101 evenly spaced points on the interval [0,10.0].

X0 : array_like (1D), optional
The initial condition of the state vector. If X0 is not given, the initial condi-
tions are assumed to be 0.

kwargs : dict
Additional keyword arguments are passed on to the function odeint. See the
notes below for more details.Returns T : 1D ndarray
The time values for the output.

yout : ndarray
The response of the system.

xout : ndarray
The time-evolution of the state-vector.

Notes

This function uses scipy.integrate.odeint to solve the system’s differential equations. Ad-
ditional keyword arguments given to lsim2 are passed on to odeint. See the documentation for
scipy.integrate.odeint for the full list of arguments.

scipy.signal.impulse(system, X0=None, T=None, N=None)
Impulse response of continuous-time system.

872 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters system : an instance of the LTI class or a tuple of array_like
describing the system. The following gives the number of elements in the
tuple and the interpretation:

•2 (num, den)•3 (zeros, poles, gain)•4 (A, B, C, D)
X0 : array_like, optional

Initial state-vector. Defaults to zero.
T : array_like, optional

Time points. Computed if not given.
N : int, optional

The number of time points to compute (if T is not given).Returns T : ndarray
A 1-D array of time points.

yout : ndarray
A 1-D array containing the impulse response of the system (except for sin-
gularities at zero).

scipy.signal.impulse2(system, X0=None, T=None, N=None, **kwargs)
Impulse response of a single-input, continuous-time linear system.

Parameters system : an instance of the LTI class or a tuple of array_like
describing the system. The following gives the number of elements in the
tuple and the interpretation:

•2 (num, den)•3 (zeros, poles, gain)•4 (A, B, C, D)
X0 : 1-D array_like, optional

The initial condition of the state vector. Default: 0 (the zero vector).
T : 1-D array_like, optional

The time steps at which the input is defined and at which the output is
desired. If T is not given, the function will generate a set of time samples
automatically.

N : int, optional
Number of time points to compute. Default: 100.

kwargs : various types
Additional keyword arguments are passed on to the function
scipy.signal.lsim2, which in turn passes them on to
scipy.integrate.odeint; see the latter’s documentation for
information about these arguments.Returns T : ndarray
The time values for the output.

yout : ndarray
The output response of the system.

See also:

impulse, lsim2, integrate.odeint

Notes

The solution is generated by calling scipy.signal.lsim2, which uses the differential equation solver
scipy.integrate.odeint.

New in version 0.8.0.

Examples

Second order system with a repeated root: x’‘(t) + 2*x(t) + x(t) = u(t)

5.27. Signal processing (scipy.signal) 873

SciPy Reference Guide, Release 0.16.0

>>> from scipy import signal
>>> system = ([1.0], [1.0, 2.0, 1.0])
>>> t, y = signal.impulse2(system)
>>> import matplotlib.pyplot as plt
>>> plt.plot(t, y)

0 1 2 3 4 5 6 7
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

scipy.signal.step(system, X0=None, T=None, N=None)
Step response of continuous-time system.

Parameters system : an instance of the LTI class or a tuple of array_like
describing the system. The following gives the number of elements in the
tuple and the interpretation:

•2 (num, den)•3 (zeros, poles, gain)•4 (A, B, C, D)
X0 : array_like, optional

Initial state-vector (default is zero).
T : array_like, optional

Time points (computed if not given).
N : int, optional

Number of time points to compute if T is not given.Returns T : 1D ndarray
Output time points.

yout : 1D ndarray
Step response of system.

See also:

scipy.signal.step2

scipy.signal.step2(system, X0=None, T=None, N=None, **kwargs)
Step response of continuous-time system.

This function is functionally the same as scipy.signal.step, but it uses the function
scipy.signal.lsim2 to compute the step response.

Parameters system : an instance of the LTI class or a tuple of array_like
describing the system. The following gives the number of elements in the
tuple and the interpretation:

874 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

•2 (num, den)•3 (zeros, poles, gain)•4 (A, B, C, D)
X0 : array_like, optional

Initial state-vector (default is zero).
T : array_like, optional

Time points (computed if not given).
N : int, optional

Number of time points to compute if T is not given.
kwargs : various types

Additional keyword arguments are passed on the function
scipy.signal.lsim2, which in turn passes them on to
scipy.integrate.odeint. See the documentation for
scipy.integrate.odeint for information about these arguments.Returns T : 1D ndarray
Output time points.

yout : 1D ndarray
Step response of system.

See also:

scipy.signal.step

Notes

New in version 0.8.0.

scipy.signal.bode(system, w=None, n=100)
Calculate Bode magnitude and phase data of a continuous-time system.

Parameters system : an instance of the LTI class or a tuple describing the system.
The following gives the number of elements in the tuple and the interpreta-
tion:

•2 (num, den)•3 (zeros, poles, gain)•4 (A, B, C, D)
w : array_like, optional

Array of frequencies (in rad/s). Magnitude and phase data is calculated for
every value in this array. If not given a reasonable set will be calculated.

n : int, optional
Number of frequency points to compute if w is not given. The n frequencies
are logarithmically spaced in an interval chosen to include the influence of
the poles and zeros of the system.Returns w : 1D ndarray
Frequency array [rad/s]

mag : 1D ndarray
Magnitude array [dB]

phase : 1D ndarray
Phase array [deg]

Notes

New in version 0.11.0.

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

5.27. Signal processing (scipy.signal) 875

SciPy Reference Guide, Release 0.16.0

>>> s1 = signal.lti([1], [1, 1])
>>> w, mag, phase = signal.bode(s1)

>>> plt.figure()
>>> plt.semilogx(w, mag) # Bode magnitude plot
>>> plt.figure()
>>> plt.semilogx(w, phase) # Bode phase plot
>>> plt.show()

10 2 10 1 100 101
25

20

15

10

5

0

10 2 10 1 100 101
90
80
70
60
50
40
30
20
10
0

5.27.7 Discrete-Time Linear Systems

dlsim(system, u[, t, x0]) Simulate output of a discrete-time linear system.
dimpulse(system[, x0, t, n]) Impulse response of discrete-time system.

Continued on next page

876 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.131 – continued from previous page
dstep(system[, x0, t, n]) Step response of discrete-time system.

scipy.signal.dlsim(system, u, t=None, x0=None)
Simulate output of a discrete-time linear system.

Parameters system : tuple of array_like
A tuple describing the system. The following gives the number of elements
in the tuple and the interpretation:

•3: (num, den, dt)•4: (zeros, poles, gain, dt)•5: (A, B, C, D, dt)
u : array_like

An input array describing the input at each time t (interpolation is assumed
between given times). If there are multiple inputs, then each column of the
rank-2 array represents an input.

t : array_like, optional
The time steps at which the input is defined. If t is given, it must be the
same length as u, and the final value in t determines the number of steps
returned in the output.

x0 : array_like, optional
The initial conditions on the state vector (zero by default).Returns tout : ndarray
Time values for the output, as a 1-D array.

yout : ndarray
System response, as a 1-D array.

xout : ndarray, optional
Time-evolution of the state-vector. Only generated if the input is a state-
space systems.

See also:

lsim, dstep, dimpulse, cont2discrete

Examples

A simple integrator transfer function with a discrete time step of 1.0 could be implemented as:

>>> from scipy import signal
>>> tf = ([1.0,], [1.0, -1.0], 1.0)
>>> t_in = [0.0, 1.0, 2.0, 3.0]
>>> u = np.asarray([0.0, 0.0, 1.0, 1.0])
>>> t_out, y = signal.dlsim(tf, u, t=t_in)
>>> y
array([0., 0., 0., 1.])

scipy.signal.dimpulse(system, x0=None, t=None, n=None)
Impulse response of discrete-time system.

Parameters system : tuple of array_like
A tuple describing the system. The following gives the number of elements
in the tuple and the interpretation:

•3: (num, den, dt)•4: (zeros, poles, gain, dt)•5: (A, B, C, D, dt)
x0 : array_like, optional

Initial state-vector. Defaults to zero.
t : array_like, optional

Time points. Computed if not given.

5.27. Signal processing (scipy.signal) 877

SciPy Reference Guide, Release 0.16.0

n : int, optional
The number of time points to compute (if t is not given).Returns tout : ndarray
Time values for the output, as a 1-D array.

yout : ndarray
Impulse response of system. Each element of the tuple represents the output
of the system based on an impulse in each input.

See also:

impulse, dstep, dlsim, cont2discrete

scipy.signal.dstep(system, x0=None, t=None, n=None)
Step response of discrete-time system.

Parameters system : tuple of array_like
A tuple describing the system. The following gives the number of elements
in the tuple and the interpretation:

•3: (num, den, dt)•4: (zeros, poles, gain, dt)•5: (A, B, C, D, dt)
x0 : array_like, optional

Initial state-vector. Defaults to zero.
t : array_like, optional

Time points. Computed if not given.
n : int, optional

The number of time points to compute (if t is not given).Returns tout : ndarray
Output time points, as a 1-D array.

yout : ndarray
Step response of system. Each element of the tuple represents the output of
the system based on a step response to each input.

See also:

step, dimpulse, dlsim, cont2discrete

5.27.8 LTI Representations

tf2zpk(b, a) Return zero, pole, gain (z, p, k) representation from a numerator, denominator representation of a linear filter.
tf2sos(b, a[, pairing]) Return second-order sections from transfer function representation
tf2ss(num, den) Transfer function to state-space representation.
zpk2tf(z, p, k) Return polynomial transfer function representation from zeros and poles
zpk2sos(z, p, k[, pairing]) Return second-order sections from zeros, poles, and gain of a system
zpk2ss(z, p, k) Zero-pole-gain representation to state-space representation
ss2tf(A, B, C, D[, input]) State-space to transfer function.
ss2zpk(A, B, C, D[, input]) State-space representation to zero-pole-gain representation.
sos2zpk(sos) Return zeros, poles, and gain of a series of second-order sections
sos2tf(sos) Return a single transfer function from a series of second-order sections
cont2discrete(sys, dt[, method, alpha]) Transform a continuous to a discrete state-space system.
place_poles(A, B, poles[, method, rtol, maxiter]) Compute K such that eigenvalues (A - dot(B, K))=poles.

scipy.signal.tf2zpk(b, a)
Return zero, pole, gain (z, p, k) representation from a numerator, denominator representation of a linear filter.

Parameters b : array_like
Numerator polynomial coefficients.

878 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

a : array_like
Denominator polynomial coefficients.Returns z : ndarray
Zeros of the transfer function.

p : ndarray
Poles of the transfer function.

k : float
System gain.

Notes

If some values of b are too close to 0, they are removed. In that case, a BadCoefficients warning is emitted.

The b and a arrays are interpreted as coefficients for positive, descending powers of the transfer function variable.
So the inputs 𝑏 = [𝑏0, 𝑏1, ..., 𝑏𝑀] and 𝑎 = [𝑎0, 𝑎1, ..., 𝑎𝑁] can represent an analog filter of the form:

𝐻(𝑠) =
𝑏0𝑠

𝑀 + 𝑏1𝑠
(𝑀−1) + · · · + 𝑏𝑀

𝑎0𝑠𝑁 + 𝑎1𝑠(𝑁−1) + · · · + 𝑎𝑁

or a discrete-time filter of the form:

𝐻(𝑧) =
𝑏0𝑧

𝑀 + 𝑏1𝑧
(𝑀−1) + · · · + 𝑏𝑀

𝑎0𝑧𝑁 + 𝑎1𝑧(𝑁−1) + · · · + 𝑎𝑁

This “positive powers” form is found more commonly in controls engineering. If M and N are equal (which
is true for all filters generated by the bilinear transform), then this happens to be equivalent to the “negative
powers” discrete-time form preferred in DSP:

𝐻(𝑧) =
𝑏0 + 𝑏1𝑧

−1 + · · · + 𝑏𝑀𝑧−𝑀

𝑎0 + 𝑎1𝑧−1 + · · · + 𝑎𝑁𝑧−𝑁

Although this is true for common filters, remember that this is not true in the general case. If M and N are
not equal, the discrete-time transfer function coefficients must first be converted to the “positive powers” form
before finding the poles and zeros.

scipy.signal.tf2sos(b, a, pairing=’nearest’)
Return second-order sections from transfer function representation

Parameters b : array_like
Numerator polynomial coefficients.

a : array_like
Denominator polynomial coefficients.

pairing : {‘nearest’, ‘keep_odd’}, optional
The method to use to combine pairs of poles and zeros into sections. See
zpk2sos.Returns sos : ndarray
Array of second-order filter coefficients, with shape (n_sections, 6).
See sosfilt for the SOS filter format specification.

See also:

zpk2sos, sosfilt

Notes

It is generally discouraged to convert from TF to SOS format, since doing so usually will not improve numer-
ical precision errors. Instead, consider designing filters in ZPK format and converting directly to SOS. TF is
converted to SOS by first converting to ZPK format, then converting ZPK to SOS.

New in version 0.16.0.

5.27. Signal processing (scipy.signal) 879

SciPy Reference Guide, Release 0.16.0

scipy.signal.tf2ss(num, den)
Transfer function to state-space representation.

Parameters num, den : array_like
Sequences representing the numerator and denominator polynomials. The
denominator needs to be at least as long as the numerator.Returns A, B, C, D : ndarray
State space representation of the system, in controller canonical form.

scipy.signal.zpk2tf(z, p, k)
Return polynomial transfer function representation from zeros and poles

Parameters z : array_like
Zeros of the transfer function.

p : array_like
Poles of the transfer function.

k : float
System gain.Returns b : ndarray
Numerator polynomial coefficients.

a : ndarray
Denominator polynomial coefficients.

scipy.signal.zpk2sos(z, p, k, pairing=’nearest’)
Return second-order sections from zeros, poles, and gain of a system

Parameters z : array_like
Zeros of the transfer function.

p : array_like
Poles of the transfer function.

k : float
System gain.

pairing : {‘nearest’, ‘keep_odd’}, optional
The method to use to combine pairs of poles and zeros into sections. See
Notes below.Returns sos : ndarray
Array of second-order filter coefficients, with shape (n_sections, 6).
See sosfilt for the SOS filter format specification.

See also:

sosfilt

Notes

The algorithm used to convert ZPK to SOS format is designed to minimize errors due to numerical precision
issues. The pairing algorithm attempts to minimize the peak gain of each biquadratic section. This is done by
pairing poles with the nearest zeros, starting with the poles closest to the unit circle.

Algorithms

The current algorithms are designed specifically for use with digital filters. Although they can operate on analog
filters, the results may be sub-optimal.

The steps in the pairing=’nearest’ and pairing=’keep_odd’ algorithms are mostly shared. The
nearest algorithm attempts to minimize the peak gain, while ’keep_odd’ minimizes peak gain under the
constraint that odd-order systems should retain one section as first order. The algorithm steps and are as follows:

As a pre-processing step, add poles or zeros to the origin as necessary to obtain the same number of poles and
zeros for pairing. If pairing == ’nearest’ and there are an odd number of poles, add an additional pole
and a zero at the origin.

880 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The following steps are then iterated over until no more poles or zeros remain:
1.Take the (next remaining) pole (complex or real) closest to the unit circle to begin a new filter section.
2.If the pole is real and there are no other remaining real poles 4, add the closest real zero to the section and

leave it as a first order section. Note that after this step we are guaranteed to be left with an even number
of real poles, complex poles, real zeros, and complex zeros for subsequent pairing iterations.

3.Else:
(a)If the pole is complex and the zero is the only remaining real zero*, then pair the pole with the next

closest zero (guaranteed to be complex). This is necessary to ensure that there will be a real zero
remaining to eventually create a first-order section (thus keeping the odd order).

(b)Else pair the pole with the closest remaining zero (complex or real).
(c)Proceed to complete the second-order section by adding another pole and zero to the current pole

and zero in the section:
i.If the current pole and zero are both complex, add their conjugates.

ii.Else if the pole is complex and the zero is real, add the conjugate pole and the next closest
real zero.

iii.Else if the pole is real and the zero is complex, add the conjugate zero and the real pole closest
to those zeros.

iv.Else (we must have a real pole and real zero) add the next real pole closest to the unit circle,
and then add the real zero closest to that pole.

New in version 0.16.0.

Examples

Design a 6th order low-pass elliptic digital filter for a system with a sampling rate of 8000 Hz that has a pass-
band corner frequency of 1000 Hz. The ripple in the pass-band should not exceed 0.087 dB, and the attenuation
in the stop-band should be at least 90 dB.

In the following call to signal.ellip, we could use output=’sos’, but for this example, we’ll use
output=’zpk’, and then convert to SOS format with zpk2sos:

>>> from scipy import signal
>>> z, p, k = signal.ellip(6, 0.087, 90, 1000/(0.5*8000), output='zpk')

Now convert to SOS format.

>>> sos = signal.zpk2sos(z, p, k)

The coefficents of the numerators of the sections:

>>> sos[:, :3]
array([[0.0014154 , 0.00248707, 0.0014154],

[1. , 0.72965193, 1.],
[1. , 0.17594966, 1.]])

The symmetry in the coefficients occurs because all the zeros are on the unit circle.

The coefficients of the denominators of the sections:

>>> sos[:, 3:]
array([[1. , -1.32543251, 0.46989499],

[1. , -1.26117915, 0.6262586],
[1. , -1.25707217, 0.86199667]])

4 This conditional can only be met for specific odd-order inputs with the pairing == ’keep_odd’ method.

5.27. Signal processing (scipy.signal) 881

SciPy Reference Guide, Release 0.16.0

The next example shows the effect of the pairing option. We have a system with three poles and three zeros, so
the SOS array will have shape (2, 6). The means there is, in effect, an extra pole and an extra zero at the origin
in the SOS representation.

>>> z1 = np.array([-1, -0.5-0.5j, -0.5+0.5j])
>>> p1 = np.array([0.75, 0.8+0.1j, 0.8-0.1j])

With pairing=’nearest’ (the default), we obtain

>>> signal.zpk2sos(z1, p1, 1)
array([[1. , 1. , 0.5 , 1. , -0.75, 0.],

[1. , 1. , 0. , 1. , -1.6 , 0.65]])

The first section has the zeros {-0.5-0.05j, -0.5+0.5j} and the poles {0, 0.75}, and the second section has the
zeros {-1, 0} and poles {0.8+0.1j, 0.8-0.1j}. Note that the extra pole and zero at the origin have been assigned
to different sections.

With pairing=’keep_odd’, we obtain:

>>> signal.zpk2sos(z1, p1, 1, pairing='keep_odd')
array([[1. , 1. , 0. , 1. , -0.75, 0.],

[1. , 1. , 0.5 , 1. , -1.6 , 0.65]])

The extra pole and zero at the origin are in the same section. The first section is, in effect, a first-order section.

scipy.signal.zpk2ss(z, p, k)
Zero-pole-gain representation to state-space representation

Parameters z, p : sequence
Zeros and poles.

k : float
System gain.Returns A, B, C, D : ndarray
State space representation of the system, in controller canonical form.

scipy.signal.ss2tf(A, B, C, D, input=0)
State-space to transfer function.

Parameters A, B, C, D : ndarray
State-space representation of linear system.

input : int, optional
For multiple-input systems, the input to use.Returns num : 2-D ndarray
Numerator(s) of the resulting transfer function(s). num has one row for
each of the system’s outputs. Each row is a sequence representation of the
numerator polynomial.

den : 1-D ndarray
Denominator of the resulting transfer function(s). den is a sequence repre-
sentation of the denominator polynomial.

scipy.signal.ss2zpk(A, B, C, D, input=0)
State-space representation to zero-pole-gain representation.

Parameters A, B, C, D : ndarray
State-space representation of linear system.

input : int, optional
For multiple-input systems, the input to use.Returns z, p : sequence
Zeros and poles.

k : float

882 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

System gain.

scipy.signal.sos2zpk(sos)
Return zeros, poles, and gain of a series of second-order sections

Parameters sos : array_like
Array of second-order filter coefficients, must have shape (n_sections,
6). See sosfilt for the SOS filter format specification.Returns z : ndarray
Zeros of the transfer function.

p : ndarray
Poles of the transfer function.

k : float
System gain.

Notes

New in version 0.16.0.

scipy.signal.sos2tf(sos)
Return a single transfer function from a series of second-order sections

Parameters sos : array_like
Array of second-order filter coefficients, must have shape (n_sections,
6). See sosfilt for the SOS filter format specification.Returns b : ndarray
Numerator polynomial coefficients.

a : ndarray
Denominator polynomial coefficients.

Notes

New in version 0.16.0.

scipy.signal.cont2discrete(sys, dt, method=’zoh’, alpha=None)
Transform a continuous to a discrete state-space system.

Parameters sys : a tuple describing the system.
The following gives the number of elements in the tuple and the interpreta-
tion:

•2: (num, den)•3: (zeros, poles, gain)•4: (A, B, C, D)
dt : float

The discretization time step.
method : {“gbt”, “bilinear”, “euler”, “backward_diff”, “zoh”}, optional

Which method to use:
•gbt: generalized bilinear transformation•bilinear: Tustin’s approximation (“gbt” with alpha=0.5)•euler: Euler (or forward differencing) method (“gbt” with
alpha=0)•backward_diff: Backwards differencing (“gbt” with al-
pha=1.0)•zoh: zero-order hold (default)

alpha : float within [0, 1], optional
The generalized bilinear transformation weighting parameter, which should
only be specified with method=”gbt”, and is ignored otherwiseReturns sysd : tuple containing the discrete system
Based on the input type, the output will be of the form

•(num, den, dt) for transfer function input•(zeros, poles, gain, dt) for zeros-poles-gain input•(A, B, C, D, dt) for state-space system input

5.27. Signal processing (scipy.signal) 883

SciPy Reference Guide, Release 0.16.0

Notes

By default, the routine uses a Zero-Order Hold (zoh) method to perform the transformation. Alternatively, a
generalized bilinear transformation may be used, which includes the common Tustin’s bilinear approximation,
an Euler’s method technique, or a backwards differencing technique.

The Zero-Order Hold (zoh) method is based on [R168], the generalized bilinear approximation is based on
[R169] and [R170].

References

[R168], [R169], [R170]

scipy.signal.place_poles(A, B, poles, method=’YT’, rtol=0.001, maxiter=30)
Compute K such that eigenvalues (A - dot(B, K))=poles.

K is the gain matrix such as the plant described by the linear system AX+BU will have its closed-loop poles, i.e
the eigenvalues A - B*K, as close as possible to those asked for in poles.

SISO, MISO and MIMO systems are supported.

Parameters A, B : ndarray
State-space representation of linear system AX + BU.

poles : array_like
Desired real poles and/or complex conjugates poles. Complex poles are
only supported with method="YT" (default).

method: {‘YT’, ‘KNV0’}, optional
Which method to choose to find the gain matrix K. One of:

•‘YT’: Yang Tits•‘KNV0’: Kautsky, Nichols, Van Dooren update method 0
See References and Notes for details on the algorithms.

rtol: float, optional
After each iteration the determinant of the eigenvectors of A - B*K is
compared to its previous value, when the relative error between these two
values becomes lower than rtol the algorithm stops. Default is 1e-3.

maxiter: int, optional
Maximum number of iterations to compute the gain matrix. Default is 30.Returns full_state_feedback : Bunch object
full_state_feedback is composed of:

gain_matrix [1-D ndarray] The closed loop matrix K such
as the eigenvalues of A-BK are as close as
possible to the requested poles.

computed_poles
[1-D ndarray] The poles corresponding to
A-BK sorted as first the real poles in increas-
ing order, then the complex congugates in
lexicographic order.

requested_poles
[1-D ndarray] The poles the algorithm was
asked to place sorted as above, they may dif-
fer from what was achieved.

X [2D ndarray] The transfer matrix such as
X * diag(poles) = (A - B*K)*X
(see Notes)

rtol [float] The relative tolerance achieved on
det(X) (see Notes). rtol will be NaN if
the optimisation algorithms can not run, i.e

884 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

when B.shape[1] == 1, or 0 when the
solution is unique.

nb_iter [int] The number of iterations performed be-
fore converging. nb_iter will be NaN if the
optimisation algorithms can not run, i.e when
B.shape[1] == 1, or 0 when the solu-
tion is unique.

Notes

The Tits and Yang (YT), [R195] paper is an update of the original Kautsky et al. (KNV) paper [R194]. KNV
relies on rank-1 updates to find the transfer matrix X such that X * diag(poles) = (A - B*K)*X,
whereas YT uses rank-2 updates. This yields on average more robust solutions (see [R195] pp 21-22), further-
more the YT algorithm supports complex poles whereas KNV does not in its original version. Only update
method 0 proposed by KNV has been implemented here, hence the name ’KNV0’.

KNV extended to complex poles is used in Matlab’s place function, YT is distributed under a non-free licence
by Slicot under the name robpole. It is unclear and undocumented how KNV0 has been extended to complex
poles (Tits and Yang claim on page 14 of their paper that their method can not be used to extend KNV to complex
poles), therefore only YT supports them in this implementation.

As the solution to the problem of pole placement is not unique for MIMO systems, both methods start with a
tentative transfer matrix which is altered in various way to increase its determinant. Both methods have been
proven to converge to a stable solution, however depending on the way the initial transfer matrix is chosen they
will converge to different solutions and therefore there is absolutely no guarantee that using ’KNV0’ will yield
results similar to Matlab’s or any other implementation of these algorithms.

Using the default method ’YT’ should be fine in most cases; ’KNV0’ is only provided because it is needed
by ’YT’ in some specific cases. Furthermore ’YT’ gives on average more robust results than ’KNV0’ when
abs(det(X)) is used as a robustness indicator.

[R195] is available as a technical report on the following URL: http://drum.lib.umd.edu/handle/1903/5598

References

[R194], [R195]

Examples

A simple example demonstrating real pole placement using both KNV and YT algorithms. This is example
number 1 from section 4 of the reference KNV publication ([R194]):

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> A = np.array([[1.380, -0.2077, 6.715, -5.676],
... [-0.5814, -4.290, 0, 0.6750],
... [1.067, 4.273, -6.654, 5.893],
... [0.0480, 4.273, 1.343, -2.104]])
>>> B = np.array([[0, 5.679],
... [1.136, 1.136],
... [0, 0,],
... [-3.146, 0]])
>>> P = np.array([-0.2, -0.5, -5.0566, -8.6659])

Now compute K with KNV method 0, with the default YT method and with the YT method while forcing 100
iterations of the algorithm and print some results after each call.

5.27. Signal processing (scipy.signal) 885

http://drum.lib.umd.edu/handle/1903/5598

SciPy Reference Guide, Release 0.16.0

>>> fsf1 = signal.place_poles(A, B, P, method='KNV0')
>>> fsf1.gain_matrix
array([[0.20071427, -0.96665799, 0.24066128, -0.10279785],

[0.50587268, 0.57779091, 0.51795763, -0.41991442]])

>>> fsf2 = signal.place_poles(A, B, P) # uses YT method
>>> fsf2.computed_poles
array([-8.6659, -5.0566, -0.5 , -0.2])

>>> fsf3 = signal.place_poles(A, B, P, rtol=-1, maxiter=100)
>>> fsf3.X
array([[0.52072442+0.j, -0.08409372+0.j, -0.56847937+0.j, 0.74823657+0.j],

[-0.04977751+0.j, -0.80872954+0.j, 0.13566234+0.j, -0.29322906+0.j],
[-0.82266932+0.j, -0.19168026+0.j, -0.56348322+0.j, -0.43815060+0.j],
[0.22267347+0.j, 0.54967577+0.j, -0.58387806+0.j, -0.40271926+0.j]])

The absolute value of the determinant of X is a good indicator to check the robustness of the results, both
’KNV0’ and ’YT’ aim at maximizing it. Below a comparison of the robustness of the results above:

>>> abs(np.linalg.det(fsf1.X)) < abs(np.linalg.det(fsf2.X))
True
>>> abs(np.linalg.det(fsf2.X)) < abs(np.linalg.det(fsf3.X))
True

Now a simple example for complex poles:

>>> A = np.array([[0, 7/3., 0, 0],
... [0, 0, 0, 7/9.],
... [0, 0, 0, 0],
... [0, 0, 0, 0]])
>>> B = np.array([[0, 0],
... [0, 0],
... [1, 0],
... [0, 1]])
>>> P = np.array([-3, -1, -2-1j, -2+1j]) / 3.
>>> fsf = signal.place_poles(A, B, P, method='YT')

We can plot the desired and computed poles in the complex plane:

>>> t = np.linspace(0, 2*np.pi, 401)
>>> plt.plot(np.cos(t), np.sin(t), 'k--') # unit circle
>>> plt.plot(fsf.requested_poles.real, fsf.requested_poles.imag,
... 'wo', label='Desired')
>>> plt.plot(fsf.computed_poles.real, fsf.computed_poles.imag, 'bx',
... label='Placed')
>>> plt.grid()
>>> plt.axis('image')
>>> plt.axis([-1.1, 1.1, -1.1, 1.1])
>>> plt.legend(bbox_to_anchor=(1.05, 1), loc=2, numpoints=1)

886 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0 Desired
Placed

5.27.9 Waveforms

chirp(t, f0, t1, f1[, method, phi, vertex_zero]) Frequency-swept cosine generator.
gausspulse(t[, fc, bw, bwr, tpr, retquad, ...]) Return a Gaussian modulated sinusoid:
max_len_seq(nbits[, state, length, taps]) Maximum Length Sequence (MLS) generator
sawtooth(t[, width]) Return a periodic sawtooth or triangle waveform.
square(t[, duty]) Return a periodic square-wave waveform.
sweep_poly(t, poly[, phi]) Frequency-swept cosine generator, with a time-dependent frequency.

scipy.signal.chirp(t, f0, t1, f1, method=’linear’, phi=0, vertex_zero=True)
Frequency-swept cosine generator.

In the following, ‘Hz’ should be interpreted as ‘cycles per unit’; there is no requirement here that the unit is
one second. The important distinction is that the units of rotation are cycles, not radians. Likewise, t could be a
measurement of space instead of time.

Parameters t : array_like
Times at which to evaluate the waveform.

f0 : float
Frequency (e.g. Hz) at time t=0.

t1 : float
Time at which f1 is specified.

f1 : float
Frequency (e.g. Hz) of the waveform at time t1.

method : {‘linear’, ‘quadratic’, ‘logarithmic’, ‘hyperbolic’}, optional
Kind of frequency sweep. If not given, linear is assumed. See Notes below
for more details.

phi : float, optional
Phase offset, in degrees. Default is 0.

vertex_zero : bool, optional
This parameter is only used when method is ‘quadratic’. It determines
whether the vertex of the parabola that is the graph of the frequency is at
t=0 or t=t1.Returns y : ndarray

5.27. Signal processing (scipy.signal) 887

SciPy Reference Guide, Release 0.16.0

A numpy array containing the signal evaluated at t with the requested
time-varying frequency. More precisely, the function returns cos(phase
+ (pi/180)*phi) where phase is the integral (from 0 to t) of
2*pi*f(t). f(t) is defined below.

See also:

sweep_poly

Notes

There are four options for the method. The following formulas give the instantaneous frequency (in Hz) of the
signal generated by chirp(). For convenience, the shorter names shown below may also be used.

linear, lin, li:

f(t) = f0 + (f1 - f0) * t / t1

quadratic, quad, q:

The graph of the frequency f(t) is a parabola through (0, f0) and (t1, f1). By default, the vertex of the
parabola is at (0, f0). If vertex_zero is False, then the vertex is at (t1, f1). The formula is:
if vertex_zero is True:

f(t) = f0 + (f1 - f0) * t**2 / t1**2
else:

f(t) = f1 - (f1 - f0) * (t1 - t)**2 / t1**2
To use a more general quadratic function, or an arbitrary polynomial, use the function
scipy.signal.waveforms.sweep_poly.

logarithmic, log, lo:

f(t) = f0 * (f1/f0)**(t/t1)
f0 and f1 must be nonzero and have the same sign.
This signal is also known as a geometric or exponential chirp.

hyperbolic, hyp:

f(t) = f0*f1*t1 / ((f0 - f1)*t + f1*t1)
f0 and f1 must be nonzero.

scipy.signal.gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=False, retenv=False)
Return a Gaussian modulated sinusoid:

exp(-a t^2) exp(1j*2*pi*fc*t).

If retquad is True, then return the real and imaginary parts (in-phase and quadrature). If retenv is True, then
return the envelope (unmodulated signal). Otherwise, return the real part of the modulated sinusoid.

Parameters t : ndarray or the string ‘cutoff’
Input array.

fc : int, optional
Center frequency (e.g. Hz). Default is 1000.

bw : float, optional
Fractional bandwidth in frequency domain of pulse (e.g. Hz). Default is
0.5.

bwr : float, optional
Reference level at which fractional bandwidth is calculated (dB). Default is
-6.

tpr : float, optional
If t is ‘cutoff’, then the function returns the cutoff time for when the pulse
amplitude falls below tpr (in dB). Default is -60.

888 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

retquad : bool, optional
If True, return the quadrature (imaginary) as well as the real part of the
signal. Default is False.

retenv : bool, optional
If True, return the envelope of the signal. Default is False.Returns yI : ndarray
Real part of signal. Always returned.

yQ : ndarray
Imaginary part of signal. Only returned if retquad is True.

yenv : ndarray
Envelope of signal. Only returned if retenv is True.

See also:

scipy.signal.morlet

Examples

Plot real component, imaginary component, and envelope for a 5 Hz pulse, sampled at 100 Hz for 2 seconds:

>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(-1, 1, 2 * 100, endpoint=False)
>>> i, q, e = signal.gausspulse(t, fc=5, retquad=True, retenv=True)
>>> plt.plot(t, i, t, q, t, e, '--')

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

scipy.signal.max_len_seq(nbits, state=None, length=None, taps=None)
Maximum Length Sequence (MLS) generator

Parameters nbits : int
Number of bits to use. Length of the resulting sequence will be
(2**nbits) - 1. Note that generating long sequences (e.g., greater
than nbits == 16) can take a long time.

state : array_like, optional
If array, must be of length nbits, and will be cast to binary (bool) rep-
resentation. If None, a seed of ones will be used, producing a repeatable
representation. If state is all zeros, an error is raised as this is invalid.
Default: None.

5.27. Signal processing (scipy.signal) 889

SciPy Reference Guide, Release 0.16.0

length : int | None, optional
Number of samples to compute. If None, the entire length (2**nbits)
- 1 is computed.

taps : array_like, optional
Polynomial taps to use (e.g., [7, 6, 1] for an 8-bit sequence). If None,
taps will be automatically selected (for up to nbits == 32).Returns seq : array
Resulting MLS sequence of 0’s and 1’s.

state : array
The final state of the shift register.

Notes

The algorithm for MLS generation is generically described in:

http://en.wikipedia.org/wiki/Maximum_length_sequence

The default values for taps are specifically taken from the first option listed for each value of nbits in:

http://www.newwaveinstruments.com/resources/articles/
m_sequence_linear_feedback_shift_register_lfsr.htm

New in version 0.15.0.

scipy.signal.sawtooth(t, width=1)
Return a periodic sawtooth or triangle waveform.

The sawtooth waveform has a period 2*pi, rises from -1 to 1 on the interval 0 to width*2*pi, then drops
from 1 to -1 on the interval width*2*pi to 2*pi. width must be in the interval [0, 1].

Note that this is not band-limited. It produces an infinite number of harmonics, which are aliased back and forth
across the frequency spectrum.

Parameters t : array_like
Time.

width : array_like, optional
Width of the rising ramp as a proportion of the total cycle. Default is 1,
producing a rising ramp, while 0 produces a falling ramp. t = 0.5 produces
a triangle wave. If an array, causes wave shape to change over time, and
must be the same length as t.Returns y : ndarray
Output array containing the sawtooth waveform.

Examples

A 5 Hz waveform sampled at 500 Hz for 1 second:

>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(0, 1, 500)
>>> plt.plot(t, signal.sawtooth(2 * np.pi * 5 * t))

890 Chapter 5. Reference

http://en.wikipedia.org/wiki/Maximum_length_sequence
http://www.newwaveinstruments.com/resources/articles/

SciPy Reference Guide, Release 0.16.0

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.5

0.0

0.5

1.0

scipy.signal.square(t, duty=0.5)
Return a periodic square-wave waveform.

The square wave has a period 2*pi, has value +1 from 0 to 2*pi*duty and -1 from 2*pi*duty to 2*pi.
duty must be in the interval [0,1].

Note that this is not band-limited. It produces an infinite number of harmonics, which are aliased back and forth
across the frequency spectrum.

Parameters t : array_like
The input time array.

duty : array_like, optional
Duty cycle. Default is 0.5 (50% duty cycle). If an array, causes wave shape
to change over time, and must be the same length as t.Returns y : ndarray
Output array containing the square waveform.

Examples

A 5 Hz waveform sampled at 500 Hz for 1 second:

>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(0, 1, 500, endpoint=False)
>>> plt.plot(t, signal.square(2 * np.pi * 5 * t))
>>> plt.ylim(-2, 2)

A pulse-width modulated sine wave:

>>> plt.figure()
>>> sig = np.sin(2 * np.pi * t)
>>> pwm = signal.square(2 * np.pi * 30 * t, duty=(sig + 1)/2)
>>> plt.subplot(2, 1, 1)
>>> plt.plot(t, sig)
>>> plt.subplot(2, 1, 2)
>>> plt.plot(t, pwm)
>>> plt.ylim(-1.5, 1.5)

5.27. Signal processing (scipy.signal) 891

SciPy Reference Guide, Release 0.16.0

0.0 0.2 0.4 0.6 0.8 1.0
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

0.0 0.2 0.4 0.6 0.8 1.0
1.0
0.5
0.0
0.5
1.0

0.0 0.2 0.4 0.6 0.8 1.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5

scipy.signal.sweep_poly(t, poly, phi=0)
Frequency-swept cosine generator, with a time-dependent frequency.

This function generates a sinusoidal function whose instantaneous frequency varies with time. The frequency at
time t is given by the polynomial poly.

Parameters t : ndarray
Times at which to evaluate the waveform.

poly : 1-D array_like or instance of numpy.poly1d
The desired frequency expressed as a polynomial. If poly is a list or ndarray
of length n, then the elements of poly are the coefficients of the polynomial,
and the instantaneous frequency is

f(t) = poly[0]*t**(n-1) +
poly[1]*t**(n-2) + ... + poly[n-1]

If poly is an instance of numpy.poly1d, then the instantaneous frequency is
f(t) = poly(t)

phi : float, optional

892 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Phase offset, in degrees, Default: 0.Returns sweep_poly : ndarray
A numpy array containing the signal evaluated at t with the requested time-
varying frequency. More precisely, the function returns cos(phase +
(pi/180)*phi), where phase is the integral (from 0 to t) of 2 * pi

* f(t); f(t) is defined above.

See also:

chirp

Notes

New in version 0.8.0.

If poly is a list or ndarray of length n, then the elements of poly are the coefficients of the polynomial, and the
instantaneous frequency is:

f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]

If poly is an instance of numpy.poly1d, then the instantaneous frequency is:

f(t) = poly(t)

Finally, the output s is:

cos(phase + (pi/180)*phi)

where phase is the integral from 0 to t of 2 * pi * f(t), f(t) as defined above.

5.27.10 Window functions

get_window(window, Nx[, fftbins]) Return a window.
barthann(M[, sym]) Return a modified Bartlett-Hann window.
bartlett(M[, sym]) Return a Bartlett window.
blackman(M[, sym]) Return a Blackman window.
blackmanharris(M[, sym]) Return a minimum 4-term Blackman-Harris window.
bohman(M[, sym]) Return a Bohman window.
boxcar(M[, sym]) Return a boxcar or rectangular window.
chebwin(M, at[, sym]) Return a Dolph-Chebyshev window.
cosine(M[, sym]) Return a window with a simple cosine shape.
exponential(M[, center, tau, sym]) Return an exponential (or Poisson) window.
flattop(M[, sym]) Return a flat top window.
gaussian(M, std[, sym]) Return a Gaussian window.
general_gaussian(M, p, sig[, sym]) Return a window with a generalized Gaussian shape.
hamming(M[, sym]) Return a Hamming window.
hann(M[, sym]) Return a Hann window.
kaiser(M, beta[, sym]) Return a Kaiser window.
nuttall(M[, sym]) Return a minimum 4-term Blackman-Harris window according to Nuttall.
parzen(M[, sym]) Return a Parzen window.
slepian(M, width[, sym]) Return a digital Slepian (DPSS) window.
triang(M[, sym]) Return a triangular window.
tukey(M[, alpha, sym]) Return a Tukey window, also known as a tapered cosine window.

scipy.signal.get_window(window, Nx, fftbins=True)
Return a window.

5.27. Signal processing (scipy.signal) 893

http://docs.scipy.org/doc/numpy/reference/generated/numpy.poly1d.html#numpy.poly1d

SciPy Reference Guide, Release 0.16.0

Parameters window : string, float, or tuple
The type of window to create. See below for more details.

Nx : int
The number of samples in the window.

fftbins : bool, optional
If True, create a “periodic” window ready to use with ifftshift and be multi-
plied by the result of an fft (SEE ALSO fftfreq).Returns get_window : ndarray
Returns a window of length Nx and type window

Notes

Window types:

boxcar, triang, blackman, hamming, hann, bartlett, flattop, parzen, bohman, blackmanharris, nuttall,
barthann, kaiser (needs beta), gaussian (needs std), general_gaussian (needs power, width), slepian (needs
width), chebwin (needs attenuation) exponential (needs decay scale), tukey (needs taper fraction)

If the window requires no parameters, then window can be a string.

If the window requires parameters, then window must be a tuple with the first argument the string name of the
window, and the next arguments the needed parameters.

If window is a floating point number, it is interpreted as the beta parameter of the kaiser window.

Each of the window types listed above is also the name of a function that can be called directly to create a
window of that type.

Examples

>>> from scipy import signal
>>> signal.get_window('triang', 7)
array([0.25, 0.5 , 0.75, 1. , 0.75, 0.5 , 0.25])
>>> signal.get_window(('kaiser', 4.0), 9)
array([0.08848053, 0.32578323, 0.63343178, 0.89640418, 1. ,

0.89640418, 0.63343178, 0.32578323, 0.08848053])
>>> signal.get_window(4.0, 9)
array([0.08848053, 0.32578323, 0.63343178, 0.89640418, 1. ,

0.89640418, 0.63343178, 0.32578323, 0.08848053])

scipy.signal.barthann(M, sym=True)
Return a modified Bartlett-Hann window.

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

sym : bool, optional
When True (default), generates a symmetric window, for use in filter design.
When False, generates a periodic window, for use in spectral analysis.Returns w : ndarray
The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

Examples

Plot the window and its frequency response:

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

894 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> window = signal.barthann(51)
>>> plt.plot(window)
>>> plt.title("Bartlett-Hann window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Bartlett-Hann window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Bartlett-Hann window

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

120

100

80

60

40

20

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Frequency response of the Bartlett-Hann window

scipy.signal.bartlett(M, sym=True)

5.27. Signal processing (scipy.signal) 895

SciPy Reference Guide, Release 0.16.0

Return a Bartlett window.

The Bartlett window is very similar to a triangular window, except that the end points are at zero. It is often
used in signal processing for tapering a signal, without generating too much ripple in the frequency domain.

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

sym : bool, optional
When True (default), generates a symmetric window, for use in filter design.
When False, generates a periodic window, for use in spectral analysis.Returns w : ndarray
The triangular window, with the first and last samples equal to zero and the
maximum value normalized to 1 (though the value 1 does not appear if M
is even and sym is True).

Notes

The Bartlett window is defined as

𝑤(𝑛) =
2

𝑀 − 1

(︂
𝑀 − 1

2
−
⃒⃒⃒⃒
𝑛− 𝑀 − 1

2

⃒⃒⃒⃒)︂
Most references to the Bartlett window come from the signal processing literature, where it is used as one of
many windowing functions for smoothing values. Note that convolution with this window produces linear in-
terpolation. It is also known as an apodization (which means”removing the foot”, i.e. smoothing discontinuities
at the beginning and end of the sampled signal) or tapering function. The Fourier transform of the Bartlett is the
product of two sinc functions. Note the excellent discussion in Kanasewich.

References

[R156], [R157], [R158], [R159], [R160]

Examples

Plot the window and its frequency response:

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.bartlett(51)
>>> plt.plot(window)
>>> plt.title("Bartlett window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Bartlett window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

896 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Bartlett window

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

120

100

80

60

40

20

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Frequency response of the Bartlett window

scipy.signal.blackman(M, sym=True)
Return a Blackman window.

The Blackman window is a taper formed by using the first three terms of a summation of cosines. It was designed
to have close to the minimal leakage possible. It is close to optimal, only slightly worse than a Kaiser window.

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

sym : bool, optional
When True (default), generates a symmetric window, for use in filter design.
When False, generates a periodic window, for use in spectral analysis.Returns w : ndarray
The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

5.27. Signal processing (scipy.signal) 897

SciPy Reference Guide, Release 0.16.0

Notes

The Blackman window is defined as

𝑤(𝑛) = 0.42 − 0.5 cos(2𝜋𝑛/𝑀) + 0.08 cos(4𝜋𝑛/𝑀)

Most references to the Blackman window come from the signal processing literature, where it is used as one of
many windowing functions for smoothing values. It is also known as an apodization (which means “removing
the foot”, i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. It
is known as a “near optimal” tapering function, almost as good (by some measures) as the Kaiser window.

References

[R161], [R162]

Examples

Plot the window and its frequency response:

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.blackman(51)
>>> plt.plot(window)
>>> plt.title("Blackman window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Blackman window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

0 10 20 30 40 50
Sample

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Blackman window

898 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

120

100

80

60

40

20

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Frequency response of the Blackman window

scipy.signal.blackmanharris(M, sym=True)
Return a minimum 4-term Blackman-Harris window.

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

sym : bool, optional
When True (default), generates a symmetric window, for use in filter design.
When False, generates a periodic window, for use in spectral analysis.Returns w : ndarray
The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

Examples

Plot the window and its frequency response:

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.blackmanharris(51)
>>> plt.plot(window)
>>> plt.title("Blackman-Harris window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Blackman-Harris window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

5.27. Signal processing (scipy.signal) 899

SciPy Reference Guide, Release 0.16.0

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Blackman-Harris window

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

120

100

80

60

40

20

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Frequency response of the Blackman-Harris window

scipy.signal.bohman(M, sym=True)
Return a Bohman window.

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

sym : bool, optional
When True (default), generates a symmetric window, for use in filter design.
When False, generates a periodic window, for use in spectral analysis.Returns w : ndarray
The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

Examples

Plot the window and its frequency response:

900 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.bohman(51)
>>> plt.plot(window)
>>> plt.title("Bohman window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Bohman window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Bohman window

5.27. Signal processing (scipy.signal) 901

SciPy Reference Guide, Release 0.16.0

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

120

100

80

60

40

20

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Frequency response of the Bohman window

scipy.signal.boxcar(M, sym=True)
Return a boxcar or rectangular window.

Included for completeness, this is equivalent to no window at all.

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

sym : bool, optional
Whether the window is symmetric. (Has no effect for boxcar.)Returns w : ndarray
The window, with the maximum value normalized to 1.

Examples

Plot the window and its frequency response:

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.boxcar(51)
>>> plt.plot(window)
>>> plt.title("Boxcar window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the boxcar window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

902 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

0 10 20 30 40 50
Sample

0.94

0.96

0.98

1.00

1.02

1.04

1.06

Am
pl

itu
de

Boxcar window

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

120

100

80

60

40

20

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Frequency response of the boxcar window

scipy.signal.chebwin(M, at, sym=True)
Return a Dolph-Chebyshev window.

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

at : float
Attenuation (in dB).

sym : bool, optional
When True (default), generates a symmetric window, for use in filter design.
When False, generates a periodic window, for use in spectral analysis.Returns w : ndarray
The window, with the maximum value always normalized to 1

Notes

This window optimizes for the narrowest main lobe width for a given order M and sidelobe equiripple attenuation
at, using Chebyshev polynomials. It was originally developed by Dolph to optimize the directionality of radio

5.27. Signal processing (scipy.signal) 903

SciPy Reference Guide, Release 0.16.0

antenna arrays.

Unlike most windows, the Dolph-Chebyshev is defined in terms of its frequency response:

𝑊 (𝑘) =
cos{𝑀 cos−1[𝛽 cos(𝜋𝑘

𝑀)]}
cosh[𝑀 cosh−1(𝛽)]

where

𝛽 = cosh

[︂
1

𝑀
cosh−1(10

𝐴
20)

]︂
and 0 <= abs(k) <= M-1. A is the attenuation in decibels (at).

The time domain window is then generated using the IFFT, so power-of-two M are the fastest to generate, and
prime number M are the slowest.

The equiripple condition in the frequency domain creates impulses in the time domain, which appear at the ends
of the window.

References

[R163], [R164], [R165]

Examples

Plot the window and its frequency response:

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.chebwin(51, at=100)
>>> plt.plot(window)
>>> plt.title("Dolph-Chebyshev window (100 dB)")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Dolph-Chebyshev window (100 dB)")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

904 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Dolph-Chebyshev window (100 dB)

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

120

100

80

60

40

20

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Frequency response of the Dolph-Chebyshev window (100 dB)

scipy.signal.cosine(M, sym=True)
Return a window with a simple cosine shape.

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

sym : bool, optional
When True (default), generates a symmetric window, for use in filter design.
When False, generates a periodic window, for use in spectral analysis.Returns w : ndarray
The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

Notes

New in version 0.13.0.

5.27. Signal processing (scipy.signal) 905

SciPy Reference Guide, Release 0.16.0

Examples

Plot the window and its frequency response:

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.cosine(51)
>>> plt.plot(window)
>>> plt.title("Cosine window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the cosine window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")
>>> plt.show()

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Cosine window

906 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

120

100

80

60

40

20

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Frequency response of the cosine window

scipy.signal.exponential(M, center=None, tau=1.0, sym=True)
Return an exponential (or Poisson) window.

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

center : float, optional
Parameter defining the center location of the window function. The default
value if not given is center = (M-1) / 2. This parameter must take
its default value for symmetric windows.

tau : float, optional
Parameter defining the decay. For center = 0 use tau = -(M-1) /
ln(x) if x is the fraction of the window remaining at the end.

sym : bool, optional
When True (default), generates a symmetric window, for use in filter design.
When False, generates a periodic window, for use in spectral analysis.Returns w : ndarray
The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

Notes

The Exponential window is defined as

𝑤(𝑛) = 𝑒−|𝑛−𝑐𝑒𝑛𝑡𝑒𝑟|/𝜏

References

S. Gade and H. Herlufsen, “Windows to FFT analysis (Part I)”, Technical Review 3, Bruel & Kjaer, 1987.

Examples

Plot the symmetric window and its frequency response:

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

5.27. Signal processing (scipy.signal) 907

SciPy Reference Guide, Release 0.16.0

>>> M = 51
>>> tau = 3.0
>>> window = signal.exponential(M, tau=tau)
>>> plt.plot(window)
>>> plt.title("Exponential Window (tau=3.0)")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -35, 0])
>>> plt.title("Frequency response of the Exponential window (tau=3.0)")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

This function can also generate non-symmetric windows:

>>> tau2 = -(M-1) / np.log(0.01)
>>> window2 = signal.exponential(M, 0, tau2, False)
>>> plt.figure()
>>> plt.plot(window2)
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Exponential Window (tau=3.0)

908 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

35

30

25

20

15

10

5

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Frequency response of the Exponential window (tau=3.0)

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

scipy.signal.flattop(M, sym=True)
Return a flat top window.

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

sym : bool, optional
When True (default), generates a symmetric window, for use in filter design.
When False, generates a periodic window, for use in spectral analysis.Returns w : ndarray
The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

Examples

Plot the window and its frequency response:

5.27. Signal processing (scipy.signal) 909

SciPy Reference Guide, Release 0.16.0

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.flattop(51)
>>> plt.plot(window)
>>> plt.title("Flat top window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the flat top window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

0 10 20 30 40 50
Sample

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Am
pl

itu
de

Flat top window

910 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

120

100

80

60

40

20

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Frequency response of the flat top window

scipy.signal.gaussian(M, std, sym=True)
Return a Gaussian window.

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

std : float
The standard deviation, sigma.

sym : bool, optional
When True (default), generates a symmetric window, for use in filter design.
When False, generates a periodic window, for use in spectral analysis.Returns w : ndarray
The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

Notes

The Gaussian window is defined as

𝑤(𝑛) = 𝑒−
1
2 (𝑛

𝜎)
2

Examples

Plot the window and its frequency response:

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.gaussian(51, std=7)
>>> plt.plot(window)
>>> plt.title(r"Gaussian window (σ=7)")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

5.27. Signal processing (scipy.signal) 911

SciPy Reference Guide, Release 0.16.0

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title(r"Frequency response of the Gaussian window (σ=7)")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Gaussian window (=7)

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

120

100

80

60

40

20

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Frequency response of the Gaussian window (=7)

scipy.signal.general_gaussian(M, p, sig, sym=True)
Return a window with a generalized Gaussian shape.

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

p : float

912 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Shape parameter. p = 1 is identical to gaussian, p = 0.5 is the same shape
as the Laplace distribution.

sig : float
The standard deviation, sigma.

sym : bool, optional
When True (default), generates a symmetric window, for use in filter design.
When False, generates a periodic window, for use in spectral analysis.Returns w : ndarray
The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

Notes

The generalized Gaussian window is defined as

𝑤(𝑛) = 𝑒−
1
2 |𝑛𝜎 |2𝑝

the half-power point is at

(2 log(2))1/(2𝑝)𝜎

Examples

Plot the window and its frequency response:

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.general_gaussian(51, p=1.5, sig=7)
>>> plt.plot(window)
>>> plt.title(r"Generalized Gaussian window (p=1.5, σ=7)")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title(r"Freq. resp. of the gen. Gaussian window (p=1.5, σ=7)")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

5.27. Signal processing (scipy.signal) 913

SciPy Reference Guide, Release 0.16.0

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Generalized Gaussian window (p=1.5, =7)

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

120

100

80

60

40

20

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Freq. resp. of the gen. Gaussian window (p=1.5, =7)

scipy.signal.hamming(M, sym=True)
Return a Hamming window.

The Hamming window is a taper formed by using a raised cosine with non-zero endpoints, optimized to mini-
mize the nearest side lobe.

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

sym : bool, optional
When True (default), generates a symmetric window, for use in filter design.
When False, generates a periodic window, for use in spectral analysis.Returns w : ndarray
The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

914 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The Hamming window is defined as

𝑤(𝑛) = 0.54 − 0.46 cos

(︂
2𝜋𝑛

𝑀 − 1

)︂
0 ≤ 𝑛 ≤ 𝑀 − 1

The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and is described in Blackman and
Tukey. It was recommended for smoothing the truncated autocovariance function in the time domain. Most
references to the Hamming window come from the signal processing literature, where it is used as one of many
windowing functions for smoothing values. It is also known as an apodization (which means “removing the
foot”, i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function.

References

[R178], [R179], [R180], [R181]

Examples

Plot the window and its frequency response:

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.hamming(51)
>>> plt.plot(window)
>>> plt.title("Hamming window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Hamming window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

5.27. Signal processing (scipy.signal) 915

SciPy Reference Guide, Release 0.16.0

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Hamming window

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

120

100

80

60

40

20

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Frequency response of the Hamming window

scipy.signal.hann(M, sym=True)
Return a Hann window.

The Hann window is a taper formed by using a raised cosine or sine-squared with ends that touch zero.

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

sym : bool, optional
When True (default), generates a symmetric window, for use in filter design.
When False, generates a periodic window, for use in spectral analysis.Returns w : ndarray
The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

916 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The Hann window is defined as

𝑤(𝑛) = 0.5 − 0.5 cos

(︂
2𝜋𝑛

𝑀 − 1

)︂
0 ≤ 𝑛 ≤ 𝑀 − 1

The window was named for Julius van Hann, an Austrian meteorologist. It is also known as the Cosine Bell. It
is sometimes erroneously referred to as the “Hanning” window, from the use of “hann” as a verb in the original
paper and confusion with the very similar Hamming window.

Most references to the Hann window come from the signal processing literature, where it is used as one of many
windowing functions for smoothing values. It is also known as an apodization (which means “removing the
foot”, i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function.

References

[R182], [R183], [R184], [R185]

Examples

Plot the window and its frequency response:

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.hann(51)
>>> plt.plot(window)
>>> plt.title("Hann window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Hann window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

5.27. Signal processing (scipy.signal) 917

SciPy Reference Guide, Release 0.16.0

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Hann window

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

120

100

80

60

40

20

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Frequency response of the Hann window

scipy.signal.kaiser(M, beta, sym=True)
Return a Kaiser window.

The Kaiser window is a taper formed by using a Bessel function.

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

beta : float
Shape parameter, determines trade-off between main-lobe width and side
lobe level. As beta gets large, the window narrows.

sym : bool, optional
When True (default), generates a symmetric window, for use in filter design.
When False, generates a periodic window, for use in spectral analysis.Returns w : ndarray
The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

918 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The Kaiser window is defined as

𝑤(𝑛) = 𝐼0

(︃
𝛽

√︃
1 − 4𝑛2

(𝑀 − 1)2

)︃
/𝐼0(𝛽)

with

−𝑀 − 1

2
≤ 𝑛 ≤ 𝑀 − 1

2
,

where 𝐼0 is the modified zeroth-order Bessel function.

The Kaiser was named for Jim Kaiser, who discovered a simple approximation to the DPSS window based on
Bessel functions. The Kaiser window is a very good approximation to the Digital Prolate Spheroidal Sequence,
or Slepian window, which is the transform which maximizes the energy in the main lobe of the window relative
to total energy.

The Kaiser can approximate many other windows by varying the beta parameter.

beta Window shape
0 Rectangular
5 Similar to a Hamming
6 Similar to a Hann
8.6 Similar to a Blackman

A beta value of 14 is probably a good starting point. Note that as beta gets large, the window narrows, and so
the number of samples needs to be large enough to sample the increasingly narrow spike, otherwise NaNs will
get returned.

Most references to the Kaiser window come from the signal processing literature, where it is used as one of
many windowing functions for smoothing values. It is also known as an apodization (which means “removing
the foot”, i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function.

References

[R188], [R189], [R190]

Examples

Plot the window and its frequency response:

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.kaiser(51, beta=14)
>>> plt.plot(window)
>>> plt.title(r"Kaiser window (β=14)")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])

5.27. Signal processing (scipy.signal) 919

SciPy Reference Guide, Release 0.16.0

>>> plt.title(r"Frequency response of the Kaiser window (β=14)")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0
Am

pl
itu

de
Kaiser window (=14)

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

120

100

80

60

40

20

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Frequency response of the Kaiser window (=14)

scipy.signal.nuttall(M, sym=True)
Return a minimum 4-term Blackman-Harris window according to Nuttall.

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

sym : bool, optional
When True (default), generates a symmetric window, for use in filter design.
When False, generates a periodic window, for use in spectral analysis.Returns w : ndarray
The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

920 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

Plot the window and its frequency response:

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.nuttall(51)
>>> plt.plot(window)
>>> plt.title("Nuttall window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Nuttall window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Nuttall window

5.27. Signal processing (scipy.signal) 921

SciPy Reference Guide, Release 0.16.0

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

120

100

80

60

40

20

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Frequency response of the Nuttall window

scipy.signal.parzen(M, sym=True)
Return a Parzen window.

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

sym : bool, optional
When True (default), generates a symmetric window, for use in filter design.
When False, generates a periodic window, for use in spectral analysis.Returns w : ndarray
The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

Examples

Plot the window and its frequency response:

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.parzen(51)
>>> plt.plot(window)
>>> plt.title("Parzen window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Parzen window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

922 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Parzen window

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

120

100

80

60

40

20

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Frequency response of the Parzen window

scipy.signal.slepian(M, width, sym=True)
Return a digital Slepian (DPSS) window.

Used to maximize the energy concentration in the main lobe. Also called the digital prolate spheroidal sequence
(DPSS).

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

width : float
Bandwidth

sym : bool, optional
When True (default), generates a symmetric window, for use in filter design.
When False, generates a periodic window, for use in spectral analysis.Returns w : ndarray
The window, with the maximum value always normalized to 1

5.27. Signal processing (scipy.signal) 923

SciPy Reference Guide, Release 0.16.0

Examples

Plot the window and its frequency response:

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.slepian(51, width=0.3)
>>> plt.plot(window)
>>> plt.title("Slepian (DPSS) window (BW=0.3)")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Slepian window (BW=0.3)")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Slepian (DPSS) window (BW=0.3)

924 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

120

100

80

60

40

20

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Frequency response of the Slepian window (BW=0.3)

scipy.signal.triang(M, sym=True)
Return a triangular window.

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

sym : bool, optional
When True (default), generates a symmetric window, for use in filter design.
When False, generates a periodic window, for use in spectral analysis.Returns w : ndarray
The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

Examples

Plot the window and its frequency response:

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.triang(51)
>>> plt.plot(window)
>>> plt.title("Triangular window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the triangular window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

5.27. Signal processing (scipy.signal) 925

SciPy Reference Guide, Release 0.16.0

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Triangular window

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

120

100

80

60

40

20

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Frequency response of the triangular window

scipy.signal.tukey(M, alpha=0.5, sym=True)
Return a Tukey window, also known as a tapered cosine window.

Parameters M : int
Number of points in the output window. If zero or less, an empty array is
returned.

alpha : float, optional
Shape parameter of the Tukey window, representing the faction of the win-
dow inside the cosine tapered region. If zero, the Tukey window is equiv-
alent to a rectangular window. If one, the Tukey window is equivalent to a
Hann window.

sym : bool, optional
When True (default), generates a symmetric window, for use in filter design.
When False, generates a periodic window, for use in spectral analysis.Returns w : ndarray
The window, with the maximum value normalized to 1 (though the value 1
does not appear if M is even and sym is True).

926 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

References

[R198], [R199]

Examples

Plot the window and its frequency response:

>>> from scipy import signal
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.tukey(51)
>>> plt.plot(window)
>>> plt.title("Tukey window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")
>>> plt.ylim([0, 1.1])

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Tukey window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Tukey window

5.27. Signal processing (scipy.signal) 927

SciPy Reference Guide, Release 0.16.0

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

120

100

80

60

40

20

0

No
rm

ali
ze

d
m

ag
ni

tu
de

 [d
B]

Frequency response of the Tukey window

5.27.11 Wavelets

cascade(hk[, J]) Return (x, phi, psi) at dyadic points K/2**J from filter coefficients.
daub(p) The coefficients for the FIR low-pass filter producing Daubechies wavelets.
morlet(M[, w, s, complete]) Complex Morlet wavelet.
qmf(hk) Return high-pass qmf filter from low-pass
ricker(points, a) Return a Ricker wavelet, also known as the “Mexican hat wavelet”.
cwt(data, wavelet, widths) Continuous wavelet transform.

scipy.signal.cascade(hk, J=7)
Return (x, phi, psi) at dyadic points K/2**J from filter coefficients.

Parameters hk : array_like
Coefficients of low-pass filter.

J : int, optional
Values will be computed at grid points K/2**J. Default is 7.Returns x : ndarray
The dyadic points K/2**J for K=0...N * (2**J)-1 where
len(hk) = len(gk) = N+1.

phi : ndarray
The scaling function phi(x) at x: phi(x) = sum(hk *
phi(2x-k)), where k is from 0 to N.

psi : ndarray, optional
The wavelet function psi(x) at x: phi(x) = sum(gk *
phi(2x-k)), where k is from 0 to N. psi is only returned if gk is
not None.

Notes

The algorithm uses the vector cascade algorithm described by Strang and Nguyen in “Wavelets and Filter
Banks”. It builds a dictionary of values and slices for quick reuse. Then inserts vectors into final vector at
the end.

928 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.signal.daub(p)
The coefficients for the FIR low-pass filter producing Daubechies wavelets.

p>=1 gives the order of the zero at f=1/2. There are 2p filter coefficients.

Parameters p : int
Order of the zero at f=1/2, can have values from 1 to 34.Returns daub : ndarray
Return

scipy.signal.morlet(M, w=5.0, s=1.0, complete=True)
Complex Morlet wavelet.

Parameters M : int
Length of the wavelet.

w : float, optional
Omega0. Default is 5

s : float, optional
Scaling factor, windowed from -s*2*pi to +s*2*pi. Default is 1.

complete : bool, optional
Whether to use the complete or the standard version.Returns morlet : (M,) ndarray

See also:

scipy.signal.gausspulse

Notes

The standard version:

pi**-0.25 * exp(1j*w*x) * exp(-0.5*(x**2))

This commonly used wavelet is often referred to simply as the Morlet wavelet. Note that this simplified version
can cause admissibility problems at low values of w.

The complete version:

pi**-0.25 * (exp(1j*w*x) - exp(-0.5*(w**2))) * exp(-0.5*(x**2))

The complete version of the Morlet wavelet, with a correction term to improve admissibility. For w greater than
5, the correction term is negligible.

Note that the energy of the return wavelet is not normalised according to s.

The fundamental frequency of this wavelet in Hz is given by f = 2*s*w*r / M where r is the sampling rate.

scipy.signal.qmf(hk)
Return high-pass qmf filter from low-pass

Parameters hk : array_like
Coefficients of high-pass filter.

scipy.signal.ricker(points, a)
Return a Ricker wavelet, also known as the “Mexican hat wavelet”.

It models the function:

A (1 - x^2/a^2) exp(-x^2/2 a^2),

where A = 2/sqrt(3a)pi^1/4.

Parameters points : int
Number of points in vector. Will be centered around 0.

5.27. Signal processing (scipy.signal) 929

SciPy Reference Guide, Release 0.16.0

a : scalar
Width parameter of the wavelet.Returns vector : (N,) ndarray
Array of length points in shape of ricker curve.

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> points = 100
>>> a = 4.0
>>> vec2 = signal.ricker(points, a)
>>> print(len(vec2))
100
>>> plt.plot(vec2)
>>> plt.show()

0 20 40 60 80 100
0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

scipy.signal.cwt(data, wavelet, widths)
Continuous wavelet transform.

Performs a continuous wavelet transform on data, using the wavelet function. A CWT performs a convolution
with data using the wavelet function, which is characterized by a width parameter and length parameter.

Parameters data : (N,) ndarray
data on which to perform the transform.

wavelet : function
Wavelet function, which should take 2 arguments. The first ar-
gument is the number of points that the returned vector will have
(len(wavelet(width,length)) == length). The second is a width parameter,
defining the size of the wavelet (e.g. standard deviation of a gaussian). See
ricker, which satisfies these requirements.

widths : (M,) sequence
Widths to use for transform.Returns cwt: (M, N) ndarray
Will have shape of (len(widths), len(data)).

930 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

>>> length = min(10 * width[ii], len(data))
>>> cwt[ii,:] = scipy.signal.convolve(data, wavelet(length,
... width[ii]), mode='same')

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(-1, 1, 200, endpoint=False)
>>> sig = np.cos(2 * np.pi * 7 * t) + signal.gausspulse(t - 0.4, fc=2)
>>> widths = np.arange(1, 31)
>>> cwtmatr = signal.cwt(sig, signal.ricker, widths)
>>> plt.imshow(cwtmatr, extent=[-1, 1, 1, 31], cmap='PRGn', aspect='auto',
... vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max())
>>> plt.show()

1.0 0.5 0.0 0.5 1.0

5

10

15

20

25

30

5.27.12 Peak finding

find_peaks_cwt(vector, widths[, wavelet, ...]) Attempt to find the peaks in a 1-D array.
argrelmin(data[, axis, order, mode]) Calculate the relative minima of data.
argrelmax(data[, axis, order, mode]) Calculate the relative maxima of data.
argrelextrema(data, comparator[, axis, ...]) Calculate the relative extrema of data.

scipy.signal.find_peaks_cwt(vector, widths, wavelet=None, max_distances=None,
gap_thresh=None, min_length=None, min_snr=1, noise_perc=10)

Attempt to find the peaks in a 1-D array.

The general approach is to smooth vector by convolving it with wavelet(width) for each width in widths. Relative
maxima which appear at enough length scales, and with sufficiently high SNR, are accepted.

Parameters vector : ndarray
1-D array in which to find the peaks.

5.27. Signal processing (scipy.signal) 931

SciPy Reference Guide, Release 0.16.0

widths : sequence
1-D array of widths to use for calculating the CWT matrix. In general, this
range should cover the expected width of peaks of interest.

wavelet : callable, optional
Should take a single variable and return a 1-D array to convolve with vector.
Should be normalized to unit area. Default is the ricker wavelet.

max_distances : ndarray, optional
At each row, a ridge line is only connected if the relative max at row[n] is
within max_distances[n] from the relative max at row[n+1]. De-
fault value is widths/4.

gap_thresh : float, optional
If a relative maximum is not found within max_distances, there will be a
gap. A ridge line is discontinued if there are more than gap_thresh points
without connecting a new relative maximum. Default is 2.

min_length : int, optional
Minimum length a ridge line needs to be acceptable. Default is
cwt.shape[0] / 4, ie 1/4-th the number of widths.

min_snr : float, optional
Minimum SNR ratio. Default 1. The signal is the value of the cwt matrix
at the shortest length scale (cwt[0, loc]), the noise is the noise_perc‘th
percentile of datapoints contained within a window of ‘window_size around
cwt[0, loc].

noise_perc : float, optional
When calculating the noise floor, percentile of data points examined below
which to consider noise. Calculated using stats.scoreatpercentile. Default
is 10.Returns peaks_indices : list
Indices of the locations in the vector where peaks were found. The list is
sorted.

See also:

cwt

Notes

This approach was designed for finding sharp peaks among noisy data, however with proper parameter selection
it should function well for different peak shapes.
The algorithm is as follows:

1.Perform a continuous wavelet transform on vector, for the supplied widths. This
is a convolution of vector with wavelet(width) for each width in widths. See cwt

2.Identify “ridge lines” in the cwt matrix. These are relative maxima at each row,
connected across adjacent rows. See identify_ridge_lines

3.Filter the ridge_lines using filter_ridge_lines.
New in version 0.11.0.

References

[R174]

Examples

>>> from scipy import signal
>>> xs = np.arange(0, np.pi, 0.05)
>>> data = np.sin(xs)
>>> peakind = signal.find_peaks_cwt(data, np.arange(1,10))

932 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> peakind, xs[peakind], data[peakind]
([32], array([1.6]), array([0.9995736]))

scipy.signal.argrelmin(data, axis=0, order=1, mode=’clip’)
Calculate the relative minima of data.

Parameters data : ndarray
Array in which to find the relative minima.

axis : int, optional
Axis over which to select from data. Default is 0.

order : int, optional
How many points on each side to use for the comparison to consider
comparator(n, n+x) to be True.

mode : str, optional
How the edges of the vector are treated. Available options are ‘wrap’ (wrap
around) or ‘clip’ (treat overflow as the same as the last (or first) element).
Default ‘clip’. See numpy.takeReturns extrema : tuple of ndarrays
Indices of the minima in arrays of integers. extrema[k] is the array of
indices of axis k of data. Note that the return value is a tuple even when
data is one-dimensional.

See also:

argrelextrema, argrelmax

Notes

This function uses argrelextrema with np.less as comparator.

New in version 0.11.0.

Examples

>>> x = np.array([2, 1, 2, 3, 2, 0, 1, 0])
>>> argrelmin(x)
(array([1, 5]),)
>>> y = np.array([[1, 2, 1, 2],
... [2, 2, 0, 0],
... [5, 3, 4, 4]])
...
>>> argrelmin(y, axis=1)
(array([0, 2]), array([2, 1]))

scipy.signal.argrelmax(data, axis=0, order=1, mode=’clip’)
Calculate the relative maxima of data.

Parameters data : ndarray
Array in which to find the relative maxima.

axis : int, optional
Axis over which to select from data. Default is 0.

order : int, optional
How many points on each side to use for the comparison to consider
comparator(n, n+x) to be True.

mode : str, optional
How the edges of the vector are treated. Available options are ‘wrap’ (wrap
around) or ‘clip’ (treat overflow as the same as the last (or first) element).
Default ‘clip’. See numpy.take.Returns extrema : tuple of ndarrays

5.27. Signal processing (scipy.signal) 933

http://docs.scipy.org/doc/numpy/reference/generated/numpy.take.html#numpy.take

SciPy Reference Guide, Release 0.16.0

Indices of the maxima in arrays of integers. extrema[k] is the array of
indices of axis k of data. Note that the return value is a tuple even when
data is one-dimensional.

See also:

argrelextrema, argrelmin

Notes

This function uses argrelextrema with np.greater as comparator.

New in version 0.11.0.

Examples

>>> x = np.array([2, 1, 2, 3, 2, 0, 1, 0])
>>> argrelmax(x)
(array([3, 6]),)
>>> y = np.array([[1, 2, 1, 2],
... [2, 2, 0, 0],
... [5, 3, 4, 4]])
...
>>> argrelmax(y, axis=1)
(array([0]), array([1]))

scipy.signal.argrelextrema(data, comparator, axis=0, order=1, mode=’clip’)
Calculate the relative extrema of data.

Parameters data : ndarray
Array in which to find the relative extrema.

comparator : callable
Function to use to compare two data points. Should take 2 numbers as
arguments.

axis : int, optional
Axis over which to select from data. Default is 0.

order : int, optional
How many points on each side to use for the comparison to consider
comparator(n, n+x) to be True.

mode : str, optional
How the edges of the vector are treated. ‘wrap’ (wrap around) or ‘clip’
(treat overflow as the same as the last (or first) element). Default is ‘clip’.
See numpy.take.Returns extrema : tuple of ndarrays
Indices of the maxima in arrays of integers. extrema[k] is the array of
indices of axis k of data. Note that the return value is a tuple even when
data is one-dimensional.

See also:

argrelmin, argrelmax

Notes

New in version 0.11.0.

Examples

934 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.take.html#numpy.take

SciPy Reference Guide, Release 0.16.0

>>> x = np.array([2, 1, 2, 3, 2, 0, 1, 0])
>>> argrelextrema(x, np.greater)
(array([3, 6]),)
>>> y = np.array([[1, 2, 1, 2],
... [2, 2, 0, 0],
... [5, 3, 4, 4]])
...
>>> argrelextrema(y, np.less, axis=1)
(array([0, 2]), array([2, 1]))

5.27.13 Spectral Analysis

periodogram(x[, fs, window, nfft, detrend, ...]) Estimate power spectral density using a periodogram.
welch(x[, fs, window, nperseg, noverlap, ...]) Estimate power spectral density using Welch’s method.
csd(x, y[, fs, window, nperseg, noverlap, ...]) Estimate the cross power spectral density, Pxy, using Welch’s method.
coherence(x, y[, fs, window, nperseg, ...]) Estimate the magnitude squared coherence estimate, Cxy, of discrete-time signals X and Y using Welch’s method.
spectrogram(x[, fs, window, nperseg, ...]) Compute a spectrogram with consecutive Fourier transforms.
lombscargle(x, y, freqs) Computes the Lomb-Scargle periodogram.
vectorstrength(events, period) Determine the vector strength of the events corresponding to the given period.

scipy.signal.periodogram(x, fs=1.0, window=None, nfft=None, detrend=’constant’, re-
turn_onesided=True, scaling=’density’, axis=-1)

Estimate power spectral density using a periodogram.

Parameters x : array_like
Time series of measurement values

fs : float, optional
Sampling frequency of the x time series. Defaults to 1.0.

window : str or tuple or array_like, optional
Desired window to use. See get_window for a list of windows and re-
quired parameters. If window is an array it will be used directly as the
window. Defaults to None; equivalent to ‘boxcar’.

nfft : int, optional
Length of the FFT used. If None the length of x will be used.

detrend : str or function or False, optional
Specifies how to detrend x prior to computing the spectrum. If detrend is
a string, it is passed as the type argument to detrend. If it is a function,
it should return a detrended array. If detrend is False, no detrending is
done. Defaults to ‘constant’.

return_onesided : bool, optional
If True, return a one-sided spectrum for real data. If False return a two-
sided spectrum. Note that for complex data, a two-sided spectrum is always
returned.

scaling : { ‘density’, ‘spectrum’ }, optional
Selects between computing the power spectral density (‘density’) where
Pxx has units of V**2/Hz and computing the power spectrum (‘spectrum’)
where Pxx has units of V**2, if x is measured in V and fs is measured in
Hz. Defaults to ‘density’

axis : int, optional
Axis along which the periodogram is computed; the default is over the last
axis (i.e. axis=-1).Returns f : ndarray
Array of sample frequencies.

5.27. Signal processing (scipy.signal) 935

SciPy Reference Guide, Release 0.16.0

Pxx : ndarray
Power spectral density or power spectrum of x.

See also:

welch Estimate power spectral density using Welch’s method
lombscargle

Lomb-Scargle periodogram for unevenly sampled data

Notes

New in version 0.12.0.

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at
10 kHz.

>>> fs = 10e3
>>> N = 1e5
>>> amp = 2*np.sqrt(2)
>>> freq = 1234.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> x = amp*np.sin(2*np.pi*freq*time)
>>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape)

Compute and plot the power spectral density.

>>> f, Pxx_den = signal.periodogram(x, fs)
>>> plt.semilogy(f, Pxx_den)
>>> plt.ylim([1e-7, 1e2])
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('PSD [V**2/Hz]')
>>> plt.show()

0 1000 2000 3000 4000 5000
frequency [Hz]

10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
101
102

PS
D

[V
**

2/
Hz

]

936 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the
signal.

>>> np.mean(Pxx_den[256:])
0.0009924865443739191

Now compute and plot the power spectrum.

>>> f, Pxx_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum')
>>> plt.figure()
>>> plt.semilogy(f, np.sqrt(Pxx_spec))
>>> plt.ylim([1e-4, 1e1])
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('Linear spectrum [V RMS]')
>>> plt.show()

0 1000 2000 3000 4000 5000
frequency [Hz]

10 4

10 3

10 2

10 1

100

101

Li
ne

ar
 sp

ec
tru

m
 [V

 R
M

S]

The peak height in the power spectrum is an estimate of the RMS amplitude.

>>> np.sqrt(Pxx_spec.max())
2.0077340678640727

scipy.signal.welch(x, fs=1.0, window=’hanning’, nperseg=256, noverlap=None, nfft=None, de-
trend=’constant’, return_onesided=True, scaling=’density’, axis=-1)

Estimate power spectral density using Welch’s method.

Welch’s method [R200] computes an estimate of the power spectral density by dividing the data into overlapping
segments, computing a modified periodogram for each segment and averaging the periodograms.

Parameters x : array_like
Time series of measurement values

fs : float, optional
Sampling frequency of the x time series. Defaults to 1.0.

window : str or tuple or array_like, optional
Desired window to use. See get_window for a list of windows and re-
quired parameters. If window is array_like it will be used directly as the
window and its length will be used for nperseg. Defaults to ‘hanning’.

nperseg : int, optional
Length of each segment. Defaults to 256.

5.27. Signal processing (scipy.signal) 937

SciPy Reference Guide, Release 0.16.0

noverlap : int, optional
Number of points to overlap between segments. If None, noverlap =
nperseg // 2. Defaults to None.

nfft : int, optional
Length of the FFT used, if a zero padded FFT is desired. If None, the FFT
length is nperseg. Defaults to None.

detrend : str or function or False, optional
Specifies how to detrend each segment. If detrend is a string, it is passed
as the type argument to detrend. If it is a function, it takes a segment
and returns a detrended segment. If detrend is False, no detrending is
done. Defaults to ‘constant’.

return_onesided : bool, optional
If True, return a one-sided spectrum for real data. If False return a two-
sided spectrum. Note that for complex data, a two-sided spectrum is always
returned.

scaling : { ‘density’, ‘spectrum’ }, optional
Selects between computing the power spectral density (‘density’) where
Pxx has units of V**2/Hz and computing the power spectrum (‘spectrum’)
where Pxx has units of V**2, if x is measured in V and fs is measured in
Hz. Defaults to ‘density’

axis : int, optional
Axis along which the periodogram is computed; the default is over the last
axis (i.e. axis=-1).Returns f : ndarray
Array of sample frequencies.

Pxx : ndarray
Power spectral density or power spectrum of x.

See also:

periodogram
Simple, optionally modified periodogram

lombscargle
Lomb-Scargle periodogram for unevenly sampled data

Notes

An appropriate amount of overlap will depend on the choice of window and on your requirements. For the
default ‘hanning’ window an overlap of 50% is a reasonable trade off between accurately estimating the signal
power, while not over counting any of the data. Narrower windows may require a larger overlap.

If noverlap is 0, this method is equivalent to Bartlett’s method [R201].

New in version 0.12.0.

References

[R200], [R201]

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at
10 kHz.

938 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> fs = 10e3
>>> N = 1e5
>>> amp = 2*np.sqrt(2)
>>> freq = 1234.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> x = amp*np.sin(2*np.pi*freq*time)
>>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape)

Compute and plot the power spectral density.

>>> f, Pxx_den = signal.welch(x, fs, nperseg=1024)
>>> plt.semilogy(f, Pxx_den)
>>> plt.ylim([0.5e-3, 1])
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('PSD [V**2/Hz]')
>>> plt.show()

0 1000 2000 3000 4000 5000
frequency [Hz]

10 3

10 2

10 1

100

PS
D

[V
**

2/
Hz

]

If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the
signal.

>>> np.mean(Pxx_den[256:])
0.0009924865443739191

Now compute and plot the power spectrum.

>>> f, Pxx_spec = signal.welch(x, fs, 'flattop', 1024, scaling='spectrum')
>>> plt.figure()
>>> plt.semilogy(f, np.sqrt(Pxx_spec))
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('Linear spectrum [V RMS]')
>>> plt.show()

5.27. Signal processing (scipy.signal) 939

SciPy Reference Guide, Release 0.16.0

0 1000 2000 3000 4000 5000
frequency [Hz]

10 1

100

101

Li
ne

ar
 sp

ec
tru

m
 [V

 R
M

S]

The peak height in the power spectrum is an estimate of the RMS amplitude.

>>> np.sqrt(Pxx_spec.max())
2.0077340678640727

scipy.signal.csd(x, y, fs=1.0, window=’hanning’, nperseg=256, noverlap=None, nfft=None, de-
trend=’constant’, return_onesided=True, scaling=’density’, axis=-1)

Estimate the cross power spectral density, Pxy, using Welch’s method.

Parameters x : array_like
Time series of measurement values

y : array_like
Time series of measurement values

fs : float, optional
Sampling frequency of the x and y time series. Defaults to 1.0.

window : str or tuple or array_like, optional
Desired window to use. See get_window for a list of windows and re-
quired parameters. If window is array_like it will be used directly as the
window and its length will be used for nperseg. Defaults to ‘hanning’.

nperseg : int, optional
Length of each segment. Defaults to 256.

noverlap: int, optional
Number of points to overlap between segments. If None, noverlap =
nperseg // 2. Defaults to None.

nfft : int, optional
Length of the FFT used, if a zero padded FFT is desired. If None, the FFT
length is nperseg. Defaults to None.

detrend : str or function or False, optional
Specifies how to detrend each segment. If detrend is a string, it is passed
as the type argument to detrend. If it is a function, it takes a segment
and returns a detrended segment. If detrend is False, no detrending is
done. Defaults to ‘constant’.

return_onesided : bool, optional
If True, return a one-sided spectrum for real data. If False return a two-
sided spectrum. Note that for complex data, a two-sided spectrum is always
returned.

940 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scaling : { ‘density’, ‘spectrum’ }, optional
Selects between computing the cross spectral density (‘density’) where Pxy
has units of V**2/Hz and computing the cross spectrum (‘spectrum’) where
Pxy has units of V**2, if x and y are measured in V and fs is measured in
Hz. Defaults to ‘density’

axis : int, optional
Axis along which the CSD is computed for both inputs; the default is over
the last axis (i.e. axis=-1).Returns f : ndarray
Array of sample frequencies.

Pxy : ndarray
Cross spectral density or cross power spectrum of x,y.

See also:

periodogram
Simple, optionally modified periodogram

lombscargle
Lomb-Scargle periodogram for unevenly sampled data

welch Power spectral density by Welch’s method. [Equivalent to csd(x,x)]
coherence Magnitude squared coherence by Welch’s method.

Notes

By convention, Pxy is computed with the conjugate FFT of X multiplied by the FFT of Y.

If the input series differ in length, the shorter series will be zero-padded to match.

An appropriate amount of overlap will depend on the choice of window and on your requirements. For the
default ‘hanning’ window an overlap of 50% is a reasonable trade off between accurately estimating the signal
power, while not over counting any of the data. Narrower windows may require a larger overlap.

New in version 0.16.0.

References

[R171], [R172]

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

Generate two test signals with some common features.

>>> fs = 10e3
>>> N = 1e5
>>> amp = 20
>>> freq = 1234.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> b, a = signal.butter(2, 0.25, 'low')
>>> x = np.random.normal(scale=np.sqrt(noise_power), size=time.shape)
>>> y = signal.lfilter(b, a, x)
>>> x += amp*np.sin(2*np.pi*freq*time)
>>> y += np.random.normal(scale=0.1*np.sqrt(noise_power), size=time.shape)

Compute and plot the magnitude of the cross spectral density.

5.27. Signal processing (scipy.signal) 941

SciPy Reference Guide, Release 0.16.0

>>> f, Pxy = signal.csd(x, y, fs, nperseg=1024)
>>> plt.semilogy(f, np.abs(Pxy))
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('CSD [V**2/Hz]')
>>> plt.show()

0 1000 2000 3000 4000 5000
frequency [Hz]

10 7

10 6

10 5

10 4

10 3

10 2

CS
D

[V
**

2/
Hz

]

scipy.signal.coherence(x, y, fs=1.0, window=’hanning’, nperseg=256, noverlap=None, nfft=None,
detrend=’constant’, axis=-1)

Estimate the magnitude squared coherence estimate, Cxy, of discrete-time signals X and Y using Welch’s
method.

Cxy = abs(Pxy)**2/(Pxx*Pyy), where Pxx and Pyy are power spectral density estimates of X and Y, and Pxy is
the cross spectral density estimate of X and Y.

Parameters x : array_like
Time series of measurement values

y : array_like
Time series of measurement values

fs : float, optional
Sampling frequency of the x and y time series. Defaults to 1.0.

window : str or tuple or array_like, optional
Desired window to use. See get_window for a list of windows and re-
quired parameters. If window is array_like it will be used directly as the
window and its length will be used for nperseg. Defaults to ‘hanning’.

nperseg : int, optional
Length of each segment. Defaults to 256.

noverlap: int, optional
Number of points to overlap between segments. If None, noverlap =
nperseg // 2. Defaults to None.

nfft : int, optional
Length of the FFT used, if a zero padded FFT is desired. If None, the FFT
length is nperseg. Defaults to None.

detrend : str or function or False, optional
Specifies how to detrend each segment. If detrend is a string, it is passed
as the type argument to detrend. If it is a function, it takes a segment

942 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

and returns a detrended segment. If detrend is False, no detrending is
done. Defaults to ‘constant’.

axis : int, optional
Axis along which the coherence is computed for both inputs; the default is
over the last axis (i.e. axis=-1).Returns f : ndarray
Array of sample frequencies.

Cxy : ndarray
Magnitude squared coherence of x and y.

See also:

periodogram
Simple, optionally modified periodogram

lombscargle
Lomb-Scargle periodogram for unevenly sampled data

welch Power spectral density by Welch’s method.
csd Cross spectral density by Welch’s method.

Notes

An appropriate amount of overlap will depend on the choice of window and on your requirements. For the
default ‘hanning’ window an overlap of 50% is a reasonable trade off between accurately estimating the signal
power, while not over counting any of the data. Narrower windows may require a larger overlap.

New in version 0.16.0.

References

[R166], [R167]

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

Generate two test signals with some common features.

>>> fs = 10e3
>>> N = 1e5
>>> amp = 20
>>> freq = 1234.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> b, a = signal.butter(2, 0.25, 'low')
>>> x = np.random.normal(scale=np.sqrt(noise_power), size=time.shape)
>>> y = signal.lfilter(b, a, x)
>>> x += amp*np.sin(2*np.pi*freq*time)
>>> y += np.random.normal(scale=0.1*np.sqrt(noise_power), size=time.shape)

Compute and plot the coherence.

>>> f, Cxy = signal.coherence(x, y, fs, nperseg=1024)
>>> plt.semilogy(f, Cxy)
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('Coherence')
>>> plt.show()

5.27. Signal processing (scipy.signal) 943

SciPy Reference Guide, Release 0.16.0

0 1000 2000 3000 4000 5000
frequency [Hz]

10 5

10 4

10 3

10 2

10 1

100

Co
he

re
nc

e

scipy.signal.spectrogram(x, fs=1.0, window=(‘tukey’, 0.25), nperseg=256, noverlap=None,
nfft=None, detrend=’constant’, return_onesided=True, scal-
ing=’density’, axis=-1)

Compute a spectrogram with consecutive Fourier transforms.

Spectrograms can be used as a way of visualizing the change of a nonstationary signal’s frequency content over
time.

Parameters x : array_like
Time series of measurement values

fs : float, optional
Sampling frequency of the x time series. Defaults to 1.0.

window : str or tuple or array_like, optional
Desired window to use. See get_window for a list of windows and re-
quired parameters. If window is array_like it will be used directly as the
window and its length will be used for nperseg. Defaults to a Tukey win-
dow with shape parameter of 0.25.

nperseg : int, optional
Length of each segment. Defaults to 256.

noverlap : int, optional
Number of points to overlap between segments. If None, noverlap =
nperseg // 8. Defaults to None.

nfft : int, optional
Length of the FFT used, if a zero padded FFT is desired. If None, the FFT
length is nperseg. Defaults to None.

detrend : str or function or False, optional
Specifies how to detrend each segment. If detrend is a string, it is passed
as the type argument to detrend. If it is a function, it takes a segment
and returns a detrended segment. If detrend is False, no detrending is
done. Defaults to ‘constant’.

return_onesided : bool, optional
If True, return a one-sided spectrum for real data. If False return a two-
sided spectrum. Note that for complex data, a two-sided spectrum is always
returned.

scaling : { ‘density’, ‘spectrum’ }, optional

944 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Selects between computing the power spectral density (‘density’) where
Pxx has units of V**2/Hz and computing the power spectrum (‘spectrum’)
where Pxx has units of V**2, if x is measured in V and fs is measured in
Hz. Defaults to ‘density’

axis : int, optional
Axis along which the spectrogram is computed; the default is over the last
axis (i.e. axis=-1).Returns f : ndarray
Array of sample frequencies.

t : ndarray
Array of segment times.

Sxx : ndarray
Spectrogram of x. By default, the last axis of Sxx corresponds to the seg-
ment times.

See also:

periodogram
Simple, optionally modified periodogram

lombscargle
Lomb-Scargle periodogram for unevenly sampled data

welch Power spectral density by Welch’s method.
csd Cross spectral density by Welch’s method.

Notes

An appropriate amount of overlap will depend on the choice of window and on your requirements. In contrast
to welch’s method, where the entire data stream is averaged over, one may wish to use a smaller overlap (or per-
haps none at all) when computing a spectrogram, to maintain some statistical independence between individual
segments.

New in version 0.16.0.

References

...[1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck “Discrete-Time
Signal Processing”, Prentice Hall, 1999.

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

Generate a test signal, a 2 Vrms sine wave whose frequency linearly changes with time from 1kHz to 2kHz,
corrupted by 0.001 V**2/Hz of white noise sampled at 10 kHz.

>>> fs = 10e3
>>> N = 1e5
>>> amp = 2 * np.sqrt(2)
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> freq = np.linspace(1e3, 2e3, N)
>>> x = amp * np.sin(2*np.pi*freq*time)
>>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape)

Compute and plot the spectrogram.

5.27. Signal processing (scipy.signal) 945

SciPy Reference Guide, Release 0.16.0

>>> f, t, Sxx = signal.spectrogram(x, fs)
>>> plt.pcolormesh(t, f, Sxx)
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.show()

0 2 4 6 8 10
Time [sec]

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y
[H

z]

scipy.signal.lombscargle(x, y, freqs)
Computes the Lomb-Scargle periodogram.

The Lomb-Scargle periodogram was developed by Lomb [R191] and further extended by Scargle [R192] to
find, and test the significance of weak periodic signals with uneven temporal sampling.

The computed periodogram is unnormalized, it takes the value (A**2) * N/4 for a harmonic signal with
amplitude A for sufficiently large N.

Parameters x : array_like
Sample times.

y : array_like
Measurement values.

freqs : array_like
Angular frequencies for output periodogram.Returns pgram : array_like
Lomb-Scargle periodogram.Raises ValueError
If the input arrays x and y do not have the same shape.

Notes

This subroutine calculates the periodogram using a slightly modified algorithm due to Townsend [R193] which
allows the periodogram to be calculated using only a single pass through the input arrays for each frequency.

The algorithm running time scales roughly as O(x * freqs) or O(N^2) for a large number of samples and fre-
quencies.

References

[R191], [R192], [R193]

946 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> import scipy.signal
>>> import matplotlib.pyplot as plt

First define some input parameters for the signal:

>>> A = 2.
>>> w = 1.
>>> phi = 0.5 * np.pi
>>> nin = 1000
>>> nout = 100000
>>> frac_points = 0.9 # Fraction of points to select

Randomly select a fraction of an array with timesteps:

>>> r = np.random.rand(nin)
>>> x = np.linspace(0.01, 10*np.pi, nin)
>>> x = x[r >= frac_points]
>>> normval = x.shape[0] # For normalization of the periodogram

Plot a sine wave for the selected times:

>>> y = A * np.sin(w*x+phi)

Define the array of frequencies for which to compute the periodogram:

>>> f = np.linspace(0.01, 10, nout)

Calculate Lomb-Scargle periodogram:

>>> import scipy.signal as signal
>>> pgram = signal.lombscargle(x, y, f)

Now make a plot of the input data:

>>> plt.subplot(2, 1, 1)
<matplotlib.axes.AxesSubplot object at 0x102154f50>
>>> plt.plot(x, y, 'b+')
[<matplotlib.lines.Line2D object at 0x102154a10>]

Then plot the normalized periodogram:

>>> plt.subplot(2, 1, 2)
<matplotlib.axes.AxesSubplot object at 0x104b0a990>
>>> plt.plot(f, np.sqrt(4*(pgram/normval)))
[<matplotlib.lines.Line2D object at 0x104b2f910>]
>>> plt.show()

5.27. Signal processing (scipy.signal) 947

SciPy Reference Guide, Release 0.16.0

0 5 10 15 20 25 30 35
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

0 2 4 6 8 10
0.0
0.5
1.0
1.5
2.0
2.5

scipy.signal.vectorstrength(events, period)
Determine the vector strength of the events corresponding to the given period.

The vector strength is a measure of phase synchrony, how well the timing of the events is synchronized to a
single period of a periodic signal.

If multiple periods are used, calculate the vector strength of each. This is called the “resonating vector strength”.

Parameters events : 1D array_like
An array of time points containing the timing of the events.

period : float or array_like
The period of the signal that the events should synchronize to. The period
is in the same units as events. It can also be an array of periods, in which
case the outputs are arrays of the same length.Returns strength : float or 1D array
The strength of the synchronization. 1.0 is perfect synchronization and 0.0
is no synchronization. If period is an array, this is also an array with each
element containing the vector strength at the corresponding period.

phase : float or array
The phase that the events are most strongly synchronized to in radians. If
period is an array, this is also an array with each element containing the
phase for the corresponding period.

References

van Hemmen, JL, Longtin, A, and Vollmayr, AN. Testing resonating vector
strength: Auditory system, electric fish, and noise. Chaos 21, 047508 (2011); doi:
10.1063/1.3670512

van Hemmen, JL. Vector strength after Goldberg, Brown, and von Mises:
biological and mathematical perspectives. Biol Cybern. 2013 Aug;107(4):385-96. doi:
10.1007/s00422-013-0561-7.

van Hemmen, JL and Vollmayr, AN. Resonating vector strength: what happens
when we vary the “probing” frequency while keeping the spike times fixed. Biol Cybern. 2013
Aug;107(4):491-94. doi: 10.1007/s00422-013-0560-8

948 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

5.28 Sparse matrices (scipy.sparse)

SciPy 2-D sparse matrix package for numeric data.

5.28.1 Contents

Sparse matrix classes

bsr_matrix(arg1[, shape, dtype, copy, blocksize]) Block Sparse Row matrix
coo_matrix(arg1[, shape, dtype, copy]) A sparse matrix in COOrdinate format.
csc_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Column matrix
csr_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Row matrix
dia_matrix(arg1[, shape, dtype, copy]) Sparse matrix with DIAgonal storage
dok_matrix(arg1[, shape, dtype, copy]) Dictionary Of Keys based sparse matrix.
lil_matrix(arg1[, shape, dtype, copy]) Row-based linked list sparse matrix

class scipy.sparse.bsr_matrix(arg1, shape=None, dtype=None, copy=False, blocksize=None)
Block Sparse Row matrix
This can be instantiated in several ways:

bsr_matrix(D, [blocksize=(R,C)])
where D is a dense matrix or 2-D ndarray.

bsr_matrix(S, [blocksize=(R,C)])
with another sparse matrix S (equivalent to S.tobsr())

bsr_matrix((M, N), [blocksize=(R,C), dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to
dtype=’d’.

bsr_matrix((data, ij), [blocksize=(R,C), shape=(M, N)])
where data and ij satisfy a[ij[0, k], ij[1, k]] = data[k]

bsr_matrix((data, indices, indptr), [shape=(M, N)])
is the standard BSR representation where the block column indices for row i
are stored in indices[indptr[i]:indptr[i+1]] and their correspond-
ing block values are stored in data[indptr[i]: indptr[i+1]]. If
the shape parameter is not supplied, the matrix dimensions are inferred from the
index arrays.

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division,
and matrix power.

Summary of BSR format

The Block Compressed Row (BSR) format is very similar to the Compressed Sparse Row (CSR) format. BSR is
appropriate for sparse matrices with dense sub matrices like the last example below. Block matrices often arise
in vector-valued finite element discretizations. In such cases, BSR is considerably more efficient than CSR and
CSC for many sparse arithmetic operations.

Blocksize

The blocksize (R,C) must evenly divide the shape of the matrix (M,N). That is, R and C must satisfy the
relationship M % R = 0 and N % C = 0.

If no blocksize is specified, a simple heuristic is applied to determine an appropriate blocksize.

5.28. Sparse matrices (scipy.sparse) 949

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.sparse import bsr_matrix
>>> bsr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)

>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3 ,4, 5, 6])
>>> bsr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],

[0, 0, 3],
[4, 5, 6]])

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6]).repeat(4).reshape(6, 2, 2)
>>> bsr_matrix((data,indices,indptr), shape=(6, 6)).toarray()
array([[1, 1, 0, 0, 2, 2],

[1, 1, 0, 0, 2, 2],
[0, 0, 0, 0, 3, 3],
[0, 0, 0, 0, 3, 3],
[4, 4, 5, 5, 6, 6],
[4, 4, 5, 5, 6, 6]])

Attributes

has_sorted_indices Determine whether the matrix has sorted indices

bsr_matrix.has_sorted_indices
Determine whether the matrix has sorted indices
Returns

•True: if the indices of the matrix are in sorted order
•False: otherwise

dtype (dtype) Data type of the matrix
shape (2-tuple) Shape of the matrix
ndim (int) Number of dimensions (this is always 2)
nnz Number of nonzero elements
data Data array of the matrix
indices BSR format index array
indptr BSR format index pointer array
blocksize Block size of the matrix

Methods

arcsin() Element-wise arcsin.
arcsinh() Element-wise arcsinh.
arctan() Element-wise arctan.
arctanh() Element-wise arctanh.
asformat(format) Return this matrix in a given sparse format

Continued on next page

950 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.140 – continued from previous page
asfptype() Upcast matrix to a floating point format (if necessary)
astype(t)
ceil() Element-wise ceil.
check_format([full_check]) check whether the matrix format is valid
conj()
conjugate()
copy()
deg2rad() Element-wise deg2rad.
diagonal() Returns the main diagonal of the matrix
dot(other) Ordinary dot product
eliminate_zeros()
expm1() Element-wise expm1.
floor() Element-wise floor.
getH()
get_shape()
getcol(j) Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).
getdata(ind)
getformat()
getmaxprint()
getnnz()
getrow(i) Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).
log1p() Element-wise log1p.
matmat(other)
matvec(other)
max([axis]) Maximum of the elements of this matrix.
maximum(other)
mean([axis]) Average the matrix over the given axis.
min([axis]) Minimum of the elements of this matrix.
minimum(other)
multiply(other) Point-wise multiplication by another matrix, vector, or scalar.
nonzero() nonzero indices
power(n[, dtype]) This function performs element-wise power.
prune() Remove empty space after all non-zero elements.
rad2deg() Element-wise rad2deg.
reshape(shape)
rint() Element-wise rint.
set_shape(shape)
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sign() Element-wise sign.
sin() Element-wise sin.
sinh() Element-wise sinh.
sort_indices() Sort the indices of this matrix in place
sorted_indices() Return a copy of this matrix with sorted indices
sqrt() Element-wise sqrt.
sum([axis]) Sum the matrix over the given axis.
sum_duplicates()
tan() Element-wise tan.
tanh() Element-wise tanh.
toarray([order, out]) See the docstring for spmatrix.toarray.
tobsr([blocksize, copy])

Continued on next page

5.28. Sparse matrices (scipy.sparse) 951

SciPy Reference Guide, Release 0.16.0

Table 5.140 – continued from previous page
tocoo([copy]) Convert this matrix to COOrdinate format.
tocsc()
tocsr()
todense([order, out]) Return a dense matrix representation of this matrix.
todia()
todok()
tolil()
transpose()
trunc() Element-wise trunc.

bsr_matrix.arcsin()
Element-wise arcsin.

See numpy.arcsin for more information.

bsr_matrix.arcsinh()
Element-wise arcsinh.

See numpy.arcsinh for more information.

bsr_matrix.arctan()
Element-wise arctan.

See numpy.arctan for more information.

bsr_matrix.arctanh()
Element-wise arctanh.

See numpy.arctanh for more information.

bsr_matrix.asformat(format)
Return this matrix in a given sparse format

Parameters format : {string, None}
desired sparse matrix format

•None for no format conversion
•“csr” for csr_matrix format
•“csc” for csc_matrix format
•“lil” for lil_matrix format
•“dok” for dok_matrix format and so on

bsr_matrix.asfptype()
Upcast matrix to a floating point format (if necessary)

bsr_matrix.astype(t)

bsr_matrix.ceil()
Element-wise ceil.

See numpy.ceil for more information.

bsr_matrix.check_format(full_check=True)
check whether the matrix format is valid
Parameters:

full_check: True - rigorous check, O(N) operations : default False - basic check, O(1)
operations

952 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

bsr_matrix.conj()

bsr_matrix.conjugate()

bsr_matrix.copy()

bsr_matrix.deg2rad()
Element-wise deg2rad.

See numpy.deg2rad for more information.

bsr_matrix.diagonal()
Returns the main diagonal of the matrix

bsr_matrix.dot(other)
Ordinary dot product

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([1, -3, -1], dtype=int64)

bsr_matrix.eliminate_zeros()

bsr_matrix.expm1()
Element-wise expm1.

See numpy.expm1 for more information.

bsr_matrix.floor()
Element-wise floor.

See numpy.floor for more information.

bsr_matrix.getH()

bsr_matrix.get_shape()

bsr_matrix.getcol(j)
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

bsr_matrix.getdata(ind)

bsr_matrix.getformat()

bsr_matrix.getmaxprint()

bsr_matrix.getnnz()

5.28. Sparse matrices (scipy.sparse) 953

SciPy Reference Guide, Release 0.16.0

bsr_matrix.getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).

bsr_matrix.log1p()
Element-wise log1p.

See numpy.log1p for more information.

bsr_matrix.matmat(other)

bsr_matrix.matvec(other)

bsr_matrix.max(axis=None)
Maximum of the elements of this matrix.

This takes all elements into account, not just the non-zero ones.

Returns amax : self.dtype
Maximum element.

bsr_matrix.maximum(other)

bsr_matrix.mean(axis=None)
Average the matrix over the given axis. If the axis is None, average over both rows and columns, returning
a scalar.

bsr_matrix.min(axis=None)
Minimum of the elements of this matrix.

This takes all elements into account, not just the non-zero ones.

Returns amin : self.dtype
Minimum element.

bsr_matrix.minimum(other)

bsr_matrix.multiply(other)
Point-wise multiplication by another matrix, vector, or scalar.

bsr_matrix.nonzero()
nonzero indices

Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

bsr_matrix.power(n, dtype=None)
This function performs element-wise power.

Parameters n : n is a scalar
dtype : If dtype is not specified, the current dtype will be preserved.

bsr_matrix.prune()
Remove empty space after all non-zero elements.

954 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

bsr_matrix.rad2deg()
Element-wise rad2deg.

See numpy.rad2deg for more information.

bsr_matrix.reshape(shape)

bsr_matrix.rint()
Element-wise rint.

See numpy.rint for more information.

bsr_matrix.set_shape(shape)

bsr_matrix.setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters values : array_like
New values of the diagonal elements.
Values may have any length. If the diagonal is longer than values,
then the remaining diagonal entries will not be set. If values if longer
than the diagonal, then the remaining values are ignored.
If a scalar value is given, all of the diagonal is set to it.

k : int, optional
Which off-diagonal to set, corresponding to elements a[i,i+k]. De-
fault: 0 (the main diagonal).

bsr_matrix.sign()
Element-wise sign.

See numpy.sign for more information.

bsr_matrix.sin()
Element-wise sin.

See numpy.sin for more information.

bsr_matrix.sinh()
Element-wise sinh.

See numpy.sinh for more information.

bsr_matrix.sort_indices()
Sort the indices of this matrix in place

bsr_matrix.sorted_indices()
Return a copy of this matrix with sorted indices

bsr_matrix.sqrt()
Element-wise sqrt.

See numpy.sqrt for more information.

bsr_matrix.sum(axis=None)
Sum the matrix over the given axis. If the axis is None, sum over both rows and columns, returning a
scalar.

bsr_matrix.sum_duplicates()

5.28. Sparse matrices (scipy.sparse) 955

SciPy Reference Guide, Release 0.16.0

bsr_matrix.tan()
Element-wise tan.

See numpy.tan for more information.

bsr_matrix.tanh()
Element-wise tanh.

See numpy.tanh for more information.

bsr_matrix.toarray(order=None, out=None)
See the docstring for spmatrix.toarray.

bsr_matrix.tobsr(blocksize=None, copy=False)

bsr_matrix.tocoo(copy=True)
Convert this matrix to COOrdinate format.

When copy=False the data array will be shared between this matrix and the resultant coo_matrix.

bsr_matrix.tocsc()

bsr_matrix.tocsr()

bsr_matrix.todense(order=None, out=None)
Return a dense matrix representation of this matrix.

Parameters order : {‘C’, ‘F’}, optional
Whether to store multi-dimensional data in C (row-major) or Fortran
(column-major) order in memory. The default is ‘None’, indicating
the NumPy default of C-ordered. Cannot be specified in conjunction
with the out argument.

out : ndarray, 2-dimensional, optional
If specified, uses this array (or numpy.matrix) as the output buffer
instead of allocating a new array to return. The provided array must
have the same shape and dtype as the sparse matrix on which you are
calling the method.Returns arr : numpy.matrix, 2-dimensional
A NumPy matrix object with the same shape and containing the
same data represented by the sparse matrix, with the requested
memory order. If out was passed and was an array (rather than a
numpy.matrix), it will be filled with the appropriate values and
returned wrapped in a numpy.matrix object that shares the same
memory.

bsr_matrix.todia()

bsr_matrix.todok()

bsr_matrix.tolil()

bsr_matrix.transpose()

bsr_matrix.trunc()
Element-wise trunc.

956 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix
http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix
http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix

SciPy Reference Guide, Release 0.16.0

See numpy.trunc for more information.

class scipy.sparse.coo_matrix(arg1, shape=None, dtype=None, copy=False)
A sparse matrix in COOrdinate format.

Also known as the ‘ijv’ or ‘triplet’ format.
This can be instantiated in several ways:

coo_matrix(D)
with a dense matrix D

coo_matrix(S)with another sparse matrix S (equivalent to S.tocoo())
coo_matrix((M, N), [dtype])

to construct an empty matrix with shape (M, N) dtype is optional, defaulting to
dtype=’d’.

coo_matrix((data, (i, j)), [shape=(M, N)])

to construct from three arrays:

1.data[:] the entries of the matrix, in any order
2.i[:] the row indices of the matrix entries
3.j[:] the column indices of the matrix entries

Where A[i[k], j[k]] = data[k]. When shape is not specified, it is in-
ferred from the index arrays

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division,
and matrix power.
Advantages of the COO format

•facilitates fast conversion among sparse formats
•permits duplicate entries (see example)
•very fast conversion to and from CSR/CSC formats

Disadvantages of the COO format

•does not directly support:

–arithmetic operations
–slicing

Intended Usage

•COO is a fast format for constructing sparse matrices
•Once a matrix has been constructed, convert to CSR or CSC format for fast arith-
metic and matrix vector operations

•By default when converting to CSR or CSC format, duplicate (i,j) entries will be
summed together. This facilitates efficient construction of finite element matrices
and the like. (see example)

Examples

>>> from scipy.sparse import coo_matrix
>>> coo_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)

5.28. Sparse matrices (scipy.sparse) 957

SciPy Reference Guide, Release 0.16.0

>>> row = np.array([0, 3, 1, 0])
>>> col = np.array([0, 3, 1, 2])
>>> data = np.array([4, 5, 7, 9])
>>> coo_matrix((data, (row, col)), shape=(4, 4)).toarray()
array([[4, 0, 9, 0],

[0, 7, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 5]])

>>> # example with duplicates
>>> row = np.array([0, 0, 1, 3, 1, 0, 0])
>>> col = np.array([0, 2, 1, 3, 1, 0, 0])
>>> data = np.array([1, 1, 1, 1, 1, 1, 1])
>>> coo_matrix((data, (row, col)), shape=(4, 4)).toarray()
array([[3, 0, 1, 0],

[0, 2, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1]])

Attributes

nnz Get the count of explicitly-stored values (nonzeros)

coo_matrix.nnz
Get the count of explicitly-stored values (nonzeros)

Parameters axis : None, 0, or 1
Select between the number of values across the whole matrix, in each
column, or in each row.

dtype (dtype) Data type of the matrix
shape (2-tuple) Shape of the matrix
ndim (int) Number of dimensions (this is always 2)
data COO format data array of the matrix
row COO format row index array of the matrix
col COO format column index array of the matrix

Methods

arcsin() Element-wise arcsin.
arcsinh() Element-wise arcsinh.
arctan() Element-wise arctan.
arctanh() Element-wise arctanh.
asformat(format) Return this matrix in a given sparse format
asfptype() Upcast matrix to a floating point format (if necessary)
astype(t)
ceil() Element-wise ceil.
conj()
conjugate()
copy()
deg2rad() Element-wise deg2rad.
diagonal() Returns the main diagonal of the matrix

Continued on next page

958 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.142 – continued from previous page
dot(other) Ordinary dot product
expm1() Element-wise expm1.
floor() Element-wise floor.
getH()
get_shape()
getcol(j) Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).
getformat()
getmaxprint()
getnnz([axis]) Get the count of explicitly-stored values (nonzeros)
getrow(i) Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).
log1p() Element-wise log1p.
max([axis]) Maximum of the elements of this matrix.
maximum(other)
mean([axis]) Average the matrix over the given axis.
min([axis]) Minimum of the elements of this matrix.
minimum(other)
multiply(other) Point-wise multiplication by another matrix
nonzero() nonzero indices
power(n[, dtype]) This function performs element-wise power.
rad2deg() Element-wise rad2deg.
reshape(shape)
rint() Element-wise rint.
set_shape(shape)
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sign() Element-wise sign.
sin() Element-wise sin.
sinh() Element-wise sinh.
sqrt() Element-wise sqrt.
sum([axis]) Sum the matrix over the given axis.
sum_duplicates() Eliminate duplicate matrix entries by adding them together
tan() Element-wise tan.
tanh() Element-wise tanh.
toarray([order, out]) See the docstring for spmatrix.toarray.
tobsr([blocksize])
tocoo([copy])
tocsc() Return a copy of this matrix in Compressed Sparse Column format
tocsr() Return a copy of this matrix in Compressed Sparse Row format
todense([order, out]) Return a dense matrix representation of this matrix.
todia()
todok()
tolil()
transpose([copy])
trunc() Element-wise trunc.

coo_matrix.arcsin()
Element-wise arcsin.

See numpy.arcsin for more information.

coo_matrix.arcsinh()
Element-wise arcsinh.

See numpy.arcsinh for more information.

5.28. Sparse matrices (scipy.sparse) 959

SciPy Reference Guide, Release 0.16.0

coo_matrix.arctan()
Element-wise arctan.

See numpy.arctan for more information.

coo_matrix.arctanh()
Element-wise arctanh.

See numpy.arctanh for more information.

coo_matrix.asformat(format)
Return this matrix in a given sparse format

Parameters format : {string, None}
desired sparse matrix format

•None for no format conversion
•“csr” for csr_matrix format
•“csc” for csc_matrix format
•“lil” for lil_matrix format
•“dok” for dok_matrix format and so on

coo_matrix.asfptype()
Upcast matrix to a floating point format (if necessary)

coo_matrix.astype(t)

coo_matrix.ceil()
Element-wise ceil.

See numpy.ceil for more information.

coo_matrix.conj()

coo_matrix.conjugate()

coo_matrix.copy()

coo_matrix.deg2rad()
Element-wise deg2rad.

See numpy.deg2rad for more information.

coo_matrix.diagonal()
Returns the main diagonal of the matrix

coo_matrix.dot(other)
Ordinary dot product

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([1, -3, -1], dtype=int64)

960 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

coo_matrix.expm1()
Element-wise expm1.

See numpy.expm1 for more information.

coo_matrix.floor()
Element-wise floor.

See numpy.floor for more information.

coo_matrix.getH()

coo_matrix.get_shape()

coo_matrix.getcol(j)
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

coo_matrix.getformat()

coo_matrix.getmaxprint()

coo_matrix.getnnz(axis=None)
Get the count of explicitly-stored values (nonzeros)

Parameters axis : None, 0, or 1
Select between the number of values across the whole matrix, in each
column, or in each row.

coo_matrix.getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).

coo_matrix.log1p()
Element-wise log1p.

See numpy.log1p for more information.

coo_matrix.max(axis=None)
Maximum of the elements of this matrix.

This takes all elements into account, not just the non-zero ones.

Returns amax : self.dtype
Maximum element.

coo_matrix.maximum(other)

coo_matrix.mean(axis=None)
Average the matrix over the given axis. If the axis is None, average over both rows and columns, returning
a scalar.

coo_matrix.min(axis=None)
Minimum of the elements of this matrix.

This takes all elements into account, not just the non-zero ones.

Returns amin : self.dtype
Minimum element.

coo_matrix.minimum(other)

5.28. Sparse matrices (scipy.sparse) 961

SciPy Reference Guide, Release 0.16.0

coo_matrix.multiply(other)
Point-wise multiplication by another matrix

coo_matrix.nonzero()
nonzero indices

Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

coo_matrix.power(n, dtype=None)
This function performs element-wise power.

Parameters n : n is a scalar
dtype : If dtype is not specified, the current dtype will be preserved.

coo_matrix.rad2deg()
Element-wise rad2deg.

See numpy.rad2deg for more information.

coo_matrix.reshape(shape)

coo_matrix.rint()
Element-wise rint.

See numpy.rint for more information.

coo_matrix.set_shape(shape)

coo_matrix.setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters values : array_like
New values of the diagonal elements.
Values may have any length. If the diagonal is longer than values,
then the remaining diagonal entries will not be set. If values if longer
than the diagonal, then the remaining values are ignored.
If a scalar value is given, all of the diagonal is set to it.

k : int, optional
Which off-diagonal to set, corresponding to elements a[i,i+k]. De-
fault: 0 (the main diagonal).

coo_matrix.sign()
Element-wise sign.

See numpy.sign for more information.

coo_matrix.sin()
Element-wise sin.

See numpy.sin for more information.

coo_matrix.sinh()
Element-wise sinh.

962 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

See numpy.sinh for more information.

coo_matrix.sqrt()
Element-wise sqrt.

See numpy.sqrt for more information.

coo_matrix.sum(axis=None)
Sum the matrix over the given axis. If the axis is None, sum over both rows and columns, returning a
scalar.

coo_matrix.sum_duplicates()
Eliminate duplicate matrix entries by adding them together

This is an in place operation

coo_matrix.tan()
Element-wise tan.

See numpy.tan for more information.

coo_matrix.tanh()
Element-wise tanh.

See numpy.tanh for more information.

coo_matrix.toarray(order=None, out=None)
See the docstring for spmatrix.toarray.

coo_matrix.tobsr(blocksize=None)

coo_matrix.tocoo(copy=False)

coo_matrix.tocsc()
Return a copy of this matrix in Compressed Sparse Column format

Duplicate entries will be summed together.

Examples

>>> from numpy import array
>>> from scipy.sparse import coo_matrix
>>> row = array([0, 0, 1, 3, 1, 0, 0])
>>> col = array([0, 2, 1, 3, 1, 0, 0])
>>> data = array([1, 1, 1, 1, 1, 1, 1])
>>> A = coo_matrix((data, (row, col)), shape=(4, 4)).tocsc()
>>> A.toarray()
array([[3, 0, 1, 0],

[0, 2, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1]])

coo_matrix.tocsr()
Return a copy of this matrix in Compressed Sparse Row format

Duplicate entries will be summed together.

Examples

5.28. Sparse matrices (scipy.sparse) 963

SciPy Reference Guide, Release 0.16.0

>>> from numpy import array
>>> from scipy.sparse import coo_matrix
>>> row = array([0, 0, 1, 3, 1, 0, 0])
>>> col = array([0, 2, 1, 3, 1, 0, 0])
>>> data = array([1, 1, 1, 1, 1, 1, 1])
>>> A = coo_matrix((data, (row, col)), shape=(4, 4)).tocsr()
>>> A.toarray()
array([[3, 0, 1, 0],

[0, 2, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1]])

coo_matrix.todense(order=None, out=None)
Return a dense matrix representation of this matrix.

Parameters order : {‘C’, ‘F’}, optional
Whether to store multi-dimensional data in C (row-major) or Fortran
(column-major) order in memory. The default is ‘None’, indicating
the NumPy default of C-ordered. Cannot be specified in conjunction
with the out argument.

out : ndarray, 2-dimensional, optional
If specified, uses this array (or numpy.matrix) as the output buffer
instead of allocating a new array to return. The provided array must
have the same shape and dtype as the sparse matrix on which you are
calling the method.Returns arr : numpy.matrix, 2-dimensional
A NumPy matrix object with the same shape and containing the
same data represented by the sparse matrix, with the requested
memory order. If out was passed and was an array (rather than a
numpy.matrix), it will be filled with the appropriate values and
returned wrapped in a numpy.matrix object that shares the same
memory.

coo_matrix.todia()

coo_matrix.todok()

coo_matrix.tolil()

coo_matrix.transpose(copy=False)

coo_matrix.trunc()
Element-wise trunc.

See numpy.trunc for more information.

class scipy.sparse.csc_matrix(arg1, shape=None, dtype=None, copy=False)
Compressed Sparse Column matrix

This can be instantiated in several ways:

csc_matrix(D)with a dense matrix or rank-2 ndarray Dcsc_matrix(S) with another sparse matrix S (equivalent to S.tocsc())csc_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.csc_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
where data, row_ind and col_ind satisfy the relationship a[row_ind[k],
col_ind[k]] = data[k].

964 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix
http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix
http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix

SciPy Reference Guide, Release 0.16.0

csc_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSC representation where the row indices for column i are stored in
indices[indptr[i]:indptr[i+1]] and their corresponding values are stored in
data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix
dimensions are inferred from the index arrays.

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division,
and matrix power.
Advantages of the CSC format

•efficient arithmetic operations CSC + CSC, CSC * CSC, etc.
•efficient column slicing
•fast matrix vector products (CSR, BSR may be faster)

Disadvantages of the CSC format

•slow row slicing operations (consider CSR)
•changes to the sparsity structure are expensive (consider LIL or DOK)

Examples

>>> import numpy as np
>>> from scipy.sparse import csc_matrix
>>> csc_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)

>>> row = np.array([0, 2, 2, 0, 1, 2])
>>> col = np.array([0, 0, 1, 2, 2, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csc_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 4],

[0, 0, 5],
[2, 3, 6]])

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csc_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 4],

[0, 0, 5],
[2, 3, 6]])

Attributes

nnz Get the count of explicitly-stored values (nonzeros)
has_sorted_indices Determine whether the matrix has sorted indices

csc_matrix.nnz
Get the count of explicitly-stored values (nonzeros)

Parameters axis : {None, 0, 1}, optional

5.28. Sparse matrices (scipy.sparse) 965

SciPy Reference Guide, Release 0.16.0

Select between the number of values across the whole matrix, in each
column, or in each row.

csc_matrix.has_sorted_indices
Determine whether the matrix has sorted indices
Returns

•True: if the indices of the matrix are in sorted order
•False: otherwise

dtype (dtype) Data type of the matrix
shape (2-tuple) Shape of the matrix
ndim (int) Number of dimensions (this is always 2)
data Data array of the matrix
indices CSC format index array
indptr CSC format index pointer array

Methods

arcsin() Element-wise arcsin.
arcsinh() Element-wise arcsinh.
arctan() Element-wise arctan.
arctanh() Element-wise arctanh.
asformat(format) Return this matrix in a given sparse format
asfptype() Upcast matrix to a floating point format (if necessary)
astype(t)
ceil() Element-wise ceil.
check_format([full_check]) check whether the matrix format is valid
conj()
conjugate()
copy()
deg2rad() Element-wise deg2rad.
diagonal() Returns the main diagonal of the matrix
dot(other) Ordinary dot product
eliminate_zeros() Remove zero entries from the matrix
expm1() Element-wise expm1.
floor() Element-wise floor.
getH()
get_shape()
getcol(i) Returns a copy of column i of the matrix, as a (m x 1) CSC matrix (column vector).
getformat()
getmaxprint()
getnnz([axis]) Get the count of explicitly-stored values (nonzeros)
getrow(i) Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).
log1p() Element-wise log1p.
max([axis]) Maximum of the elements of this matrix.
maximum(other)
mean([axis]) Average the matrix over the given axis.
min([axis]) Minimum of the elements of this matrix.
minimum(other)
multiply(other) Point-wise multiplication by another matrix, vector, or scalar.
nonzero() nonzero indices
power(n[, dtype]) This function performs element-wise power.
prune() Remove empty space after all non-zero elements.

Continued on next page

966 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.144 – continued from previous page
rad2deg() Element-wise rad2deg.
reshape(shape)
rint() Element-wise rint.
set_shape(shape)
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sign() Element-wise sign.
sin() Element-wise sin.
sinh() Element-wise sinh.
sort_indices() Sort the indices of this matrix in place
sorted_indices() Return a copy of this matrix with sorted indices
sqrt() Element-wise sqrt.
sum([axis]) Sum the matrix over the given axis.
sum_duplicates() Eliminate duplicate matrix entries by adding them together
tan() Element-wise tan.
tanh() Element-wise tanh.
toarray([order, out]) See the docstring for spmatrix.toarray.
tobsr([blocksize])
tocoo([copy]) Return a COOrdinate representation of this matrix
tocsc([copy])
tocsr()
todense([order, out]) Return a dense matrix representation of this matrix.
todia()
todok()
tolil()
transpose([copy])
trunc() Element-wise trunc.

csc_matrix.arcsin()
Element-wise arcsin.

See numpy.arcsin for more information.

csc_matrix.arcsinh()
Element-wise arcsinh.

See numpy.arcsinh for more information.

csc_matrix.arctan()
Element-wise arctan.

See numpy.arctan for more information.

csc_matrix.arctanh()
Element-wise arctanh.

See numpy.arctanh for more information.

csc_matrix.asformat(format)
Return this matrix in a given sparse format

Parameters format : {string, None}
desired sparse matrix format

•None for no format conversion
•“csr” for csr_matrix format
•“csc” for csc_matrix format

5.28. Sparse matrices (scipy.sparse) 967

SciPy Reference Guide, Release 0.16.0

•“lil” for lil_matrix format
•“dok” for dok_matrix format and so on

csc_matrix.asfptype()
Upcast matrix to a floating point format (if necessary)

csc_matrix.astype(t)

csc_matrix.ceil()
Element-wise ceil.

See numpy.ceil for more information.

csc_matrix.check_format(full_check=True)
check whether the matrix format is valid

Parameters full_check : bool, optional
If True, rigorous check, O(N) operations. Otherwise basic check,
O(1) operations (default True).

csc_matrix.conj()

csc_matrix.conjugate()

csc_matrix.copy()

csc_matrix.deg2rad()
Element-wise deg2rad.

See numpy.deg2rad for more information.

csc_matrix.diagonal()
Returns the main diagonal of the matrix

csc_matrix.dot(other)
Ordinary dot product

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([1, -3, -1], dtype=int64)

csc_matrix.eliminate_zeros()
Remove zero entries from the matrix

This is an in place operation

csc_matrix.expm1()
Element-wise expm1.

See numpy.expm1 for more information.

csc_matrix.floor()
Element-wise floor.

See numpy.floor for more information.

968 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

csc_matrix.getH()

csc_matrix.get_shape()

csc_matrix.getcol(i)
Returns a copy of column i of the matrix, as a (m x 1) CSC matrix (column vector).

csc_matrix.getformat()

csc_matrix.getmaxprint()

csc_matrix.getnnz(axis=None)
Get the count of explicitly-stored values (nonzeros)

Parameters axis : {None, 0, 1}, optional
Select between the number of values across the whole matrix, in each
column, or in each row.

csc_matrix.getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).

csc_matrix.log1p()
Element-wise log1p.

See numpy.log1p for more information.

csc_matrix.max(axis=None)
Maximum of the elements of this matrix.

This takes all elements into account, not just the non-zero ones.

Returns amax : self.dtype
Maximum element.

csc_matrix.maximum(other)

csc_matrix.mean(axis=None)
Average the matrix over the given axis. If the axis is None, average over both rows and columns, returning
a scalar.

csc_matrix.min(axis=None)
Minimum of the elements of this matrix.

This takes all elements into account, not just the non-zero ones.

Returns amin : self.dtype
Minimum element.

csc_matrix.minimum(other)

csc_matrix.multiply(other)
Point-wise multiplication by another matrix, vector, or scalar.

csc_matrix.nonzero()
nonzero indices

Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

5.28. Sparse matrices (scipy.sparse) 969

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

csc_matrix.power(n, dtype=None)
This function performs element-wise power.

Parameters n : n is a scalar
dtype : If dtype is not specified, the current dtype will be preserved.

csc_matrix.prune()
Remove empty space after all non-zero elements.

csc_matrix.rad2deg()
Element-wise rad2deg.

See numpy.rad2deg for more information.

csc_matrix.reshape(shape)

csc_matrix.rint()
Element-wise rint.

See numpy.rint for more information.

csc_matrix.set_shape(shape)

csc_matrix.setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters values : array_like
New values of the diagonal elements.
Values may have any length. If the diagonal is longer than values,
then the remaining diagonal entries will not be set. If values if longer
than the diagonal, then the remaining values are ignored.
If a scalar value is given, all of the diagonal is set to it.

k : int, optional
Which off-diagonal to set, corresponding to elements a[i,i+k]. De-
fault: 0 (the main diagonal).

csc_matrix.sign()
Element-wise sign.

See numpy.sign for more information.

csc_matrix.sin()
Element-wise sin.

See numpy.sin for more information.

csc_matrix.sinh()
Element-wise sinh.

See numpy.sinh for more information.

csc_matrix.sort_indices()
Sort the indices of this matrix in place

970 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

csc_matrix.sorted_indices()
Return a copy of this matrix with sorted indices

csc_matrix.sqrt()
Element-wise sqrt.

See numpy.sqrt for more information.

csc_matrix.sum(axis=None)
Sum the matrix over the given axis. If the axis is None, sum over both rows and columns, returning a
scalar.

csc_matrix.sum_duplicates()
Eliminate duplicate matrix entries by adding them together

The is an in place operation

csc_matrix.tan()
Element-wise tan.

See numpy.tan for more information.

csc_matrix.tanh()
Element-wise tanh.

See numpy.tanh for more information.

csc_matrix.toarray(order=None, out=None)
See the docstring for spmatrix.toarray.

csc_matrix.tobsr(blocksize=None)

csc_matrix.tocoo(copy=True)
Return a COOrdinate representation of this matrix

When copy=False the index and data arrays are not copied.

csc_matrix.tocsc(copy=False)

csc_matrix.tocsr()

csc_matrix.todense(order=None, out=None)
Return a dense matrix representation of this matrix.

Parameters order : {‘C’, ‘F’}, optional
Whether to store multi-dimensional data in C (row-major) or Fortran
(column-major) order in memory. The default is ‘None’, indicating
the NumPy default of C-ordered. Cannot be specified in conjunction
with the out argument.

out : ndarray, 2-dimensional, optional
If specified, uses this array (or numpy.matrix) as the output buffer
instead of allocating a new array to return. The provided array must
have the same shape and dtype as the sparse matrix on which you are
calling the method.Returns arr : numpy.matrix, 2-dimensional
A NumPy matrix object with the same shape and containing the
same data represented by the sparse matrix, with the requested
memory order. If out was passed and was an array (rather than a
numpy.matrix), it will be filled with the appropriate values and

5.28. Sparse matrices (scipy.sparse) 971

http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix
http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix

SciPy Reference Guide, Release 0.16.0

returned wrapped in a numpy.matrix object that shares the same
memory.

csc_matrix.todia()

csc_matrix.todok()

csc_matrix.tolil()

csc_matrix.transpose(copy=False)

csc_matrix.trunc()
Element-wise trunc.

See numpy.trunc for more information.

class scipy.sparse.csr_matrix(arg1, shape=None, dtype=None, copy=False)
Compressed Sparse Row matrix
This can be instantiated in several ways:

csr_matrix(D) with a dense matrix or rank-2 ndarray D
csr_matrix(S) with another sparse matrix S (equivalent to S.tocsr())
csr_matrix((M, N), [dtype])

to construct an empty matrix with shape (M, N) dtype is optional, defaulting to
dtype=’d’.

csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
where data, row_ind and col_ind satisfy the relationship
a[row_ind[k], col_ind[k]] = data[k].

csr_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSR representation where the column indices for row i are stored in
indices[indptr[i]:indptr[i+1]] and their corresponding values are
stored in data[indptr[i]:indptr[i+1]]. If the shape parameter is not
supplied, the matrix dimensions are inferred from the index arrays.

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division,
and matrix power.
Advantages of the CSR format

•efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
•efficient row slicing
•fast matrix vector products

Disadvantages of the CSR format

•slow column slicing operations (consider CSC)
•changes to the sparsity structure are expensive (consider LIL or DOK)

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> csr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],

972 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix

SciPy Reference Guide, Release 0.16.0

[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)

>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],

[0, 0, 3],
[4, 5, 6]])

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],

[0, 0, 3],
[4, 5, 6]])

As an example of how to construct a CSR matrix incrementally, the following snippet builds a term-document
matrix from texts:

>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
>>> indptr = [0]
>>> indices = []
>>> data = []
>>> vocabulary = {}
>>> for d in docs:
... for term in d:
... index = vocabulary.setdefault(term, len(vocabulary))
... indices.append(index)
... data.append(1)
... indptr.append(len(indices))
...
>>> csr_matrix((data, indices, indptr), dtype=int).toarray()
array([[2, 1, 0, 0],

[0, 1, 1, 1]])

Attributes

nnz Get the count of explicitly-stored values (nonzeros)
has_sorted_indices Determine whether the matrix has sorted indices

csr_matrix.nnz
Get the count of explicitly-stored values (nonzeros)

Parameters axis : {None, 0, 1}, optional
Select between the number of values across the whole matrix, in each
column, or in each row.

csr_matrix.has_sorted_indices
Determine whether the matrix has sorted indices
Returns

•True: if the indices of the matrix are in sorted order
•False: otherwise

5.28. Sparse matrices (scipy.sparse) 973

SciPy Reference Guide, Release 0.16.0

dtype (dtype) Data type of the matrix
shape (2-tuple) Shape of the matrix
ndim (int) Number of dimensions (this is always 2)
data CSR format data array of the matrix
indices CSR format index array of the matrix
indptr CSR format index pointer array of the matrix

Methods

arcsin() Element-wise arcsin.
arcsinh() Element-wise arcsinh.
arctan() Element-wise arctan.
arctanh() Element-wise arctanh.
asformat(format) Return this matrix in a given sparse format
asfptype() Upcast matrix to a floating point format (if necessary)
astype(t)
ceil() Element-wise ceil.
check_format([full_check]) check whether the matrix format is valid
conj()
conjugate()
copy()
deg2rad() Element-wise deg2rad.
diagonal() Returns the main diagonal of the matrix
dot(other) Ordinary dot product
eliminate_zeros() Remove zero entries from the matrix
expm1() Element-wise expm1.
floor() Element-wise floor.
getH()
get_shape()
getcol(i) Returns a copy of column i of the matrix, as a (m x 1) CSR matrix (column vector).
getformat()
getmaxprint()
getnnz([axis]) Get the count of explicitly-stored values (nonzeros)
getrow(i) Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).
log1p() Element-wise log1p.
max([axis]) Maximum of the elements of this matrix.
maximum(other)
mean([axis]) Average the matrix over the given axis.
min([axis]) Minimum of the elements of this matrix.
minimum(other)
multiply(other) Point-wise multiplication by another matrix, vector, or scalar.
nonzero() nonzero indices
power(n[, dtype]) This function performs element-wise power.
prune() Remove empty space after all non-zero elements.
rad2deg() Element-wise rad2deg.
reshape(shape)
rint() Element-wise rint.
set_shape(shape)
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sign() Element-wise sign.
sin() Element-wise sin.

Continued on next page

974 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.146 – continued from previous page
sinh() Element-wise sinh.
sort_indices() Sort the indices of this matrix in place
sorted_indices() Return a copy of this matrix with sorted indices
sqrt() Element-wise sqrt.
sum([axis]) Sum the matrix over the given axis.
sum_duplicates() Eliminate duplicate matrix entries by adding them together
tan() Element-wise tan.
tanh() Element-wise tanh.
toarray([order, out]) See the docstring for spmatrix.toarray.
tobsr([blocksize, copy])
tocoo([copy]) Return a COOrdinate representation of this matrix
tocsc()
tocsr([copy])
todense([order, out]) Return a dense matrix representation of this matrix.
todia()
todok()
tolil()
transpose([copy])
trunc() Element-wise trunc.

csr_matrix.arcsin()
Element-wise arcsin.

See numpy.arcsin for more information.

csr_matrix.arcsinh()
Element-wise arcsinh.

See numpy.arcsinh for more information.

csr_matrix.arctan()
Element-wise arctan.

See numpy.arctan for more information.

csr_matrix.arctanh()
Element-wise arctanh.

See numpy.arctanh for more information.

csr_matrix.asformat(format)
Return this matrix in a given sparse format

Parameters format : {string, None}
desired sparse matrix format

•None for no format conversion
•“csr” for csr_matrix format
•“csc” for csc_matrix format
•“lil” for lil_matrix format
•“dok” for dok_matrix format and so on

csr_matrix.asfptype()
Upcast matrix to a floating point format (if necessary)

csr_matrix.astype(t)

5.28. Sparse matrices (scipy.sparse) 975

SciPy Reference Guide, Release 0.16.0

csr_matrix.ceil()
Element-wise ceil.

See numpy.ceil for more information.

csr_matrix.check_format(full_check=True)
check whether the matrix format is valid

Parameters full_check : bool, optional
If True, rigorous check, O(N) operations. Otherwise basic check,
O(1) operations (default True).

csr_matrix.conj()

csr_matrix.conjugate()

csr_matrix.copy()

csr_matrix.deg2rad()
Element-wise deg2rad.

See numpy.deg2rad for more information.

csr_matrix.diagonal()
Returns the main diagonal of the matrix

csr_matrix.dot(other)
Ordinary dot product

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([1, -3, -1], dtype=int64)

csr_matrix.eliminate_zeros()
Remove zero entries from the matrix

This is an in place operation

csr_matrix.expm1()
Element-wise expm1.

See numpy.expm1 for more information.

csr_matrix.floor()
Element-wise floor.

See numpy.floor for more information.

csr_matrix.getH()

csr_matrix.get_shape()

csr_matrix.getcol(i)
Returns a copy of column i of the matrix, as a (m x 1) CSR matrix (column vector).

976 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

csr_matrix.getformat()

csr_matrix.getmaxprint()

csr_matrix.getnnz(axis=None)
Get the count of explicitly-stored values (nonzeros)

Parameters axis : {None, 0, 1}, optional
Select between the number of values across the whole matrix, in each
column, or in each row.

csr_matrix.getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).

csr_matrix.log1p()
Element-wise log1p.

See numpy.log1p for more information.

csr_matrix.max(axis=None)
Maximum of the elements of this matrix.

This takes all elements into account, not just the non-zero ones.

Returns amax : self.dtype
Maximum element.

csr_matrix.maximum(other)

csr_matrix.mean(axis=None)
Average the matrix over the given axis. If the axis is None, average over both rows and columns, returning
a scalar.

csr_matrix.min(axis=None)
Minimum of the elements of this matrix.

This takes all elements into account, not just the non-zero ones.

Returns amin : self.dtype
Minimum element.

csr_matrix.minimum(other)

csr_matrix.multiply(other)
Point-wise multiplication by another matrix, vector, or scalar.

csr_matrix.nonzero()
nonzero indices

Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

5.28. Sparse matrices (scipy.sparse) 977

SciPy Reference Guide, Release 0.16.0

csr_matrix.power(n, dtype=None)
This function performs element-wise power.

Parameters n : n is a scalar
dtype : If dtype is not specified, the current dtype will be preserved.

csr_matrix.prune()
Remove empty space after all non-zero elements.

csr_matrix.rad2deg()
Element-wise rad2deg.

See numpy.rad2deg for more information.

csr_matrix.reshape(shape)

csr_matrix.rint()
Element-wise rint.

See numpy.rint for more information.

csr_matrix.set_shape(shape)

csr_matrix.setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters values : array_like
New values of the diagonal elements.
Values may have any length. If the diagonal is longer than values,
then the remaining diagonal entries will not be set. If values if longer
than the diagonal, then the remaining values are ignored.
If a scalar value is given, all of the diagonal is set to it.

k : int, optional
Which off-diagonal to set, corresponding to elements a[i,i+k]. De-
fault: 0 (the main diagonal).

csr_matrix.sign()
Element-wise sign.

See numpy.sign for more information.

csr_matrix.sin()
Element-wise sin.

See numpy.sin for more information.

csr_matrix.sinh()
Element-wise sinh.

See numpy.sinh for more information.

csr_matrix.sort_indices()
Sort the indices of this matrix in place

csr_matrix.sorted_indices()
Return a copy of this matrix with sorted indices

csr_matrix.sqrt()
Element-wise sqrt.

See numpy.sqrt for more information.

978 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

csr_matrix.sum(axis=None)
Sum the matrix over the given axis. If the axis is None, sum over both rows and columns, returning a
scalar.

csr_matrix.sum_duplicates()
Eliminate duplicate matrix entries by adding them together

The is an in place operation

csr_matrix.tan()
Element-wise tan.

See numpy.tan for more information.

csr_matrix.tanh()
Element-wise tanh.

See numpy.tanh for more information.

csr_matrix.toarray(order=None, out=None)
See the docstring for spmatrix.toarray.

csr_matrix.tobsr(blocksize=None, copy=True)

csr_matrix.tocoo(copy=True)
Return a COOrdinate representation of this matrix

When copy=False the index and data arrays are not copied.

csr_matrix.tocsc()

csr_matrix.tocsr(copy=False)

csr_matrix.todense(order=None, out=None)
Return a dense matrix representation of this matrix.

Parameters order : {‘C’, ‘F’}, optional
Whether to store multi-dimensional data in C (row-major) or Fortran
(column-major) order in memory. The default is ‘None’, indicating
the NumPy default of C-ordered. Cannot be specified in conjunction
with the out argument.

out : ndarray, 2-dimensional, optional
If specified, uses this array (or numpy.matrix) as the output buffer
instead of allocating a new array to return. The provided array must
have the same shape and dtype as the sparse matrix on which you are
calling the method.Returns arr : numpy.matrix, 2-dimensional
A NumPy matrix object with the same shape and containing the
same data represented by the sparse matrix, with the requested
memory order. If out was passed and was an array (rather than a
numpy.matrix), it will be filled with the appropriate values and
returned wrapped in a numpy.matrix object that shares the same
memory.

csr_matrix.todia()

csr_matrix.todok()

5.28. Sparse matrices (scipy.sparse) 979

http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix
http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix
http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix

SciPy Reference Guide, Release 0.16.0

csr_matrix.tolil()

csr_matrix.transpose(copy=False)

csr_matrix.trunc()
Element-wise trunc.

See numpy.trunc for more information.

class scipy.sparse.dia_matrix(arg1, shape=None, dtype=None, copy=False)
Sparse matrix with DIAgonal storage
This can be instantiated in several ways:

dia_matrix(D)with a dense matrix
dia_matrix(S) with another sparse matrix S (equivalent to S.todia())
dia_matrix((M, N), [dtype])

to construct an empty matrix with shape (M, N), dtype is optional, defaulting to
dtype=’d’.

dia_matrix((data, offsets), shape=(M, N))
where the data[k,:] stores the diagonal entries for diagonal offsets[k]
(See example below)

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division,
and matrix power.

Examples

>>> import numpy as np
>>> from scipy.sparse import dia_matrix
>>> dia_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)

>>> data = np.array([[1, 2, 3, 4]]).repeat(3, axis=0)
>>> offsets = np.array([0, -1, 2])
>>> dia_matrix((data, offsets), shape=(4, 4)).toarray()
array([[1, 0, 3, 0],

[1, 2, 0, 4],
[0, 2, 3, 0],
[0, 0, 3, 4]])

Attributes

nnz number of nonzero values

dia_matrix.nnz
number of nonzero values

explicit zero values are included in this number

980 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

dtype (dtype) Data type of the matrix
shape (2-tuple) Shape of the matrix
ndim (int) Number of dimensions (this is always 2)
data DIA format data array of the matrix
offsets DIA format offset array of the matrix

Methods

arcsin() Element-wise arcsin.
arcsinh() Element-wise arcsinh.
arctan() Element-wise arctan.
arctanh() Element-wise arctanh.
asformat(format) Return this matrix in a given sparse format
asfptype() Upcast matrix to a floating point format (if necessary)
astype(t)
ceil() Element-wise ceil.
conj()
conjugate()
copy()
deg2rad() Element-wise deg2rad.
diagonal() Returns the main diagonal of the matrix
dot(other) Ordinary dot product
expm1() Element-wise expm1.
floor() Element-wise floor.
getH()
get_shape()
getcol(j) Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).
getformat()
getmaxprint()
getnnz() number of nonzero values
getrow(i) Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).
log1p() Element-wise log1p.
maximum(other)
mean([axis]) Average the matrix over the given axis.
minimum(other)
multiply(other) Point-wise multiplication by another matrix
nonzero() nonzero indices
power(n[, dtype]) This function performs element-wise power.
rad2deg() Element-wise rad2deg.
reshape(shape)
rint() Element-wise rint.
set_shape(shape)
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sign() Element-wise sign.
sin() Element-wise sin.
sinh() Element-wise sinh.
sqrt() Element-wise sqrt.
sum([axis]) Sum the matrix over the given axis.
tan() Element-wise tan.
tanh() Element-wise tanh.
toarray([order, out]) Return a dense ndarray representation of this matrix.

Continued on next page

5.28. Sparse matrices (scipy.sparse) 981

SciPy Reference Guide, Release 0.16.0

Table 5.148 – continued from previous page
tobsr([blocksize])
tocoo()
tocsc()
tocsr()
todense([order, out]) Return a dense matrix representation of this matrix.
todia([copy])
todok()
tolil()
transpose()
trunc() Element-wise trunc.

dia_matrix.arcsin()
Element-wise arcsin.

See numpy.arcsin for more information.

dia_matrix.arcsinh()
Element-wise arcsinh.

See numpy.arcsinh for more information.

dia_matrix.arctan()
Element-wise arctan.

See numpy.arctan for more information.

dia_matrix.arctanh()
Element-wise arctanh.

See numpy.arctanh for more information.

dia_matrix.asformat(format)
Return this matrix in a given sparse format

Parameters format : {string, None}
desired sparse matrix format

•None for no format conversion
•“csr” for csr_matrix format
•“csc” for csc_matrix format
•“lil” for lil_matrix format
•“dok” for dok_matrix format and so on

dia_matrix.asfptype()
Upcast matrix to a floating point format (if necessary)

dia_matrix.astype(t)

dia_matrix.ceil()
Element-wise ceil.

See numpy.ceil for more information.

dia_matrix.conj()

dia_matrix.conjugate()

982 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

dia_matrix.copy()

dia_matrix.deg2rad()
Element-wise deg2rad.

See numpy.deg2rad for more information.

dia_matrix.diagonal()
Returns the main diagonal of the matrix

dia_matrix.dot(other)
Ordinary dot product

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([1, -3, -1], dtype=int64)

dia_matrix.expm1()
Element-wise expm1.

See numpy.expm1 for more information.

dia_matrix.floor()
Element-wise floor.

See numpy.floor for more information.

dia_matrix.getH()

dia_matrix.get_shape()

dia_matrix.getcol(j)
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

dia_matrix.getformat()

dia_matrix.getmaxprint()

dia_matrix.getnnz()
number of nonzero values

explicit zero values are included in this number

dia_matrix.getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).

dia_matrix.log1p()
Element-wise log1p.

See numpy.log1p for more information.

dia_matrix.maximum(other)

5.28. Sparse matrices (scipy.sparse) 983

SciPy Reference Guide, Release 0.16.0

dia_matrix.mean(axis=None)
Average the matrix over the given axis. If the axis is None, average over both rows and columns, returning
a scalar.

dia_matrix.minimum(other)

dia_matrix.multiply(other)
Point-wise multiplication by another matrix

dia_matrix.nonzero()
nonzero indices

Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

dia_matrix.power(n, dtype=None)
This function performs element-wise power.

Parameters n : n is a scalar
dtype : If dtype is not specified, the current dtype will be preserved.

dia_matrix.rad2deg()
Element-wise rad2deg.

See numpy.rad2deg for more information.

dia_matrix.reshape(shape)

dia_matrix.rint()
Element-wise rint.

See numpy.rint for more information.

dia_matrix.set_shape(shape)

dia_matrix.setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters values : array_like
New values of the diagonal elements.
Values may have any length. If the diagonal is longer than values,
then the remaining diagonal entries will not be set. If values if longer
than the diagonal, then the remaining values are ignored.
If a scalar value is given, all of the diagonal is set to it.

k : int, optional
Which off-diagonal to set, corresponding to elements a[i,i+k]. De-
fault: 0 (the main diagonal).

dia_matrix.sign()
Element-wise sign.

See numpy.sign for more information.

984 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

dia_matrix.sin()
Element-wise sin.

See numpy.sin for more information.

dia_matrix.sinh()
Element-wise sinh.

See numpy.sinh for more information.

dia_matrix.sqrt()
Element-wise sqrt.

See numpy.sqrt for more information.

dia_matrix.sum(axis=None)
Sum the matrix over the given axis. If the axis is None, sum over both rows and columns, returning a
scalar.

dia_matrix.tan()
Element-wise tan.

See numpy.tan for more information.

dia_matrix.tanh()
Element-wise tanh.

See numpy.tanh for more information.

dia_matrix.toarray(order=None, out=None)
Return a dense ndarray representation of this matrix.

Parameters order : {‘C’, ‘F’}, optional
Whether to store multi-dimensional data in C (row-major) or Fortran
(column-major) order in memory. The default is ‘None’, indicating
the NumPy default of C-ordered. Cannot be specified in conjunction
with the out argument.

out : ndarray, 2-dimensional, optional
If specified, uses this array as the output buffer instead of allocating a
new array to return. The provided array must have the same shape and
dtype as the sparse matrix on which you are calling the method. For
most sparse types, out is required to be memory contiguous (either C
or Fortran ordered).Returns arr : ndarray, 2-dimensional
An array with the same shape and containing the same data repre-
sented by the sparse matrix, with the requested memory order. If out
was passed, the same object is returned after being modified in-place
to contain the appropriate values.

dia_matrix.tobsr(blocksize=None)

dia_matrix.tocoo()

dia_matrix.tocsc()

dia_matrix.tocsr()

dia_matrix.todense(order=None, out=None)
Return a dense matrix representation of this matrix.

5.28. Sparse matrices (scipy.sparse) 985

SciPy Reference Guide, Release 0.16.0

Parameters order : {‘C’, ‘F’}, optional
Whether to store multi-dimensional data in C (row-major) or Fortran
(column-major) order in memory. The default is ‘None’, indicating
the NumPy default of C-ordered. Cannot be specified in conjunction
with the out argument.

out : ndarray, 2-dimensional, optional
If specified, uses this array (or numpy.matrix) as the output buffer
instead of allocating a new array to return. The provided array must
have the same shape and dtype as the sparse matrix on which you are
calling the method.Returns arr : numpy.matrix, 2-dimensional
A NumPy matrix object with the same shape and containing the
same data represented by the sparse matrix, with the requested
memory order. If out was passed and was an array (rather than a
numpy.matrix), it will be filled with the appropriate values and
returned wrapped in a numpy.matrix object that shares the same
memory.

dia_matrix.todia(copy=False)

dia_matrix.todok()

dia_matrix.tolil()

dia_matrix.transpose()

dia_matrix.trunc()
Element-wise trunc.

See numpy.trunc for more information.

class scipy.sparse.dok_matrix(arg1, shape=None, dtype=None, copy=False)
Dictionary Of Keys based sparse matrix.

This is an efficient structure for constructing sparse matrices incrementally.
This can be instantiated in several ways:

dok_matrix(D)
with a dense matrix, D

dok_matrix(S)with a sparse matrix, S
dok_matrix((M,N), [dtype])

create the matrix with initial shape (M,N) dtype is optional, defaulting to
dtype=’d’

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division,
and matrix power.

Allows for efficient O(1) access of individual elements. Duplicates are not allowed. Can be efficiently converted
to a coo_matrix once constructed.

Examples

986 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix
http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix
http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix

SciPy Reference Guide, Release 0.16.0

>>> import numpy as np
>>> from scipy.sparse import dok_matrix
>>> S = dok_matrix((5, 5), dtype=np.float32)
>>> for i in range(5):
... for j in range(5):
... S[i, j] = i + j # Update element

Attributes

dtype (dtype) Data type of the matrix
shape (2-tuple) Shape of the matrix
ndim (int) Number of dimensions (this is always 2)
nnz Number of nonzero elements

Methods

asformat(format) Return this matrix in a given sparse format
asfptype() Upcast matrix to a floating point format (if necessary)
astype(t)
clear(() -> None. Remove all items from D.)
conj()
conjtransp() Return the conjugate transpose
conjugate()
copy()
diagonal() Returns the main diagonal of the matrix
dot(other) Ordinary dot product
fromkeys(...) v defaults to None.
get(key[, default]) This overrides the dict.get method, providing type checking but otherwise equivalent functionality.
getH()
get_shape()
getcol(j) Returns a copy of column j of the matrix as a (m x 1) DOK matrix.
getformat()
getmaxprint()
getnnz()
getrow(i) Returns a copy of row i of the matrix as a (1 x n) DOK matrix.
has_key((k) -> True if D has a key k, else False)
items(() -> list of D’s (key, value) pairs, ...)
iteritems(() -> an iterator over the (key, ...)
iterkeys(() -> an iterator over the keys of D)
itervalues(...)
keys(() -> list of D’s keys)
maximum(other)
mean([axis]) Average the matrix over the given axis.
minimum(other)
multiply(other) Point-wise multiplication by another matrix
nonzero() nonzero indices
pop((k[,d]) -> v, ...) If key is not found, d is returned if given, otherwise KeyError is raised
popitem(() -> (k, v), ...) 2-tuple; but raise KeyError if D is empty.
power(n[, dtype])
reshape(shape)
resize(shape) Resize the matrix in-place to dimensions given by ‘shape’.
set_shape(shape)

Continued on next page

5.28. Sparse matrices (scipy.sparse) 987

SciPy Reference Guide, Release 0.16.0

Table 5.149 – continued from previous page
setdefault((k[,d]) -> D.get(k,d), ...)
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sum([axis]) Sum the matrix over the given axis.
toarray([order, out]) Return a dense ndarray representation of this matrix.
tobsr([blocksize])
tocoo() Return a copy of this matrix in COOrdinate format
tocsc() Return a copy of this matrix in Compressed Sparse Column format
tocsr() Return a copy of this matrix in Compressed Sparse Row format
todense([order, out]) Return a dense matrix representation of this matrix.
todia()
todok([copy])
tolil()
transpose() Return the transpose
update(([E, ...) If E present and has a .keys() method, does: for k in E: D[k] = E[k]
values(() -> list of D’s values)
viewitems(...)
viewkeys(...)
viewvalues(...)

dok_matrix.asformat(format)
Return this matrix in a given sparse format

Parameters format : {string, None}
desired sparse matrix format

•None for no format conversion
•“csr” for csr_matrix format
•“csc” for csc_matrix format
•“lil” for lil_matrix format
•“dok” for dok_matrix format and so on

dok_matrix.asfptype()
Upcast matrix to a floating point format (if necessary)

dok_matrix.astype(t)

dok_matrix.clear()→ None. Remove all items from D.

dok_matrix.conj()

dok_matrix.conjtransp()
Return the conjugate transpose

dok_matrix.conjugate()

dok_matrix.copy()

dok_matrix.diagonal()
Returns the main diagonal of the matrix

dok_matrix.dot(other)
Ordinary dot product

988 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([1, -3, -1], dtype=int64)

static dok_matrix.fromkeys(S[, v])→ New dict with keys from S and values equal to v.
v defaults to None.

dok_matrix.get(key, default=0.0)
This overrides the dict.get method, providing type checking but otherwise equivalent functionality.

dok_matrix.getH()

dok_matrix.get_shape()

dok_matrix.getcol(j)
Returns a copy of column j of the matrix as a (m x 1) DOK matrix.

dok_matrix.getformat()

dok_matrix.getmaxprint()

dok_matrix.getnnz()

dok_matrix.getrow(i)
Returns a copy of row i of the matrix as a (1 x n) DOK matrix.

dok_matrix.has_key(k)→ True if D has a key k, else False

dok_matrix.items()→ list of D’s (key, value) pairs, as 2-tuples

dok_matrix.iteritems()→ an iterator over the (key, value) items of D

dok_matrix.iterkeys()→ an iterator over the keys of D

dok_matrix.itervalues()→ an iterator over the values of D

dok_matrix.keys()→ list of D’s keys

dok_matrix.maximum(other)

dok_matrix.mean(axis=None)
Average the matrix over the given axis. If the axis is None, average over both rows and columns, returning
a scalar.

dok_matrix.minimum(other)

5.28. Sparse matrices (scipy.sparse) 989

SciPy Reference Guide, Release 0.16.0

dok_matrix.multiply(other)
Point-wise multiplication by another matrix

dok_matrix.nonzero()
nonzero indices

Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

dok_matrix.pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

dok_matrix.popitem()→ (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

dok_matrix.power(n, dtype=None)

dok_matrix.reshape(shape)

dok_matrix.resize(shape)
Resize the matrix in-place to dimensions given by ‘shape’.

Any non-zero elements that lie outside the new shape are removed.

dok_matrix.set_shape(shape)

dok_matrix.setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

dok_matrix.setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters values : array_like
New values of the diagonal elements.
Values may have any length. If the diagonal is longer than values,
then the remaining diagonal entries will not be set. If values if longer
than the diagonal, then the remaining values are ignored.
If a scalar value is given, all of the diagonal is set to it.

k : int, optional
Which off-diagonal to set, corresponding to elements a[i,i+k]. De-
fault: 0 (the main diagonal).

dok_matrix.sum(axis=None)
Sum the matrix over the given axis. If the axis is None, sum over both rows and columns, returning a
scalar.

dok_matrix.toarray(order=None, out=None)
Return a dense ndarray representation of this matrix.

Parameters order : {‘C’, ‘F’}, optional
Whether to store multi-dimensional data in C (row-major) or Fortran
(column-major) order in memory. The default is ‘None’, indicating

990 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

the NumPy default of C-ordered. Cannot be specified in conjunction
with the out argument.

out : ndarray, 2-dimensional, optional
If specified, uses this array as the output buffer instead of allocating a
new array to return. The provided array must have the same shape and
dtype as the sparse matrix on which you are calling the method. For
most sparse types, out is required to be memory contiguous (either C
or Fortran ordered).Returns arr : ndarray, 2-dimensional
An array with the same shape and containing the same data repre-
sented by the sparse matrix, with the requested memory order. If out
was passed, the same object is returned after being modified in-place
to contain the appropriate values.

dok_matrix.tobsr(blocksize=None)

dok_matrix.tocoo()
Return a copy of this matrix in COOrdinate format

dok_matrix.tocsc()
Return a copy of this matrix in Compressed Sparse Column format

dok_matrix.tocsr()
Return a copy of this matrix in Compressed Sparse Row format

dok_matrix.todense(order=None, out=None)
Return a dense matrix representation of this matrix.

Parameters order : {‘C’, ‘F’}, optional
Whether to store multi-dimensional data in C (row-major) or Fortran
(column-major) order in memory. The default is ‘None’, indicating
the NumPy default of C-ordered. Cannot be specified in conjunction
with the out argument.

out : ndarray, 2-dimensional, optional
If specified, uses this array (or numpy.matrix) as the output buffer
instead of allocating a new array to return. The provided array must
have the same shape and dtype as the sparse matrix on which you are
calling the method.Returns arr : numpy.matrix, 2-dimensional
A NumPy matrix object with the same shape and containing the
same data represented by the sparse matrix, with the requested
memory order. If out was passed and was an array (rather than a
numpy.matrix), it will be filled with the appropriate values and
returned wrapped in a numpy.matrix object that shares the same
memory.

dok_matrix.todia()

dok_matrix.todok(copy=False)

dok_matrix.tolil()

dok_matrix.transpose()
Return the transpose

5.28. Sparse matrices (scipy.sparse) 991

http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix
http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix
http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix

SciPy Reference Guide, Release 0.16.0

dok_matrix.update([E], **F)→ None. Update D from dict/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

dok_matrix.values()→ list of D’s values

dok_matrix.viewitems()→ a set-like object providing a view on D’s items

dok_matrix.viewkeys()→ a set-like object providing a view on D’s keys

dok_matrix.viewvalues()→ an object providing a view on D’s values

class scipy.sparse.lil_matrix(arg1, shape=None, dtype=None, copy=False)
Row-based linked list sparse matrix

This is a structure for constructing sparse matrices incrementally. Note that inserting a single item can take
linear time in the worst case; to construct a matrix efficiently, make sure the items are pre-sorted by index, per
row.
This can be instantiated in several ways:

lil_matrix(D) with a dense matrix or rank-2 ndarray D
lil_matrix(S) with another sparse matrix S (equivalent to S.tolil())
lil_matrix((M, N), [dtype])

to construct an empty matrix with shape (M, N) dtype is optional, defaulting to
dtype=’d’.

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division,
and matrix power.
Advantages of the LIL format

•supports flexible slicing
•changes to the matrix sparsity structure are efficient

Disadvantages of the LIL format

•arithmetic operations LIL + LIL are slow (consider CSR or CSC)
•slow column slicing (consider CSC)
•slow matrix vector products (consider CSR or CSC)

Intended Usage

•LIL is a convenient format for constructing sparse matrices
•once a matrix has been constructed, convert to CSR or CSC format for fast arith-
metic and matrix vector operations

•consider using the COO format when constructing large matrices
Data Structure

•An array (self.rows) of rows, each of which is a sorted list of column indices
of non-zero elements.

•The corresponding nonzero values are stored in similar fashion in self.data.

Attributes

992 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

nnz Get the count of explicitly-stored values (nonzeros)

lil_matrix.nnz
Get the count of explicitly-stored values (nonzeros)

Parameters axis : None, 0, or 1
Select between the number of values across the whole matrix, in each
column, or in each row.

dtype (dtype) Data type of the matrix
shape (2-tuple) Shape of the matrix
ndim (int) Number of dimensions (this is always 2)
data LIL format data array of the matrix
rows LIL format row index array of the matrix

Methods

asformat(format) Return this matrix in a given sparse format
asfptype() Upcast matrix to a floating point format (if necessary)
astype(t)
conj()
conjugate()
copy()
diagonal() Returns the main diagonal of the matrix
dot(other) Ordinary dot product
getH()
get_shape()
getcol(j) Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).
getformat()
getmaxprint()
getnnz([axis]) Get the count of explicitly-stored values (nonzeros)
getrow(i) Returns a copy of the ‘i’th row.
getrowview(i) Returns a view of the ‘i’th row (without copying).
maximum(other)
mean([axis]) Average the matrix over the given axis.
minimum(other)
multiply(other) Point-wise multiplication by another matrix
nonzero() nonzero indices
power(n[, dtype])
reshape(shape)
set_shape(shape)
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sum([axis]) Sum the matrix over the given axis.
toarray([order, out]) See the docstring for spmatrix.toarray.
tobsr([blocksize])
tocoo()
tocsc() Return Compressed Sparse Column format arrays for this matrix.
tocsr() Return Compressed Sparse Row format arrays for this matrix.
todense([order, out]) Return a dense matrix representation of this matrix.
todia()
todok()

Continued on next page

5.28. Sparse matrices (scipy.sparse) 993

SciPy Reference Guide, Release 0.16.0

Table 5.151 – continued from previous page
tolil([copy])
transpose()

lil_matrix.asformat(format)
Return this matrix in a given sparse format

Parameters format : {string, None}
desired sparse matrix format

•None for no format conversion
•“csr” for csr_matrix format
•“csc” for csc_matrix format
•“lil” for lil_matrix format
•“dok” for dok_matrix format and so on

lil_matrix.asfptype()
Upcast matrix to a floating point format (if necessary)

lil_matrix.astype(t)

lil_matrix.conj()

lil_matrix.conjugate()

lil_matrix.copy()

lil_matrix.diagonal()
Returns the main diagonal of the matrix

lil_matrix.dot(other)
Ordinary dot product

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([1, -3, -1], dtype=int64)

lil_matrix.getH()

lil_matrix.get_shape()

lil_matrix.getcol(j)
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

lil_matrix.getformat()

lil_matrix.getmaxprint()

994 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

lil_matrix.getnnz(axis=None)
Get the count of explicitly-stored values (nonzeros)

Parameters axis : None, 0, or 1
Select between the number of values across the whole matrix, in each
column, or in each row.

lil_matrix.getrow(i)
Returns a copy of the ‘i’th row.

lil_matrix.getrowview(i)
Returns a view of the ‘i’th row (without copying).

lil_matrix.maximum(other)

lil_matrix.mean(axis=None)
Average the matrix over the given axis. If the axis is None, average over both rows and columns, returning
a scalar.

lil_matrix.minimum(other)

lil_matrix.multiply(other)
Point-wise multiplication by another matrix

lil_matrix.nonzero()
nonzero indices

Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

lil_matrix.power(n, dtype=None)

lil_matrix.reshape(shape)

lil_matrix.set_shape(shape)

lil_matrix.setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters values : array_like
New values of the diagonal elements.
Values may have any length. If the diagonal is longer than values,
then the remaining diagonal entries will not be set. If values if longer
than the diagonal, then the remaining values are ignored.
If a scalar value is given, all of the diagonal is set to it.

k : int, optional
Which off-diagonal to set, corresponding to elements a[i,i+k]. De-
fault: 0 (the main diagonal).

5.28. Sparse matrices (scipy.sparse) 995

SciPy Reference Guide, Release 0.16.0

lil_matrix.sum(axis=None)
Sum the matrix over the given axis. If the axis is None, sum over both rows and columns, returning a
scalar.

lil_matrix.toarray(order=None, out=None)
See the docstring for spmatrix.toarray.

lil_matrix.tobsr(blocksize=None)

lil_matrix.tocoo()

lil_matrix.tocsc()
Return Compressed Sparse Column format arrays for this matrix.

lil_matrix.tocsr()
Return Compressed Sparse Row format arrays for this matrix.

lil_matrix.todense(order=None, out=None)
Return a dense matrix representation of this matrix.

Parameters order : {‘C’, ‘F’}, optional
Whether to store multi-dimensional data in C (row-major) or Fortran
(column-major) order in memory. The default is ‘None’, indicating
the NumPy default of C-ordered. Cannot be specified in conjunction
with the out argument.

out : ndarray, 2-dimensional, optional
If specified, uses this array (or numpy.matrix) as the output buffer
instead of allocating a new array to return. The provided array must
have the same shape and dtype as the sparse matrix on which you are
calling the method.Returns arr : numpy.matrix, 2-dimensional
A NumPy matrix object with the same shape and containing the
same data represented by the sparse matrix, with the requested
memory order. If out was passed and was an array (rather than a
numpy.matrix), it will be filled with the appropriate values and
returned wrapped in a numpy.matrix object that shares the same
memory.

lil_matrix.todia()

lil_matrix.todok()

lil_matrix.tolil(copy=False)

lil_matrix.transpose()

Functions

Building sparse matrices:

eye(m[, n, k, dtype, format]) Sparse matrix with ones on diagonal
identity(n[, dtype, format]) Identity matrix in sparse format

Continued on next page

996 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix
http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix
http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix

SciPy Reference Guide, Release 0.16.0

Table 5.152 – continued from previous page
kron(A, B[, format]) kronecker product of sparse matrices A and B
kronsum(A, B[, format]) kronecker sum of sparse matrices A and B
diags(diagonals, offsets[, shape, format, dtype]) Construct a sparse matrix from diagonals.
spdiags(data, diags, m, n[, format]) Return a sparse matrix from diagonals.
block_diag(mats[, format, dtype]) Build a block diagonal sparse matrix from provided matrices.
tril(A[, k, format]) Return the lower triangular portion of a matrix in sparse format
triu(A[, k, format]) Return the upper triangular portion of a matrix in sparse format
bmat(blocks[, format, dtype]) Build a sparse matrix from sparse sub-blocks
hstack(blocks[, format, dtype]) Stack sparse matrices horizontally (column wise)
vstack(blocks[, format, dtype]) Stack sparse matrices vertically (row wise)
rand(m, n[, density, format, dtype, ...]) Generate a sparse matrix of the given shape and density with uniformly distributed values.
norm

scipy.sparse.eye(m, n=None, k=0, dtype=<type ‘float’>, format=None)
Sparse matrix with ones on diagonal

Returns a sparse (m x n) matrix where the k-th diagonal is all ones and everything else is zeros.

Parameters n : int
Number of rows in the matrix.

m : int, optional
Number of columns. Default: n

k : int, optional
Diagonal to place ones on. Default: 0 (main diagonal)

dtype : dtype, optional
Data type of the matrix

format : str, optional
Sparse format of the result, e.g. format=”csr”, etc.

Examples

>>> from scipy import sparse
>>> sparse.eye(3).toarray()
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> sparse.eye(3, dtype=np.int8)
<3x3 sparse matrix of type '<type 'numpy.int8'>'

with 3 stored elements (1 diagonals) in DIAgonal format>

scipy.sparse.identity(n, dtype=’d’, format=None)
Identity matrix in sparse format

Returns an identity matrix with shape (n,n) using a given sparse format and dtype.

Parameters n : int
Shape of the identity matrix.

dtype : dtype, optional
Data type of the matrix

format : str, optional
Sparse format of the result, e.g. format=”csr”, etc.

5.28. Sparse matrices (scipy.sparse) 997

SciPy Reference Guide, Release 0.16.0

Examples

>>> identity(3).toarray()
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> identity(3, dtype='int8', format='dia')
<3x3 sparse matrix of type '<type 'numpy.int8'>'

with 3 stored elements (1 diagonals) in DIAgonal format>

scipy.sparse.kron(A, B, format=None)
kronecker product of sparse matrices A and B

Parameters A : sparse or dense matrix
first matrix of the product

B : sparse or dense matrix
second matrix of the product

format : str, optional
format of the result (e.g. “csr”)Returns kronecker product in a sparse matrix format

Examples

>>> from scipy import sparse
>>> A = sparse.csr_matrix(np.array([[0, 2], [5, 0]]))
>>> B = sparse.csr_matrix(np.array([[1, 2], [3, 4]]))
>>> sparse.kron(A, B).toarray()
array([[0, 0, 2, 4],

[0, 0, 6, 8],
[5, 10, 0, 0],
[15, 20, 0, 0]])

>>> sparse.kron(A, [[1, 2], [3, 4]]).toarray()
array([[0, 0, 2, 4],

[0, 0, 6, 8],
[5, 10, 0, 0],
[15, 20, 0, 0]])

scipy.sparse.kronsum(A, B, format=None)
kronecker sum of sparse matrices A and B

Kronecker sum of two sparse matrices is a sum of two Kronecker products kron(I_n,A) + kron(B,I_m) where
A has shape (m,m) and B has shape (n,n) and I_m and I_n are identity matrices of shape (m,m) and (n,n)
respectively.

Parameters A
square matrix

B
square matrix

format : str
format of the result (e.g. “csr”)Returns kronecker sum in a sparse matrix format

scipy.sparse.diags(diagonals, offsets, shape=None, format=None, dtype=None)
Construct a sparse matrix from diagonals.

Parameters diagonals : sequence of array_like
Sequence of arrays containing the matrix diagonals, corresponding to off-
sets.

998 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

offsets : sequence of int
Diagonals to set:

•k = 0 the main diagonal
•k > 0 the k-th upper diagonal
•k < 0 the k-th lower diagonal

shape : tuple of int, optional
Shape of the result. If omitted, a square matrix large enough to contain the
diagonals is returned.

format : {“dia”, “csr”, “csc”, “lil”, ...}, optional
Matrix format of the result. By default (format=None) an appropriate sparse
matrix format is returned. This choice is subject to change.

dtype : dtype, optional
Data type of the matrix.

See also:

spdiags construct matrix from diagonals

Notes

This function differs from spdiags in the way it handles off-diagonals.

The result from diags is the sparse equivalent of:

np.diag(diagonals[0], offsets[0])
+ ...
+ np.diag(diagonals[k], offsets[k])

Repeated diagonal offsets are disallowed.

New in version 0.11.

Examples

>>> diagonals = [[1, 2, 3, 4], [1, 2, 3], [1, 2]]
>>> diags(diagonals, [0, -1, 2]).toarray()
array([[1, 0, 1, 0],

[1, 2, 0, 2],
[0, 2, 3, 0],
[0, 0, 3, 4]])

Broadcasting of scalars is supported (but shape needs to be specified):

>>> diags([1, -2, 1], [-1, 0, 1], shape=(4, 4)).toarray()
array([[-2., 1., 0., 0.],

[1., -2., 1., 0.],
[0., 1., -2., 1.],
[0., 0., 1., -2.]])

If only one diagonal is wanted (as in numpy.diag), the following works as well:

>>> diags([1, 2, 3], 1).toarray()
array([[0., 1., 0., 0.],

[0., 0., 2., 0.],
[0., 0., 0., 3.],
[0., 0., 0., 0.]])

5.28. Sparse matrices (scipy.sparse) 999

http://docs.scipy.org/doc/numpy/reference/generated/numpy.diag.html#numpy.diag

SciPy Reference Guide, Release 0.16.0

scipy.sparse.spdiags(data, diags, m, n, format=None)
Return a sparse matrix from diagonals.

Parameters data : array_like
matrix diagonals stored row-wise

diags : diagonals to set
•k = 0 the main diagonal•k > 0 the k-th upper diagonal•k < 0 the k-th lower diagonal

m, n : int
shape of the result

format : str, optional
Format of the result. By default (format=None) an appropriate sparse ma-
trix format is returned. This choice is subject to change.

See also:

diags more convenient form of this function
dia_matrixthe sparse DIAgonal format.

Examples

>>> data = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]])
>>> diags = np.array([0, -1, 2])
>>> spdiags(data, diags, 4, 4).toarray()
array([[1, 0, 3, 0],

[1, 2, 0, 4],
[0, 2, 3, 0],
[0, 0, 3, 4]])

scipy.sparse.block_diag(mats, format=None, dtype=None)
Build a block diagonal sparse matrix from provided matrices.

Parameters mats : sequence of matrices
Input matrices.

format : str, optional
The sparse format of the result (e.g. “csr”). If not given, the matrix is
returned in “coo” format.

dtype : dtype specifier, optional
The data-type of the output matrix. If not given, the dtype is determined
from that of blocks.Returns res : sparse matrix

See also:

bmat, diags

Notes

New in version 0.11.0.

Examples

>>> A = coo_matrix([[1, 2], [3, 4]])
>>> B = coo_matrix([[5], [6]])
>>> C = coo_matrix([[7]])
>>> block_diag((A, B, C)).toarray()
array([[1, 2, 0, 0],

[3, 4, 0, 0],
[0, 0, 5, 0],

1000 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

[0, 0, 6, 0],
[0, 0, 0, 7]])

scipy.sparse.tril(A, k=0, format=None)
Return the lower triangular portion of a matrix in sparse format
Returns the elements on or below the k-th diagonal of the matrix A.

•k = 0 corresponds to the main diagonal
•k > 0 is above the main diagonal
•k < 0 is below the main diagonal

Parameters A : dense or sparse matrix
Matrix whose lower trianglar portion is desired.

k : integer
The top-most diagonal of the lower triangle.

format : string
Sparse format of the result, e.g. format=”csr”, etc.Returns L : sparse matrix
Lower triangular portion of A in sparse format.

See also:

triu upper triangle in sparse format

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]],
... dtype='int32')
>>> A.toarray()
array([[1, 2, 0, 0, 3],

[4, 5, 0, 6, 7],
[0, 0, 8, 9, 0]])

>>> tril(A).toarray()
array([[1, 0, 0, 0, 0],

[4, 5, 0, 0, 0],
[0, 0, 8, 0, 0]])

>>> tril(A).nnz
4
>>> tril(A, k=1).toarray()
array([[1, 2, 0, 0, 0],

[4, 5, 0, 0, 0],
[0, 0, 8, 9, 0]])

>>> tril(A, k=-1).toarray()
array([[0, 0, 0, 0, 0],

[4, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])

>>> tril(A, format='csc')
<3x5 sparse matrix of type '<type 'numpy.int32'>'

with 4 stored elements in Compressed Sparse Column format>

scipy.sparse.triu(A, k=0, format=None)
Return the upper triangular portion of a matrix in sparse format
Returns the elements on or above the k-th diagonal of the matrix A.

•k = 0 corresponds to the main diagonal
•k > 0 is above the main diagonal

5.28. Sparse matrices (scipy.sparse) 1001

SciPy Reference Guide, Release 0.16.0

•k < 0 is below the main diagonal

Parameters A : dense or sparse matrix
Matrix whose upper trianglar portion is desired.

k : integer
The bottom-most diagonal of the upper triangle.

format : string
Sparse format of the result, e.g. format=”csr”, etc.Returns L : sparse matrix
Upper triangular portion of A in sparse format.

See also:

tril lower triangle in sparse format

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]],
... dtype='int32')
>>> A.toarray()
array([[1, 2, 0, 0, 3],

[4, 5, 0, 6, 7],
[0, 0, 8, 9, 0]])

>>> triu(A).toarray()
array([[1, 2, 0, 0, 3],

[0, 5, 0, 6, 7],
[0, 0, 8, 9, 0]])

>>> triu(A).nnz
8
>>> triu(A, k=1).toarray()
array([[0, 2, 0, 0, 3],

[0, 0, 0, 6, 7],
[0, 0, 0, 9, 0]])

>>> triu(A, k=-1).toarray()
array([[1, 2, 0, 0, 3],

[4, 5, 0, 6, 7],
[0, 0, 8, 9, 0]])

>>> triu(A, format='csc')
<3x5 sparse matrix of type '<type 'numpy.int32'>'

with 8 stored elements in Compressed Sparse Column format>

scipy.sparse.bmat(blocks, format=None, dtype=None)
Build a sparse matrix from sparse sub-blocks

Parameters blocks : array_like
Grid of sparse matrices with compatible shapes. An entry of None implies
an all-zero matrix.

format : {‘bsr’, ‘coo’, ‘csc’, ‘csr’, ‘dia’, ‘dok’, ‘lil’}, optional
The sparse format of the result (e.g. “csr”). By default an appropriate sparse
matrix format is returned. This choice is subject to change.

dtype : dtype, optional
The data-type of the output matrix. If not given, the dtype is determined
from that of blocks.Returns bmat : sparse matrix

See also:

block_diag, diags

1002 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.sparse import coo_matrix, bmat
>>> A = coo_matrix([[1, 2], [3, 4]])
>>> B = coo_matrix([[5], [6]])
>>> C = coo_matrix([[7]])
>>> bmat([[A, B], [None, C]]).toarray()
array([[1, 2, 5],

[3, 4, 6],
[0, 0, 7]])

>>> bmat([[A, None], [None, C]]).toarray()
array([[1, 2, 0],

[3, 4, 0],
[0, 0, 7]])

scipy.sparse.hstack(blocks, format=None, dtype=None)
Stack sparse matrices horizontally (column wise)

Parameters blocks
sequence of sparse matrices with compatible shapes

format : str
sparse format of the result (e.g. “csr”) by default an appropriate sparse
matrix format is returned. This choice is subject to change.

dtype : dtype, optional
The data-type of the output matrix. If not given, the dtype is determined
from that of blocks.

See also:

vstack stack sparse matrices vertically (row wise)

Examples

>>> from scipy.sparse import coo_matrix, hstack
>>> A = coo_matrix([[1, 2], [3, 4]])
>>> B = coo_matrix([[5], [6]])
>>> hstack([A,B]).toarray()
array([[1, 2, 5],

[3, 4, 6]])

scipy.sparse.vstack(blocks, format=None, dtype=None)
Stack sparse matrices vertically (row wise)

Parameters blocks
sequence of sparse matrices with compatible shapes

format : str, optional
sparse format of the result (e.g. “csr”) by default an appropriate sparse
matrix format is returned. This choice is subject to change.

dtype : dtype, optional
The data-type of the output matrix. If not given, the dtype is determined
from that of blocks.

See also:

hstack stack sparse matrices horizontally (column wise)

5.28. Sparse matrices (scipy.sparse) 1003

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.sparse import coo_matrix, vstack
>>> A = coo_matrix([[1, 2], [3, 4]])
>>> B = coo_matrix([[5, 6]])
>>> vstack([A, B]).toarray()
array([[1, 2],

[3, 4],
[5, 6]])

scipy.sparse.rand(m, n, density=0.01, format=’coo’, dtype=None, random_state=None)
Generate a sparse matrix of the given shape and density with uniformly distributed values.

Parameters m, n : int
shape of the matrix

density : real, optional
density of the generated matrix: density equal to one means a full matrix,
density of 0 means a matrix with no non-zero items.

format : str, optional
sparse matrix format.

dtype : dtype, optional
type of the returned matrix values.

random_state : {numpy.random.RandomState, int}, optional
Random number generator or random seed. If not given, the singleton
numpy.random will be used.

Notes

Only float types are supported for now.

Sparse matrix tools:

find(A) Return the indices and values of the nonzero elements of a matrix

scipy.sparse.find(A)
Return the indices and values of the nonzero elements of a matrix

Parameters A : dense or sparse matrix
Matrix whose nonzero elements are desired.Returns (I,J,V) : tuple of arrays
I,J, and V contain the row indices, column indices, and values of the
nonzero matrix entries.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[7.0, 8.0, 0],[0, 0, 9.0]])
>>> find(A)
(array([0, 0, 1], dtype=int32), array([0, 1, 2], dtype=int32), array([7., 8., 9.]))

Identifying sparse matrices:

issparse(x)
isspmatrix(x)
isspmatrix_csc(x)
isspmatrix_csr(x)

Continued on next page

1004 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.154 – continued from previous page
isspmatrix_bsr(x)
isspmatrix_lil(x)
isspmatrix_dok(x)
isspmatrix_coo(x)
isspmatrix_dia(x)

scipy.sparse.issparse(x)

scipy.sparse.isspmatrix(x)

scipy.sparse.isspmatrix_csc(x)

scipy.sparse.isspmatrix_csr(x)

scipy.sparse.isspmatrix_bsr(x)

scipy.sparse.isspmatrix_lil(x)

scipy.sparse.isspmatrix_dok(x)

scipy.sparse.isspmatrix_coo(x)

scipy.sparse.isspmatrix_dia(x)

Submodules

csgraph
linalg

Compressed Sparse Graph Routines (scipy.sparse.csgraph) Fast graph algorithms based on sparse matrix
representations.

connected_components(csgraph[, directed, ...]) Analyze the connected components of a sparse graph
laplacian(csgraph[, normed, return_diag, ...]) Return the Laplacian matrix of a directed graph.
shortest_path(csgraph[, method, directed, ...]) Perform a shortest-path graph search on a positive directed or undirected graph.
dijkstra(csgraph[, directed, indices, ...]) Dijkstra algorithm using Fibonacci Heaps
floyd_warshall(csgraph[, directed, ...]) Compute the shortest path lengths using the Floyd-Warshall algorithm
bellman_ford(csgraph[, directed, indices, ...]) Compute the shortest path lengths using the Bellman-Ford algorithm.
johnson(csgraph[, directed, indices, ...]) Compute the shortest path lengths using Johnson’s algorithm.
breadth_first_order(csgraph, i_start[, ...]) Return a breadth-first ordering starting with specified node.
depth_first_order(csgraph, i_start[, ...]) Return a depth-first ordering starting with specified node.
breadth_first_tree(csgraph, i_start[, directed]) Return the tree generated by a breadth-first search

Continued on next page

5.28. Sparse matrices (scipy.sparse) 1005

SciPy Reference Guide, Release 0.16.0

Table 5.156 – continued from previous page
depth_first_tree(csgraph, i_start[, directed]) Return a tree generated by a depth-first search.
minimum_spanning_tree(csgraph[, overwrite]) Return a minimum spanning tree of an undirected graph
reverse_cuthill_mckee Returns the permutation array that orders a sparse CSR or CSC matrix in Reverse-Cuthill McKee ordering.
maximum_bipartite_matching Returns an array of row or column permutations that makes the diagonal of a nonsingular square CSC sparse matrix zero free.

Contents
scipy.sparse.csgraph.connected_components(csgraph, directed=True, connection=’weak’, re-

turn_labels=True)
Analyze the connected components of a sparse graph

New in version 0.11.0.

Parameters csgraph : array_like or sparse matrix
The N x N matrix representing the compressed sparse graph. The input
csgraph will be converted to csr format for the calculation.

directed : bool, optional
If True (default), then operate on a directed graph: only move from point
i to point j along paths csgraph[i, j]. If False, then find the shortest path
on an undirected graph: the algorithm can progress from point i to j along
csgraph[i, j] or csgraph[j, i].

connection : str, optional
[’weak’|’strong’]. For directed graphs, the type of connection to use. Nodes
i and j are strongly connected if a path exists both from i to j and from j to
i. Nodes i and j are weakly connected if only one of these paths exists. If
directed == False, this keyword is not referenced.

return_labels : str, optional
If True (default), then return the labels for each of the connected compo-
nents.Returns n_components: int
The number of connected components.

labels: ndarray
The length-N array of labels of the connected components.

References

[R13]
scipy.sparse.csgraph.laplacian(csgraph, normed=False, return_diag=False,

use_out_degree=False)
Return the Laplacian matrix of a directed graph.

Parameters csgraph : array_like or sparse matrix, 2 dimensions
compressed-sparse graph, with shape (N, N).

normed : bool, optional
If True, then compute normalized Laplacian.

return_diag : bool, optional
If True, then also return an array related to vertex degrees.

use_out_degree : bool, optional
If True, then use out-degree instead of in-degree. This distinction matters
only if the graph is asymmetric. Default: False.Returns lap : ndarray
The N x N laplacian matrix of graph.

diag : ndarray, optional
The length-N diagonal of the Laplacian matrix. For the normalized Lapla-
cian, this is the array of square roots of vertex degrees or 1 if the degree is
zero.

1006 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The Laplacian matrix of a graph is sometimes referred to as the “Kirchoff matrix” or the “admittance matrix”,
and is useful in many parts of spectral graph theory. In particular, the eigen-decomposition of the laplacian
matrix can give insight into many properties of the graph.

Examples

>>> from scipy.sparse import csgraph
>>> G = np.arange(5) * np.arange(5)[:, np.newaxis]
>>> G
array([[0, 0, 0, 0, 0],

[0, 1, 2, 3, 4],
[0, 2, 4, 6, 8],
[0, 3, 6, 9, 12],
[0, 4, 8, 12, 16]])

>>> csgraph.laplacian(G, normed=False)
array([[0, 0, 0, 0, 0],

[0, 9, -2, -3, -4],
[0, -2, 16, -6, -8],
[0, -3, -6, 21, -12],
[0, -4, -8, -12, 24]])

scipy.sparse.csgraph.shortest_path(csgraph, method=’auto’, directed=True, re-
turn_predecessors=False, unweighted=False, over-
write=False)

Perform a shortest-path graph search on a positive directed or undirected graph.

New in version 0.11.0.

Parameters csgraph : array, matrix, or sparse matrix, 2 dimensions
The N x N array of distances representing the input graph.

method : string [’auto’|’FW’|’D’], optional
Algorithm to use for shortest paths. Options are:

‘auto’ – (default) select the best among ‘FW’, ‘D’, ‘BF’, or ‘J’

based on the input data.
‘FW’ – Floyd-Warshall algorithm. Computational cost is

approximately O[N^3]. The input csgraph
will be converted to a dense representation.

‘D’ – Dijkstra’s algorithm with Fibonacci heaps. Computational

cost is approximately O[N(N*k +
N*log(N))], where k is the average
number of connected edges per node. The
input csgraph will be converted to a csr
representation.

‘BF’ – Bellman-Ford algorithm. This algorithm can be used when

weights are negative. If a negative cycle is
encountered, an error will be raised. Com-
putational cost is approximately O[N(N^2
k)], where k is the average number of
connected edges per node. The input csgraph
will be converted to a csr representation.

‘J’ – Johnson’s algorithm. Like the Bellman-Ford algorithm,

5.28. Sparse matrices (scipy.sparse) 1007

SciPy Reference Guide, Release 0.16.0

Johnson’s algorithm is designed for use
when the weights are negative. It combines
the Bellman-Ford algorithm with Dijkstra’s
algorithm for faster computation.

directed : bool, optional
If True (default), then find the shortest path on a directed graph: only move
from point i to point j along paths csgraph[i, j]. If False, then find the
shortest path on an undirected graph: the algorithm can progress from point
i to j along csgraph[i, j] or csgraph[j, i]

return_predecessors : bool, optional
If True, return the size (N, N) predecesor matrix

unweighted : bool, optional
If True, then find unweighted distances. That is, rather than finding the path
between each point such that the sum of weights is minimized, find the path
such that the number of edges is minimized.

overwrite : bool, optional
If True, overwrite csgraph with the result. This applies only if method ==
‘FW’ and csgraph is a dense, c-ordered array with dtype=float64.Returns dist_matrix : ndarray
The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives
the shortest distance from point i to point j along the graph.

predecessors : ndarray
Returned only if return_predecessors == True. The N x N matrix of prede-
cessors, which can be used to reconstruct the shortest paths. Row i of the
predecessor matrix contains information on the shortest paths from point
i: each entry predecessors[i, j] gives the index of the previous node in the
path from point i to point j. If no path exists between point i and j, then
predecessors[i, j] = -9999Raises NegativeCycleError:
if there are negative cycles in the graph

Notes

As currently implemented, Dijkstra’s algorithm and Johnson’s algorithm do not work for graphs with direction-
dependent distances when directed == False. i.e., if csgraph[i,j] and csgraph[j,i] are non-equal edges,
method=’D’ may yield an incorrect result.

scipy.sparse.csgraph.dijkstra(csgraph, directed=True, indices=None, re-
turn_predecessors=False, unweighted=False)

Dijkstra algorithm using Fibonacci Heaps

New in version 0.11.0.

Parameters csgraph : array, matrix, or sparse matrix, 2 dimensions
The N x N array of non-negative distances representing the input graph.

directed : bool, optional
If True (default), then find the shortest path on a directed graph: only move
from point i to point j along paths csgraph[i, j]. If False, then find the
shortest path on an undirected graph: the algorithm can progress from point
i to j along csgraph[i, j] or csgraph[j, i]

indices : array_like or int, optional
if specified, only compute the paths for the points at the given indices.

return_predecessors : bool, optional
If True, return the size (N, N) predecesor matrix

unweighted : bool, optional

1008 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

If True, then find unweighted distances. That is, rather than finding the path
between each point such that the sum of weights is minimized, find the path
such that the number of edges is minimized.

limit : float, optional
The maximum distance to calculate, must be >= 0. Using a smaller limit
will decrease computation time by aborting calculations between pairs that
are separated by a distance > limit. For such pairs, the distance will be equal
to np.inf (i.e., not connected). .. versionadded:: 0.14.0Returns dist_matrix : ndarray
The matrix of distances between graph nodes. dist_matrix[i,j] gives the
shortest distance from point i to point j along the graph.

predecessors : ndarray
Returned only if return_predecessors == True. The matrix of predecessors,
which can be used to reconstruct the shortest paths. Row i of the prede-
cessor matrix contains information on the shortest paths from point i: each
entry predecessors[i, j] gives the index of the previous node in the path from
point i to point j. If no path exists between point i and j, then predecessors[i,
j] = -9999

Notes

As currently implemented, Dijkstra’s algorithm does not work for graphs with direction-dependent distances
when directed == False. i.e., if csgraph[i,j] and csgraph[j,i] are not equal and both are nonzero, setting di-
rected=False will not yield the correct result.

Also, this routine does not work for graphs with negative distances. Negative distances can lead to infinite cycles
that must be handled by specialized algorithms such as Bellman-Ford’s algorithm or Johnson’s algorithm.

scipy.sparse.csgraph.floyd_warshall(csgraph, directed=True, return_predecessors=False, un-
weighted=False, overwrite=False)

Compute the shortest path lengths using the Floyd-Warshall algorithm

New in version 0.11.0.

Parameters csgraph : array, matrix, or sparse matrix, 2 dimensions
The N x N array of distances representing the input graph.

directed : bool, optional
If True (default), then find the shortest path on a directed graph: only move
from point i to point j along paths csgraph[i, j]. If False, then find the
shortest path on an undirected graph: the algorithm can progress from point
i to j along csgraph[i, j] or csgraph[j, i]

return_predecessors : bool, optional
If True, return the size (N, N) predecesor matrix

unweighted : bool, optional
If True, then find unweighted distances. That is, rather than finding the path
between each point such that the sum of weights is minimized, find the path
such that the number of edges is minimized.

overwrite : bool, optional
If True, overwrite csgraph with the result. This applies only if csgraph is a
dense, c-ordered array with dtype=float64.Returns dist_matrix : ndarray
The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives
the shortest distance from point i to point j along the graph.

predecessors : ndarray
Returned only if return_predecessors == True. The N x N matrix of prede-
cessors, which can be used to reconstruct the shortest paths. Row i of the
predecessor matrix contains information on the shortest paths from point
i: each entry predecessors[i, j] gives the index of the previous node in the

5.28. Sparse matrices (scipy.sparse) 1009

SciPy Reference Guide, Release 0.16.0

path from point i to point j. If no path exists between point i and j, then
predecessors[i, j] = -9999Raises NegativeCycleError:
if there are negative cycles in the graph

scipy.sparse.csgraph.bellman_ford(csgraph, directed=True, indices=None, re-
turn_predecessors=False, unweighted=False)

Compute the shortest path lengths using the Bellman-Ford algorithm.

The Bellman-ford algorithm can robustly deal with graphs with negative weights. If a negative cycle is detected,
an error is raised. For graphs without negative edge weights, dijkstra’s algorithm may be faster.

New in version 0.11.0.

Parameters csgraph : array, matrix, or sparse matrix, 2 dimensions
The N x N array of distances representing the input graph.

directed : bool, optional
If True (default), then find the shortest path on a directed graph: only move
from point i to point j along paths csgraph[i, j]. If False, then find the
shortest path on an undirected graph: the algorithm can progress from point
i to j along csgraph[i, j] or csgraph[j, i]

indices : array_like or int, optional
if specified, only compute the paths for the points at the given indices.

return_predecessors : bool, optional
If True, return the size (N, N) predecesor matrix

unweighted : bool, optional
If True, then find unweighted distances. That is, rather than finding the path
between each point such that the sum of weights is minimized, find the path
such that the number of edges is minimized.Returns dist_matrix : ndarray
The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives
the shortest distance from point i to point j along the graph.

predecessors : ndarray
Returned only if return_predecessors == True. The N x N matrix of prede-
cessors, which can be used to reconstruct the shortest paths. Row i of the
predecessor matrix contains information on the shortest paths from point
i: each entry predecessors[i, j] gives the index of the previous node in the
path from point i to point j. If no path exists between point i and j, then
predecessors[i, j] = -9999Raises NegativeCycleError:
if there are negative cycles in the graph

Notes

This routine is specially designed for graphs with negative edge weights. If all edge weights are positive, then
Dijkstra’s algorithm is a better choice.

scipy.sparse.csgraph.johnson(csgraph, directed=True, indices=None, re-
turn_predecessors=False, unweighted=False)

Compute the shortest path lengths using Johnson’s algorithm.

Johnson’s algorithm combines the Bellman-Ford algorithm and Dijkstra’s algorithm to quickly find shortest
paths in a way that is robust to the presence of negative cycles. If a negative cycle is detected, an error is raised.
For graphs without negative edge weights, dijkstra() may be faster.

New in version 0.11.0.

Parameters csgraph : array, matrix, or sparse matrix, 2 dimensions
The N x N array of distances representing the input graph.

directed : bool, optional

1010 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

If True (default), then find the shortest path on a directed graph: only move
from point i to point j along paths csgraph[i, j]. If False, then find the
shortest path on an undirected graph: the algorithm can progress from point
i to j along csgraph[i, j] or csgraph[j, i]

indices : array_like or int, optional
if specified, only compute the paths for the points at the given indices.

return_predecessors : bool, optional
If True, return the size (N, N) predecesor matrix

unweighted : bool, optional
If True, then find unweighted distances. That is, rather than finding the path
between each point such that the sum of weights is minimized, find the path
such that the number of edges is minimized.Returns dist_matrix : ndarray
The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives
the shortest distance from point i to point j along the graph.

predecessors : ndarray
Returned only if return_predecessors == True. The N x N matrix of prede-
cessors, which can be used to reconstruct the shortest paths. Row i of the
predecessor matrix contains information on the shortest paths from point
i: each entry predecessors[i, j] gives the index of the previous node in the
path from point i to point j. If no path exists between point i and j, then
predecessors[i, j] = -9999Raises NegativeCycleError:
if there are negative cycles in the graph

Notes

This routine is specially designed for graphs with negative edge weights. If all edge weights are positive, then
Dijkstra’s algorithm is a better choice.

scipy.sparse.csgraph.breadth_first_order(csgraph, i_start, directed=True, re-
turn_predecessors=True)

Return a breadth-first ordering starting with specified node.

Note that a breadth-first order is not unique, but the tree which it generates is unique.

New in version 0.11.0.

Parameters csgraph : array_like or sparse matrix
The N x N compressed sparse graph. The input csgraph will be converted
to csr format for the calculation.

i_start : int
The index of starting node.

directed : bool, optional
If True (default), then operate on a directed graph: only move from point
i to point j along paths csgraph[i, j]. If False, then find the shortest path
on an undirected graph: the algorithm can progress from point i to j along
csgraph[i, j] or csgraph[j, i].

return_predecessors : bool, optional
If True (default), then return the predecesor array (see below).Returns node_array : ndarray, one dimension
The breadth-first list of nodes, starting with specified node. The length of
node_array is the number of nodes reachable from the specified node.

predecessors : ndarray, one dimension
Returned only if return_predecessors is True. The length-N list of prede-
cessors of each node in a breadth-first tree. If node i is in the tree, then its
parent is given by predecessors[i]. If node i is not in the tree (and for the
parent node) then predecessors[i] = -9999.

5.28. Sparse matrices (scipy.sparse) 1011

SciPy Reference Guide, Release 0.16.0

scipy.sparse.csgraph.depth_first_order(csgraph, i_start, directed=True, re-
turn_predecessors=True)

Return a depth-first ordering starting with specified node.

Note that a depth-first order is not unique. Furthermore, for graphs with cycles, the tree generated by a depth-first
search is not unique either.

New in version 0.11.0.

Parameters csgraph : array_like or sparse matrix
The N x N compressed sparse graph. The input csgraph will be converted
to csr format for the calculation.

i_start : int
The index of starting node.

directed : bool, optional
If True (default), then operate on a directed graph: only move from point
i to point j along paths csgraph[i, j]. If False, then find the shortest path
on an undirected graph: the algorithm can progress from point i to j along
csgraph[i, j] or csgraph[j, i].

return_predecessors : bool, optional
If True (default), then return the predecesor array (see below).Returns node_array : ndarray, one dimension
The breadth-first list of nodes, starting with specified node. The length of
node_array is the number of nodes reachable from the specified node.

predecessors : ndarray, one dimension
Returned only if return_predecessors is True. The length-N list of prede-
cessors of each node in a breadth-first tree. If node i is in the tree, then its
parent is given by predecessors[i]. If node i is not in the tree (and for the
parent node) then predecessors[i] = -9999.

scipy.sparse.csgraph.breadth_first_tree(csgraph, i_start, directed=True)
Return the tree generated by a breadth-first search

Note that a breadth-first tree from a specified node is unique.

New in version 0.11.0.

Parameters csgraph : array_like or sparse matrix
The N x N matrix representing the compressed sparse graph. The input
csgraph will be converted to csr format for the calculation.

i_start : int
The index of starting node.

directed : bool, optional
If True (default), then operate on a directed graph: only move from point
i to point j along paths csgraph[i, j]. If False, then find the shortest path
on an undirected graph: the algorithm can progress from point i to j along
csgraph[i, j] or csgraph[j, i].Returns cstree : csr matrix
The N x N directed compressed-sparse representation of the breadth- first
tree drawn from csgraph, starting at the specified node.

Examples

The following example shows the computation of a depth-first tree over a simple four-component graph, starting
at node 0:

input graph breadth first tree from (0)

(0) (0)

1012 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

/ \ / \
3 8 3 8

/ \ / \
(3)---5---(1) (3) (1)
\ / /
6 2 2
\ / /
(2) (2)

In compressed sparse representation, the solution looks like this:

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import breadth_first_tree
>>> X = csr_matrix([[0, 8, 0, 3],
... [0, 0, 2, 5],
... [0, 0, 0, 6],
... [0, 0, 0, 0]])
>>> Tcsr = breadth_first_tree(X, 0, directed=False)
>>> Tcsr.toarray().astype(int)
array([[0, 8, 0, 3],

[0, 0, 2, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]])

Note that the resulting graph is a Directed Acyclic Graph which spans the graph. A breadth-first tree from a
given node is unique.

scipy.sparse.csgraph.depth_first_tree(csgraph, i_start, directed=True)
Return a tree generated by a depth-first search.

Note that a tree generated by a depth-first search is not unique: it depends on the order that the children of each
node are searched.

New in version 0.11.0.

Parameters csgraph : array_like or sparse matrix
The N x N matrix representing the compressed sparse graph. The input
csgraph will be converted to csr format for the calculation.

i_start : int
The index of starting node.

directed : bool, optional
If True (default), then operate on a directed graph: only move from point
i to point j along paths csgraph[i, j]. If False, then find the shortest path
on an undirected graph: the algorithm can progress from point i to j along
csgraph[i, j] or csgraph[j, i].Returns cstree : csr matrix
The N x N directed compressed-sparse representation of the depth- first tree
drawn from csgraph, starting at the specified node.

Examples

The following example shows the computation of a depth-first tree over a simple four-component graph, starting
at node 0:

input graph depth first tree from (0)

(0) (0)
/ \ \

3 8 8

5.28. Sparse matrices (scipy.sparse) 1013

SciPy Reference Guide, Release 0.16.0

/ \ \
(3)---5---(1) (3) (1)
\ / \ /
6 2 6 2
\ / \ /
(2) (2)

In compressed sparse representation, the solution looks like this:

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import depth_first_tree
>>> X = csr_matrix([[0, 8, 0, 3],
... [0, 0, 2, 5],
... [0, 0, 0, 6],
... [0, 0, 0, 0]])
>>> Tcsr = depth_first_tree(X, 0, directed=False)
>>> Tcsr.toarray().astype(int)
array([[0, 8, 0, 0],

[0, 0, 2, 0],
[0, 0, 0, 6],
[0, 0, 0, 0]])

Note that the resulting graph is a Directed Acyclic Graph which spans the graph. Unlike a breadth-first tree, a
depth-first tree of a given graph is not unique if the graph contains cycles. If the above solution had begun with
the edge connecting nodes 0 and 3, the result would have been different.

scipy.sparse.csgraph.minimum_spanning_tree(csgraph, overwrite=False)
Return a minimum spanning tree of an undirected graph

A minimum spanning tree is a graph consisting of the subset of edges which together connect all connected
nodes, while minimizing the total sum of weights on the edges. This is computed using the Kruskal algorithm.

New in version 0.11.0.

Parameters csgraph : array_like or sparse matrix, 2 dimensions
The N x N matrix representing an undirected graph over N nodes (see notes
below).

overwrite : bool, optional
if true, then parts of the input graph will be overwritten for efficiency.Returns span_tree : csr matrix
The N x N compressed-sparse representation of the undirected minimum
spanning tree over the input (see notes below).

Notes

This routine uses undirected graphs as input and output. That is, if graph[i, j] and graph[j, i] are both zero,
then nodes i and j do not have an edge connecting them. If either is nonzero, then the two are connected by the
minimum nonzero value of the two.

Examples

The following example shows the computation of a minimum spanning tree over a simple four-component
graph:

input graph minimum spanning tree

(0) (0)
/ \ /

3 8 3

1014 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

/ \ /
(3)---5---(1) (3)---5---(1)
\ / /
6 2 2
\ / /
(2) (2)

It is easy to see from inspection that the minimum spanning tree involves removing the edges with weights 8
and 6. In compressed sparse representation, the solution looks like this:

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import minimum_spanning_tree
>>> X = csr_matrix([[0, 8, 0, 3],
... [0, 0, 2, 5],
... [0, 0, 0, 6],
... [0, 0, 0, 0]])
>>> Tcsr = minimum_spanning_tree(X)
>>> Tcsr.toarray().astype(int)
array([[0, 0, 0, 3],

[0, 0, 2, 5],
[0, 0, 0, 0],
[0, 0, 0, 0]])

scipy.sparse.csgraph.reverse_cuthill_mckee()
Returns the permutation array that orders a sparse CSR or CSC matrix in Reverse-Cuthill McKee ordering.

It is assumed by default, symmetric_mode=False, that the input matrix is not symmetric and works on the
matrix A+A.T. If you are guaranteed that the matrix is symmetric in structure (values of matrix elements do not
matter) then set symmetric_mode=True.

Parameters graph : sparse matrix
Input sparse in CSC or CSR sparse matrix format.

symmetric_mode : bool, optional
Is input matrix guaranteed to be symmetric.Returns perm : ndarray
Array of permuted row and column indices.

Notes

New in version 0.15.0.

References

E. Cuthill and J. McKee, “Reducing the Bandwidth of Sparse Symmetric Matrices”, ACM ‘69 Proceedings of
the 1969 24th national conference, (1969).

scipy.sparse.csgraph.maximum_bipartite_matching()
Returns an array of row or column permutations that makes the diagonal of a nonsingular square CSC sparse
matrix zero free.

Such a permutation is always possible provided that the matrix is nonsingular. This function looks at the struc-
ture of the matrix only. The input matrix will be converted to CSC matrix format if necessary.

Parameters graph : sparse matrix
Input sparse in CSC format

perm_type : str, {‘row’, ‘column’}
Type of permutation to generate.Returns perm : ndarray
Array of row or column permutations.

5.28. Sparse matrices (scipy.sparse) 1015

SciPy Reference Guide, Release 0.16.0

Notes

This function relies on a maximum cardinality bipartite matching algorithm based on a breadth-first search
(BFS) of the underlying graph.

New in version 0.15.0.

References

I. S. Duff, K. Kaya, and B. Ucar, “Design, Implementation, and Analysis of Maximum Transversal Algorithms”,
ACM Trans. Math. Softw. 38, no. 2, (2011).

Graph Representations This module uses graphs which are stored in a matrix format. A graph with N nodes can
be represented by an (N x N) adjacency matrix G. If there is a connection from node i to node j, then G[i, j] = w, where
w is the weight of the connection. For nodes i and j which are not connected, the value depends on the representation:

• for dense array representations, non-edges are represented by G[i, j] = 0, infinity, or NaN.

• for dense masked representations (of type np.ma.MaskedArray), non-edges are represented by masked values.
This can be useful when graphs with zero-weight edges are desired.

• for sparse array representations, non-edges are represented by non-entries in the matrix. This sort of sparse
representation also allows for edges with zero weights.

As a concrete example, imagine that you would like to represent the following undirected graph:

G

(0)
/ \

1 2
/ \

(2) (1)

This graph has three nodes, where node 0 and 1 are connected by an edge of weight 2, and nodes 0 and 2 are connected
by an edge of weight 1. We can construct the dense, masked, and sparse representations as follows, keeping in mind
that an undirected graph is represented by a symmetric matrix:

>>> G_dense = np.array([[0, 2, 1],
... [2, 0, 0],
... [1, 0, 0]])
>>> G_masked = np.ma.masked_values(G_dense, 0)
>>> from scipy.sparse import csr_matrix
>>> G_sparse = csr_matrix(G_dense)

This becomes more difficult when zero edges are significant. For example, consider the situation when we slightly
modify the above graph:

G2

(0)
/ \

0 2
/ \

(2) (1)

This is identical to the previous graph, except nodes 0 and 2 are connected by an edge of zero weight. In this case, the
dense representation above leads to ambiguities: how can non-edges be represented if zero is a meaningful value? In
this case, either a masked or sparse representation must be used to eliminate the ambiguity:

1016 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> G2_data = np.array([[np.inf, 2, 0],
... [2, np.inf, np.inf],
... [0, np.inf, np.inf]])
>>> G2_masked = np.ma.masked_invalid(G2_data)
>>> from scipy.sparse.csgraph import csgraph_from_dense
>>> # G2_sparse = csr_matrix(G2_data) would give the wrong result
>>> G2_sparse = csgraph_from_dense(G2_data, null_value=np.inf)
>>> G2_sparse.data
array([2., 0., 2., 0.])

Here we have used a utility routine from the csgraph submodule in order to convert the dense representation to a sparse
representation which can be understood by the algorithms in submodule. By viewing the data array, we can see that
the zero values are explicitly encoded in the graph.

Directed vs. Undirected Matrices may represent either directed or undirected graphs. This is specified throughout
the csgraph module by a boolean keyword. Graphs are assumed to be directed by default. In a directed graph, traversal
from node i to node j can be accomplished over the edge G[i, j], but not the edge G[j, i]. In a non-directed graph,
traversal from node i to node j can be accomplished over either G[i, j] or G[j, i]. If both edges are not null, and the two
have unequal weights, then the smaller of the two is used. Note that a symmetric matrix will represent an undirected
graph, regardless of whether the ‘directed’ keyword is set to True or False. In this case, using directed=True
generally leads to more efficient computation.

The routines in this module accept as input either scipy.sparse representations (csr, csc, or lil format), masked repre-
sentations, or dense representations with non-edges indicated by zeros, infinities, and NaN entries.

Functions

bellman_ford(csgraph[, directed, indices, ...]) Compute the shortest path lengths using the Bellman-Ford algorithm.
breadth_first_order(csgraph, i_start[, ...]) Return a breadth-first ordering starting with specified node.
breadth_first_tree(csgraph, i_start[, directed]) Return the tree generated by a breadth-first search
connected_components(csgraph[, directed, ...]) Analyze the connected components of a sparse graph
construct_dist_matrix(graph, predecessors[, ...]) Construct distance matrix from a predecessor matrix
cs_graph_components(*args, **kwds) cs_graph_components is deprecated!
csgraph_from_dense(graph[, null_value, ...]) Construct a CSR-format sparse graph from a dense matrix.
csgraph_from_masked(graph) Construct a CSR-format graph from a masked array.
csgraph_masked_from_dense(graph[, ...]) Construct a masked array graph representation from a dense matrix.
csgraph_to_dense(csgraph[, null_value]) Convert a sparse graph representation to a dense representation
depth_first_order(csgraph, i_start[, ...]) Return a depth-first ordering starting with specified node.
depth_first_tree(csgraph, i_start[, directed]) Return a tree generated by a depth-first search.
dijkstra(csgraph[, directed, indices, ...]) Dijkstra algorithm using Fibonacci Heaps
floyd_warshall(csgraph[, directed, ...]) Compute the shortest path lengths using the Floyd-Warshall algorithm
johnson(csgraph[, directed, indices, ...]) Compute the shortest path lengths using Johnson’s algorithm.
laplacian(csgraph[, normed, return_diag, ...]) Return the Laplacian matrix of a directed graph.
maximum_bipartite_matching Returns an array of row or column permutations that makes the diagonal of a nonsingular square CSC sparse matrix zero free.
minimum_spanning_tree(csgraph[, overwrite]) Return a minimum spanning tree of an undirected graph
reconstruct_path(csgraph, predecessors[, ...]) Construct a tree from a graph and a predecessor list.
reverse_cuthill_mckee Returns the permutation array that orders a sparse CSR or CSC matrix in Reverse-Cuthill McKee ordering.
shortest_path(csgraph[, method, directed, ...]) Perform a shortest-path graph search on a positive directed or undirected graph.

Classes

Tester alias of NoseTester

5.28. Sparse matrices (scipy.sparse) 1017

SciPy Reference Guide, Release 0.16.0

Exceptions

NegativeCycleError

Sparse linear algebra (scipy.sparse.linalg)

LinearOperator(dtype, shape) Common interface for performing matrix vector products
aslinearoperator(A) Return A as a LinearOperator.

Abstract linear operators
class scipy.sparse.linalg.LinearOperator(dtype, shape)

Common interface for performing matrix vector products

Many iterative methods (e.g. cg, gmres) do not need to know the individual entries of a matrix to solve a linear
system A*x=b. Such solvers only require the computation of matrix vector products, A*v where v is a dense
vector. This class serves as an abstract interface between iterative solvers and matrix-like objects.

To construct a concrete LinearOperator, either pass appropriate callables to the constructor of this class, or
subclass it.

A subclass must implement either one of the methods _matvec and _matmat, and the attributes/properties
shape (pair of integers) and dtype (may be None). It may call the __init__ on this class to have these
attributes validated. Implementing _matvec automatically implements _matmat (using a naive algorithm)
and vice-versa.

Optionally, a subclass may implement _rmatvec or _adjoint to implement the Hermitian adjoint (conju-
gate transpose). As with _matvec and _matmat, implementing either _rmatvec or _adjoint implements
the other automatically. Implementing _adjoint is preferable; _rmatvec is mostly there for backwards
compatibility.

Parameters shape : tuple
Matrix dimensions (M,N).

matvec : callable f(v)
Returns returns A * v.

rmatvec : callable f(v)
Returns A^H * v, where A^H is the conjugate transpose of A.

matmat : callable f(V)
Returns A * V, where V is a dense matrix with dimensions (N,K).

dtype : dtype
Data type of the matrix.

See also:

aslinearoperator
Construct LinearOperators

Notes

The user-defined matvec() function must properly handle the case where v has shape (N,) as well as the (N,1)
case. The shape of the return type is handled internally by LinearOperator.

LinearOperator instances can also be multiplied, added with each other and exponentiated, all lazily: the result
of these operations is always a new, composite LinearOperator, that defers linear operations to the original
operators and combines the results.

1018 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> import numpy as np
>>> from scipy.sparse.linalg import LinearOperator
>>> def mv(v):
... return np.array([2*v[0], 3*v[1]])
...
>>> A = LinearOperator((2,2), matvec=mv)
>>> A
<2x2 LinearOperator with unspecified dtype>
>>> A.matvec(np.ones(2))
array([2., 3.])
>>> A * np.ones(2)
array([2., 3.])

Attributes

args (tuple) For linear operators describing products etc. of other linear operators, the operands of the
binary operation.

Methods

__call__(x)
adjoint() Hermitian adjoint.
dot(x) Matrix-matrix or matrix-vector multiplication.
matmat(X) Matrix-matrix multiplication.
matvec(x) Matrix-vector multiplication.
rmatvec(x) Adjoint matrix-vector multiplication.
transpose() Transpose this linear operator.

LinearOperator.__call__(x)

LinearOperator.adjoint()
Hermitian adjoint.

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex
matrix, the Hermitian adjoint is equal to the conjugate transpose.

Can be abbreviated self.H instead of self.adjoint().

Returns A_H : LinearOperator
Hermitian adjoint of self.

LinearOperator.dot(x)
Matrix-matrix or matrix-vector multiplication.

Parameters x : array_like
1-d or 2-d array, representing a vector or matrix.Returns Ax : array
1-d or 2-d array (depending on the shape of x) that represents the
result of applying this linear operator on x.

LinearOperator.matmat(X)
Matrix-matrix multiplication.

Performs the operation y=A*X where A is an MxN linear operator and X dense N*K matrix or ndarray.

Parameters X : {matrix, ndarray}

5.28. Sparse matrices (scipy.sparse) 1019

SciPy Reference Guide, Release 0.16.0

An array with shape (N,K).Returns Y : {matrix, ndarray}
A matrix or ndarray with shape (M,K) depending on the type of the
X argument.

Notes

This matmat wraps any user-specified matmat routine or overridden _matmat method to ensure that y has
the correct type.

LinearOperator.matvec(x)
Matrix-vector multiplication.

Performs the operation y=A*x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters x : {matrix, ndarray}
An array with shape (N,) or (N,1).Returns y : {matrix, ndarray}
A matrix or ndarray with shape (M,) or (M,1) depending on the type
and shape of the x argument.

Notes

This matvec wraps the user-specified matvec routine or overridden _matvec method to ensure that y has
the correct shape and type.

LinearOperator.rmatvec(x)
Adjoint matrix-vector multiplication.

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d
array.

Parameters x : {matrix, ndarray}
An array with shape (M,) or (M,1).Returns y : {matrix, ndarray}
A matrix or ndarray with shape (N,) or (N,1) depending on the type
and shape of the x argument.

Notes

This rmatvec wraps the user-specified rmatvec routine or overridden _rmatvec method to ensure that y
has the correct shape and type.

LinearOperator.transpose()
Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of
self.transpose().

scipy.sparse.linalg.aslinearoperator(A)
Return A as a LinearOperator.
‘A’ may be any of the following types:

•ndarray
•matrix
•sparse matrix (e.g. csr_matrix, lil_matrix, etc.)
•LinearOperator
•An object with .shape and .matvec attributes

See the LinearOperator documentation for additional information.

1020 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy import matrix
>>> M = matrix([[1,2,3],[4,5,6]], dtype='int32')
>>> aslinearoperator(M)
<2x3 LinearOperator with dtype=int32>

inv(A) Compute the inverse of a sparse matrix
expm(A) Compute the matrix exponential using Pade approximation.
expm_multiply(A, B[, start, stop, num, endpoint]) Compute the action of the matrix exponential of A on B.

Matrix Operations
scipy.sparse.linalg.inv(A)

Compute the inverse of a sparse matrix

Parameters A : (M,M) ndarray or sparse matrix
square matrix to be invertedReturns Ainv : (M,M) ndarray or sparse matrix
inverse of A

Notes

This computes the sparse inverse of A. If the inverse of A is expected to be non-sparse, it will likely be faster to
convert A to dense and use scipy.linalg.inv.

New in version 0.12.0.
scipy.sparse.linalg.expm(A)

Compute the matrix exponential using Pade approximation.

Parameters A : (M,M) array_like or sparse matrix
2D Array or Matrix (sparse or dense) to be exponentiatedReturns expA : (M,M) ndarray
Matrix exponential of A

Notes

This is algorithm (6.1) which is a simplification of algorithm (5.1).

New in version 0.12.0.

References

[R18]

scipy.sparse.linalg.expm_multiply(A, B, start=None, stop=None, num=None, endpoint=None)
Compute the action of the matrix exponential of A on B.

Parameters A : transposable linear operator
The operator whose exponential is of interest.

B : ndarray
The matrix or vector to be multiplied by the matrix exponential of A.

start : scalar, optional
The starting time point of the sequence.

stop : scalar, optional
The end time point of the sequence, unless endpoint is set to False. In that
case, the sequence consists of all but the last of num + 1 evenly spaced
time points, so that stop is excluded. Note that the step size changes when
endpoint is False.

5.28. Sparse matrices (scipy.sparse) 1021

SciPy Reference Guide, Release 0.16.0

num : int, optional
Number of time points to use.

endpoint : bool, optional
If True, stop is the last time point. Otherwise, it is not included.Returns expm_A_B : ndarray
The result of the action 𝑒𝑡𝑘𝐴𝐵.

Notes

The optional arguments defining the sequence of evenly spaced time points are compatible with the arguments
of numpy.linspace.

The output ndarray shape is somewhat complicated so I explain it here. The ndim of the output could be either
1, 2, or 3. It would be 1 if you are computing the expm action on a single vector at a single time point. It would
be 2 if you are computing the expm action on a vector at multiple time points, or if you are computing the expm
action on a matrix at a single time point. It would be 3 if you want the action on a matrix with multiple columns
at multiple time points. If multiple time points are requested, expm_A_B[0] will always be the action of the
expm at the first time point, regardless of whether the action is on a vector or a matrix.

References

[R19], [R20]

onenormest(A[, t, itmax, compute_v, compute_w]) Compute a lower bound of the 1-norm of a sparse matrix.

Matrix norms
scipy.sparse.linalg.onenormest(A, t=2, itmax=5, compute_v=False, compute_w=False)

Compute a lower bound of the 1-norm of a sparse matrix.

Parameters A : ndarray or other linear operator
A linear operator that can be transposed and that can produce matrix prod-
ucts.

t : int, optional
A positive parameter controlling the tradeoff between accuracy versus time
and memory usage. Larger values take longer and use more memory but
give more accurate output.

itmax : int, optional
Use at most this many iterations.

compute_v : bool, optional
Request a norm-maximizing linear operator input vector if True.

compute_w : bool, optional
Request a norm-maximizing linear operator output vector if True.Returns est : float
An underestimate of the 1-norm of the sparse matrix.

v : ndarray, optional
The vector such that ||Av||_1 == est*||v||_1. It can be thought of as an input
to the linear operator that gives an output with particularly large norm.

w : ndarray, optional
The vector Av which has relatively large 1-norm. It can be thought of as an
output of the linear operator that is relatively large in norm compared to the
input.

Notes

This is algorithm 2.4 of [1].

1022 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html#numpy.linspace

SciPy Reference Guide, Release 0.16.0

In [2] it is described as follows. “This algorithm typically requires the evaluation of about 4t matrix-vector
products and almost invariably produces a norm estimate (which is, in fact, a lower bound on the norm) correct
to within a factor 3.”

New in version 0.13.0.

References

[R31], [R32]

Solving linear problems Direct methods for linear equation systems:

spsolve(A, b[, permc_spec, use_umfpack]) Solve the sparse linear system Ax=b, where b may be a vector or a matrix.
factorized(A) Return a fuction for solving a sparse linear system, with A pre-factorized.

scipy.sparse.linalg.spsolve(A, b, permc_spec=None, use_umfpack=True)
Solve the sparse linear system Ax=b, where b may be a vector or a matrix.

Parameters A : ndarray or sparse matrix
The square matrix A will be converted into CSC or CSR form

b : ndarray or sparse matrix
The matrix or vector representing the right hand side of the equation. If a
vector, b.size must be (n,) or (n, 1)

permc_spec : str, optional
How to permute the columns of the matrix for sparsity preservation. (de-
fault: ‘COLAMD’)

•NATURAL: natural ordering.•MMD_ATA: minimum degree ordering on the structure of
A^T A.•MMD_AT_PLUS_A: minimum degree ordering on the struc-
ture of A^T+A.•COLAMD: approximate minimum degree column ordering

use_umfpack : bool, optional
if True (default) then use umfpack for the solution. This is only referenced
if b is a vector and scikit-umfpack is installed.Returns x : ndarray or sparse matrix
the solution of the sparse linear equation. If b is a vector, then x is a vector
of size A.shape[1] If b is a matrix, then x is a matrix of size (A.shape[1],
b.shape[1])

Notes

For solving the matrix expression AX = B, this solver assumes the resulting matrix X is sparse, as is often the
case for very sparse inputs. If the resulting X is dense, the construction of this sparse result will be relatively
expensive. In that case, consider converting A to a dense matrix and using scipy.linalg.solve or its variants.

scipy.sparse.linalg.factorized(A)
Return a fuction for solving a sparse linear system, with A pre-factorized.

Parameters A : (N, N) array_like
Input.Returns solve : callable
To solve the linear system of equations given in A, the solve callable should
be passed an ndarray of shape (N,).

Examples

5.28. Sparse matrices (scipy.sparse) 1023

SciPy Reference Guide, Release 0.16.0

>>> A = np.array([[3. , 2. , -1.],
[2. , -2. , 4.],
[-1. , 0.5, -1.]])

>>> solve = factorized(A) # Makes LU decomposition.

>>> rhs1 = np.array([1,-2,0])
>>> x1 = solve(rhs1) # Uses the LU factors.
array([1., -2., -2.])

Iterative methods for linear equation systems:

bicg(A, b[, x0, tol, maxiter, xtype, M, ...]) Use BIConjugate Gradient iteration to solve A x = b
bicgstab(A, b[, x0, tol, maxiter, xtype, M, ...]) Use BIConjugate Gradient STABilized iteration to solve A x = b
cg(A, b[, x0, tol, maxiter, xtype, M, callback]) Use Conjugate Gradient iteration to solve A x = b
cgs(A, b[, x0, tol, maxiter, xtype, M, callback]) Use Conjugate Gradient Squared iteration to solve A x = b
gmres(A, b[, x0, tol, restart, maxiter, ...]) Use Generalized Minimal RESidual iteration to solve A x = b.
lgmres(A, b[, x0, tol, maxiter, M, ...]) Solve a matrix equation using the LGMRES algorithm.
minres(A, b[, x0, shift, tol, maxiter, ...]) Use MINimum RESidual iteration to solve Ax=b
qmr(A, b[, x0, tol, maxiter, xtype, M1, M2, ...]) Use Quasi-Minimal Residual iteration to solve A x = b

scipy.sparse.linalg.bicg(A, b, x0=None, tol=1e-05, maxiter=None, xtype=None, M=None, call-
back=None)

Use BIConjugate Gradient iteration to solve A x = b

Parameters A : {sparse matrix, dense matrix, LinearOperator}
The real or complex N-by-N matrix of the linear system It is required that
the linear operator can produce Ax and A^T x.

b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).Returns x : {array, matrix}
The converged solution.

info : integer
Provides convergence information:

0 : successful exit >0 : convergence to tolerance not
achieved, number of iterations <0 : illegal input or break-
downOther Parameters

x0 : {array, matrix}
Starting guess for the solution.

tol : float
Tolerance to achieve. The algorithm terminates when either the relative or
the absolute residual is below tol.

maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter steps even
if the specified tolerance has not been achieved.

M : {sparse matrix, dense matrix, LinearOperator}
Preconditioner for A. The preconditioner should approximate the inverse
of A. Effective preconditioning dramatically improves the rate of conver-
gence, which implies that fewer iterations are needed to reach a given error
tolerance.

callback : function
User-supplied function to call after each iteration. It is called as call-
back(xk), where xk is the current solution vector.

1024 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

xtype : {‘f’,’d’,’F’,’D’}
This parameter is deprecated – avoid using it.
The type of the result. If None, then it will be determined from A.dtype.char
and b. If A does not have a typecode method then it will compute
A.matvec(x0) to get a typecode. To save the extra computation when A
does not have a typecode attribute use xtype=0 for the same type as b or use
xtype=’f’,’d’,’F’,or ‘D’. This parameter has been superseded by LinearOp-
erator.

scipy.sparse.linalg.bicgstab(A, b, x0=None, tol=1e-05, maxiter=None, xtype=None, M=None,
callback=None)

Use BIConjugate Gradient STABilized iteration to solve A x = b

Parameters A : {sparse matrix, dense matrix, LinearOperator}
The real or complex N-by-N matrix of the linear system A must represent a
hermitian, positive definite matrix

b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).Returns x : {array, matrix}
The converged solution.

info : integer
Provides convergence information:

0 : successful exit >0 : convergence to tolerance not
achieved, number of iterations <0 : illegal input or break-
downOther Parameters

x0 : {array, matrix}
Starting guess for the solution.

tol : float
Tolerance to achieve. The algorithm terminates when either the relative or
the absolute residual is below tol.

maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter steps even
if the specified tolerance has not been achieved.

M : {sparse matrix, dense matrix, LinearOperator}
Preconditioner for A. The preconditioner should approximate the inverse
of A. Effective preconditioning dramatically improves the rate of conver-
gence, which implies that fewer iterations are needed to reach a given error
tolerance.

callback : function
User-supplied function to call after each iteration. It is called as call-
back(xk), where xk is the current solution vector.

xtype : {‘f’,’d’,’F’,’D’}
This parameter is deprecated – avoid using it.
The type of the result. If None, then it will be determined from A.dtype.char
and b. If A does not have a typecode method then it will compute
A.matvec(x0) to get a typecode. To save the extra computation when A
does not have a typecode attribute use xtype=0 for the same type as b or use
xtype=’f’,’d’,’F’,or ‘D’. This parameter has been superseded by LinearOp-
erator.

scipy.sparse.linalg.cg(A, b, x0=None, tol=1e-05, maxiter=None, xtype=None, M=None, call-
back=None)

Use Conjugate Gradient iteration to solve A x = b

Parameters A : {sparse matrix, dense matrix, LinearOperator}

5.28. Sparse matrices (scipy.sparse) 1025

SciPy Reference Guide, Release 0.16.0

The real or complex N-by-N matrix of the linear system A must represent a
hermitian, positive definite matrix

b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).Returns x : {array, matrix}
The converged solution.

info : integer
Provides convergence information:

0 : successful exit >0 : convergence to tolerance not
achieved, number of iterations <0 : illegal input or break-
downOther Parameters

x0 : {array, matrix}
Starting guess for the solution.

tol : float
Tolerance to achieve. The algorithm terminates when either the relative or
the absolute residual is below tol.

maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter steps even
if the specified tolerance has not been achieved.

M : {sparse matrix, dense matrix, LinearOperator}
Preconditioner for A. The preconditioner should approximate the inverse
of A. Effective preconditioning dramatically improves the rate of conver-
gence, which implies that fewer iterations are needed to reach a given error
tolerance.

callback : function
User-supplied function to call after each iteration. It is called as call-
back(xk), where xk is the current solution vector.

xtype : {‘f’,’d’,’F’,’D’}
This parameter is deprecated – avoid using it.
The type of the result. If None, then it will be determined from A.dtype.char
and b. If A does not have a typecode method then it will compute
A.matvec(x0) to get a typecode. To save the extra computation when A
does not have a typecode attribute use xtype=0 for the same type as b or use
xtype=’f’,’d’,’F’,or ‘D’. This parameter has been superseded by LinearOp-
erator.

scipy.sparse.linalg.cgs(A, b, x0=None, tol=1e-05, maxiter=None, xtype=None, M=None, call-
back=None)

Use Conjugate Gradient Squared iteration to solve A x = b

Parameters A : {sparse matrix, dense matrix, LinearOperator}
The real-valued N-by-N matrix of the linear system

b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).Returns x : {array, matrix}
The converged solution.

info : integer
Provides convergence information:

0 : successful exit >0 : convergence to tolerance not
achieved, number of iterations <0 : illegal input or break-
downOther Parameters

x0 : {array, matrix}
Starting guess for the solution.

tol : float

1026 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Tolerance to achieve. The algorithm terminates when either the relative or
the absolute residual is below tol.

maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter steps even
if the specified tolerance has not been achieved.

M : {sparse matrix, dense matrix, LinearOperator}
Preconditioner for A. The preconditioner should approximate the inverse
of A. Effective preconditioning dramatically improves the rate of conver-
gence, which implies that fewer iterations are needed to reach a given error
tolerance.

callback : function
User-supplied function to call after each iteration. It is called as call-
back(xk), where xk is the current solution vector.

xtype : {‘f’,’d’,’F’,’D’}
This parameter is deprecated – avoid using it.
The type of the result. If None, then it will be determined from A.dtype.char
and b. If A does not have a typecode method then it will compute
A.matvec(x0) to get a typecode. To save the extra computation when A
does not have a typecode attribute use xtype=0 for the same type as b or use
xtype=’f’,’d’,’F’,or ‘D’. This parameter has been superseded by LinearOp-
erator.

scipy.sparse.linalg.gmres(A, b, x0=None, tol=1e-05, restart=None, maxiter=None, xtype=None,
M=None, callback=None, restrt=None)

Use Generalized Minimal RESidual iteration to solve A x = b.

Parameters A : {sparse matrix, dense matrix, LinearOperator}
The real or complex N-by-N matrix of the linear system.

b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).Returns x : {array, matrix}
The converged solution.

info : int
Provides convergence information:

•0 : successful exit
•>0 : convergence to tolerance not achieved, number of
iterations

•<0 : illegal input or breakdownOther Parameters
x0 : {array, matrix}

Starting guess for the solution (a vector of zeros by default).
tol : float

Tolerance to achieve. The algorithm terminates when either the relative or
the absolute residual is below tol.

restart : int, optional
Number of iterations between restarts. Larger values increase iteration cost,
but may be necessary for convergence. Default is 20.

maxiter : int, optional
Maximum number of iterations (restart cycles). Iteration will stop after
maxiter steps even if the specified tolerance has not been achieved.

xtype : {‘f’,’d’,’F’,’D’}
This parameter is DEPRECATED — avoid using it.
The type of the result. If None, then it will be determined from A.dtype.char
and b. If A does not have a typecode method then it will compute
A.matvec(x0) to get a typecode. To save the extra computation when A

5.28. Sparse matrices (scipy.sparse) 1027

SciPy Reference Guide, Release 0.16.0

does not have a typecode attribute use xtype=0 for the same type as b or use
xtype=’f’,’d’,’F’,or ‘D’. This parameter has been superseded by LinearOp-
erator.

M : {sparse matrix, dense matrix, LinearOperator}
Inverse of the preconditioner of A. M should approximate the inverse of A
and be easy to solve for (see Notes). Effective preconditioning dramatically
improves the rate of convergence, which implies that fewer iterations are
needed to reach a given error tolerance. By default, no preconditioner is
used.

callback : function
User-supplied function to call after each iteration. It is called as call-
back(rk), where rk is the current residual vector.

restrt : int, optional
DEPRECATED - use restart instead.

See also:

LinearOperator

Notes

A preconditioner, P, is chosen such that P is close to A but easy to solve for. The preconditioner parameter
required by this routine is M = P^-1. The inverse should preferably not be calculated explicitly. Rather, use
the following template to produce M:

Construct a linear operator that computes P^-1 * x.
import scipy.sparse.linalg as spla
M_x = lambda x: spla.spsolve(P, x)
M = spla.LinearOperator((n, n), M_x)

scipy.sparse.linalg.lgmres(A, b, x0=None, tol=1e-05, maxiter=1000, M=None, callback=None,
inner_m=30, outer_k=3, outer_v=None, store_outer_Av=True)

Solve a matrix equation using the LGMRES algorithm.

The LGMRES algorithm [R21] [R22] is designed to avoid some problems in the convergence in restarted GM-
RES, and often converges in fewer iterations.

Parameters A : {sparse matrix, dense matrix, LinearOperator}
The real or complex N-by-N matrix of the linear system.

b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).

x0 : {array, matrix}
Starting guess for the solution.

tol : float, optional
Tolerance to achieve. The algorithm terminates when either the relative or
the absolute residual is below tol.

maxiter : int, optional
Maximum number of iterations. Iteration will stop after maxiter steps even
if the specified tolerance has not been achieved.

M : {sparse matrix, dense matrix, LinearOperator}, optional
Preconditioner for A. The preconditioner should approximate the inverse
of A. Effective preconditioning dramatically improves the rate of conver-
gence, which implies that fewer iterations are needed to reach a given error
tolerance.

callback : function, optional
User-supplied function to call after each iteration. It is called as call-
back(xk), where xk is the current solution vector.

1028 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

inner_m : int, optional
Number of inner GMRES iterations per each outer iteration.

outer_k : int, optional
Number of vectors to carry between inner GMRES iterations. According to
[R21], good values are in the range of 1...3. However, note that if you want
to use the additional vectors to accelerate solving multiple similar problems,
larger values may be beneficial.

outer_v : list of tuples, optional
List containing tuples (v, Av) of vectors and corresponding matrix-
vector products, used to augment the Krylov subspace, and carried between
inner GMRES iterations. The element Av can be None if the matrix-vector
product should be re-evaluated. This parameter is modified in-place by
lgmres, and can be used to pass “guess” vectors in and out of the algo-
rithm when solving similar problems.

store_outer_Av : bool, optional
Whether LGMRES should store also A*v in addition to vectors v in the
outer_v list. Default is True.Returns x : array or matrix
The converged solution.

info : int
Provides convergence information:

•0 : successful exit•>0 : convergence to tolerance not achieved, number of iter-
ations•<0 : illegal input or breakdown

Notes

The LGMRES algorithm [R21] [R22] is designed to avoid the slowing of convergence in restarted GMRES, due
to alternating residual vectors. Typically, it often outperforms GMRES(m) of comparable memory requirements
by some measure, or at least is not much worse.

Another advantage in this algorithm is that you can supply it with ‘guess’ vectors in the outer_v argument that
augment the Krylov subspace. If the solution lies close to the span of these vectors, the algorithm converges
faster. This can be useful if several very similar matrices need to be inverted one after another, such as in
Newton-Krylov iteration where the Jacobian matrix often changes little in the nonlinear steps.

References

[R21], [R22]

scipy.sparse.linalg.minres(A, b, x0=None, shift=0.0, tol=1e-05, maxiter=None, xtype=None,
M=None, callback=None, show=False, check=False)

Use MINimum RESidual iteration to solve Ax=b

MINRES minimizes norm(A*x - b) for a real symmetric matrix A. Unlike the Conjugate Gradient method, A
can be indefinite or singular.

If shift != 0 then the method solves (A - shift*I)x = b

Parameters A : {sparse matrix, dense matrix, LinearOperator}
The real symmetric N-by-N matrix of the linear system

b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).Returns x : {array, matrix}
The converged solution.

info : integer
Provides convergence information:

0 : successful exit >0 : convergence to tolerance not

5.28. Sparse matrices (scipy.sparse) 1029

SciPy Reference Guide, Release 0.16.0

achieved, number of iterations <0 : illegal input or break-
downOther Parameters

x0 : {array, matrix}
Starting guess for the solution.

tol : float
Tolerance to achieve. The algorithm terminates when either the relative or
the absolute residual is below tol.

maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter steps even
if the specified tolerance has not been achieved.

M : {sparse matrix, dense matrix, LinearOperator}
Preconditioner for A. The preconditioner should approximate the inverse
of A. Effective preconditioning dramatically improves the rate of conver-
gence, which implies that fewer iterations are needed to reach a given error
tolerance.

callback : function
User-supplied function to call after each iteration. It is called as call-
back(xk), where xk is the current solution vector.

xtype : {‘f’,’d’,’F’,’D’}
This parameter is deprecated – avoid using it.
The type of the result. If None, then it will be determined from A.dtype.char
and b. If A does not have a typecode method then it will compute
A.matvec(x0) to get a typecode. To save the extra computation when A
does not have a typecode attribute use xtype=0 for the same type as b or use
xtype=’f’,’d’,’F’,or ‘D’. This parameter has been superseded by LinearOp-
erator.

Notes

THIS FUNCTION IS EXPERIMENTAL AND SUBJECT TO CHANGE!

References

Solution of sparse indefinite systems of linear equations,
C. C. Paige and M. A. Saunders (1975), SIAM J. Numer. Anal. 12(4), pp. 617-629.
http://www.stanford.edu/group/SOL/software/minres.html

This file is a translation of the following MATLAB implementation:
http://www.stanford.edu/group/SOL/software/minres/matlab/

scipy.sparse.linalg.qmr(A, b, x0=None, tol=1e-05, maxiter=None, xtype=None, M1=None,
M2=None, callback=None)

Use Quasi-Minimal Residual iteration to solve A x = b

Parameters A : {sparse matrix, dense matrix, LinearOperator}
The real-valued N-by-N matrix of the linear system. It is required that the
linear operator can produce Ax and A^T x.

b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).Returns x : {array, matrix}
The converged solution.

info : integer
Provides convergence information:

0 : successful exit >0 : convergence to tolerance not
achieved, number of iterations <0 : illegal input or break-
downOther Parameters

x0 : {array, matrix}

1030 Chapter 5. Reference

http://www.stanford.edu/group/SOL/software/minres.html
http://www.stanford.edu/group/SOL/software/minres/matlab/

SciPy Reference Guide, Release 0.16.0

Starting guess for the solution.
tol : float

Tolerance to achieve. The algorithm terminates when either the relative or
the absolute residual is below tol.

maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter steps even
if the specified tolerance has not been achieved.

M1 : {sparse matrix, dense matrix, LinearOperator}
Left preconditioner for A.

M2 : {sparse matrix, dense matrix, LinearOperator}
Right preconditioner for A. Used together with the left preconditioner M1.
The matrix M1*A*M2 should have better conditioned than A alone.

callback : function
User-supplied function to call after each iteration. It is called as call-
back(xk), where xk is the current solution vector.

xtype : {‘f’,’d’,’F’,’D’}
This parameter is DEPRECATED – avoid using it.
The type of the result. If None, then it will be determined from A.dtype.char
and b. If A does not have a typecode method then it will compute
A.matvec(x0) to get a typecode. To save the extra computation when A
does not have a typecode attribute use xtype=0 for the same type as b or use
xtype=’f’,’d’,’F’,or ‘D’. This parameter has been superseded by LinearOp-
erator.

See also:

LinearOperator

Iterative methods for least-squares problems:

lsqr(A, b[, damp, atol, btol, conlim, ...]) Find the least-squares solution to a large, sparse, linear system of equations.
lsmr(A, b[, damp, atol, btol, conlim, ...]) Iterative solver for least-squares problems.

scipy.sparse.linalg.lsqr(A, b, damp=0.0, atol=1e-08, btol=1e-08, conlim=100000000.0,
iter_lim=None, show=False, calc_var=False)

Find the least-squares solution to a large, sparse, linear system of equations.

The function solves Ax = b or min ||b - Ax||^2 or min ||Ax - b||^2 + d^2 ||x||^2.

The matrix A may be square or rectangular (over-determined or under-determined), and may have any rank.

1. Unsymmetric equations -- solve A*x = b

2. Linear least squares -- solve A*x = b
in the least-squares sense

3. Damped least squares -- solve (A)*x = (b)
(damp*I) (0)

in the least-squares sense

Parameters A : {sparse matrix, ndarray, LinearOperator}
Representation of an m-by-n matrix. It is required that the linear operator
can produce Ax and A^T x.

b : (m,) ndarray
Right-hand side vector b.

damp : float

5.28. Sparse matrices (scipy.sparse) 1031

SciPy Reference Guide, Release 0.16.0

Damping coefficient.
atol, btol : float, optional

Stopping tolerances. If both are 1.0e-9 (say), the final residual norm should
be accurate to about 9 digits. (The final x will usually have fewer correct
digits, depending on cond(A) and the size of damp.)

conlim : float, optional
Another stopping tolerance. lsqr terminates if an estimate of cond(A)
exceeds conlim. For compatible systems Ax = b, conlim could be as large
as 1.0e+12 (say). For least-squares problems, conlim should be less than
1.0e+8. Maximum precision can be obtained by setting atol = btol =
conlim = zero, but the number of iterations may then be excessive.

iter_lim : int, optional
Explicit limitation on number of iterations (for safety).

show : bool, optional
Display an iteration log.

calc_var : bool, optional
Whether to estimate diagonals of (A’A + damp^2*I)^{-1}.Returns x : ndarray of float
The final solution.

istop : int
Gives the reason for termination. 1 means x is an approximate solution to
Ax = b. 2 means x approximately solves the least-squares problem.

itn : int
Iteration number upon termination.

r1norm : float
norm(r), where r = b - Ax.

r2norm : float
sqrt(norm(r)^2 + damp^2 * norm(x)^2). Equal to r1norm
if damp == 0.

anorm : float
Estimate of Frobenius norm of Abar = [[A]; [damp*I]].

acond : float
Estimate of cond(Abar).

arnorm : float
Estimate of norm(A’*r - damp^2*x).

xnorm : float
norm(x)

var : ndarray of float
If calc_var is True, estimates all diagonals of (A’A)^{-1} (if damp
== 0) or more generally (A’A + damp^2*I)^{-1}. This is well de-
fined if A has full column rank or damp > 0. (Not sure what var means if
rank(A) < n and damp = 0.)

Notes

LSQR uses an iterative method to approximate the solution. The number of iterations required to reach a certain
accuracy depends strongly on the scaling of the problem. Poor scaling of the rows or columns of A should
therefore be avoided where possible.

For example, in problem 1 the solution is unaltered by row-scaling. If a row of A is very small or large compared
to the other rows of A, the corresponding row of (A b) should be scaled up or down.

In problems 1 and 2, the solution x is easily recovered following column-scaling. Unless better information is
known, the nonzero columns of A should be scaled so that they all have the same Euclidean norm (e.g., 1.0).

1032 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

In problem 3, there is no freedom to re-scale if damp is nonzero. However, the value of damp should be assigned
only after attention has been paid to the scaling of A.

The parameter damp is intended to help regularize ill-conditioned systems, by preventing the true solution from
being very large. Another aid to regularization is provided by the parameter acond, which may be used to
terminate iterations before the computed solution becomes very large.

If some initial estimate x0 is known and if damp == 0, one could proceed as follows:
1.Compute a residual vector r0 = b - A*x0.
2.Use LSQR to solve the system A*dx = r0.
3.Add the correction dx to obtain a final solution x = x0 + dx.

This requires that x0 be available before and after the call to LSQR. To judge the benefits, suppose LSQR
takes k1 iterations to solve A*x = b and k2 iterations to solve A*dx = r0. If x0 is “good”, norm(r0) will be
smaller than norm(b). If the same stopping tolerances atol and btol are used for each system, k1 and k2 will be
similar, but the final solution x0 + dx should be more accurate. The only way to reduce the total work is to use
a larger stopping tolerance for the second system. If some value btol is suitable for A*x = b, the larger value
btol*norm(b)/norm(r0) should be suitable for A*dx = r0.

Preconditioning is another way to reduce the number of iterations. If it is possible to solve a related system M*x
= b efficiently, where M approximates A in some helpful way (e.g. M - A has low rank or its elements are
small relative to those of A), LSQR may converge more rapidly on the system A*M(inverse)*z = b, after
which x can be recovered by solving M*x = z.

If A is symmetric, LSQR should not be used!

Alternatives are the symmetric conjugate-gradient method (cg) and/or SYMMLQ. SYMMLQ is an implemen-
tation of symmetric cg that applies to any symmetric A and will converge more rapidly than LSQR. If A is
positive definite, there are other implementations of symmetric cg that require slightly less work per iteration
than SYMMLQ (but will take the same number of iterations).

References

[R28], [R29], [R30]

scipy.sparse.linalg.lsmr(A, b, damp=0.0, atol=1e-06, btol=1e-06, conlim=100000000.0, max-
iter=None, show=False)

Iterative solver for least-squares problems.

lsmr solves the system of linear equations Ax = b. If the system is inconsistent, it solves the least-squares
problem min ||b - Ax||_2. A is a rectangular matrix of dimension m-by-n, where all cases are allowed:
m = n, m > n, or m < n. B is a vector of length m. The matrix A may be dense or sparse (usually sparse).

Parameters A : {matrix, sparse matrix, ndarray, LinearOperator}
Matrix A in the linear system.

b : (m,) ndarray
Vector b in the linear system.

damp : float
Damping factor for regularized least-squares. lsmr solves the regularized
least-squares problem:

min ||(b) - (A)x||
||(0) (damp*I) ||_2

where damp is a scalar. If damp is None or 0, the system is solved without
regularization.

atol, btol : float, optional
Stopping tolerances. lsmr continues iterations until a certain backward er-
ror estimate is smaller than some quantity depending on atol and btol. Let
r = b - Ax be the residual vector for the current approximate solution

5.28. Sparse matrices (scipy.sparse) 1033

SciPy Reference Guide, Release 0.16.0

x. If Ax = b seems to be consistent, lsmr terminates when norm(r)
<= atol * norm(A) * norm(x) + btol * norm(b). Other-
wise, lsmr terminates when norm(A^{T} r) <= atol * norm(A)

* norm(r). If both tolerances are 1.0e-6 (say), the final norm(r)
should be accurate to about 6 digits. (The final x will usually have fewer
correct digits, depending on cond(A) and the size of LAMBDA.) If atol
or btol is None, a default value of 1.0e-6 will be used. Ideally, they should
be estimates of the relative error in the entries of A and B respectively. For
example, if the entries of A have 7 correct digits, set atol = 1e-7. This pre-
vents the algorithm from doing unnecessary work beyond the uncertainty
of the input data.

conlim : float, optional
lsmr terminates if an estimate of cond(A) exceeds conlim. For compati-
ble systems Ax = b, conlim could be as large as 1.0e+12 (say). For least-
squares problems, conlim should be less than 1.0e+8. If conlim is None,
the default value is 1e+8. Maximum precision can be obtained by setting
atol = btol = conlim = 0, but the number of iterations may then
be excessive.

maxiter : int, optional
lsmr terminates if the number of iterations reaches maxiter. The default is
maxiter = min(m, n). For ill-conditioned systems, a larger value of
maxiter may be needed.

show : bool, optional
Print iterations logs if show=True.Returns x : ndarray of float
Least-square solution returned.

istop : int
istop gives the reason for stopping:

istop = 0 means x=0 is a solution.
= 1 means x is an approximate solution to A*x = B,

according to atol and btol.
= 2 means x approximately solves the least-squares problem

according to atol.
= 3 means COND(A) seems to be greater than CONLIM.
= 4 is the same as 1 with atol = btol = eps (machine

precision)
= 5 is the same as 2 with atol = eps.
= 6 is the same as 3 with CONLIM = 1/eps.
= 7 means ITN reached maxiter before the other stopping

conditions were satisfied.

itn : int
Number of iterations used.

normr : float
norm(b-Ax)

normar : float
norm(A^T (b - Ax))

norma : float
norm(A)

conda : float
Condition number of A.

normx : float
norm(x)

1034 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

New in version 0.11.0.

References

[R26], [R27]

Matrix factorizations Eigenvalue problems:

eigs(A[, k, M, sigma, which, v0, ncv, ...]) Find k eigenvalues and eigenvectors of the square matrix A.
eigsh(A[, k, M, sigma, which, v0, ncv, ...]) Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex hermitian matrix A.
lobpcg(A, X[, B, M, Y, tol, maxiter, ...]) Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG)

scipy.sparse.linalg.eigs(A, k=6, M=None, sigma=None, which=’LM’, v0=None, ncv=None, max-
iter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None,
OPpart=None)

Find k eigenvalues and eigenvectors of the square matrix A.

Solves A * x[i] = w[i] * x[i], the standard eigenvalue problem for w[i] eigenvalues with correspond-
ing eigenvectors x[i].

If M is specified, solves A * x[i] = w[i] * M * x[i], the generalized eigenvalue problem for w[i]
eigenvalues with corresponding eigenvectors x[i]

Parameters A : ndarray, sparse matrix or LinearOperator
An array, sparse matrix, or LinearOperator representing the operation A *
x, where A is a real or complex square matrix.

k : int, optional
The number of eigenvalues and eigenvectors desired. k must be smaller
than N. It is not possible to compute all eigenvectors of a matrix.

M : ndarray, sparse matrix or LinearOperator, optional
An array, sparse matrix, or LinearOperator representing the operation M*x
for the generalized eigenvalue problem

A * x = w * M * x.
M must represent a real, symmetric matrix if A is real, and must represent
a complex, hermitian matrix if A is complex. For best results, the data type
of M should be the same as that of A. Additionally:

If sigma is None, M is positive definite
If sigma is specified, M is positive semi-definite

If sigma is None, eigs requires an operator to compute the solution of the
linear equation M * x = b. This is done internally via a (sparse) LU de-
composition for an explicit matrix M, or via an iterative solver for a general
linear operator. Alternatively, the user can supply the matrix or operator
Minv, which gives x = Minv * b = M^-1 * b.

sigma : real or complex, optional
Find eigenvalues near sigma using shift-invert mode. This requires an op-
erator to compute the solution of the linear system [A - sigma * M]

* x = b, where M is the identity matrix if unspecified. This is computed
internally via a (sparse) LU decomposition for explicit matrices A & M, or
via an iterative solver if either A or M is a general linear operator. Alter-
natively, the user can supply the matrix or operator OPinv, which gives x
= OPinv * b = [A - sigma * M]^-1 * b. For a real matrix A,
shift-invert can either be done in imaginary mode or real mode, specified

5.28. Sparse matrices (scipy.sparse) 1035

SciPy Reference Guide, Release 0.16.0

by the parameter OPpart (‘r’ or ‘i’). Note that when sigma is specified, the
keyword ‘which’ (below) refers to the shifted eigenvalues w’[i] where:

If A is real and OPpart == ‘r’ (default),
w’[i] = 1/2 * [1/(w[i]-sigma)
+ 1/(w[i]-conj(sigma))].

If A is real and OPpart == ‘i’,
w’[i] = 1/2i *
[1/(w[i]-sigma) -
1/(w[i]-conj(sigma))].

If A is complex, w’[i] = 1/(w[i]-sigma).
v0 : ndarray, optional

Starting vector for iteration. Default: random
ncv : int, optional

The number of Lanczos vectors generated ncv must be greater than k; it is
recommended that ncv > 2*k. Default: min(n, 2*k + 1)

which : str, [’LM’ | ‘SM’ | ‘LR’ | ‘SR’ | ‘LI’ | ‘SI’], optional
Which k eigenvectors and eigenvalues to find:

‘LM’ : largest magnitude
‘SM’ : smallest magnitude
‘LR’ : largest real part
‘SR’ : smallest real part
‘LI’ : largest imaginary part
‘SI’ : smallest imaginary part

When sigma != None, ‘which’ refers to the shifted eigenvalues w’[i] (see
discussion in ‘sigma’, above). ARPACK is generally better at finding large
values than small values. If small eigenvalues are desired, consider using
shift-invert mode for better performance.

maxiter : int, optional
Maximum number of Arnoldi update iterations allowed Default: n*10

tol : float, optional
Relative accuracy for eigenvalues (stopping criterion) The default value of
0 implies machine precision.

return_eigenvectors : bool, optional
Return eigenvectors (True) in addition to eigenvalues

Minv : ndarray, sparse matrix or LinearOperator, optional
See notes in M, above.

OPinv : ndarray, sparse matrix or LinearOperator, optional
See notes in sigma, above.

OPpart : {‘r’ or ‘i’}, optional
See notes in sigma, aboveReturns w : ndarray
Array of k eigenvalues.

v : ndarray
An array of k eigenvectors. v[:, i] is the eigenvector corresponding to
the eigenvalue w[i].Raises ArpackNoConvergence
When the requested convergence is not obtained. The currently con-
verged eigenvalues and eigenvectors can be found as eigenvalues and
eigenvectors attributes of the exception object.

See also:

eigsh eigenvalues and eigenvectors for symmetric matrix A
svds singular value decomposition for a matrix A

1036 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

This function is a wrapper to the ARPACK [R14] SNEUPD, DNEUPD, CNEUPD, ZNEUPD, functions which
use the Implicitly Restarted Arnoldi Method to find the eigenvalues and eigenvectors [R15].

References

[R14], [R15]

Examples

Find 6 eigenvectors of the identity matrix:

>>> import scipy.sparse as sparse
>>> id = np.eye(13)
>>> vals, vecs = sparse.linalg.eigs(id, k=6)
>>> vals
array([1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j])
>>> vecs.shape
(13, 6)

scipy.sparse.linalg.eigsh(A, k=6, M=None, sigma=None, which=’LM’, v0=None, ncv=None,
maxiter=None, tol=0, return_eigenvectors=True, Minv=None,
OPinv=None, mode=’normal’)

Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex hermitian matrix A.

Solves A * x[i] = w[i] * x[i], the standard eigenvalue problem for w[i] eigenvalues with correspond-
ing eigenvectors x[i].

If M is specified, solves A * x[i] = w[i] * M * x[i], the generalized eigenvalue problem for w[i]
eigenvalues with corresponding eigenvectors x[i]

Parameters A : An N x N matrix, array, sparse matrix, or LinearOperator representing
the operation A * x, where A is a real symmetric matrix For buckling mode
(see below) A must additionally be positive-definite

k : int, optional
The number of eigenvalues and eigenvectors desired. k must be smaller
than N. It is not possible to compute all eigenvectors of a matrix.Returns w : array
Array of k eigenvalues

v : array
An array representing the k eigenvectors. The column v[:, i] is the
eigenvector corresponding to the eigenvalue w[i].Other Parameters

M : An N x N matrix, array, sparse matrix, or linear operator representing
the operation M * x for the generalized eigenvalue problem

A * x = w * M * x.
M must represent a real, symmetric matrix if A is real, and must represent
a complex, hermitian matrix if A is complex. For best results, the data type
of M should be the same as that of A. Additionally:

If sigma is None, M is symmetric positive definite
If sigma is specified, M is symmetric positive semi-definite
In buckling mode, M is symmetric indefinite.

If sigma is None, eigsh requires an operator to compute the solution of
the linear equation M * x = b. This is done internally via a (sparse)
LU decomposition for an explicit matrix M, or via an iterative solver for
a general linear operator. Alternatively, the user can supply the matrix or
operator Minv, which gives x = Minv * b = M^-1 * b.

sigma : real

5.28. Sparse matrices (scipy.sparse) 1037

SciPy Reference Guide, Release 0.16.0

Find eigenvalues near sigma using shift-invert mode. This requires an op-
erator to compute the solution of the linear system [A - sigma * M] x = b,
where M is the identity matrix if unspecified. This is computed internally
via a (sparse) LU decomposition for explicit matrices A & M, or via an it-
erative solver if either A or M is a general linear operator. Alternatively, the
user can supply the matrix or operator OPinv, which gives x = OPinv *
b = [A - sigma * M]^-1 * b. Note that when sigma is specified,
the keyword ‘which’ refers to the shifted eigenvalues w’[i] where:

if mode == ‘normal’, w’[i] = 1 / (w[i] -
sigma).
if mode == ‘cayley’, w’[i] = (w[i] + sigma) /
(w[i] - sigma).
if mode == ‘buckling’, w’[i] = w[i] / (w[i] -
sigma).

(see further discussion in ‘mode’ below)
v0 : ndarray, optional

Starting vector for iteration. Default: random
ncv : int, optional

The number of Lanczos vectors generated ncv must be greater than k and
smaller than n; it is recommended that ncv > 2*k. Default: min(n,
2*k + 1)

which : str [’LM’ | ‘SM’ | ‘LA’ | ‘SA’ | ‘BE’]
If A is a complex hermitian matrix, ‘BE’ is invalid. Which k eigenvectors
and eigenvalues to find:

‘LM’ : Largest (in magnitude) eigenvalues
‘SM’ : Smallest (in magnitude) eigenvalues
‘LA’ : Largest (algebraic) eigenvalues
‘SA’ : Smallest (algebraic) eigenvalues
‘BE’ : Half (k/2) from each end of the spectrum

When k is odd, return one more (k/2+1) from the high end. When sigma !=
None, ‘which’ refers to the shifted eigenvalues w’[i] (see discussion in
‘sigma’, above). ARPACK is generally better at finding large values than
small values. If small eigenvalues are desired, consider using shift-invert
mode for better performance.

maxiter : int, optional
Maximum number of Arnoldi update iterations allowed Default: n*10

tol : float
Relative accuracy for eigenvalues (stopping criterion). The default value of
0 implies machine precision.

Minv : N x N matrix, array, sparse matrix, or LinearOperator
See notes in M, above

OPinv : N x N matrix, array, sparse matrix, or LinearOperator
See notes in sigma, above.

return_eigenvectors : bool
Return eigenvectors (True) in addition to eigenvalues

mode : string [’normal’ | ‘buckling’ | ‘cayley’]
Specify strategy to use for shift-invert mode. This argument applies only
for real-valued A and sigma != None. For shift-invert mode, ARPACK in-
ternally solves the eigenvalue problem OP * x’[i] = w’[i] * B *
x’[i] and transforms the resulting Ritz vectors x’[i] and Ritz values w’[i]
into the desired eigenvectors and eigenvalues of the problem A * x[i]
= w[i] * M * x[i]. The modes are as follows:

‘normal’ : OP = [A - sigma * M]^-1 * M, B = M, w’[i]
= 1 / (w[i] - sigma)

1038 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

‘buckling’ : OP = [A - sigma * M]^-1 * A, B = A, w’[i] =
w[i] / (w[i] - sigma)

‘cayley’ : OP = [A - sigma * M]^-1 * [A + sigma * M],
B = M, w’[i] = (w[i] + sigma) / (w[i] - sigma)

The choice of mode will affect which eigenvalues are selected by the key-
word ‘which’, and can also impact the stability of convergence (see [2] for
a discussion)Raises ArpackNoConvergence
When the requested convergence is not obtained.
The currently converged eigenvalues and eigenvectors can be found as
eigenvalues and eigenvectors attributes of the exception object.

See also:

eigs eigenvalues and eigenvectors for a general (nonsymmetric) matrix A
svds singular value decomposition for a matrix A

Notes

This function is a wrapper to the ARPACK [R16] SSEUPD and DSEUPD functions which use the Implicitly
Restarted Lanczos Method to find the eigenvalues and eigenvectors [R17].

References

[R16], [R17]

Examples

>>> import scipy.sparse as sparse
>>> id = np.eye(13)
>>> vals, vecs = sparse.linalg.eigsh(id, k=6)
>>> vals
array([1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j])
>>> vecs.shape
(13, 6)

scipy.sparse.linalg.lobpcg(A, X, B=None, M=None, Y=None, tol=None, maxiter=20,
largest=True, verbosityLevel=0, retLambdaHistory=False, re-
tResidualNormsHistory=False)

Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG)

LOBPCG is a preconditioned eigensolver for large symmetric positive definite (SPD) generalized eigenprob-
lems.

Parameters A : {sparse matrix, dense matrix, LinearOperator}
The symmetric linear operator of the problem, usually a sparse matrix. Of-
ten called the “stiffness matrix”.

X : array_like
Initial approximation to the k eigenvectors. If A has shape=(n,n) then X
should have shape shape=(n,k).

B : {dense matrix, sparse matrix, LinearOperator}, optional
the right hand side operator in a generalized eigenproblem. by default, B =
Identity often called the “mass matrix”

M : {dense matrix, sparse matrix, LinearOperator}, optional
preconditioner to A; by default M = Identity M should approximate the
inverse of A

Y : array_like, optional

5.28. Sparse matrices (scipy.sparse) 1039

SciPy Reference Guide, Release 0.16.0

n-by-sizeY matrix of constraints, sizeY < n The iterations will be performed
in the B-orthogonal complement of the column-space of Y. Y must be full
rank.Returns w : array
Array of k eigenvalues

v : array
An array of k eigenvectors. V has the same shape as X.Other Parameters

tol : scalar, optional
Solver tolerance (stopping criterion) by default: tol=n*sqrt(eps)

maxiter : integer, optional
maximum number of iterations by default: maxiter=min(n,20)

largest : bool, optional
when True, solve for the largest eigenvalues, otherwise the smallest

verbosityLevel : integer, optional
controls solver output. default: verbosityLevel = 0.

retLambdaHistory : boolean, optional
whether to return eigenvalue history

retResidualNormsHistory : boolean, optional
whether to return history of residual norms

Notes

If both retLambdaHistory and retResidualNormsHistory are True, the return tuple has the following format
(lambda, V, lambda history, residual norms history).

In the following n denotes the matrix size and m the number of required eigenvalues (smallest or largest).

The LOBPCG code internally solves eigenproblems of the size 3‘‘m‘‘ on every iteration by calling the “stan-
dard” dense eigensolver, so if m is not small enough compared to n, it does not make sense to call the LOBPCG
code, but rather one should use the “standard” eigensolver, e.g. numpy or scipy function in this case. If one
calls the LOBPCG algorithm for 5‘‘m‘‘>‘‘n‘‘, it will most likely break internally, so the code tries to call the
standard function instead.

It is not that n should be large for the LOBPCG to work, but rather the ratio n/m should be large. It you call the
LOBPCG code with m‘‘=1 and ‘‘n‘‘=10, it should work, though ‘‘n is small. The method
is intended for extremely large n/m, see e.g., reference [28] in http://arxiv.org/abs/0705.2626

The convergence speed depends basically on two factors:
1.How well relatively separated the seeking eigenvalues are from the rest of the eigenvalues. One can try to

vary m to make this better.
2.How well conditioned the problem is. This can be changed by using proper preconditioning. For example,

a rod vibration test problem (under tests directory) is ill-conditioned for large n, so convergence will be
slow, unless efficient preconditioning is used. For this specific problem, a good simple preconditioner
function would be a linear solve for A, which is easy to code since A is tridiagonal.

Acknowledgements

lobpcg.py code was written by Robert Cimrman. Many thanks belong to Andrew Knyazev, the author of the
algorithm, for lots of advice and support.

References

[R23], [R24], [R25]

Examples

>>> # Solve A x = lambda B x with constraints and preconditioning.
>>> n = 100
>>> vals = [nm.arange(n, dtype = nm.float64) + 1]

1040 Chapter 5. Reference

http://arxiv.org/abs/0705.2626

SciPy Reference Guide, Release 0.16.0

>>> # Matrix A.
>>> operatorA = spdiags(vals, 0, n, n)
>>> # Matrix B
>>> operatorB = nm.eye(n, n)
>>> # Constraints.
>>> Y = nm.eye(n, 3)
>>> # Initial guess for eigenvectors, should have linearly independent
>>> # columns. Column dimension = number of requested eigenvalues.
>>> X = sc.rand(n, 3)
>>> # Preconditioner - inverse of A.
>>> ivals = [1./vals[0]]
>>> def precond(x):

invA = spdiags(ivals, 0, n, n)
y = invA * x
if sp.issparse(y):

y = y.toarray()

return as2d(y)

>>> # Alternative way of providing the same preconditioner.
>>> #precond = spdiags(ivals, 0, n, n)

>>> tt = time.clock()
>>> eigs, vecs = lobpcg(X, operatorA, operatorB, blockVectorY=Y,
>>> operatorT=precond,
>>> residualTolerance=1e-4, maxIterations=40,
>>> largest=False, verbosityLevel=1)
>>> print 'solution time:', time.clock() - tt
>>> print eigs

Singular values problems:

svds(A[, k, ncv, tol, which, v0, maxiter, ...]) Compute the largest k singular values/vectors for a sparse matrix.

scipy.sparse.linalg.svds(A, k=6, ncv=None, tol=0, which=’LM’, v0=None, maxiter=None, re-
turn_singular_vectors=True)

Compute the largest k singular values/vectors for a sparse matrix.

Parameters A : {sparse matrix, LinearOperator}
Array to compute the SVD on, of shape (M, N)

k : int, optional
Number of singular values and vectors to compute.

ncv : int, optional
The number of Lanczos vectors generated ncv must be greater than k+1 and
smaller than n; it is recommended that ncv > 2*k Default: min(n, 2*k
+ 1)

tol : float, optional
Tolerance for singular values. Zero (default) means machine precision.

which : str, [’LM’ | ‘SM’], optional
Which k singular values to find:

•‘LM’ : largest singular values•‘SM’ : smallest singular values
New in version 0.12.0.

v0 : ndarray, optional

5.28. Sparse matrices (scipy.sparse) 1041

SciPy Reference Guide, Release 0.16.0

Starting vector for iteration, of length min(A.shape). Should be an (approx-
imate) right singular vector if N > M and a right singular vector otherwise.
Default: random
New in version 0.12.0.

maxiter : int, optional
Maximum number of iterations.
New in version 0.12.0.

return_singular_vectors : bool or str, optional
•True: return singular vectors (True) in addition to singular
values.

New in version 0.12.0.
•“u”: only return the u matrix, without computing vh (if N >
M).•“vh”: only return the vh matrix, without computing u (if N
<= M).

New in version 0.16.0.Returns u : ndarray, shape=(M, k)
Unitary matrix having left singular vectors as columns. If re-
turn_singular_vectors is “vh”, this variable is not computed, and None is
returned instead.

s : ndarray, shape=(k,)
The singular values.

vt : ndarray, shape=(k, N)
Unitary matrix having right singular vectors as rows. If re-
turn_singular_vectors is “u”, this variable is not computed, and None is
returned instead.

Notes

This is a naive implementation using ARPACK as an eigensolver on A.H * A or A * A.H, depending on which
one is more efficient.

Complete or incomplete LU factorizations

splu(A[, permc_spec, diag_pivot_thresh, ...]) Compute the LU decomposition of a sparse, square matrix.
spilu(A[, drop_tol, fill_factor, drop_rule, ...]) Compute an incomplete LU decomposition for a sparse, square matrix.
SuperLU LU factorization of a sparse matrix.

scipy.sparse.linalg.splu(A, permc_spec=None, diag_pivot_thresh=None, drop_tol=None, re-
lax=None, panel_size=None, options={})

Compute the LU decomposition of a sparse, square matrix.

Parameters A : sparse matrix
Sparse matrix to factorize. Should be in CSR or CSC format.

permc_spec : str, optional
How to permute the columns of the matrix for sparsity preservation. (de-
fault: ‘COLAMD’)

•NATURAL: natural ordering.•MMD_ATA: minimum degree ordering on the structure of
A^T A.•MMD_AT_PLUS_A: minimum degree ordering on the struc-
ture of A^T+A.•COLAMD: approximate minimum degree column ordering

diag_pivot_thresh : float, optional
Threshold used for a diagonal entry to be an acceptable pivot. See SuperLU
user’s guide for details [R35]

drop_tol : float, optional

1042 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

(deprecated) No effect.
relax : int, optional

Expert option for customizing the degree of relaxing supernodes. See Su-
perLU user’s guide for details [R35]

panel_size : int, optional
Expert option for customizing the panel size. See SuperLU user’s guide for
details [R35]

options : dict, optional
Dictionary containing additional expert options to SuperLU. See SuperLU
user guide [R35] (section 2.4 on the ‘Options’ argument) for more de-
tails. For example, you can specify options=dict(Equil=False,
IterRefine=’SINGLE’)) to turn equilibration off and perform a sin-
gle iterative refinement.Returns invA : scipy.sparse.linalg.SuperLU
Object, which has a solve method.

See also:

spilu incomplete LU decomposition

Notes

This function uses the SuperLU library.

References

[R35]

scipy.sparse.linalg.spilu(A, drop_tol=None, fill_factor=None, drop_rule=None,
permc_spec=None, diag_pivot_thresh=None, relax=None,
panel_size=None, options=None)

Compute an incomplete LU decomposition for a sparse, square matrix.

The resulting object is an approximation to the inverse of A.

Parameters A : (N, N) array_like
Sparse matrix to factorize

drop_tol : float, optional
Drop tolerance (0 <= tol <= 1) for an incomplete LU decomposition. (de-
fault: 1e-4)

fill_factor : float, optional
Specifies the fill ratio upper bound (>= 1.0) for ILU. (default: 10)

drop_rule : str, optional
Comma-separated string of drop rules to use. Available rules: basic,
prows, column, area, secondary, dynamic, interp. (Default:
basic,area)
See SuperLU documentation for details.

Remaining other options
Same as for spluReturns invA_approx : scipy.sparse.linalg.SuperLU
Object, which has a solve method.

See also:

splu complete LU decomposition

Notes

To improve the better approximation to the inverse, you may need to increase fill_factor AND decrease drop_tol.

This function uses the SuperLU library.

5.28. Sparse matrices (scipy.sparse) 1043

SciPy Reference Guide, Release 0.16.0

class scipy.sparse.linalg.SuperLU
LU factorization of a sparse matrix.

Factorization is represented as:

Pr * A * Pc = L * U

To construct these SuperLU objects, call the splu and spilu functions.

Notes

New in version 0.14.0.

Examples

The LU decomposition can be used to solve matrix equations. Consider:

>>> import numpy as np
>>> from scipy.sparse import csc_matrix, linalg as sla
>>> A = csc_matrix([[1,2,0,4],[1,0,0,1],[1,0,2,1],[2,2,1,0.]])

This can be solved for a given right-hand side:

>>> lu = sla.splu(A)
>>> b = np.array([1, 2, 3, 4])
>>> x = lu.solve(b)
>>> A.dot(x)
array([1., 2., 3., 4.])

The lu object also contains an explicit representation of the decomposition. The permutations are represented
as mappings of indices:

>>> lu.perm_r
array([0, 2, 1, 3], dtype=int32)
>>> lu.perm_c
array([2, 0, 1, 3], dtype=int32)

The L and U factors are sparse matrices in CSC format:

>>> lu.L.A
array([[1. , 0. , 0. , 0.],

[0. , 1. , 0. , 0.],
[0. , 0. , 1. , 0.],
[1. , 0.5, 0.5, 1.]])

>>> lu.U.A
array([[2., 0., 1., 4.],

[0., 2., 1., 1.],
[0., 0., 1., 1.],
[0., 0., 0., -5.]])

The permutation matrices can be constructed:

>>> Pr = csc_matrix((4, 4))
>>> Pr[lu.perm_r, np.arange(4)] = 1
>>> Pc = csc_matrix((4, 4))
>>> Pc[np.arange(4), lu.perm_c] = 1

We can reassemble the original matrix:

1044 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> (Pr.T * (lu.L * lu.U) * Pc.T).A
array([[1., 2., 0., 4.],

[1., 0., 0., 1.],
[1., 0., 2., 1.],
[2., 2., 1., 0.]])

Attributes

shape Shape of the original matrix as a tuple of ints.
nnz Number of nonzero elements in the matrix.
perm_c Permutation Pc represented as an array of indices.
perm_r Permutation Pr represented as an array of indices.
L Lower triangular factor with unit diagonal as a scipy.sparse.csc_matrix.
U Upper triangular factor as a scipy.sparse.csc_matrix.

SuperLU.shape
Shape of the original matrix as a tuple of ints.

SuperLU.nnz
Number of nonzero elements in the matrix.

SuperLU.perm_c
Permutation Pc represented as an array of indices.

The column permutation matrix can be reconstructed via:

>>> Pc = np.zeros((n, n))
>>> Pc[np.arange(n), perm_c] = 1

SuperLU.perm_r
Permutation Pr represented as an array of indices.

The row permutation matrix can be reconstructed via:

>>> Pr = np.zeros((n, n))
>>> Pr[perm_r, np.arange(n)] = 1

SuperLU.L
Lower triangular factor with unit diagonal as a scipy.sparse.csc_matrix.

New in version 0.14.0.

SuperLU.U
Upper triangular factor as a scipy.sparse.csc_matrix.

New in version 0.14.0.

Methods

solve(rhs[, trans]) Solves linear system of equations with one or several right-hand sides.

SuperLU.solve(rhs[, trans])
Solves linear system of equations with one or several right-hand sides.

Parameters rhs : ndarray, shape (n,) or (n, k)
Right hand side(s) of equation

5.28. Sparse matrices (scipy.sparse) 1045

SciPy Reference Guide, Release 0.16.0

trans : {‘N’, ‘T’, ‘H’}, optional
Type of system to solve:

'N': A * x == rhs (default)
'T': A^T * x == rhs
'H': A^H * x == rhs

i.e., normal, transposed, and hermitian conjugate.Returns x : ndarray, shape rhs.shape
Solution vector(s)

ArpackNoConvergence(msg, eigenvalues, ...) ARPACK iteration did not converge
ArpackError(info[, infodict]) ARPACK error

Exceptions
exception scipy.sparse.linalg.ArpackNoConvergence(msg, eigenvalues, eigenvectors)

ARPACK iteration did not converge

Attributes

eigenvalues (ndarray) Partial result. Converged eigenvalues.
eigenvectors (ndarray) Partial result. Converged eigenvectors.

1046 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

exception scipy.sparse.linalg.ArpackError(info, infodict={‘c’: {0: ‘Normal exit.’, 1: ‘Maximum
number of iterations taken. All possible eigenvalues
of OP has been found. IPARAM(5) returns the num-
ber of wanted converged Ritz values.’, 2: ‘No longer
an informational error. Deprecated starting with re-
lease 2 of ARPACK.’, 3: ‘No shifts could be applied
during a cycle of the Implicitly restarted Arnoldi it-
eration. One possibility is to increase the size of
NCV relative to NEV. ‘, -9999: ‘Could not build an
Arnoldi factorization. IPARAM(5) returns the size
of the current Arnoldi factorization. The user is ad-
vised to check that enough workspace and array stor-
age has been allocated.’, -13: “NEV and WHICH
= ‘BE’ are incompatible.”, -12: ‘IPARAM(1) must
be equal to 0 or 1.’, -1: ‘N must be positive.’, -10:
‘IPARAM(7) must be 1, 2, 3.’, -9: ‘Starting vec-
tor is zero.’, -8: ‘Error return from LAPACK eigen-
value calculation;’, -7: ‘Length of private work ar-
ray WORKL is not sufficient.’, -6: “BMAT must be
one of ‘I’ or ‘G’.”, -5: ” WHICH must be one of
‘LM’, ‘SM’, ‘LR’, ‘SR’, ‘LI’, ‘SI”’, -4: ‘The max-
imum number of Arnoldi update iterations allowed
must be greater than zero.’, -3: ‘NCV-NEV >= 2 and
less than or equal to N.’, -2: ‘NEV must be posi-
tive.’, -11: “IPARAM(7) = 1 and BMAT = ‘G’ are in-
compatible.”}, ‘s’: {0: ‘Normal exit.’, 1: ‘Maximum
number of iterations taken. All possible eigenvalues
of OP has been found. IPARAM(5) returns the num-
ber of wanted converged Ritz values.’, 2: ‘No longer
an informational error. Deprecated starting with re-
lease 2 of ARPACK.’, 3: ‘No shifts could be applied
during a cycle of the Implicitly restarted Arnoldi it-
eration. One possibility is to increase the size of
NCV relative to NEV. ‘, -9999: ‘Could not build an
Arnoldi factorization. IPARAM(5) returns the size
of the current Arnoldi factorization. The user is ad-
vised to check that enough workspace and array stor-
age has been allocated.’, -13: “NEV and WHICH =
‘BE’ are incompatible.”, -12: ‘IPARAM(1) must be
equal to 0 or 1.’, -2: ‘NEV must be positive.’, -10:
‘IPARAM(7) must be 1, 2, 3, 4.’, -9: ‘Starting vec-
tor is zero.’, -8: ‘Error return from LAPACK eigen-
value calculation;’, -7: ‘Length of private work ar-
ray WORKL is not sufficient.’, -6: “BMAT must be
one of ‘I’ or ‘G’.”, -5: ” WHICH must be one of
‘LM’, ‘SM’, ‘LR’, ‘SR’, ‘LI’, ‘SI”’, -4: ‘The max-
imum number of Arnoldi update iterations allowed
must be greater than zero.’, -3: ‘NCV-NEV >= 2
and less than or equal to N.’, -1: ‘N must be posi-
tive.’, -11: “IPARAM(7) = 1 and BMAT = ‘G’ are in-
compatible.”}, ‘z’: {0: ‘Normal exit.’, 1: ‘Maximum
number of iterations taken. All possible eigenvalues
of OP has been found. IPARAM(5) returns the num-
ber of wanted converged Ritz values.’, 2: ‘No longer
an informational error. Deprecated starting with re-
lease 2 of ARPACK.’, 3: ‘No shifts could be applied
during a cycle of the Implicitly restarted Arnoldi it-
eration. One possibility is to increase the size of
NCV relative to NEV. ‘, -9999: ‘Could not build an
Arnoldi factorization. IPARAM(5) returns the size
of the current Arnoldi factorization. The user is ad-
vised to check that enough workspace and array stor-
age has been allocated.’, -13: “NEV and WHICH
= ‘BE’ are incompatible.”, -12: ‘IPARAM(1) must
be equal to 0 or 1.’, -1: ‘N must be positive.’, -10:
‘IPARAM(7) must be 1, 2, 3.’, -9: ‘Starting vec-
tor is zero.’, -8: ‘Error return from LAPACK eigen-
value calculation;’, -7: ‘Length of private work ar-
ray WORKL is not sufficient.’, -6: “BMAT must be
one of ‘I’ or ‘G’.”, -5: ” WHICH must be one of
‘LM’, ‘SM’, ‘LR’, ‘SR’, ‘LI’, ‘SI”’, -4: ‘The max-
imum number of Arnoldi update iterations allowed
must be greater than zero.’, -3: ‘NCV-NEV >= 2 and
less than or equal to N.’, -2: ‘NEV must be posi-
tive.’, -11: “IPARAM(7) = 1 and BMAT = ‘G’ are in-
compatible.”}, ‘d’: {0: ‘Normal exit.’, 1: ‘Maximum
number of iterations taken. All possible eigenvalues
of OP has been found. IPARAM(5) returns the num-
ber of wanted converged Ritz values.’, 2: ‘No longer
an informational error. Deprecated starting with re-
lease 2 of ARPACK.’, 3: ‘No shifts could be applied
during a cycle of the Implicitly restarted Arnoldi it-
eration. One possibility is to increase the size of
NCV relative to NEV. ‘, -9999: ‘Could not build an
Arnoldi factorization. IPARAM(5) returns the size
of the current Arnoldi factorization. The user is ad-
vised to check that enough workspace and array stor-
age has been allocated.’, -13: “NEV and WHICH =
‘BE’ are incompatible.”, -12: ‘IPARAM(1) must be
equal to 0 or 1.’, -2: ‘NEV must be positive.’, -10:
‘IPARAM(7) must be 1, 2, 3, 4.’, -9: ‘Starting vec-
tor is zero.’, -8: ‘Error return from LAPACK eigen-
value calculation;’, -7: ‘Length of private work ar-
ray WORKL is not sufficient.’, -6: “BMAT must be
one of ‘I’ or ‘G’.”, -5: ” WHICH must be one of
‘LM’, ‘SM’, ‘LR’, ‘SR’, ‘LI’, ‘SI”’, -4: ‘The max-
imum number of Arnoldi update iterations allowed
must be greater than zero.’, -3: ‘NCV-NEV >= 2 and
less than or equal to N.’, -1: ‘N must be positive.’,
-11: “IPARAM(7) = 1 and BMAT = ‘G’ are incom-
patible.”}})

5.28. Sparse matrices (scipy.sparse) 1047

SciPy Reference Guide, Release 0.16.0

ARPACK error

Functions

all(a[, axis, out, keepdims]) Test whether all array elements along a given axis evaluate to True.
amax(a[, axis, out, keepdims]) Return the maximum of an array or maximum along an axis.
amin(a[, axis, out, keepdims]) Return the minimum of an array or minimum along an axis.
array(object[, dtype, copy, order, subok, ndmin]) Create an array.
asarray(a[, dtype, order]) Convert the input to an array.
aslinearoperator(A) Return A as a LinearOperator.
bicg(A, b[, x0, tol, maxiter, xtype, M, ...]) Use BIConjugate Gradient iteration to solve A x = b
bicgstab(A, b[, x0, tol, maxiter, xtype, M, ...]) Use BIConjugate Gradient STABilized iteration to solve A x = b
cg(A, b[, x0, tol, maxiter, xtype, M, callback]) Use Conjugate Gradient iteration to solve A x = b
cgs(A, b[, x0, tol, maxiter, xtype, M, callback]) Use Conjugate Gradient Squared iteration to solve A x = b
dot(a, b[, out]) Dot product of two arrays.
eigs(A[, k, M, sigma, which, v0, ncv, ...]) Find k eigenvalues and eigenvectors of the square matrix A.
eigsh(A[, k, M, sigma, which, v0, ncv, ...]) Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex hermitian matrix A.
empty(shape[, dtype, order]) Return a new array of given shape and type, without initializing entries.
empty_like(a[, dtype, order, subok]) Return a new array with the same shape and type as a given array.
expm(A) Compute the matrix exponential using Pade approximation.
expm_multiply(A, B[, start, stop, num, endpoint]) Compute the action of the matrix exponential of A on B.
factorized(A) Return a fuction for solving a sparse linear system, with A pre-factorized.
fastCopyAndTranspose(a)
geterrobj() Return the current object that defines floating-point error handling.
gmres(A, b[, x0, tol, restart, maxiter, ...]) Use Generalized Minimal RESidual iteration to solve A x = b.
inv(A) Compute the inverse of a sparse matrix
issparse(x)
lgmres(A, b[, x0, tol, maxiter, M, ...]) Solve a matrix equation using the LGMRES algorithm.
lobpcg(A, X[, B, M, Y, tol, maxiter, ...]) Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG)
lsmr(A, b[, damp, atol, btol, conlim, ...]) Iterative solver for least-squares problems.
lsqr(A, b[, damp, atol, btol, conlim, ...]) Find the least-squares solution to a large, sparse, linear system of equations.
minres(A, b[, x0, shift, tol, maxiter, ...]) Use MINimum RESidual iteration to solve Ax=b
norm(x[, ord]) Norm of a sparse matrix
onenormest(A[, t, itmax, compute_v, compute_w]) Compute a lower bound of the 1-norm of a sparse matrix.
product(a[, axis, dtype, out, keepdims]) Return the product of array elements over a given axis.
qmr(A, b[, x0, tol, maxiter, xtype, M1, M2, ...]) Use Quasi-Minimal Residual iteration to solve A x = b
ravel(a[, order]) Return a flattened array.
rollaxis(a, axis[, start]) Roll the specified axis backwards, until it lies in a given position.
size(a[, axis]) Return the number of elements along a given axis.
spilu(A[, drop_tol, fill_factor, drop_rule, ...]) Compute an incomplete LU decomposition for a sparse, square matrix.
splu(A[, permc_spec, diag_pivot_thresh, ...]) Compute the LU decomposition of a sparse, square matrix.
spsolve(A, b[, permc_spec, use_umfpack]) Solve the sparse linear system Ax=b, where b may be a vector or a matrix.
sum(a[, axis, dtype, out, keepdims]) Sum of array elements over a given axis.
svds(A[, k, ncv, tol, which, v0, maxiter, ...]) Compute the largest k singular values/vectors for a sparse matrix.
transpose(a[, axes]) Permute the dimensions of an array.
use_solver(**kwargs) Valid keyword arguments with defaults (other ignored):
zeros(shape[, dtype, order]) Return a new array of given shape and type, filled with zeros.

Classes

LinearOperator(dtype, shape) Common interface for performing matrix vector products
Continued on next page

1048 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.174 – continued from previous page
SuperLU LU factorization of a sparse matrix.
Tester alias of NoseTester
broadcast Produce an object that mimics broadcasting.
cdouble alias of complex128
complexfloating Attributes
csingle alias of complex64
double alias of float64
errstate(**kwargs) Context manager for floating-point error handling.
finfo Machine limits for floating point types.
inexact Attributes
intc alias of int32
longdouble alias of float128
single alias of float32

Exceptions

ArpackError(info[, infodict]) ARPACK error
ArpackNoConvergence(msg, eigenvalues, ...) ARPACK iteration did not converge
MatrixRankWarning

Exceptions

SparseEfficiencyWarning
SparseWarning

exception scipy.sparse.SparseEfficiencyWarning

exception scipy.sparse.SparseWarning

5.28.2 Usage information

There are seven available sparse matrix types:

1. csc_matrix: Compressed Sparse Column format

2. csr_matrix: Compressed Sparse Row format

3. bsr_matrix: Block Sparse Row format

4. lil_matrix: List of Lists format

5. dok_matrix: Dictionary of Keys format

6. coo_matrix: COOrdinate format (aka IJV, triplet format)

7. dia_matrix: DIAgonal format

To construct a matrix efficiently, use either dok_matrix or lil_matrix. The lil_matrix class supports basic slicing and
fancy indexing with a similar syntax to NumPy arrays. As illustrated below, the COO format may also be used to
efficiently construct matrices.

5.28. Sparse matrices (scipy.sparse) 1049

SciPy Reference Guide, Release 0.16.0

To perform manipulations such as multiplication or inversion, first convert the matrix to either CSC or CSR format.
The lil_matrix format is row-based, so conversion to CSR is efficient, whereas conversion to CSC is less so.

All conversions among the CSR, CSC, and COO formats are efficient, linear-time operations.

Matrix vector product

To do a vector product between a sparse matrix and a vector simply use the matrix dot method, as described in its
docstring:

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([1, -3, -1], dtype=int64)

Warning: As of NumPy 1.7, np.dot is not aware of sparse matrices, therefore using it will result on unexpected
results or errors. The corresponding dense array should be obtained first instead:

>>> np.dot(A.toarray(), v)
array([1, -3, -1], dtype=int64)

but then all the performance advantages would be lost.

The CSR format is specially suitable for fast matrix vector products.

Example 1

Construct a 1000x1000 lil_matrix and add some values to it:

>>> from scipy.sparse import lil_matrix
>>> from scipy.sparse.linalg import spsolve
>>> from numpy.linalg import solve, norm
>>> from numpy.random import rand

>>> A = lil_matrix((1000, 1000))
>>> A[0, :100] = rand(100)
>>> A[1, 100:200] = A[0, :100]
>>> A.setdiag(rand(1000))

Now convert it to CSR format and solve A x = b for x:

>>> A = A.tocsr()
>>> b = rand(1000)
>>> x = spsolve(A, b)

Convert it to a dense matrix and solve, and check that the result is the same:

>>> x_ = solve(A.toarray(), b)

Now we can compute norm of the error with:

1050 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> err = norm(x-x_)
>>> err < 1e-10
True

It should be small :)

Example 2

Construct a matrix in COO format:

>>> from scipy import sparse
>>> from numpy import array
>>> I = array([0,3,1,0])
>>> J = array([0,3,1,2])
>>> V = array([4,5,7,9])
>>> A = sparse.coo_matrix((V,(I,J)),shape=(4,4))

Notice that the indices do not need to be sorted.

Duplicate (i,j) entries are summed when converting to CSR or CSC.

>>> I = array([0,0,1,3,1,0,0])
>>> J = array([0,2,1,3,1,0,0])
>>> V = array([1,1,1,1,1,1,1])
>>> B = sparse.coo_matrix((V,(I,J)),shape=(4,4)).tocsr()

This is useful for constructing finite-element stiffness and mass matrices.

Further Details

CSR column indices are not necessarily sorted. Likewise for CSC row indices. Use the .sorted_indices() and
.sort_indices() methods when sorted indices are required (e.g. when passing data to other libraries).

5.29 Sparse linear algebra (scipy.sparse.linalg)

5.29.1 Abstract linear operators

LinearOperator(dtype, shape) Common interface for performing matrix vector products
aslinearoperator(A) Return A as a LinearOperator.

class scipy.sparse.linalg.LinearOperator(dtype, shape)
Common interface for performing matrix vector products

Many iterative methods (e.g. cg, gmres) do not need to know the individual entries of a matrix to solve a linear
system A*x=b. Such solvers only require the computation of matrix vector products, A*v where v is a dense
vector. This class serves as an abstract interface between iterative solvers and matrix-like objects.

To construct a concrete LinearOperator, either pass appropriate callables to the constructor of this class, or
subclass it.

A subclass must implement either one of the methods _matvec and _matmat, and the attributes/properties
shape (pair of integers) and dtype (may be None). It may call the __init__ on this class to have these

5.29. Sparse linear algebra (scipy.sparse.linalg) 1051

SciPy Reference Guide, Release 0.16.0

attributes validated. Implementing _matvec automatically implements _matmat (using a naive algorithm)
and vice-versa.

Optionally, a subclass may implement _rmatvec or _adjoint to implement the Hermitian adjoint (conju-
gate transpose). As with _matvec and _matmat, implementing either _rmatvec or _adjoint implements
the other automatically. Implementing _adjoint is preferable; _rmatvec is mostly there for backwards
compatibility.

Parameters shape : tuple
Matrix dimensions (M,N).

matvec : callable f(v)
Returns returns A * v.

rmatvec : callable f(v)
Returns A^H * v, where A^H is the conjugate transpose of A.

matmat : callable f(V)
Returns A * V, where V is a dense matrix with dimensions (N,K).

dtype : dtype
Data type of the matrix.

See also:

aslinearoperator
Construct LinearOperators

Notes

The user-defined matvec() function must properly handle the case where v has shape (N,) as well as the (N,1)
case. The shape of the return type is handled internally by LinearOperator.

LinearOperator instances can also be multiplied, added with each other and exponentiated, all lazily: the result
of these operations is always a new, composite LinearOperator, that defers linear operations to the original
operators and combines the results.

Examples

>>> import numpy as np
>>> from scipy.sparse.linalg import LinearOperator
>>> def mv(v):
... return np.array([2*v[0], 3*v[1]])
...
>>> A = LinearOperator((2,2), matvec=mv)
>>> A
<2x2 LinearOperator with unspecified dtype>
>>> A.matvec(np.ones(2))
array([2., 3.])
>>> A * np.ones(2)
array([2., 3.])

Attributes

args (tuple) For linear operators describing products etc. of other linear operators, the operands of the
binary operation.

Methods

__call__(x)
adjoint() Hermitian adjoint.

Continued on next page

1052 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.178 – continued from previous page
dot(x) Matrix-matrix or matrix-vector multiplication.
matmat(X) Matrix-matrix multiplication.
matvec(x) Matrix-vector multiplication.
rmatvec(x) Adjoint matrix-vector multiplication.
transpose() Transpose this linear operator.

LinearOperator.__call__(x)

LinearOperator.adjoint()
Hermitian adjoint.

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex
matrix, the Hermitian adjoint is equal to the conjugate transpose.

Can be abbreviated self.H instead of self.adjoint().

Returns A_H : LinearOperator
Hermitian adjoint of self.

LinearOperator.dot(x)
Matrix-matrix or matrix-vector multiplication.

Parameters x : array_like
1-d or 2-d array, representing a vector or matrix.Returns Ax : array
1-d or 2-d array (depending on the shape of x) that represents the
result of applying this linear operator on x.

LinearOperator.matmat(X)
Matrix-matrix multiplication.

Performs the operation y=A*X where A is an MxN linear operator and X dense N*K matrix or ndarray.

Parameters X : {matrix, ndarray}
An array with shape (N,K).Returns Y : {matrix, ndarray}
A matrix or ndarray with shape (M,K) depending on the type of the
X argument.

Notes

This matmat wraps any user-specified matmat routine or overridden _matmat method to ensure that y has
the correct type.

LinearOperator.matvec(x)
Matrix-vector multiplication.

Performs the operation y=A*x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters x : {matrix, ndarray}
An array with shape (N,) or (N,1).Returns y : {matrix, ndarray}
A matrix or ndarray with shape (M,) or (M,1) depending on the type
and shape of the x argument.

Notes

This matvec wraps the user-specified matvec routine or overridden _matvec method to ensure that y has
the correct shape and type.

5.29. Sparse linear algebra (scipy.sparse.linalg) 1053

SciPy Reference Guide, Release 0.16.0

LinearOperator.rmatvec(x)
Adjoint matrix-vector multiplication.

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d
array.

Parameters x : {matrix, ndarray}
An array with shape (M,) or (M,1).Returns y : {matrix, ndarray}
A matrix or ndarray with shape (N,) or (N,1) depending on the type
and shape of the x argument.

Notes

This rmatvec wraps the user-specified rmatvec routine or overridden _rmatvec method to ensure that y
has the correct shape and type.

LinearOperator.transpose()
Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of
self.transpose().

scipy.sparse.linalg.aslinearoperator(A)
Return A as a LinearOperator.
‘A’ may be any of the following types:

•ndarray
•matrix
•sparse matrix (e.g. csr_matrix, lil_matrix, etc.)
•LinearOperator
•An object with .shape and .matvec attributes

See the LinearOperator documentation for additional information.

Examples

>>> from scipy import matrix
>>> M = matrix([[1,2,3],[4,5,6]], dtype='int32')
>>> aslinearoperator(M)
<2x3 LinearOperator with dtype=int32>

5.29.2 Matrix Operations

inv(A) Compute the inverse of a sparse matrix
expm(A) Compute the matrix exponential using Pade approximation.
expm_multiply(A, B[, start, stop, num, endpoint]) Compute the action of the matrix exponential of A on B.

scipy.sparse.linalg.inv(A)
Compute the inverse of a sparse matrix

Parameters A : (M,M) ndarray or sparse matrix
square matrix to be invertedReturns Ainv : (M,M) ndarray or sparse matrix
inverse of A

1054 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

This computes the sparse inverse of A. If the inverse of A is expected to be non-sparse, it will likely be faster to
convert A to dense and use scipy.linalg.inv.

New in version 0.12.0.

scipy.sparse.linalg.expm(A)
Compute the matrix exponential using Pade approximation.

Parameters A : (M,M) array_like or sparse matrix
2D Array or Matrix (sparse or dense) to be exponentiatedReturns expA : (M,M) ndarray
Matrix exponential of A

Notes

This is algorithm (6.1) which is a simplification of algorithm (5.1).

New in version 0.12.0.

References

[R254]

scipy.sparse.linalg.expm_multiply(A, B, start=None, stop=None, num=None, endpoint=None)
Compute the action of the matrix exponential of A on B.

Parameters A : transposable linear operator
The operator whose exponential is of interest.

B : ndarray
The matrix or vector to be multiplied by the matrix exponential of A.

start : scalar, optional
The starting time point of the sequence.

stop : scalar, optional
The end time point of the sequence, unless endpoint is set to False. In that
case, the sequence consists of all but the last of num + 1 evenly spaced
time points, so that stop is excluded. Note that the step size changes when
endpoint is False.

num : int, optional
Number of time points to use.

endpoint : bool, optional
If True, stop is the last time point. Otherwise, it is not included.Returns expm_A_B : ndarray
The result of the action 𝑒𝑡𝑘𝐴𝐵.

Notes

The optional arguments defining the sequence of evenly spaced time points are compatible with the arguments
of numpy.linspace.

The output ndarray shape is somewhat complicated so I explain it here. The ndim of the output could be either
1, 2, or 3. It would be 1 if you are computing the expm action on a single vector at a single time point. It would
be 2 if you are computing the expm action on a vector at multiple time points, or if you are computing the expm
action on a matrix at a single time point. It would be 3 if you want the action on a matrix with multiple columns
at multiple time points. If multiple time points are requested, expm_A_B[0] will always be the action of the
expm at the first time point, regardless of whether the action is on a vector or a matrix.

References

[R255], [R256]

5.29. Sparse linear algebra (scipy.sparse.linalg) 1055

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html#numpy.linspace

SciPy Reference Guide, Release 0.16.0

5.29.3 Matrix norms

onenormest(A[, t, itmax, compute_v, compute_w]) Compute a lower bound of the 1-norm of a sparse matrix.

scipy.sparse.linalg.onenormest(A, t=2, itmax=5, compute_v=False, compute_w=False)
Compute a lower bound of the 1-norm of a sparse matrix.

Parameters A : ndarray or other linear operator
A linear operator that can be transposed and that can produce matrix prod-
ucts.

t : int, optional
A positive parameter controlling the tradeoff between accuracy versus time
and memory usage. Larger values take longer and use more memory but
give more accurate output.

itmax : int, optional
Use at most this many iterations.

compute_v : bool, optional
Request a norm-maximizing linear operator input vector if True.

compute_w : bool, optional
Request a norm-maximizing linear operator output vector if True.Returns est : float
An underestimate of the 1-norm of the sparse matrix.

v : ndarray, optional
The vector such that ||Av||_1 == est*||v||_1. It can be thought of as an input
to the linear operator that gives an output with particularly large norm.

w : ndarray, optional
The vector Av which has relatively large 1-norm. It can be thought of as an
output of the linear operator that is relatively large in norm compared to the
input.

Notes

This is algorithm 2.4 of [1].

In [2] it is described as follows. “This algorithm typically requires the evaluation of about 4t matrix-vector
products and almost invariably produces a norm estimate (which is, in fact, a lower bound on the norm) correct
to within a factor 3.”

New in version 0.13.0.

References

[R267], [R268]

5.29.4 Solving linear problems

Direct methods for linear equation systems:

spsolve(A, b[, permc_spec, use_umfpack]) Solve the sparse linear system Ax=b, where b may be a vector or a matrix.
factorized(A) Return a fuction for solving a sparse linear system, with A pre-factorized.

scipy.sparse.linalg.spsolve(A, b, permc_spec=None, use_umfpack=True)
Solve the sparse linear system Ax=b, where b may be a vector or a matrix.

Parameters A : ndarray or sparse matrix

1056 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The square matrix A will be converted into CSC or CSR form
b : ndarray or sparse matrix

The matrix or vector representing the right hand side of the equation. If a
vector, b.size must be (n,) or (n, 1)

permc_spec : str, optional
How to permute the columns of the matrix for sparsity preservation. (de-
fault: ‘COLAMD’)

•NATURAL: natural ordering.•MMD_ATA: minimum degree ordering on the structure of
A^T A.•MMD_AT_PLUS_A: minimum degree ordering on the struc-
ture of A^T+A.•COLAMD: approximate minimum degree column ordering

use_umfpack : bool, optional
if True (default) then use umfpack for the solution. This is only referenced
if b is a vector and scikit-umfpack is installed.Returns x : ndarray or sparse matrix
the solution of the sparse linear equation. If b is a vector, then x is a vector
of size A.shape[1] If b is a matrix, then x is a matrix of size (A.shape[1],
b.shape[1])

Notes

For solving the matrix expression AX = B, this solver assumes the resulting matrix X is sparse, as is often the
case for very sparse inputs. If the resulting X is dense, the construction of this sparse result will be relatively
expensive. In that case, consider converting A to a dense matrix and using scipy.linalg.solve or its variants.

scipy.sparse.linalg.factorized(A)
Return a fuction for solving a sparse linear system, with A pre-factorized.

Parameters A : (N, N) array_like
Input.Returns solve : callable
To solve the linear system of equations given in A, the solve callable should
be passed an ndarray of shape (N,).

Examples

>>> A = np.array([[3. , 2. , -1.],
[2. , -2. , 4.],
[-1. , 0.5, -1.]])

>>> solve = factorized(A) # Makes LU decomposition.

>>> rhs1 = np.array([1,-2,0])
>>> x1 = solve(rhs1) # Uses the LU factors.
array([1., -2., -2.])

Iterative methods for linear equation systems:

bicg(A, b[, x0, tol, maxiter, xtype, M, ...]) Use BIConjugate Gradient iteration to solve A x = b
bicgstab(A, b[, x0, tol, maxiter, xtype, M, ...]) Use BIConjugate Gradient STABilized iteration to solve A x = b
cg(A, b[, x0, tol, maxiter, xtype, M, callback]) Use Conjugate Gradient iteration to solve A x = b
cgs(A, b[, x0, tol, maxiter, xtype, M, callback]) Use Conjugate Gradient Squared iteration to solve A x = b
gmres(A, b[, x0, tol, restart, maxiter, ...]) Use Generalized Minimal RESidual iteration to solve A x = b.
lgmres(A, b[, x0, tol, maxiter, M, ...]) Solve a matrix equation using the LGMRES algorithm.

Continued on next page

5.29. Sparse linear algebra (scipy.sparse.linalg) 1057

SciPy Reference Guide, Release 0.16.0

Table 5.182 – continued from previous page
minres(A, b[, x0, shift, tol, maxiter, ...]) Use MINimum RESidual iteration to solve Ax=b
qmr(A, b[, x0, tol, maxiter, xtype, M1, M2, ...]) Use Quasi-Minimal Residual iteration to solve A x = b

scipy.sparse.linalg.bicg(A, b, x0=None, tol=1e-05, maxiter=None, xtype=None, M=None, call-
back=None)

Use BIConjugate Gradient iteration to solve A x = b

Parameters A : {sparse matrix, dense matrix, LinearOperator}
The real or complex N-by-N matrix of the linear system It is required that
the linear operator can produce Ax and A^T x.

b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).Returns x : {array, matrix}
The converged solution.

info : integer
Provides convergence information:

0 : successful exit >0 : convergence to tolerance not
achieved, number of iterations <0 : illegal input or break-
downOther Parameters

x0 : {array, matrix}
Starting guess for the solution.

tol : float
Tolerance to achieve. The algorithm terminates when either the relative or
the absolute residual is below tol.

maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter steps even
if the specified tolerance has not been achieved.

M : {sparse matrix, dense matrix, LinearOperator}
Preconditioner for A. The preconditioner should approximate the inverse
of A. Effective preconditioning dramatically improves the rate of conver-
gence, which implies that fewer iterations are needed to reach a given error
tolerance.

callback : function
User-supplied function to call after each iteration. It is called as call-
back(xk), where xk is the current solution vector.

xtype : {‘f’,’d’,’F’,’D’}
This parameter is deprecated – avoid using it.
The type of the result. If None, then it will be determined from A.dtype.char
and b. If A does not have a typecode method then it will compute
A.matvec(x0) to get a typecode. To save the extra computation when A
does not have a typecode attribute use xtype=0 for the same type as b or use
xtype=’f’,’d’,’F’,or ‘D’. This parameter has been superseded by LinearOp-
erator.

scipy.sparse.linalg.bicgstab(A, b, x0=None, tol=1e-05, maxiter=None, xtype=None, M=None,
callback=None)

Use BIConjugate Gradient STABilized iteration to solve A x = b

Parameters A : {sparse matrix, dense matrix, LinearOperator}
The real or complex N-by-N matrix of the linear system A must represent a
hermitian, positive definite matrix

b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).Returns x : {array, matrix}
The converged solution.

1058 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

info : integer
Provides convergence information:

0 : successful exit >0 : convergence to tolerance not
achieved, number of iterations <0 : illegal input or break-
downOther Parameters

x0 : {array, matrix}
Starting guess for the solution.

tol : float
Tolerance to achieve. The algorithm terminates when either the relative or
the absolute residual is below tol.

maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter steps even
if the specified tolerance has not been achieved.

M : {sparse matrix, dense matrix, LinearOperator}
Preconditioner for A. The preconditioner should approximate the inverse
of A. Effective preconditioning dramatically improves the rate of conver-
gence, which implies that fewer iterations are needed to reach a given error
tolerance.

callback : function
User-supplied function to call after each iteration. It is called as call-
back(xk), where xk is the current solution vector.

xtype : {‘f’,’d’,’F’,’D’}
This parameter is deprecated – avoid using it.
The type of the result. If None, then it will be determined from A.dtype.char
and b. If A does not have a typecode method then it will compute
A.matvec(x0) to get a typecode. To save the extra computation when A
does not have a typecode attribute use xtype=0 for the same type as b or use
xtype=’f’,’d’,’F’,or ‘D’. This parameter has been superseded by LinearOp-
erator.

scipy.sparse.linalg.cg(A, b, x0=None, tol=1e-05, maxiter=None, xtype=None, M=None, call-
back=None)

Use Conjugate Gradient iteration to solve A x = b

Parameters A : {sparse matrix, dense matrix, LinearOperator}
The real or complex N-by-N matrix of the linear system A must represent a
hermitian, positive definite matrix

b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).Returns x : {array, matrix}
The converged solution.

info : integer
Provides convergence information:

0 : successful exit >0 : convergence to tolerance not
achieved, number of iterations <0 : illegal input or break-
downOther Parameters

x0 : {array, matrix}
Starting guess for the solution.

tol : float
Tolerance to achieve. The algorithm terminates when either the relative or
the absolute residual is below tol.

maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter steps even
if the specified tolerance has not been achieved.

M : {sparse matrix, dense matrix, LinearOperator}

5.29. Sparse linear algebra (scipy.sparse.linalg) 1059

SciPy Reference Guide, Release 0.16.0

Preconditioner for A. The preconditioner should approximate the inverse
of A. Effective preconditioning dramatically improves the rate of conver-
gence, which implies that fewer iterations are needed to reach a given error
tolerance.

callback : function
User-supplied function to call after each iteration. It is called as call-
back(xk), where xk is the current solution vector.

xtype : {‘f’,’d’,’F’,’D’}
This parameter is deprecated – avoid using it.
The type of the result. If None, then it will be determined from A.dtype.char
and b. If A does not have a typecode method then it will compute
A.matvec(x0) to get a typecode. To save the extra computation when A
does not have a typecode attribute use xtype=0 for the same type as b or use
xtype=’f’,’d’,’F’,or ‘D’. This parameter has been superseded by LinearOp-
erator.

scipy.sparse.linalg.cgs(A, b, x0=None, tol=1e-05, maxiter=None, xtype=None, M=None, call-
back=None)

Use Conjugate Gradient Squared iteration to solve A x = b

Parameters A : {sparse matrix, dense matrix, LinearOperator}
The real-valued N-by-N matrix of the linear system

b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).Returns x : {array, matrix}
The converged solution.

info : integer
Provides convergence information:

0 : successful exit >0 : convergence to tolerance not
achieved, number of iterations <0 : illegal input or break-
downOther Parameters

x0 : {array, matrix}
Starting guess for the solution.

tol : float
Tolerance to achieve. The algorithm terminates when either the relative or
the absolute residual is below tol.

maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter steps even
if the specified tolerance has not been achieved.

M : {sparse matrix, dense matrix, LinearOperator}
Preconditioner for A. The preconditioner should approximate the inverse
of A. Effective preconditioning dramatically improves the rate of conver-
gence, which implies that fewer iterations are needed to reach a given error
tolerance.

callback : function
User-supplied function to call after each iteration. It is called as call-
back(xk), where xk is the current solution vector.

xtype : {‘f’,’d’,’F’,’D’}
This parameter is deprecated – avoid using it.
The type of the result. If None, then it will be determined from A.dtype.char
and b. If A does not have a typecode method then it will compute
A.matvec(x0) to get a typecode. To save the extra computation when A
does not have a typecode attribute use xtype=0 for the same type as b or use
xtype=’f’,’d’,’F’,or ‘D’. This parameter has been superseded by LinearOp-
erator.

1060 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.sparse.linalg.gmres(A, b, x0=None, tol=1e-05, restart=None, maxiter=None, xtype=None,
M=None, callback=None, restrt=None)

Use Generalized Minimal RESidual iteration to solve A x = b.

Parameters A : {sparse matrix, dense matrix, LinearOperator}
The real or complex N-by-N matrix of the linear system.

b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).Returns x : {array, matrix}
The converged solution.

info : int
Provides convergence information:

•0 : successful exit
•>0 : convergence to tolerance not achieved, number of
iterations

•<0 : illegal input or breakdownOther Parameters
x0 : {array, matrix}

Starting guess for the solution (a vector of zeros by default).
tol : float

Tolerance to achieve. The algorithm terminates when either the relative or
the absolute residual is below tol.

restart : int, optional
Number of iterations between restarts. Larger values increase iteration cost,
but may be necessary for convergence. Default is 20.

maxiter : int, optional
Maximum number of iterations (restart cycles). Iteration will stop after
maxiter steps even if the specified tolerance has not been achieved.

xtype : {‘f’,’d’,’F’,’D’}
This parameter is DEPRECATED — avoid using it.
The type of the result. If None, then it will be determined from A.dtype.char
and b. If A does not have a typecode method then it will compute
A.matvec(x0) to get a typecode. To save the extra computation when A
does not have a typecode attribute use xtype=0 for the same type as b or use
xtype=’f’,’d’,’F’,or ‘D’. This parameter has been superseded by LinearOp-
erator.

M : {sparse matrix, dense matrix, LinearOperator}
Inverse of the preconditioner of A. M should approximate the inverse of A
and be easy to solve for (see Notes). Effective preconditioning dramatically
improves the rate of convergence, which implies that fewer iterations are
needed to reach a given error tolerance. By default, no preconditioner is
used.

callback : function
User-supplied function to call after each iteration. It is called as call-
back(rk), where rk is the current residual vector.

restrt : int, optional
DEPRECATED - use restart instead.

See also:

LinearOperator

Notes

A preconditioner, P, is chosen such that P is close to A but easy to solve for. The preconditioner parameter
required by this routine is M = P^-1. The inverse should preferably not be calculated explicitly. Rather, use

5.29. Sparse linear algebra (scipy.sparse.linalg) 1061

SciPy Reference Guide, Release 0.16.0

the following template to produce M:

Construct a linear operator that computes P^-1 * x.
import scipy.sparse.linalg as spla
M_x = lambda x: spla.spsolve(P, x)
M = spla.LinearOperator((n, n), M_x)

scipy.sparse.linalg.lgmres(A, b, x0=None, tol=1e-05, maxiter=1000, M=None, callback=None,
inner_m=30, outer_k=3, outer_v=None, store_outer_Av=True)

Solve a matrix equation using the LGMRES algorithm.

The LGMRES algorithm [R257] [R258] is designed to avoid some problems in the convergence in restarted
GMRES, and often converges in fewer iterations.

Parameters A : {sparse matrix, dense matrix, LinearOperator}
The real or complex N-by-N matrix of the linear system.

b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).

x0 : {array, matrix}
Starting guess for the solution.

tol : float, optional
Tolerance to achieve. The algorithm terminates when either the relative or
the absolute residual is below tol.

maxiter : int, optional
Maximum number of iterations. Iteration will stop after maxiter steps even
if the specified tolerance has not been achieved.

M : {sparse matrix, dense matrix, LinearOperator}, optional
Preconditioner for A. The preconditioner should approximate the inverse
of A. Effective preconditioning dramatically improves the rate of conver-
gence, which implies that fewer iterations are needed to reach a given error
tolerance.

callback : function, optional
User-supplied function to call after each iteration. It is called as call-
back(xk), where xk is the current solution vector.

inner_m : int, optional
Number of inner GMRES iterations per each outer iteration.

outer_k : int, optional
Number of vectors to carry between inner GMRES iterations. According to
[R257], good values are in the range of 1...3. However, note that if you want
to use the additional vectors to accelerate solving multiple similar problems,
larger values may be beneficial.

outer_v : list of tuples, optional
List containing tuples (v, Av) of vectors and corresponding matrix-
vector products, used to augment the Krylov subspace, and carried between
inner GMRES iterations. The element Av can be None if the matrix-vector
product should be re-evaluated. This parameter is modified in-place by
lgmres, and can be used to pass “guess” vectors in and out of the algo-
rithm when solving similar problems.

store_outer_Av : bool, optional
Whether LGMRES should store also A*v in addition to vectors v in the
outer_v list. Default is True.Returns x : array or matrix
The converged solution.

info : int
Provides convergence information:

•0 : successful exit

1062 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

•>0 : convergence to tolerance not achieved, number of iter-
ations•<0 : illegal input or breakdown

Notes

The LGMRES algorithm [R257] [R258] is designed to avoid the slowing of convergence in restarted GMRES,
due to alternating residual vectors. Typically, it often outperforms GMRES(m) of comparable memory require-
ments by some measure, or at least is not much worse.

Another advantage in this algorithm is that you can supply it with ‘guess’ vectors in the outer_v argument that
augment the Krylov subspace. If the solution lies close to the span of these vectors, the algorithm converges
faster. This can be useful if several very similar matrices need to be inverted one after another, such as in
Newton-Krylov iteration where the Jacobian matrix often changes little in the nonlinear steps.

References

[R257], [R258]

scipy.sparse.linalg.minres(A, b, x0=None, shift=0.0, tol=1e-05, maxiter=None, xtype=None,
M=None, callback=None, show=False, check=False)

Use MINimum RESidual iteration to solve Ax=b

MINRES minimizes norm(A*x - b) for a real symmetric matrix A. Unlike the Conjugate Gradient method, A
can be indefinite or singular.

If shift != 0 then the method solves (A - shift*I)x = b

Parameters A : {sparse matrix, dense matrix, LinearOperator}
The real symmetric N-by-N matrix of the linear system

b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).Returns x : {array, matrix}
The converged solution.

info : integer
Provides convergence information:

0 : successful exit >0 : convergence to tolerance not
achieved, number of iterations <0 : illegal input or break-
downOther Parameters

x0 : {array, matrix}
Starting guess for the solution.

tol : float
Tolerance to achieve. The algorithm terminates when either the relative or
the absolute residual is below tol.

maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter steps even
if the specified tolerance has not been achieved.

M : {sparse matrix, dense matrix, LinearOperator}
Preconditioner for A. The preconditioner should approximate the inverse
of A. Effective preconditioning dramatically improves the rate of conver-
gence, which implies that fewer iterations are needed to reach a given error
tolerance.

callback : function
User-supplied function to call after each iteration. It is called as call-
back(xk), where xk is the current solution vector.

xtype : {‘f’,’d’,’F’,’D’}
This parameter is deprecated – avoid using it.

5.29. Sparse linear algebra (scipy.sparse.linalg) 1063

SciPy Reference Guide, Release 0.16.0

The type of the result. If None, then it will be determined from A.dtype.char
and b. If A does not have a typecode method then it will compute
A.matvec(x0) to get a typecode. To save the extra computation when A
does not have a typecode attribute use xtype=0 for the same type as b or use
xtype=’f’,’d’,’F’,or ‘D’. This parameter has been superseded by LinearOp-
erator.

Notes

THIS FUNCTION IS EXPERIMENTAL AND SUBJECT TO CHANGE!

References

Solution of sparse indefinite systems of linear equations,
C. C. Paige and M. A. Saunders (1975), SIAM J. Numer. Anal. 12(4), pp. 617-629.
http://www.stanford.edu/group/SOL/software/minres.html

This file is a translation of the following MATLAB implementation:
http://www.stanford.edu/group/SOL/software/minres/matlab/

scipy.sparse.linalg.qmr(A, b, x0=None, tol=1e-05, maxiter=None, xtype=None, M1=None,
M2=None, callback=None)

Use Quasi-Minimal Residual iteration to solve A x = b

Parameters A : {sparse matrix, dense matrix, LinearOperator}
The real-valued N-by-N matrix of the linear system. It is required that the
linear operator can produce Ax and A^T x.

b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).Returns x : {array, matrix}
The converged solution.

info : integer
Provides convergence information:

0 : successful exit >0 : convergence to tolerance not
achieved, number of iterations <0 : illegal input or break-
downOther Parameters

x0 : {array, matrix}
Starting guess for the solution.

tol : float
Tolerance to achieve. The algorithm terminates when either the relative or
the absolute residual is below tol.

maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter steps even
if the specified tolerance has not been achieved.

M1 : {sparse matrix, dense matrix, LinearOperator}
Left preconditioner for A.

M2 : {sparse matrix, dense matrix, LinearOperator}
Right preconditioner for A. Used together with the left preconditioner M1.
The matrix M1*A*M2 should have better conditioned than A alone.

callback : function
User-supplied function to call after each iteration. It is called as call-
back(xk), where xk is the current solution vector.

xtype : {‘f’,’d’,’F’,’D’}
This parameter is DEPRECATED – avoid using it.
The type of the result. If None, then it will be determined from A.dtype.char
and b. If A does not have a typecode method then it will compute
A.matvec(x0) to get a typecode. To save the extra computation when A

1064 Chapter 5. Reference

http://www.stanford.edu/group/SOL/software/minres.html
http://www.stanford.edu/group/SOL/software/minres/matlab/

SciPy Reference Guide, Release 0.16.0

does not have a typecode attribute use xtype=0 for the same type as b or use
xtype=’f’,’d’,’F’,or ‘D’. This parameter has been superseded by LinearOp-
erator.

See also:

LinearOperator

Iterative methods for least-squares problems:

lsqr(A, b[, damp, atol, btol, conlim, ...]) Find the least-squares solution to a large, sparse, linear system of equations.
lsmr(A, b[, damp, atol, btol, conlim, ...]) Iterative solver for least-squares problems.

scipy.sparse.linalg.lsqr(A, b, damp=0.0, atol=1e-08, btol=1e-08, conlim=100000000.0,
iter_lim=None, show=False, calc_var=False)

Find the least-squares solution to a large, sparse, linear system of equations.

The function solves Ax = b or min ||b - Ax||^2 or min ||Ax - b||^2 + d^2 ||x||^2.

The matrix A may be square or rectangular (over-determined or under-determined), and may have any rank.

1. Unsymmetric equations -- solve A*x = b

2. Linear least squares -- solve A*x = b
in the least-squares sense

3. Damped least squares -- solve (A)*x = (b)
(damp*I) (0)

in the least-squares sense

Parameters A : {sparse matrix, ndarray, LinearOperator}
Representation of an m-by-n matrix. It is required that the linear operator
can produce Ax and A^T x.

b : (m,) ndarray
Right-hand side vector b.

damp : float
Damping coefficient.

atol, btol : float, optional
Stopping tolerances. If both are 1.0e-9 (say), the final residual norm should
be accurate to about 9 digits. (The final x will usually have fewer correct
digits, depending on cond(A) and the size of damp.)

conlim : float, optional
Another stopping tolerance. lsqr terminates if an estimate of cond(A)
exceeds conlim. For compatible systems Ax = b, conlim could be as large
as 1.0e+12 (say). For least-squares problems, conlim should be less than
1.0e+8. Maximum precision can be obtained by setting atol = btol =
conlim = zero, but the number of iterations may then be excessive.

iter_lim : int, optional
Explicit limitation on number of iterations (for safety).

show : bool, optional
Display an iteration log.

calc_var : bool, optional
Whether to estimate diagonals of (A’A + damp^2*I)^{-1}.Returns x : ndarray of float
The final solution.

istop : int

5.29. Sparse linear algebra (scipy.sparse.linalg) 1065

SciPy Reference Guide, Release 0.16.0

Gives the reason for termination. 1 means x is an approximate solution to
Ax = b. 2 means x approximately solves the least-squares problem.

itn : int
Iteration number upon termination.

r1norm : float
norm(r), where r = b - Ax.

r2norm : float
sqrt(norm(r)^2 + damp^2 * norm(x)^2). Equal to r1norm
if damp == 0.

anorm : float
Estimate of Frobenius norm of Abar = [[A]; [damp*I]].

acond : float
Estimate of cond(Abar).

arnorm : float
Estimate of norm(A’*r - damp^2*x).

xnorm : float
norm(x)

var : ndarray of float
If calc_var is True, estimates all diagonals of (A’A)^{-1} (if damp
== 0) or more generally (A’A + damp^2*I)^{-1}. This is well de-
fined if A has full column rank or damp > 0. (Not sure what var means if
rank(A) < n and damp = 0.)

Notes

LSQR uses an iterative method to approximate the solution. The number of iterations required to reach a certain
accuracy depends strongly on the scaling of the problem. Poor scaling of the rows or columns of A should
therefore be avoided where possible.

For example, in problem 1 the solution is unaltered by row-scaling. If a row of A is very small or large compared
to the other rows of A, the corresponding row of (A b) should be scaled up or down.

In problems 1 and 2, the solution x is easily recovered following column-scaling. Unless better information is
known, the nonzero columns of A should be scaled so that they all have the same Euclidean norm (e.g., 1.0).

In problem 3, there is no freedom to re-scale if damp is nonzero. However, the value of damp should be assigned
only after attention has been paid to the scaling of A.

The parameter damp is intended to help regularize ill-conditioned systems, by preventing the true solution from
being very large. Another aid to regularization is provided by the parameter acond, which may be used to
terminate iterations before the computed solution becomes very large.

If some initial estimate x0 is known and if damp == 0, one could proceed as follows:
1.Compute a residual vector r0 = b - A*x0.
2.Use LSQR to solve the system A*dx = r0.
3.Add the correction dx to obtain a final solution x = x0 + dx.

This requires that x0 be available before and after the call to LSQR. To judge the benefits, suppose LSQR
takes k1 iterations to solve A*x = b and k2 iterations to solve A*dx = r0. If x0 is “good”, norm(r0) will be
smaller than norm(b). If the same stopping tolerances atol and btol are used for each system, k1 and k2 will be
similar, but the final solution x0 + dx should be more accurate. The only way to reduce the total work is to use
a larger stopping tolerance for the second system. If some value btol is suitable for A*x = b, the larger value
btol*norm(b)/norm(r0) should be suitable for A*dx = r0.

Preconditioning is another way to reduce the number of iterations. If it is possible to solve a related system M*x
= b efficiently, where M approximates A in some helpful way (e.g. M - A has low rank or its elements are
small relative to those of A), LSQR may converge more rapidly on the system A*M(inverse)*z = b, after
which x can be recovered by solving M*x = z.

1066 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

If A is symmetric, LSQR should not be used!

Alternatives are the symmetric conjugate-gradient method (cg) and/or SYMMLQ. SYMMLQ is an implemen-
tation of symmetric cg that applies to any symmetric A and will converge more rapidly than LSQR. If A is
positive definite, there are other implementations of symmetric cg that require slightly less work per iteration
than SYMMLQ (but will take the same number of iterations).

References

[R264], [R265], [R266]

scipy.sparse.linalg.lsmr(A, b, damp=0.0, atol=1e-06, btol=1e-06, conlim=100000000.0, max-
iter=None, show=False)

Iterative solver for least-squares problems.

lsmr solves the system of linear equations Ax = b. If the system is inconsistent, it solves the least-squares
problem min ||b - Ax||_2. A is a rectangular matrix of dimension m-by-n, where all cases are allowed:
m = n, m > n, or m < n. B is a vector of length m. The matrix A may be dense or sparse (usually sparse).

Parameters A : {matrix, sparse matrix, ndarray, LinearOperator}
Matrix A in the linear system.

b : (m,) ndarray
Vector b in the linear system.

damp : float
Damping factor for regularized least-squares. lsmr solves the regularized
least-squares problem:

min ||(b) - (A)x||
||(0) (damp*I) ||_2

where damp is a scalar. If damp is None or 0, the system is solved without
regularization.

atol, btol : float, optional
Stopping tolerances. lsmr continues iterations until a certain backward er-
ror estimate is smaller than some quantity depending on atol and btol. Let
r = b - Ax be the residual vector for the current approximate solution
x. If Ax = b seems to be consistent, lsmr terminates when norm(r)
<= atol * norm(A) * norm(x) + btol * norm(b). Other-
wise, lsmr terminates when norm(A^{T} r) <= atol * norm(A)

* norm(r). If both tolerances are 1.0e-6 (say), the final norm(r)
should be accurate to about 6 digits. (The final x will usually have fewer
correct digits, depending on cond(A) and the size of LAMBDA.) If atol
or btol is None, a default value of 1.0e-6 will be used. Ideally, they should
be estimates of the relative error in the entries of A and B respectively. For
example, if the entries of A have 7 correct digits, set atol = 1e-7. This pre-
vents the algorithm from doing unnecessary work beyond the uncertainty
of the input data.

conlim : float, optional
lsmr terminates if an estimate of cond(A) exceeds conlim. For compati-
ble systems Ax = b, conlim could be as large as 1.0e+12 (say). For least-
squares problems, conlim should be less than 1.0e+8. If conlim is None,
the default value is 1e+8. Maximum precision can be obtained by setting
atol = btol = conlim = 0, but the number of iterations may then
be excessive.

maxiter : int, optional
lsmr terminates if the number of iterations reaches maxiter. The default is
maxiter = min(m, n). For ill-conditioned systems, a larger value of
maxiter may be needed.

5.29. Sparse linear algebra (scipy.sparse.linalg) 1067

SciPy Reference Guide, Release 0.16.0

show : bool, optional
Print iterations logs if show=True.Returns x : ndarray of float
Least-square solution returned.

istop : int
istop gives the reason for stopping:

istop = 0 means x=0 is a solution.
= 1 means x is an approximate solution to A*x = B,

according to atol and btol.
= 2 means x approximately solves the least-squares problem

according to atol.
= 3 means COND(A) seems to be greater than CONLIM.
= 4 is the same as 1 with atol = btol = eps (machine

precision)
= 5 is the same as 2 with atol = eps.
= 6 is the same as 3 with CONLIM = 1/eps.
= 7 means ITN reached maxiter before the other stopping

conditions were satisfied.

itn : int
Number of iterations used.

normr : float
norm(b-Ax)

normar : float
norm(A^T (b - Ax))

norma : float
norm(A)

conda : float
Condition number of A.

normx : float
norm(x)

Notes

New in version 0.11.0.

References

[R262], [R263]

5.29.5 Matrix factorizations

Eigenvalue problems:

eigs(A[, k, M, sigma, which, v0, ncv, ...]) Find k eigenvalues and eigenvectors of the square matrix A.
eigsh(A[, k, M, sigma, which, v0, ncv, ...]) Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex hermitian matrix A.
lobpcg(A, X[, B, M, Y, tol, maxiter, ...]) Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG)

scipy.sparse.linalg.eigs(A, k=6, M=None, sigma=None, which=’LM’, v0=None, ncv=None, max-
iter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None,
OPpart=None)

Find k eigenvalues and eigenvectors of the square matrix A.

Solves A * x[i] = w[i] * x[i], the standard eigenvalue problem for w[i] eigenvalues with correspond-
ing eigenvectors x[i].

1068 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

If M is specified, solves A * x[i] = w[i] * M * x[i], the generalized eigenvalue problem for w[i]
eigenvalues with corresponding eigenvectors x[i]

Parameters A : ndarray, sparse matrix or LinearOperator
An array, sparse matrix, or LinearOperator representing the operation A *
x, where A is a real or complex square matrix.

k : int, optional
The number of eigenvalues and eigenvectors desired. k must be smaller
than N. It is not possible to compute all eigenvectors of a matrix.

M : ndarray, sparse matrix or LinearOperator, optional
An array, sparse matrix, or LinearOperator representing the operation M*x
for the generalized eigenvalue problem

A * x = w * M * x.
M must represent a real, symmetric matrix if A is real, and must represent
a complex, hermitian matrix if A is complex. For best results, the data type
of M should be the same as that of A. Additionally:

If sigma is None, M is positive definite
If sigma is specified, M is positive semi-definite

If sigma is None, eigs requires an operator to compute the solution of the
linear equation M * x = b. This is done internally via a (sparse) LU de-
composition for an explicit matrix M, or via an iterative solver for a general
linear operator. Alternatively, the user can supply the matrix or operator
Minv, which gives x = Minv * b = M^-1 * b.

sigma : real or complex, optional
Find eigenvalues near sigma using shift-invert mode. This requires an op-
erator to compute the solution of the linear system [A - sigma * M]

* x = b, where M is the identity matrix if unspecified. This is computed
internally via a (sparse) LU decomposition for explicit matrices A & M, or
via an iterative solver if either A or M is a general linear operator. Alter-
natively, the user can supply the matrix or operator OPinv, which gives x
= OPinv * b = [A - sigma * M]^-1 * b. For a real matrix A,
shift-invert can either be done in imaginary mode or real mode, specified
by the parameter OPpart (‘r’ or ‘i’). Note that when sigma is specified, the
keyword ‘which’ (below) refers to the shifted eigenvalues w’[i] where:

If A is real and OPpart == ‘r’ (default),
w’[i] = 1/2 * [1/(w[i]-sigma)
+ 1/(w[i]-conj(sigma))].

If A is real and OPpart == ‘i’,
w’[i] = 1/2i *
[1/(w[i]-sigma) -
1/(w[i]-conj(sigma))].

If A is complex, w’[i] = 1/(w[i]-sigma).
v0 : ndarray, optional

Starting vector for iteration. Default: random
ncv : int, optional

The number of Lanczos vectors generated ncv must be greater than k; it is
recommended that ncv > 2*k. Default: min(n, 2*k + 1)

which : str, [’LM’ | ‘SM’ | ‘LR’ | ‘SR’ | ‘LI’ | ‘SI’], optional
Which k eigenvectors and eigenvalues to find:

‘LM’ : largest magnitude
‘SM’ : smallest magnitude
‘LR’ : largest real part
‘SR’ : smallest real part
‘LI’ : largest imaginary part

5.29. Sparse linear algebra (scipy.sparse.linalg) 1069

SciPy Reference Guide, Release 0.16.0

‘SI’ : smallest imaginary part
When sigma != None, ‘which’ refers to the shifted eigenvalues w’[i] (see
discussion in ‘sigma’, above). ARPACK is generally better at finding large
values than small values. If small eigenvalues are desired, consider using
shift-invert mode for better performance.

maxiter : int, optional
Maximum number of Arnoldi update iterations allowed Default: n*10

tol : float, optional
Relative accuracy for eigenvalues (stopping criterion) The default value of
0 implies machine precision.

return_eigenvectors : bool, optional
Return eigenvectors (True) in addition to eigenvalues

Minv : ndarray, sparse matrix or LinearOperator, optional
See notes in M, above.

OPinv : ndarray, sparse matrix or LinearOperator, optional
See notes in sigma, above.

OPpart : {‘r’ or ‘i’}, optional
See notes in sigma, aboveReturns w : ndarray
Array of k eigenvalues.

v : ndarray
An array of k eigenvectors. v[:, i] is the eigenvector corresponding to
the eigenvalue w[i].Raises ArpackNoConvergence
When the requested convergence is not obtained. The currently con-
verged eigenvalues and eigenvectors can be found as eigenvalues and
eigenvectors attributes of the exception object.

See also:

eigsh eigenvalues and eigenvectors for symmetric matrix A
svds singular value decomposition for a matrix A

Notes

This function is a wrapper to the ARPACK [R250] SNEUPD, DNEUPD, CNEUPD, ZNEUPD, functions which
use the Implicitly Restarted Arnoldi Method to find the eigenvalues and eigenvectors [R251].

References

[R250], [R251]

Examples

Find 6 eigenvectors of the identity matrix:

>>> import scipy.sparse as sparse
>>> id = np.eye(13)
>>> vals, vecs = sparse.linalg.eigs(id, k=6)
>>> vals
array([1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j])
>>> vecs.shape
(13, 6)

scipy.sparse.linalg.eigsh(A, k=6, M=None, sigma=None, which=’LM’, v0=None, ncv=None,
maxiter=None, tol=0, return_eigenvectors=True, Minv=None,
OPinv=None, mode=’normal’)

Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex hermitian matrix A.

1070 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Solves A * x[i] = w[i] * x[i], the standard eigenvalue problem for w[i] eigenvalues with correspond-
ing eigenvectors x[i].

If M is specified, solves A * x[i] = w[i] * M * x[i], the generalized eigenvalue problem for w[i]
eigenvalues with corresponding eigenvectors x[i]

Parameters A : An N x N matrix, array, sparse matrix, or LinearOperator representing
the operation A * x, where A is a real symmetric matrix For buckling mode
(see below) A must additionally be positive-definite

k : int, optional
The number of eigenvalues and eigenvectors desired. k must be smaller
than N. It is not possible to compute all eigenvectors of a matrix.Returns w : array
Array of k eigenvalues

v : array
An array representing the k eigenvectors. The column v[:, i] is the
eigenvector corresponding to the eigenvalue w[i].Other Parameters

M : An N x N matrix, array, sparse matrix, or linear operator representing
the operation M * x for the generalized eigenvalue problem

A * x = w * M * x.
M must represent a real, symmetric matrix if A is real, and must represent
a complex, hermitian matrix if A is complex. For best results, the data type
of M should be the same as that of A. Additionally:

If sigma is None, M is symmetric positive definite
If sigma is specified, M is symmetric positive semi-definite
In buckling mode, M is symmetric indefinite.

If sigma is None, eigsh requires an operator to compute the solution of
the linear equation M * x = b. This is done internally via a (sparse)
LU decomposition for an explicit matrix M, or via an iterative solver for
a general linear operator. Alternatively, the user can supply the matrix or
operator Minv, which gives x = Minv * b = M^-1 * b.

sigma : real
Find eigenvalues near sigma using shift-invert mode. This requires an op-
erator to compute the solution of the linear system [A - sigma * M] x = b,
where M is the identity matrix if unspecified. This is computed internally
via a (sparse) LU decomposition for explicit matrices A & M, or via an it-
erative solver if either A or M is a general linear operator. Alternatively, the
user can supply the matrix or operator OPinv, which gives x = OPinv *
b = [A - sigma * M]^-1 * b. Note that when sigma is specified,
the keyword ‘which’ refers to the shifted eigenvalues w’[i] where:

if mode == ‘normal’, w’[i] = 1 / (w[i] -
sigma).
if mode == ‘cayley’, w’[i] = (w[i] + sigma) /
(w[i] - sigma).
if mode == ‘buckling’, w’[i] = w[i] / (w[i] -
sigma).

(see further discussion in ‘mode’ below)
v0 : ndarray, optional

Starting vector for iteration. Default: random
ncv : int, optional

The number of Lanczos vectors generated ncv must be greater than k and
smaller than n; it is recommended that ncv > 2*k. Default: min(n,
2*k + 1)

which : str [’LM’ | ‘SM’ | ‘LA’ | ‘SA’ | ‘BE’]

5.29. Sparse linear algebra (scipy.sparse.linalg) 1071

SciPy Reference Guide, Release 0.16.0

If A is a complex hermitian matrix, ‘BE’ is invalid. Which k eigenvectors
and eigenvalues to find:

‘LM’ : Largest (in magnitude) eigenvalues
‘SM’ : Smallest (in magnitude) eigenvalues
‘LA’ : Largest (algebraic) eigenvalues
‘SA’ : Smallest (algebraic) eigenvalues
‘BE’ : Half (k/2) from each end of the spectrum

When k is odd, return one more (k/2+1) from the high end. When sigma !=
None, ‘which’ refers to the shifted eigenvalues w’[i] (see discussion in
‘sigma’, above). ARPACK is generally better at finding large values than
small values. If small eigenvalues are desired, consider using shift-invert
mode for better performance.

maxiter : int, optional
Maximum number of Arnoldi update iterations allowed Default: n*10

tol : float
Relative accuracy for eigenvalues (stopping criterion). The default value of
0 implies machine precision.

Minv : N x N matrix, array, sparse matrix, or LinearOperator
See notes in M, above

OPinv : N x N matrix, array, sparse matrix, or LinearOperator
See notes in sigma, above.

return_eigenvectors : bool
Return eigenvectors (True) in addition to eigenvalues

mode : string [’normal’ | ‘buckling’ | ‘cayley’]
Specify strategy to use for shift-invert mode. This argument applies only
for real-valued A and sigma != None. For shift-invert mode, ARPACK in-
ternally solves the eigenvalue problem OP * x’[i] = w’[i] * B *
x’[i] and transforms the resulting Ritz vectors x’[i] and Ritz values w’[i]
into the desired eigenvectors and eigenvalues of the problem A * x[i]
= w[i] * M * x[i]. The modes are as follows:

‘normal’ : OP = [A - sigma * M]^-1 * M, B = M, w’[i]
= 1 / (w[i] - sigma)

‘buckling’ : OP = [A - sigma * M]^-1 * A, B = A, w’[i] =
w[i] / (w[i] - sigma)

‘cayley’ : OP = [A - sigma * M]^-1 * [A + sigma * M],
B = M, w’[i] = (w[i] + sigma) / (w[i] - sigma)

The choice of mode will affect which eigenvalues are selected by the key-
word ‘which’, and can also impact the stability of convergence (see [2] for
a discussion)Raises ArpackNoConvergence
When the requested convergence is not obtained.
The currently converged eigenvalues and eigenvectors can be found as
eigenvalues and eigenvectors attributes of the exception object.

See also:

eigs eigenvalues and eigenvectors for a general (nonsymmetric) matrix A
svds singular value decomposition for a matrix A

Notes

This function is a wrapper to the ARPACK [R252] SSEUPD and DSEUPD functions which use the Implicitly
Restarted Lanczos Method to find the eigenvalues and eigenvectors [R253].

References

[R252], [R253]

1072 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> import scipy.sparse as sparse
>>> id = np.eye(13)
>>> vals, vecs = sparse.linalg.eigsh(id, k=6)
>>> vals
array([1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j])
>>> vecs.shape
(13, 6)

scipy.sparse.linalg.lobpcg(A, X, B=None, M=None, Y=None, tol=None, maxiter=20,
largest=True, verbosityLevel=0, retLambdaHistory=False, re-
tResidualNormsHistory=False)

Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG)

LOBPCG is a preconditioned eigensolver for large symmetric positive definite (SPD) generalized eigenprob-
lems.

Parameters A : {sparse matrix, dense matrix, LinearOperator}
The symmetric linear operator of the problem, usually a sparse matrix. Of-
ten called the “stiffness matrix”.

X : array_like
Initial approximation to the k eigenvectors. If A has shape=(n,n) then X
should have shape shape=(n,k).

B : {dense matrix, sparse matrix, LinearOperator}, optional
the right hand side operator in a generalized eigenproblem. by default, B =
Identity often called the “mass matrix”

M : {dense matrix, sparse matrix, LinearOperator}, optional
preconditioner to A; by default M = Identity M should approximate the
inverse of A

Y : array_like, optional
n-by-sizeY matrix of constraints, sizeY < n The iterations will be performed
in the B-orthogonal complement of the column-space of Y. Y must be full
rank.Returns w : array
Array of k eigenvalues

v : array
An array of k eigenvectors. V has the same shape as X.Other Parameters

tol : scalar, optional
Solver tolerance (stopping criterion) by default: tol=n*sqrt(eps)

maxiter : integer, optional
maximum number of iterations by default: maxiter=min(n,20)

largest : bool, optional
when True, solve for the largest eigenvalues, otherwise the smallest

verbosityLevel : integer, optional
controls solver output. default: verbosityLevel = 0.

retLambdaHistory : boolean, optional
whether to return eigenvalue history

retResidualNormsHistory : boolean, optional
whether to return history of residual norms

Notes

If both retLambdaHistory and retResidualNormsHistory are True, the return tuple has the following format
(lambda, V, lambda history, residual norms history).

In the following n denotes the matrix size and m the number of required eigenvalues (smallest or largest).

5.29. Sparse linear algebra (scipy.sparse.linalg) 1073

SciPy Reference Guide, Release 0.16.0

The LOBPCG code internally solves eigenproblems of the size 3‘‘m‘‘ on every iteration by calling the “stan-
dard” dense eigensolver, so if m is not small enough compared to n, it does not make sense to call the LOBPCG
code, but rather one should use the “standard” eigensolver, e.g. numpy or scipy function in this case. If one
calls the LOBPCG algorithm for 5‘‘m‘‘>‘‘n‘‘, it will most likely break internally, so the code tries to call the
standard function instead.

It is not that n should be large for the LOBPCG to work, but rather the ratio n/m should be large. It you call the
LOBPCG code with m‘‘=1 and ‘‘n‘‘=10, it should work, though ‘‘n is small. The method
is intended for extremely large n/m, see e.g., reference [28] in http://arxiv.org/abs/0705.2626

The convergence speed depends basically on two factors:
1.How well relatively separated the seeking eigenvalues are from the rest of the eigenvalues. One can try to

vary m to make this better.
2.How well conditioned the problem is. This can be changed by using proper preconditioning. For example,

a rod vibration test problem (under tests directory) is ill-conditioned for large n, so convergence will be
slow, unless efficient preconditioning is used. For this specific problem, a good simple preconditioner
function would be a linear solve for A, which is easy to code since A is tridiagonal.

Acknowledgements

lobpcg.py code was written by Robert Cimrman. Many thanks belong to Andrew Knyazev, the author of the
algorithm, for lots of advice and support.

References

[R259], [R260], [R261]

Examples

>>> # Solve A x = lambda B x with constraints and preconditioning.
>>> n = 100
>>> vals = [nm.arange(n, dtype = nm.float64) + 1]
>>> # Matrix A.
>>> operatorA = spdiags(vals, 0, n, n)
>>> # Matrix B
>>> operatorB = nm.eye(n, n)
>>> # Constraints.
>>> Y = nm.eye(n, 3)
>>> # Initial guess for eigenvectors, should have linearly independent
>>> # columns. Column dimension = number of requested eigenvalues.
>>> X = sc.rand(n, 3)
>>> # Preconditioner - inverse of A.
>>> ivals = [1./vals[0]]
>>> def precond(x):

invA = spdiags(ivals, 0, n, n)
y = invA * x
if sp.issparse(y):

y = y.toarray()

return as2d(y)

>>> # Alternative way of providing the same preconditioner.
>>> #precond = spdiags(ivals, 0, n, n)

>>> tt = time.clock()
>>> eigs, vecs = lobpcg(X, operatorA, operatorB, blockVectorY=Y,
>>> operatorT=precond,

1074 Chapter 5. Reference

http://arxiv.org/abs/0705.2626

SciPy Reference Guide, Release 0.16.0

>>> residualTolerance=1e-4, maxIterations=40,
>>> largest=False, verbosityLevel=1)
>>> print 'solution time:', time.clock() - tt
>>> print eigs

Singular values problems:

svds(A[, k, ncv, tol, which, v0, maxiter, ...]) Compute the largest k singular values/vectors for a sparse matrix.

scipy.sparse.linalg.svds(A, k=6, ncv=None, tol=0, which=’LM’, v0=None, maxiter=None, re-
turn_singular_vectors=True)

Compute the largest k singular values/vectors for a sparse matrix.

Parameters A : {sparse matrix, LinearOperator}
Array to compute the SVD on, of shape (M, N)

k : int, optional
Number of singular values and vectors to compute.

ncv : int, optional
The number of Lanczos vectors generated ncv must be greater than k+1 and
smaller than n; it is recommended that ncv > 2*k Default: min(n, 2*k
+ 1)

tol : float, optional
Tolerance for singular values. Zero (default) means machine precision.

which : str, [’LM’ | ‘SM’], optional
Which k singular values to find:

•‘LM’ : largest singular values•‘SM’ : smallest singular values
New in version 0.12.0.

v0 : ndarray, optional
Starting vector for iteration, of length min(A.shape). Should be an (approx-
imate) right singular vector if N > M and a right singular vector otherwise.
Default: random
New in version 0.12.0.

maxiter : int, optional
Maximum number of iterations.
New in version 0.12.0.

return_singular_vectors : bool or str, optional
•True: return singular vectors (True) in addition to singular
values.

New in version 0.12.0.
•“u”: only return the u matrix, without computing vh (if N >
M).•“vh”: only return the vh matrix, without computing u (if N
<= M).

New in version 0.16.0.Returns u : ndarray, shape=(M, k)
Unitary matrix having left singular vectors as columns. If re-
turn_singular_vectors is “vh”, this variable is not computed, and None is
returned instead.

s : ndarray, shape=(k,)
The singular values.

vt : ndarray, shape=(k, N)
Unitary matrix having right singular vectors as rows. If re-
turn_singular_vectors is “u”, this variable is not computed, and None is
returned instead.

5.29. Sparse linear algebra (scipy.sparse.linalg) 1075

SciPy Reference Guide, Release 0.16.0

Notes

This is a naive implementation using ARPACK as an eigensolver on A.H * A or A * A.H, depending on which
one is more efficient.

Complete or incomplete LU factorizations

splu(A[, permc_spec, diag_pivot_thresh, ...]) Compute the LU decomposition of a sparse, square matrix.
spilu(A[, drop_tol, fill_factor, drop_rule, ...]) Compute an incomplete LU decomposition for a sparse, square matrix.
SuperLU LU factorization of a sparse matrix.

scipy.sparse.linalg.splu(A, permc_spec=None, diag_pivot_thresh=None, drop_tol=None, re-
lax=None, panel_size=None, options={})

Compute the LU decomposition of a sparse, square matrix.

Parameters A : sparse matrix
Sparse matrix to factorize. Should be in CSR or CSC format.

permc_spec : str, optional
How to permute the columns of the matrix for sparsity preservation. (de-
fault: ‘COLAMD’)

•NATURAL: natural ordering.•MMD_ATA: minimum degree ordering on the structure of
A^T A.•MMD_AT_PLUS_A: minimum degree ordering on the struc-
ture of A^T+A.•COLAMD: approximate minimum degree column ordering

diag_pivot_thresh : float, optional
Threshold used for a diagonal entry to be an acceptable pivot. See SuperLU
user’s guide for details [R271]

drop_tol : float, optional
(deprecated) No effect.

relax : int, optional
Expert option for customizing the degree of relaxing supernodes. See Su-
perLU user’s guide for details [R271]

panel_size : int, optional
Expert option for customizing the panel size. See SuperLU user’s guide for
details [R271]

options : dict, optional
Dictionary containing additional expert options to SuperLU. See SuperLU
user guide [R271] (section 2.4 on the ‘Options’ argument) for more de-
tails. For example, you can specify options=dict(Equil=False,
IterRefine=’SINGLE’)) to turn equilibration off and perform a sin-
gle iterative refinement.Returns invA : scipy.sparse.linalg.SuperLU
Object, which has a solve method.

See also:

spilu incomplete LU decomposition

Notes

This function uses the SuperLU library.

References

[R271]

1076 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.sparse.linalg.spilu(A, drop_tol=None, fill_factor=None, drop_rule=None,
permc_spec=None, diag_pivot_thresh=None, relax=None,
panel_size=None, options=None)

Compute an incomplete LU decomposition for a sparse, square matrix.

The resulting object is an approximation to the inverse of A.

Parameters A : (N, N) array_like
Sparse matrix to factorize

drop_tol : float, optional
Drop tolerance (0 <= tol <= 1) for an incomplete LU decomposition. (de-
fault: 1e-4)

fill_factor : float, optional
Specifies the fill ratio upper bound (>= 1.0) for ILU. (default: 10)

drop_rule : str, optional
Comma-separated string of drop rules to use. Available rules: basic,
prows, column, area, secondary, dynamic, interp. (Default:
basic,area)
See SuperLU documentation for details.

Remaining other options
Same as for spluReturns invA_approx : scipy.sparse.linalg.SuperLU
Object, which has a solve method.

See also:

splu complete LU decomposition

Notes

To improve the better approximation to the inverse, you may need to increase fill_factor AND decrease drop_tol.

This function uses the SuperLU library.

class scipy.sparse.linalg.SuperLU
LU factorization of a sparse matrix.

Factorization is represented as:

Pr * A * Pc = L * U

To construct these SuperLU objects, call the splu and spilu functions.

Notes

New in version 0.14.0.

Examples

The LU decomposition can be used to solve matrix equations. Consider:

>>> import numpy as np
>>> from scipy.sparse import csc_matrix, linalg as sla
>>> A = csc_matrix([[1,2,0,4],[1,0,0,1],[1,0,2,1],[2,2,1,0.]])

This can be solved for a given right-hand side:

>>> lu = sla.splu(A)
>>> b = np.array([1, 2, 3, 4])
>>> x = lu.solve(b)

5.29. Sparse linear algebra (scipy.sparse.linalg) 1077

SciPy Reference Guide, Release 0.16.0

>>> A.dot(x)
array([1., 2., 3., 4.])

The lu object also contains an explicit representation of the decomposition. The permutations are represented
as mappings of indices:

>>> lu.perm_r
array([0, 2, 1, 3], dtype=int32)
>>> lu.perm_c
array([2, 0, 1, 3], dtype=int32)

The L and U factors are sparse matrices in CSC format:

>>> lu.L.A
array([[1. , 0. , 0. , 0.],

[0. , 1. , 0. , 0.],
[0. , 0. , 1. , 0.],
[1. , 0.5, 0.5, 1.]])

>>> lu.U.A
array([[2., 0., 1., 4.],

[0., 2., 1., 1.],
[0., 0., 1., 1.],
[0., 0., 0., -5.]])

The permutation matrices can be constructed:

>>> Pr = csc_matrix((4, 4))
>>> Pr[lu.perm_r, np.arange(4)] = 1
>>> Pc = csc_matrix((4, 4))
>>> Pc[np.arange(4), lu.perm_c] = 1

We can reassemble the original matrix:

>>> (Pr.T * (lu.L * lu.U) * Pc.T).A
array([[1., 2., 0., 4.],

[1., 0., 0., 1.],
[1., 0., 2., 1.],
[2., 2., 1., 0.]])

Attributes

shape Shape of the original matrix as a tuple of ints.
nnz Number of nonzero elements in the matrix.
perm_c Permutation Pc represented as an array of indices.
perm_r Permutation Pr represented as an array of indices.
L Lower triangular factor with unit diagonal as a scipy.sparse.csc_matrix.
U Upper triangular factor as a scipy.sparse.csc_matrix.

SuperLU.shape
Shape of the original matrix as a tuple of ints.

SuperLU.nnz
Number of nonzero elements in the matrix.

SuperLU.perm_c
Permutation Pc represented as an array of indices.

1078 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The column permutation matrix can be reconstructed via:

>>> Pc = np.zeros((n, n))
>>> Pc[np.arange(n), perm_c] = 1

SuperLU.perm_r
Permutation Pr represented as an array of indices.

The row permutation matrix can be reconstructed via:

>>> Pr = np.zeros((n, n))
>>> Pr[perm_r, np.arange(n)] = 1

SuperLU.L
Lower triangular factor with unit diagonal as a scipy.sparse.csc_matrix.

New in version 0.14.0.

SuperLU.U
Upper triangular factor as a scipy.sparse.csc_matrix.

New in version 0.14.0.

Methods

solve(rhs[, trans]) Solves linear system of equations with one or several right-hand sides.

SuperLU.solve(rhs[, trans])
Solves linear system of equations with one or several right-hand sides.

Parameters rhs : ndarray, shape (n,) or (n, k)
Right hand side(s) of equation

trans : {‘N’, ‘T’, ‘H’}, optional
Type of system to solve:

'N': A * x == rhs (default)
'T': A^T * x == rhs
'H': A^H * x == rhs

i.e., normal, transposed, and hermitian conjugate.Returns x : ndarray, shape rhs.shape
Solution vector(s)

5.29.6 Exceptions

ArpackNoConvergence(msg, eigenvalues, ...) ARPACK iteration did not converge
ArpackError(info[, infodict]) ARPACK error

exception scipy.sparse.linalg.ArpackNoConvergence(msg, eigenvalues, eigenvectors)
ARPACK iteration did not converge

Attributes

eigenvalues (ndarray) Partial result. Converged eigenvalues.
eigenvectors (ndarray) Partial result. Converged eigenvectors.

5.29. Sparse linear algebra (scipy.sparse.linalg) 1079

SciPy Reference Guide, Release 0.16.0

exception scipy.sparse.linalg.ArpackError(info, infodict={‘c’: {0: ‘Normal exit.’, 1: ‘Maximum
number of iterations taken. All possible eigenvalues
of OP has been found. IPARAM(5) returns the num-
ber of wanted converged Ritz values.’, 2: ‘No longer
an informational error. Deprecated starting with re-
lease 2 of ARPACK.’, 3: ‘No shifts could be applied
during a cycle of the Implicitly restarted Arnoldi it-
eration. One possibility is to increase the size of
NCV relative to NEV. ‘, -9999: ‘Could not build an
Arnoldi factorization. IPARAM(5) returns the size
of the current Arnoldi factorization. The user is ad-
vised to check that enough workspace and array stor-
age has been allocated.’, -13: “NEV and WHICH
= ‘BE’ are incompatible.”, -12: ‘IPARAM(1) must
be equal to 0 or 1.’, -1: ‘N must be positive.’, -10:
‘IPARAM(7) must be 1, 2, 3.’, -9: ‘Starting vec-
tor is zero.’, -8: ‘Error return from LAPACK eigen-
value calculation;’, -7: ‘Length of private work ar-
ray WORKL is not sufficient.’, -6: “BMAT must be
one of ‘I’ or ‘G’.”, -5: ” WHICH must be one of
‘LM’, ‘SM’, ‘LR’, ‘SR’, ‘LI’, ‘SI”’, -4: ‘The max-
imum number of Arnoldi update iterations allowed
must be greater than zero.’, -3: ‘NCV-NEV >= 2 and
less than or equal to N.’, -2: ‘NEV must be posi-
tive.’, -11: “IPARAM(7) = 1 and BMAT = ‘G’ are in-
compatible.”}, ‘s’: {0: ‘Normal exit.’, 1: ‘Maximum
number of iterations taken. All possible eigenvalues
of OP has been found. IPARAM(5) returns the num-
ber of wanted converged Ritz values.’, 2: ‘No longer
an informational error. Deprecated starting with re-
lease 2 of ARPACK.’, 3: ‘No shifts could be applied
during a cycle of the Implicitly restarted Arnoldi it-
eration. One possibility is to increase the size of
NCV relative to NEV. ‘, -9999: ‘Could not build an
Arnoldi factorization. IPARAM(5) returns the size
of the current Arnoldi factorization. The user is ad-
vised to check that enough workspace and array stor-
age has been allocated.’, -13: “NEV and WHICH =
‘BE’ are incompatible.”, -12: ‘IPARAM(1) must be
equal to 0 or 1.’, -2: ‘NEV must be positive.’, -10:
‘IPARAM(7) must be 1, 2, 3, 4.’, -9: ‘Starting vec-
tor is zero.’, -8: ‘Error return from LAPACK eigen-
value calculation;’, -7: ‘Length of private work ar-
ray WORKL is not sufficient.’, -6: “BMAT must be
one of ‘I’ or ‘G’.”, -5: ” WHICH must be one of
‘LM’, ‘SM’, ‘LR’, ‘SR’, ‘LI’, ‘SI”’, -4: ‘The max-
imum number of Arnoldi update iterations allowed
must be greater than zero.’, -3: ‘NCV-NEV >= 2
and less than or equal to N.’, -1: ‘N must be posi-
tive.’, -11: “IPARAM(7) = 1 and BMAT = ‘G’ are in-
compatible.”}, ‘z’: {0: ‘Normal exit.’, 1: ‘Maximum
number of iterations taken. All possible eigenvalues
of OP has been found. IPARAM(5) returns the num-
ber of wanted converged Ritz values.’, 2: ‘No longer
an informational error. Deprecated starting with re-
lease 2 of ARPACK.’, 3: ‘No shifts could be applied
during a cycle of the Implicitly restarted Arnoldi it-
eration. One possibility is to increase the size of
NCV relative to NEV. ‘, -9999: ‘Could not build an
Arnoldi factorization. IPARAM(5) returns the size
of the current Arnoldi factorization. The user is ad-
vised to check that enough workspace and array stor-
age has been allocated.’, -13: “NEV and WHICH
= ‘BE’ are incompatible.”, -12: ‘IPARAM(1) must
be equal to 0 or 1.’, -1: ‘N must be positive.’, -10:
‘IPARAM(7) must be 1, 2, 3.’, -9: ‘Starting vec-
tor is zero.’, -8: ‘Error return from LAPACK eigen-
value calculation;’, -7: ‘Length of private work ar-
ray WORKL is not sufficient.’, -6: “BMAT must be
one of ‘I’ or ‘G’.”, -5: ” WHICH must be one of
‘LM’, ‘SM’, ‘LR’, ‘SR’, ‘LI’, ‘SI”’, -4: ‘The max-
imum number of Arnoldi update iterations allowed
must be greater than zero.’, -3: ‘NCV-NEV >= 2 and
less than or equal to N.’, -2: ‘NEV must be posi-
tive.’, -11: “IPARAM(7) = 1 and BMAT = ‘G’ are in-
compatible.”}, ‘d’: {0: ‘Normal exit.’, 1: ‘Maximum
number of iterations taken. All possible eigenvalues
of OP has been found. IPARAM(5) returns the num-
ber of wanted converged Ritz values.’, 2: ‘No longer
an informational error. Deprecated starting with re-
lease 2 of ARPACK.’, 3: ‘No shifts could be applied
during a cycle of the Implicitly restarted Arnoldi it-
eration. One possibility is to increase the size of
NCV relative to NEV. ‘, -9999: ‘Could not build an
Arnoldi factorization. IPARAM(5) returns the size
of the current Arnoldi factorization. The user is ad-
vised to check that enough workspace and array stor-
age has been allocated.’, -13: “NEV and WHICH =
‘BE’ are incompatible.”, -12: ‘IPARAM(1) must be
equal to 0 or 1.’, -2: ‘NEV must be positive.’, -10:
‘IPARAM(7) must be 1, 2, 3, 4.’, -9: ‘Starting vec-
tor is zero.’, -8: ‘Error return from LAPACK eigen-
value calculation;’, -7: ‘Length of private work ar-
ray WORKL is not sufficient.’, -6: “BMAT must be
one of ‘I’ or ‘G’.”, -5: ” WHICH must be one of
‘LM’, ‘SM’, ‘LR’, ‘SR’, ‘LI’, ‘SI”’, -4: ‘The max-
imum number of Arnoldi update iterations allowed
must be greater than zero.’, -3: ‘NCV-NEV >= 2 and
less than or equal to N.’, -1: ‘N must be positive.’,
-11: “IPARAM(7) = 1 and BMAT = ‘G’ are incom-
patible.”}})

1080 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

ARPACK error

5.30 Compressed Sparse Graph Routines (scipy.sparse.csgraph)

Fast graph algorithms based on sparse matrix representations.

5.30.1 Contents

connected_components(csgraph[, directed, ...]) Analyze the connected components of a sparse graph
laplacian(csgraph[, normed, return_diag, ...]) Return the Laplacian matrix of a directed graph.
shortest_path(csgraph[, method, directed, ...]) Perform a shortest-path graph search on a positive directed or undirected graph.
dijkstra(csgraph[, directed, indices, ...]) Dijkstra algorithm using Fibonacci Heaps
floyd_warshall(csgraph[, directed, ...]) Compute the shortest path lengths using the Floyd-Warshall algorithm
bellman_ford(csgraph[, directed, indices, ...]) Compute the shortest path lengths using the Bellman-Ford algorithm.
johnson(csgraph[, directed, indices, ...]) Compute the shortest path lengths using Johnson’s algorithm.
breadth_first_order(csgraph, i_start[, ...]) Return a breadth-first ordering starting with specified node.
depth_first_order(csgraph, i_start[, ...]) Return a depth-first ordering starting with specified node.
breadth_first_tree(csgraph, i_start[, directed]) Return the tree generated by a breadth-first search
depth_first_tree(csgraph, i_start[, directed]) Return a tree generated by a depth-first search.
minimum_spanning_tree(csgraph[, overwrite]) Return a minimum spanning tree of an undirected graph
reverse_cuthill_mckee Returns the permutation array that orders a sparse CSR or CSC matrix in Reverse-Cuthill McKee ordering.
maximum_bipartite_matching Returns an array of row or column permutations that makes the diagonal of a nonsingular square CSC sparse matrix zero free.

scipy.sparse.csgraph.connected_components(csgraph, directed=True, connection=’weak’, re-
turn_labels=True)

Analyze the connected components of a sparse graph

New in version 0.11.0.

Parameters csgraph : array_like or sparse matrix
The N x N matrix representing the compressed sparse graph. The input
csgraph will be converted to csr format for the calculation.

directed : bool, optional
If True (default), then operate on a directed graph: only move from point
i to point j along paths csgraph[i, j]. If False, then find the shortest path
on an undirected graph: the algorithm can progress from point i to j along
csgraph[i, j] or csgraph[j, i].

connection : str, optional
[’weak’|’strong’]. For directed graphs, the type of connection to use. Nodes
i and j are strongly connected if a path exists both from i to j and from j to
i. Nodes i and j are weakly connected if only one of these paths exists. If
directed == False, this keyword is not referenced.

return_labels : str, optional
If True (default), then return the labels for each of the connected compo-
nents.Returns n_components: int
The number of connected components.

labels: ndarray
The length-N array of labels of the connected components.

5.30. Compressed Sparse Graph Routines (scipy.sparse.csgraph) 1081

SciPy Reference Guide, Release 0.16.0

References

[R204]

scipy.sparse.csgraph.laplacian(csgraph, normed=False, return_diag=False,
use_out_degree=False)

Return the Laplacian matrix of a directed graph.

Parameters csgraph : array_like or sparse matrix, 2 dimensions
compressed-sparse graph, with shape (N, N).

normed : bool, optional
If True, then compute normalized Laplacian.

return_diag : bool, optional
If True, then also return an array related to vertex degrees.

use_out_degree : bool, optional
If True, then use out-degree instead of in-degree. This distinction matters
only if the graph is asymmetric. Default: False.Returns lap : ndarray
The N x N laplacian matrix of graph.

diag : ndarray, optional
The length-N diagonal of the Laplacian matrix. For the normalized Lapla-
cian, this is the array of square roots of vertex degrees or 1 if the degree is
zero.

Notes

The Laplacian matrix of a graph is sometimes referred to as the “Kirchoff matrix” or the “admittance matrix”,
and is useful in many parts of spectral graph theory. In particular, the eigen-decomposition of the laplacian
matrix can give insight into many properties of the graph.

Examples

>>> from scipy.sparse import csgraph
>>> G = np.arange(5) * np.arange(5)[:, np.newaxis]
>>> G
array([[0, 0, 0, 0, 0],

[0, 1, 2, 3, 4],
[0, 2, 4, 6, 8],
[0, 3, 6, 9, 12],
[0, 4, 8, 12, 16]])

>>> csgraph.laplacian(G, normed=False)
array([[0, 0, 0, 0, 0],

[0, 9, -2, -3, -4],
[0, -2, 16, -6, -8],
[0, -3, -6, 21, -12],
[0, -4, -8, -12, 24]])

scipy.sparse.csgraph.shortest_path(csgraph, method=’auto’, directed=True, re-
turn_predecessors=False, unweighted=False, over-
write=False)

Perform a shortest-path graph search on a positive directed or undirected graph.

New in version 0.11.0.

Parameters csgraph : array, matrix, or sparse matrix, 2 dimensions
The N x N array of distances representing the input graph.

method : string [’auto’|’FW’|’D’], optional
Algorithm to use for shortest paths. Options are:

1082 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

‘auto’ – (default) select the best among ‘FW’, ‘D’, ‘BF’, or ‘J’

based on the input data.
‘FW’ – Floyd-Warshall algorithm. Computational cost is

approximately O[N^3]. The input csgraph
will be converted to a dense representation.

‘D’ – Dijkstra’s algorithm with Fibonacci heaps. Computational

cost is approximately O[N(N*k +
N*log(N))], where k is the average
number of connected edges per node. The
input csgraph will be converted to a csr
representation.

‘BF’ – Bellman-Ford algorithm. This algorithm can be used when

weights are negative. If a negative cycle is
encountered, an error will be raised. Com-
putational cost is approximately O[N(N^2
k)], where k is the average number of
connected edges per node. The input csgraph
will be converted to a csr representation.

‘J’ – Johnson’s algorithm. Like the Bellman-Ford algorithm,

Johnson’s algorithm is designed for use
when the weights are negative. It combines
the Bellman-Ford algorithm with Dijkstra’s
algorithm for faster computation.

directed : bool, optional
If True (default), then find the shortest path on a directed graph: only move
from point i to point j along paths csgraph[i, j]. If False, then find the
shortest path on an undirected graph: the algorithm can progress from point
i to j along csgraph[i, j] or csgraph[j, i]

return_predecessors : bool, optional
If True, return the size (N, N) predecesor matrix

unweighted : bool, optional
If True, then find unweighted distances. That is, rather than finding the path
between each point such that the sum of weights is minimized, find the path
such that the number of edges is minimized.

overwrite : bool, optional
If True, overwrite csgraph with the result. This applies only if method ==
‘FW’ and csgraph is a dense, c-ordered array with dtype=float64.Returns dist_matrix : ndarray
The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives
the shortest distance from point i to point j along the graph.

predecessors : ndarray
Returned only if return_predecessors == True. The N x N matrix of prede-
cessors, which can be used to reconstruct the shortest paths. Row i of the
predecessor matrix contains information on the shortest paths from point
i: each entry predecessors[i, j] gives the index of the previous node in the
path from point i to point j. If no path exists between point i and j, then
predecessors[i, j] = -9999Raises NegativeCycleError:
if there are negative cycles in the graph

5.30. Compressed Sparse Graph Routines (scipy.sparse.csgraph) 1083

SciPy Reference Guide, Release 0.16.0

Notes

As currently implemented, Dijkstra’s algorithm and Johnson’s algorithm do not work for graphs with direction-
dependent distances when directed == False. i.e., if csgraph[i,j] and csgraph[j,i] are non-equal edges,
method=’D’ may yield an incorrect result.

scipy.sparse.csgraph.dijkstra(csgraph, directed=True, indices=None, re-
turn_predecessors=False, unweighted=False)

Dijkstra algorithm using Fibonacci Heaps

New in version 0.11.0.

Parameters csgraph : array, matrix, or sparse matrix, 2 dimensions
The N x N array of non-negative distances representing the input graph.

directed : bool, optional
If True (default), then find the shortest path on a directed graph: only move
from point i to point j along paths csgraph[i, j]. If False, then find the
shortest path on an undirected graph: the algorithm can progress from point
i to j along csgraph[i, j] or csgraph[j, i]

indices : array_like or int, optional
if specified, only compute the paths for the points at the given indices.

return_predecessors : bool, optional
If True, return the size (N, N) predecesor matrix

unweighted : bool, optional
If True, then find unweighted distances. That is, rather than finding the path
between each point such that the sum of weights is minimized, find the path
such that the number of edges is minimized.

limit : float, optional
The maximum distance to calculate, must be >= 0. Using a smaller limit
will decrease computation time by aborting calculations between pairs that
are separated by a distance > limit. For such pairs, the distance will be equal
to np.inf (i.e., not connected). .. versionadded:: 0.14.0Returns dist_matrix : ndarray
The matrix of distances between graph nodes. dist_matrix[i,j] gives the
shortest distance from point i to point j along the graph.

predecessors : ndarray
Returned only if return_predecessors == True. The matrix of predecessors,
which can be used to reconstruct the shortest paths. Row i of the prede-
cessor matrix contains information on the shortest paths from point i: each
entry predecessors[i, j] gives the index of the previous node in the path from
point i to point j. If no path exists between point i and j, then predecessors[i,
j] = -9999

Notes

As currently implemented, Dijkstra’s algorithm does not work for graphs with direction-dependent distances
when directed == False. i.e., if csgraph[i,j] and csgraph[j,i] are not equal and both are nonzero, setting di-
rected=False will not yield the correct result.

Also, this routine does not work for graphs with negative distances. Negative distances can lead to infinite cycles
that must be handled by specialized algorithms such as Bellman-Ford’s algorithm or Johnson’s algorithm.

scipy.sparse.csgraph.floyd_warshall(csgraph, directed=True, return_predecessors=False, un-
weighted=False, overwrite=False)

Compute the shortest path lengths using the Floyd-Warshall algorithm

New in version 0.11.0.

Parameters csgraph : array, matrix, or sparse matrix, 2 dimensions

1084 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The N x N array of distances representing the input graph.
directed : bool, optional

If True (default), then find the shortest path on a directed graph: only move
from point i to point j along paths csgraph[i, j]. If False, then find the
shortest path on an undirected graph: the algorithm can progress from point
i to j along csgraph[i, j] or csgraph[j, i]

return_predecessors : bool, optional
If True, return the size (N, N) predecesor matrix

unweighted : bool, optional
If True, then find unweighted distances. That is, rather than finding the path
between each point such that the sum of weights is minimized, find the path
such that the number of edges is minimized.

overwrite : bool, optional
If True, overwrite csgraph with the result. This applies only if csgraph is a
dense, c-ordered array with dtype=float64.Returns dist_matrix : ndarray
The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives
the shortest distance from point i to point j along the graph.

predecessors : ndarray
Returned only if return_predecessors == True. The N x N matrix of prede-
cessors, which can be used to reconstruct the shortest paths. Row i of the
predecessor matrix contains information on the shortest paths from point
i: each entry predecessors[i, j] gives the index of the previous node in the
path from point i to point j. If no path exists between point i and j, then
predecessors[i, j] = -9999Raises NegativeCycleError:
if there are negative cycles in the graph

scipy.sparse.csgraph.bellman_ford(csgraph, directed=True, indices=None, re-
turn_predecessors=False, unweighted=False)

Compute the shortest path lengths using the Bellman-Ford algorithm.

The Bellman-ford algorithm can robustly deal with graphs with negative weights. If a negative cycle is detected,
an error is raised. For graphs without negative edge weights, dijkstra’s algorithm may be faster.

New in version 0.11.0.

Parameters csgraph : array, matrix, or sparse matrix, 2 dimensions
The N x N array of distances representing the input graph.

directed : bool, optional
If True (default), then find the shortest path on a directed graph: only move
from point i to point j along paths csgraph[i, j]. If False, then find the
shortest path on an undirected graph: the algorithm can progress from point
i to j along csgraph[i, j] or csgraph[j, i]

indices : array_like or int, optional
if specified, only compute the paths for the points at the given indices.

return_predecessors : bool, optional
If True, return the size (N, N) predecesor matrix

unweighted : bool, optional
If True, then find unweighted distances. That is, rather than finding the path
between each point such that the sum of weights is minimized, find the path
such that the number of edges is minimized.Returns dist_matrix : ndarray
The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives
the shortest distance from point i to point j along the graph.

predecessors : ndarray
Returned only if return_predecessors == True. The N x N matrix of prede-
cessors, which can be used to reconstruct the shortest paths. Row i of the

5.30. Compressed Sparse Graph Routines (scipy.sparse.csgraph) 1085

SciPy Reference Guide, Release 0.16.0

predecessor matrix contains information on the shortest paths from point
i: each entry predecessors[i, j] gives the index of the previous node in the
path from point i to point j. If no path exists between point i and j, then
predecessors[i, j] = -9999Raises NegativeCycleError:
if there are negative cycles in the graph

Notes

This routine is specially designed for graphs with negative edge weights. If all edge weights are positive, then
Dijkstra’s algorithm is a better choice.

scipy.sparse.csgraph.johnson(csgraph, directed=True, indices=None, re-
turn_predecessors=False, unweighted=False)

Compute the shortest path lengths using Johnson’s algorithm.

Johnson’s algorithm combines the Bellman-Ford algorithm and Dijkstra’s algorithm to quickly find shortest
paths in a way that is robust to the presence of negative cycles. If a negative cycle is detected, an error is raised.
For graphs without negative edge weights, dijkstra() may be faster.

New in version 0.11.0.

Parameters csgraph : array, matrix, or sparse matrix, 2 dimensions
The N x N array of distances representing the input graph.

directed : bool, optional
If True (default), then find the shortest path on a directed graph: only move
from point i to point j along paths csgraph[i, j]. If False, then find the
shortest path on an undirected graph: the algorithm can progress from point
i to j along csgraph[i, j] or csgraph[j, i]

indices : array_like or int, optional
if specified, only compute the paths for the points at the given indices.

return_predecessors : bool, optional
If True, return the size (N, N) predecesor matrix

unweighted : bool, optional
If True, then find unweighted distances. That is, rather than finding the path
between each point such that the sum of weights is minimized, find the path
such that the number of edges is minimized.Returns dist_matrix : ndarray
The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives
the shortest distance from point i to point j along the graph.

predecessors : ndarray
Returned only if return_predecessors == True. The N x N matrix of prede-
cessors, which can be used to reconstruct the shortest paths. Row i of the
predecessor matrix contains information on the shortest paths from point
i: each entry predecessors[i, j] gives the index of the previous node in the
path from point i to point j. If no path exists between point i and j, then
predecessors[i, j] = -9999Raises NegativeCycleError:
if there are negative cycles in the graph

Notes

This routine is specially designed for graphs with negative edge weights. If all edge weights are positive, then
Dijkstra’s algorithm is a better choice.

scipy.sparse.csgraph.breadth_first_order(csgraph, i_start, directed=True, re-
turn_predecessors=True)

Return a breadth-first ordering starting with specified node.

Note that a breadth-first order is not unique, but the tree which it generates is unique.

1086 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

New in version 0.11.0.

Parameters csgraph : array_like or sparse matrix
The N x N compressed sparse graph. The input csgraph will be converted
to csr format for the calculation.

i_start : int
The index of starting node.

directed : bool, optional
If True (default), then operate on a directed graph: only move from point
i to point j along paths csgraph[i, j]. If False, then find the shortest path
on an undirected graph: the algorithm can progress from point i to j along
csgraph[i, j] or csgraph[j, i].

return_predecessors : bool, optional
If True (default), then return the predecesor array (see below).Returns node_array : ndarray, one dimension
The breadth-first list of nodes, starting with specified node. The length of
node_array is the number of nodes reachable from the specified node.

predecessors : ndarray, one dimension
Returned only if return_predecessors is True. The length-N list of prede-
cessors of each node in a breadth-first tree. If node i is in the tree, then its
parent is given by predecessors[i]. If node i is not in the tree (and for the
parent node) then predecessors[i] = -9999.

scipy.sparse.csgraph.depth_first_order(csgraph, i_start, directed=True, re-
turn_predecessors=True)

Return a depth-first ordering starting with specified node.

Note that a depth-first order is not unique. Furthermore, for graphs with cycles, the tree generated by a depth-first
search is not unique either.

New in version 0.11.0.

Parameters csgraph : array_like or sparse matrix
The N x N compressed sparse graph. The input csgraph will be converted
to csr format for the calculation.

i_start : int
The index of starting node.

directed : bool, optional
If True (default), then operate on a directed graph: only move from point
i to point j along paths csgraph[i, j]. If False, then find the shortest path
on an undirected graph: the algorithm can progress from point i to j along
csgraph[i, j] or csgraph[j, i].

return_predecessors : bool, optional
If True (default), then return the predecesor array (see below).Returns node_array : ndarray, one dimension
The breadth-first list of nodes, starting with specified node. The length of
node_array is the number of nodes reachable from the specified node.

predecessors : ndarray, one dimension
Returned only if return_predecessors is True. The length-N list of prede-
cessors of each node in a breadth-first tree. If node i is in the tree, then its
parent is given by predecessors[i]. If node i is not in the tree (and for the
parent node) then predecessors[i] = -9999.

scipy.sparse.csgraph.breadth_first_tree(csgraph, i_start, directed=True)
Return the tree generated by a breadth-first search

Note that a breadth-first tree from a specified node is unique.

New in version 0.11.0.

5.30. Compressed Sparse Graph Routines (scipy.sparse.csgraph) 1087

SciPy Reference Guide, Release 0.16.0

Parameters csgraph : array_like or sparse matrix
The N x N matrix representing the compressed sparse graph. The input
csgraph will be converted to csr format for the calculation.

i_start : int
The index of starting node.

directed : bool, optional
If True (default), then operate on a directed graph: only move from point
i to point j along paths csgraph[i, j]. If False, then find the shortest path
on an undirected graph: the algorithm can progress from point i to j along
csgraph[i, j] or csgraph[j, i].Returns cstree : csr matrix
The N x N directed compressed-sparse representation of the breadth- first
tree drawn from csgraph, starting at the specified node.

Examples

The following example shows the computation of a depth-first tree over a simple four-component graph, starting
at node 0:

input graph breadth first tree from (0)

(0) (0)
/ \ / \

3 8 3 8
/ \ / \

(3)---5---(1) (3) (1)
\ / /
6 2 2
\ / /
(2) (2)

In compressed sparse representation, the solution looks like this:

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import breadth_first_tree
>>> X = csr_matrix([[0, 8, 0, 3],
... [0, 0, 2, 5],
... [0, 0, 0, 6],
... [0, 0, 0, 0]])
>>> Tcsr = breadth_first_tree(X, 0, directed=False)
>>> Tcsr.toarray().astype(int)
array([[0, 8, 0, 3],

[0, 0, 2, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]])

Note that the resulting graph is a Directed Acyclic Graph which spans the graph. A breadth-first tree from a
given node is unique.

scipy.sparse.csgraph.depth_first_tree(csgraph, i_start, directed=True)
Return a tree generated by a depth-first search.

Note that a tree generated by a depth-first search is not unique: it depends on the order that the children of each
node are searched.

New in version 0.11.0.

Parameters csgraph : array_like or sparse matrix

1088 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The N x N matrix representing the compressed sparse graph. The input
csgraph will be converted to csr format for the calculation.

i_start : int
The index of starting node.

directed : bool, optional
If True (default), then operate on a directed graph: only move from point
i to point j along paths csgraph[i, j]. If False, then find the shortest path
on an undirected graph: the algorithm can progress from point i to j along
csgraph[i, j] or csgraph[j, i].Returns cstree : csr matrix
The N x N directed compressed-sparse representation of the depth- first tree
drawn from csgraph, starting at the specified node.

Examples

The following example shows the computation of a depth-first tree over a simple four-component graph, starting
at node 0:

input graph depth first tree from (0)

(0) (0)
/ \ \

3 8 8
/ \ \

(3)---5---(1) (3) (1)
\ / \ /
6 2 6 2
\ / \ /
(2) (2)

In compressed sparse representation, the solution looks like this:

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import depth_first_tree
>>> X = csr_matrix([[0, 8, 0, 3],
... [0, 0, 2, 5],
... [0, 0, 0, 6],
... [0, 0, 0, 0]])
>>> Tcsr = depth_first_tree(X, 0, directed=False)
>>> Tcsr.toarray().astype(int)
array([[0, 8, 0, 0],

[0, 0, 2, 0],
[0, 0, 0, 6],
[0, 0, 0, 0]])

Note that the resulting graph is a Directed Acyclic Graph which spans the graph. Unlike a breadth-first tree, a
depth-first tree of a given graph is not unique if the graph contains cycles. If the above solution had begun with
the edge connecting nodes 0 and 3, the result would have been different.

scipy.sparse.csgraph.minimum_spanning_tree(csgraph, overwrite=False)
Return a minimum spanning tree of an undirected graph

A minimum spanning tree is a graph consisting of the subset of edges which together connect all connected
nodes, while minimizing the total sum of weights on the edges. This is computed using the Kruskal algorithm.

New in version 0.11.0.

Parameters csgraph : array_like or sparse matrix, 2 dimensions

5.30. Compressed Sparse Graph Routines (scipy.sparse.csgraph) 1089

SciPy Reference Guide, Release 0.16.0

The N x N matrix representing an undirected graph over N nodes (see notes
below).

overwrite : bool, optional
if true, then parts of the input graph will be overwritten for efficiency.Returns span_tree : csr matrix
The N x N compressed-sparse representation of the undirected minimum
spanning tree over the input (see notes below).

Notes

This routine uses undirected graphs as input and output. That is, if graph[i, j] and graph[j, i] are both zero,
then nodes i and j do not have an edge connecting them. If either is nonzero, then the two are connected by the
minimum nonzero value of the two.

Examples

The following example shows the computation of a minimum spanning tree over a simple four-component
graph:

input graph minimum spanning tree

(0) (0)
/ \ /

3 8 3
/ \ /

(3)---5---(1) (3)---5---(1)
\ / /
6 2 2
\ / /
(2) (2)

It is easy to see from inspection that the minimum spanning tree involves removing the edges with weights 8
and 6. In compressed sparse representation, the solution looks like this:

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import minimum_spanning_tree
>>> X = csr_matrix([[0, 8, 0, 3],
... [0, 0, 2, 5],
... [0, 0, 0, 6],
... [0, 0, 0, 0]])
>>> Tcsr = minimum_spanning_tree(X)
>>> Tcsr.toarray().astype(int)
array([[0, 0, 0, 3],

[0, 0, 2, 5],
[0, 0, 0, 0],
[0, 0, 0, 0]])

scipy.sparse.csgraph.reverse_cuthill_mckee()
Returns the permutation array that orders a sparse CSR or CSC matrix in Reverse-Cuthill McKee ordering.

It is assumed by default, symmetric_mode=False, that the input matrix is not symmetric and works on the
matrix A+A.T. If you are guaranteed that the matrix is symmetric in structure (values of matrix elements do not
matter) then set symmetric_mode=True.

Parameters graph : sparse matrix
Input sparse in CSC or CSR sparse matrix format.

symmetric_mode : bool, optional
Is input matrix guaranteed to be symmetric.Returns perm : ndarray

1090 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Array of permuted row and column indices.

Notes

New in version 0.15.0.

References

E. Cuthill and J. McKee, “Reducing the Bandwidth of Sparse Symmetric Matrices”, ACM ‘69 Proceedings of
the 1969 24th national conference, (1969).

scipy.sparse.csgraph.maximum_bipartite_matching()
Returns an array of row or column permutations that makes the diagonal of a nonsingular square CSC sparse
matrix zero free.

Such a permutation is always possible provided that the matrix is nonsingular. This function looks at the struc-
ture of the matrix only. The input matrix will be converted to CSC matrix format if necessary.

Parameters graph : sparse matrix
Input sparse in CSC format

perm_type : str, {‘row’, ‘column’}
Type of permutation to generate.Returns perm : ndarray
Array of row or column permutations.

Notes

This function relies on a maximum cardinality bipartite matching algorithm based on a breadth-first search
(BFS) of the underlying graph.

New in version 0.15.0.

References

I. S. Duff, K. Kaya, and B. Ucar, “Design, Implementation, and Analysis of Maximum Transversal Algorithms”,
ACM Trans. Math. Softw. 38, no. 2, (2011).

5.30.2 Graph Representations

This module uses graphs which are stored in a matrix format. A graph with N nodes can be represented by an (N x
N) adjacency matrix G. If there is a connection from node i to node j, then G[i, j] = w, where w is the weight of the
connection. For nodes i and j which are not connected, the value depends on the representation:

• for dense array representations, non-edges are represented by G[i, j] = 0, infinity, or NaN.

• for dense masked representations (of type np.ma.MaskedArray), non-edges are represented by masked values.
This can be useful when graphs with zero-weight edges are desired.

• for sparse array representations, non-edges are represented by non-entries in the matrix. This sort of sparse
representation also allows for edges with zero weights.

As a concrete example, imagine that you would like to represent the following undirected graph:

G

(0)
/ \

1 2
/ \

(2) (1)

5.30. Compressed Sparse Graph Routines (scipy.sparse.csgraph) 1091

SciPy Reference Guide, Release 0.16.0

This graph has three nodes, where node 0 and 1 are connected by an edge of weight 2, and nodes 0 and 2 are connected
by an edge of weight 1. We can construct the dense, masked, and sparse representations as follows, keeping in mind
that an undirected graph is represented by a symmetric matrix:

>>> G_dense = np.array([[0, 2, 1],
... [2, 0, 0],
... [1, 0, 0]])
>>> G_masked = np.ma.masked_values(G_dense, 0)
>>> from scipy.sparse import csr_matrix
>>> G_sparse = csr_matrix(G_dense)

This becomes more difficult when zero edges are significant. For example, consider the situation when we slightly
modify the above graph:

G2

(0)
/ \

0 2
/ \

(2) (1)

This is identical to the previous graph, except nodes 0 and 2 are connected by an edge of zero weight. In this case, the
dense representation above leads to ambiguities: how can non-edges be represented if zero is a meaningful value? In
this case, either a masked or sparse representation must be used to eliminate the ambiguity:

>>> G2_data = np.array([[np.inf, 2, 0],
... [2, np.inf, np.inf],
... [0, np.inf, np.inf]])
>>> G2_masked = np.ma.masked_invalid(G2_data)
>>> from scipy.sparse.csgraph import csgraph_from_dense
>>> # G2_sparse = csr_matrix(G2_data) would give the wrong result
>>> G2_sparse = csgraph_from_dense(G2_data, null_value=np.inf)
>>> G2_sparse.data
array([2., 0., 2., 0.])

Here we have used a utility routine from the csgraph submodule in order to convert the dense representation to a sparse
representation which can be understood by the algorithms in submodule. By viewing the data array, we can see that
the zero values are explicitly encoded in the graph.

Directed vs. Undirected

Matrices may represent either directed or undirected graphs. This is specified throughout the csgraph module by a
boolean keyword. Graphs are assumed to be directed by default. In a directed graph, traversal from node i to node j
can be accomplished over the edge G[i, j], but not the edge G[j, i]. In a non-directed graph, traversal from node i to
node j can be accomplished over either G[i, j] or G[j, i]. If both edges are not null, and the two have unequal weights,
then the smaller of the two is used. Note that a symmetric matrix will represent an undirected graph, regardless of
whether the ‘directed’ keyword is set to True or False. In this case, using directed=True generally leads to more
efficient computation.

The routines in this module accept as input either scipy.sparse representations (csr, csc, or lil format), masked repre-
sentations, or dense representations with non-edges indicated by zeros, infinities, and NaN entries.

1092 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

5.31 Spatial algorithms and data structures (scipy.spatial)

5.31.1 Nearest-neighbor Queries

KDTree(data[, leafsize]) kd-tree for quick nearest-neighbor lookup
cKDTree kd-tree for quick nearest-neighbor lookup
distance

class scipy.spatial.KDTree(data, leafsize=10)
kd-tree for quick nearest-neighbor lookup

This class provides an index into a set of k-dimensional points which can be used to rapidly look up the nearest
neighbors of any point.

Parameters data : (N,K) array_like
The data points to be indexed. This array is not copied, and so modifying
this data will result in bogus results.

leafsize : int, optional
The number of points at which the algorithm switches over to brute-force.
Has to be positive.Raises RuntimeError
The maximum recursion limit can be exceeded for large data sets. If this
happens, either increase the value for the leafsize parameter or increase the
recursion limit by:

>>> import sys
>>> sys.setrecursionlimit(10000)

Notes

The algorithm used is described in Maneewongvatana and Mount 1999. The general idea is that the kd-tree is
a binary tree, each of whose nodes represents an axis-aligned hyperrectangle. Each node specifies an axis and
splits the set of points based on whether their coordinate along that axis is greater than or less than a particular
value.

During construction, the axis and splitting point are chosen by the “sliding midpoint” rule, which ensures that
the cells do not all become long and thin.

The tree can be queried for the r closest neighbors of any given point (optionally returning only those within
some maximum distance of the point). It can also be queried, with a substantial gain in efficiency, for the r
approximate closest neighbors.

For large dimensions (20 is already large) do not expect this to run significantly faster than brute force. High-
dimensional nearest-neighbor queries are a substantial open problem in computer science.

The tree also supports all-neighbors queries, both with arrays of points and with other kd-trees. These do use a
reasonably efficient algorithm, but the kd-tree is not necessarily the best data structure for this sort of calculation.

Methods

count_neighbors(other, r[, p]) Count how many nearby pairs can be formed.
innernode(split_dim, split, less, greater)
leafnode(idx)
node

Continued on next page

5.31. Spatial algorithms and data structures (scipy.spatial) 1093

SciPy Reference Guide, Release 0.16.0

Table 5.192 – continued from previous page
query(x[, k, eps, p, distance_upper_bound]) Query the kd-tree for nearest neighbors
query_ball_point(x, r[, p, eps]) Find all points within distance r of point(s) x.
query_ball_tree(other, r[, p, eps]) Find all pairs of points whose distance is at most r
query_pairs(r[, p, eps]) Find all pairs of points within a distance.
sparse_distance_matrix(other, max_distance) Compute a sparse distance matrix

KDTree.count_neighbors(other, r, p=2.0)
Count how many nearby pairs can be formed.

Count the number of pairs (x1,x2) can be formed, with x1 drawn from self and x2 drawn from other,
and where distance(x1, x2, p) <= r. This is the “two-point correlation” described in Gray and
Moore 2000, “N-body problems in statistical learning”, and the code here is based on their algorithm.

Parameters other : KDTree instance
The other tree to draw points from.

r : float or one-dimensional array of floats
The radius to produce a count for. Multiple radii are searched with a
single tree traversal.

p : float, 1<=p<=infinity, optional
Which Minkowski p-norm to useReturns result : int or 1-D array of ints
The number of pairs. Note that this is internally stored in a numpy
int, and so may overflow if very large (2e9).

KDTree.query(x, k=1, eps=0, p=2, distance_upper_bound=inf)
Query the kd-tree for nearest neighbors

Parameters x : array_like, last dimension self.m
An array of points to query.

k : int, optional
The number of nearest neighbors to return.

eps : nonnegative float, optional
Return approximate nearest neighbors; the kth returned value is guar-
anteed to be no further than (1+eps) times the distance to the real kth
nearest neighbor.

p : float, 1<=p<=infinity, optional
Which Minkowski p-norm to use. 1 is the sum-of-absolute-values
“Manhattan” distance 2 is the usual Euclidean distance infinity is the
maximum-coordinate-difference distance

distance_upper_bound : nonnegative float, optional
Return only neighbors within this distance. This is used to prune tree
searches, so if you are doing a series of nearest-neighbor queries, it
may help to supply the distance to the nearest neighbor of the most
recent point.Returns d : float or array of floats
The distances to the nearest neighbors. If x has shape tuple+(self.m,),
then d has shape tuple if k is one, or tuple+(k,) if k is larger than
one. Missing neighbors (e.g. when k > n or distance_upper_bound
is given) are indicated with infinite distances. If k is None, then d is
an object array of shape tuple, containing lists of distances. In either
case the hits are sorted by distance (nearest first).

i : integer or array of integers
The locations of the neighbors in self.data. i is the same shape as d.

1094 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy import spatial
>>> x, y = np.mgrid[0:5, 2:8]
>>> tree = spatial.KDTree(list(zip(x.ravel(), y.ravel())))
>>> tree.data
array([[0, 2],

[0, 3],
[0, 4],
[0, 5],
[0, 6],
[0, 7],
[1, 2],
[1, 3],
[1, 4],
[1, 5],
[1, 6],
[1, 7],
[2, 2],
[2, 3],
[2, 4],
[2, 5],
[2, 6],
[2, 7],
[3, 2],
[3, 3],
[3, 4],
[3, 5],
[3, 6],
[3, 7],
[4, 2],
[4, 3],
[4, 4],
[4, 5],
[4, 6],
[4, 7]])

>>> pts = np.array([[0, 0], [2.1, 2.9]])
>>> tree.query(pts)
(array([2. , 0.14142136]), array([0, 13]))
>>> tree.query(pts[0])
(2.0, 0)

KDTree.query_ball_point(x, r, p=2.0, eps=0)
Find all points within distance r of point(s) x.

Parameters x : array_like, shape tuple + (self.m,)
The point or points to search for neighbors of.

r : positive float
The radius of points to return.

p : float, optional
Which Minkowski p-norm to use. Should be in the range [1, inf].

eps : nonnegative float, optional
Approximate search. Branches of the tree are not explored if their
nearest points are further than r / (1 + eps), and branches are
added in bulk if their furthest points are nearer than r * (1 +
eps).Returns results : list or array of lists
If x is a single point, returns a list of the indices of the neighbors of

5.31. Spatial algorithms and data structures (scipy.spatial) 1095

SciPy Reference Guide, Release 0.16.0

x. If x is an array of points, returns an object array of shape tuple
containing lists of neighbors.

Notes

If you have many points whose neighbors you want to find, you may save substantial amounts of time by
putting them in a KDTree and using query_ball_tree.

Examples

>>> from scipy import spatial
>>> x, y = np.mgrid[0:4, 0:4]
>>> points = zip(x.ravel(), y.ravel())
>>> tree = spatial.KDTree(points)
>>> tree.query_ball_point([2, 0], 1)
[4, 8, 9, 12]

KDTree.query_ball_tree(other, r, p=2.0, eps=0)
Find all pairs of points whose distance is at most r

Parameters other : KDTree instance
The tree containing points to search against.

r : float
The maximum distance, has to be positive.

p : float, optional
Which Minkowski norm to use. p has to meet the condition 1 <= p
<= infinity.

eps : float, optional
Approximate search. Branches of the tree are not explored if their
nearest points are further than r/(1+eps), and branches are added
in bulk if their furthest points are nearer than r * (1+eps). eps
has to be non-negative.Returns results : list of lists
For each element self.data[i] of this tree, results[i] is a
list of the indices of its neighbors in other.data.

KDTree.query_pairs(r, p=2.0, eps=0)
Find all pairs of points within a distance.

Parameters r : positive float
The maximum distance.

p : float, optional
Which Minkowski norm to use. p has to meet the condition 1 <= p
<= infinity.

eps : float, optional
Approximate search. Branches of the tree are not explored if their
nearest points are further than r/(1+eps), and branches are added
in bulk if their furthest points are nearer than r * (1+eps). eps
has to be non-negative.Returns results : set
Set of pairs (i,j), with i < j, for which the corresponding posi-
tions are close.

KDTree.sparse_distance_matrix(other, max_distance, p=2.0)
Compute a sparse distance matrix

Computes a distance matrix between two KDTrees, leaving as zero any distance greater than
max_distance.

1096 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters other : KDTree
max_distance : positive float
p : float, optionalReturns result : dok_matrix

Sparse matrix representing the results in “dictionary of keys” format.

class scipy.spatial.cKDTree
kd-tree for quick nearest-neighbor lookup

This class provides an index into a set of k-dimensional points which can be used to rapidly look up the nearest
neighbors of any point.

The algorithm used is described in Maneewongvatana and Mount 1999. The general idea is that the kd-tree is
a binary trie, each of whose nodes represents an axis-aligned hyperrectangle. Each node specifies an axis and
splits the set of points based on whether their coordinate along that axis is greater than or less than a particular
value.

During construction, the axis and splitting point are chosen by the “sliding midpoint” rule, which ensures that
the cells do not all become long and thin.

The tree can be queried for the r closest neighbors of any given point (optionally returning only those within
some maximum distance of the point). It can also be queried, with a substantial gain in efficiency, for the r
approximate closest neighbors.

For large dimensions (20 is already large) do not expect this to run significantly faster than brute force. High-
dimensional nearest-neighbor queries are a substantial open problem in computer science.

Parameters data : array_like, shape (n,m)
The n data points of dimension m to be indexed. This array is not copied
unless this is necessary to produce a contiguous array of doubles, and so
modifying this data will result in bogus results. The data are also copied if
the kd-tree is built with copy_data=True.

leafsize : positive int, optional
The number of points at which the algorithm switches over to brute-force.
Default: 16.

compact_nodes : bool, optional
If True, the kd-tree is built to shrink the hyperrectangles to the actual data
range. This usually gives a more compact tree and faster queries at the
expense of longer build time. Default: True.

copy_data : bool, optional
If True the data is always copied to protect the kd-tree against data corrup-
tion. Default: False.

balanced_tree : bool, optional
If True, the median is used to split the hyperrectangles instead of the mid-
point. This usually gives a more compact tree and faster queries at the
expense of longer build time. Default: True.

Attributes

data
indices
leafsize
m
maxes
mins
n
tree

5.31. Spatial algorithms and data structures (scipy.spatial) 1097

SciPy Reference Guide, Release 0.16.0

cKDTree.data

cKDTree.indices

cKDTree.leafsize

cKDTree.m

cKDTree.maxes

cKDTree.mins

cKDTree.n

cKDTree.tree

Methods

count_neighbors(self, other, r[, p]) Count how many nearby pairs can be formed.
query(self, x[, k, eps, p, ...]) Query the kd-tree for nearest neighbors
query_ball_point(self, x, r[, p, eps]) Find all points within distance r of point(s) x.
query_ball_tree(self, other, r[, p, eps]) Find all pairs of points whose distance is at most r
query_pairs(self, r[, p, eps]) Find all pairs of points whose distance is at most r.
sparse_distance_matrix(self, other, max_distance) Compute a sparse distance matrix

cKDTree.count_neighbors(self, other, r, p=2.)
Count how many nearby pairs can be formed.

Count the number of pairs (x1,x2) can be formed, with x1 drawn from self and x2 drawn from other,
and where distance(x1, x2, p) <= r. This is the “two-point correlation” described in Gray and
Moore 2000, “N-body problems in statistical learning”, and the code here is based on their algorithm.

Parameters other : KDTree instance
The other tree to draw points from.

r : float or one-dimensional array of floats
The radius to produce a count for. Multiple radii are searched with a
single tree traversal.

p : float, 1<=p<=infinity
Which Minkowski p-norm to useReturns result : int or 1-D array of ints
The number of pairs. Note that this is internally stored in a numpy
int, and so may overflow if very large (2e9).

cKDTree.query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf, n_jobs=1)
Query the kd-tree for nearest neighbors

Parameters x : array_like, last dimension self.m
An array of points to query.

k : integer
The number of nearest neighbors to return.

eps : non-negative float

1098 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Return approximate nearest neighbors; the k-th returned value is
guaranteed to be no further than (1+eps) times the distance to the
real k-th nearest neighbor.

p : float, 1<=p<=infinity
Which Minkowski p-norm to use. 1 is the sum-of-absolute-values
“Manhattan” distance 2 is the usual Euclidean distance infinity is the
maximum-coordinate-difference distance

distance_upper_bound : nonnegative float
Return only neighbors within this distance. This is used to prune tree
searches, so if you are doing a series of nearest-neighbor queries, it
may help to supply the distance to the nearest neighbor of the most
recent point.

n_jobs : int, optional
Number of jobs to schedule for parallel processing. If -1 is given all
processors are used. Default: 1.Returns d : array of floats
The distances to the nearest neighbors. If x has shape tuple+(self.m,),
then d has shape tuple+(k,). Missing neighbors are indicated with
infinite distances.

i : ndarray of ints
The locations of the neighbors in self.data. If x has shape tu-
ple+(self.m,), then i has shape tuple+(k,). Missing neighbors are in-
dicated with self.n.

cKDTree.query_ball_point(self, x, r, p=2., eps=0)
Find all points within distance r of point(s) x.

Parameters x : array_like, shape tuple + (self.m,)
The point or points to search for neighbors of.

r : positive float
The radius of points to return.

p : float, optional
Which Minkowski p-norm to use. Should be in the range [1, inf].

eps : nonnegative float, optional
Approximate search. Branches of the tree are not explored if their
nearest points are further than r / (1 + eps), and branches are
added in bulk if their furthest points are nearer than r * (1 +
eps).Returns results : list or array of lists
If x is a single point, returns a list of the indices of the neighbors of
x. If x is an array of points, returns an object array of shape tuple
containing lists of neighbors.

Notes

If you have many points whose neighbors you want to find, you may save substantial amounts of time by
putting them in a cKDTree and using query_ball_tree.

Examples

>>> from scipy import spatial
>>> x, y = np.mgrid[0:4, 0:4]
>>> points = zip(x.ravel(), y.ravel())
>>> tree = spatial.cKDTree(points)
>>> tree.query_ball_point([2, 0], 1)
[4, 8, 9, 12]

5.31. Spatial algorithms and data structures (scipy.spatial) 1099

SciPy Reference Guide, Release 0.16.0

cKDTree.query_ball_tree(self, other, r, p=2., eps=0)
Find all pairs of points whose distance is at most r

Parameters other : KDTree instance
The tree containing points to search against.

r : float
The maximum distance, has to be positive.

p : float, optional
Which Minkowski norm to use. p has to meet the condition 1 <= p
<= infinity.

eps : float, optional
Approximate search. Branches of the tree are not explored if their
nearest points are further than r/(1+eps), and branches are added
in bulk if their furthest points are nearer than r * (1+eps). eps
has to be non-negative.Returns results : list of lists
For each element self.data[i] of this tree, results[i] is a
list of the indices of its neighbors in other.data.

cKDTree.query_pairs(self, r, p=2., eps=0)
Find all pairs of points whose distance is at most r.

Parameters r : positive float
The maximum distance.

p : float, optional
Which Minkowski norm to use. p has to meet the condition 1 <= p
<= infinity.

eps : float, optional
Approximate search. Branches of the tree are not explored if their
nearest points are further than r/(1+eps), and branches are added
in bulk if their furthest points are nearer than r * (1+eps). eps
has to be non-negative.Returns results : set
Set of pairs (i,j), with i < j, for which the corresponding posi-
tions are close.

cKDTree.sparse_distance_matrix(self, other, max_distance, p=2.)
Compute a sparse distance matrix

Computes a distance matrix between two KDTrees, leaving as zero any distance greater than
max_distance.

Parameters other : cKDTree
max_distance : positive float
p : float, 1<=p<=infinity

Which Minkowski p-norm to use.Returns result : dok_matrix
Sparse matrix representing the results in “dictionary of keys” format.
FIXME: Internally, built as a COO matrix, it would be more efficient
to return this COO matrix.

Distance computations (scipy.spatial.distance)

Function Reference Distance matrix computation from a collection of raw observation vectors stored in a rectan-
gular array.

pdist(X[, metric, p, w, V, VI]) Pairwise distances between observations in n-dimensional space.
cdist(XA, XB[, metric, p, V, VI, w]) Computes distance between each pair of the two collections of inputs.

Continued on next page

1100 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.195 – continued from previous page
squareform(X[, force, checks]) Converts a vector-form distance vector to a square-form distance matrix, and vice-versa.

scipy.spatial.distance.pdist(X, metric=’euclidean’, p=2, w=None, V=None, VI=None)
Pairwise distances between observations in n-dimensional space.

The following are common calling conventions.
1.Y = pdist(X, ’euclidean’)

Computes the distance between m points using Euclidean distance (2-norm) as the distance metric be-
tween the points. The points are arranged as m n-dimensional row vectors in the matrix X.

2.Y = pdist(X, ’minkowski’, p)

Computes the distances using the Minkowski distance ||𝑢− 𝑣||𝑝 (p-norm) where 𝑝 ≥ 1.
3.Y = pdist(X, ’cityblock’)

Computes the city block or Manhattan distance between the points.
4.Y = pdist(X, ’seuclidean’, V=None)

Computes the standardized Euclidean distance. The standardized Euclidean distance between two n-
vectors u and v is √︁∑︁

(𝑢𝑖 − 𝑣𝑖)2/𝑉 [𝑥𝑖]

V is the variance vector; V[i] is the variance computed over all the i’th components of the points. If not
passed, it is automatically computed.

5.Y = pdist(X, ’sqeuclidean’)

Computes the squared Euclidean distance ||𝑢− 𝑣||22 between the vectors.
6.Y = pdist(X, ’cosine’)

Computes the cosine distance between vectors u and v,

1 − 𝑢 · 𝑣
||𝑢||2||𝑣||2

where || * ||2 is the 2-norm of its argument *, and 𝑢 · 𝑣 is the dot product of u and v.
7.Y = pdist(X, ’correlation’)

Computes the correlation distance between vectors u and v. This is

1 − (𝑢− 𝑢̄) · (𝑣 − 𝑣)

||(𝑢− 𝑢̄)||2||(𝑣 − 𝑣)||2
where 𝑣 is the mean of the elements of vector v, and 𝑥 · 𝑦 is the dot product of 𝑥 and 𝑦.

8.Y = pdist(X, ’hamming’)

Computes the normalized Hamming distance, or the proportion of those vector elements between two
n-vectors u and v which disagree. To save memory, the matrix X can be of type boolean.

9.Y = pdist(X, ’jaccard’)

Computes the Jaccard distance between the points. Given two vectors, u and v, the Jaccard distance is
the proportion of those elements u[i] and v[i] that disagree where at least one of them is non-zero.

10.Y = pdist(X, ’chebyshev’)

Computes the Chebyshev distance between the points. The Chebyshev distance between two n-vectors u
and v is the maximum norm-1 distance between their respective elements. More precisely, the distance is
given by

𝑑(𝑢, 𝑣) = max
𝑖

|𝑢𝑖 − 𝑣𝑖|

5.31. Spatial algorithms and data structures (scipy.spatial) 1101

SciPy Reference Guide, Release 0.16.0

11.Y = pdist(X, ’canberra’)

Computes the Canberra distance between the points. The Canberra distance between two points u and v
is

𝑑(𝑢, 𝑣) =
∑︁
𝑖

|𝑢𝑖 − 𝑣𝑖|
|𝑢𝑖| + |𝑣𝑖|

12.Y = pdist(X, ’braycurtis’)

Computes the Bray-Curtis distance between the points. The Bray-Curtis distance between two points u
and v is

𝑑(𝑢, 𝑣) =

∑︀
𝑖 𝑢𝑖 − 𝑣𝑖∑︀
𝑖 𝑢𝑖 + 𝑣𝑖

13.Y = pdist(X, ’mahalanobis’, VI=None)

Computes the Mahalanobis distance between the points. The Mahalanobis distance between two points
u and v is (𝑢 − 𝑣)(1/𝑉)(𝑢 − 𝑣)𝑇 where (1/𝑉) (the VI variable) is the inverse covariance. If VI is not
None, VI will be used as the inverse covariance matrix.

14.Y = pdist(X, ’yule’)

Computes the Yule distance between each pair of boolean vectors. (see yule function documentation)

15.Y = pdist(X, ’matching’)

Computes the matching distance between each pair of boolean vectors. (see matching function documen-
tation)

16.Y = pdist(X, ’dice’)

Computes the Dice distance between each pair of boolean vectors. (see dice function documentation)

17.Y = pdist(X, ’kulsinski’)

Computes the Kulsinski distance between each pair of boolean vectors. (see kulsinski function documen-
tation)

18.Y = pdist(X, ’rogerstanimoto’)

Computes the Rogers-Tanimoto distance between each pair of boolean vectors. (see rogerstanimoto func-
tion documentation)

19.Y = pdist(X, ’russellrao’)

Computes the Russell-Rao distance between each pair of boolean vectors. (see russellrao function docu-
mentation)

20.Y = pdist(X, ’sokalmichener’)

Computes the Sokal-Michener distance between each pair of boolean vectors. (see sokalmichener func-
tion documentation)

21.Y = pdist(X, ’sokalsneath’)

Computes the Sokal-Sneath distance between each pair of boolean vectors. (see sokalsneath function
documentation)

1102 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

22.Y = pdist(X, ’wminkowski’)

Computes the weighted Minkowski distance between each pair of vectors. (see wminkowski function
documentation)

23.Y = pdist(X, f)

Computes the distance between all pairs of vectors in X using the user supplied 2-arity function f. For
example, Euclidean distance between the vectors could be computed as follows:

dm = pdist(X, lambda u, v: np.sqrt(((u-v)**2).sum()))

Note that you should avoid passing a reference to one of the distance functions defined in this library. For
example,:

dm = pdist(X, sokalsneath)

would calculate the pair-wise distances between the vectors in X using the Python function sokalsneath.
This would result in sokalsneath being called

(︀
𝑛
2

)︀
times, which is inefficient. Instead, the optimized C

version is more efficient, and we call it using the following syntax.:

dm = pdist(X, 'sokalsneath')

Parameters X : ndarray
An m by n array of m original observations in an n-dimensional space.

metric : str or function, optional
The distance metric to use. The distance function can be ‘braycurtis’,
‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’, ‘cosine’, ‘dice’, ‘eu-
clidean’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’,
‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’,
‘sokalsneath’, ‘sqeuclidean’, ‘yule’.

w : ndarray, optional
The weight vector (for weighted Minkowski).

p : double, optional
The p-norm to apply (for Minkowski, weighted and unweighted)

V : ndarray, optional
The variance vector (for standardized Euclidean).

VI : ndarray, optional
The inverse of the covariance matrix (for Mahalanobis).Returns Y : ndarray
Returns a condensed distance matrix Y. For each 𝑖 and 𝑗 (where 𝑖 < 𝑗 < 𝑛),
the metric dist(u=X[i], v=X[j]) is computed and stored in entry
ij.

See also:

squareformconverts between condensed distance matrices and square distance matrices.

Notes

See squareform for information on how to calculate the index of this entry or to convert the condensed
distance matrix to a redundant square matrix.

scipy.spatial.distance.cdist(XA, XB, metric=’euclidean’, p=2, V=None, VI=None, w=None)
Computes distance between each pair of the two collections of inputs.

The following are common calling conventions:

5.31. Spatial algorithms and data structures (scipy.spatial) 1103

SciPy Reference Guide, Release 0.16.0

1.Y = cdist(XA, XB, ’euclidean’)

Computes the distance between 𝑚 points using Euclidean distance (2-norm) as the distance metric be-
tween the points. The points are arranged as 𝑚 𝑛-dimensional row vectors in the matrix X.

2.Y = cdist(XA, XB, ’minkowski’, p)

Computes the distances using the Minkowski distance ||𝑢− 𝑣||𝑝 (𝑝-norm) where 𝑝 ≥ 1.
3.Y = cdist(XA, XB, ’cityblock’)

Computes the city block or Manhattan distance between the points.
4.Y = cdist(XA, XB, ’seuclidean’, V=None)

Computes the standardized Euclidean distance. The standardized Euclidean distance between two n-
vectors u and v is √︁∑︁

(𝑢𝑖 − 𝑣𝑖)2/𝑉 [𝑥𝑖].

V is the variance vector; V[i] is the variance computed over all the i’th components of the points. If not
passed, it is automatically computed.

5.Y = cdist(XA, XB, ’sqeuclidean’)

Computes the squared Euclidean distance ||𝑢− 𝑣||22 between the vectors.
6.Y = cdist(XA, XB, ’cosine’)

Computes the cosine distance between vectors u and v,

1 − 𝑢 · 𝑣
||𝑢||2||𝑣||2

where || * ||2 is the 2-norm of its argument *, and 𝑢 · 𝑣 is the dot product of 𝑢 and 𝑣.
7.Y = cdist(XA, XB, ’correlation’)

Computes the correlation distance between vectors u and v. This is

1 − (𝑢− 𝑢̄) · (𝑣 − 𝑣)

||(𝑢− 𝑢̄)||2||(𝑣 − 𝑣)||2
where 𝑣 is the mean of the elements of vector v, and 𝑥 · 𝑦 is the dot product of 𝑥 and 𝑦.

8.Y = cdist(XA, XB, ’hamming’)

Computes the normalized Hamming distance, or the proportion of those vector elements between two
n-vectors u and v which disagree. To save memory, the matrix X can be of type boolean.

9.Y = cdist(XA, XB, ’jaccard’)

Computes the Jaccard distance between the points. Given two vectors, u and v, the Jaccard distance is
the proportion of those elements u[i] and v[i] that disagree where at least one of them is non-zero.

10.Y = cdist(XA, XB, ’chebyshev’)

Computes the Chebyshev distance between the points. The Chebyshev distance between two n-vectors u
and v is the maximum norm-1 distance between their respective elements. More precisely, the distance is
given by

𝑑(𝑢, 𝑣) = max
𝑖

|𝑢𝑖 − 𝑣𝑖|.

11.Y = cdist(XA, XB, ’canberra’)

Computes the Canberra distance between the points. The Canberra distance between two points u and v
is

𝑑(𝑢, 𝑣) =
∑︁
𝑖

|𝑢𝑖 − 𝑣𝑖|
|𝑢𝑖| + |𝑣𝑖|

.

1104 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

12.Y = cdist(XA, XB, ’braycurtis’)

Computes the Bray-Curtis distance between the points. The Bray-Curtis distance between two points u
and v is

𝑑(𝑢, 𝑣) =

∑︀
𝑖(𝑢𝑖 − 𝑣𝑖)∑︀
𝑖(𝑢𝑖 + 𝑣𝑖)

13.Y = cdist(XA, XB, ’mahalanobis’, VI=None)

Computes the Mahalanobis distance between the points. The Mahalanobis distance between two points
u and v is (𝑢 − 𝑣)(1/𝑉)(𝑢 − 𝑣)𝑇 where (1/𝑉) (the VI variable) is the inverse covariance. If VI is not
None, VI will be used as the inverse covariance matrix.

14.Y = cdist(XA, XB, ’yule’)

Computes the Yule distance between the boolean vectors. (see yule function documentation)

15.Y = cdist(XA, XB, ’matching’)

Computes the matching distance between the boolean vectors. (see matching function documentation)

16.Y = cdist(XA, XB, ’dice’)

Computes the Dice distance between the boolean vectors. (see dice function documentation)

17.Y = cdist(XA, XB, ’kulsinski’)

Computes the Kulsinski distance between the boolean vectors. (see kulsinski function documenta-
tion)

18.Y = cdist(XA, XB, ’rogerstanimoto’)

Computes the Rogers-Tanimoto distance between the boolean vectors. (see rogerstanimoto function
documentation)

19.Y = cdist(XA, XB, ’russellrao’)

Computes the Russell-Rao distance between the boolean vectors. (see russellrao function documen-
tation)

20.Y = cdist(XA, XB, ’sokalmichener’)

Computes the Sokal-Michener distance between the boolean vectors. (see sokalmichener function
documentation)

21.Y = cdist(XA, XB, ’sokalsneath’)

Computes the Sokal-Sneath distance between the vectors. (see sokalsneath function documentation)

22.Y = cdist(XA, XB, ’wminkowski’)

Computes the weighted Minkowski distance between the vectors. (see wminkowski function documen-
tation)

23.Y = cdist(XA, XB, f)

Computes the distance between all pairs of vectors in X using the user supplied 2-arity function f. For
example, Euclidean distance between the vectors could be computed as follows:

5.31. Spatial algorithms and data structures (scipy.spatial) 1105

SciPy Reference Guide, Release 0.16.0

dm = cdist(XA, XB, lambda u, v: np.sqrt(((u-v)**2).sum()))

Note that you should avoid passing a reference to one of the distance functions defined in this library. For
example,:

dm = cdist(XA, XB, sokalsneath)

would calculate the pair-wise distances between the vectors in X using the Python function
sokalsneath. This would result in sokalsneath being called

(︀
𝑛
2

)︀
times, which is inefficient. Instead,

the optimized C version is more efficient, and we call it using the following syntax:

dm = cdist(XA, XB, 'sokalsneath')

Parameters XA : ndarray
An 𝑚𝐴 by 𝑛 array of 𝑚𝐴 original observations in an 𝑛-dimensional space.
Inputs are converted to float type.

XB : ndarray
An 𝑚𝐵 by 𝑛 array of 𝑚𝐵 original observations in an 𝑛-dimensional space.
Inputs are converted to float type.

metric : str or callable, optional
The distance metric to use. If a string, the distance function can be ‘bray-
curtis’, ‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’, ‘cosine’, ‘dice’,
‘euclidean’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’,
‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’,
‘sokalsneath’, ‘sqeuclidean’, ‘wminkowski’, ‘yule’.

w : ndarray, optional
The weight vector (for weighted Minkowski).

p : scalar, optional
The p-norm to apply (for Minkowski, weighted and unweighted)

V : ndarray, optional
The variance vector (for standardized Euclidean).

VI : ndarray, optional
The inverse of the covariance matrix (for Mahalanobis).Returns Y : ndarray
A 𝑚𝐴 by 𝑚𝐵 distance matrix is returned. For each 𝑖 and 𝑗, the metric
dist(u=XA[i], v=XB[j]) is computed and stored in the 𝑖𝑗 th entry.Raises ValueError
An exception is thrown if XA and XB do not have the same number of
columns.

Examples

Find the Euclidean distances between four 2-D coordinates:

>>> from scipy.spatial import distance
>>> coords = [(35.0456, -85.2672),
... (35.1174, -89.9711),
... (35.9728, -83.9422),
... (36.1667, -86.7833)]
>>> distance.cdist(coords, coords, 'euclidean')
array([[0. , 4.7044, 1.6172, 1.8856],

[4.7044, 0. , 6.0893, 3.3561],
[1.6172, 6.0893, 0. , 2.8477],
[1.8856, 3.3561, 2.8477, 0.]])

Find the Manhattan distance from a 3-D point to the corners of the unit cube:

1106 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> a = np.array([[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1]])

>>> b = np.array([[0.1, 0.2, 0.4]])
>>> distance.cdist(a, b, 'cityblock')
array([[0.7],

[0.9],
[1.3],
[1.5],
[1.5],
[1.7],
[2.1],
[2.3]])

scipy.spatial.distance.squareform(X, force=’no’, checks=True)
Converts a vector-form distance vector to a square-form distance matrix, and vice-versa.

Parameters X : ndarray
Either a condensed or redundant distance matrix.

force : str, optional
As with MATLAB(TM), if force is equal to ‘tovector’ or ‘tomatrix’, the
input will be treated as a distance matrix or distance vector respectively.

checks : bool, optional
If checks is set to False, no checks will be made for matrix symmetry nor
zero diagonals. This is useful if it is known that X - X.T1 is small and
diag(X) is close to zero. These values are ignored any way so they do
not disrupt the squareform transformation.Returns Y : ndarray
If a condensed distance matrix is passed, a redundant one is returned, or if
a redundant one is passed, a condensed distance matrix is returned.

Notes

1.v = squareform(X)

Given a square d-by-d symmetric distance matrix X, v=squareform(X) returns a d * (d-1) / 2
(or ${n choose 2}$) sized vector v.

v[{n choose 2}-{n-i choose 2} + (j-i-1)] is the distance between points i and j. If X is non-square or
asymmetric, an error is returned.

2.X = squareform(v)

Given a d*d(-1)/2 sized v for some integer d>=2 encoding distances as described, X=squareform(v) re-
turns a d by d distance matrix X. The X[i, j] and X[j, i] values are set to v[{n choose 2}-{n-i choose 2} +
(j-u-1)] and all diagonal elements are zero.

Predicates for checking the validity of distance matrices, both condensed and redundant. Also contained in this module
are functions for computing the number of observations in a distance matrix.

is_valid_dm(D[, tol, throw, name, warning]) Returns True if input array is a valid distance matrix.
Continued on next page

5.31. Spatial algorithms and data structures (scipy.spatial) 1107

SciPy Reference Guide, Release 0.16.0

Table 5.196 – continued from previous page
is_valid_y(y[, warning, throw, name]) Returns True if the input array is a valid condensed distance matrix.
num_obs_dm(d) Returns the number of original observations that correspond to a square, redundant distance matrix.
num_obs_y(Y) Returns the number of original observations that correspond to a condensed distance matrix.

scipy.spatial.distance.is_valid_dm(D, tol=0.0, throw=False, name=’D’, warning=False)
Returns True if input array is a valid distance matrix.

Distance matrices must be 2-dimensional numpy arrays containing doubles. They must have a zero-diagonal,
and they must be symmetric.

Parameters D : ndarray
The candidate object to test for validity.

tol : float, optional
The distance matrix should be symmetric. tol is the maximum difference
between entries ij and ji for the distance metric to be considered sym-
metric.

throw : bool, optional
An exception is thrown if the distance matrix passed is not valid.

name : str, optional
The name of the variable to checked. This is useful if throw is set to True
so the offending variable can be identified in the exception message when
an exception is thrown.

warning : bool, optional
Instead of throwing an exception, a warning message is raised.Returns valid : bool
True if the variable D passed is a valid distance matrix.

Notes

Small numerical differences in D and D.T and non-zeroness of the diagonal are ignored if they are within the
tolerance specified by tol.

scipy.spatial.distance.is_valid_y(y, warning=False, throw=False, name=None)
Returns True if the input array is a valid condensed distance matrix.

Condensed distance matrices must be 1-dimensional numpy arrays containing doubles. Their length must be a
binomial coefficient

(︀
𝑛
2

)︀
for some positive integer n.

Parameters y : ndarray
The condensed distance matrix.

warning : bool, optional
Invokes a warning if the variable passed is not a valid condensed distance
matrix. The warning message explains why the distance matrix is not valid.
name is used when referencing the offending variable.

throw : bool, optional
Throws an exception if the variable passed is not a valid condensed distance
matrix.

name : bool, optional
Used when referencing the offending variable in the warning or exception
message.

scipy.spatial.distance.num_obs_dm(d)
Returns the number of original observations that correspond to a square, redundant distance matrix.

Parameters d : ndarray
The target distance matrix.Returns num_obs_dm : int

1108 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The number of observations in the redundant distance matrix.

scipy.spatial.distance.num_obs_y(Y)
Returns the number of original observations that correspond to a condensed distance matrix.

Parameters Y : ndarray
Condensed distance matrix.Returns n : int
The number of observations in the condensed distance matrix Y.

Distance functions between two vectors u and v. Computing distances over a large collection of vectors is inefficient
for these functions. Use pdist for this purpose.

braycurtis(u, v) Computes the Bray-Curtis distance between two 1-D arrays.
canberra(u, v) Computes the Canberra distance between two 1-D arrays.
chebyshev(u, v) Computes the Chebyshev distance.
cityblock(u, v) Computes the City Block (Manhattan) distance.
correlation(u, v) Computes the correlation distance between two 1-D arrays.
cosine(u, v) Computes the Cosine distance between 1-D arrays.
dice(u, v) Computes the Dice dissimilarity between two boolean 1-D arrays.
euclidean(u, v) Computes the Euclidean distance between two 1-D arrays.
hamming(u, v) Computes the Hamming distance between two 1-D arrays.
jaccard(u, v) Computes the Jaccard-Needham dissimilarity between two boolean 1-D arrays.
kulsinski(u, v) Computes the Kulsinski dissimilarity between two boolean 1-D arrays.
mahalanobis(u, v, VI) Computes the Mahalanobis distance between two 1-D arrays.
matching(u, v) Computes the Matching dissimilarity between two boolean 1-D arrays.
minkowski(u, v, p) Computes the Minkowski distance between two 1-D arrays.
rogerstanimoto(u, v) Computes the Rogers-Tanimoto dissimilarity between two boolean 1-D arrays.
russellrao(u, v) Computes the Russell-Rao dissimilarity between two boolean 1-D arrays.
seuclidean(u, v, V) Returns the standardized Euclidean distance between two 1-D arrays.
sokalmichener(u, v) Computes the Sokal-Michener dissimilarity between two boolean 1-D arrays.
sokalsneath(u, v) Computes the Sokal-Sneath dissimilarity between two boolean 1-D arrays.
sqeuclidean(u, v) Computes the squared Euclidean distance between two 1-D arrays.
wminkowski(u, v, p, w) Computes the weighted Minkowski distance between two 1-D arrays.
yule(u, v) Computes the Yule dissimilarity between two boolean 1-D arrays.

scipy.spatial.distance.braycurtis(u, v)
Computes the Bray-Curtis distance between two 1-D arrays.

Bray-Curtis distance is defined as ∑︁
|𝑢𝑖 − 𝑣𝑖|/

∑︁
|𝑢𝑖 + 𝑣𝑖|

The Bray-Curtis distance is in the range [0, 1] if all coordinates are positive, and is undefined if the inputs are
of length zero.

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.Returns braycurtis : double
The Bray-Curtis distance between 1-D arrays u and v.

scipy.spatial.distance.canberra(u, v)
Computes the Canberra distance between two 1-D arrays.

5.31. Spatial algorithms and data structures (scipy.spatial) 1109

SciPy Reference Guide, Release 0.16.0

The Canberra distance is defined as

𝑑(𝑢, 𝑣) =
∑︁
𝑖

|𝑢𝑖 − 𝑣𝑖|
|𝑢𝑖| + |𝑣𝑖|

.

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.Returns canberra : double
The Canberra distance between vectors u and v.

Notes

When u[i] and v[i] are 0 for given i, then the fraction 0/0 = 0 is used in the calculation.

scipy.spatial.distance.chebyshev(u, v)
Computes the Chebyshev distance.

Computes the Chebyshev distance between two 1-D arrays u and v, which is defined as

max
𝑖

|𝑢𝑖 − 𝑣𝑖|.

Parameters u : (N,) array_like
Input vector.

v : (N,) array_like
Input vector.Returns chebyshev : double
The Chebyshev distance between vectors u and v.

scipy.spatial.distance.cityblock(u, v)
Computes the City Block (Manhattan) distance.

Computes the Manhattan distance between two 1-D arrays u and v, which is defined as∑︁
𝑖

|𝑢𝑖 − 𝑣𝑖|.

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.Returns cityblock : double
The City Block (Manhattan) distance between vectors u and v.

scipy.spatial.distance.correlation(u, v)
Computes the correlation distance between two 1-D arrays.

The correlation distance between u and v, is defined as

1 − (𝑢− 𝑢̄) · (𝑣 − 𝑣)

||(𝑢− 𝑢̄)||2||(𝑣 − 𝑣)||2

where 𝑢̄ is the mean of the elements of u and 𝑥 · 𝑦 is the dot product of 𝑥 and 𝑦.

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.Returns correlation : double
The correlation distance between 1-D array u and v.

1110 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.spatial.distance.cosine(u, v)
Computes the Cosine distance between 1-D arrays.

The Cosine distance between u and v, is defined as

1 − 𝑢 · 𝑣
||𝑢||2||𝑣||2

.

where 𝑢 · 𝑣 is the dot product of 𝑢 and 𝑣.

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.Returns cosine : double
The Cosine distance between vectors u and v.

scipy.spatial.distance.dice(u, v)
Computes the Dice dissimilarity between two boolean 1-D arrays.

The Dice dissimilarity between u and v, is

𝑐𝑇𝐹 + 𝑐𝐹𝑇

2𝑐𝑇𝑇 + 𝑐𝐹𝑇 + 𝑐𝑇𝐹

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛.

Parameters u : (N,) ndarray, bool
Input 1-D array.

v : (N,) ndarray, bool
Input 1-D array.Returns dice : double
The Dice dissimilarity between 1-D arrays u and v.

scipy.spatial.distance.euclidean(u, v)
Computes the Euclidean distance between two 1-D arrays.

The Euclidean distance between 1-D arrays u and v, is defined as

||𝑢− 𝑣||2

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.Returns euclidean : double
The Euclidean distance between vectors u and v.

scipy.spatial.distance.hamming(u, v)
Computes the Hamming distance between two 1-D arrays.

The Hamming distance between 1-D arrays u and v, is simply the proportion of disagreeing components in u
and v. If u and v are boolean vectors, the Hamming distance is

𝑐01 + 𝑐10
𝑛

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛.

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.Returns hamming : double

5.31. Spatial algorithms and data structures (scipy.spatial) 1111

SciPy Reference Guide, Release 0.16.0

The Hamming distance between vectors u and v.

scipy.spatial.distance.jaccard(u, v)
Computes the Jaccard-Needham dissimilarity between two boolean 1-D arrays.

The Jaccard-Needham dissimilarity between 1-D boolean arrays u and v, is defined as

𝑐𝑇𝐹 + 𝑐𝐹𝑇

𝑐𝑇𝑇 + 𝑐𝐹𝑇 + 𝑐𝑇𝐹

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛.

Parameters u : (N,) array_like, bool
Input array.

v : (N,) array_like, bool
Input array.Returns jaccard : double
The Jaccard distance between vectors u and v.

scipy.spatial.distance.kulsinski(u, v)
Computes the Kulsinski dissimilarity between two boolean 1-D arrays.

The Kulsinski dissimilarity between two boolean 1-D arrays u and v, is defined as

𝑐𝑇𝐹 + 𝑐𝐹𝑇 − 𝑐𝑇𝑇 + 𝑛

𝑐𝐹𝑇 + 𝑐𝑇𝐹 + 𝑛

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛.

Parameters u : (N,) array_like, bool
Input array.

v : (N,) array_like, bool
Input array.Returns kulsinski : double
The Kulsinski distance between vectors u and v.

scipy.spatial.distance.mahalanobis(u, v, VI)
Computes the Mahalanobis distance between two 1-D arrays.

The Mahalanobis distance between 1-D arrays u and v, is defined as√︁
(𝑢− 𝑣)𝑉 −1(𝑢− 𝑣)𝑇

where V is the covariance matrix. Note that the argument VI is the inverse of V.

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.

VI : ndarray
The inverse of the covariance matrix.Returns mahalanobis : double
The Mahalanobis distance between vectors u and v.

scipy.spatial.distance.matching(u, v)
Computes the Matching dissimilarity between two boolean 1-D arrays.

The Matching dissimilarity between two boolean 1-D arrays u and v, is defined as

𝑐𝑇𝐹 + 𝑐𝐹𝑇

𝑛

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛.

1112 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters u : (N,) array_like, bool
Input array.

v : (N,) array_like, bool
Input array.Returns matching : double
The Matching dissimilarity between vectors u and v.

scipy.spatial.distance.minkowski(u, v, p)
Computes the Minkowski distance between two 1-D arrays.

The Minkowski distance between 1-D arrays u and v, is defined as

||𝑢− 𝑣||𝑝 = (
∑︁

|𝑢𝑖 − 𝑣𝑖|𝑝)1/𝑝.

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.

p : int
The order of the norm of the difference ||𝑢− 𝑣||𝑝.Returns d : double
The Minkowski distance between vectors u and v.

scipy.spatial.distance.rogerstanimoto(u, v)
Computes the Rogers-Tanimoto dissimilarity between two boolean 1-D arrays.

The Rogers-Tanimoto dissimilarity between two boolean 1-D arrays u and v, is defined as

𝑅

𝑐𝑇𝑇 + 𝑐𝐹𝐹 + 𝑅

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛 and 𝑅 = 2(𝑐𝑇𝐹 + 𝑐𝐹𝑇).

Parameters u : (N,) array_like, bool
Input array.

v : (N,) array_like, bool
Input array.Returns rogerstanimoto : double
The Rogers-Tanimoto dissimilarity between vectors u and v.

scipy.spatial.distance.russellrao(u, v)
Computes the Russell-Rao dissimilarity between two boolean 1-D arrays.

The Russell-Rao dissimilarity between two boolean 1-D arrays, u and v, is defined as

𝑛− 𝑐𝑇𝑇

𝑛

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛.

Parameters u : (N,) array_like, bool
Input array.

v : (N,) array_like, bool
Input array.Returns russellrao : double
The Russell-Rao dissimilarity between vectors u and v.

scipy.spatial.distance.seuclidean(u, v, V)
Returns the standardized Euclidean distance between two 1-D arrays.

The standardized Euclidean distance between u and v.

Parameters u : (N,) array_like

5.31. Spatial algorithms and data structures (scipy.spatial) 1113

SciPy Reference Guide, Release 0.16.0

Input array.
v : (N,) array_like

Input array.
V : (N,) array_like

V is an 1-D array of component variances. It is usually computed among a
larger collection vectors.Returns seuclidean : double
The standardized Euclidean distance between vectors u and v.

scipy.spatial.distance.sokalmichener(u, v)
Computes the Sokal-Michener dissimilarity between two boolean 1-D arrays.

The Sokal-Michener dissimilarity between boolean 1-D arrays u and v, is defined as

𝑅

𝑆 + 𝑅

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛, 𝑅 = 2 * (𝑐𝑇𝐹 + 𝑐𝐹𝑇) and
𝑆 = 𝑐𝐹𝐹 + 𝑐𝑇𝑇 .

Parameters u : (N,) array_like, bool
Input array.

v : (N,) array_like, bool
Input array.Returns sokalmichener : double
The Sokal-Michener dissimilarity between vectors u and v.

scipy.spatial.distance.sokalsneath(u, v)
Computes the Sokal-Sneath dissimilarity between two boolean 1-D arrays.

The Sokal-Sneath dissimilarity between u and v,

𝑅

𝑐𝑇𝑇 + 𝑅

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛 and 𝑅 = 2(𝑐𝑇𝐹 + 𝑐𝐹𝑇).

Parameters u : (N,) array_like, bool
Input array.

v : (N,) array_like, bool
Input array.Returns sokalsneath : double
The Sokal-Sneath dissimilarity between vectors u and v.

scipy.spatial.distance.sqeuclidean(u, v)
Computes the squared Euclidean distance between two 1-D arrays.

The squared Euclidean distance between u and v is defined as

||𝑢− 𝑣||22.

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.Returns sqeuclidean : double
The squared Euclidean distance between vectors u and v.

scipy.spatial.distance.wminkowski(u, v, p, w)
Computes the weighted Minkowski distance between two 1-D arrays.

The weighted Minkowski distance between u and v, defined as(︁∑︁
(𝑤𝑖|𝑢𝑖 − 𝑣𝑖|𝑝)

)︁1/𝑝
.

1114 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.

p : int
The order of the norm of the difference ||𝑢− 𝑣||𝑝.

w : (N,) array_like
The weight vector.Returns wminkowski : double
The weighted Minkowski distance between vectors u and v.

scipy.spatial.distance.yule(u, v)
Computes the Yule dissimilarity between two boolean 1-D arrays.

The Yule dissimilarity is defined as

𝑅

𝑐𝑇𝑇 * 𝑐𝐹𝐹 + 𝑅
2

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛 and 𝑅 = 2.0 * 𝑐𝑇𝐹 * 𝑐𝐹𝑇 .

Parameters u : (N,) array_like, bool
Input array.

v : (N,) array_like, bool
Input array.Returns yule : double
The Yule dissimilarity between vectors u and v.

Functions

braycurtis(u, v) Computes the Bray-Curtis distance between two 1-D arrays.
callable((object) -> bool) Return whether the object is callable (i.e., some kind of function).
canberra(u, v) Computes the Canberra distance between two 1-D arrays.
cdist(XA, XB[, metric, p, V, VI, w]) Computes distance between each pair of the two collections of inputs.
chebyshev(u, v) Computes the Chebyshev distance.
cityblock(u, v) Computes the City Block (Manhattan) distance.
correlation(u, v) Computes the correlation distance between two 1-D arrays.
cosine(u, v) Computes the Cosine distance between 1-D arrays.
dice(u, v) Computes the Dice dissimilarity between two boolean 1-D arrays.
euclidean(u, v) Computes the Euclidean distance between two 1-D arrays.
hamming(u, v) Computes the Hamming distance between two 1-D arrays.
is_valid_dm(D[, tol, throw, name, warning]) Returns True if input array is a valid distance matrix.
is_valid_y(y[, warning, throw, name]) Returns True if the input array is a valid condensed distance matrix.
jaccard(u, v) Computes the Jaccard-Needham dissimilarity between two boolean 1-D arrays.
kulsinski(u, v) Computes the Kulsinski dissimilarity between two boolean 1-D arrays.
mahalanobis(u, v, VI) Computes the Mahalanobis distance between two 1-D arrays.
matching(u, v) Computes the Matching dissimilarity between two boolean 1-D arrays.
minkowski(u, v, p) Computes the Minkowski distance between two 1-D arrays.
norm(a[, ord]) Matrix or vector norm.
num_obs_dm(d) Returns the number of original observations that correspond to a square, redundant distance matrix.
num_obs_y(Y) Returns the number of original observations that correspond to a condensed distance matrix.
pdist(X[, metric, p, w, V, VI]) Pairwise distances between observations in n-dimensional space.
rogerstanimoto(u, v) Computes the Rogers-Tanimoto dissimilarity between two boolean 1-D arrays.
russellrao(u, v) Computes the Russell-Rao dissimilarity between two boolean 1-D arrays.
seuclidean(u, v, V) Returns the standardized Euclidean distance between two 1-D arrays.

Continued on next page

5.31. Spatial algorithms and data structures (scipy.spatial) 1115

SciPy Reference Guide, Release 0.16.0

Table 5.198 – continued from previous page
sokalmichener(u, v) Computes the Sokal-Michener dissimilarity between two boolean 1-D arrays.
sokalsneath(u, v) Computes the Sokal-Sneath dissimilarity between two boolean 1-D arrays.
sqeuclidean(u, v) Computes the squared Euclidean distance between two 1-D arrays.
squareform(X[, force, checks]) Converts a vector-form distance vector to a square-form distance matrix, and vice-versa.
wminkowski(u, v, p, w) Computes the weighted Minkowski distance between two 1-D arrays.
yule(u, v) Computes the Yule dissimilarity between two boolean 1-D arrays.

Classes

xrange xrange(stop) -> xrange object

5.31.2 Delaunay Triangulation, Convex Hulls and Voronoi Diagrams

Delaunay(points[, furthest_site, ...]) Delaunay tesselation in N dimensions.
ConvexHull(points[, incremental, qhull_options]) Convex hulls in N dimensions.
Voronoi(points[, furthest_site, ...]) Voronoi diagrams in N dimensions.

class scipy.spatial.Delaunay(points, furthest_site=False, incremental=False, qhull_options=None)
Delaunay tesselation in N dimensions.

New in version 0.9.

Parameters points : ndarray of floats, shape (npoints, ndim)
Coordinates of points to triangulate

furthest_site : bool, optional
Whether to compute a furthest-site Delaunay triangulation. Default: False
New in version 0.12.0.

incremental : bool, optional
Allow adding new points incrementally. This takes up some additional re-
sources.

qhull_options : str, optional
Additional options to pass to Qhull. See Qhull manual for details. Option
“Qt” is always enabled. Default:”Qbb Qc Qz Qx” for ndim > 4 and “Qbb
Qc Qz” otherwise. Incremental mode omits “Qz”.
New in version 0.12.0.Raises QhullError
Raised when Qhull encounters an error condition, such as geometrical de-
generacy when options to resolve are not enabled.

ValueError
Raised if an incompatible array is given as input.

Notes

The tesselation is computed using the Qhull library Qhull library.

Note: Unless you pass in the Qhull option “QJ”, Qhull does not guarantee that each input point appears as a
vertex in the Delaunay triangulation. Omitted points are listed in the coplanar attribute.

Do not call the add_points method from a __del__ destructor.

1116 Chapter 5. Reference

http://www.qhull.org/

SciPy Reference Guide, Release 0.16.0

Examples

Triangulation of a set of points:

>>> points = np.array([[0, 0], [0, 1.1], [1, 0], [1, 1]])
>>> from scipy.spatial import Delaunay
>>> tri = Delaunay(points)

We can plot it:

>>> import matplotlib.pyplot as plt
>>> plt.triplot(points[:,0], points[:,1], tri.simplices.copy())
>>> plt.plot(points[:,0], points[:,1], 'o')
>>> plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Point indices and coordinates for the two triangles forming the triangulation:

>>> tri.simplices
array([[3, 2, 0],

[3, 1, 0]], dtype=int32)
>>> points[tri.simplices]
array([[[1. , 1.],

[1. , 0.],
[0. , 0.]],

[[1. , 1.],
[0. , 1.1],
[0. , 0.]]])

Triangle 0 is the only neighbor of triangle 1, and it’s opposite to vertex 1 of triangle 1:

>>> tri.neighbors[1]
array([-1, 0, -1], dtype=int32)
>>> points[tri.simplices[1,1]]
array([0. , 1.1])

We can find out which triangle points are in:

5.31. Spatial algorithms and data structures (scipy.spatial) 1117

SciPy Reference Guide, Release 0.16.0

>>> p = np.array([(0.1, 0.2), (1.5, 0.5)])
>>> tri.find_simplex(p)
array([1, -1], dtype=int32)

We can also compute barycentric coordinates in triangle 1 for these points:

>>> b = tri.transform[1,:2].dot(p - tri.transform[1,2])
>>> np.c_[b, 1 - b.sum(axis=1)]
array([[0.1 , 0.2 , 0.7],

[1.27272727, 0.27272727, -0.54545455]])

The coordinates for the first point are all positive, meaning it is indeed inside the triangle.

Attributes

transform Affine transform from x to the barycentric coordinates c.
vertex_to_simplex Lookup array, from a vertex, to some simplex which it is a part of.
convex_hull Vertices of facets forming the convex hull of the point set.
vertex_neighbor_vertices Neighboring vertices of vertices.

Delaunay.transform
Affine transform from x to the barycentric coordinates c.

Type ndarray of double, shape (nsimplex, ndim+1, ndim)

This is defined by:

T c = x - r

At vertex j, c_j = 1 and the other coordinates zero.

For simplex i, transform[i,:ndim,:ndim] contains inverse of the matrix T, and
transform[i,ndim,:] contains the vector r.

Delaunay.vertex_to_simplex
Lookup array, from a vertex, to some simplex which it is a part of.

Type ndarray of int, shape (npoints,)

Delaunay.convex_hull
Vertices of facets forming the convex hull of the point set.

Type ndarray of int, shape (nfaces, ndim)

The array contains the indices of the points belonging to the (N-1)-dimensional facets that form the convex
hull of the triangulation.

Note: Computing convex hulls via the Delaunay triangulation is inefficient and subject to increased
numerical instability. Use ConvexHull instead.

Delaunay.vertex_neighbor_vertices
Neighboring vertices of vertices.

Tuple of two ndarrays of int: (indices, indptr). The indices of neighboring vertices of vertex k are
indptr[indices[k]:indices[k+1]].

1118 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

points (ndarray of double, shape (npoints, ndim)) Coordinates of input points.
simplices (ndarray of ints, shape (nsimplex, ndim+1)) Indices of the points forming the simplices

in the triangulation. For 2-D, the points are oriented counterclockwise.
neighbors (ndarray of ints, shape (nsimplex, ndim+1)) Indices of neighbor simplices for each

simplex. The kth neighbor is opposite to the kth vertex. For simplices at the boundary,
-1 denotes no neighbor.

equations (ndarray of double, shape (nsimplex, ndim+2)) [normal, offset] forming the hyperplane
equation of the facet on the paraboloid (see Qhull documentation for more).

paraboloid_scale,
paraboloid_shift

(float) Scale and shift for the extra paraboloid dimension (see Qhull documentation for
more).

coplanar (ndarray of int, shape (ncoplanar, 3)) Indices of coplanar points and the corresponding
indices of the nearest facet and the nearest vertex. Coplanar points are input points
which were not included in the triangulation due to numerical precision issues. If
option “Qc” is not specified, this list is not computed. .. versionadded:: 0.12.0

vertices Same as simplices, but deprecated.

Methods

add_points(points[, restart]) Process a set of additional new points.
close() Finish incremental processing.
find_simplex(self, xi[, bruteforce, tol]) Find the simplices containing the given points.
lift_points(self, x) Lift points to the Qhull paraboloid.
plane_distance(self, xi) Compute hyperplane distances to the point xi from all simplices.

Delaunay.add_points(points, restart=False)
Process a set of additional new points.

Parameters points : ndarray
New points to add. The dimensionality should match that of the initial
points.

restart : bool, optional
Whether to restart processing from scratch, rather than adding points
incrementally.Raises QhullError
Raised when Qhull encounters an error condition, such as geometri-
cal degeneracy when options to resolve are not enabled.

See also:

close

Notes

You need to specify incremental=True when constructing the object to be able to add points incre-
mentally. Incremental addition of points is also not possible after close has been called.

Delaunay.close()
Finish incremental processing.

Call this to free resources taken up by Qhull, when using the incremental mode. After calling this, adding
more points is no longer possible.

Delaunay.find_simplex(self, xi, bruteforce=False, tol=None)
Find the simplices containing the given points.

Parameters tri : DelaunayInfo
Delaunay triangulation

5.31. Spatial algorithms and data structures (scipy.spatial) 1119

http://www.qhull.org/
http://www.qhull.org/

SciPy Reference Guide, Release 0.16.0

xi : ndarray of double, shape (..., ndim)
Points to locate

bruteforce : bool, optional
Whether to only perform a brute-force search

tol : float, optional
Tolerance allowed in the inside-triangle check. Default is 100*eps.Returns i : ndarray of int, same shape as xi
Indices of simplices containing each point. Points outside the trian-
gulation get the value -1.

Notes

This uses an algorithm adapted from Qhull’s qh_findbestfacet, which makes use of the connection
between a convex hull and a Delaunay triangulation. After finding the simplex closest to the point in N+1
dimensions, the algorithm falls back to directed search in N dimensions.

Delaunay.lift_points(self, x)
Lift points to the Qhull paraboloid.

Delaunay.plane_distance(self, xi)
Compute hyperplane distances to the point xi from all simplices.

class scipy.spatial.ConvexHull(points, incremental=False, qhull_options=None)
Convex hulls in N dimensions.

New in version 0.12.0.

Parameters points : ndarray of floats, shape (npoints, ndim)
Coordinates of points to construct a convex hull from

incremental : bool, optional
Allow adding new points incrementally. This takes up some additional re-
sources.

qhull_options : str, optional
Additional options to pass to Qhull. See Qhull manual for details. (Default:
“Qx” for ndim > 4 and “” otherwise) Option “Qt” is always enabled.Raises QhullError
Raised when Qhull encounters an error condition, such as geometrical de-
generacy when options to resolve are not enabled.

ValueError
Raised if an incompatible array is given as input.

Notes

The convex hull is computed using the Qhull library.

Do not call the add_points method from a __del__ destructor.

References

[Qhull]

Examples

Convex hull of a random set of points:

>>> from scipy.spatial import ConvexHull
>>> points = np.random.rand(30, 2) # 30 random points in 2-D
>>> hull = ConvexHull(points)

Plot it:

1120 Chapter 5. Reference

http://www.qhull.org/

SciPy Reference Guide, Release 0.16.0

>>> import matplotlib.pyplot as plt
>>> plt.plot(points[:,0], points[:,1], 'o')
>>> for simplex in hull.simplices:
... plt.plot(points[simplex, 0], points[simplex, 1], 'k-')

We could also have directly used the vertices of the hull, which for 2-D are guaranteed to be in counterclockwise
order:

>>> plt.plot(points[hull.vertices,0], points[hull.vertices,1], 'r--', lw=2)
>>> plt.plot(points[hull.vertices[0],0], points[hull.vertices[0],1], 'ro')
>>> plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Attributes

points (ndarray of double, shape (npoints, ndim)) Coordinates of input points.
ver-
tices

(ndarray of ints, shape (nvertices,)) Indices of points forming the vertices of the convex hull. For
2-D convex hulls, the vertices are in counterclockwise order. For other dimensions, they are in
input order.

sim-
plices

(ndarray of ints, shape (nfacet, ndim)) Indices of points forming the simplical facets of the convex
hull.

neigh-
bors

(ndarray of ints, shape (nfacet, ndim)) Indices of neighbor facets for each facet. The kth neighbor
is opposite to the kth vertex. -1 denotes no neighbor.

equa-
tions

(ndarray of double, shape (nfacet, ndim+1)) [normal, offset] forming the hyperplane equation of
the facet (see Qhull documentation for more).

copla-
nar

(ndarray of int, shape (ncoplanar, 3)) Indices of coplanar points and the corresponding indices of
the nearest facets and nearest vertex indices. Coplanar points are input points which were not
included in the triangulation due to numerical precision issues. If option “Qc” is not specified, this
list is not computed.

Methods

add_points(points[, restart]) Process a set of additional new points.
close() Finish incremental processing.

5.31. Spatial algorithms and data structures (scipy.spatial) 1121

http://www.qhull.org/

SciPy Reference Guide, Release 0.16.0

ConvexHull.add_points(points, restart=False)
Process a set of additional new points.

Parameters points : ndarray
New points to add. The dimensionality should match that of the initial
points.

restart : bool, optional
Whether to restart processing from scratch, rather than adding points
incrementally.Raises QhullError
Raised when Qhull encounters an error condition, such as geometri-
cal degeneracy when options to resolve are not enabled.

See also:

close

Notes

You need to specify incremental=True when constructing the object to be able to add points incre-
mentally. Incremental addition of points is also not possible after close has been called.

ConvexHull.close()
Finish incremental processing.

Call this to free resources taken up by Qhull, when using the incremental mode. After calling this, adding
more points is no longer possible.

class scipy.spatial.Voronoi(points, furthest_site=False, incremental=False, qhull_options=None)
Voronoi diagrams in N dimensions.

New in version 0.12.0.

Parameters points : ndarray of floats, shape (npoints, ndim)
Coordinates of points to construct a convex hull from

furthest_site : bool, optional
Whether to compute a furthest-site Voronoi diagram. Default: False

incremental : bool, optional
Allow adding new points incrementally. This takes up some additional re-
sources.

qhull_options : str, optional
Additional options to pass to Qhull. See Qhull manual for details. (Default:
“Qbb Qc Qz Qx” for ndim > 4 and “Qbb Qc Qz” otherwise. Incremental
mode omits “Qz”.)Raises QhullError
Raised when Qhull encounters an error condition, such as geometrical de-
generacy when options to resolve are not enabled.

ValueError
Raised if an incompatible array is given as input.

Notes

The Voronoi diagram is computed using the Qhull library.

Do not call the add_points method from a __del__ destructor.

Examples

Voronoi diagram for a set of point:

1122 Chapter 5. Reference

http://www.qhull.org/

SciPy Reference Guide, Release 0.16.0

>>> points = np.array([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2],
... [2, 0], [2, 1], [2, 2]])
>>> from scipy.spatial import Voronoi, voronoi_plot_2d
>>> vor = Voronoi(points)

Plot it:

>>> import matplotlib.pyplot as plt
>>> voronoi_plot_2d(vor)
>>> plt.show()

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

The Voronoi vertices:

>>> vor.vertices
array([[0.5, 0.5],

[1.5, 0.5],
[0.5, 1.5],
[1.5, 1.5]])

There is a single finite Voronoi region, and four finite Voronoi ridges:

>>> vor.regions
[[], [-1, 0], [-1, 1], [1, -1, 0], [3, -1, 2], [-1, 3], [-1, 2], [3, 2, 0, 1], [2, -1, 0], [3, -1, 1]]
>>> vor.ridge_vertices
[[-1, 0], [-1, 0], [-1, 1], [-1, 1], [0, 1], [-1, 3], [-1, 2], [2, 3], [-1, 3], [-1, 2], [0, 2], [1, 3]]

The ridges are perpendicular between lines drawn between the following input points:

>>> vor.ridge_points
array([[0, 1],

[0, 3],
[6, 3],
[6, 7],
[3, 4],
[5, 8],
[5, 2],

5.31. Spatial algorithms and data structures (scipy.spatial) 1123

SciPy Reference Guide, Release 0.16.0

[5, 4],
[8, 7],
[2, 1],
[4, 1],
[4, 7]], dtype=int32)

Attributes

points (ndarray of double, shape (npoints, ndim)) Coordinates of input points.
vertices (ndarray of double, shape (nvertices, ndim)) Coordinates of the Voronoi vertices.
ridge_points(ndarray of ints, shape (nridges, 2)) Indices of the points between which each Voronoi

ridge lies.
ridge_vertices(list of list of ints, shape (nridges, *)) Indices of the Voronoi vertices forming each

Voronoi ridge.
regions (list of list of ints, shape (nregions, *)) Indices of the Voronoi vertices forming each

Voronoi region. -1 indicates vertex outside the Voronoi diagram.
point_region(list of ints, shape (npoints)) Index of the Voronoi region for each input point. If qhull option

“Qc” was not specified, the list will contain -1 for points that are not associated with a Voronoi
region.

Methods

add_points(points[, restart]) Process a set of additional new points.
close() Finish incremental processing.

Voronoi.add_points(points, restart=False)
Process a set of additional new points.

Parameters points : ndarray
New points to add. The dimensionality should match that of the initial
points.

restart : bool, optional
Whether to restart processing from scratch, rather than adding points
incrementally.Raises QhullError
Raised when Qhull encounters an error condition, such as geometri-
cal degeneracy when options to resolve are not enabled.

See also:

close

Notes

You need to specify incremental=True when constructing the object to be able to add points incre-
mentally. Incremental addition of points is also not possible after close has been called.

Voronoi.close()
Finish incremental processing.

Call this to free resources taken up by Qhull, when using the incremental mode. After calling this, adding
more points is no longer possible.

5.31.3 Plotting Helpers

1124 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

delaunay_plot_2d(tri[, ax]) Plot the given Delaunay triangulation in 2-D
convex_hull_plot_2d(hull[, ax]) Plot the given convex hull diagram in 2-D
voronoi_plot_2d(vor[, ax]) Plot the given Voronoi diagram in 2-D

scipy.spatial.delaunay_plot_2d(tri, ax=None)
Plot the given Delaunay triangulation in 2-D

Parameters tri : scipy.spatial.Delaunay instance
Triangulation to plot

ax : matplotlib.axes.Axes instance, optional
Axes to plot onReturns fig : matplotlib.figure.Figure instance
Figure for the plot

See also:

Delaunay, matplotlib.pyplot.triplot

Notes

Requires Matplotlib.

scipy.spatial.convex_hull_plot_2d(hull, ax=None)
Plot the given convex hull diagram in 2-D

Parameters hull : scipy.spatial.ConvexHull instance
Convex hull to plot

ax : matplotlib.axes.Axes instance, optional
Axes to plot onReturns fig : matplotlib.figure.Figure instance
Figure for the plot

See also:

ConvexHull

Notes

Requires Matplotlib.

scipy.spatial.voronoi_plot_2d(vor, ax=None)
Plot the given Voronoi diagram in 2-D

Parameters vor : scipy.spatial.Voronoi instance
Diagram to plot

ax : matplotlib.axes.Axes instance, optional
Axes to plot onReturns fig : matplotlib.figure.Figure instance
Figure for the plot

See also:

Voronoi

Notes

Requires Matplotlib.

See also:

Tutorial

5.31. Spatial algorithms and data structures (scipy.spatial) 1125

SciPy Reference Guide, Release 0.16.0

5.31.4 Simplex representation

The simplices (triangles, tetrahedra, ...) appearing in the Delaunay tesselation (N-dim simplices), convex hull facets,
and Voronoi ridges (N-1 dim simplices) are represented in the following scheme:

tess = Delaunay(points)
hull = ConvexHull(points)
voro = Voronoi(points)

coordinates of the j-th vertex of the i-th simplex
tess.points[tess.simplices[i, j], :] # tesselation element
hull.points[hull.simplices[i, j], :] # convex hull facet
voro.vertices[voro.ridge_vertices[i, j], :] # ridge between Voronoi cells

For Delaunay triangulations and convex hulls, the neighborhood structure of the simplices satisfies the condition:

tess.neighbors[i,j] is the neighboring simplex of the i-th simplex, opposite to the j-vertex. It is -1 in
case of no neighbor.

Convex hull facets also define a hyperplane equation:

(hull.equations[i,:-1] * coord).sum() + hull.equations[i,-1] == 0

Similar hyperplane equations for the Delaunay triangulation correspond to the convex hull facets on the corresponding
N+1 dimensional paraboloid.

The Delaunay triangulation objects offer a method for locating the simplex containing a given point, and barycentric
coordinate computations.

Functions

tsearch(tri, xi) Find simplices containing the given points.
distance_matrix(x, y[, p, threshold]) Compute the distance matrix.
minkowski_distance(x, y[, p]) Compute the L**p distance between two arrays.
minkowski_distance_p(x, y[, p]) Compute the p-th power of the L**p distance between two arrays.
procrustes(data1, data2) Procrustes analysis, a similarity test for two data sets.

scipy.spatial.tsearch(tri, xi)
Find simplices containing the given points. This function does the same thing as Delaunay.find_simplex.

New in version 0.9.

See also:

Delaunay.find_simplex

scipy.spatial.distance_matrix(x, y, p=2, threshold=1000000)
Compute the distance matrix.

Returns the matrix of all pair-wise distances.

Parameters x : (M, K) array_like
TODO: description needed

y : (N, K) array_like
TODO: description needed

p : float, 1 <= p <= infinity
Which Minkowski p-norm to use.

1126 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

threshold : positive int
If M * N * K > threshold, algorithm uses a Python loop instead of large
temporary arrays.Returns result : (M, N) ndarray
Distance matrix.

Examples

>>> distance_matrix([[0,0],[0,1]], [[1,0],[1,1]])
array([[1. , 1.41421356],

[1.41421356, 1.]])

scipy.spatial.minkowski_distance(x, y, p=2)
Compute the L**p distance between two arrays.

Parameters x : (M, K) array_like
Input array.

y : (N, K) array_like
Input array.

p : float, 1 <= p <= infinity
Which Minkowski p-norm to use.

Examples

>>> minkowski_distance([[0,0],[0,0]], [[1,1],[0,1]])
array([1.41421356, 1.])

scipy.spatial.minkowski_distance_p(x, y, p=2)
Compute the p-th power of the L**p distance between two arrays.

For efficiency, this function computes the L**p distance but does not extract the pth root. If p is 1 or infinity,
this is equal to the actual L**p distance.

Parameters x : (M, K) array_like
Input array.

y : (N, K) array_like
Input array.

p : float, 1 <= p <= infinity
Which Minkowski p-norm to use.

Examples

>>> minkowski_distance_p([[0,0],[0,0]], [[1,1],[0,1]])
array([2, 1])

scipy.spatial.procrustes(data1, data2)
Procrustes analysis, a similarity test for two data sets.

Each input matrix is a set of points or vectors (the rows of the matrix). The dimension of the space is the number
of columns of each matrix. Given two identically sized matrices, procrustes standardizes both such that:

•𝑡𝑟(𝐴𝐴𝑇) = 1.
•Both sets of points are centered around the origin.

Procrustes ([R273], [R274]) then applies the optimal transform to the second matrix (including scaling/dilation,
rotations, and reflections) to minimize 𝑀2 =

∑︀
(𝑑𝑎𝑡𝑎1 − 𝑑𝑎𝑡𝑎2)2, or the sum of the squares of the pointwise

differences between the two input datasets.

5.31. Spatial algorithms and data structures (scipy.spatial) 1127

SciPy Reference Guide, Release 0.16.0

This function was not designed to handle datasets with different numbers of datapoints (rows). If two data sets
have different dimensionality (different number of columns), simply add columns of zeros the smaller of the
two.

Parameters data1 : array_like
Matrix, n rows represent points in k (columns) space data1 is the reference
data, after it is standardised, the data from data2 will be transformed to fit
the pattern in data1 (must have >1 unique points).

data2 : array_like
n rows of data in k space to be fit to data1. Must be the same shape
(numrows, numcols) as data1 (must have >1 unique points).Returns mtx1 : array_like
A standardized version of data1.

mtx2 : array_like
The orientation of data2 that best fits data1. Centered, but not necessarily
𝑡𝑟(𝐴𝐴𝑇) = 1.

disparity : float
𝑀2 as defined above.Raises ValueError
If the input arrays are not two-dimensional. If the shape of the input arrays
is different. If the input arrays have zero columns or zero rows.

See also:

scipy.linalg.orthogonal_procrustes

Notes

•The disparity should not depend on the order of the input matrices, but the output matrices will, as only
the first output matrix is guaranteed to be scaled such that 𝑡𝑟(𝐴𝐴𝑇) = 1.

•Duplicate data points are generally ok, duplicating a data point will increase its effect on the procrustes
fit.

•The disparity scales as the number of points per input matrix.

References

[R273], [R274]

Examples

>>> from scipy.spatial import procrustes

The matrix b is a rotated, shifted, scaled and mirrored version of a here:

>>> a = np.array([[1, 3], [1, 2], [1, 1], [2, 1]], 'd')
>>> b = np.array([[4, -2], [4, -4], [4, -6], [2, -6]], 'd')
>>> mtx1, mtx2, disparity = procrustes(a, b)
>>> round(disparity)
0.0

5.32 Distance computations (scipy.spatial.distance)

5.32.1 Function Reference

Distance matrix computation from a collection of raw observation vectors stored in a rectangular array.

1128 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

pdist(X[, metric, p, w, V, VI]) Pairwise distances between observations in n-dimensional space.
cdist(XA, XB[, metric, p, V, VI, w]) Computes distance between each pair of the two collections of inputs.
squareform(X[, force, checks]) Converts a vector-form distance vector to a square-form distance matrix, and vice-versa.

scipy.spatial.distance.pdist(X, metric=’euclidean’, p=2, w=None, V=None, VI=None)
Pairwise distances between observations in n-dimensional space.

The following are common calling conventions.
1.Y = pdist(X, ’euclidean’)

Computes the distance between m points using Euclidean distance (2-norm) as the distance metric be-
tween the points. The points are arranged as m n-dimensional row vectors in the matrix X.

2.Y = pdist(X, ’minkowski’, p)

Computes the distances using the Minkowski distance ||𝑢− 𝑣||𝑝 (p-norm) where 𝑝 ≥ 1.
3.Y = pdist(X, ’cityblock’)

Computes the city block or Manhattan distance between the points.
4.Y = pdist(X, ’seuclidean’, V=None)

Computes the standardized Euclidean distance. The standardized Euclidean distance between two n-
vectors u and v is √︁∑︁

(𝑢𝑖 − 𝑣𝑖)2/𝑉 [𝑥𝑖]

V is the variance vector; V[i] is the variance computed over all the i’th components of the points. If not
passed, it is automatically computed.

5.Y = pdist(X, ’sqeuclidean’)

Computes the squared Euclidean distance ||𝑢− 𝑣||22 between the vectors.
6.Y = pdist(X, ’cosine’)

Computes the cosine distance between vectors u and v,

1 − 𝑢 · 𝑣
||𝑢||2||𝑣||2

where || * ||2 is the 2-norm of its argument *, and 𝑢 · 𝑣 is the dot product of u and v.
7.Y = pdist(X, ’correlation’)

Computes the correlation distance between vectors u and v. This is

1 − (𝑢− 𝑢̄) · (𝑣 − 𝑣)

||(𝑢− 𝑢̄)||2||(𝑣 − 𝑣)||2
where 𝑣 is the mean of the elements of vector v, and 𝑥 · 𝑦 is the dot product of 𝑥 and 𝑦.

8.Y = pdist(X, ’hamming’)

Computes the normalized Hamming distance, or the proportion of those vector elements between two
n-vectors u and v which disagree. To save memory, the matrix X can be of type boolean.

9.Y = pdist(X, ’jaccard’)

Computes the Jaccard distance between the points. Given two vectors, u and v, the Jaccard distance is
the proportion of those elements u[i] and v[i] that disagree where at least one of them is non-zero.

10.Y = pdist(X, ’chebyshev’)

Computes the Chebyshev distance between the points. The Chebyshev distance between two n-vectors u
and v is the maximum norm-1 distance between their respective elements. More precisely, the distance is
given by

𝑑(𝑢, 𝑣) = max
𝑖

|𝑢𝑖 − 𝑣𝑖|

5.32. Distance computations (scipy.spatial.distance) 1129

SciPy Reference Guide, Release 0.16.0

11.Y = pdist(X, ’canberra’)

Computes the Canberra distance between the points. The Canberra distance between two points u and v
is

𝑑(𝑢, 𝑣) =
∑︁
𝑖

|𝑢𝑖 − 𝑣𝑖|
|𝑢𝑖| + |𝑣𝑖|

12.Y = pdist(X, ’braycurtis’)

Computes the Bray-Curtis distance between the points. The Bray-Curtis distance between two points u
and v is

𝑑(𝑢, 𝑣) =

∑︀
𝑖 𝑢𝑖 − 𝑣𝑖∑︀
𝑖 𝑢𝑖 + 𝑣𝑖

13.Y = pdist(X, ’mahalanobis’, VI=None)

Computes the Mahalanobis distance between the points. The Mahalanobis distance between two points
u and v is (𝑢 − 𝑣)(1/𝑉)(𝑢 − 𝑣)𝑇 where (1/𝑉) (the VI variable) is the inverse covariance. If VI is not
None, VI will be used as the inverse covariance matrix.

14.Y = pdist(X, ’yule’)

Computes the Yule distance between each pair of boolean vectors. (see yule function documentation)

15.Y = pdist(X, ’matching’)

Computes the matching distance between each pair of boolean vectors. (see matching function documen-
tation)

16.Y = pdist(X, ’dice’)

Computes the Dice distance between each pair of boolean vectors. (see dice function documentation)

17.Y = pdist(X, ’kulsinski’)

Computes the Kulsinski distance between each pair of boolean vectors. (see kulsinski function documen-
tation)

18.Y = pdist(X, ’rogerstanimoto’)

Computes the Rogers-Tanimoto distance between each pair of boolean vectors. (see rogerstanimoto func-
tion documentation)

19.Y = pdist(X, ’russellrao’)

Computes the Russell-Rao distance between each pair of boolean vectors. (see russellrao function docu-
mentation)

20.Y = pdist(X, ’sokalmichener’)

Computes the Sokal-Michener distance between each pair of boolean vectors. (see sokalmichener func-
tion documentation)

21.Y = pdist(X, ’sokalsneath’)

Computes the Sokal-Sneath distance between each pair of boolean vectors. (see sokalsneath function
documentation)

1130 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

22.Y = pdist(X, ’wminkowski’)

Computes the weighted Minkowski distance between each pair of vectors. (see wminkowski function
documentation)

23.Y = pdist(X, f)

Computes the distance between all pairs of vectors in X using the user supplied 2-arity function f. For
example, Euclidean distance between the vectors could be computed as follows:

dm = pdist(X, lambda u, v: np.sqrt(((u-v)**2).sum()))

Note that you should avoid passing a reference to one of the distance functions defined in this library. For
example,:

dm = pdist(X, sokalsneath)

would calculate the pair-wise distances between the vectors in X using the Python function sokalsneath.
This would result in sokalsneath being called

(︀
𝑛
2

)︀
times, which is inefficient. Instead, the optimized C

version is more efficient, and we call it using the following syntax.:

dm = pdist(X, 'sokalsneath')

Parameters X : ndarray
An m by n array of m original observations in an n-dimensional space.

metric : str or function, optional
The distance metric to use. The distance function can be ‘braycurtis’,
‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’, ‘cosine’, ‘dice’, ‘eu-
clidean’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’,
‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’,
‘sokalsneath’, ‘sqeuclidean’, ‘yule’.

w : ndarray, optional
The weight vector (for weighted Minkowski).

p : double, optional
The p-norm to apply (for Minkowski, weighted and unweighted)

V : ndarray, optional
The variance vector (for standardized Euclidean).

VI : ndarray, optional
The inverse of the covariance matrix (for Mahalanobis).Returns Y : ndarray
Returns a condensed distance matrix Y. For each 𝑖 and 𝑗 (where 𝑖 < 𝑗 < 𝑛),
the metric dist(u=X[i], v=X[j]) is computed and stored in entry
ij.

See also:

squareformconverts between condensed distance matrices and square distance matrices.

Notes

See squareform for information on how to calculate the index of this entry or to convert the condensed
distance matrix to a redundant square matrix.

scipy.spatial.distance.cdist(XA, XB, metric=’euclidean’, p=2, V=None, VI=None, w=None)
Computes distance between each pair of the two collections of inputs.

The following are common calling conventions:

5.32. Distance computations (scipy.spatial.distance) 1131

SciPy Reference Guide, Release 0.16.0

1.Y = cdist(XA, XB, ’euclidean’)

Computes the distance between 𝑚 points using Euclidean distance (2-norm) as the distance metric be-
tween the points. The points are arranged as 𝑚 𝑛-dimensional row vectors in the matrix X.

2.Y = cdist(XA, XB, ’minkowski’, p)

Computes the distances using the Minkowski distance ||𝑢− 𝑣||𝑝 (𝑝-norm) where 𝑝 ≥ 1.
3.Y = cdist(XA, XB, ’cityblock’)

Computes the city block or Manhattan distance between the points.
4.Y = cdist(XA, XB, ’seuclidean’, V=None)

Computes the standardized Euclidean distance. The standardized Euclidean distance between two n-
vectors u and v is √︁∑︁

(𝑢𝑖 − 𝑣𝑖)2/𝑉 [𝑥𝑖].

V is the variance vector; V[i] is the variance computed over all the i’th components of the points. If not
passed, it is automatically computed.

5.Y = cdist(XA, XB, ’sqeuclidean’)

Computes the squared Euclidean distance ||𝑢− 𝑣||22 between the vectors.
6.Y = cdist(XA, XB, ’cosine’)

Computes the cosine distance between vectors u and v,

1 − 𝑢 · 𝑣
||𝑢||2||𝑣||2

where || * ||2 is the 2-norm of its argument *, and 𝑢 · 𝑣 is the dot product of 𝑢 and 𝑣.
7.Y = cdist(XA, XB, ’correlation’)

Computes the correlation distance between vectors u and v. This is

1 − (𝑢− 𝑢̄) · (𝑣 − 𝑣)

||(𝑢− 𝑢̄)||2||(𝑣 − 𝑣)||2
where 𝑣 is the mean of the elements of vector v, and 𝑥 · 𝑦 is the dot product of 𝑥 and 𝑦.

8.Y = cdist(XA, XB, ’hamming’)

Computes the normalized Hamming distance, or the proportion of those vector elements between two
n-vectors u and v which disagree. To save memory, the matrix X can be of type boolean.

9.Y = cdist(XA, XB, ’jaccard’)

Computes the Jaccard distance between the points. Given two vectors, u and v, the Jaccard distance is
the proportion of those elements u[i] and v[i] that disagree where at least one of them is non-zero.

10.Y = cdist(XA, XB, ’chebyshev’)

Computes the Chebyshev distance between the points. The Chebyshev distance between two n-vectors u
and v is the maximum norm-1 distance between their respective elements. More precisely, the distance is
given by

𝑑(𝑢, 𝑣) = max
𝑖

|𝑢𝑖 − 𝑣𝑖|.

11.Y = cdist(XA, XB, ’canberra’)

Computes the Canberra distance between the points. The Canberra distance between two points u and v
is

𝑑(𝑢, 𝑣) =
∑︁
𝑖

|𝑢𝑖 − 𝑣𝑖|
|𝑢𝑖| + |𝑣𝑖|

.

1132 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

12.Y = cdist(XA, XB, ’braycurtis’)

Computes the Bray-Curtis distance between the points. The Bray-Curtis distance between two points u
and v is

𝑑(𝑢, 𝑣) =

∑︀
𝑖(𝑢𝑖 − 𝑣𝑖)∑︀
𝑖(𝑢𝑖 + 𝑣𝑖)

13.Y = cdist(XA, XB, ’mahalanobis’, VI=None)

Computes the Mahalanobis distance between the points. The Mahalanobis distance between two points
u and v is (𝑢 − 𝑣)(1/𝑉)(𝑢 − 𝑣)𝑇 where (1/𝑉) (the VI variable) is the inverse covariance. If VI is not
None, VI will be used as the inverse covariance matrix.

14.Y = cdist(XA, XB, ’yule’)

Computes the Yule distance between the boolean vectors. (see yule function documentation)

15.Y = cdist(XA, XB, ’matching’)

Computes the matching distance between the boolean vectors. (see matching function documentation)

16.Y = cdist(XA, XB, ’dice’)

Computes the Dice distance between the boolean vectors. (see dice function documentation)

17.Y = cdist(XA, XB, ’kulsinski’)

Computes the Kulsinski distance between the boolean vectors. (see kulsinski function documenta-
tion)

18.Y = cdist(XA, XB, ’rogerstanimoto’)

Computes the Rogers-Tanimoto distance between the boolean vectors. (see rogerstanimoto function
documentation)

19.Y = cdist(XA, XB, ’russellrao’)

Computes the Russell-Rao distance between the boolean vectors. (see russellrao function documen-
tation)

20.Y = cdist(XA, XB, ’sokalmichener’)

Computes the Sokal-Michener distance between the boolean vectors. (see sokalmichener function
documentation)

21.Y = cdist(XA, XB, ’sokalsneath’)

Computes the Sokal-Sneath distance between the vectors. (see sokalsneath function documentation)

22.Y = cdist(XA, XB, ’wminkowski’)

Computes the weighted Minkowski distance between the vectors. (see wminkowski function documen-
tation)

23.Y = cdist(XA, XB, f)

Computes the distance between all pairs of vectors in X using the user supplied 2-arity function f. For
example, Euclidean distance between the vectors could be computed as follows:

5.32. Distance computations (scipy.spatial.distance) 1133

SciPy Reference Guide, Release 0.16.0

dm = cdist(XA, XB, lambda u, v: np.sqrt(((u-v)**2).sum()))

Note that you should avoid passing a reference to one of the distance functions defined in this library. For
example,:

dm = cdist(XA, XB, sokalsneath)

would calculate the pair-wise distances between the vectors in X using the Python function
sokalsneath. This would result in sokalsneath being called

(︀
𝑛
2

)︀
times, which is inefficient. Instead,

the optimized C version is more efficient, and we call it using the following syntax:

dm = cdist(XA, XB, 'sokalsneath')

Parameters XA : ndarray
An 𝑚𝐴 by 𝑛 array of 𝑚𝐴 original observations in an 𝑛-dimensional space.
Inputs are converted to float type.

XB : ndarray
An 𝑚𝐵 by 𝑛 array of 𝑚𝐵 original observations in an 𝑛-dimensional space.
Inputs are converted to float type.

metric : str or callable, optional
The distance metric to use. If a string, the distance function can be ‘bray-
curtis’, ‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’, ‘cosine’, ‘dice’,
‘euclidean’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’,
‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’,
‘sokalsneath’, ‘sqeuclidean’, ‘wminkowski’, ‘yule’.

w : ndarray, optional
The weight vector (for weighted Minkowski).

p : scalar, optional
The p-norm to apply (for Minkowski, weighted and unweighted)

V : ndarray, optional
The variance vector (for standardized Euclidean).

VI : ndarray, optional
The inverse of the covariance matrix (for Mahalanobis).Returns Y : ndarray
A 𝑚𝐴 by 𝑚𝐵 distance matrix is returned. For each 𝑖 and 𝑗, the metric
dist(u=XA[i], v=XB[j]) is computed and stored in the 𝑖𝑗 th entry.Raises ValueError
An exception is thrown if XA and XB do not have the same number of
columns.

Examples

Find the Euclidean distances between four 2-D coordinates:

>>> from scipy.spatial import distance
>>> coords = [(35.0456, -85.2672),
... (35.1174, -89.9711),
... (35.9728, -83.9422),
... (36.1667, -86.7833)]
>>> distance.cdist(coords, coords, 'euclidean')
array([[0. , 4.7044, 1.6172, 1.8856],

[4.7044, 0. , 6.0893, 3.3561],
[1.6172, 6.0893, 0. , 2.8477],
[1.8856, 3.3561, 2.8477, 0.]])

Find the Manhattan distance from a 3-D point to the corners of the unit cube:

1134 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> a = np.array([[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1]])

>>> b = np.array([[0.1, 0.2, 0.4]])
>>> distance.cdist(a, b, 'cityblock')
array([[0.7],

[0.9],
[1.3],
[1.5],
[1.5],
[1.7],
[2.1],
[2.3]])

scipy.spatial.distance.squareform(X, force=’no’, checks=True)
Converts a vector-form distance vector to a square-form distance matrix, and vice-versa.

Parameters X : ndarray
Either a condensed or redundant distance matrix.

force : str, optional
As with MATLAB(TM), if force is equal to ‘tovector’ or ‘tomatrix’, the
input will be treated as a distance matrix or distance vector respectively.

checks : bool, optional
If checks is set to False, no checks will be made for matrix symmetry nor
zero diagonals. This is useful if it is known that X - X.T1 is small and
diag(X) is close to zero. These values are ignored any way so they do
not disrupt the squareform transformation.Returns Y : ndarray
If a condensed distance matrix is passed, a redundant one is returned, or if
a redundant one is passed, a condensed distance matrix is returned.

Notes

1.v = squareform(X)

Given a square d-by-d symmetric distance matrix X, v=squareform(X) returns a d * (d-1) / 2
(or ${n choose 2}$) sized vector v.

v[{n choose 2}-{n-i choose 2} + (j-i-1)] is the distance between points i and j. If X is non-square or
asymmetric, an error is returned.

2.X = squareform(v)

Given a d*d(-1)/2 sized v for some integer d>=2 encoding distances as described, X=squareform(v) re-
turns a d by d distance matrix X. The X[i, j] and X[j, i] values are set to v[{n choose 2}-{n-i choose 2} +
(j-u-1)] and all diagonal elements are zero.

Predicates for checking the validity of distance matrices, both condensed and redundant. Also contained in this module
are functions for computing the number of observations in a distance matrix.

is_valid_dm(D[, tol, throw, name, warning]) Returns True if input array is a valid distance matrix.
Continued on next page

5.32. Distance computations (scipy.spatial.distance) 1135

SciPy Reference Guide, Release 0.16.0

Table 5.208 – continued from previous page
is_valid_y(y[, warning, throw, name]) Returns True if the input array is a valid condensed distance matrix.
num_obs_dm(d) Returns the number of original observations that correspond to a square, redundant distance matrix.
num_obs_y(Y) Returns the number of original observations that correspond to a condensed distance matrix.

scipy.spatial.distance.is_valid_dm(D, tol=0.0, throw=False, name=’D’, warning=False)
Returns True if input array is a valid distance matrix.

Distance matrices must be 2-dimensional numpy arrays containing doubles. They must have a zero-diagonal,
and they must be symmetric.

Parameters D : ndarray
The candidate object to test for validity.

tol : float, optional
The distance matrix should be symmetric. tol is the maximum difference
between entries ij and ji for the distance metric to be considered sym-
metric.

throw : bool, optional
An exception is thrown if the distance matrix passed is not valid.

name : str, optional
The name of the variable to checked. This is useful if throw is set to True
so the offending variable can be identified in the exception message when
an exception is thrown.

warning : bool, optional
Instead of throwing an exception, a warning message is raised.Returns valid : bool
True if the variable D passed is a valid distance matrix.

Notes

Small numerical differences in D and D.T and non-zeroness of the diagonal are ignored if they are within the
tolerance specified by tol.

scipy.spatial.distance.is_valid_y(y, warning=False, throw=False, name=None)
Returns True if the input array is a valid condensed distance matrix.

Condensed distance matrices must be 1-dimensional numpy arrays containing doubles. Their length must be a
binomial coefficient

(︀
𝑛
2

)︀
for some positive integer n.

Parameters y : ndarray
The condensed distance matrix.

warning : bool, optional
Invokes a warning if the variable passed is not a valid condensed distance
matrix. The warning message explains why the distance matrix is not valid.
name is used when referencing the offending variable.

throw : bool, optional
Throws an exception if the variable passed is not a valid condensed distance
matrix.

name : bool, optional
Used when referencing the offending variable in the warning or exception
message.

scipy.spatial.distance.num_obs_dm(d)
Returns the number of original observations that correspond to a square, redundant distance matrix.

Parameters d : ndarray
The target distance matrix.Returns num_obs_dm : int

1136 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The number of observations in the redundant distance matrix.

scipy.spatial.distance.num_obs_y(Y)
Returns the number of original observations that correspond to a condensed distance matrix.

Parameters Y : ndarray
Condensed distance matrix.Returns n : int
The number of observations in the condensed distance matrix Y.

Distance functions between two vectors u and v. Computing distances over a large collection of vectors is inefficient
for these functions. Use pdist for this purpose.

braycurtis(u, v) Computes the Bray-Curtis distance between two 1-D arrays.
canberra(u, v) Computes the Canberra distance between two 1-D arrays.
chebyshev(u, v) Computes the Chebyshev distance.
cityblock(u, v) Computes the City Block (Manhattan) distance.
correlation(u, v) Computes the correlation distance between two 1-D arrays.
cosine(u, v) Computes the Cosine distance between 1-D arrays.
dice(u, v) Computes the Dice dissimilarity between two boolean 1-D arrays.
euclidean(u, v) Computes the Euclidean distance between two 1-D arrays.
hamming(u, v) Computes the Hamming distance between two 1-D arrays.
jaccard(u, v) Computes the Jaccard-Needham dissimilarity between two boolean 1-D arrays.
kulsinski(u, v) Computes the Kulsinski dissimilarity between two boolean 1-D arrays.
mahalanobis(u, v, VI) Computes the Mahalanobis distance between two 1-D arrays.
matching(u, v) Computes the Matching dissimilarity between two boolean 1-D arrays.
minkowski(u, v, p) Computes the Minkowski distance between two 1-D arrays.
rogerstanimoto(u, v) Computes the Rogers-Tanimoto dissimilarity between two boolean 1-D arrays.
russellrao(u, v) Computes the Russell-Rao dissimilarity between two boolean 1-D arrays.
seuclidean(u, v, V) Returns the standardized Euclidean distance between two 1-D arrays.
sokalmichener(u, v) Computes the Sokal-Michener dissimilarity between two boolean 1-D arrays.
sokalsneath(u, v) Computes the Sokal-Sneath dissimilarity between two boolean 1-D arrays.
sqeuclidean(u, v) Computes the squared Euclidean distance between two 1-D arrays.
wminkowski(u, v, p, w) Computes the weighted Minkowski distance between two 1-D arrays.
yule(u, v) Computes the Yule dissimilarity between two boolean 1-D arrays.

scipy.spatial.distance.braycurtis(u, v)
Computes the Bray-Curtis distance between two 1-D arrays.

Bray-Curtis distance is defined as ∑︁
|𝑢𝑖 − 𝑣𝑖|/

∑︁
|𝑢𝑖 + 𝑣𝑖|

The Bray-Curtis distance is in the range [0, 1] if all coordinates are positive, and is undefined if the inputs are
of length zero.

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.Returns braycurtis : double
The Bray-Curtis distance between 1-D arrays u and v.

scipy.spatial.distance.canberra(u, v)
Computes the Canberra distance between two 1-D arrays.

5.32. Distance computations (scipy.spatial.distance) 1137

SciPy Reference Guide, Release 0.16.0

The Canberra distance is defined as

𝑑(𝑢, 𝑣) =
∑︁
𝑖

|𝑢𝑖 − 𝑣𝑖|
|𝑢𝑖| + |𝑣𝑖|

.

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.Returns canberra : double
The Canberra distance between vectors u and v.

Notes

When u[i] and v[i] are 0 for given i, then the fraction 0/0 = 0 is used in the calculation.

scipy.spatial.distance.chebyshev(u, v)
Computes the Chebyshev distance.

Computes the Chebyshev distance between two 1-D arrays u and v, which is defined as

max
𝑖

|𝑢𝑖 − 𝑣𝑖|.

Parameters u : (N,) array_like
Input vector.

v : (N,) array_like
Input vector.Returns chebyshev : double
The Chebyshev distance between vectors u and v.

scipy.spatial.distance.cityblock(u, v)
Computes the City Block (Manhattan) distance.

Computes the Manhattan distance between two 1-D arrays u and v, which is defined as∑︁
𝑖

|𝑢𝑖 − 𝑣𝑖|.

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.Returns cityblock : double
The City Block (Manhattan) distance between vectors u and v.

scipy.spatial.distance.correlation(u, v)
Computes the correlation distance between two 1-D arrays.

The correlation distance between u and v, is defined as

1 − (𝑢− 𝑢̄) · (𝑣 − 𝑣)

||(𝑢− 𝑢̄)||2||(𝑣 − 𝑣)||2

where 𝑢̄ is the mean of the elements of u and 𝑥 · 𝑦 is the dot product of 𝑥 and 𝑦.

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.Returns correlation : double
The correlation distance between 1-D array u and v.

1138 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.spatial.distance.cosine(u, v)
Computes the Cosine distance between 1-D arrays.

The Cosine distance between u and v, is defined as

1 − 𝑢 · 𝑣
||𝑢||2||𝑣||2

.

where 𝑢 · 𝑣 is the dot product of 𝑢 and 𝑣.

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.Returns cosine : double
The Cosine distance between vectors u and v.

scipy.spatial.distance.dice(u, v)
Computes the Dice dissimilarity between two boolean 1-D arrays.

The Dice dissimilarity between u and v, is

𝑐𝑇𝐹 + 𝑐𝐹𝑇

2𝑐𝑇𝑇 + 𝑐𝐹𝑇 + 𝑐𝑇𝐹

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛.

Parameters u : (N,) ndarray, bool
Input 1-D array.

v : (N,) ndarray, bool
Input 1-D array.Returns dice : double
The Dice dissimilarity between 1-D arrays u and v.

scipy.spatial.distance.euclidean(u, v)
Computes the Euclidean distance between two 1-D arrays.

The Euclidean distance between 1-D arrays u and v, is defined as

||𝑢− 𝑣||2

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.Returns euclidean : double
The Euclidean distance between vectors u and v.

scipy.spatial.distance.hamming(u, v)
Computes the Hamming distance between two 1-D arrays.

The Hamming distance between 1-D arrays u and v, is simply the proportion of disagreeing components in u
and v. If u and v are boolean vectors, the Hamming distance is

𝑐01 + 𝑐10
𝑛

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛.

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.Returns hamming : double

5.32. Distance computations (scipy.spatial.distance) 1139

SciPy Reference Guide, Release 0.16.0

The Hamming distance between vectors u and v.

scipy.spatial.distance.jaccard(u, v)
Computes the Jaccard-Needham dissimilarity between two boolean 1-D arrays.

The Jaccard-Needham dissimilarity between 1-D boolean arrays u and v, is defined as

𝑐𝑇𝐹 + 𝑐𝐹𝑇

𝑐𝑇𝑇 + 𝑐𝐹𝑇 + 𝑐𝑇𝐹

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛.

Parameters u : (N,) array_like, bool
Input array.

v : (N,) array_like, bool
Input array.Returns jaccard : double
The Jaccard distance between vectors u and v.

scipy.spatial.distance.kulsinski(u, v)
Computes the Kulsinski dissimilarity between two boolean 1-D arrays.

The Kulsinski dissimilarity between two boolean 1-D arrays u and v, is defined as

𝑐𝑇𝐹 + 𝑐𝐹𝑇 − 𝑐𝑇𝑇 + 𝑛

𝑐𝐹𝑇 + 𝑐𝑇𝐹 + 𝑛

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛.

Parameters u : (N,) array_like, bool
Input array.

v : (N,) array_like, bool
Input array.Returns kulsinski : double
The Kulsinski distance between vectors u and v.

scipy.spatial.distance.mahalanobis(u, v, VI)
Computes the Mahalanobis distance between two 1-D arrays.

The Mahalanobis distance between 1-D arrays u and v, is defined as√︁
(𝑢− 𝑣)𝑉 −1(𝑢− 𝑣)𝑇

where V is the covariance matrix. Note that the argument VI is the inverse of V.

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.

VI : ndarray
The inverse of the covariance matrix.Returns mahalanobis : double
The Mahalanobis distance between vectors u and v.

scipy.spatial.distance.matching(u, v)
Computes the Matching dissimilarity between two boolean 1-D arrays.

The Matching dissimilarity between two boolean 1-D arrays u and v, is defined as

𝑐𝑇𝐹 + 𝑐𝐹𝑇

𝑛

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛.

1140 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters u : (N,) array_like, bool
Input array.

v : (N,) array_like, bool
Input array.Returns matching : double
The Matching dissimilarity between vectors u and v.

scipy.spatial.distance.minkowski(u, v, p)
Computes the Minkowski distance between two 1-D arrays.

The Minkowski distance between 1-D arrays u and v, is defined as

||𝑢− 𝑣||𝑝 = (
∑︁

|𝑢𝑖 − 𝑣𝑖|𝑝)1/𝑝.

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.

p : int
The order of the norm of the difference ||𝑢− 𝑣||𝑝.Returns d : double
The Minkowski distance between vectors u and v.

scipy.spatial.distance.rogerstanimoto(u, v)
Computes the Rogers-Tanimoto dissimilarity between two boolean 1-D arrays.

The Rogers-Tanimoto dissimilarity between two boolean 1-D arrays u and v, is defined as

𝑅

𝑐𝑇𝑇 + 𝑐𝐹𝐹 + 𝑅

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛 and 𝑅 = 2(𝑐𝑇𝐹 + 𝑐𝐹𝑇).

Parameters u : (N,) array_like, bool
Input array.

v : (N,) array_like, bool
Input array.Returns rogerstanimoto : double
The Rogers-Tanimoto dissimilarity between vectors u and v.

scipy.spatial.distance.russellrao(u, v)
Computes the Russell-Rao dissimilarity between two boolean 1-D arrays.

The Russell-Rao dissimilarity between two boolean 1-D arrays, u and v, is defined as

𝑛− 𝑐𝑇𝑇

𝑛

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛.

Parameters u : (N,) array_like, bool
Input array.

v : (N,) array_like, bool
Input array.Returns russellrao : double
The Russell-Rao dissimilarity between vectors u and v.

scipy.spatial.distance.seuclidean(u, v, V)
Returns the standardized Euclidean distance between two 1-D arrays.

The standardized Euclidean distance between u and v.

Parameters u : (N,) array_like

5.32. Distance computations (scipy.spatial.distance) 1141

SciPy Reference Guide, Release 0.16.0

Input array.
v : (N,) array_like

Input array.
V : (N,) array_like

V is an 1-D array of component variances. It is usually computed among a
larger collection vectors.Returns seuclidean : double
The standardized Euclidean distance between vectors u and v.

scipy.spatial.distance.sokalmichener(u, v)
Computes the Sokal-Michener dissimilarity between two boolean 1-D arrays.

The Sokal-Michener dissimilarity between boolean 1-D arrays u and v, is defined as

𝑅

𝑆 + 𝑅

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛, 𝑅 = 2 * (𝑐𝑇𝐹 + 𝑐𝐹𝑇) and
𝑆 = 𝑐𝐹𝐹 + 𝑐𝑇𝑇 .

Parameters u : (N,) array_like, bool
Input array.

v : (N,) array_like, bool
Input array.Returns sokalmichener : double
The Sokal-Michener dissimilarity between vectors u and v.

scipy.spatial.distance.sokalsneath(u, v)
Computes the Sokal-Sneath dissimilarity between two boolean 1-D arrays.

The Sokal-Sneath dissimilarity between u and v,

𝑅

𝑐𝑇𝑇 + 𝑅

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛 and 𝑅 = 2(𝑐𝑇𝐹 + 𝑐𝐹𝑇).

Parameters u : (N,) array_like, bool
Input array.

v : (N,) array_like, bool
Input array.Returns sokalsneath : double
The Sokal-Sneath dissimilarity between vectors u and v.

scipy.spatial.distance.sqeuclidean(u, v)
Computes the squared Euclidean distance between two 1-D arrays.

The squared Euclidean distance between u and v is defined as

||𝑢− 𝑣||22.

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.Returns sqeuclidean : double
The squared Euclidean distance between vectors u and v.

scipy.spatial.distance.wminkowski(u, v, p, w)
Computes the weighted Minkowski distance between two 1-D arrays.

The weighted Minkowski distance between u and v, defined as(︁∑︁
(𝑤𝑖|𝑢𝑖 − 𝑣𝑖|𝑝)

)︁1/𝑝
.

1142 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters u : (N,) array_like
Input array.

v : (N,) array_like
Input array.

p : int
The order of the norm of the difference ||𝑢− 𝑣||𝑝.

w : (N,) array_like
The weight vector.Returns wminkowski : double
The weighted Minkowski distance between vectors u and v.

scipy.spatial.distance.yule(u, v)
Computes the Yule dissimilarity between two boolean 1-D arrays.

The Yule dissimilarity is defined as

𝑅

𝑐𝑇𝑇 * 𝑐𝐹𝐹 + 𝑅
2

where 𝑐𝑖𝑗 is the number of occurrences of u[k] = 𝑖 and v[k] = 𝑗 for 𝑘 < 𝑛 and 𝑅 = 2.0 * 𝑐𝑇𝐹 * 𝑐𝐹𝑇 .

Parameters u : (N,) array_like, bool
Input array.

v : (N,) array_like, bool
Input array.Returns yule : double
The Yule dissimilarity between vectors u and v.

5.33 Special functions (scipy.special)

Nearly all of the functions below are universal functions and follow broadcasting and automatic array-looping rules.
Exceptions are noted.

5.33.1 Error handling

Errors are handled by returning nans, or other appropriate values. Some of the special function routines will emit
warnings when an error occurs. By default this is disabled. To enable such messages use errprint(1), and to
disable such messages use errprint(0).

Example:

>>> print scipy.special.bdtr(-1,10,0.3)
>>> scipy.special.errprint(1)
>>> print scipy.special.bdtr(-1,10,0.3)

errprint([inflag]) Sets or returns the error printing flag for special functions.
SpecialFunctionWarning Warning that can be issued with errprint(True)

scipy.special.errprint(inflag=None)
Sets or returns the error printing flag for special functions.

Parameters inflag : bool, optional
Whether warnings concerning evaluation of special functions in
scipy.special are shown. If omitted, no change is made to the current setting.Returns old_flag

5.33. Special functions (scipy.special) 1143

SciPy Reference Guide, Release 0.16.0

Previous value of the error flag

exception scipy.special.SpecialFunctionWarning
Warning that can be issued with errprint(True)

5.33.2 Available functions

Airy functions

airy(z) Airy functions and their derivatives.
airye(z) Exponentially scaled Airy functions and their derivatives.
ai_zeros(nt) Compute the zeros of Airy Functions Ai(x) and Ai’(x), a and a’ respectively, and the associated values of Ai(a’) and Ai’(a).
bi_zeros(nt) Compute the zeros of Airy Functions Bi(x) and Bi’(x), b and b’ respectively, and the associated values of Ai(b’) and Ai’(b).
itairy(x) Integrals of Airy functios

scipy.special.airy(z) = <ufunc ‘airy’>
Airy functions and their derivatives.

Parameters z : float or complex
Argument.Returns Ai, Aip, Bi, Bip
Airy functions Ai and Bi, and their derivatives Aip and Bip

Notes

The Airy functions Ai and Bi are two independent solutions of y’‘(x) = x y.

scipy.special.airye(z) = <ufunc ‘airye’>
Exponentially scaled Airy functions and their derivatives.

Scaling:

eAi = Ai * exp(2.0/3.0*z*sqrt(z))
eAip = Aip * exp(2.0/3.0*z*sqrt(z))
eBi = Bi * exp(-abs((2.0/3.0*z*sqrt(z)).real))
eBip = Bip * exp(-abs((2.0/3.0*z*sqrt(z)).real))

Parameters z : float or complex
Argument.Returns eAi, eAip, eBi, eBip
Airy functions Ai and Bi, and their derivatives Aip and Bip

scipy.special.ai_zeros(nt)
Compute the zeros of Airy Functions Ai(x) and Ai’(x), a and a’ respectively, and the associated values of Ai(a’)
and Ai’(a).

Returns a[l-1] – the lth zero of Ai(x)
ap[l-1] – the lth zero of Ai’(x)
ai[l-1] – Ai(ap[l-1])
aip[l-1] – Ai’(a[l-1])

scipy.special.bi_zeros(nt)
Compute the zeros of Airy Functions Bi(x) and Bi’(x), b and b’ respectively, and the associated values of Ai(b’)
and Ai’(b).

1144 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Returns b[l-1] – the lth zero of Bi(x)
bp[l-1] – the lth zero of Bi’(x)
bi[l-1] – Bi(bp[l-1])
bip[l-1] – Bi’(b[l-1])

scipy.special.itairy(x) = <ufunc ‘itairy’>
Integrals of Airy functios

Calculates the integral of Airy functions from 0 to x

Returns Apt, Bpt
Integrals for positive arguments

Ant, Bnt
Integrals for negative arguments

Elliptic Functions and Integrals

ellipj(u, m) Jacobian elliptic functions
ellipk(m) Complete elliptic integral of the first kind
ellipkm1(p) Complete elliptic integral of the first kind around m = 1
ellipkinc(phi, m) Incomplete elliptic integral of the first kind
ellipe(m) Complete elliptic integral of the second kind
ellipeinc(phi, m) Incomplete elliptic integral of the second kind

scipy.special.ellipj(u, m) = <ufunc ‘ellipj’>
Jacobian elliptic functions

Calculates the Jacobian elliptic functions of parameter m between 0 and 1, and real u.

Parameters m, u
ParametersReturns sn, cn, dn, ph
The returned functions:

sn(u|m), cn(u|m), dn(u|m)

The value ph is such that if u = ellik(ph, m), then sn(u|m) =
sin(ph) and cn(u|m) = cos(ph).

scipy.special.ellipk(m)
Complete elliptic integral of the first kind

This function is defined as

𝐾(𝑚) =

∫︁ 𝜋/2

0

[1 −𝑚 sin(𝑡)2]−1/2𝑑𝑡

Parameters m : array_like
The parameter of the elliptic integral.Returns K : array_like
Value of the elliptic integral.

See also:

ellipkm1 Complete elliptic integral of the first kind around m = 1
ellipkinc Incomplete elliptic integral of the first kind
ellipe Complete elliptic integral of the second kind
ellipeinc Incomplete elliptic integral of the second kind

5.33. Special functions (scipy.special) 1145

SciPy Reference Guide, Release 0.16.0

Notes

For more precision around point m = 1, use ellipkm1.

scipy.special.ellipkm1(p) = <ufunc ‘ellipkm1’>
Complete elliptic integral of the first kind around m = 1

This function is defined as

𝐾(𝑝) =

∫︁ 𝜋/2

0

[1 −𝑚 sin(𝑡)2]−1/2𝑑𝑡

where m = 1 - p.

Parameters p : array_like
Defines the parameter of the elliptic integral as m = 1 - p.Returns K : ndarray
Value of the elliptic integral.

See also:

ellipk Complete elliptic integral of the first kind
ellipkinc Incomplete elliptic integral of the first kind
ellipe Complete elliptic integral of the second kind
ellipeinc Incomplete elliptic integral of the second kind

scipy.special.ellipkinc(phi, m) = <ufunc ‘ellipkinc’>
Incomplete elliptic integral of the first kind

This function is defined as

𝐾(𝜑,𝑚) =

∫︁ 𝜑

0

[1 −𝑚 sin(𝑡)2]−1/2𝑑𝑡

Parameters phi : array_like
amplitude of the elliptic integral

m : array_like
parameter of the elliptic integralReturns K : ndarray
Value of the elliptic integral

See also:

ellipkm1 Complete elliptic integral of the first kind, near m = 1
ellipk Complete elliptic integral of the first kind
ellipe Complete elliptic integral of the second kind
ellipeinc Incomplete elliptic integral of the second kind

Notes

This function is also called F(phi, m).

scipy.special.ellipe(m) = <ufunc ‘ellipe’>
Complete elliptic integral of the second kind

This function is defined as

𝐸(𝑚) =

∫︁ 𝜋/2

0

[1 −𝑚 sin(𝑡)2]1/2𝑑𝑡

Parameters m : array_like
Defines the parameter of the elliptic integral.Returns E : ndarray
Value of the elliptic integral.

1146 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

See also:

ellipkm1 Complete elliptic integral of the first kind, near m = 1
ellipk Complete elliptic integral of the first kind
ellipkinc Incomplete elliptic integral of the first kind
ellipeinc Incomplete elliptic integral of the second kind

scipy.special.ellipeinc(phi, m) = <ufunc ‘ellipeinc’>
Incomplete elliptic integral of the second kind

This function is defined as

𝐸(𝜑,𝑚) =

∫︁ 𝜑

0

[1 −𝑚 sin(𝑡)2]1/2𝑑𝑡

Parameters phi : array_like
amplitude of the elliptic integral.

m : array_like
parameter of the elliptic integral.Returns E : ndarray
Value of the elliptic integral.

See also:

ellipkm1 Complete elliptic integral of the first kind, near m = 1
ellipk Complete elliptic integral of the first kind
ellipkinc Incomplete elliptic integral of the first kind
ellipe Complete elliptic integral of the second kind

Bessel Functions

jv(v, z) Bessel function of the first kind of real order v
jve(v, z) Exponentially scaled Bessel function of order v
yn(n,x) Bessel function of the second kind of integer order
yv(v,z) Bessel function of the second kind of real order
yve(v,z) Exponentially scaled Bessel function of the second kind of real order
kn(n, x) Modified Bessel function of the second kind of integer order n
kv(v,z) Modified Bessel function of the second kind of real order v
kve(v,z) Exponentially scaled modified Bessel function of the second kind.
iv(v,z) Modified Bessel function of the first kind of real order
ive(v,z) Exponentially scaled modified Bessel function of the first kind
hankel1(v, z) Hankel function of the first kind
hankel1e(v, z) Exponentially scaled Hankel function of the first kind
hankel2(v, z) Hankel function of the second kind
hankel2e(v, z) Exponentially scaled Hankel function of the second kind

scipy.special.jv(v, z) = <ufunc ‘jv’>
Bessel function of the first kind of real order v

scipy.special.jve(v, z) = <ufunc ‘jve’>
Exponentially scaled Bessel function of order v

Defined as:

jve(v,z) = jv(v,z) * exp(-abs(z.imag))

5.33. Special functions (scipy.special) 1147

SciPy Reference Guide, Release 0.16.0

scipy.special.yn(n, x) = <ufunc ‘yn’>
Bessel function of the second kind of integer order

Returns the Bessel function of the second kind of integer order n at x.

scipy.special.yv(v, z) = <ufunc ‘yv’>
Bessel function of the second kind of real order

Returns the Bessel function of the second kind of real order v at complex z.

scipy.special.yve(v, z) = <ufunc ‘yve’>
Exponentially scaled Bessel function of the second kind of real order

Returns the exponentially scaled Bessel function of the second kind of real order v at complex z:

yve(v,z) = yv(v,z) * exp(-abs(z.imag))

scipy.special.kn(n, x) = <ufunc ‘kn’>
Modified Bessel function of the second kind of integer order n

These are also sometimes called functions of the third kind.

scipy.special.kv(v, z) = <ufunc ‘kv’>
Modified Bessel function of the second kind of real order v

Returns the modified Bessel function of the second kind (sometimes called the third kind) for real order v at
complex z.

scipy.special.kve(v, z) = <ufunc ‘kve’>
Exponentially scaled modified Bessel function of the second kind.

Returns the exponentially scaled, modified Bessel function of the second kind (sometimes called the third kind)
for real order v at complex z:

kve(v,z) = kv(v,z) * exp(z)

scipy.special.iv(v, z) = <ufunc ‘iv’>
Modified Bessel function of the first kind of real order

Parameters v
Order. If z is of real type and negative, v must be integer valued.

z
Argument.

scipy.special.ive(v, z) = <ufunc ‘ive’>
Exponentially scaled modified Bessel function of the first kind

Defined as:

ive(v,z) = iv(v,z) * exp(-abs(z.real))

scipy.special.hankel1(v, z) = <ufunc ‘hankel1’>
Hankel function of the first kind

Parameters v : float
Order

z : float or complex
Argument

1148 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.special.hankel1e(v, z) = <ufunc ‘hankel1e’>
Exponentially scaled Hankel function of the first kind

Defined as:

hankel1e(v,z) = hankel1(v,z) * exp(-1j * z)

Parameters v : float
Order

z : complex
Argument

scipy.special.hankel2(v, z) = <ufunc ‘hankel2’>
Hankel function of the second kind

Parameters v : float
Order

z : complex
Argument

scipy.special.hankel2e(v, z) = <ufunc ‘hankel2e’>
Exponentially scaled Hankel function of the second kind

Defined as:

hankel1e(v,z) = hankel1(v,z) * exp(1j * z)

Parameters v : float
Order

z : complex
Argument

The following is not an universal function:

lmbda(v, x) Compute sequence of lambda functions with arbitrary order v and their derivatives.

scipy.special.lmbda(v, x)
Compute sequence of lambda functions with arbitrary order v and their derivatives. Lv0(x)..Lv(x) are computed
with v0=v-int(v).

Zeros of Bessel Functions

These are not universal functions:

jnjnp_zeros(nt) Compute nt (<=1200) zeros of the Bessel functions Jn and Jn’ and arange them in order of their magnitudes.
jnyn_zeros(n, nt) Compute nt zeros of the Bessel functions Jn(x), Jn’(x), Yn(x), and Yn’(x), respectively.
jn_zeros(n, nt) Compute nt zeros of the Bessel function Jn(x).
jnp_zeros(n, nt) Compute nt zeros of the Bessel function Jn’(x).
yn_zeros(n, nt) Compute nt zeros of the Bessel function Yn(x).
ynp_zeros(n, nt) Compute nt zeros of the Bessel function Yn’(x).
y0_zeros(nt[, complex]) Returns nt (complex or real) zeros of Y0(z), z0, and the value of Y0’(z0) = -Y1(z0) at each zero.
y1_zeros(nt[, complex]) Returns nt (complex or real) zeros of Y1(z), z1, and the value of Y1’(z1) = Y0(z1) at each zero.
y1p_zeros(nt[, complex]) Returns nt (complex or real) zeros of Y1’(z), z1’, and the value of Y1(z1’) at each zero.

5.33. Special functions (scipy.special) 1149

SciPy Reference Guide, Release 0.16.0

scipy.special.jnjnp_zeros(nt)
Compute nt (<=1200) zeros of the Bessel functions Jn and Jn’ and arange them in order of their magnitudes.

Returns zo[l-1] : ndarray
Value of the lth zero of Jn(x) and Jn’(x). Of length nt.

n[l-1] : ndarray
Order of the Jn(x) or Jn’(x) associated with lth zero. Of length nt.

m[l-1] : ndarray
Serial number of the zeros of Jn(x) or Jn’(x) associated with lth zero. Of
length nt.

t[l-1] : ndarray
0 if lth zero in zo is zero of Jn(x), 1 if it is a zero of Jn’(x). Of length nt.

See also:

jn_zeros, jnp_zeros

scipy.special.jnyn_zeros(n, nt)
Compute nt zeros of the Bessel functions Jn(x), Jn’(x), Yn(x), and Yn’(x), respectively. Returns 4 arrays of
length nt.

See jn_zeros, jnp_zeros, yn_zeros, ynp_zeros to get separate arrays.

scipy.special.jn_zeros(n, nt)
Compute nt zeros of the Bessel function Jn(x).

scipy.special.jnp_zeros(n, nt)
Compute nt zeros of the Bessel function Jn’(x).

scipy.special.yn_zeros(n, nt)
Compute nt zeros of the Bessel function Yn(x).

scipy.special.ynp_zeros(n, nt)
Compute nt zeros of the Bessel function Yn’(x).

scipy.special.y0_zeros(nt, complex=0)
Returns nt (complex or real) zeros of Y0(z), z0, and the value of Y0’(z0) = -Y1(z0) at each zero.

scipy.special.y1_zeros(nt, complex=0)
Returns nt (complex or real) zeros of Y1(z), z1, and the value of Y1’(z1) = Y0(z1) at each zero.

scipy.special.y1p_zeros(nt, complex=0)
Returns nt (complex or real) zeros of Y1’(z), z1’, and the value of Y1(z1’) at each zero.

Faster versions of common Bessel Functions

j0(x) Bessel function the first kind of order 0
j1(x) Bessel function of the first kind of order 1
y0(x) Bessel function of the second kind of order 0
y1(x) Bessel function of the second kind of order 1
i0(x) Modified Bessel function of order 0
i0e(x) Exponentially scaled modified Bessel function of order 0.
i1(x) Modified Bessel function of order 1
i1e(x) Exponentially scaled modified Bessel function of order 0.
k0(x) Modified Bessel function K of order 0
k0e(x) Exponentially scaled modified Bessel function K of order 0
k1(x) Modified Bessel function of the first kind of order 1
k1e(x) Exponentially scaled modified Bessel function K of order 1

1150 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.special.j0(x) = <ufunc ‘j0’>
Bessel function the first kind of order 0

scipy.special.j1(x) = <ufunc ‘j1’>
Bessel function of the first kind of order 1

scipy.special.y0(x) = <ufunc ‘y0’>
Bessel function of the second kind of order 0

Returns the Bessel function of the second kind of order 0 at x.

scipy.special.y1(x) = <ufunc ‘y1’>
Bessel function of the second kind of order 1

Returns the Bessel function of the second kind of order 1 at x.

scipy.special.i0(x) = <ufunc ‘i0’>
Modified Bessel function of order 0

scipy.special.i0e(x) = <ufunc ‘i0e’>
Exponentially scaled modified Bessel function of order 0.

Defined as:

i0e(x) = exp(-abs(x)) * i0(x).

scipy.special.i1(x) = <ufunc ‘i1’>
Modified Bessel function of order 1

scipy.special.i1e(x) = <ufunc ‘i1e’>
Exponentially scaled modified Bessel function of order 0.

Defined as:

i1e(x) = exp(-abs(x)) * i1(x)

scipy.special.k0(x) = <ufunc ‘k0’>
Modified Bessel function K of order 0

Modified Bessel function of the second kind (sometimes called the third kind) of order 0.

scipy.special.k0e(x) = <ufunc ‘k0e’>
Exponentially scaled modified Bessel function K of order 0

Defined as:

k0e(x) = exp(x) * k0(x).

scipy.special.k1(x) = <ufunc ‘k1’>
Modified Bessel function of the first kind of order 1

scipy.special.k1e(x) = <ufunc ‘k1e’>
Exponentially scaled modified Bessel function K of order 1

Defined as:

k1e(x) = exp(x) * k1(x)

Continued on next page

5.33. Special functions (scipy.special) 1151

SciPy Reference Guide, Release 0.16.0

Table 5.217 – continued from previous page

Integrals of Bessel Functions

itj0y0(x) Integrals of Bessel functions of order 0
it2j0y0(x) Integrals related to Bessel functions of order 0
iti0k0(x) Integrals of modified Bessel functions of order 0
it2i0k0(x) Integrals related to modified Bessel functions of order 0
besselpoly(a, lmb, nu) Weighed integral of a Bessel function.

scipy.special.itj0y0(x) = <ufunc ‘itj0y0’>
Integrals of Bessel functions of order 0

Returns simple integrals from 0 to x of the zeroth order Bessel functions j0 and y0.

Returns ij0, iy0

scipy.special.it2j0y0(x) = <ufunc ‘it2j0y0’>
Integrals related to Bessel functions of order 0

Returns ij0
integral((1-j0(t))/t, t=0..x)

iy0
integral(y0(t)/t, t=x..inf)

scipy.special.iti0k0(x) = <ufunc ‘iti0k0’>
Integrals of modified Bessel functions of order 0

Returns simple integrals from 0 to x of the zeroth order modified Bessel functions i0 and k0.

Returns ii0, ik0

scipy.special.it2i0k0(x) = <ufunc ‘it2i0k0’>
Integrals related to modified Bessel functions of order 0

Returns ii0
integral((i0(t)-1)/t, t=0..x)

ik0
int(k0(t)/t,t=x..inf)

scipy.special.besselpoly(a, lmb, nu) = <ufunc ‘besselpoly’>
Weighed integral of a Bessel function. ∫︁ 1

0

𝑥𝜆𝐽𝑣(𝜈, 2𝑎𝑥) 𝑑𝑥

where 𝐽𝑣 is a Bessel function and 𝜆 = 𝑙𝑚𝑏, 𝜈 = 𝑛𝑢.

Derivatives of Bessel Functions

jvp(v, z[, n]) Return the nth derivative of Jv(z) with respect to z.
yvp(v, z[, n]) Return the nth derivative of Yv(z) with respect to z.
kvp(v, z[, n]) Return the nth derivative of Kv(z) with respect to z.
ivp(v, z[, n]) Return the nth derivative of Iv(z) with respect to z.
h1vp(v, z[, n]) Return the nth derivative of H1v(z) with respect to z.
h2vp(v, z[, n]) Return the nth derivative of H2v(z) with respect to z.

1152 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.special.jvp(v, z, n=1)
Return the nth derivative of Jv(z) with respect to z.

scipy.special.yvp(v, z, n=1)
Return the nth derivative of Yv(z) with respect to z.

scipy.special.kvp(v, z, n=1)
Return the nth derivative of Kv(z) with respect to z.

scipy.special.ivp(v, z, n=1)
Return the nth derivative of Iv(z) with respect to z.

scipy.special.h1vp(v, z, n=1)
Return the nth derivative of H1v(z) with respect to z.

scipy.special.h2vp(v, z, n=1)
Return the nth derivative of H2v(z) with respect to z.

Spherical Bessel Functions

These are not universal functions:

sph_jn(n, z) Compute the spherical Bessel function jn(z) and its derivative for all orders up to and including n.
sph_yn(n, z) Compute the spherical Bessel function yn(z) and its derivative for all orders up to and including n.
sph_jnyn(n, z) Compute the spherical Bessel functions, jn(z) and yn(z) and their derivatives for all orders up to and including n.
sph_in(n, z) Compute the spherical Bessel function in(z) and its derivative for all orders up to and including n.
sph_kn(n, z) Compute the spherical Bessel function kn(z) and its derivative for all orders up to and including n.
sph_inkn(n, z) Compute the spherical Bessel functions, in(z) and kn(z) and their derivatives for all orders up to and including n.

scipy.special.sph_jn(n, z)
Compute the spherical Bessel function jn(z) and its derivative for all orders up to and including n.

scipy.special.sph_yn(n, z)
Compute the spherical Bessel function yn(z) and its derivative for all orders up to and including n.

scipy.special.sph_jnyn(n, z)
Compute the spherical Bessel functions, jn(z) and yn(z) and their derivatives for all orders up to and including
n.

scipy.special.sph_in(n, z)
Compute the spherical Bessel function in(z) and its derivative for all orders up to and including n.

scipy.special.sph_kn(n, z)
Compute the spherical Bessel function kn(z) and its derivative for all orders up to and including n.

scipy.special.sph_inkn(n, z)
Compute the spherical Bessel functions, in(z) and kn(z) and their derivatives for all orders up to and including
n.

Riccati-Bessel Functions

These are not universal functions:

riccati_jn(n, x) Compute the Ricatti-Bessel function of the first kind and its derivative for all orders up to and including n.
riccati_yn(n, x) Compute the Ricatti-Bessel function of the second kind and its derivative for all orders up to and including n.

scipy.special.riccati_jn(n, x)
Compute the Ricatti-Bessel function of the first kind and its derivative for all orders up to and including n.

5.33. Special functions (scipy.special) 1153

SciPy Reference Guide, Release 0.16.0

scipy.special.riccati_yn(n, x)
Compute the Ricatti-Bessel function of the second kind and its derivative for all orders up to and including n.

Struve Functions

struve(v,x) Struve function
modstruve(v, x) Modified Struve function
itstruve0(x) Integral of the Struve function of order 0
it2struve0(x) Integral related to Struve function of order 0
itmodstruve0(x) Integral of the modified Struve function of order 0

scipy.special.struve(v, x) = <ufunc ‘struve’>
Struve function

Computes the struve function Hv(x) of order v at x, x must be positive unless v is an integer.

scipy.special.modstruve(v, x) = <ufunc ‘modstruve’>
Modified Struve function

Returns the modified Struve function Lv(x) of order v at x, x must be positive unless v is an integer.

scipy.special.itstruve0(x) = <ufunc ‘itstruve0’>
Integral of the Struve function of order 0

Returns i
integral(H0(t), t=0..x)

scipy.special.it2struve0(x) = <ufunc ‘it2struve0’>
Integral related to Struve function of order 0

Returns i
integral(H0(t)/t, t=x..inf)

scipy.special.itmodstruve0(x) = <ufunc ‘itmodstruve0’>
Integral of the modified Struve function of order 0

Returns i
integral(L0(t), t=0..x)

Raw Statistical Functions

See also:

scipy.stats: Friendly versions of these functions.

bdtr(k, n, p) Binomial distribution cumulative distribution function.
bdtrc(k, n, p) Binomial distribution survival function.
bdtri(k, n, y) Inverse function to bdtr vs.
bdtrik(y, n, p) Inverse function to bdtr vs k
bdtrin(k, y, p) Inverse function to bdtr vs n
btdtr(a,b,x) Cumulative beta distribution.
btdtri(a,b,p) p-th quantile of the beta distribution.
btdtria(p, b, x) Inverse of btdtr vs a
btdtrib(a, p, x) Inverse of btdtr vs b
fdtr(dfn, dfd, x) F cumulative distribution function

Continued on next page

1154 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.222 – continued from previous page
fdtrc(dfn, dfd, x) F survival function
fdtri(dfn, dfd, p) Inverse to fdtr vs x
gdtr(a,b,x) Gamma distribution cumulative density function.
gdtrc(a,b,x) Gamma distribution survival function.
gdtria(p, b, x[, out]) Inverse of gdtr vs a.
gdtrib(a, p, x[, out]) Inverse of gdtr vs b.
gdtrix(a, b, p[, out]) Inverse of gdtr vs x.
nbdtr(k, n, p) Negative binomial cumulative distribution function
nbdtrc(k,n,p) Negative binomial survival function
nbdtri(k, n, y) Inverse of nbdtr vs p
nbdtrik(y,n,p) Inverse of nbdtr vs k
nbdtrin(k,y,p) Inverse of nbdtr vs n
ncfdtr(dfn, dfd, nc, f) Cumulative distribution function of the non-central F distribution.
ncfdtridfd(p, f, dfn, nc) Calculate degrees of freedom (denominator) for the noncentral F-distribution.
ncfdtridfn(p, f, dfd, nc) Calculate degrees of freedom (numerator) for the noncentral F-distribution.
ncfdtri(p, dfn, dfd, nc) Inverse cumulative distribution function of the non-central F distribution.
ncfdtrinc(p, f, dfn, dfd) Calculate non-centrality parameter for non-central F distribution.
nctdtr(df, nc, t) Cumulative distribution function of the non-central t distribution.
nctdtridf(p, nc, t) Calculate degrees of freedom for non-central t distribution.
nctdtrit(df, nc, p) Inverse cumulative distribution function of the non-central t distribution.
nctdtrinc(df, p, t) Calculate non-centrality parameter for non-central t distribution.
nrdtrimn(p, x, std) Calculate mean of normal distribution given other params.
nrdtrisd(p, x, mn) Calculate standard deviation of normal distribution given other params.
pdtr(k, m) Poisson cumulative distribution function
pdtrc(k, m) Poisson survival function
pdtri(k,y) Inverse to pdtr vs m
pdtrik(p,m) Inverse to pdtr vs k
stdtr(df,t) Student t distribution cumulative density function
stdtridf(p,t) Inverse of stdtr vs df
stdtrit(df,p) Inverse of stdtr vs t
chdtr(v, x) Chi square cumulative distribution function
chdtrc(v,x) Chi square survival function
chdtri(v,p) Inverse to chdtrc
chdtriv(p, x) Inverse to chdtr vs v
ndtr(x) Gaussian cumulative distribution function
log_ndtr(x) Logarithm of Gaussian cumulative distribution function
ndtri(y) Inverse of ndtr vs x
chndtr(x, df, nc) Non-central chi square cumulative distribution function
chndtridf(x, p, nc) Inverse to chndtr vs df
chndtrinc(x, df, p) Inverse to chndtr vs nc
chndtrix(p, df, nc) Inverse to chndtr vs x
smirnov(n, e) Kolmogorov-Smirnov complementary cumulative distribution function
smirnovi(n, y) Inverse to smirnov
kolmogorov(y) Complementary cumulative distribution function of Kolmogorov distribution
kolmogi(p) Inverse function to kolmogorov
tklmbda(x, lmbda) Tukey-Lambda cumulative distribution function
logit(x) Logit ufunc for ndarrays.
expit(x) Expit ufunc for ndarrays.
boxcox(x, lmbda) Compute the Box-Cox transformation.
boxcox1p(x, lmbda) Compute the Box-Cox transformation of 1 + x.

5.33. Special functions (scipy.special) 1155

SciPy Reference Guide, Release 0.16.0

scipy.special.bdtr(k, n, p) = <ufunc ‘bdtr’>
Binomial distribution cumulative distribution function.

Sum of the terms 0 through k of the Binomial probability density.

y = sum(nCj p**j (1-p)**(n-j),j=0..k)

Parameters k, n : int
Terms to include

p : float
ProbabilityReturns y : float
Sum of terms

scipy.special.bdtrc(k, n, p) = <ufunc ‘bdtrc’>
Binomial distribution survival function.

Sum of the terms k+1 through n of the Binomial probability density

y = sum(nCj p**j (1-p)**(n-j), j=k+1..n)

Parameters k, n : int
Terms to include

p : float
ProbabilityReturns y : float
Sum of terms

scipy.special.bdtri(k, n, y) = <ufunc ‘bdtri’>
Inverse function to bdtr vs. p

Finds probability p such that for the cumulative binomial probability bdtr(k, n, p) == y.

scipy.special.bdtrik(y, n, p) = <ufunc ‘bdtrik’>
Inverse function to bdtr vs k

scipy.special.bdtrin(k, y, p) = <ufunc ‘bdtrin’>
Inverse function to bdtr vs n

scipy.special.btdtr(a, b, x) = <ufunc ‘btdtr’>
Cumulative beta distribution.

Returns the area from zero to x under the beta density function:

gamma(a+b)/(gamma(a)*gamma(b)))*integral(t**(a-1) (1-t)**(b-1), t=0..x)

See also:

betainc

scipy.special.btdtri(a, b, p) = <ufunc ‘btdtri’>
p-th quantile of the beta distribution.

This is effectively the inverse of btdtr returning the value of x for which btdtr(a,b,x) = p

See also:

betaincinv

scipy.special.btdtria(p, b, x) = <ufunc ‘btdtria’>
Inverse of btdtr vs a

1156 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.special.btdtrib(a, p, x) = <ufunc ‘btdtrib’>
Inverse of btdtr vs b

scipy.special.fdtr(dfn, dfd, x) = <ufunc ‘fdtr’>
F cumulative distribution function

Returns the area from zero to x under the F density function (also known as Snedcor’s density or the variance
ratio density). This is the density of X = (unum/dfn)/(uden/dfd), where unum and uden are random variables
having Chi square distributions with dfn and dfd degrees of freedom, respectively.

scipy.special.fdtrc(dfn, dfd, x) = <ufunc ‘fdtrc’>
F survival function

Returns the complemented F distribution function.

scipy.special.fdtri(dfn, dfd, p) = <ufunc ‘fdtri’>
Inverse to fdtr vs x

Finds the F density argument x such that fdtr(dfn, dfd, x) == p.

scipy.special.gdtr(a, b, x) = <ufunc ‘gdtr’>
Gamma distribution cumulative density function.

Returns the integral from zero to x of the gamma probability density function:

a**b / gamma(b) * integral(t**(b-1) exp(-at),t=0..x).

The arguments a and b are used differently here than in other definitions.

scipy.special.gdtrc(a, b, x) = <ufunc ‘gdtrc’>
Gamma distribution survival function.

Integral from x to infinity of the gamma probability density function.

See also:

gdtr, gdtri

scipy.special.gdtria(p, b, x, out=None) = <ufunc ‘gdtria’>
Inverse of gdtr vs a.

Returns the inverse with respect to the parameter a of p = gdtr(a, b, x), the cumulative distribution
function of the gamma distribution.

Parameters p : array_like
Probability values.

b : array_like
b parameter values of gdtr(a, b, x). b is the “shape” parameter of the gamma
distribution.

x : array_like
Nonnegative real values, from the domain of the gamma distribution.

out : ndarray, optional
If a fourth argument is given, it must be a numpy.ndarray whose size
matches the broadcast result of a, b and x. out is then the array returned
by the function.Returns a : ndarray
Values of the a parameter such that p = gdtr(a, b, x). 1/a is the “scale”
parameter of the gamma distribution.

See also:

gdtr CDF of the gamma distribution.
gdtrib Inverse with respect to b of gdtr(a, b, x).

5.33. Special functions (scipy.special) 1157

SciPy Reference Guide, Release 0.16.0

gdtrix Inverse with respect to x of gdtr(a, b, x).

Examples

First evaluate gdtr.

>>> p = gdtr(1.2, 3.4, 5.6)
>>> print(p)
0.94378087442

Verify the inverse.

>>> gdtria(p, 3.4, 5.6)
1.2

scipy.special.gdtrib(a, p, x, out=None) = <ufunc ‘gdtrib’>
Inverse of gdtr vs b.

Returns the inverse with respect to the parameter b of p = gdtr(a, b, x), the cumulative distribution
function of the gamma distribution.

Parameters a : array_like
a parameter values of gdtr(a, b, x). 1/a is the “scale” parameter of the
gamma distribution.

p : array_like
Probability values.

x : array_like
Nonnegative real values, from the domain of the gamma distribution.

out : ndarray, optional
If a fourth argument is given, it must be a numpy.ndarray whose size
matches the broadcast result of a, b and x. out is then the array returned
by the function.Returns b : ndarray
Values of the b parameter such that p = gdtr(a, b, x). b is the “shape”
parameter of the gamma distribution.

See also:

gdtr CDF of the gamma distribution.
gdtria Inverse with respect to a of gdtr(a, b, x).
gdtrix Inverse with respect to x of gdtr(a, b, x).

Examples

First evaluate gdtr.

>>> p = gdtr(1.2, 3.4, 5.6)
>>> print(p)
0.94378087442

Verify the inverse.

>>> gdtrib(1.2, p, 5.6)
3.3999999999723882

scipy.special.gdtrix(a, b, p, out=None) = <ufunc ‘gdtrix’>
Inverse of gdtr vs x.

Returns the inverse with respect to the parameter x of p = gdtr(a, b, x), the cumulative distribution
function of the gamma distribution. This is also known as the p’th quantile of the distribution.

1158 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters a : array_like
a parameter values of gdtr(a, b, x). 1/a is the “scale” parameter of the
gamma distribution.

b : array_like
b parameter values of gdtr(a, b, x). b is the “shape” parameter of the gamma
distribution.

p : array_like
Probability values.

out : ndarray, optional
If a fourth argument is given, it must be a numpy.ndarray whose size
matches the broadcast result of a, b and x. out is then the array returned
by the function.Returns x : ndarray
Values of the x parameter such that p = gdtr(a, b, x).

See also:

gdtr CDF of the gamma distribution.
gdtria Inverse with respect to a of gdtr(a, b, x).
gdtrib Inverse with respect to b of gdtr(a, b, x).

Examples

First evaluate gdtr.

>>> p = gdtr(1.2, 3.4, 5.6)
>>> print(p)
0.94378087442

Verify the inverse.

>>> gdtrix(1.2, 3.4, p)
5.5999999999999996

scipy.special.nbdtr(k, n, p) = <ufunc ‘nbdtr’>
Negative binomial cumulative distribution function

Returns the sum of the terms 0 through k of the negative binomial distribution:

sum((n+j-1)Cj p**n (1-p)**j,j=0..k).

In a sequence of Bernoulli trials this is the probability that k or fewer failures precede the nth success.

scipy.special.nbdtrc(k, n, p) = <ufunc ‘nbdtrc’>
Negative binomial survival function

Returns the sum of the terms k+1 to infinity of the negative binomial distribution.

scipy.special.nbdtri(k, n, y) = <ufunc ‘nbdtri’>
Inverse of nbdtr vs p

Finds the argument p such that nbdtr(k,n,p) = y.

scipy.special.nbdtrik(y, n, p) = <ufunc ‘nbdtrik’>
Inverse of nbdtr vs k

Finds the argument k such that nbdtr(k,n,p) = y.

5.33. Special functions (scipy.special) 1159

SciPy Reference Guide, Release 0.16.0

scipy.special.nbdtrin(k, y, p) = <ufunc ‘nbdtrin’>
Inverse of nbdtr vs n

Finds the argument n such that nbdtr(k,n,p) = y.

scipy.special.ncfdtr(dfn, dfd, nc, f) = <ufunc ‘ncfdtr’>
Cumulative distribution function of the non-central F distribution.

Parameters dfn : array_like
Degrees of freedom of the numerator sum of squares. Range (0, inf).

dfd : array_like
Degrees of freedom of the denominator sum of squares. Range (0, inf).

nc : array_like
Noncentrality parameter. Should be in range (0, 1e4).

f : array_like
Quantiles, i.e. the upper limit of integration.Returns cdf : float or ndarray
The calculated CDF. If all inputs are scalar, the return will be a float. Oth-
erwise it will be an array.

See also:

ncdfdtri Inverse CDF (iCDF) of the non-central F distribution.
ncdfdtridfd

Calculate dfd, given CDF and iCDF values.
ncdfdtridfn

Calculate dfn, given CDF and iCDF values.
ncdfdtrincCalculate noncentrality parameter, given CDF, iCDF, dfn, dfd.

Examples

>>> from scipy import special
>>> from scipy import stats
>>> import matplotlib.pyplot as plt

Plot the CDF of the non-central F distribution, for nc=0. Compare with the F-distribution from scipy.stats:

>>> x = np.linspace(-1, 8, num=500)
>>> dfn = 3
>>> dfd = 2
>>> ncf_stats = stats.f.cdf(x, dfn, dfd)
>>> ncf_special = special.ncfdtr(dfn, dfd, 0, x)

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x, ncf_stats, 'b-', lw=3)
>>> ax.plot(x, ncf_special, 'r-')
>>> plt.show()

1160 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

1 0 1 2 3 4 5 6 7 8
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

scipy.special.ncfdtridfd(p, f, dfn, nc) = <ufunc ‘ncfdtridfd’>
Calculate degrees of freedom (denominator) for the noncentral F-distribution.

See ncfdtr for more details.

scipy.special.ncfdtridfn(p, f, dfd, nc) = <ufunc ‘ncfdtridfn’>
Calculate degrees of freedom (numerator) for the noncentral F-distribution.

See ncfdtr for more details.

scipy.special.ncfdtri(p, dfn, dfd, nc) = <ufunc ‘ncfdtri’>
Inverse cumulative distribution function of the non-central F distribution.

See ncfdtr for more details.

scipy.special.ncfdtrinc(p, f, dfn, dfd) = <ufunc ‘ncfdtrinc’>
Calculate non-centrality parameter for non-central F distribution.

See ncfdtr for more details.

scipy.special.nctdtr(df, nc, t) = <ufunc ‘nctdtr’>
Cumulative distribution function of the non-central t distribution.

Parameters df : array_like
Degrees of freedom of the distribution. Should be in range (0, inf).

nc : array_like
Noncentrality parameter. Should be in range (-1e6, 1e6).

t : array_like
Quantiles, i.e. the upper limit of integration.Returns cdf : float or ndarray
The calculated CDF. If all inputs are scalar, the return will be a float. Oth-
erwise it will be an array.

See also:

nctdtrit Inverse CDF (iCDF) of the non-central t distribution.
nctdtridf Calculate degrees of freedom, given CDF and iCDF values.
nctdtrinc Calculate non-centrality parameter, given CDF iCDF values.

5.33. Special functions (scipy.special) 1161

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy import special
>>> from scipy import stats
>>> import matplotlib.pyplot as plt

Plot the CDF of the non-central t distribution, for nc=0. Compare with the t-distribution from scipy.stats:

>>> x = np.linspace(-5, 5, num=500)
>>> df = 3
>>> nct_stats = stats.t.cdf(x, df)
>>> nct_special = special.nctdtr(df, 0, x)

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x, nct_stats, 'b-', lw=3)
>>> ax.plot(x, nct_special, 'r-')
>>> plt.show()

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

scipy.special.nctdtridf(p, nc, t) = <ufunc ‘nctdtridf’>
Calculate degrees of freedom for non-central t distribution.

See nctdtr for more details.

Parameters p : array_like
CDF values, in range (0, 1].

nc : array_like
Noncentrality parameter. Should be in range (-1e6, 1e6).

t : array_like
Quantiles, i.e. the upper limit of integration.

scipy.special.nctdtrit(df, nc, p) = <ufunc ‘nctdtrit’>
Inverse cumulative distribution function of the non-central t distribution.

See nctdtr for more details.

Parameters df : array_like
Degrees of freedom of the distribution. Should be in range (0, inf).

1162 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

nc : array_like
Noncentrality parameter. Should be in range (-1e6, 1e6).

p : array_like
CDF values, in range (0, 1].

scipy.special.nctdtrinc(df, p, t) = <ufunc ‘nctdtrinc’>
Calculate non-centrality parameter for non-central t distribution.

See nctdtr for more details.

Parameters df : array_like
Degrees of freedom of the distribution. Should be in range (0, inf).

p : array_like
CDF values, in range (0, 1].

t : array_like
Quantiles, i.e. the upper limit of integration.

scipy.special.nrdtrimn(p, x, std) = <ufunc ‘nrdtrimn’>
Calculate mean of normal distribution given other params.

Parameters p : array_like
CDF values, in range (0, 1].

x : array_like
Quantiles, i.e. the upper limit of integration.

std : array_like
Standard deviation.Returns mn : float or ndarray
The mean of the normal distribution.

See also:

nrdtrimn, ndtr

scipy.special.nrdtrisd(p, x, mn) = <ufunc ‘nrdtrisd’>
Calculate standard deviation of normal distribution given other params.

Parameters p : array_like
CDF values, in range (0, 1].

x : array_like
Quantiles, i.e. the upper limit of integration.

mn : float or ndarray
The mean of the normal distribution.Returns std : array_like
Standard deviation.

See also:

nrdtristd, ndtr

scipy.special.pdtr(k, m) = <ufunc ‘pdtr’>
Poisson cumulative distribution function

Returns the sum of the first k terms of the Poisson distribution: sum(exp(-m) * m**j / j!, j=0..k) = gammaincc(
k+1, m). Arguments must both be positive and k an integer.

scipy.special.pdtrc(k, m) = <ufunc ‘pdtrc’>
Poisson survival function

Returns the sum of the terms from k+1 to infinity of the Poisson distribution: sum(exp(-m) * m**j / j!, j=k+1..inf)
= gammainc(k+1, m). Arguments must both be positive and k an integer.

5.33. Special functions (scipy.special) 1163

SciPy Reference Guide, Release 0.16.0

scipy.special.pdtri(k, y) = <ufunc ‘pdtri’>
Inverse to pdtr vs m

Returns the Poisson variable m such that the sum from 0 to k of the Poisson density is equal to the given
probability y: calculated by gammaincinv(k+1, y). k must be a nonnegative integer and y between 0 and 1.

scipy.special.pdtrik(p, m) = <ufunc ‘pdtrik’>
Inverse to pdtr vs k

Returns the quantile k such that pdtr(k, m) = p

scipy.special.stdtr(df, t) = <ufunc ‘stdtr’>
Student t distribution cumulative density function

Returns the integral from minus infinity to t of the Student t distribution with df > 0 degrees of freedom:

gamma((df+1)/2)/(sqrt(df*pi)*gamma(df/2)) *
integral((1+x**2/df)**(-df/2-1/2), x=-inf..t)

scipy.special.stdtridf(p, t) = <ufunc ‘stdtridf’>
Inverse of stdtr vs df

Returns the argument df such that stdtr(df,t) is equal to p.

scipy.special.stdtrit(df, p) = <ufunc ‘stdtrit’>
Inverse of stdtr vs t

Returns the argument t such that stdtr(df,t) is equal to p.

scipy.special.chdtr(v, x) = <ufunc ‘chdtr’>
Chi square cumulative distribution function

Returns the area under the left hand tail (from 0 to x) of the Chi square probability density function with v
degrees of freedom:

1/(2**(v/2) * gamma(v/2)) * integral(t**(v/2-1) * exp(-t/2), t=0..x)

scipy.special.chdtrc(v, x) = <ufunc ‘chdtrc’>
Chi square survival function

Returns the area under the right hand tail (from x to infinity) of the Chi square probability density function with
v degrees of freedom:

1/(2**(v/2) * gamma(v/2)) * integral(t**(v/2-1) * exp(-t/2), t=x..inf)

scipy.special.chdtri(v, p) = <ufunc ‘chdtri’>
Inverse to chdtrc

Returns the argument x such that chdtrc(v,x) == p.

scipy.special.chdtriv(p, x) = <ufunc ‘chdtriv’>
Inverse to chdtr vs v

Returns the argument v such that chdtr(v, x) == p.

scipy.special.ndtr(x) = <ufunc ‘ndtr’>
Gaussian cumulative distribution function

Returns the area under the standard Gaussian probability density function, integrated from minus infinity to x:

1/sqrt(2*pi) * integral(exp(-t**2 / 2),t=-inf..x)

1164 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.special.log_ndtr(x) = <ufunc ‘log_ndtr’>
Logarithm of Gaussian cumulative distribution function

Returns the log of the area under the standard Gaussian probability density function, integrated from minus
infinity to x:

log(1/sqrt(2*pi) * integral(exp(-t**2 / 2), t=-inf..x))

scipy.special.ndtri(y) = <ufunc ‘ndtri’>
Inverse of ndtr vs x

Returns the argument x for which the area under the Gaussian probability density function (integrated from
minus infinity to x) is equal to y.

scipy.special.chndtr(x, df, nc) = <ufunc ‘chndtr’>
Non-central chi square cumulative distribution function

scipy.special.chndtridf(x, p, nc) = <ufunc ‘chndtridf’>
Inverse to chndtr vs df

scipy.special.chndtrinc(x, df, p) = <ufunc ‘chndtrinc’>
Inverse to chndtr vs nc

scipy.special.chndtrix(p, df, nc) = <ufunc ‘chndtrix’>
Inverse to chndtr vs x

scipy.special.smirnov(n, e) = <ufunc ‘smirnov’>
Kolmogorov-Smirnov complementary cumulative distribution function

Returns the exact Kolmogorov-Smirnov complementary cumulative distribution function (Dn+ or Dn-) for a
one-sided test of equality between an empirical and a theoretical distribution. It is equal to the probability that
the maximum difference between a theoretical distribution and an empirical one based on n samples is greater
than e.

scipy.special.smirnovi(n, y) = <ufunc ‘smirnovi’>
Inverse to smirnov

Returns e such that smirnov(n, e) = y.

scipy.special.kolmogorov(y) = <ufunc ‘kolmogorov’>
Complementary cumulative distribution function of Kolmogorov distribution

Returns the complementary cumulative distribution function of Kolmogorov’s limiting distribution (Kn* for
large n) of a two-sided test for equality between an empirical and a theoretical distribution. It is equal to the
(limit as n->infinity of the) probability that sqrt(n) * max absolute deviation > y.

scipy.special.kolmogi(p) = <ufunc ‘kolmogi’>
Inverse function to kolmogorov

Returns y such that kolmogorov(y) == p.

scipy.special.tklmbda(x, lmbda) = <ufunc ‘tklmbda’>
Tukey-Lambda cumulative distribution function

scipy.special.logit(x) = <ufunc ‘logit’>
Logit ufunc for ndarrays.

The logit function is defined as logit(p) = log(p/(1-p)). Note that logit(0) = -inf, logit(1) = inf, and logit(p) for
p<0 or p>1 yields nan.

Parameters x : ndarray
The ndarray to apply logit to element-wise.Returns out : ndarray

5.33. Special functions (scipy.special) 1165

SciPy Reference Guide, Release 0.16.0

An ndarray of the same shape as x. Its entries are logit of the corresponding
entry of x.

Notes

As a ufunc logit takes a number of optional keyword arguments. For more information see ufuncs

New in version 0.10.0.

scipy.special.expit(x) = <ufunc ‘expit’>
Expit ufunc for ndarrays.

The expit function, also known as the logistic function, is defined as expit(x) = 1/(1+exp(-x)). It is the inverse
of the logit function.

Parameters x : ndarray
The ndarray to apply expit to element-wise.Returns out : ndarray
An ndarray of the same shape as x. Its entries are expit of the corresponding
entry of x.

Notes

As a ufunc expit takes a number of optional keyword arguments. For more information see ufuncs

New in version 0.10.0.

scipy.special.boxcox(x, lmbda) = <ufunc ‘boxcox’>
Compute the Box-Cox transformation.

The Box-Cox transformation is:

y = (x**lmbda - 1) / lmbda if lmbda != 0
log(x) if lmbda == 0

Returns nan if x < 0. Returns -inf if x == 0 and lmbda < 0.

Parameters x : array_like
Data to be transformed.

lmbda : array_like
Power parameter of the Box-Cox transform.Returns y : array
Transformed data.

Notes

New in version 0.14.0.

Examples

>>> boxcox([1, 4, 10], 2.5)
array([0. , 12.4 , 126.09110641])
>>> boxcox(2, [0, 1, 2])
array([0.69314718, 1. , 1.5])

scipy.special.boxcox1p(x, lmbda) = <ufunc ‘boxcox1p’>
Compute the Box-Cox transformation of 1 + x.

The Box-Cox transformation computed by boxcox1p is:

y = ((1+x)**lmbda - 1) / lmbda if lmbda != 0
log(1+x) if lmbda == 0

1166 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/ufuncs.html
http://docs.scipy.org/doc/numpy/reference/ufuncs.html

SciPy Reference Guide, Release 0.16.0

Returns nan if x < -1. Returns -inf if x == -1 and lmbda < 0.

Parameters x : array_like
Data to be transformed.

lmbda : array_like
Power parameter of the Box-Cox transform.Returns y : array
Transformed data.

Notes

New in version 0.14.0.

Examples

>>> boxcox1p(1e-4, [0, 0.5, 1])
array([9.99950003e-05, 9.99975001e-05, 1.00000000e-04])
>>> boxcox1p([0.01, 0.1], 0.25)
array([0.00996272, 0.09645476])

Information Theory Functions

entr(x) Elementwise function for computing entropy.
rel_entr(x, y) Elementwise function for computing relative entropy.
kl_div(x, y) Elementwise function for computing Kullback-Leibler divergence.
huber(delta, r) Huber loss function.
pseudo_huber(delta, r) Pseudo-Huber loss function.

scipy.special.entr(x) = <ufunc ‘entr’>
Elementwise function for computing entropy.

entr(𝑥) =

⎧⎪⎨⎪⎩
−𝑥 log(𝑥) 𝑥 > 0

0 𝑥 = 0

−∞ otherwise

Parameters x : ndarray
Input array.Returns res : ndarray
The value of the elementwise entropy function at the given points x.

See also:

kl_div, rel_entr

Notes

This function is concave.

New in version 0.14.0.

scipy.special.rel_entr(x, y) = <ufunc ‘rel_entr’>
Elementwise function for computing relative entropy.

rel_entr(𝑥, 𝑦) =

⎧⎪⎨⎪⎩
𝑥 log(𝑥/𝑦) 𝑥 > 0, 𝑦 > 0

0 𝑥 = 0, 𝑦 ≥ 0

∞ otherwise

5.33. Special functions (scipy.special) 1167

SciPy Reference Guide, Release 0.16.0

Parameters x : ndarray
First input array.

y : ndarray
Second input array.Returns res : ndarray
Output array.

See also:

entr, kl_div

Notes

This function is jointly convex in x and y.

New in version 0.14.0.

scipy.special.kl_div(x, y) = <ufunc ‘kl_div’>
Elementwise function for computing Kullback-Leibler divergence.

kl_div(𝑥, 𝑦) =

⎧⎪⎨⎪⎩
𝑥 log(𝑥/𝑦) − 𝑥 + 𝑦 𝑥 > 0, 𝑦 > 0

𝑦 𝑥 = 0, 𝑦 ≥ 0

∞ otherwise

Parameters x : ndarray
First input array.

y : ndarray
Second input array.Returns res : ndarray
Output array.

See also:

entr, rel_entr

Notes

This function is non-negative and is jointly convex in x and y.

New in version 0.14.0.

scipy.special.huber(delta, r) = <ufunc ‘huber’>
Huber loss function.

huber(𝛿, 𝑟) =

⎧⎪⎨⎪⎩
∞ 𝛿 < 0
1
2𝑟

2 0 ≤ 𝛿, |𝑟| ≤ 𝛿

𝛿(|𝑟| − 1
2𝛿) otherwise

Parameters delta : ndarray
Input array, indicating the quadratic vs. linear loss changepoint.

r : ndarray
Input array, possibly representing residuals.Returns res : ndarray
The computed Huber loss function values.

Notes

This function is convex in r.

New in version 0.15.0.

1168 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.special.pseudo_huber(delta, r) = <ufunc ‘pseudo_huber’>
Pseudo-Huber loss function.

pseudo_huber(𝛿, 𝑟) = 𝛿2

(︃√︂
1 +

(︁𝑟
𝛿

)︁2
− 1

)︃

Parameters delta : ndarray
Input array, indicating the soft quadratic vs. linear loss changepoint.

r : ndarray
Input array, possibly representing residuals.Returns res : ndarray
The computed Pseudo-Huber loss function values.

Notes

This function is convex in 𝑟.

New in version 0.15.0.

Gamma and Related Functions

gamma(z) Gamma function
gammaln(z) Logarithm of absolute value of gamma function
gammasgn(x) Sign of the gamma function.
gammainc(a, x) Incomplete gamma function
gammaincinv(a, y) Inverse to gammainc
gammaincc(a,x) Complemented incomplete gamma integral
gammainccinv(a,y) Inverse to gammaincc
beta(a, b) Beta function.
betaln(a, b) Natural logarithm of absolute value of beta function.
betainc(a, b, x) Incomplete beta integral.
betaincinv(a, b, y) Inverse function to beta integral.
psi(z) Digamma function
rgamma(z) Gamma function inverted
polygamma(n, x) Polygamma function which is the nth derivative of the digamma (psi) function.
multigammaln(a, d) Returns the log of multivariate gamma, also sometimes called the generalized gamma.
digamma(z) Digamma function
poch(z, m) Rising factorial (z)_m

scipy.special.gamma(z) = <ufunc ‘gamma’>
Gamma function

The gamma function is often referred to as the generalized factorial since z*gamma(z) = gamma(z+1)
and gamma(n+1) = n! for natural number n.

scipy.special.gammaln(z) = <ufunc ‘gammaln’>
Logarithm of absolute value of gamma function

Defined as:

ln(abs(gamma(z)))

See also:

gammasgn

5.33. Special functions (scipy.special) 1169

SciPy Reference Guide, Release 0.16.0

scipy.special.gammasgn(x) = <ufunc ‘gammasgn’>
Sign of the gamma function.

See also:

gammaln

scipy.special.gammainc(a, x) = <ufunc ‘gammainc’>
Incomplete gamma function

Defined as:

1 / gamma(a) * integral(exp(-t) * t**(a-1), t=0..x)

a must be positive and x must be >= 0.

scipy.special.gammaincinv(a, y) = <ufunc ‘gammaincinv’>
Inverse to gammainc

Returns x such that gammainc(a, x) = y.

scipy.special.gammaincc(a, x) = <ufunc ‘gammaincc’>
Complemented incomplete gamma integral

Defined as:

1 / gamma(a) * integral(exp(-t) * t**(a-1), t=x..inf) = 1 - gammainc(a,x)

a must be positive and x must be >= 0.

scipy.special.gammainccinv(a, y) = <ufunc ‘gammainccinv’>
Inverse to gammaincc

Returns x such that gammaincc(a,x) == y.

scipy.special.beta(a, b) = <ufunc ‘beta’>
Beta function.

beta(a,b) = gamma(a) * gamma(b) / gamma(a+b)

scipy.special.betaln(a, b) = <ufunc ‘betaln’>
Natural logarithm of absolute value of beta function.

Computes ln(abs(beta(x))).

scipy.special.betainc(a, b, x) = <ufunc ‘betainc’>
Incomplete beta integral.

Compute the incomplete beta integral of the arguments, evaluated from zero to x:

gamma(a+b) / (gamma(a)*gamma(b)) * integral(t**(a-1) (1-t)**(b-1), t=0..x).

Notes

The incomplete beta is also sometimes defined without the terms in gamma, in which case the above definition is
the so-called regularized incomplete beta. Under this definition, you can get the incomplete beta by multiplying
the result of the scipy function by beta(a, b).

scipy.special.betaincinv(a, b, y) = <ufunc ‘betaincinv’>
Inverse function to beta integral.

Compute x such that betainc(a,b,x) = y.

1170 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.special.psi(z) = <ufunc ‘psi’>
Digamma function

The derivative of the logarithm of the gamma function evaluated at z (also called the digamma function).

scipy.special.rgamma(z) = <ufunc ‘rgamma’>
Gamma function inverted

Returns 1/gamma(x)

scipy.special.polygamma(n, x)
Polygamma function which is the nth derivative of the digamma (psi) function.

Parameters n : array_like of int
The order of the derivative of psi.

x : array_like
Where to evaluate the polygamma function.Returns polygamma : ndarray
The result.

Examples

>>> from scipy import special
>>> x = [2, 3, 25.5]
>>> special.polygamma(1, x)
array([0.64493407, 0.39493407, 0.03999467])
>>> special.polygamma(0, x) == special.psi(x)
array([True, True, True], dtype=bool)

scipy.special.multigammaln(a, d)
Returns the log of multivariate gamma, also sometimes called the generalized gamma.

Parameters a : ndarray
The multivariate gamma is computed for each item of a.

d : int
The dimension of the space of integration.Returns res : ndarray
The values of the log multivariate gamma at the given points a.

Notes

The formal definition of the multivariate gamma of dimension d for a real a is:

\Gamma_d(a) = \int_{A>0}{e^{-tr(A)\cdot{|A|}^{a - (m+1)/2}dA}}

with the condition a > (d-1)/2, and A > 0 being the set of all the positive definite matrices of dimension
s. Note that a is a scalar: the integrand only is multivariate, the argument is not (the function is defined over a
subset of the real set).

This can be proven to be equal to the much friendlier equation:

\Gamma_d(a) = \pi^{d(d-1)/4}\prod_{i=1}^{d}{\Gamma(a - (i-1)/2)}.

References

R. J. Muirhead, Aspects of multivariate statistical theory (Wiley Series in probability and mathematical statis-
tics).

5.33. Special functions (scipy.special) 1171

SciPy Reference Guide, Release 0.16.0

scipy.special.digamma(z) = <ufunc ‘psi’>
Digamma function

The derivative of the logarithm of the gamma function evaluated at z (also called the digamma function).

scipy.special.poch(z, m) = <ufunc ‘poch’>
Rising factorial (z)_m

The Pochhammer symbol (rising factorial), is defined as:

(z)_m = gamma(z + m) / gamma(z)

For positive integer m it reads:

(z)_m = z * (z + 1) * ... * (z + m - 1)

Error Function and Fresnel Integrals

erf(z) Returns the error function of complex argument.
erfc(x) Complementary error function, 1 - erf(x).
erfcx(x) Scaled complementary error function, exp(x^2) erfc(x).
erfi(z) Imaginary error function, -i erf(i z).
erfinv(y) Inverse function for erf
erfcinv(y) Inverse function for erfc
wofz(z) Faddeeva function
dawsn(x) Dawson’s integral.
fresnel(z) Fresnel sin and cos integrals
fresnel_zeros(nt) Compute nt complex zeros of the sine and cosine Fresnel integrals S(z) and C(z).
modfresnelp(x) Modified Fresnel positive integrals
modfresnelm(x) Modified Fresnel negative integrals

scipy.special.erf(z) = <ufunc ‘erf’>
Returns the error function of complex argument.

It is defined as 2/sqrt(pi)*integral(exp(-t**2), t=0..z).

Parameters x : ndarray
Input array.Returns res : ndarray
The values of the error function at the given points x.

See also:

erfc, erfinv, erfcinv

Notes

The cumulative of the unit normal distribution is given by Phi(z) = 1/2[1 + erf(z/sqrt(2))].

References

[R282], [R283], [R284]

scipy.special.erfc(x) = <ufunc ‘erfc’>
Complementary error function, 1 - erf(x).

1172 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

References

[R285]

scipy.special.erfcx(x) = <ufunc ‘erfcx’>
Scaled complementary error function, exp(x^2) erfc(x).

Notes

New in version 0.12.0.

References

[R286]

scipy.special.erfi(z) = <ufunc ‘erfi’>
Imaginary error function, -i erf(i z).

Notes

New in version 0.12.0.

References

[R287]

scipy.special.erfinv(y)
Inverse function for erf

scipy.special.erfcinv(y)
Inverse function for erfc

scipy.special.wofz(z) = <ufunc ‘wofz’>
Faddeeva function

Returns the value of the Faddeeva function for complex argument:

exp(-z**2)*erfc(-i*z)

References

[R292]

scipy.special.dawsn(x) = <ufunc ‘dawsn’>
Dawson’s integral.

Computes:

exp(-x**2) * integral(exp(t**2),t=0..x).

References

[R277]

scipy.special.fresnel(z) = <ufunc ‘fresnel’>
Fresnel sin and cos integrals

Defined as:

ssa = integral(sin(pi/2 * t**2),t=0..z)
csa = integral(cos(pi/2 * t**2),t=0..z)

5.33. Special functions (scipy.special) 1173

SciPy Reference Guide, Release 0.16.0

Parameters z : float or complex array_like
ArgumentReturns ssa, csa
Fresnel sin and cos integral values

scipy.special.fresnel_zeros(nt)
Compute nt complex zeros of the sine and cosine Fresnel integrals S(z) and C(z).

scipy.special.modfresnelp(x) = <ufunc ‘modfresnelp’>
Modified Fresnel positive integrals

Returns fp
Integral F_+(x): integral(exp(1j*t*t),t=x..inf)

kp
Integral K_+(x): 1/sqrt(pi)*exp(-1j*(x*x+pi/4))*fp

scipy.special.modfresnelm(x) = <ufunc ‘modfresnelm’>
Modified Fresnel negative integrals

Returns fm
Integral F_-(x): integral(exp(-1j*t*t),t=x..inf)

km
Integral K_-(x): 1/sqrt(pi)*exp(1j*(x*x+pi/4))*fp

These are not universal functions:

erf_zeros(nt) Compute nt complex zeros of the error function erf(z).
fresnelc_zeros(nt) Compute nt complex zeros of the cosine Fresnel integral C(z).
fresnels_zeros(nt) Compute nt complex zeros of the sine Fresnel integral S(z).

scipy.special.erf_zeros(nt)
Compute nt complex zeros of the error function erf(z).

scipy.special.fresnelc_zeros(nt)
Compute nt complex zeros of the cosine Fresnel integral C(z).

scipy.special.fresnels_zeros(nt)
Compute nt complex zeros of the sine Fresnel integral S(z).

Legendre Functions

lpmv(m, v, x) Associated legendre function of integer order.
sph_harm(m, n, theta, phi) Compute spherical harmonics.

scipy.special.lpmv(m, v, x) = <ufunc ‘lpmv’>
Associated legendre function of integer order.

Parameters m : int
Order

v : real
Degree. Must be v>-m-1 or v<m

x : complex
Argument. Must be |x| <= 1.

scipy.special.sph_harm(m, n, theta, phi) = <ufunc ‘sph_harm’>

1174 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Compute spherical harmonics.

𝑌 𝑚
𝑛 (𝜃, 𝜑) =

√︃
2𝑛 + 1

4𝜋

(𝑛−𝑚)!

(𝑛 + 𝑚)!
𝑒𝑖𝑚𝜃𝑃𝑚

𝑛 (cos(𝜑))

Parameters m : int
|m| <= n; the order of the harmonic.

n : int
where n >= 0; the degree of the harmonic. This is often called l (lower case
L) in descriptions of spherical harmonics.

theta : float
[0, 2*pi]; the azimuthal (longitudinal) coordinate.

phi : float
[0, pi]; the polar (colatitudinal) coordinate.Returns y_mn : complex float
The harmonic 𝑌 𝑚

𝑛 sampled at theta and phi

Notes

There are different conventions for the meaning of input arguments theta and phi. We take theta to be the
azimuthal angle and phi to be the polar angle. It is common to see the opposite convention - that is theta as the
polar angle and phi as the azimuthal angle.

References

[R291]

These are not universal functions:

clpmn(m, n, z[, type]) Associated Legendre function of the first kind, Pmn(z)
lpn(n, z) Compute sequence of Legendre functions of the first kind (polynomials), Pn(z) and derivatives for all degrees from 0 to n (inclusive).
lqn(n, z) Compute sequence of Legendre functions of the second kind, Qn(z) and derivatives for all degrees from 0 to n (inclusive).
lpmn(m, n, z) Associated Legendre function of the first kind, Pmn(z)
lqmn(m, n, z) Associated Legendre functions of the second kind, Qmn(z) and its derivative, Qmn’(z) of order m and degree n.

scipy.special.clpmn(m, n, z, type=3)
Associated Legendre function of the first kind, Pmn(z)

Computes the (associated) Legendre function of the first kind of order m and degree n,:

Pmn(z) = P_n^m(z)

and its derivative, Pmn’(z). Returns two arrays of size (m+1, n+1) containing Pmn(z) and Pmn’(z) for
all orders from 0..m and degrees from 0..n.

Parameters m : int
|m| <= n; the order of the Legendre function.

n : int
where n >= 0; the degree of the Legendre function. Often called l (lower
case L) in descriptions of the associated Legendre function

z : float or complex
Input value.

type : int, optional
takes values 2 or 3 2: cut on the real axis |x| > 1 3: cut on the real axis
-1 < x < 1 (default)Returns Pmn_z : (m+1, n+1) array
Values for all orders 0..m and degrees 0..n

5.33. Special functions (scipy.special) 1175

SciPy Reference Guide, Release 0.16.0

Pmn_d_z : (m+1, n+1) array
Derivatives for all orders 0..m and degrees 0..n

See also:

lpmn associated Legendre functions of the first kind for real z

Notes

By default, i.e. for type=3, phase conventions are chosen according to [R275] such that the function is analytic.
The cut lies on the interval (-1, 1). Approaching the cut from above or below in general yields a phase factor
with respect to Ferrer’s function of the first kind (cf. lpmn).

For type=2 a cut at |x| > 1 is chosen. Approaching the real values on the interval (-1, 1) in the complex
plane yields Ferrer’s function of the first kind.

References

[R275]

scipy.special.lpn(n, z)
Compute sequence of Legendre functions of the first kind (polynomials), Pn(z) and derivatives for all degrees
from 0 to n (inclusive).

See also special.legendre for polynomial class.

scipy.special.lqn(n, z)
Compute sequence of Legendre functions of the second kind, Qn(z) and derivatives for all degrees from 0 to n
(inclusive).

scipy.special.lpmn(m, n, z)
Associated Legendre function of the first kind, Pmn(z)

Computes the associated Legendre function of the first kind of order m and degree n,:

Pmn(z) = P_n^m(z)

and its derivative, Pmn’(z). Returns two arrays of size (m+1, n+1) containing Pmn(z) and Pmn’(z) for
all orders from 0..m and degrees from 0..n.

This function takes a real argument z. For complex arguments z use clpmn instead.

Parameters m : int
|m| <= n; the order of the Legendre function.

n : int
where n >= 0; the degree of the Legendre function. Often called l (lower
case L) in descriptions of the associated Legendre function

z : float
Input value.Returns Pmn_z : (m+1, n+1) array
Values for all orders 0..m and degrees 0..n

Pmn_d_z : (m+1, n+1) array
Derivatives for all orders 0..m and degrees 0..n

See also:

clpmn associated Legendre functions of the first kind for complex z

Notes

In the interval (-1, 1), Ferrer’s function of the first kind is returned. The phase convention used for the intervals
(1, inf) and (-inf, -1) is such that the result is always real.

1176 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

References

[R290]

scipy.special.lqmn(m, n, z)
Associated Legendre functions of the second kind, Qmn(z) and its derivative, Qmn’(z) of order m and degree
n. Returns two arrays of size (m+1, n+1) containing Qmn(z) and Qmn’(z) for all orders from 0..m and
degrees from 0..n.

z can be complex.

Ellipsoidal Harmonics

ellip_harm(h2, k2, n, p, s[, signm, signn]) Ellipsoidal harmonic functions E^p_n(l)
ellip_harm_2(h2, k2, n, p, s) Ellipsoidal harmonic functions F^p_n(l)
ellip_normal(h2, k2, n, p) Ellipsoidal harmonic normalization constants gamma^p_n

scipy.special.ellip_harm(h2, k2, n, p, s, signm=1, signn=1)
Ellipsoidal harmonic functions E^p_n(l)

These are also known as Lame functions of the first kind, and are solutions to the Lame equation:

(𝑠2 − ℎ2)(𝑠2 − 𝑘2)𝐸′′(𝑠) + 𝑠(2𝑠2 − ℎ2 − 𝑘2)𝐸′(𝑠) + (𝑎− 𝑞𝑠2)𝐸(𝑠) = 0

where 𝑞 = (𝑛 + 1)𝑛 and 𝑎 is the eigenvalue (not returned) corresponding to the solutions.

Parameters h2 : float
h**2

k2 : float
k**2; should be larger than h**2

n : int
Degree

s : float
Coordinate

p : int
Order, can range between [1,2n+1]

signm : {1, -1}, optional
Sign of prefactor of functions. Can be +/-1. See Notes.

signn : {1, -1}, optional
Sign of prefactor of functions. Can be +/-1. See Notes.Returns E : float
the harmonic 𝐸𝑝

𝑛(𝑠)

See also:

ellip_harm_2, ellip_normal

Notes

The geometric intepretation of the ellipsoidal functions is explained in [R279], [R280], [R281]. The signm and
signn arguments control the sign of prefactors for functions according to their type:

K : +1
L : signm
M : signn
N : signm*signn

New in version 0.15.0.

5.33. Special functions (scipy.special) 1177

SciPy Reference Guide, Release 0.16.0

References

[R278], [R279], [R280], [R281]

Examples

>>> from scipy.special import ellip_harm
>>> w = ellip_harm(5,8,1,1,2.5)
>>> w
2.5

Check that the functions indeed are solutions to the Lame equation:

>>> from scipy.interpolate import UnivariateSpline
>>> def eigenvalue(f, df, ddf):
... r = ((s**2 - h**2)*(s**2 - k**2)*ddf + s*(2*s**2 - h**2 - k**2)*df - n*(n+1)*s**2*f)/f
... return -r.mean(), r.std()
>>> s = np.linspace(0.1, 10, 200)
>>> k, h, n, p = 8.0, 2.2, 3, 2
>>> E = ellip_harm(h**2, k**2, n, p, s)
>>> E_spl = UnivariateSpline(s, E)
>>> a, a_err = eigenvalue(E_spl(s), E_spl(s,1), E_spl(s,2))
>>> a, a_err
(583.44366156701483, 6.4580890640310646e-11)

scipy.special.ellip_harm_2(h2, k2, n, p, s)
Ellipsoidal harmonic functions F^p_n(l)

These are also known as Lame functions of the second kind, and are solutions to the Lame equation:

(𝑠2 − ℎ2)(𝑠2 − 𝑘2)𝐹 ′′(𝑠) + 𝑠(2𝑠2 − ℎ2 − 𝑘2)𝐹 ′(𝑠) + (𝑎− 𝑞𝑠2)𝐹 (𝑠) = 0

where 𝑞 = (𝑛 + 1)𝑛 and 𝑎 is the eigenvalue (not returned) corresponding to the solutions.

Parameters h2 : float
h**2

k2 : float
k**2; should be larger than h**2

n : int
Degree.

p : int
Order, can range between [1,2n+1].

s : float
CoordinateReturns F : float
The harmonic 𝐹 𝑝

𝑛(𝑠)

See also:

ellip_harm, ellip_normal

Notes

Lame functions of the second kind are related to the functions of the first kind:

𝐹 𝑝
𝑛(𝑠) = (2𝑛 + 1)𝐸𝑝

𝑛(𝑠)

∫︁ 1/𝑠

0

𝑑𝑢

(𝐸𝑝
𝑛(1/𝑢))2

√︀
(1 − 𝑢2𝑘2)(1 − 𝑢2ℎ2)

New in version 0.15.0.

1178 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.special import ellip_harm_2
>>> w = ellip_harm_2(5,8,2,1,10)
>>> w
0.00108056853382

scipy.special.ellip_normal(h2, k2, n, p)
Ellipsoidal harmonic normalization constants gamma^p_n

The normalization constant is defined as

𝛾𝑝
𝑛 = 8

∫︁ ℎ

0

𝑑𝑥

∫︁ 𝑘

ℎ

𝑑𝑦
(𝑦2 − 𝑥2)(𝐸𝑝

𝑛(𝑦)𝐸𝑝
𝑛(𝑥))2√︀

((𝑘2 − 𝑦2)(𝑦2 − ℎ2)(ℎ2 − 𝑥2)(𝑘2 − 𝑥2)

Parameters h2 : float
h**2

k2 : float
k**2; should be larger than h**2

n : int
Degree.

p : int
Order, can range between [1,2n+1].Returns gamma : float
The normalization constant 𝛾𝑝

𝑛

See also:

ellip_harm, ellip_harm_2

Notes

New in version 0.15.0.

Examples

>>> from scipy.special import ellip_normal
>>> w = ellip_normal(5,8,3,7)
>>> w
1723.38796997

Orthogonal polynomials

The following functions evaluate values of orthogonal polynomials:

assoc_laguerre(x, n[, k]) Returns the n-th order generalized (associated) Laguerre polynomial.
eval_legendre(n, x[, out]) Evaluate Legendre polynomial at a point.
eval_chebyt(n, x[, out]) Evaluate Chebyshev T polynomial at a point.
eval_chebyu(n, x[, out]) Evaluate Chebyshev U polynomial at a point.
eval_chebyc(n, x[, out]) Evaluate Chebyshev C polynomial at a point.
eval_chebys(n, x[, out]) Evaluate Chebyshev S polynomial at a point.
eval_jacobi(n, alpha, beta, x[, out]) Evaluate Jacobi polynomial at a point.
eval_laguerre(n, x[, out]) Evaluate Laguerre polynomial at a point.
eval_genlaguerre(n, alpha, x[, out]) Evaluate generalized Laguerre polynomial at a point.
eval_hermite(n, x[, out]) Evaluate Hermite polynomial at a point.

Continued on next page

5.33. Special functions (scipy.special) 1179

SciPy Reference Guide, Release 0.16.0

Table 5.230 – continued from previous page
eval_hermitenorm(n, x[, out]) Evaluate normalized Hermite polynomial at a point.
eval_gegenbauer(n, alpha, x[, out]) Evaluate Gegenbauer polynomial at a point.
eval_sh_legendre(n, x[, out]) Evaluate shifted Legendre polynomial at a point.
eval_sh_chebyt(n, x[, out]) Evaluate shifted Chebyshev T polynomial at a point.
eval_sh_chebyu(n, x[, out]) Evaluate shifted Chebyshev U polynomial at a point.
eval_sh_jacobi(n, p, q, x[, out]) Evaluate shifted Jacobi polynomial at a point.

scipy.special.assoc_laguerre(x, n, k=0.0)
Returns the n-th order generalized (associated) Laguerre polynomial.

The polynomial 𝐿(𝑎𝑙𝑝ℎ𝑎)𝑛(𝑥) is orthogonal over [0, inf), with weighting function exp(-x) *
x**alpha with alpha > -1.

Notes

assoc_laguerre is a simple wrapper around eval_genlaguerre, with reversed argument order (x,
n, k=0.0) --> (n, k, x).

scipy.special.eval_legendre(n, x, out=None) = <ufunc ‘eval_legendre’>
Evaluate Legendre polynomial at a point.

scipy.special.eval_chebyt(n, x, out=None) = <ufunc ‘eval_chebyt’>
Evaluate Chebyshev T polynomial at a point.

This routine is numerically stable for x in [-1, 1] at least up to order 10000.

scipy.special.eval_chebyu(n, x, out=None) = <ufunc ‘eval_chebyu’>
Evaluate Chebyshev U polynomial at a point.

scipy.special.eval_chebyc(n, x, out=None) = <ufunc ‘eval_chebyc’>
Evaluate Chebyshev C polynomial at a point.

scipy.special.eval_chebys(n, x, out=None) = <ufunc ‘eval_chebys’>
Evaluate Chebyshev S polynomial at a point.

scipy.special.eval_jacobi(n, alpha, beta, x, out=None) = <ufunc ‘eval_jacobi’>
Evaluate Jacobi polynomial at a point.

scipy.special.eval_laguerre(n, x, out=None) = <ufunc ‘eval_laguerre’>
Evaluate Laguerre polynomial at a point.

scipy.special.eval_genlaguerre(n, alpha, x, out=None) = <ufunc ‘eval_genlaguerre’>
Evaluate generalized Laguerre polynomial at a point.

scipy.special.eval_hermite(n, x, out=None) = <ufunc ‘eval_hermite’>
Evaluate Hermite polynomial at a point.

scipy.special.eval_hermitenorm(n, x, out=None) = <ufunc ‘eval_hermitenorm’>
Evaluate normalized Hermite polynomial at a point.

scipy.special.eval_gegenbauer(n, alpha, x, out=None) = <ufunc ‘eval_gegenbauer’>
Evaluate Gegenbauer polynomial at a point.

scipy.special.eval_sh_legendre(n, x, out=None) = <ufunc ‘eval_sh_legendre’>
Evaluate shifted Legendre polynomial at a point.

scipy.special.eval_sh_chebyt(n, x, out=None) = <ufunc ‘eval_sh_chebyt’>
Evaluate shifted Chebyshev T polynomial at a point.

scipy.special.eval_sh_chebyu(n, x, out=None) = <ufunc ‘eval_sh_chebyu’>
Evaluate shifted Chebyshev U polynomial at a point.

1180 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.special.eval_sh_jacobi(n, p, q, x, out=None) = <ufunc ‘eval_sh_jacobi’>
Evaluate shifted Jacobi polynomial at a point.

The functions below, in turn, return the polynomial coefficients in orthopoly1d objects, which function similarly
as numpy.poly1d. The orthopoly1d class also has an attribute weights which returns the roots, weights, and
total weights for the appropriate form of Gaussian quadrature. These are returned in an n x 3 array with roots in the
first column, weights in the second column, and total weights in the final column. Note that orthopoly1d objects
are converted to poly1d when doing arithmetic, and lose information of the original orthogonal polynomial.

legendre(n[, monic]) Legendre polynomial coefficients
chebyt(n[, monic]) Return nth order Chebyshev polynomial of first kind, Tn(x).
chebyu(n[, monic]) Return nth order Chebyshev polynomial of second kind, Un(x).
chebyc(n[, monic]) Return nth order Chebyshev polynomial of first kind, Cn(x).
chebys(n[, monic]) Return nth order Chebyshev polynomial of second kind, Sn(x).
jacobi(n, alpha, beta[, monic]) Returns the nth order Jacobi polynomial, P^(alpha,beta)_n(x) orthogonal over [-1,1] with weighting function (1-x)**alpha (1+x)**beta with alpha,beta > -1.
laguerre(n[, monic]) Return the nth order Laguerre polynoimal, L_n(x), orthogonal over
genlaguerre(n, alpha[, monic]) Returns the nth order generalized (associated) Laguerre polynomial,
hermite(n[, monic]) Return the nth order Hermite polynomial, H_n(x), orthogonal over
hermitenorm(n[, monic]) Return the nth order normalized Hermite polynomial, He_n(x), orthogonal
gegenbauer(n, alpha[, monic]) Return the nth order Gegenbauer (ultraspherical) polynomial,
sh_legendre(n[, monic]) Returns the nth order shifted Legendre polynomial, P^*_n(x), orthogonal over [0,1] with weighting function 1.
sh_chebyt(n[, monic]) Return nth order shifted Chebyshev polynomial of first kind, Tn(x).
sh_chebyu(n[, monic]) Return nth order shifted Chebyshev polynomial of second kind, Un(x).
sh_jacobi(n, p, q[, monic]) Returns the nth order Jacobi polynomial, G_n(p,q,x) orthogonal over [0,1] with weighting function (1-x)**(p-q) (x)**(q-1) with p>q-1 and q > 0.

scipy.special.legendre(n, monic=False)
Legendre polynomial coefficients

Returns the nth-order Legendre polynomial, P_n(x), orthogonal over [-1, 1] with weight function 1.

Parameters n
Order of the polynomial

monic : bool, optional
If True, output is a monic polynomial (normalized so the leading coefficient
is 1). Default is False.Returns P : orthopoly1d
The Legendre polynomial object

Examples

Generate the 3rd-order Legendre polynomial 1/2*(5x^3 + 0x^2 - 3x + 0):

>>> legendre(3)
poly1d([2.5, 0. , -1.5, -0.])

scipy.special.chebyt(n, monic=False)
Return nth order Chebyshev polynomial of first kind, Tn(x). Orthogonal over [-1,1] with weight function
(1-x**2)**(-1/2).

scipy.special.chebyu(n, monic=False)
Return nth order Chebyshev polynomial of second kind, Un(x). Orthogonal over [-1,1] with weight function
(1-x**2)**(1/2).

scipy.special.chebyc(n, monic=False)
Return nth order Chebyshev polynomial of first kind, Cn(x). Orthogonal over [-2,2] with weight function
(1-(x/2)**2)**(-1/2).

5.33. Special functions (scipy.special) 1181

SciPy Reference Guide, Release 0.16.0

scipy.special.chebys(n, monic=False)
Return nth order Chebyshev polynomial of second kind, Sn(x). Orthogonal over [-2,2] with weight function
(1-(x/2)**2)**(1/2).

scipy.special.jacobi(n, alpha, beta, monic=False)
Returns the nth order Jacobi polynomial, P^(alpha,beta)_n(x) orthogonal over [-1,1] with weighting function
(1-x)**alpha (1+x)**beta with alpha,beta > -1.

scipy.special.laguerre(n, monic=False)
Return the nth order Laguerre polynoimal, L_n(x), orthogonal over [0,inf) with weighting function exp(-x)

scipy.special.genlaguerre(n, alpha, monic=False)
Returns the nth order generalized (associated) Laguerre polynomial, L^(alpha)_n(x), orthogonal over [0,inf)
with weighting function exp(-x) x**alpha with alpha > -1

scipy.special.hermite(n, monic=False)
Return the nth order Hermite polynomial, H_n(x), orthogonal over (-inf,inf) with weighting function exp(-x**2)

scipy.special.hermitenorm(n, monic=False)
Return the nth order normalized Hermite polynomial, He_n(x), orthogonal over (-inf,inf) with weighting func-
tion exp(-(x/2)**2)

scipy.special.gegenbauer(n, alpha, monic=False)
Return the nth order Gegenbauer (ultraspherical) polynomial, C^(alpha)_n(x), orthogonal over [-1,1] with
weighting function (1-x**2)**(alpha-1/2) with alpha > -1/2

scipy.special.sh_legendre(n, monic=False)
Returns the nth order shifted Legendre polynomial, P^*_n(x), orthogonal over [0,1] with weighting function 1.

scipy.special.sh_chebyt(n, monic=False)
Return nth order shifted Chebyshev polynomial of first kind, Tn(x). Orthogonal over [0,1] with weight function
(x-x**2)**(-1/2).

scipy.special.sh_chebyu(n, monic=False)
Return nth order shifted Chebyshev polynomial of second kind, Un(x). Orthogonal over [0,1] with weight
function (x-x**2)**(1/2).

scipy.special.sh_jacobi(n, p, q, monic=False)
Returns the nth order Jacobi polynomial, G_n(p,q,x) orthogonal over [0,1] with weighting function (1-x)**(p-q)
(x)**(q-1) with p>q-1 and q > 0.

Warning: Computing values of high-order polynomials (around order > 20) using polynomial coefficients is
numerically unstable. To evaluate polynomial values, the eval_* functions should be used instead.

Hypergeometric Functions

hyp2f1(a, b, c, z) Gauss hypergeometric function 2F1(a, b; c; z).
hyp1f1(a, b, x) Confluent hypergeometric function 1F1(a, b; x)
hyperu(a, b, x) Confluent hypergeometric function U(a, b, x) of the second kind
hyp0f1(v, z) Confluent hypergeometric limit function 0F1.
hyp2f0(a, b, x, type) Hypergeometric function 2F0 in y and an error estimate
hyp1f2(a, b, c, x) Hypergeometric function 1F2 and error estimate
hyp3f0(a, b, c, x) Hypergeometric function 3F0 in y and an error estimate

scipy.special.hyp2f1(a, b, c, z) = <ufunc ‘hyp2f1’>
Gauss hypergeometric function 2F1(a, b; c; z).

1182 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.special.hyp1f1(a, b, x) = <ufunc ‘hyp1f1’>
Confluent hypergeometric function 1F1(a, b; x)

scipy.special.hyperu(a, b, x) = <ufunc ‘hyperu’>
Confluent hypergeometric function U(a, b, x) of the second kind

scipy.special.hyp0f1(v, z)
Confluent hypergeometric limit function 0F1.

Parameters v, z : array_like
Input values.Returns hyp0f1 : ndarray
The confluent hypergeometric limit function.

Notes

This function is defined as:

0𝐹1(𝑣, 𝑧) =

inf∑︁
𝑘=0

𝑧𝑘

(𝑣)𝑘𝑘!
.

It’s also the limit as q -> infinity of 1F1(q;v;z/q), and satisfies the differential equation 𝑓 ′′(𝑧) + 𝑣𝑓 ′(𝑧) =
𝑓(𝑧).

scipy.special.hyp2f0(a, b, x, type) = <ufunc ‘hyp2f0’>
Hypergeometric function 2F0 in y and an error estimate

The parameter type determines a convergence factor and can be either 1 or 2.

Returns y
Value of the function

err
Error estimate

scipy.special.hyp1f2(a, b, c, x) = <ufunc ‘hyp1f2’>
Hypergeometric function 1F2 and error estimate

Returns y
Value of the function

err
Error estimate

scipy.special.hyp3f0(a, b, c, x) = <ufunc ‘hyp3f0’>
Hypergeometric function 3F0 in y and an error estimate

Returns y
Value of the function

err
Error estimate

Parabolic Cylinder Functions

pbdv(v, x) Parabolic cylinder function D
pbvv(v,x) Parabolic cylinder function V
pbwa(a,x) Parabolic cylinder function W

scipy.special.pbdv(v, x) = <ufunc ‘pbdv’>
Parabolic cylinder function D

5.33. Special functions (scipy.special) 1183

SciPy Reference Guide, Release 0.16.0

Returns (d,dp) the parabolic cylinder function Dv(x) in d and the derivative, Dv’(x) in dp.

Returns d
Value of the function

dp
Value of the derivative vs x

scipy.special.pbvv(v, x) = <ufunc ‘pbvv’>
Parabolic cylinder function V

Returns the parabolic cylinder function Vv(x) in v and the derivative, Vv’(x) in vp.

Returns v
Value of the function

vp
Value of the derivative vs x

scipy.special.pbwa(a, x) = <ufunc ‘pbwa’>
Parabolic cylinder function W

Returns the parabolic cylinder function W(a,x) in w and the derivative, W’(a,x) in wp.

Warning: May not be accurate for large (>5) arguments in a and/or x.

Returns w
Value of the function

wp
Value of the derivative vs x

These are not universal functions:

pbdv_seq(v, x) Compute sequence of parabolic cylinder functions Dv(x) and their derivatives for Dv0(x)..Dv(x) with v0=v-int(v).
pbvv_seq(v, x) Compute sequence of parabolic cylinder functions Dv(x) and their derivatives for Dv0(x)..Dv(x) with v0=v-int(v).
pbdn_seq(n, z) Compute sequence of parabolic cylinder functions Dn(z) and their derivatives for D0(z)..Dn(z).

scipy.special.pbdv_seq(v, x)
Compute sequence of parabolic cylinder functions Dv(x) and their derivatives for Dv0(x)..Dv(x) with v0=v-
int(v).

scipy.special.pbvv_seq(v, x)
Compute sequence of parabolic cylinder functions Dv(x) and their derivatives for Dv0(x)..Dv(x) with v0=v-
int(v).

scipy.special.pbdn_seq(n, z)
Compute sequence of parabolic cylinder functions Dn(z) and their derivatives for D0(z)..Dn(z).

Mathieu and Related Functions

mathieu_a(m,q) Characteristic value of even Mathieu functions
mathieu_b(m,q) Characteristic value of odd Mathieu functions

scipy.special.mathieu_a(m, q) = <ufunc ‘mathieu_a’>
Characteristic value of even Mathieu functions

Returns the characteristic value for the even solution, ce_m(z,q), of Mathieu’s equation.

scipy.special.mathieu_b(m, q) = <ufunc ‘mathieu_b’>

1184 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Characteristic value of odd Mathieu functions

Returns the characteristic value for the odd solution, se_m(z,q), of Mathieu’s equation.

These are not universal functions:

mathieu_even_coef(m, q) Compute expansion coefficients for even Mathieu functions and modified Mathieu functions.
mathieu_odd_coef(m, q) Compute expansion coefficients for even Mathieu functions and modified Mathieu functions.

scipy.special.mathieu_even_coef(m, q)
Compute expansion coefficients for even Mathieu functions and modified Mathieu functions.

scipy.special.mathieu_odd_coef(m, q)
Compute expansion coefficients for even Mathieu functions and modified Mathieu functions.

The following return both function and first derivative:

mathieu_cem(m,q,x) Even Mathieu function and its derivative
mathieu_sem(m, q, x) Odd Mathieu function and its derivative
mathieu_modcem1(m, q, x) Even modified Mathieu function of the first kind and its derivative
mathieu_modcem2(m, q, x) Even modified Mathieu function of the second kind and its derivative
mathieu_modsem1(m,q,x) Odd modified Mathieu function of the first kind and its derivative
mathieu_modsem2(m, q, x) Odd modified Mathieu function of the second kind and its derivative

scipy.special.mathieu_cem(m, q, x) = <ufunc ‘mathieu_cem’>
Even Mathieu function and its derivative

Returns the even Mathieu function, ce_m(x,q), of order m and parameter q evaluated at x (given in degrees).
Also returns the derivative with respect to x of ce_m(x,q)

Parameters m
Order of the function

q
Parameter of the function

x
Argument of the function, given in degrees, not radiansReturns y
Value of the function

yp
Value of the derivative vs x

scipy.special.mathieu_sem(m, q, x) = <ufunc ‘mathieu_sem’>
Odd Mathieu function and its derivative

Returns the odd Mathieu function, se_m(x,q), of order m and parameter q evaluated at x (given in degrees). Also
returns the derivative with respect to x of se_m(x,q).

Parameters m
Order of the function

q
Parameter of the function

x
Argument of the function, given in degrees, not radians.Returns y
Value of the function

yp
Value of the derivative vs x

5.33. Special functions (scipy.special) 1185

SciPy Reference Guide, Release 0.16.0

scipy.special.mathieu_modcem1(m, q, x) = <ufunc ‘mathieu_modcem1’>
Even modified Mathieu function of the first kind and its derivative

Evaluates the even modified Mathieu function of the first kind, Mc1m(x,q), and its derivative at x for order m
and parameter q.

Returns y
Value of the function

yp
Value of the derivative vs x

scipy.special.mathieu_modcem2(m, q, x) = <ufunc ‘mathieu_modcem2’>
Even modified Mathieu function of the second kind and its derivative

Evaluates the even modified Mathieu function of the second kind, Mc2m(x,q), and its derivative at x (given in
degrees) for order m and parameter q.

Returns y
Value of the function

yp
Value of the derivative vs x

scipy.special.mathieu_modsem1(m, q, x) = <ufunc ‘mathieu_modsem1’>
Odd modified Mathieu function of the first kind and its derivative

Evaluates the odd modified Mathieu function of the first kind, Ms1m(x,q), and its derivative at x (given in
degrees) for order m and parameter q.

Returns y
Value of the function

yp
Value of the derivative vs x

scipy.special.mathieu_modsem2(m, q, x) = <ufunc ‘mathieu_modsem2’>
Odd modified Mathieu function of the second kind and its derivative

Evaluates the odd modified Mathieu function of the second kind, Ms2m(x,q), and its derivative at x (given in
degrees) for order m and parameter q.

Returns y
Value of the function

yp
Value of the derivative vs x

Spheroidal Wave Functions

pro_ang1(m,n,c,x) Prolate spheroidal angular function of the first kind and its derivative
pro_rad1(m,n,c,x) Prolate spheroidal radial function of the first kind and its derivative
pro_rad2(m,n,c,x) Prolate spheroidal radial function of the secon kind and its derivative
obl_ang1(m, n, c, x) Oblate spheroidal angular function of the first kind and its derivative
obl_rad1(m,n,c,x) Oblate spheroidal radial function of the first kind and its derivative
obl_rad2(m,n,c,x) Oblate spheroidal radial function of the second kind and its derivative.
pro_cv(m,n,c) Characteristic value of prolate spheroidal function
obl_cv(m, n, c) Characteristic value of oblate spheroidal function
pro_cv_seq(m, n, c) Compute a sequence of characteristic values for the prolate spheroidal wave functions for mode m and n’=m..n and spheroidal parameter c.
obl_cv_seq(m, n, c) Compute a sequence of characteristic values for the oblate spheroidal wave functions for mode m and n’=m..n and spheroidal parameter c.

1186 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.special.pro_ang1(m, n, c, x) = <ufunc ‘pro_ang1’>
Prolate spheroidal angular function of the first kind and its derivative

Computes the prolate spheroidal angular function of the first kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0.

Returns s
Value of the function

sp
Value of the derivative vs x

scipy.special.pro_rad1(m, n, c, x) = <ufunc ‘pro_rad1’>
Prolate spheroidal radial function of the first kind and its derivative

Computes the prolate spheroidal radial function of the first kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0.

Returns s
Value of the function

sp
Value of the derivative vs x

scipy.special.pro_rad2(m, n, c, x) = <ufunc ‘pro_rad2’>
Prolate spheroidal radial function of the secon kind and its derivative

Computes the prolate spheroidal radial function of the second kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0.

Returns s
Value of the function

sp
Value of the derivative vs x

scipy.special.obl_ang1(m, n, c, x) = <ufunc ‘obl_ang1’>
Oblate spheroidal angular function of the first kind and its derivative

Computes the oblate spheroidal angular function of the first kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0.

Returns s
Value of the function

sp
Value of the derivative vs x

scipy.special.obl_rad1(m, n, c, x) = <ufunc ‘obl_rad1’>
Oblate spheroidal radial function of the first kind and its derivative

Computes the oblate spheroidal radial function of the first kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0.

Returns s
Value of the function

sp
Value of the derivative vs x

scipy.special.obl_rad2(m, n, c, x) = <ufunc ‘obl_rad2’>
Oblate spheroidal radial function of the second kind and its derivative.

Computes the oblate spheroidal radial function of the second kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0.

Returns s

5.33. Special functions (scipy.special) 1187

SciPy Reference Guide, Release 0.16.0

Value of the function
sp

Value of the derivative vs x

scipy.special.pro_cv(m, n, c) = <ufunc ‘pro_cv’>
Characteristic value of prolate spheroidal function

Computes the characteristic value of prolate spheroidal wave functions of order m,n (n>=m) and spheroidal
parameter c.

scipy.special.obl_cv(m, n, c) = <ufunc ‘obl_cv’>
Characteristic value of oblate spheroidal function

Computes the characteristic value of oblate spheroidal wave functions of order m,n (n>=m) and spheroidal
parameter c.

scipy.special.pro_cv_seq(m, n, c)
Compute a sequence of characteristic values for the prolate spheroidal wave functions for mode m and n’=m..n
and spheroidal parameter c.

scipy.special.obl_cv_seq(m, n, c)
Compute a sequence of characteristic values for the oblate spheroidal wave functions for mode m and n’=m..n
and spheroidal parameter c.

The following functions require pre-computed characteristic value:

pro_ang1_cv(m,n,c,cv,x) Prolate spheroidal angular function pro_ang1 for precomputed characteristic value
pro_rad1_cv(m,n,c,cv,x) Prolate spheroidal radial function pro_rad1 for precomputed characteristic value
pro_rad2_cv(m,n,c,cv,x) Prolate spheroidal radial function pro_rad2 for precomputed characteristic value
obl_ang1_cv(m, n, c, cv, x) Oblate spheroidal angular function obl_ang1 for precomputed characteristic value
obl_rad1_cv(m,n,c,cv,x) Oblate spheroidal radial function obl_rad1 for precomputed characteristic value
obl_rad2_cv(m,n,c,cv,x) Oblate spheroidal radial function obl_rad2 for precomputed characteristic value

scipy.special.pro_ang1_cv(m, n, c, cv, x) = <ufunc ‘pro_ang1_cv’>
Prolate spheroidal angular function pro_ang1 for precomputed characteristic value

Computes the prolate spheroidal angular function of the first kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0. Requires pre-computed characteristic
value.

Returns s
Value of the function

sp
Value of the derivative vs x

scipy.special.pro_rad1_cv(m, n, c, cv, x) = <ufunc ‘pro_rad1_cv’>
Prolate spheroidal radial function pro_rad1 for precomputed characteristic value

Computes the prolate spheroidal radial function of the first kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0. Requires pre-computed characteristic
value.

Returns s
Value of the function

sp
Value of the derivative vs x

scipy.special.pro_rad2_cv(m, n, c, cv, x) = <ufunc ‘pro_rad2_cv’>
Prolate spheroidal radial function pro_rad2 for precomputed characteristic value

1188 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Computes the prolate spheroidal radial function of the second kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0. Requires pre-computed characteristic
value.

Returns s
Value of the function

sp
Value of the derivative vs x

scipy.special.obl_ang1_cv(m, n, c, cv, x) = <ufunc ‘obl_ang1_cv’>
Oblate spheroidal angular function obl_ang1 for precomputed characteristic value

Computes the oblate spheroidal angular function of the first kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0. Requires pre-computed characteristic
value.

Returns s
Value of the function

sp
Value of the derivative vs x

scipy.special.obl_rad1_cv(m, n, c, cv, x) = <ufunc ‘obl_rad1_cv’>
Oblate spheroidal radial function obl_rad1 for precomputed characteristic value

Computes the oblate spheroidal radial function of the first kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0. Requires pre-computed characteristic
value.

Returns s
Value of the function

sp
Value of the derivative vs x

scipy.special.obl_rad2_cv(m, n, c, cv, x) = <ufunc ‘obl_rad2_cv’>
Oblate spheroidal radial function obl_rad2 for precomputed characteristic value

Computes the oblate spheroidal radial function of the second kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0. Requires pre-computed characteristic
value.

Returns s
Value of the function

sp
Value of the derivative vs x

Kelvin Functions

kelvin(x) Kelvin functions as complex numbers
kelvin_zeros(nt) Compute nt zeros of all the Kelvin functions returned in a length 8 tuple of arrays of length nt.
ber(x) Kelvin function ber.
bei(x) Kelvin function bei
berp(x) Derivative of the Kelvin function ber
beip(x) Derivative of the Kelvin function bei
ker(x) Kelvin function ker
kei(x) Kelvin function ker
kerp(x) Derivative of the Kelvin function ker

Continued on next page

5.33. Special functions (scipy.special) 1189

SciPy Reference Guide, Release 0.16.0

Table 5.240 – continued from previous page
keip(x) Derivative of the Kelvin function kei

scipy.special.kelvin(x) = <ufunc ‘kelvin’>
Kelvin functions as complex numbers

Returns Be, Ke, Bep, Kep
The tuple (Be, Ke, Bep, Kep) contains complex numbers representing the
real and imaginary Kelvin functions and their derivatives evaluated at x.
For example, kelvin(x)[0].real = ber x and kelvin(x)[0].imag = bei x with
similar relationships for ker and kei.

scipy.special.kelvin_zeros(nt)
Compute nt zeros of all the Kelvin functions returned in a length 8 tuple of arrays of length nt. The tuple
containse the arrays of zeros of (ber, bei, ker, kei, ber’, bei’, ker’, kei’)

scipy.special.ber(x) = <ufunc ‘ber’>
Kelvin function ber.

scipy.special.bei(x) = <ufunc ‘bei’>
Kelvin function bei

scipy.special.berp(x) = <ufunc ‘berp’>
Derivative of the Kelvin function ber

scipy.special.beip(x) = <ufunc ‘beip’>
Derivative of the Kelvin function bei

scipy.special.ker(x) = <ufunc ‘ker’>
Kelvin function ker

scipy.special.kei(x) = <ufunc ‘kei’>
Kelvin function ker

scipy.special.kerp(x) = <ufunc ‘kerp’>
Derivative of the Kelvin function ker

scipy.special.keip(x) = <ufunc ‘keip’>
Derivative of the Kelvin function kei

These are not universal functions:

ber_zeros(nt) Compute nt zeros of the Kelvin function ber x
bei_zeros(nt) Compute nt zeros of the Kelvin function bei x
berp_zeros(nt) Compute nt zeros of the Kelvin function ber’ x
beip_zeros(nt) Compute nt zeros of the Kelvin function bei’ x
ker_zeros(nt) Compute nt zeros of the Kelvin function ker x
kei_zeros(nt) Compute nt zeros of the Kelvin function kei x
kerp_zeros(nt) Compute nt zeros of the Kelvin function ker’ x
keip_zeros(nt) Compute nt zeros of the Kelvin function kei’ x

scipy.special.ber_zeros(nt)
Compute nt zeros of the Kelvin function ber x

scipy.special.bei_zeros(nt)
Compute nt zeros of the Kelvin function bei x

scipy.special.berp_zeros(nt)
Compute nt zeros of the Kelvin function ber’ x

1190 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.special.beip_zeros(nt)
Compute nt zeros of the Kelvin function bei’ x

scipy.special.ker_zeros(nt)
Compute nt zeros of the Kelvin function ker x

scipy.special.kei_zeros(nt)
Compute nt zeros of the Kelvin function kei x

scipy.special.kerp_zeros(nt)
Compute nt zeros of the Kelvin function ker’ x

scipy.special.keip_zeros(nt)
Compute nt zeros of the Kelvin function kei’ x

Combinatorics

comb(N, k[, exact, repetition]) The number of combinations of N things taken k at a time.
perm(N, k[, exact]) Permutations of N things taken k at a time, i.e., k-permutations of N.

scipy.special.comb(N, k, exact=False, repetition=False)
The number of combinations of N things taken k at a time.

This is often expressed as “N choose k”.

Parameters N : int, ndarray
Number of things.

k : int, ndarray
Number of elements taken.

exact : bool, optional
If exact is False, then floating point precision is used, otherwise exact long
integer is computed.

repetition : bool, optional
If repetition is True, then the number of combinations with repetition is
computed.Returns val : int, ndarray
The total number of combinations.

Notes

•Array arguments accepted only for exact=False case.
•If k > N, N < 0, or k < 0, then a 0 is returned.

Examples

>>> from scipy.special import comb
>>> k = np.array([3, 4])
>>> n = np.array([10, 10])
>>> comb(n, k, exact=False)
array([120., 210.])
>>> comb(10, 3, exact=True)
120L
>>> comb(10, 3, exact=True, repetition=True)
220L

scipy.special.perm(N, k, exact=False)
Permutations of N things taken k at a time, i.e., k-permutations of N.

5.33. Special functions (scipy.special) 1191

SciPy Reference Guide, Release 0.16.0

It’s also known as “partial permutations”.

Parameters N : int, ndarray
Number of things.

k : int, ndarray
Number of elements taken.

exact : bool, optional
If exact is False, then floating point precision is used, otherwise exact long
integer is computed.Returns val : int, ndarray
The number of k-permutations of N.

Notes

•Array arguments accepted only for exact=False case.
•If k > N, N < 0, or k < 0, then a 0 is returned.

Examples

>>> from scipy.special import perm
>>> k = np.array([3, 4])
>>> n = np.array([10, 10])
>>> perm(n, k)
array([720., 5040.])
>>> perm(10, 3, exact=True)
720

Other Special Functions

agm(a, b) Arithmetic, Geometric Mean
bernoulli(n) Return an array of the Bernoulli numbers B0..Bn
binom(n, k) Binomial coefficient
diric(x, n) Return the periodic sinc function, also called the Dirichlet function.
euler(n) Return an array of the Euler numbers E0..En (inclusive)
expn(n, x) Exponential integral E_n
exp1(z) Exponential integral E_1 of complex argument z
expi(x) Exponential integral Ei
factorial(n[, exact]) The factorial function, n! = special.gamma(n+1).
factorial2(n[, exact]) Double factorial.
factorialk(n, k[, exact]) n(!!...!) = multifactorial of order k
shichi(x) Hyperbolic sine and cosine integrals
sici(x) Sine and cosine integrals
spence(x) Dilogarithm integral
lambertw(z[, k, tol]) Lambert W function [R599].
zeta(x, q) Hurwitz zeta function
zetac(x) Riemann zeta function minus 1.

scipy.special.agm(a, b)
Arithmetic, Geometric Mean

Start with a_0=a and b_0=b and iteratively compute

a_{n+1} = (a_n+b_n)/2 b_{n+1} = sqrt(a_n*b_n)

until a_n=b_n. The result is agm(a,b)

1192 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

agm(a,b)=agm(b,a) agm(a,a) = a min(a,b) < agm(a,b) < max(a,b)

scipy.special.bernoulli(n)
Return an array of the Bernoulli numbers B0..Bn

scipy.special.binom(n, k) = <ufunc ‘binom’>
Binomial coefficient

scipy.special.diric(x, n)
Return the periodic sinc function, also called the Dirichlet function.

The Dirichlet function is defined as:

diric(x) = sin(x * n/2) / (n * sin(x / 2)),

where n is a positive integer.

Parameters x : array_like
Input data

n : int
Integer defining the periodicity.Returns diric : ndarray

Examples

>>> from scipy import special
>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-8*np.pi, 8*np.pi, num=201)
>>> plt.figure(figsize=(8,8));
>>> for idx, n in enumerate([2,3,4,9]):
... plt.subplot(2, 2, idx+1)
... plt.plot(x, special.diric(x, n))
... plt.title('diric, n={}'.format(n))
>>> plt.show()

5.33. Special functions (scipy.special) 1193

SciPy Reference Guide, Release 0.16.0

30 20 10 0 10 20 30
1.0

0.5

0.0

0.5

1.0
diric, n=2

30 20 10 0 10 20 30
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
diric, n=3

30 20 10 0 10 20 30
1.0

0.5

0.0

0.5

1.0
diric, n=4

30 20 10 0 10 20 30
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
diric, n=9

scipy.special.euler(n)
Return an array of the Euler numbers E0..En (inclusive)

scipy.special.expn(n, x) = <ufunc ‘expn’>
Exponential integral E_n

Returns the exponential integral for integer n and non-negative x and n:

integral(exp(-x*t) / t**n, t=1..inf).

scipy.special.exp1(z) = <ufunc ‘exp1’>
Exponential integral E_1 of complex argument z

integral(exp(-z*t)/t,t=1..inf).

scipy.special.expi(x) = <ufunc ‘expi’>
Exponential integral Ei

1194 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Defined as:

integral(exp(t)/t,t=-inf..x)

See expn for a different exponential integral.

scipy.special.factorial(n, exact=False)
The factorial function, n! = special.gamma(n+1).

If exact is 0, then floating point precision is used, otherwise exact long integer is computed.
•Array argument accepted only for exact=False case.
•If n<0, the return value is 0.

Parameters n : int or array_like of ints
Calculate n!. Arrays are only supported with exact set to False. If n < 0,
the return value is 0.

exact : bool, optional
The result can be approximated rapidly using the gamma-formula above. If
exact is set to True, calculate the answer exactly using integer arithmetic.
Default is False.Returns nf : float or int
Factorial of n, as an integer or a float depending on exact.

Examples

>>> from scipy.special import factorial
>>> arr = np.array([3,4,5])
>>> factorial(arr, exact=False)
array([6., 24., 120.])
>>> factorial(5, exact=True)
120L

scipy.special.factorial2(n, exact=False)
Double factorial.

This is the factorial with every second value skipped, i.e., 7!! = 7 * 5 * 3 * 1. It can be approximated
numerically as:

n!! = special.gamma(n/2+1)*2**((m+1)/2)/sqrt(pi) n odd
= 2**(n/2) * (n/2)! n even

Parameters n : int or array_like
Calculate n!!. Arrays are only supported with exact set to False. If n <
0, the return value is 0.

exact : bool, optional
The result can be approximated rapidly using the gamma-formula above
(default). If exact is set to True, calculate the answer exactly using integer
arithmetic.Returns nff : float or int
Double factorial of n, as an int or a float depending on exact.

Examples

>>> from scipy.special import factorial2
>>> factorial2(7, exact=False)
array(105.00000000000001)

5.33. Special functions (scipy.special) 1195

SciPy Reference Guide, Release 0.16.0

>>> factorial2(7, exact=True)
105L

scipy.special.factorialk(n, k, exact=True)
n(!!...!) = multifactorial of order k k times

Parameters n : int
Calculate multifactorial. If n < 0, the return value is 0.

k : int
Order of multifactorial.

exact : bool, optional
If exact is set to True, calculate the answer exactly using integer arithmetic.Returns val : int
Multi factorial of n.Raises NotImplementedError
Raises when exact is False

Examples

>>> from scipy.special import factorialk
>>> factorialk(5, 1, exact=True)
120L
>>> factorialk(5, 3, exact=True)
10L

scipy.special.shichi(x) = <ufunc ‘shichi’>
Hyperbolic sine and cosine integrals

Returns shi
integral(sinh(t)/t, t=0..x)

chi
eul + ln x + integral((cosh(t)-1)/t, t=0..x) where
eul is Euler’s constant.

scipy.special.sici(x) = <ufunc ‘sici’>
Sine and cosine integrals

Returns si
integral(sin(t)/t, t=0..x)

ci
eul + ln x + integral((cos(t) - 1)/t, t=0..x) where
eul is Euler’s constant.

scipy.special.spence(x) = <ufunc ‘spence’>
Dilogarithm integral

Returns the dilogarithm integral:

-integral(log t / (t-1),t=1..x)

scipy.special.lambertw(z, k=0, tol=1e-8)
Lambert W function [R288].

The Lambert W function W(z) is defined as the inverse function of w * exp(w). In other words, the value of
W(z) is such that z = W(z) * exp(W(z)) for any complex number z.

The Lambert W function is a multivalued function with infinitely many branches. Each branch gives a separate
solution of the equation z = w exp(w). Here, the branches are indexed by the integer k.

Parameters z : array_like

1196 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Input argument.
k : int, optional

Branch index.
tol : float, optional

Evaluation tolerance.Returns w : array
w will have the same shape as z.

Notes

All branches are supported by lambertw:
•lambertw(z) gives the principal solution (branch 0)
•lambertw(z, k) gives the solution on branch k

The Lambert W function has two partially real branches: the principal branch (k = 0) is real for real z >
-1/e, and the k = -1 branch is real for -1/e < z < 0. All branches except k = 0 have a logarithmic
singularity at z = 0.

Possible issues

The evaluation can become inaccurate very close to the branch point at -1/e. In some corner cases, lambertw
might currently fail to converge, or can end up on the wrong branch.

Algorithm

Halley’s iteration is used to invert w * exp(w), using a first-order asymptotic approximation (O(log(w)) or
O(w)) as the initial estimate.

The definition, implementation and choice of branches is based on [R289].

References

[R288], [R289]

Examples

The Lambert W function is the inverse of w exp(w):

>>> from scipy.special import lambertw
>>> w = lambertw(1)
>>> w
(0.56714329040978384+0j)
>>> w * np.exp(w)
(1.0+0j)

Any branch gives a valid inverse:

>>> w = lambertw(1, k=3)
>>> w
(-2.8535817554090377+17.113535539412148j)
>>> w*np.exp(w)
(1.0000000000000002+1.609823385706477e-15j)

Applications to equation-solving

The Lambert W function may be used to solve various kinds of equations, such as finding the value of the infinite
power tower 𝑧𝑧

𝑧...

:

>>> def tower(z, n):
... if n == 0:
... return z

5.33. Special functions (scipy.special) 1197

SciPy Reference Guide, Release 0.16.0

... return z ** tower(z, n-1)

...
>>> tower(0.5, 100)
0.641185744504986
>>> -lambertw(-np.log(0.5)) / np.log(0.5)
(0.64118574450498589+0j)

scipy.special.zeta(x, q) = <ufunc ‘zeta’>
Hurwitz zeta function

The Riemann zeta function of two arguments (also known as the Hurwitz zeta funtion).

This function is defined as

𝜁(𝑥, 𝑞) =

∞∑︁
𝑘=0

1/(𝑘 + 𝑞)𝑥,

where x > 1 and q > 0.

See also:

zetac

scipy.special.zetac(x) = <ufunc ‘zetac’>
Riemann zeta function minus 1.

This function is defined as

𝜁(𝑥) =

∞∑︁
𝑘=2

1/𝑘𝑥,

where x > 1.

See also:

zeta

Convenience Functions

cbrt(x) Cube root of x
exp10(x) 10**x
exp2(x) 2**x
radian(d, m, s) Convert from degrees to radians
cosdg(x) Cosine of the angle x given in degrees.
sindg(x) Sine of angle given in degrees
tandg(x) Tangent of angle x given in degrees.
cotdg(x) Cotangent of the angle x given in degrees.
log1p(x) Calculates log(1+x) for use when x is near zero
expm1(x) exp(x) - 1 for use when x is near zero.
cosm1(x) cos(x) - 1 for use when x is near zero.
round(x) Round to nearest integer
xlogy(x, y) Compute x*log(y) so that the result is 0 if x = 0.
xlog1py(x, y) Compute x*log1p(y) so that the result is 0 if x = 0.

scipy.special.cbrt(x) = <ufunc ‘cbrt’>
Cube root of x

1198 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.special.exp10(x) = <ufunc ‘exp10’>
10**x

scipy.special.exp2(x) = <ufunc ‘exp2’>
2**x

scipy.special.radian(d, m, s) = <ufunc ‘radian’>
Convert from degrees to radians

Returns the angle given in (d)egrees, (m)inutes, and (s)econds in radians.

scipy.special.cosdg(x) = <ufunc ‘cosdg’>
Cosine of the angle x given in degrees.

scipy.special.sindg(x) = <ufunc ‘sindg’>
Sine of angle given in degrees

scipy.special.tandg(x) = <ufunc ‘tandg’>
Tangent of angle x given in degrees.

scipy.special.cotdg(x) = <ufunc ‘cotdg’>
Cotangent of the angle x given in degrees.

scipy.special.log1p(x) = <ufunc ‘log1p’>
Calculates log(1+x) for use when x is near zero

scipy.special.expm1(x) = <ufunc ‘expm1’>
exp(x) - 1 for use when x is near zero.

scipy.special.cosm1(x) = <ufunc ‘cosm1’>
cos(x) - 1 for use when x is near zero.

scipy.special.round(x) = <ufunc ‘round’>
Round to nearest integer

Returns the nearest integer to x as a double precision floating point result. If x ends in 0.5 exactly, the nearest
even integer is chosen.

scipy.special.xlogy(x, y) = <ufunc ‘xlogy’>
Compute x*log(y) so that the result is 0 if x = 0.

Parameters x : array_like
Multiplier

y : array_like
ArgumentReturns z : array_like
Computed x*log(y)

Notes

New in version 0.13.0.

scipy.special.xlog1py(x, y) = <ufunc ‘xlog1py’>
Compute x*log1p(y) so that the result is 0 if x = 0.

Parameters x : array_like
Multiplier

y : array_like
ArgumentReturns z : array_like
Computed x*log1p(y)

5.33. Special functions (scipy.special) 1199

SciPy Reference Guide, Release 0.16.0

Notes

New in version 0.13.0.

5.34 Statistical functions (scipy.stats)

This module contains a large number of probability distributions as well as a growing library of statistical functions.

Each univariate distribution is an instance of a subclass of rv_continuous (rv_discrete for discrete distribu-
tions):

rv_continuous([momtype, a, b, xtol, ...]) A generic continuous random variable class meant for subclassing.
rv_discrete([a, b, name, badvalue, ...]) A generic discrete random variable class meant for subclassing.

class scipy.stats.rv_continuous(momtype=1, a=None, b=None, xtol=1e-14, badvalue=None,
name=None, longname=None, shapes=None, extradoc=None,
seed=None)

A generic continuous random variable class meant for subclassing.

rv_continuous is a base class to construct specific distribution classes and instances for continuous random
variables. It cannot be used directly as a distribution.

Parameters momtype : int, optional
The type of generic moment calculation to use: 0 for pdf, 1 (default) for
ppf.

a : float, optional
Lower bound of the support of the distribution, default is minus infinity.

b : float, optional
Upper bound of the support of the distribution, default is plus infinity.

xtol : float, optional
The tolerance for fixed point calculation for generic ppf.

badvalue : float, optional
The value in a result arrays that indicates a value that for which some argu-
ment restriction is violated, default is np.nan.

name : str, optional
The name of the instance. This string is used to construct the default exam-
ple for distributions.

longname : str, optional
This string is used as part of the first line of the docstring returned when a
subclass has no docstring of its own. Note: longname exists for backwards
compatibility, do not use for new subclasses.

shapes : str, optional
The shape of the distribution. For example "m, n" for a distribution that
takes two integers as the two shape arguments for all its methods. If not
provided, shape parameters will be inferred from the signature of the private
methods, _pdf and _cdf of the instance.

extradoc : str, optional, deprecated
This string is used as the last part of the docstring returned when a subclass
has no docstring of its own. Note: extradoc exists for backwards compati-
bility, do not use for new subclasses.

seed : None or int or numpy.random.RandomState instance, optional
This parameter defines the RandomState object to use for drawing random
variates. If None (or np.random), the global np.random state is used. If
integer, it is used to seed the local RandomState instance. Default is None.

1200 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

Public methods of an instance of a distribution class (e.g., pdf, cdf) check their arguments and pass valid argu-
ments to private, computational methods (_pdf, _cdf). For pdf(x), x is valid if it is within the support of a
distribution, self.a <= x <= self.b. Whether a shape parameter is valid is decided by an _argcheck
method (which defaults to checking that its arguments are strictly positive.)

Subclassing

New random variables can be defined by subclassing the rv_continuous class and re-defining at least the
_pdf or the _cdf method (normalized to location 0 and scale 1).

If positive argument checking is not correct for your RV then you will also need to re-define the _argcheck
method.

Correct, but potentially slow defaults exist for the remaining methods but for speed and/or accuracy you can
over-ride:

_logpdf, _cdf, _logcdf, _ppf, _rvs, _isf, _sf, _logsf

Rarely would you override _isf, _sf or _logsf, but you could.

Methods that can be overwritten by subclasses

_rvs
_pdf
_cdf
_sf
_ppf
_isf
_stats
_munp
_entropy
_argcheck

There are additional (internal and private) generic methods that can be useful for cross-checking and for debug-
ging, but might work in all cases when directly called.

A note on shapes: subclasses need not specify them explicitly. In this case, shapes will be automatically
deduced from the signatures of the overridden methods (pdf, cdf etc). If, for some reason, you prefer to avoid
relying on introspection, you can specify shapes explicitly as an argument to the instance constructor.

Frozen Distributions

Normally, you must provide shape parameters (and, optionally, location and scale parameters to each call of a
method of a distribution.

Alternatively, the object may be called (as a function) to fix the shape, location, and scale parameters returning
a “frozen” continuous RV object:
rv = generic(<shape(s)>, loc=0, scale=1)

frozen RV object with the same methods but holding the given shape, location, and scale fixed
Statistics

Statistics are computed using numerical integration by default. For speed you can redefine this using _stats:
•take shape parameters and return mu, mu2, g1, g2
•If you can’t compute one of these, return it as None
•Can also be defined with a keyword argument moments, which is a string composed of “m”, “v”, “s”,
and/or “k”. Only the components appearing in string should be computed and returned in the order “m”,
“v”, “s”, or “k” with missing values returned as None.

Alternatively, you can override _munp, which takes n and shape parameters and returns the n-th non-central
moment of the distribution.

5.34. Statistical functions (scipy.stats) 1201

SciPy Reference Guide, Release 0.16.0

Examples

To create a new Gaussian distribution, we would do the following:

>>> from scipy.stats import rv_continuous
>>> class gaussian_gen(rv_continuous):
... "Gaussian distribution"
... def _pdf(self, x):
... return np.exp(-x**2 / 2.) / np.sqrt(2.0 * np.pi)
>>> gaussian = gaussian_gen(name='gaussian')

scipy.stats distributions are instances, so here we subclass rv_continuous and create an instance.
With this, we now have a fully functional distribution with all relevant methods automagically generated by the
framework.

Note that above we defined a standard normal distribution, with zero mean and unit variance. Shifting and
scaling of the distribution can be done by using loc and scale parameters: gaussian.pdf(x, loc,
scale) essentially computes y = (x - loc) / scale and gaussian._pdf(y) / scale.

Attributes

random_state Get or set the RandomState object for generating random variates.

rv_continuous.random_state
Get or set the RandomState object for generating random variates.

This can be either None or an existing RandomState object.

If None (or np.random), use the RandomState singleton used by np.random. If already a RandomState
instance, use it. If an int, use a new RandomState instance seeded with seed.

Methods

rvs(*args, **kwds) Random variates of given type.
pdf(x, *args, **kwds) Probability density function at x of the given RV.
logpdf(x, *args, **kwds) Log of the probability density function at x of the given RV.
cdf(x, *args, **kwds) Cumulative distribution function of the given RV.
logcdf(x, *args, **kwds) Log of the cumulative distribution function at x of the given RV.
sf(x, *args, **kwds) Survival function (1 - cdf) at x of the given RV.
logsf(x, *args, **kwds) Log of the survival function of the given RV.
ppf(q, *args, **kwds) Percent point function (inverse of cdf) at q of the given RV.
isf(q, *args, **kwds) Inverse survival function (inverse of sf) at q of the given RV.
moment(n, *args, **kwds) n-th order non-central moment of distribution.
stats(*args, **kwds) Some statistics of the given RV.
entropy(*args, **kwds) Differential entropy of the RV.
expect([func, args, loc, scale, lb, ub, ...]) Calculate expected value of a function with respect to the distribution.
median(*args, **kwds) Median of the distribution.
mean(*args, **kwds) Mean of the distribution.
std(*args, **kwds) Standard deviation of the distribution.
var(*args, **kwds) Variance of the distribution.
interval(alpha, *args, **kwds) Confidence interval with equal areas around the median.
__call__(*args, **kwds) Freeze the distribution for the given arguments.
fit(data, *args, **kwds) Return MLEs for shape, location, and scale parameters from data.
fit_loc_scale(data, *args) Estimate loc and scale parameters from data using 1st and 2nd moments.

Continued on next page

1202 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.247 – continued from previous page
nnlf(theta, x) Return negative loglikelihood function.

rv_continuous.rvs(*args, **kwds)
Random variates of given type.

Parameters arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information).

loc : array_like, optional
Location parameter (default=0).

scale : array_like, optional
Scale parameter (default=1).

size : int or tuple of ints, optional
Defining number of random variates (default is 1).

random_state : None or int or np.random.RandomState instance, optional
If int or RandomState, use it for drawing the random variates. If
None, rely on self.random_state. Default is None.Returns rvs : ndarray or scalar
Random variates of given size.

rv_continuous.pdf(x, *args, **kwds)
Probability density function at x of the given RV.

Parameters x : array_like
quantiles

arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information)

loc : array_like, optional
location parameter (default=0)

scale : array_like, optional
scale parameter (default=1)Returns pdf : ndarray
Probability density function evaluated at x

rv_continuous.logpdf(x, *args, **kwds)
Log of the probability density function at x of the given RV.

This uses a more numerically accurate calculation if available.

Parameters x : array_like
quantiles

arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information)

loc : array_like, optional
location parameter (default=0)

scale : array_like, optional
scale parameter (default=1)Returns logpdf : array_like
Log of the probability density function evaluated at x

rv_continuous.cdf(x, *args, **kwds)
Cumulative distribution function of the given RV.

Parameters x : array_like
quantiles

arg1, arg2, arg3,... : array_like

5.34. Statistical functions (scipy.stats) 1203

SciPy Reference Guide, Release 0.16.0

The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information)

loc : array_like, optional
location parameter (default=0)

scale : array_like, optional
scale parameter (default=1)Returns cdf : ndarray
Cumulative distribution function evaluated at x

rv_continuous.logcdf(x, *args, **kwds)
Log of the cumulative distribution function at x of the given RV.

Parameters x : array_like
quantiles

arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information)

loc : array_like, optional
location parameter (default=0)

scale : array_like, optional
scale parameter (default=1)Returns logcdf : array_like
Log of the cumulative distribution function evaluated at x

rv_continuous.sf(x, *args, **kwds)
Survival function (1 - cdf) at x of the given RV.

Parameters x : array_like
quantiles

arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information)

loc : array_like, optional
location parameter (default=0)

scale : array_like, optional
scale parameter (default=1)Returns sf : array_like
Survival function evaluated at x

rv_continuous.logsf(x, *args, **kwds)
Log of the survival function of the given RV.

Returns the log of the “survival function,” defined as (1 - cdf), evaluated at x.

Parameters x : array_like
quantiles

arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information)

loc : array_like, optional
location parameter (default=0)

scale : array_like, optional
scale parameter (default=1)Returns logsf : ndarray
Log of the survival function evaluated at x.

rv_continuous.ppf(q, *args, **kwds)
Percent point function (inverse of cdf) at q of the given RV.

Parameters q : array_like

1204 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

lower tail probability
arg1, arg2, arg3,... : array_like

The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information)

loc : array_like, optional
location parameter (default=0)

scale : array_like, optional
scale parameter (default=1)Returns x : array_like
quantile corresponding to the lower tail probability q.

rv_continuous.isf(q, *args, **kwds)
Inverse survival function (inverse of sf) at q of the given RV.

Parameters q : array_like
upper tail probability

arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information)

loc : array_like, optional
location parameter (default=0)

scale : array_like, optional
scale parameter (default=1)Returns x : ndarray or scalar
Quantile corresponding to the upper tail probability q.

rv_continuous.moment(n, *args, **kwds)
n-th order non-central moment of distribution.

Parameters n : int, n >= 1
Order of moment.

arg1, arg2, arg3,... : float
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information).

loc : array_like, optional
location parameter (default=0)

scale : array_like, optional
scale parameter (default=1)

rv_continuous.stats(*args, **kwds)
Some statistics of the given RV.

Parameters arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information)

loc : array_like, optional
location parameter (default=0)

scale : array_like, optional (continuous RVs only)
scale parameter (default=1)

moments : str, optional
composed of letters [’mvsk’] defining which moments to compute:
‘m’ = mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew, ‘k’ = (Fisher’s)
kurtosis. (default is ‘mv’)Returns stats : sequence
of requested moments.

rv_continuous.entropy(*args, **kwds)
Differential entropy of the RV.

5.34. Statistical functions (scipy.stats) 1205

SciPy Reference Guide, Release 0.16.0

Parameters arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information).

loc : array_like, optional
Location parameter (default=0).

scale : array_like, optional (continuous distributions only).
Scale parameter (default=1).

Notes

Entropy is defined base e:

>>> drv = rv_discrete(values=((0, 1), (0.5, 0.5)))
>>> np.allclose(drv.entropy(), np.log(2.0))
True

rv_continuous.expect(func=None, args=(), loc=0, scale=1, lb=None, ub=None, condi-
tional=False, **kwds)

Calculate expected value of a function with respect to the distribution.

The expected value of a function f(x) with respect to a distribution dist is defined as:

ubound
E[x] = Integral(f(x) * dist.pdf(x))

lbound

Parameters func : callable, optional
Function for which integral is calculated. Takes only one argument.
The default is the identity mapping f(x) = x.

args : tuple, optional
Shape parameters of the distribution.

loc : float, optional
Location parameter (default=0).

scale : float, optional
Scale parameter (default=1).

lb, ub : scalar, optional
Lower and upper bound for integration. Default is set to the support
of the distribution.

conditional : bool, optional
If True, the integral is corrected by the conditional probability of the
integration interval. The return value is the expectation of the func-
tion, conditional on being in the given interval. Default is False.

Additional keyword arguments are passed to the integration routine.Returns expect : float
The calculated expected value.

Notes

The integration behavior of this function is inherited from integrate.quad.

rv_continuous.median(*args, **kwds)
Median of the distribution.

Parameters arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information)

loc : array_like, optional

1206 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Location parameter, Default is 0.
scale : array_like, optional

Scale parameter, Default is 1.Returns median : float
The median of the distribution.

See also:

stats.distributions.rv_discrete.ppf
Inverse of the CDF

rv_continuous.mean(*args, **kwds)
Mean of the distribution.

Parameters arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information)

loc : array_like, optional
location parameter (default=0)

scale : array_like, optional
scale parameter (default=1)Returns mean : float
the mean of the distribution

rv_continuous.std(*args, **kwds)
Standard deviation of the distribution.

Parameters arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information)

loc : array_like, optional
location parameter (default=0)

scale : array_like, optional
scale parameter (default=1)Returns std : float
standard deviation of the distribution

rv_continuous.var(*args, **kwds)
Variance of the distribution.

Parameters arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information)

loc : array_like, optional
location parameter (default=0)

scale : array_like, optional
scale parameter (default=1)Returns var : float
the variance of the distribution

rv_continuous.interval(alpha, *args, **kwds)
Confidence interval with equal areas around the median.

Parameters alpha : array_like of float
Probability that an rv will be drawn from the returned range. Each
value should be in the range [0, 1].

arg1, arg2, ... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information).

loc : array_like, optional
location parameter, Default is 0.

5.34. Statistical functions (scipy.stats) 1207

SciPy Reference Guide, Release 0.16.0

scale : array_like, optional
scale parameter, Default is 1.Returns a, b : ndarray of float
end-points of range that contain 100 * alpha % of the rv’s pos-
sible values.

rv_continuous.__call__(*args, **kwds)
Freeze the distribution for the given arguments.

Parameters arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution. Should include all the
non-optional arguments, may include loc and scale.Returns rv_frozen : rv_frozen instance
The frozen distribution.

rv_continuous.fit(data, *args, **kwds)
Return MLEs for shape, location, and scale parameters from data.

MLE stands for Maximum Likelihood Estimate. Starting estimates for the fit are given by input argu-
ments; for any arguments not provided with starting estimates, self._fitstart(data) is called to
generate such.

One can hold some parameters fixed to specific values by passing in keyword arguments f0, f1, ..., fn
(for shape parameters) and floc and fscale (for location and scale parameters, respectively).

Parameters data : array_like
Data to use in calculating the MLEs.

args : floats, optional
Starting value(s) for any shape-characterizing arguments (those not
provided will be determined by a call to _fitstart(data)). No
default value.

kwds : floats, optional
Starting values for the location and scale parameters; no default. Spe-
cial keyword arguments are recognized as holding certain parameters
fixed:

•f0...fn : hold respective shape parameters fixed. Alternatively,
shape parameters to fix can be specified by name. For example,
if self.shapes == "a, b", fa is equivalent to f0 and
fb is equivalent to f1.

•floc : hold location parameter fixed to specified value.
•fscale : hold scale parameter fixed to specified value.
•optimizer : The optimizer to use. The optimizer must take
func, and starting position as the first two arguments, plus
args (for extra arguments to pass to the function to be opti-
mized) and disp=0 to suppress output as keyword arguments.Returns shape, loc, scale : tuple of floats

MLEs for any shape statistics, followed by those for location and
scale.

Notes

This fit is computed by maximizing a log-likelihood function, with penalty applied for samples outside of
range of the distribution. The returned answer is not guaranteed to be the globally optimal MLE, it may
only be locally optimal, or the optimization may fail altogether.

Examples

Generate some data to fit: draw random variates from the beta distribution

1208 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> from scipy.stats import beta
>>> a, b = 1., 2.
>>> x = beta.rvs(a, b, size=1000)

Now we can fit all four parameters (a, b, loc and scale):

>>> a1, b1, loc1, scale1 = beta.fit(x)

We can also use some prior knowledge about the dataset: let’s keep loc and scale fixed:

>>> a1, b1, loc1, scale1 = beta.fit(x, floc=0, fscale=1)
>>> loc1, scale1
(0, 1)

We can also keep shape parameters fixed by using f-keywords. To keep the zero-th shape parameter a
equal 1, use f0=1 or, equivalently, fa=1:

>>> a1, b1, loc1, scale1 = beta.fit(x, fa=1, floc=0, fscale=1)
>>> a1
1

rv_continuous.fit_loc_scale(data, *args)
Estimate loc and scale parameters from data using 1st and 2nd moments.

Parameters data : array_like
Data to fit.

arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information).Returns Lhat : float
Estimated location parameter for the data.

Shat : float
Estimated scale parameter for the data.

rv_continuous.nnlf(theta, x)
Return negative loglikelihood function.

Notes

This is -sum(log pdf(x, theta), axis=0) where theta are the parameters (including loc and
scale).

class scipy.stats.rv_discrete(a=0, b=inf, name=None, badvalue=None, moment_tol=1e-08, val-
ues=None, inc=1, longname=None, shapes=None, extradoc=None,
seed=None)

A generic discrete random variable class meant for subclassing.

rv_discrete is a base class to construct specific distribution classes and instances for discrete random vari-
ables. It can also be used to construct an arbitrary distribution defined by a list of support points and correspond-
ing probabilities.

Parameters a : float, optional
Lower bound of the support of the distribution, default: 0

b : float, optional
Upper bound of the support of the distribution, default: plus infinity

moment_tol : float, optional
The tolerance for the generic calculation of moments.

values : tuple of two array_like, optional

5.34. Statistical functions (scipy.stats) 1209

SciPy Reference Guide, Release 0.16.0

(xk, pk) where xk are integers with non-zero probabilities pk with
sum(pk) = 1.

inc : integer, optional
Increment for the support of the distribution. Default is 1. (other values
have not been tested)

badvalue : float, optional
The value in a result arrays that indicates a value that for which some argu-
ment restriction is violated, default is np.nan.

name : str, optional
The name of the instance. This string is used to construct the default exam-
ple for distributions.

longname : str, optional
This string is used as part of the first line of the docstring returned when a
subclass has no docstring of its own. Note: longname exists for backwards
compatibility, do not use for new subclasses.

shapes : str, optional
The shape of the distribution. For example “m, n” for a distribution that
takes two integers as the two shape arguments for all its methods If not pro-
vided, shape parameters will be inferred from the signatures of the private
methods, _pmf and _cdf of the instance.

extradoc : str, optional
This string is used as the last part of the docstring returned when a subclass
has no docstring of its own. Note: extradoc exists for backwards compati-
bility, do not use for new subclasses.

seed : None or int or numpy.random.RandomState instance, optional
This parameter defines the RandomState object to use for drawing random
variates. If None, the global np.random state is used. If integer, it is used to
seed the local RandomState instance. Default is None.

Notes

This class is similar to rv_continuous, the main differences being:
•the support of the distribution is a set of integers
•instead of the probability density function, pdf (and the corresponding private _pdf), this class defines
the probability mass function, pmf (and the corresponding private _pmf.)

•scale parameter is not defined.
To create a new discrete distribution, we would do the following:

>>> from scipy.stats import rv_discrete
>>> class poisson_gen(rv_discrete):
... "Poisson distribution"
... def _pmf(self, k, mu):
... return exp(-mu) * mu**k / factorial(k)

and create an instance:

>>> poisson = poisson_gen(name="poisson")

Note that above we defined the Poisson distribution in the standard form. Shifting the distribution can be done
by providing the loc parameter to the methods of the instance. For example, poisson.pmf(x, mu, loc)
delegates the work to poisson._pmf(x-loc, mu).

Discrete distributions from a list of probabilities

Alternatively, you can construct an arbitrary discrete rv defined on a finite set of values xk with Prob{X=xk}
= pk by using the values keyword argument to the rv_discrete constructor.

1210 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

Custom made discrete distribution:

>>> from scipy import stats
>>> xk = np.arange(7)
>>> pk = (0.1, 0.2, 0.3, 0.1, 0.1, 0.0, 0.2)
>>> custm = stats.rv_discrete(name='custm', values=(xk, pk))
>>>
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
>>> ax.plot(xk, custm.pmf(xk), 'ro', ms=12, mec='r')
>>> ax.vlines(xk, 0, custm.pmf(xk), colors='r', lw=4)
>>> plt.show()

0 1 2 3 4 5 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Random number generation:

>>> R = custm.rvs(size=100)

Attributes

random_state Get or set the RandomState object for generating random variates.

rv_discrete.random_state
Get or set the RandomState object for generating random variates.

This can be either None or an existing RandomState object.

If None (or np.random), use the RandomState singleton used by np.random. If already a RandomState
instance, use it. If an int, use a new RandomState instance seeded with seed.

Methods

rvs(*args, **kwargs) Random variates of given type.
pmf(k, *args, **kwds) Probability mass function at k of the given RV.

Continued on next page

5.34. Statistical functions (scipy.stats) 1211

SciPy Reference Guide, Release 0.16.0

Table 5.249 – continued from previous page
logpmf(k, *args, **kwds) Log of the probability mass function at k of the given RV.
cdf(k, *args, **kwds) Cumulative distribution function of the given RV.
logcdf(k, *args, **kwds) Log of the cumulative distribution function at k of the given RV.
sf(k, *args, **kwds) Survival function (1 - cdf) at k of the given RV.
logsf(k, *args, **kwds) Log of the survival function of the given RV.
ppf(q, *args, **kwds) Percent point function (inverse of cdf) at q of the given RV.
isf(q, *args, **kwds) Inverse survival function (inverse of sf) at q of the given RV.
moment(n, *args, **kwds) n-th order non-central moment of distribution.
stats(*args, **kwds) Some statistics of the given RV.
entropy(*args, **kwds) Differential entropy of the RV.
expect([func, args, loc, lb, ub, conditional]) Calculate expected value of a function with respect to the distribution for discrete distribution.
median(*args, **kwds) Median of the distribution.
mean(*args, **kwds) Mean of the distribution.
std(*args, **kwds) Standard deviation of the distribution.
var(*args, **kwds) Variance of the distribution.
interval(alpha, *args, **kwds) Confidence interval with equal areas around the median.
__call__(*args, **kwds) Freeze the distribution for the given arguments.

rv_discrete.rvs(*args, **kwargs)
Random variates of given type.

Parameters arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information).

loc : array_like, optional
Location parameter (default=0).

size : int or tuple of ints, optional
Defining number of random variates (Default is 1). Note that size has
to be given as keyword, not as positional argument.

random_state : None or int or np.random.RandomState instance, optional
If int or RandomState, use it for drawing the random variates. If
None, rely on self.random_state. Default is None.Returns rvs : ndarray or scalar
Random variates of given size.

rv_discrete.pmf(k, *args, **kwds)
Probability mass function at k of the given RV.

Parameters k : array_like
Quantiles.

arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information)

loc : array_like, optional
Location parameter (default=0).Returns pmf : array_like
Probability mass function evaluated at k

rv_discrete.logpmf(k, *args, **kwds)
Log of the probability mass function at k of the given RV.

Parameters k : array_like
Quantiles.

arg1, arg2, arg3,... : array_like

1212 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information).

loc : array_like, optional
Location parameter. Default is 0.Returns logpmf : array_like
Log of the probability mass function evaluated at k.

rv_discrete.cdf(k, *args, **kwds)
Cumulative distribution function of the given RV.

Parameters k : array_like, int
Quantiles.

arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information).

loc : array_like, optional
Location parameter (default=0).Returns cdf : ndarray
Cumulative distribution function evaluated at k.

rv_discrete.logcdf(k, *args, **kwds)
Log of the cumulative distribution function at k of the given RV.

Parameters k : array_like, int
Quantiles.

arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information).

loc : array_like, optional
Location parameter (default=0).Returns logcdf : array_like
Log of the cumulative distribution function evaluated at k.

rv_discrete.sf(k, *args, **kwds)
Survival function (1 - cdf) at k of the given RV.

Parameters k : array_like
Quantiles.

arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information).

loc : array_like, optional
Location parameter (default=0).Returns sf : array_like
Survival function evaluated at k.

rv_discrete.logsf(k, *args, **kwds)
Log of the survival function of the given RV.

Returns the log of the “survival function,” defined as 1 - cdf, evaluated at k.

Parameters k : array_like
Quantiles.

arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information).

loc : array_like, optional
Location parameter (default=0).Returns logsf : ndarray
Log of the survival function evaluated at k.

5.34. Statistical functions (scipy.stats) 1213

SciPy Reference Guide, Release 0.16.0

rv_discrete.ppf(q, *args, **kwds)
Percent point function (inverse of cdf) at q of the given RV.

Parameters q : array_like
Lower tail probability.

arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information).

loc : array_like, optional
Location parameter (default=0).Returns k : array_like
Quantile corresponding to the lower tail probability, q.

rv_discrete.isf(q, *args, **kwds)
Inverse survival function (inverse of sf) at q of the given RV.

Parameters q : array_like
Upper tail probability.

arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information).

loc : array_like, optional
Location parameter (default=0).Returns k : ndarray or scalar
Quantile corresponding to the upper tail probability, q.

rv_discrete.moment(n, *args, **kwds)
n-th order non-central moment of distribution.

Parameters n : int, n >= 1
Order of moment.

arg1, arg2, arg3,... : float
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information).

loc : array_like, optional
location parameter (default=0)

scale : array_like, optional
scale parameter (default=1)

rv_discrete.stats(*args, **kwds)
Some statistics of the given RV.

Parameters arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information)

loc : array_like, optional
location parameter (default=0)

scale : array_like, optional (continuous RVs only)
scale parameter (default=1)

moments : str, optional
composed of letters [’mvsk’] defining which moments to compute:
‘m’ = mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew, ‘k’ = (Fisher’s)
kurtosis. (default is ‘mv’)Returns stats : sequence
of requested moments.

rv_discrete.entropy(*args, **kwds)
Differential entropy of the RV.

Parameters arg1, arg2, arg3,... : array_like

1214 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information).

loc : array_like, optional
Location parameter (default=0).

scale : array_like, optional (continuous distributions only).
Scale parameter (default=1).

Notes

Entropy is defined base e:

>>> drv = rv_discrete(values=((0, 1), (0.5, 0.5)))
>>> np.allclose(drv.entropy(), np.log(2.0))
True

rv_discrete.expect(func=None, args=(), loc=0, lb=None, ub=None, conditional=False)
Calculate expected value of a function with respect to the distribution for discrete distribution.

Parameters func : callable, optional
Function for which the expectation value is calculated. Takes only
one argument. The default is the identity mapping f(k) = k.

args : tuple, optional
Shape parameters of the distribution.

loc : float, optional
Location parameter. Default is 0.

lb, ub : int, optional
Lower and upper bound for integration, default is set to the support
of the distribution, inclusive (ul <= k <= ub).

conditional : bool, optional
If true then the expectation is corrected by the conditional probability
of the summation interval. The return value is the expectation of the
function, func, conditional on being in the given interval (k such that
ul <= k <= ub). Default is False.Returns expect : float
Expected value.

Notes

•function is not vectorized
•accuracy: uses self.moment_tol as stopping criterium for heavy tailed distribution e.g. zipf(4),
accuracy for mean, variance in example is only 1e-5, increasing precision (moment_tol) makes zipf
very slow

•suppnmin=100 internal parameter for minimum number of points to evaluate could be added as
keyword parameter, to evaluate functions with non-monotonic shapes, points include integers in
(-suppnmin, suppnmin)

•uses maxcount=1000 limits the number of points that are evaluated to break loop for infinite sums
(a maximum of suppnmin+1000 positive plus suppnmin+1000 negative integers are evaluated)

rv_discrete.median(*args, **kwds)
Median of the distribution.

Parameters arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information)

loc : array_like, optional
Location parameter, Default is 0.

scale : array_like, optional
Scale parameter, Default is 1.

5.34. Statistical functions (scipy.stats) 1215

SciPy Reference Guide, Release 0.16.0

Returns median : float
The median of the distribution.

See also:

stats.distributions.rv_discrete.ppf
Inverse of the CDF

rv_discrete.mean(*args, **kwds)
Mean of the distribution.

Parameters arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information)

loc : array_like, optional
location parameter (default=0)

scale : array_like, optional
scale parameter (default=1)Returns mean : float
the mean of the distribution

rv_discrete.std(*args, **kwds)
Standard deviation of the distribution.

Parameters arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information)

loc : array_like, optional
location parameter (default=0)

scale : array_like, optional
scale parameter (default=1)Returns std : float
standard deviation of the distribution

rv_discrete.var(*args, **kwds)
Variance of the distribution.

Parameters arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information)

loc : array_like, optional
location parameter (default=0)

scale : array_like, optional
scale parameter (default=1)Returns var : float
the variance of the distribution

rv_discrete.interval(alpha, *args, **kwds)
Confidence interval with equal areas around the median.

Parameters alpha : array_like of float
Probability that an rv will be drawn from the returned range. Each
value should be in the range [0, 1].

arg1, arg2, ... : array_like
The shape parameter(s) for the distribution (see docstring of the in-
stance object for more information).

loc : array_like, optional
location parameter, Default is 0.

scale : array_like, optional
scale parameter, Default is 1.Returns a, b : ndarray of float

1216 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

end-points of range that contain 100 * alpha % of the rv’s pos-
sible values.

rv_discrete.__call__(*args, **kwds)
Freeze the distribution for the given arguments.

Parameters arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution. Should include all the
non-optional arguments, may include loc and scale.Returns rv_frozen : rv_frozen instance
The frozen distribution.

5.34.1 Continuous distributions

alpha An alpha continuous random variable.
anglit An anglit continuous random variable.
arcsine An arcsine continuous random variable.
beta A beta continuous random variable.
betaprime A beta prime continuous random variable.
bradford A Bradford continuous random variable.
burr A Burr continuous random variable.
cauchy A Cauchy continuous random variable.
chi A chi continuous random variable.
chi2 A chi-squared continuous random variable.
cosine A cosine continuous random variable.
dgamma A double gamma continuous random variable.
dweibull A double Weibull continuous random variable.
erlang An Erlang continuous random variable.
expon An exponential continuous random variable.
exponnorm An exponentially modified Normal continuous random variable.
exponweib An exponentiated Weibull continuous random variable.
exponpow An exponential power continuous random variable.
f An F continuous random variable.
fatiguelife A fatigue-life (Birnbaum-Saunders) continuous random variable.
fisk A Fisk continuous random variable.
foldcauchy A folded Cauchy continuous random variable.
foldnorm A folded normal continuous random variable.
frechet_r A Frechet right (or Weibull minimum) continuous random variable.
frechet_l A Frechet left (or Weibull maximum) continuous random variable.
genlogistic A generalized logistic continuous random variable.
gennorm A generalized normal continuous random variable.
genpareto A generalized Pareto continuous random variable.
genexpon A generalized exponential continuous random variable.
genextreme A generalized extreme value continuous random variable.
gausshyper A Gauss hypergeometric continuous random variable.
gamma A gamma continuous random variable.
gengamma A generalized gamma continuous random variable.
genhalflogistic A generalized half-logistic continuous random variable.
gilbrat A Gilbrat continuous random variable.
gompertz A Gompertz (or truncated Gumbel) continuous random variable.
gumbel_r A right-skewed Gumbel continuous random variable.
gumbel_l A left-skewed Gumbel continuous random variable.

Continued on next page

5.34. Statistical functions (scipy.stats) 1217

SciPy Reference Guide, Release 0.16.0

Table 5.250 – continued from previous page
halfcauchy A Half-Cauchy continuous random variable.
halflogistic A half-logistic continuous random variable.
halfnorm A half-normal continuous random variable.
halfgennorm The upper half of a generalized normal continuous random variable.
hypsecant A hyperbolic secant continuous random variable.
invgamma An inverted gamma continuous random variable.
invgauss An inverse Gaussian continuous random variable.
invweibull An inverted Weibull continuous random variable.
johnsonsb A Johnson SB continuous random variable.
johnsonsu A Johnson SU continuous random variable.
ksone General Kolmogorov-Smirnov one-sided test.
kstwobign Kolmogorov-Smirnov two-sided test for large N.
laplace A Laplace continuous random variable.
logistic A logistic (or Sech-squared) continuous random variable.
loggamma A log gamma continuous random variable.
loglaplace A log-Laplace continuous random variable.
lognorm A lognormal continuous random variable.
lomax A Lomax (Pareto of the second kind) continuous random variable.
maxwell A Maxwell continuous random variable.
mielke A Mielke’s Beta-Kappa continuous random variable.
nakagami A Nakagami continuous random variable.
ncx2 A non-central chi-squared continuous random variable.
ncf A non-central F distribution continuous random variable.
nct A non-central Student’s T continuous random variable.
norm A normal continuous random variable.
pareto A Pareto continuous random variable.
pearson3 A pearson type III continuous random variable.
powerlaw A power-function continuous random variable.
powerlognorm A power log-normal continuous random variable.
powernorm A power normal continuous random variable.
rdist An R-distributed continuous random variable.
reciprocal A reciprocal continuous random variable.
rayleigh A Rayleigh continuous random variable.
rice A Rice continuous random variable.
recipinvgauss A reciprocal inverse Gaussian continuous random variable.
semicircular A semicircular continuous random variable.
t A Student’s T continuous random variable.
triang A triangular continuous random variable.
truncexpon A truncated exponential continuous random variable.
truncnorm A truncated normal continuous random variable.
tukeylambda A Tukey-Lamdba continuous random variable.
uniform A uniform continuous random variable.
vonmises A Von Mises continuous random variable.
wald A Wald continuous random variable.
weibull_min A Frechet right (or Weibull minimum) continuous random variable.
weibull_max A Frechet left (or Weibull maximum) continuous random variable.
wrapcauchy A wrapped Cauchy continuous random variable.

scipy.stats.alpha = <scipy.stats._continuous_distns.alpha_gen object at 0x7fa40ebcfad0>
An alpha continuous random variable.

1218 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

As an instance of the rv_continuous class, alpha object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for alpha is:

alpha.pdf(x, a) = 1/(x**2*Phi(a)*sqrt(2*pi)) * exp(-1/2 * (a-1/x)**2),

where Phi(alpha) is the normal CDF, x > 0, and a > 0.

alpha takes a as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, alpha.pdf(x, a, loc, scale) is identically equivalent
to alpha.pdf(y, a) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import alpha
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a = 3.57
>>> mean, var, skew, kurt = alpha.stats(a, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(alpha.ppf(0.01, a),
... alpha.ppf(0.99, a), 100)
>>> ax.plot(x, alpha.pdf(x, a),
... 'r-', lw=5, alpha=0.6, label='alpha pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = alpha(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = alpha.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], alpha.cdf(vals, a))
True

Generate random numbers:

>>> r = alpha.rvs(a, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1219

SciPy Reference Guide, Release 0.16.0

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

6
alpha pdf
frozen pdf

Methods

rvs(a, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, a, loc=0, scale=1) Probability density function.
logpdf(x, a, loc=0, scale=1) Log of the probability density function.
cdf(x, a, loc=0, scale=1) Cumulative density function.
logcdf(x, a, loc=0, scale=1) Log of the cumulative density function.
sf(x, a, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, a, loc=0, scale=1) Log of the survival function.
ppf(q, a, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, a, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, loc=0, scale=1) Non-central moment of order n
stats(a, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(a, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, loc=0, scale=1) Parameter estimates for generic data.
expect(func, a, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(a, loc=0, scale=1) Median of the distribution.
mean(a, loc=0, scale=1) Mean of the distribution.
var(a, loc=0, scale=1) Variance of the distribution.
std(a, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.anglit = <scipy.stats._continuous_distns.anglit_gen object at 0x7fa40ebcfd90>
An anglit continuous random variable.

As an instance of the rv_continuous class, anglit object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

1220 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for anglit is:

anglit.pdf(x) = sin(2*x + pi/2) = cos(2*x),

for -pi/4 <= x <= pi/4.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, anglit.pdf(x, loc, scale) is identically equivalent to
anglit.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import anglit
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = anglit.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(anglit.ppf(0.01),
... anglit.ppf(0.99), 100)
>>> ax.plot(x, anglit.pdf(x),
... 'r-', lw=5, alpha=0.6, label='anglit pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = anglit()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = anglit.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], anglit.cdf(vals))
True

Generate random numbers:

>>> r = anglit.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1221

SciPy Reference Guide, Release 0.16.0

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

1.2
anglit pdf
frozen pdf

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.arcsine = <scipy.stats._continuous_distns.arcsine_gen object at 0x7fa40ebcff90>
An arcsine continuous random variable.

As an instance of the rv_continuous class, arcsine object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

1222 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for arcsine is:

arcsine.pdf(x) = 1/(pi*sqrt(x*(1-x)))

for 0 < x < 1.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, arcsine.pdf(x, loc, scale) is identically equivalent
to arcsine.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import arcsine
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = arcsine.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(arcsine.ppf(0.01),
... arcsine.ppf(0.99), 100)
>>> ax.plot(x, arcsine.pdf(x),
... 'r-', lw=5, alpha=0.6, label='arcsine pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = arcsine()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = arcsine.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], arcsine.cdf(vals))
True

Generate random numbers:

>>> r = arcsine.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1223

SciPy Reference Guide, Release 0.16.0

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25
arcsine pdf
frozen pdf

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.beta = <scipy.stats._continuous_distns.beta_gen object at 0x7fa40ebe51d0>
A beta continuous random variable.

As an instance of the rv_continuous class, beta object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

1224 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for beta is:

gamma(a+b) * x**(a-1) * (1-x)**(b-1)
beta.pdf(x, a, b) = ------------------------------------

gamma(a)*gamma(b)

for 0 < x < 1, a > 0, b > 0, where gamma(z) is the gamma function (scipy.special.gamma).

beta takes a and b as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, beta.pdf(x, a, b, loc, scale) is identically equivalent
to beta.pdf(y, a, b) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import beta
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a, b = 2.31, 0.627
>>> mean, var, skew, kurt = beta.stats(a, b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(beta.ppf(0.01, a, b),
... beta.ppf(0.99, a, b), 100)
>>> ax.plot(x, beta.pdf(x, a, b),
... 'r-', lw=5, alpha=0.6, label='beta pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = beta(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = beta.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], beta.cdf(vals, a, b))
True

Generate random numbers:

>>> r = beta.rvs(a, b, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1225

SciPy Reference Guide, Release 0.16.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

20

25
beta pdf
frozen pdf

Methods

rvs(a, b, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, a, b, loc=0, scale=1) Probability density function.
logpdf(x, a, b, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, loc=0, scale=1) Cumulative density function.
logcdf(x, a, b, loc=0, scale=1) Log of the cumulative density function.
sf(x, a, b, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, a, b, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, a, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, b, loc=0, scale=1) Non-central moment of order n
stats(a, b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(a, b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, a, b, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(a, b, loc=0, scale=1) Median of the distribution.
mean(a, b, loc=0, scale=1) Mean of the distribution.
var(a, b, loc=0, scale=1) Variance of the distribution.
std(a, b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.betaprime = <scipy.stats._continuous_distns.betaprime_gen object at 0x7fa40ebe5590>
A beta prime continuous random variable.

As an instance of the rv_continuous class, betaprime object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

1226 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for betaprime is:

betaprime.pdf(x, a, b) = x**(a-1) * (1+x)**(-a-b) / beta(a, b)

for x > 0, a > 0, b > 0, where beta(a, b) is the beta function (see scipy.special.beta).

betaprime takes a and b as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, betaprime.pdf(x, a, b, loc, scale) is identically
equivalent to betaprime.pdf(y, a, b) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import betaprime
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a, b = 5, 6
>>> mean, var, skew, kurt = betaprime.stats(a, b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(betaprime.ppf(0.01, a, b),
... betaprime.ppf(0.99, a, b), 100)
>>> ax.plot(x, betaprime.pdf(x, a, b),
... 'r-', lw=5, alpha=0.6, label='betaprime pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = betaprime(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = betaprime.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], betaprime.cdf(vals, a, b))
True

Generate random numbers:

>>> r = betaprime.rvs(a, b, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1227

SciPy Reference Guide, Release 0.16.0

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0
betaprime pdf
frozen pdf

Methods

rvs(a, b, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, a, b, loc=0, scale=1) Probability density function.
logpdf(x, a, b, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, loc=0, scale=1) Cumulative density function.
logcdf(x, a, b, loc=0, scale=1) Log of the cumulative density function.
sf(x, a, b, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, a, b, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, a, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, b, loc=0, scale=1) Non-central moment of order n
stats(a, b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(a, b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, a, b, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(a, b, loc=0, scale=1) Median of the distribution.
mean(a, b, loc=0, scale=1) Mean of the distribution.
var(a, b, loc=0, scale=1) Variance of the distribution.
std(a, b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.bradford = <scipy.stats._continuous_distns.bradford_gen object at 0x7fa40ebe58d0>
A Bradford continuous random variable.

As an instance of the rv_continuous class, bradford object inherits from it a collection of generic meth-
ods (see below for the full list), and completes them with details specific for this particular distribution.

1228 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for bradford is:

bradford.pdf(x, c) = c / (k * (1+c*x)),

for 0 < x < 1, c > 0 and k = log(1+c).

bradford takes c as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, bradford.pdf(x, c, loc, scale) is identically equivalent
to bradford.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import bradford
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 0.299
>>> mean, var, skew, kurt = bradford.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(bradford.ppf(0.01, c),
... bradford.ppf(0.99, c), 100)
>>> ax.plot(x, bradford.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='bradford pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = bradford(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = bradford.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], bradford.cdf(vals, c))
True

Generate random numbers:

>>> r = bradford.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1229

SciPy Reference Guide, Release 0.16.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
bradford pdf
frozen pdf

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.burr = <scipy.stats._continuous_distns.burr_gen object at 0x7fa40ebe5bd0>
A Burr continuous random variable.

As an instance of the rv_continuous class, burr object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

See also:

fisk a special case of burr with d = 1

1230 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for burr is:

burr.pdf(x, c, d) = c * d * x**(-c-1) * (1+x**(-c))**(-d-1)

for x > 0.

burr takes c and d as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, burr.pdf(x, c, d, loc, scale) is identically equivalent
to burr.pdf(y, c, d) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import burr
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c, d = 10.5, 4.3
>>> mean, var, skew, kurt = burr.stats(c, d, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(burr.ppf(0.01, c, d),
... burr.ppf(0.99, c, d), 100)
>>> ax.plot(x, burr.pdf(x, c, d),
... 'r-', lw=5, alpha=0.6, label='burr pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = burr(c, d)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = burr.ppf([0.001, 0.5, 0.999], c, d)
>>> np.allclose([0.001, 0.5, 0.999], burr.cdf(vals, c, d))
True

Generate random numbers:

>>> r = burr.rvs(c, d, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1231

SciPy Reference Guide, Release 0.16.0

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
burr pdf
frozen pdf

Methods

rvs(c, d, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, d, loc=0, scale=1) Probability density function.
logpdf(x, c, d, loc=0, scale=1) Log of the probability density function.
cdf(x, c, d, loc=0, scale=1) Cumulative density function.
logcdf(x, c, d, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, d, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, d, loc=0, scale=1) Log of the survival function.
ppf(q, c, d, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, d, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, d, loc=0, scale=1) Non-central moment of order n
stats(c, d, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, d, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, d, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, d, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, d, loc=0, scale=1) Median of the distribution.
mean(c, d, loc=0, scale=1) Mean of the distribution.
var(c, d, loc=0, scale=1) Variance of the distribution.
std(c, d, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, d, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.cauchy = <scipy.stats._continuous_distns.cauchy_gen object at 0x7fa40ebee210>
A Cauchy continuous random variable.

As an instance of the rv_continuous class, cauchy object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

1232 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for cauchy is:

cauchy.pdf(x) = 1 / (pi * (1 + x**2))

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, cauchy.pdf(x, loc, scale) is identically equivalent to
cauchy.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import cauchy
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = cauchy.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(cauchy.ppf(0.01),
... cauchy.ppf(0.99), 100)
>>> ax.plot(x, cauchy.pdf(x),
... 'r-', lw=5, alpha=0.6, label='cauchy pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = cauchy()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = cauchy.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], cauchy.cdf(vals))
True

Generate random numbers:

>>> r = cauchy.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1233

SciPy Reference Guide, Release 0.16.0

4000 3500 3000 2500 2000 1500 1000 500 0 500
0.00

0.05

0.10

0.15

0.20

0.25

0.30
cauchy pdf
frozen pdf

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.chi = <scipy.stats._continuous_distns.chi_gen object at 0x7fa40ebee450>
A chi continuous random variable.

As an instance of the rv_continuous class, chi object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

1234 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for chi is:

chi.pdf(x, df) = x**(df-1) * exp(-x**2/2) / (2**(df/2-1) * gamma(df/2))

for x > 0.

Special cases of chi are:
•chi(1, loc, scale) is equivalent to halfnorm
•chi(2, 0, scale) is equivalent to rayleigh
•chi(3, 0, scale) is equivalent to maxwell

chi takes df as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, chi.pdf(x, df, loc, scale) is identically equivalent
to chi.pdf(y, df) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import chi
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> df = 78
>>> mean, var, skew, kurt = chi.stats(df, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(chi.ppf(0.01, df),
... chi.ppf(0.99, df), 100)
>>> ax.plot(x, chi.pdf(x, df),
... 'r-', lw=5, alpha=0.6, label='chi pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = chi(df)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = chi.ppf([0.001, 0.5, 0.999], df)
>>> np.allclose([0.001, 0.5, 0.999], chi.cdf(vals, df))
True

Generate random numbers:

>>> r = chi.rvs(df, size=1000)

And compare the histogram:

5.34. Statistical functions (scipy.stats) 1235

SciPy Reference Guide, Release 0.16.0

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

6 7 8 9 10 11 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6
chi pdf
frozen pdf

Methods

rvs(df, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, df, loc=0, scale=1) Probability density function.
logpdf(x, df, loc=0, scale=1) Log of the probability density function.
cdf(x, df, loc=0, scale=1) Cumulative density function.
logcdf(x, df, loc=0, scale=1) Log of the cumulative density function.
sf(x, df, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, df, loc=0, scale=1) Log of the survival function.
ppf(q, df, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, df, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, df, loc=0, scale=1) Non-central moment of order n
stats(df, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(df, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, df, loc=0, scale=1) Parameter estimates for generic data.
expect(func, df, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(df, loc=0, scale=1) Median of the distribution.
mean(df, loc=0, scale=1) Mean of the distribution.
var(df, loc=0, scale=1) Variance of the distribution.
std(df, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, df, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.chi2 = <scipy.stats._continuous_distns.chi2_gen object at 0x7fa40ebee710>
A chi-squared continuous random variable.

As an instance of the rv_continuous class, chi2 object inherits from it a collection of generic methods

1236 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for chi2 is:

chi2.pdf(x, df) = 1 / (2*gamma(df/2)) * (x/2)**(df/2-1) * exp(-x/2)

chi2 takes df as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, chi2.pdf(x, df, loc, scale) is identically equivalent
to chi2.pdf(y, df) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import chi2
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> df = 55
>>> mean, var, skew, kurt = chi2.stats(df, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(chi2.ppf(0.01, df),
... chi2.ppf(0.99, df), 100)
>>> ax.plot(x, chi2.pdf(x, df),
... 'r-', lw=5, alpha=0.6, label='chi2 pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = chi2(df)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = chi2.ppf([0.001, 0.5, 0.999], df)
>>> np.allclose([0.001, 0.5, 0.999], chi2.cdf(vals, df))
True

Generate random numbers:

>>> r = chi2.rvs(df, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1237

SciPy Reference Guide, Release 0.16.0

20 30 40 50 60 70 80 90 100 110
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

chi2 pdf
frozen pdf

Methods

rvs(df, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, df, loc=0, scale=1) Probability density function.
logpdf(x, df, loc=0, scale=1) Log of the probability density function.
cdf(x, df, loc=0, scale=1) Cumulative density function.
logcdf(x, df, loc=0, scale=1) Log of the cumulative density function.
sf(x, df, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, df, loc=0, scale=1) Log of the survival function.
ppf(q, df, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, df, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, df, loc=0, scale=1) Non-central moment of order n
stats(df, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(df, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, df, loc=0, scale=1) Parameter estimates for generic data.
expect(func, df, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(df, loc=0, scale=1) Median of the distribution.
mean(df, loc=0, scale=1) Mean of the distribution.
var(df, loc=0, scale=1) Variance of the distribution.
std(df, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, df, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.cosine = <scipy.stats._continuous_distns.cosine_gen object at 0x7fa40ebee9d0>
A cosine continuous random variable.

As an instance of the rv_continuous class, cosine object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

1238 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The cosine distribution is an approximation to the normal distribution. The probability density function for
cosine is:

cosine.pdf(x) = 1/(2*pi) * (1+cos(x))

for -pi <= x <= pi.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, cosine.pdf(x, loc, scale) is identically equivalent to
cosine.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import cosine
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = cosine.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(cosine.ppf(0.01),
... cosine.ppf(0.99), 100)
>>> ax.plot(x, cosine.pdf(x),
... 'r-', lw=5, alpha=0.6, label='cosine pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = cosine()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = cosine.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], cosine.cdf(vals))
True

Generate random numbers:

>>> r = cosine.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1239

SciPy Reference Guide, Release 0.16.0

3 2 1 0 1 2 3
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

cosine pdf
frozen pdf

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.dgamma = <scipy.stats._continuous_distns.dgamma_gen object at 0x7fa40ebeebd0>
A double gamma continuous random variable.

As an instance of the rv_continuous class, dgamma object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

1240 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for dgamma is:

dgamma.pdf(x, a) = 1 / (2*gamma(a)) * abs(x)**(a-1) * exp(-abs(x))

for a > 0.

dgamma takes a as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, dgamma.pdf(x, a, loc, scale) is identically equivalent to
dgamma.pdf(y, a) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import dgamma
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a = 1.1
>>> mean, var, skew, kurt = dgamma.stats(a, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(dgamma.ppf(0.01, a),
... dgamma.ppf(0.99, a), 100)
>>> ax.plot(x, dgamma.pdf(x, a),
... 'r-', lw=5, alpha=0.6, label='dgamma pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = dgamma(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = dgamma.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], dgamma.cdf(vals, a))
True

Generate random numbers:

>>> r = dgamma.rvs(a, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1241

SciPy Reference Guide, Release 0.16.0

8 6 4 2 0 2 4 6 8 10
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

dgamma pdf
frozen pdf

Methods

rvs(a, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, a, loc=0, scale=1) Probability density function.
logpdf(x, a, loc=0, scale=1) Log of the probability density function.
cdf(x, a, loc=0, scale=1) Cumulative density function.
logcdf(x, a, loc=0, scale=1) Log of the cumulative density function.
sf(x, a, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, a, loc=0, scale=1) Log of the survival function.
ppf(q, a, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, a, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, loc=0, scale=1) Non-central moment of order n
stats(a, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(a, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, loc=0, scale=1) Parameter estimates for generic data.
expect(func, a, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(a, loc=0, scale=1) Median of the distribution.
mean(a, loc=0, scale=1) Mean of the distribution.
var(a, loc=0, scale=1) Variance of the distribution.
std(a, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.dweibull = <scipy.stats._continuous_distns.dweibull_gen object at 0x7fa40ebeee90>
A double Weibull continuous random variable.

As an instance of the rv_continuous class, dweibull object inherits from it a collection of generic meth-
ods (see below for the full list), and completes them with details specific for this particular distribution.

1242 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for dweibull is:

dweibull.pdf(x, c) = c / 2 * abs(x)**(c-1) * exp(-abs(x)**c)

dweibull takes d as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, dweibull.pdf(x, c, loc, scale) is identically equivalent
to dweibull.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import dweibull
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 2.07
>>> mean, var, skew, kurt = dweibull.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(dweibull.ppf(0.01, c),
... dweibull.ppf(0.99, c), 100)
>>> ax.plot(x, dweibull.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='dweibull pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = dweibull(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = dweibull.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], dweibull.cdf(vals, c))
True

Generate random numbers:

>>> r = dweibull.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1243

SciPy Reference Guide, Release 0.16.0

3 2 1 0 1 2 3
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

dweibull pdf
frozen pdf

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.erlang = <scipy.stats._continuous_distns.erlang_gen object at 0x7fa40e990190>
An Erlang continuous random variable.

As an instance of the rv_continuous class, erlang object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

See also:

gamma

1244 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The Erlang distribution is a special case of the Gamma distribution, with the shape parameter a an integer. Note
that this restriction is not enforced by erlang. It will, however, generate a warning the first time a non-integer
value is used for the shape parameter.

Refer to gamma for examples.

Methods

rvs(a, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, a, loc=0, scale=1) Probability density function.
logpdf(x, a, loc=0, scale=1) Log of the probability density function.
cdf(x, a, loc=0, scale=1) Cumulative density function.
logcdf(x, a, loc=0, scale=1) Log of the cumulative density function.
sf(x, a, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, a, loc=0, scale=1) Log of the survival function.
ppf(q, a, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, a, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, loc=0, scale=1) Non-central moment of order n
stats(a, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(a, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, loc=0, scale=1) Parameter estimates for generic data.
expect(func, a, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(a, loc=0, scale=1) Median of the distribution.
mean(a, loc=0, scale=1) Mean of the distribution.
var(a, loc=0, scale=1) Variance of the distribution.
std(a, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.expon = <scipy.stats._continuous_distns.expon_gen object at 0x7fa40ebfe190>
An exponential continuous random variable.

As an instance of the rv_continuous class, expon object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for expon is:

expon.pdf(x) = exp(-x)

for x >= 0.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, expon.pdf(x, loc, scale) is identically equivalent to
expon.pdf(y) / scale with y = (x - loc) / scale.

A common parameterization for expon is in terms of the rate parameter lambda, such that pdf = lambda

* exp(-lambda * x). This parameterization corresponds to using scale = 1 / lambda.

5.34. Statistical functions (scipy.stats) 1245

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.stats import expon
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = expon.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(expon.ppf(0.01),
... expon.ppf(0.99), 100)
>>> ax.plot(x, expon.pdf(x),
... 'r-', lw=5, alpha=0.6, label='expon pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = expon()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = expon.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], expon.cdf(vals))
True

Generate random numbers:

>>> r = expon.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

1246 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0
expon pdf
frozen pdf

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.exponnorm = <scipy.stats._continuous_distns.exponnorm_gen object at 0x7fa40ebfe390>
An exponentially modified Normal continuous random variable.

As an instance of the rv_continuous class, exponnorm object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

5.34. Statistical functions (scipy.stats) 1247

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for exponnorm is:

exponnorm.pdf(x, K) = 1/(2*K) exp(1/(2 * K**2)) exp(-x / K) * erfc(-(x - 1/K) / sqrt(2))

where the shape parameter K > 0.

It can be thought of as the sum of a normally distributed random value with mean loc and sigma scale and
an exponentially distributed random number with a pdf proportional to exp(-lambda * x) where lambda
= (K * scale)**(-1).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution
use the loc and scale parameters. Specifically, exponnorm.pdf(x, K, loc, scale) is identically
equivalent to exponnorm.pdf(y, K) / scale with y = (x - loc) / scale.

An alternative parameterization of this distribution (for example, in Wikipedia) involves three parameters, 𝜇, 𝜆
and 𝜎. In the present parameterization this corresponds to having loc and scale equal to 𝜇 and 𝜎, respectively,
and shape parameter 𝐾 = 1/𝜎𝜆.

New in version 0.16.0.

Examples

>>> from scipy.stats import exponnorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> K = 1.5
>>> mean, var, skew, kurt = exponnorm.stats(K, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(exponnorm.ppf(0.01, K),
... exponnorm.ppf(0.99, K), 100)
>>> ax.plot(x, exponnorm.pdf(x, K),
... 'r-', lw=5, alpha=0.6, label='exponnorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = exponnorm(K)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = exponnorm.ppf([0.001, 0.5, 0.999], K)
>>> np.allclose([0.001, 0.5, 0.999], exponnorm.cdf(vals, K))
True

Generate random numbers:

>>> r = exponnorm.rvs(K, size=1000)

1248 Chapter 5. Reference

http://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution

SciPy Reference Guide, Release 0.16.0

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

4 2 0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30
exponnorm pdf
frozen pdf

Methods

rvs(K, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, K, loc=0, scale=1) Probability density function.
logpdf(x, K, loc=0, scale=1) Log of the probability density function.
cdf(x, K, loc=0, scale=1) Cumulative density function.
logcdf(x, K, loc=0, scale=1) Log of the cumulative density function.
sf(x, K, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, K, loc=0, scale=1) Log of the survival function.
ppf(q, K, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, K, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, K, loc=0, scale=1) Non-central moment of order n
stats(K, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(K, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, K, loc=0, scale=1) Parameter estimates for generic data.
expect(func, K, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(K, loc=0, scale=1) Median of the distribution.
mean(K, loc=0, scale=1) Mean of the distribution.
var(K, loc=0, scale=1) Variance of the distribution.
std(K, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, K, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.exponweib = <scipy.stats._continuous_distns.exponweib_gen object at 0x7fa40ebfe650>

5.34. Statistical functions (scipy.stats) 1249

SciPy Reference Guide, Release 0.16.0

An exponentiated Weibull continuous random variable.

As an instance of the rv_continuous class, exponweib object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for exponweib is:

exponweib.pdf(x, a, c) =
a * c * (1-exp(-x**c))**(a-1) * exp(-x**c)*x**(c-1)

for x > 0, a > 0, c > 0.

exponweib takes a and c as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, exponweib.pdf(x, a, c, loc, scale) is identically
equivalent to exponweib.pdf(y, a, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import exponweib
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a, c = 2.89, 1.95
>>> mean, var, skew, kurt = exponweib.stats(a, c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(exponweib.ppf(0.01, a, c),
... exponweib.ppf(0.99, a, c), 100)
>>> ax.plot(x, exponweib.pdf(x, a, c),
... 'r-', lw=5, alpha=0.6, label='exponweib pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = exponweib(a, c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = exponweib.ppf([0.001, 0.5, 0.999], a, c)
>>> np.allclose([0.001, 0.5, 0.999], exponweib.cdf(vals, a, c))
True

Generate random numbers:

>>> r = exponweib.rvs(a, c, size=1000)

And compare the histogram:

1250 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2
exponweib pdf
frozen pdf

Methods

rvs(a, c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, a, c, loc=0, scale=1) Probability density function.
logpdf(x, a, c, loc=0, scale=1) Log of the probability density function.
cdf(x, a, c, loc=0, scale=1) Cumulative density function.
logcdf(x, a, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, a, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, a, c, loc=0, scale=1) Log of the survival function.
ppf(q, a, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, a, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, c, loc=0, scale=1) Non-central moment of order n
stats(a, c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(a, c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, a, c, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(a, c, loc=0, scale=1) Median of the distribution.
mean(a, c, loc=0, scale=1) Mean of the distribution.
var(a, c, loc=0, scale=1) Variance of the distribution.
std(a, c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.exponpow = <scipy.stats._continuous_distns.exponpow_gen object at 0x7fa40ebfe990>
An exponential power continuous random variable.

5.34. Statistical functions (scipy.stats) 1251

SciPy Reference Guide, Release 0.16.0

As an instance of the rv_continuous class, exponpow object inherits from it a collection of generic meth-
ods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for exponpow is:

exponpow.pdf(x, b) = b * x**(b-1) * exp(1 + x**b - exp(x**b))

for x >= 0, b > 0. Note that this is a different distribution from the exponential power distribution that is
also known under the names “generalized normal” or “generalized Gaussian”.

exponpow takes b as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, exponpow.pdf(x, b, loc, scale) is identically equivalent
to exponpow.pdf(y, b) / scale with y = (x - loc) / scale.

References

http://www.math.wm.edu/~leemis/chart/UDR/PDFs/Exponentialpower.pdf

Examples

>>> from scipy.stats import exponpow
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> b = 2.7
>>> mean, var, skew, kurt = exponpow.stats(b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(exponpow.ppf(0.01, b),
... exponpow.ppf(0.99, b), 100)
>>> ax.plot(x, exponpow.pdf(x, b),
... 'r-', lw=5, alpha=0.6, label='exponpow pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = exponpow(b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = exponpow.ppf([0.001, 0.5, 0.999], b)
>>> np.allclose([0.001, 0.5, 0.999], exponpow.cdf(vals, b))
True

Generate random numbers:

>>> r = exponpow.rvs(b, size=1000)

1252 Chapter 5. Reference

http://www.math.wm.edu/~leemis/chart/UDR/PDFs/Exponentialpower.pdf

SciPy Reference Guide, Release 0.16.0

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

exponpow pdf
frozen pdf

Methods

rvs(b, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, b, loc=0, scale=1) Probability density function.
logpdf(x, b, loc=0, scale=1) Log of the probability density function.
cdf(x, b, loc=0, scale=1) Cumulative density function.
logcdf(x, b, loc=0, scale=1) Log of the cumulative density function.
sf(x, b, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, b, loc=0, scale=1) Log of the survival function.
ppf(q, b, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, b, loc=0, scale=1) Non-central moment of order n
stats(b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, b, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(b, loc=0, scale=1) Median of the distribution.
mean(b, loc=0, scale=1) Mean of the distribution.
var(b, loc=0, scale=1) Variance of the distribution.
std(b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.f = <scipy.stats._continuous_distns.f_gen object at 0x7fa40e97e210>

5.34. Statistical functions (scipy.stats) 1253

SciPy Reference Guide, Release 0.16.0

An F continuous random variable.

As an instance of the rv_continuous class, f object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for f is:

df2**(df2/2) * df1**(df1/2) * x**(df1/2-1)
F.pdf(x, df1, df2) = --

(df2+df1*x)**((df1+df2)/2) * B(df1/2, df2/2)

for x > 0.

f takes dfn and dfd as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, f.pdf(x, dfn, dfd, loc, scale) is identically equivalent
to f.pdf(y, dfn, dfd) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import f
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> dfn, dfd = 29, 18
>>> mean, var, skew, kurt = f.stats(dfn, dfd, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(f.ppf(0.01, dfn, dfd),
... f.ppf(0.99, dfn, dfd), 100)
>>> ax.plot(x, f.pdf(x, dfn, dfd),
... 'r-', lw=5, alpha=0.6, label='f pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = f(dfn, dfd)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = f.ppf([0.001, 0.5, 0.999], dfn, dfd)
>>> np.allclose([0.001, 0.5, 0.999], f.cdf(vals, dfn, dfd))
True

Generate random numbers:

>>> r = f.rvs(dfn, dfd, size=1000)

And compare the histogram:

1254 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

1.2
f pdf
frozen pdf

Methods

rvs(dfn, dfd, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, dfn, dfd, loc=0, scale=1) Probability density function.
logpdf(x, dfn, dfd, loc=0, scale=1) Log of the probability density function.
cdf(x, dfn, dfd, loc=0, scale=1) Cumulative density function.
logcdf(x, dfn, dfd, loc=0, scale=1) Log of the cumulative density function.
sf(x, dfn, dfd, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, dfn, dfd, loc=0, scale=1) Log of the survival function.
ppf(q, dfn, dfd, loc=0, scale=1) Percent point function (inverse of cdf

— percentiles).
isf(q, dfn, dfd, loc=0, scale=1) Inverse survival function (inverse of

sf).
moment(n, dfn, dfd, loc=0, scale=1) Non-central moment of order n
stats(dfn, dfd, loc=0, scale=1,
moments=’mv’)

Mean(‘m’), variance(‘v’), skew(‘s’),
and/or kurtosis(‘k’).

entropy(dfn, dfd, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, dfn, dfd, loc=0, scale=1) Parameter estimates for generic data.
expect(func, dfn, dfd, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the
distribution.

median(dfn, dfd, loc=0, scale=1) Median of the distribution.
mean(dfn, dfd, loc=0, scale=1) Mean of the distribution.
var(dfn, dfd, loc=0, scale=1) Variance of the distribution.
std(dfn, dfd, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, dfn, dfd, loc=0, scale=1) Endpoints of the range that contains

alpha percent of the distribution

scipy.stats.fatiguelife = <scipy.stats._continuous_distns.fatiguelife_gen object at 0x7fa40ebfec50>

5.34. Statistical functions (scipy.stats) 1255

SciPy Reference Guide, Release 0.16.0

A fatigue-life (Birnbaum-Saunders) continuous random variable.

As an instance of the rv_continuous class, fatiguelife object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for fatiguelife is:

fatiguelife.pdf(x, c) =
(x+1) / (2*c*sqrt(2*pi*x**3)) * exp(-(x-1)**2/(2*x*c**2))

for x > 0.

fatiguelife takes c as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, fatiguelife.pdf(x, c, loc, scale) is identically
equivalent to fatiguelife.pdf(y, c) / scale with y = (x - loc) / scale.

References

[R316]

Examples

>>> from scipy.stats import fatiguelife
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 29
>>> mean, var, skew, kurt = fatiguelife.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(fatiguelife.ppf(0.01, c),
... fatiguelife.ppf(0.99, c), 100)
>>> ax.plot(x, fatiguelife.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='fatiguelife pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = fatiguelife(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = fatiguelife.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], fatiguelife.cdf(vals, c))
True

Generate random numbers:

1256 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> r = fatiguelife.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0 2000 4000 6000 8000 10000 12000
0

20
40
60
80

100
120
140
160

fatiguelife pdf
frozen pdf

5.34. Statistical functions (scipy.stats) 1257

SciPy Reference Guide, Release 0.16.0

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.fisk = <scipy.stats._continuous_distns.fisk_gen object at 0x7fa40ebe5f10>
A Fisk continuous random variable.

The Fisk distribution is also known as the log-logistic distribution, and equals the Burr distribution with d ==
1.

fisk takes c as a shape parameter.

As an instance of the rv_continuous class, fisk object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

See also:

burr

Notes

The probability density function for fisk is:

fisk.pdf(x, c) = c * x**(-c-1) * (1 + x**(-c))**(-2)

for x > 0.

fisk takes c as a shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, fisk.pdf(x, c, loc, scale) is identically equivalent
to fisk.pdf(y, c) / scale with y = (x - loc) / scale.

1258 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.stats import fisk
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 3.09
>>> mean, var, skew, kurt = fisk.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(fisk.ppf(0.01, c),
... fisk.ppf(0.99, c), 100)
>>> ax.plot(x, fisk.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='fisk pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = fisk(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = fisk.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], fisk.cdf(vals, c))
True

Generate random numbers:

>>> r = fisk.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1259

SciPy Reference Guide, Release 0.16.0

0 2 4 6 8 10
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

fisk pdf
frozen pdf

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.foldcauchy = <scipy.stats._continuous_distns.foldcauchy_gen object at 0x7fa40ebfef10>
A folded Cauchy continuous random variable.

As an instance of the rv_continuous class, foldcauchy object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

1260 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for foldcauchy is:

foldcauchy.pdf(x, c) = 1/(pi*(1+(x-c)**2)) + 1/(pi*(1+(x+c)**2))

for x >= 0.

foldcauchy takes c as a shape parameter.

Examples

>>> from scipy.stats import foldcauchy
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 4.72
>>> mean, var, skew, kurt = foldcauchy.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(foldcauchy.ppf(0.01, c),
... foldcauchy.ppf(0.99, c), 100)
>>> ax.plot(x, foldcauchy.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='foldcauchy pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = foldcauchy(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = foldcauchy.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], foldcauchy.cdf(vals, c))
True

Generate random numbers:

>>> r = foldcauchy.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1261

SciPy Reference Guide, Release 0.16.0

0 500 1000 1500 2000 2500 3000 3500 4000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
foldcauchy pdf
frozen pdf

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.foldnorm = <scipy.stats._continuous_distns.foldnorm_gen object at 0x7fa40e97e550>
A folded normal continuous random variable.

As an instance of the rv_continuous class, foldnorm object inherits from it a collection of generic meth-
ods (see below for the full list), and completes them with details specific for this particular distribution.

1262 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for foldnorm is:

foldnormal.pdf(x, c) = sqrt(2/pi) * cosh(c*x) * exp(-(x**2+c**2)/2)

for c >= 0.

foldnorm takes c as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, foldnorm.pdf(x, c, loc, scale) is identically equivalent
to foldnorm.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import foldnorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 1.95
>>> mean, var, skew, kurt = foldnorm.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(foldnorm.ppf(0.01, c),
... foldnorm.ppf(0.99, c), 100)
>>> ax.plot(x, foldnorm.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='foldnorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = foldnorm(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = foldnorm.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], foldnorm.cdf(vals, c))
True

Generate random numbers:

>>> r = foldnorm.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1263

SciPy Reference Guide, Release 0.16.0

0 1 2 3 4 5 6
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

foldnorm pdf
frozen pdf

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.frechet_r = <scipy.stats._continuous_distns.frechet_r_gen object at 0x7fa40e97e810>
A Frechet right (or Weibull minimum) continuous random variable.

As an instance of the rv_continuous class, frechet_r object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

weibull_min

1264 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The same distribution as frechet_r.

frechet_l, weibull_max

Notes

The probability density function for frechet_r is:

frechet_r.pdf(x, c) = c * x**(c-1) * exp(-x**c)

for x > 0, c > 0.

frechet_r takes c as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution
use the loc and scale parameters. Specifically, frechet_r.pdf(x, c, loc, scale) is identically
equivalent to frechet_r.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import frechet_r
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 1.89
>>> mean, var, skew, kurt = frechet_r.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(frechet_r.ppf(0.01, c),
... frechet_r.ppf(0.99, c), 100)
>>> ax.plot(x, frechet_r.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='frechet_r pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = frechet_r(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = frechet_r.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], frechet_r.cdf(vals, c))
True

Generate random numbers:

>>> r = frechet_r.rvs(c, size=1000)

And compare the histogram:

5.34. Statistical functions (scipy.stats) 1265

SciPy Reference Guide, Release 0.16.0

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

frechet_r pdf
frozen pdf

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.frechet_l = <scipy.stats._continuous_distns.frechet_l_gen object at 0x7fa40e97ed50>
A Frechet left (or Weibull maximum) continuous random variable.

As an instance of the rv_continuous class, frechet_l object inherits from it a collection of generic

1266 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

weibull_max
The same distribution as frechet_l.

frechet_r, weibull_min

Notes

The probability density function for frechet_l is:

frechet_l.pdf(x, c) = c * (-x)**(c-1) * exp(-(-x)**c)

for x < 0, c > 0.

frechet_l takes c as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution
use the loc and scale parameters. Specifically, frechet_l.pdf(x, c, loc, scale) is identically
equivalent to frechet_l.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import frechet_l
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 3.63
>>> mean, var, skew, kurt = frechet_l.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(frechet_l.ppf(0.01, c),
... frechet_l.ppf(0.99, c), 100)
>>> ax.plot(x, frechet_l.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='frechet_l pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = frechet_l(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = frechet_l.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], frechet_l.cdf(vals, c))
True

Generate random numbers:

>>> r = frechet_l.rvs(c, size=1000)

5.34. Statistical functions (scipy.stats) 1267

SciPy Reference Guide, Release 0.16.0

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

2.0 1.5 1.0 0.5 0.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

frechet_l pdf
frozen pdf

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.genlogistic = <scipy.stats._continuous_distns.genlogistic_gen object at 0x7fa40e9872d0>

1268 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

A generalized logistic continuous random variable.

As an instance of the rv_continuous class, genlogistic object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for genlogistic is:

genlogistic.pdf(x, c) = c * exp(-x) / (1 + exp(-x))**(c+1)

for x > 0, c > 0.

genlogistic takes c as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, genlogistic.pdf(x, c, loc, scale) is identically
equivalent to genlogistic.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import genlogistic
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 0.412
>>> mean, var, skew, kurt = genlogistic.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(genlogistic.ppf(0.01, c),
... genlogistic.ppf(0.99, c), 100)
>>> ax.plot(x, genlogistic.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='genlogistic pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = genlogistic(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = genlogistic.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], genlogistic.cdf(vals, c))
True

Generate random numbers:

>>> r = genlogistic.rvs(c, size=1000)

And compare the histogram:

5.34. Statistical functions (scipy.stats) 1269

SciPy Reference Guide, Release 0.16.0

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

25 20 15 10 5 0 5 10
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

genlogistic pdf
frozen pdf

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.gennorm = <scipy.stats._continuous_distns.gennorm_gen object at 0x7fa40e8fdfd0>
A generalized normal continuous random variable.

1270 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

As an instance of the rv_continuous class, gennorm object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

See also:

laplace Laplace distribution
norm normal distribution

Notes

The probability density function for gennorm is [R324]:

beta
gennorm.pdf(x, beta) = --------------- exp(-|x|**beta)

2 gamma(1/beta)

gennorm takes beta as a shape parameter. For beta = 1, it is identical to a Laplace distribution. For beta
= 2, it is identical to a normal distribution (with scale=1/sqrt(2)).

References

[R324]

Examples

>>> from scipy.stats import gennorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> beta = 1.3
>>> mean, var, skew, kurt = gennorm.stats(beta, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(gennorm.ppf(0.01, beta),
... gennorm.ppf(0.99, beta), 100)
>>> ax.plot(x, gennorm.pdf(x, beta),
... 'r-', lw=5, alpha=0.6, label='gennorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = gennorm(beta)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = gennorm.ppf([0.001, 0.5, 0.999], beta)
>>> np.allclose([0.001, 0.5, 0.999], gennorm.cdf(vals, beta))
True

Generate random numbers:

>>> r = gennorm.rvs(beta, size=1000)

5.34. Statistical functions (scipy.stats) 1271

SciPy Reference Guide, Release 0.16.0

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5 4 3 2 1 0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6
gennorm pdf
frozen pdf

Methods

rvs(beta, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, beta, loc=0, scale=1) Probability density function.
logpdf(x, beta, loc=0, scale=1) Log of the probability density function.
cdf(x, beta, loc=0, scale=1) Cumulative density function.
logcdf(x, beta, loc=0, scale=1) Log of the cumulative density function.
sf(x, beta, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, beta, loc=0, scale=1) Log of the survival function.
ppf(q, beta, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, beta, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, beta, loc=0, scale=1) Non-central moment of order n
stats(beta, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(beta, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, beta, loc=0, scale=1) Parameter estimates for generic data.
expect(func, beta, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(beta, loc=0, scale=1) Median of the distribution.
mean(beta, loc=0, scale=1) Mean of the distribution.
var(beta, loc=0, scale=1) Variance of the distribution.
std(beta, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, beta, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

1272 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.stats.genpareto = <scipy.stats._continuous_distns.genpareto_gen object at 0x7fa40e987590>
A generalized Pareto continuous random variable.

As an instance of the rv_continuous class, genpareto object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for genpareto is:

genpareto.pdf(x, c) = (1 + c * x)**(-1 - 1/c)

defined for x >= 0 if c >=0, and for 0 <= x <= -1/c if c < 0.

genpareto takes c as a shape parameter.

For c == 0, genpareto reduces to the exponential distribution, expon:

genpareto.pdf(x, c=0) = exp(-x)

For c == -1, genpareto is uniform on [0, 1]:

genpareto.cdf(x, c=-1) = x

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution
use the loc and scale parameters. Specifically, genpareto.pdf(x, c, loc, scale) is identically
equivalent to genpareto.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import genpareto
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 0.1
>>> mean, var, skew, kurt = genpareto.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(genpareto.ppf(0.01, c),
... genpareto.ppf(0.99, c), 100)
>>> ax.plot(x, genpareto.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='genpareto pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = genpareto(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

5.34. Statistical functions (scipy.stats) 1273

SciPy Reference Guide, Release 0.16.0

>>> vals = genpareto.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], genpareto.cdf(vals, c))
True

Generate random numbers:

>>> r = genpareto.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0
genpareto pdf
frozen pdf

1274 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.genexpon = <scipy.stats._continuous_distns.genexpon_gen object at 0x7fa40e987850>
A generalized exponential continuous random variable.

As an instance of the rv_continuous class, genexpon object inherits from it a collection of generic meth-
ods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for genexpon is:

genexpon.pdf(x, a, b, c) = (a + b * (1 - exp(-c*x))) * exp(-a*x - b*x + b/c * (1-exp(-c*x)))

for x >= 0, a, b, c > 0.

genexpon takes a, b and c as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, genexpon.pdf(x, a, b, c, loc, scale) is identically
equivalent to genexpon.pdf(y, a, b, c) / scale with y = (x - loc) / scale.

References

H.K. Ryu, “An Extension of Marshall and Olkin’s Bivariate Exponential Distribution”, Journal of the American
Statistical Association, 1993.

N. Balakrishnan, “The Exponential Distribution: Theory, Methods and Applications”, Asit P. Basu.

5.34. Statistical functions (scipy.stats) 1275

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.stats import genexpon
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a, b, c = 9.13, 16.2, 3.28
>>> mean, var, skew, kurt = genexpon.stats(a, b, c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(genexpon.ppf(0.01, a, b, c),
... genexpon.ppf(0.99, a, b, c), 100)
>>> ax.plot(x, genexpon.pdf(x, a, b, c),
... 'r-', lw=5, alpha=0.6, label='genexpon pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = genexpon(a, b, c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = genexpon.ppf([0.001, 0.5, 0.999], a, b, c)
>>> np.allclose([0.001, 0.5, 0.999], genexpon.cdf(vals, a, b, c))
True

Generate random numbers:

>>> r = genexpon.rvs(a, b, c, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

1276 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0

2

4

6

8

10
genexpon pdf
frozen pdf

Methods

rvs(a, b, c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, a, b, c, loc=0, scale=1) Probability density function.
logpdf(x, a, b, c, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, c, loc=0, scale=1) Cumulative density function.
logcdf(x, a, b, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, a, b, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, a, b, c, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, c, loc=0, scale=1) Percent point function (inverse of cdf

— percentiles).
isf(q, a, b, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, b, c, loc=0, scale=1) Non-central moment of order n
stats(a, b, c, loc=0, scale=1,
moments=’mv’)

Mean(‘m’), variance(‘v’), skew(‘s’),
and/or kurtosis(‘k’).

entropy(a, b, c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, b, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, a, b, c, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the
distribution.

median(a, b, c, loc=0, scale=1) Median of the distribution.
mean(a, b, c, loc=0, scale=1) Mean of the distribution.
var(a, b, c, loc=0, scale=1) Variance of the distribution.
std(a, b, c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, b, c, loc=0, scale=1) Endpoints of the range that contains

alpha percent of the distribution

scipy.stats.genextreme = <scipy.stats._continuous_distns.genextreme_gen object at 0x7fa40e987bd0>
A generalized extreme value continuous random variable.

As an instance of the rv_continuous class, genextreme object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

5.34. Statistical functions (scipy.stats) 1277

SciPy Reference Guide, Release 0.16.0

gumbel_r

Notes

For c=0, genextreme is equal to gumbel_r. The probability density function for genextreme is:

genextreme.pdf(x, c) =
exp(-exp(-x))*exp(-x), for c==0
exp(-(1-c*x)**(1/c))*(1-c*x)**(1/c-1), for x <= 1/c, c > 0

Note that several sources and software packages use the opposite convention for the sign of the shape parameter
c.

genextreme takes c as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, genextreme.pdf(x, c, loc, scale) is identically
equivalent to genextreme.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import genextreme
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = -0.1
>>> mean, var, skew, kurt = genextreme.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(genextreme.ppf(0.01, c),
... genextreme.ppf(0.99, c), 100)
>>> ax.plot(x, genextreme.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='genextreme pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = genextreme(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = genextreme.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], genextreme.cdf(vals, c))
True

Generate random numbers:

>>> r = genextreme.rvs(c, size=1000)

And compare the histogram:

1278 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

4 2 0 2 4 6 8 10
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

genextreme pdf
frozen pdf

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.gausshyper = <scipy.stats._continuous_distns.gausshyper_gen object at 0x7fa40e9a2950>
A Gauss hypergeometric continuous random variable.

5.34. Statistical functions (scipy.stats) 1279

SciPy Reference Guide, Release 0.16.0

As an instance of the rv_continuous class, gausshyper object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for gausshyper is:

gausshyper.pdf(x, a, b, c, z) =
C * x**(a-1) * (1-x)**(b-1) * (1+z*x)**(-c)

for 0 <= x <= 1, a > 0, b > 0, and C = 1 / (B(a, b) F[2, 1](c, a; a+b; -z))

gausshyper takes a, b, c and z as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution
use the loc and scale parameters. Specifically, gausshyper.pdf(x, a, b, c, z, loc, scale)
is identically equivalent to gausshyper.pdf(y, a, b, c, z) / scale with y = (x - loc) /
scale.

Examples

>>> from scipy.stats import gausshyper
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a, b, c, z = 13.8, 3.12, 2.51, 5.18
>>> mean, var, skew, kurt = gausshyper.stats(a, b, c, z, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(gausshyper.ppf(0.01, a, b, c, z),
... gausshyper.ppf(0.99, a, b, c, z), 100)
>>> ax.plot(x, gausshyper.pdf(x, a, b, c, z),
... 'r-', lw=5, alpha=0.6, label='gausshyper pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = gausshyper(a, b, c, z)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = gausshyper.ppf([0.001, 0.5, 0.999], a, b, c, z)
>>> np.allclose([0.001, 0.5, 0.999], gausshyper.cdf(vals, a, b, c, z))
True

Generate random numbers:

>>> r = gausshyper.rvs(a, b, c, z, size=1000)

And compare the histogram:

1280 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

gausshyper pdf
frozen pdf

Methods

rvs(a, b, c, z, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, a, b, c, z, loc=0, scale=1) Probability density function.
logpdf(x, a, b, c, z, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, c, z, loc=0, scale=1) Cumulative density function.
logcdf(x, a, b, c, z, loc=0, scale=1) Log of the cumulative density function.
sf(x, a, b, c, z, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, a, b, c, z, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, c, z, loc=0, scale=1) Percent point function (inverse of cdf

— percentiles).
isf(q, a, b, c, z, loc=0, scale=1) Inverse survival function (inverse of

sf).
moment(n, a, b, c, z, loc=0, scale=1) Non-central moment of order n
stats(a, b, c, z, loc=0, scale=1,
moments=’mv’)

Mean(‘m’), variance(‘v’), skew(‘s’),
and/or kurtosis(‘k’).

entropy(a, b, c, z, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, b, c, z, loc=0, scale=1) Parameter estimates for generic data.
expect(func, a, b, c, z, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the
distribution.

median(a, b, c, z, loc=0, scale=1) Median of the distribution.
mean(a, b, c, z, loc=0, scale=1) Mean of the distribution.
var(a, b, c, z, loc=0, scale=1) Variance of the distribution.
std(a, b, c, z, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, b, c, z, loc=0, scale=1) Endpoints of the range that contains

alpha percent of the distribution

scipy.stats.gamma = <scipy.stats._continuous_distns.gamma_gen object at 0x7fa40e987e90>

5.34. Statistical functions (scipy.stats) 1281

SciPy Reference Guide, Release 0.16.0

A gamma continuous random variable.

As an instance of the rv_continuous class, gamma object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

See also:

erlang, expon

Notes

The probability density function for gamma is:

gamma.pdf(x, a) = x**(a-1) * exp(-x) / gamma(a)

for x >= 0, a > 0. Here gamma(a) refers to the gamma function.

gamma has a shape parameter a which needs to be set explicitly.

When a is an integer, gamma reduces to the Erlang distribution, and when a=1 to the exponential distribution.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, gamma.pdf(x, a, loc, scale) is identically equivalent
to gamma.pdf(y, a) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import gamma
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a = 1.99
>>> mean, var, skew, kurt = gamma.stats(a, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(gamma.ppf(0.01, a),
... gamma.ppf(0.99, a), 100)
>>> ax.plot(x, gamma.pdf(x, a),
... 'r-', lw=5, alpha=0.6, label='gamma pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = gamma(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = gamma.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], gamma.cdf(vals, a))
True

Generate random numbers:

1282 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> r = gamma.rvs(a, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0 2 4 6 8 10 12
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

gamma pdf
frozen pdf

5.34. Statistical functions (scipy.stats) 1283

SciPy Reference Guide, Release 0.16.0

Methods

rvs(a, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, a, loc=0, scale=1) Probability density function.
logpdf(x, a, loc=0, scale=1) Log of the probability density function.
cdf(x, a, loc=0, scale=1) Cumulative density function.
logcdf(x, a, loc=0, scale=1) Log of the cumulative density function.
sf(x, a, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, a, loc=0, scale=1) Log of the survival function.
ppf(q, a, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, a, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, loc=0, scale=1) Non-central moment of order n
stats(a, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(a, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, loc=0, scale=1) Parameter estimates for generic data.
expect(func, a, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(a, loc=0, scale=1) Median of the distribution.
mean(a, loc=0, scale=1) Mean of the distribution.
var(a, loc=0, scale=1) Variance of the distribution.
std(a, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.gengamma = <scipy.stats._continuous_distns.gengamma_gen object at 0x7fa40e990450>
A generalized gamma continuous random variable.

As an instance of the rv_continuous class, gengamma object inherits from it a collection of generic meth-
ods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for gengamma is:

gengamma.pdf(x, a, c) = abs(c) * x**(c*a-1) * exp(-x**c) / gamma(a)

for x > 0, a > 0, and c != 0.

gengamma takes a and c as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, gengamma.pdf(x, a, c, loc, scale) is identically
equivalent to gengamma.pdf(y, a, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import gengamma
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

1284 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> a, c = 4.42, 3.12
>>> mean, var, skew, kurt = gengamma.stats(a, c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(gengamma.ppf(0.01, a, c),
... gengamma.ppf(0.99, a, c), 100)
>>> ax.plot(x, gengamma.pdf(x, a, c),
... 'r-', lw=5, alpha=0.6, label='gengamma pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = gengamma(a, c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = gengamma.ppf([0.001, 0.5, 0.999], a, c)
>>> np.allclose([0.001, 0.5, 0.999], gengamma.cdf(vals, a, c))
True

Generate random numbers:

>>> r = gengamma.rvs(a, c, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

1.0 1.5 2.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

gengamma pdf
frozen pdf

5.34. Statistical functions (scipy.stats) 1285

SciPy Reference Guide, Release 0.16.0

Methods

rvs(a, c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, a, c, loc=0, scale=1) Probability density function.
logpdf(x, a, c, loc=0, scale=1) Log of the probability density function.
cdf(x, a, c, loc=0, scale=1) Cumulative density function.
logcdf(x, a, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, a, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, a, c, loc=0, scale=1) Log of the survival function.
ppf(q, a, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, a, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, c, loc=0, scale=1) Non-central moment of order n
stats(a, c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(a, c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, a, c, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(a, c, loc=0, scale=1) Median of the distribution.
mean(a, c, loc=0, scale=1) Mean of the distribution.
var(a, c, loc=0, scale=1) Variance of the distribution.
std(a, c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.genhalflogistic = <scipy.stats._continuous_distns.genhalflogistic_gen object at 0x7fa40e990790>
A generalized half-logistic continuous random variable.

As an instance of the rv_continuous class, genhalflogistic object inherits from it a collection of
generic methods (see below for the full list), and completes them with details specific for this particular distri-
bution.

Notes

The probability density function for genhalflogistic is:

genhalflogistic.pdf(x, c) = 2 * (1-c*x)**(1/c-1) / (1+(1-c*x)**(1/c))**2

for 0 <= x <= 1/c, and c > 0.

genhalflogistic takes c as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, genhalflogistic.pdf(x, c, loc, scale) is identically
equivalent to genhalflogistic.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import genhalflogistic
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

1286 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> c = 0.773
>>> mean, var, skew, kurt = genhalflogistic.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(genhalflogistic.ppf(0.01, c),
... genhalflogistic.ppf(0.99, c), 100)
>>> ax.plot(x, genhalflogistic.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='genhalflogistic pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = genhalflogistic(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = genhalflogistic.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], genhalflogistic.cdf(vals, c))
True

Generate random numbers:

>>> r = genhalflogistic.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2
genhalflogistic pdf
frozen pdf

5.34. Statistical functions (scipy.stats) 1287

SciPy Reference Guide, Release 0.16.0

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.gilbrat = <scipy.stats._continuous_distns.gilbrat_gen object at 0x7fa40e93cf50>
A Gilbrat continuous random variable.

As an instance of the rv_continuous class, gilbrat object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for gilbrat is:

gilbrat.pdf(x) = 1/(x*sqrt(2*pi)) * exp(-1/2*(log(x))**2)

gilbrat is a special case of lognorm with s = 1.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, gilbrat.pdf(x, loc, scale) is identically equivalent
to gilbrat.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import gilbrat
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = gilbrat.stats(moments='mvsk')

1288 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Display the probability density function (pdf):

>>> x = np.linspace(gilbrat.ppf(0.01),
... gilbrat.ppf(0.99), 100)
>>> ax.plot(x, gilbrat.pdf(x),
... 'r-', lw=5, alpha=0.6, label='gilbrat pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = gilbrat()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = gilbrat.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], gilbrat.cdf(vals))
True

Generate random numbers:

>>> r = gilbrat.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0 5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
gilbrat pdf
frozen pdf

5.34. Statistical functions (scipy.stats) 1289

SciPy Reference Guide, Release 0.16.0

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.gompertz = <scipy.stats._continuous_distns.gompertz_gen object at 0x7fa40e990a50>
A Gompertz (or truncated Gumbel) continuous random variable.

As an instance of the rv_continuous class, gompertz object inherits from it a collection of generic meth-
ods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for gompertz is:

gompertz.pdf(x, c) = c * exp(x) * exp(-c*(exp(x)-1))

for x >= 0, c > 0.

gompertz takes c as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, gompertz.pdf(x, c, loc, scale) is identically equivalent
to gompertz.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import gompertz
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

1290 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> c = 0.947
>>> mean, var, skew, kurt = gompertz.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(gompertz.ppf(0.01, c),
... gompertz.ppf(0.99, c), 100)
>>> ax.plot(x, gompertz.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='gompertz pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = gompertz(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = gompertz.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], gompertz.cdf(vals, c))
True

Generate random numbers:

>>> r = gompertz.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2
gompertz pdf
frozen pdf

5.34. Statistical functions (scipy.stats) 1291

SciPy Reference Guide, Release 0.16.0

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.gumbel_r = <scipy.stats._continuous_distns.gumbel_r_gen object at 0x7fa40e990d10>
A right-skewed Gumbel continuous random variable.

As an instance of the rv_continuous class, gumbel_r object inherits from it a collection of generic meth-
ods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

gumbel_l, gompertz, genextreme

Notes

The probability density function for gumbel_r is:

gumbel_r.pdf(x) = exp(-(x + exp(-x)))

The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett distribution. It is also related to the
extreme value distribution, log-Weibull and Gompertz distributions.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, gumbel_r.pdf(x, loc, scale) is identically equivalent
to gumbel_r.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import gumbel_r
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

1292 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Calculate a few first moments:

>>> mean, var, skew, kurt = gumbel_r.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(gumbel_r.ppf(0.01),
... gumbel_r.ppf(0.99), 100)
>>> ax.plot(x, gumbel_r.pdf(x),
... 'r-', lw=5, alpha=0.6, label='gumbel_r pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = gumbel_r()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = gumbel_r.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], gumbel_r.cdf(vals))
True

Generate random numbers:

>>> r = gumbel_r.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

4 2 0 2 4 6 8
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

gumbel_r pdf
frozen pdf

5.34. Statistical functions (scipy.stats) 1293

SciPy Reference Guide, Release 0.16.0

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.gumbel_l = <scipy.stats._continuous_distns.gumbel_l_gen object at 0x7fa40e990f10>
A left-skewed Gumbel continuous random variable.

As an instance of the rv_continuous class, gumbel_l object inherits from it a collection of generic meth-
ods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

gumbel_r, gompertz, genextreme

Notes

The probability density function for gumbel_l is:

gumbel_l.pdf(x) = exp(x - exp(x))

The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett distribution. It is also related to the
extreme value distribution, log-Weibull and Gompertz distributions.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, gumbel_l.pdf(x, loc, scale) is identically equivalent
to gumbel_l.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import gumbel_l
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

1294 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Calculate a few first moments:

>>> mean, var, skew, kurt = gumbel_l.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(gumbel_l.ppf(0.01),
... gumbel_l.ppf(0.99), 100)
>>> ax.plot(x, gumbel_l.pdf(x),
... 'r-', lw=5, alpha=0.6, label='gumbel_l pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = gumbel_l()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = gumbel_l.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], gumbel_l.cdf(vals))
True

Generate random numbers:

>>> r = gumbel_l.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

10 8 6 4 2 0 2
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

gumbel_l pdf
frozen pdf

5.34. Statistical functions (scipy.stats) 1295

SciPy Reference Guide, Release 0.16.0

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.halfcauchy = <scipy.stats._continuous_distns.halfcauchy_gen object at 0x7fa40e9a2150>
A Half-Cauchy continuous random variable.

As an instance of the rv_continuous class, halfcauchy object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for halfcauchy is:

halfcauchy.pdf(x) = 2 / (pi * (1 + x**2))

for x >= 0.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, halfcauchy.pdf(x, loc, scale) is identically equivalent
to halfcauchy.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import halfcauchy
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = halfcauchy.stats(moments='mvsk')

1296 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Display the probability density function (pdf):

>>> x = np.linspace(halfcauchy.ppf(0.01),
... halfcauchy.ppf(0.99), 100)
>>> ax.plot(x, halfcauchy.pdf(x),
... 'r-', lw=5, alpha=0.6, label='halfcauchy pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = halfcauchy()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = halfcauchy.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], halfcauchy.cdf(vals))
True

Generate random numbers:

>>> r = halfcauchy.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0 100 200 300 400 500 600
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
halfcauchy pdf
frozen pdf

5.34. Statistical functions (scipy.stats) 1297

SciPy Reference Guide, Release 0.16.0

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.halflogistic = <scipy.stats._continuous_distns.halflogistic_gen object at 0x7fa40e9a2350>
A half-logistic continuous random variable.

As an instance of the rv_continuous class, halflogistic object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for halflogistic is:

halflogistic.pdf(x) = 2 * exp(-x) / (1+exp(-x))**2 = 1/2 * sech(x/2)**2

for x >= 0.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution
use the loc and scale parameters. Specifically, halflogistic.pdf(x, loc, scale) is identically
equivalent to halflogistic.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import halflogistic
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = halflogistic.stats(moments='mvsk')

1298 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Display the probability density function (pdf):

>>> x = np.linspace(halflogistic.ppf(0.01),
... halflogistic.ppf(0.99), 100)
>>> ax.plot(x, halflogistic.pdf(x),
... 'r-', lw=5, alpha=0.6, label='halflogistic pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = halflogistic()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = halflogistic.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], halflogistic.cdf(vals))
True

Generate random numbers:

>>> r = halflogistic.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5
halflogistic pdf
frozen pdf

5.34. Statistical functions (scipy.stats) 1299

SciPy Reference Guide, Release 0.16.0

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.halfnorm = <scipy.stats._continuous_distns.halfnorm_gen object at 0x7fa40e9a2550>
A half-normal continuous random variable.

As an instance of the rv_continuous class, halfnorm object inherits from it a collection of generic meth-
ods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for halfnorm is:

halfnorm.pdf(x) = sqrt(2/pi) * exp(-x**2/2)

for x > 0.

halfnorm is a special case of chi with df == 1.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, halfnorm.pdf(x, loc, scale) is identically equivalent
to halfnorm.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import halfnorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

1300 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> mean, var, skew, kurt = halfnorm.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(halfnorm.ppf(0.01),
... halfnorm.ppf(0.99), 100)
>>> ax.plot(x, halfnorm.pdf(x),
... 'r-', lw=5, alpha=0.6, label='halfnorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = halfnorm()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = halfnorm.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], halfnorm.cdf(vals))
True

Generate random numbers:

>>> r = halfnorm.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

halfnorm pdf
frozen pdf

5.34. Statistical functions (scipy.stats) 1301

SciPy Reference Guide, Release 0.16.0

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.halfgennorm = <scipy.stats._continuous_distns.halfgennorm_gen object at 0x7fa40e90e2d0>
The upper half of a generalized normal continuous random variable.

As an instance of the rv_continuous class, halfgennorm object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

gennorm generalized normal distribution
expon exponential distribution
halfnorm half normal distribution

Notes

The probability density function for halfgennorm is:

beta
halfgennorm.pdf(x, beta) = ------------- exp(-|x|**beta)

gamma(1/beta)

gennorm takes beta as a shape parameter. For beta = 1, it is identical to an exponential distribution. For
beta = 2, it is identical to a half normal distribution (with scale=1/sqrt(2)).

References

[R325]

1302 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.stats import halfgennorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> beta = 0.675
>>> mean, var, skew, kurt = halfgennorm.stats(beta, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(halfgennorm.ppf(0.01, beta),
... halfgennorm.ppf(0.99, beta), 100)
>>> ax.plot(x, halfgennorm.pdf(x, beta),
... 'r-', lw=5, alpha=0.6, label='halfgennorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = halfgennorm(beta)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = halfgennorm.ppf([0.001, 0.5, 0.999], beta)
>>> np.allclose([0.001, 0.5, 0.999], halfgennorm.cdf(vals, beta))
True

Generate random numbers:

>>> r = halfgennorm.rvs(beta, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1303

SciPy Reference Guide, Release 0.16.0

0 5 10 15 20 25
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

halfgennorm pdf
frozen pdf

Methods

rvs(beta, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, beta, loc=0, scale=1) Probability density function.
logpdf(x, beta, loc=0, scale=1) Log of the probability density function.
cdf(x, beta, loc=0, scale=1) Cumulative density function.
logcdf(x, beta, loc=0, scale=1) Log of the cumulative density function.
sf(x, beta, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, beta, loc=0, scale=1) Log of the survival function.
ppf(q, beta, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, beta, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, beta, loc=0, scale=1) Non-central moment of order n
stats(beta, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(beta, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, beta, loc=0, scale=1) Parameter estimates for generic data.
expect(func, beta, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(beta, loc=0, scale=1) Median of the distribution.
mean(beta, loc=0, scale=1) Mean of the distribution.
var(beta, loc=0, scale=1) Variance of the distribution.
std(beta, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, beta, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.hypsecant = <scipy.stats._continuous_distns.hypsecant_gen object at 0x7fa40e9a2750>
A hyperbolic secant continuous random variable.

As an instance of the rv_continuous class, hypsecant object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

1304 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for hypsecant is:

hypsecant.pdf(x) = 1/pi * sech(x)

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, hypsecant.pdf(x, loc, scale) is identically equivalent to
hypsecant.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import hypsecant
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = hypsecant.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(hypsecant.ppf(0.01),
... hypsecant.ppf(0.99), 100)
>>> ax.plot(x, hypsecant.pdf(x),
... 'r-', lw=5, alpha=0.6, label='hypsecant pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = hypsecant()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = hypsecant.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], hypsecant.cdf(vals))
True

Generate random numbers:

>>> r = hypsecant.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1305

SciPy Reference Guide, Release 0.16.0

10 8 6 4 2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
hypsecant pdf
frozen pdf

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.invgamma = <scipy.stats._continuous_distns.invgamma_gen object at 0x7fa40e9a2c50>
An inverted gamma continuous random variable.

As an instance of the rv_continuous class, invgamma object inherits from it a collection of generic meth-
ods (see below for the full list), and completes them with details specific for this particular distribution.

1306 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for invgamma is:

invgamma.pdf(x, a) = x**(-a-1) / gamma(a) * exp(-1/x)

for x > 0, a > 0.

invgamma takes a as a shape parameter.

invgamma is a special case of gengamma with c == -1.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, invgamma.pdf(x, a, loc, scale) is identically equivalent
to invgamma.pdf(y, a) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import invgamma
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a = 4.07
>>> mean, var, skew, kurt = invgamma.stats(a, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(invgamma.ppf(0.01, a),
... invgamma.ppf(0.99, a), 100)
>>> ax.plot(x, invgamma.pdf(x, a),
... 'r-', lw=5, alpha=0.6, label='invgamma pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = invgamma(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = invgamma.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], invgamma.cdf(vals, a))
True

Generate random numbers:

>>> r = invgamma.rvs(a, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1307

SciPy Reference Guide, Release 0.16.0

0.0 0.5 1.0 1.5 2.0 2.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

invgamma pdf
frozen pdf

Methods

rvs(a, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, a, loc=0, scale=1) Probability density function.
logpdf(x, a, loc=0, scale=1) Log of the probability density function.
cdf(x, a, loc=0, scale=1) Cumulative density function.
logcdf(x, a, loc=0, scale=1) Log of the cumulative density function.
sf(x, a, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, a, loc=0, scale=1) Log of the survival function.
ppf(q, a, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, a, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, loc=0, scale=1) Non-central moment of order n
stats(a, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(a, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, loc=0, scale=1) Parameter estimates for generic data.
expect(func, a, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(a, loc=0, scale=1) Median of the distribution.
mean(a, loc=0, scale=1) Mean of the distribution.
var(a, loc=0, scale=1) Variance of the distribution.
std(a, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.invgauss = <scipy.stats._continuous_distns.invgauss_gen object at 0x7fa40e9a2f50>
An inverse Gaussian continuous random variable.

As an instance of the rv_continuous class, invgauss object inherits from it a collection of generic meth-
ods (see below for the full list), and completes them with details specific for this particular distribution.

1308 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for invgauss is:

invgauss.pdf(x, mu) = 1 / sqrt(2*pi*x**3) * exp(-(x-mu)**2/(2*x*mu**2))

for x > 0.

invgauss takes mu as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution
use the loc and scale parameters. Specifically, invgauss.pdf(x, mu, loc, scale) is identically
equivalent to invgauss.pdf(y, mu) / scale with y = (x - loc) / scale.

When mu is too small, evaluating the cumulative density function will be inaccurate due to cdf(mu -> 0)
= inf * 0. NaNs are returned for mu <= 0.0028.

Examples

>>> from scipy.stats import invgauss
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mu = 0.145
>>> mean, var, skew, kurt = invgauss.stats(mu, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(invgauss.ppf(0.01, mu),
... invgauss.ppf(0.99, mu), 100)
>>> ax.plot(x, invgauss.pdf(x, mu),
... 'r-', lw=5, alpha=0.6, label='invgauss pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = invgauss(mu)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = invgauss.ppf([0.001, 0.5, 0.999], mu)
>>> np.allclose([0.001, 0.5, 0.999], invgauss.cdf(vals, mu))
True

Generate random numbers:

>>> r = invgauss.rvs(mu, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1309

SciPy Reference Guide, Release 0.16.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0
1
2
3
4
5
6
7
8
9

invgauss pdf
frozen pdf

Methods

rvs(mu, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, mu, loc=0, scale=1) Probability density function.
logpdf(x, mu, loc=0, scale=1) Log of the probability density function.
cdf(x, mu, loc=0, scale=1) Cumulative density function.
logcdf(x, mu, loc=0, scale=1) Log of the cumulative density function.
sf(x, mu, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, mu, loc=0, scale=1) Log of the survival function.
ppf(q, mu, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, mu, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, mu, loc=0, scale=1) Non-central moment of order n
stats(mu, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(mu, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, mu, loc=0, scale=1) Parameter estimates for generic data.
expect(func, mu, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(mu, loc=0, scale=1) Median of the distribution.
mean(mu, loc=0, scale=1) Mean of the distribution.
var(mu, loc=0, scale=1) Variance of the distribution.
std(mu, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, mu, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.invweibull = <scipy.stats._continuous_distns.invweibull_gen object at 0x7fa40e9b2250>
An inverted Weibull continuous random variable.

As an instance of the rv_continuous class, invweibull object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

1310 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for invweibull is:

invweibull.pdf(x, c) = c * x**(-c-1) * exp(-x**(-c))

for x > 0, c > 0.

invweibull takes c as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, invweibull.pdf(x, c, loc, scale) is identically
equivalent to invweibull.pdf(y, c) / scale with y = (x - loc) / scale.

References

F.R.S. de Gusmao, E.M.M Ortega and G.M. Cordeiro, “The generalized inverse Weibull distribution”, Stat.
Papers, vol. 52, pp. 591-619, 2011.

Examples

>>> from scipy.stats import invweibull
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 10.6
>>> mean, var, skew, kurt = invweibull.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(invweibull.ppf(0.01, c),
... invweibull.ppf(0.99, c), 100)
>>> ax.plot(x, invweibull.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='invweibull pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = invweibull(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = invweibull.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], invweibull.cdf(vals, c))
True

Generate random numbers:

>>> r = invweibull.rvs(c, size=1000)

And compare the histogram:

5.34. Statistical functions (scipy.stats) 1311

SciPy Reference Guide, Release 0.16.0

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

invweibull pdf
frozen pdf

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.johnsonsb = <scipy.stats._continuous_distns.johnsonsb_gen object at 0x7fa40e9b2510>
A Johnson SB continuous random variable.

1312 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

As an instance of the rv_continuous class, johnsonsb object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

johnsonsu

Notes

The probability density function for johnsonsb is:

johnsonsb.pdf(x, a, b) = b / (x*(1-x)) * phi(a + b * log(x/(1-x)))

for 0 < x < 1 and a, b > 0, and phi is the normal pdf.

johnsonsb takes a and b as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, johnsonsb.pdf(x, a, b, loc, scale) is identically
equivalent to johnsonsb.pdf(y, a, b) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import johnsonsb
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a, b = 4.32, 3.18
>>> mean, var, skew, kurt = johnsonsb.stats(a, b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(johnsonsb.ppf(0.01, a, b),
... johnsonsb.ppf(0.99, a, b), 100)
>>> ax.plot(x, johnsonsb.pdf(x, a, b),
... 'r-', lw=5, alpha=0.6, label='johnsonsb pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = johnsonsb(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = johnsonsb.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], johnsonsb.cdf(vals, a, b))
True

Generate random numbers:

>>> r = johnsonsb.rvs(a, b, size=1000)

And compare the histogram:

5.34. Statistical functions (scipy.stats) 1313

SciPy Reference Guide, Release 0.16.0

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0
1
2
3
4
5
6
7
8
9

johnsonsb pdf
frozen pdf

Methods

rvs(a, b, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, a, b, loc=0, scale=1) Probability density function.
logpdf(x, a, b, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, loc=0, scale=1) Cumulative density function.
logcdf(x, a, b, loc=0, scale=1) Log of the cumulative density function.
sf(x, a, b, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, a, b, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, a, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, b, loc=0, scale=1) Non-central moment of order n
stats(a, b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(a, b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, a, b, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(a, b, loc=0, scale=1) Median of the distribution.
mean(a, b, loc=0, scale=1) Mean of the distribution.
var(a, b, loc=0, scale=1) Variance of the distribution.
std(a, b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.johnsonsu = <scipy.stats._continuous_distns.johnsonsu_gen object at 0x7fa40e9b2850>
A Johnson SU continuous random variable.

1314 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

As an instance of the rv_continuous class, johnsonsu object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

johnsonsb

Notes

The probability density function for johnsonsu is:

johnsonsu.pdf(x, a, b) = b / sqrt(x**2 + 1) *
phi(a + b * log(x + sqrt(x**2 + 1)))

for all x, a, b > 0, and phi is the normal pdf.

johnsonsu takes a and b as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, johnsonsu.pdf(x, a, b, loc, scale) is identically
equivalent to johnsonsu.pdf(y, a, b) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import johnsonsu
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a, b = 2.55, 2.25
>>> mean, var, skew, kurt = johnsonsu.stats(a, b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(johnsonsu.ppf(0.01, a, b),
... johnsonsu.ppf(0.99, a, b), 100)
>>> ax.plot(x, johnsonsu.pdf(x, a, b),
... 'r-', lw=5, alpha=0.6, label='johnsonsu pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = johnsonsu(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = johnsonsu.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], johnsonsu.cdf(vals, a, b))
True

Generate random numbers:

>>> r = johnsonsu.rvs(a, b, size=1000)

5.34. Statistical functions (scipy.stats) 1315

SciPy Reference Guide, Release 0.16.0

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

8 6 4 2 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6
johnsonsu pdf
frozen pdf

Methods

rvs(a, b, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, a, b, loc=0, scale=1) Probability density function.
logpdf(x, a, b, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, loc=0, scale=1) Cumulative density function.
logcdf(x, a, b, loc=0, scale=1) Log of the cumulative density function.
sf(x, a, b, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, a, b, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, a, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, b, loc=0, scale=1) Non-central moment of order n
stats(a, b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(a, b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, a, b, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(a, b, loc=0, scale=1) Median of the distribution.
mean(a, b, loc=0, scale=1) Mean of the distribution.
var(a, b, loc=0, scale=1) Variance of the distribution.
std(a, b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

1316 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.stats.ksone = <scipy.stats._continuous_distns.ksone_gen object at 0x7fa40ebcf450>
General Kolmogorov-Smirnov one-sided test.

As an instance of the rv_continuous class, ksone object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Methods

rvs(n, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, n, loc=0, scale=1) Probability density function.
logpdf(x, n, loc=0, scale=1) Log of the probability density function.
cdf(x, n, loc=0, scale=1) Cumulative density function.
logcdf(x, n, loc=0, scale=1) Log of the cumulative density function.
sf(x, n, loc=0, scale=1) Survival function (1 - cdf — sometimes more ac-

curate).
logsf(x, n, loc=0, scale=1) Log of the survival function.
ppf(q, n, loc=0, scale=1) Percent point function (inverse of cdf — per-

centiles).
isf(q, n, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, n, loc=0, scale=1) Non-central moment of order n
stats(n, loc=0, scale=1,
moments=’mv’)

Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurto-
sis(‘k’).

entropy(n, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, n, loc=0, scale=1) Parameter estimates for generic data.
expect(func, n, loc=0,
scale=1, lb=None, ub=None,
conditional=False, **kwds)

Expected value of a function (of one argument) with
respect to the distribution.

median(n, loc=0, scale=1) Median of the distribution.
mean(n, loc=0, scale=1) Mean of the distribution.
var(n, loc=0, scale=1) Variance of the distribution.
std(n, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, n, loc=0, scale=1) Endpoints of the range that contains alpha percent of

the distribution
Examples

>>> from scipy.stats import ksone

>>> import matplotlib.pyplot as plt

>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> n = 1e+03

>>> mean, var, skew, kurt = ksone.stats(n, moments='mvsk')

Display the probability density function (pdf):
Continued on next page

5.34. Statistical functions (scipy.stats) 1317

SciPy Reference Guide, Release 0.16.0

Table 5.251 – continued from previous page

>>> x = np.linspace(ksone.ppf(0.01, n),

... ksone.ppf(0.99, n), 100)

>>> ax.plot(x, ksone.pdf(x, n),

... ‘r-‘, lw=5, alpha=0.6, label=’ksone pdf’)
Alternatively, the distribution object can be called (as
a function)
to fix the shape, location and scale parameters. This
returns a “frozen”
RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = ksone(n)

>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = ksone.ppf([0.001, 0.5, 0.999], n)

>>> np.allclose([0.001, 0.5, 0.999], ksone.cdf(vals, n))

True
Generate random numbers:

>>> r = ksone.rvs(n, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)

>>> ax.legend(loc='best', frameon=False)

>>> plt.show()

scipy.stats.kstwobign = <scipy.stats._continuous_distns.kstwobign_gen object at 0x7fa40ebcf6d0>
Kolmogorov-Smirnov two-sided test for large N.

As an instance of the rv_continuous class, kstwobign object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.

Continued on next page

1318 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.252 – continued from previous page
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes more ac-

curate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf — per-

centiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurto-

sis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0,
scale=1, lb=None, ub=None,
conditional=False, **kwds)

Expected value of a function (of one argument) with
respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent of

the distribution
Examples

>>> from scipy.stats import kstwobign

>>> import matplotlib.pyplot as plt

>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = kstwobign.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(kstwobign.ppf(0.01),

... kstwobign.ppf(0.99), 100)

>>> ax.plot(x, kstwobign.pdf(x),

... ‘r-‘, lw=5, alpha=0.6, label=’kstwobign pdf’)
Alternatively, the distribution object can be called (as
a function)
to fix the shape, location and scale parameters. This
returns a “frozen”
RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = kstwobign()

Continued on next page

5.34. Statistical functions (scipy.stats) 1319

SciPy Reference Guide, Release 0.16.0

Table 5.252 – continued from previous page

>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = kstwobign.ppf([0.001, 0.5, 0.999])

>>> np.allclose([0.001, 0.5, 0.999], kstwobign.cdf(vals))

True
Generate random numbers:

>>> r = kstwobign.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)

>>> ax.legend(loc='best', frameon=False)

>>> plt.show()

scipy.stats.laplace = <scipy.stats._continuous_distns.laplace_gen object at 0x7fa40e9b2b90>
A Laplace continuous random variable.

As an instance of the rv_continuous class, laplace object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for laplace is:

laplace.pdf(x) = 1/2 * exp(-abs(x))

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, laplace.pdf(x, loc, scale) is identically equivalent
to laplace.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import laplace
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = laplace.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(laplace.ppf(0.01),
... laplace.ppf(0.99), 100)

1320 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> ax.plot(x, laplace.pdf(x),
... 'r-', lw=5, alpha=0.6, label='laplace pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = laplace()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = laplace.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], laplace.cdf(vals))
True

Generate random numbers:

>>> r = laplace.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

10 8 6 4 2 0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5
laplace pdf
frozen pdf

5.34. Statistical functions (scipy.stats) 1321

SciPy Reference Guide, Release 0.16.0

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.logistic = <scipy.stats._continuous_distns.logistic_gen object at 0x7fa40e93c510>
A logistic (or Sech-squared) continuous random variable.

As an instance of the rv_continuous class, logistic object inherits from it a collection of generic meth-
ods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for logistic is:

logistic.pdf(x) = exp(-x) / (1+exp(-x))**2

logistic is a special case of genlogistic with c == 1.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, logistic.pdf(x, loc, scale) is identically equivalent
to logistic.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import logistic
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = logistic.stats(moments='mvsk')

1322 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Display the probability density function (pdf):

>>> x = np.linspace(logistic.ppf(0.01),
... logistic.ppf(0.99), 100)
>>> ax.plot(x, logistic.pdf(x),
... 'r-', lw=5, alpha=0.6, label='logistic pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = logistic()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = logistic.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], logistic.cdf(vals))
True

Generate random numbers:

>>> r = logistic.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

10 8 6 4 2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

0.25
logistic pdf
frozen pdf

5.34. Statistical functions (scipy.stats) 1323

SciPy Reference Guide, Release 0.16.0

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.loggamma = <scipy.stats._continuous_distns.loggamma_gen object at 0x7fa40e93c710>
A log gamma continuous random variable.

As an instance of the rv_continuous class, loggamma object inherits from it a collection of generic meth-
ods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for loggamma is:

loggamma.pdf(x, c) = exp(c*x-exp(x)) / gamma(c)

for all x, c > 0.

loggamma takes c as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, loggamma.pdf(x, c, loc, scale) is identically equivalent
to loggamma.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import loggamma
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

1324 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> c = 0.414
>>> mean, var, skew, kurt = loggamma.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(loggamma.ppf(0.01, c),
... loggamma.ppf(0.99, c), 100)
>>> ax.plot(x, loggamma.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='loggamma pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = loggamma(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = loggamma.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], loggamma.cdf(vals, c))
True

Generate random numbers:

>>> r = loggamma.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

25 20 15 10 5 0 5
0.00

0.05

0.10

0.15

0.20

0.25
loggamma pdf
frozen pdf

5.34. Statistical functions (scipy.stats) 1325

SciPy Reference Guide, Release 0.16.0

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.loglaplace = <scipy.stats._continuous_distns.loglaplace_gen object at 0x7fa40e93c9d0>
A log-Laplace continuous random variable.

As an instance of the rv_continuous class, loglaplace object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for loglaplace is:

loglaplace.pdf(x, c) = c / 2 * x**(c-1), for 0 < x < 1
= c / 2 * x**(-c-1), for x >= 1

for c > 0.

loglaplace takes c as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, loglaplace.pdf(x, c, loc, scale) is identically
equivalent to loglaplace.pdf(y, c) / scale with y = (x - loc) / scale.

References

T.J. Kozubowski and K. Podgorski, “A log-Laplace growth rate model”, The Mathematical Scientist, vol. 28,
pp. 49-60, 2003.

1326 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.stats import loglaplace
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 3.25
>>> mean, var, skew, kurt = loglaplace.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(loglaplace.ppf(0.01, c),
... loglaplace.ppf(0.99, c), 100)
>>> ax.plot(x, loglaplace.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='loglaplace pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = loglaplace(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = loglaplace.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], loglaplace.cdf(vals, c))
True

Generate random numbers:

>>> r = loglaplace.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1327

SciPy Reference Guide, Release 0.16.0

0 1 2 3 4 5 6 7
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

loglaplace pdf
frozen pdf

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.lognorm = <scipy.stats._continuous_distns.lognorm_gen object at 0x7fa40e93cc90>
A lognormal continuous random variable.

As an instance of the rv_continuous class, lognorm object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

1328 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for lognorm is:

lognorm.pdf(x, s) = 1 / (s*x*sqrt(2*pi)) * exp(-1/2*(log(x)/s)**2)

for x > 0, s > 0.

lognorm takes s as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, lognorm.pdf(x, s, loc, scale) is identically equivalent
to lognorm.pdf(y, s) / scale with y = (x - loc) / scale.

If log(x) is normally distributed with mean mu and variance sigma**2, then x is log-normally distributed
with shape parameter sigma and scale parameter exp(mu).

Examples

>>> from scipy.stats import lognorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> s = 0.954
>>> mean, var, skew, kurt = lognorm.stats(s, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(lognorm.ppf(0.01, s),
... lognorm.ppf(0.99, s), 100)
>>> ax.plot(x, lognorm.pdf(x, s),
... 'r-', lw=5, alpha=0.6, label='lognorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = lognorm(s)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = lognorm.ppf([0.001, 0.5, 0.999], s)
>>> np.allclose([0.001, 0.5, 0.999], lognorm.cdf(vals, s))
True

Generate random numbers:

>>> r = lognorm.rvs(s, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1329

SciPy Reference Guide, Release 0.16.0

0 5 10 15 20 25 30 35
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
lognorm pdf
frozen pdf

Methods

rvs(s, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, s, loc=0, scale=1) Probability density function.
logpdf(x, s, loc=0, scale=1) Log of the probability density function.
cdf(x, s, loc=0, scale=1) Cumulative density function.
logcdf(x, s, loc=0, scale=1) Log of the cumulative density function.
sf(x, s, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, s, loc=0, scale=1) Log of the survival function.
ppf(q, s, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, s, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, s, loc=0, scale=1) Non-central moment of order n
stats(s, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(s, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, s, loc=0, scale=1) Parameter estimates for generic data.
expect(func, s, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(s, loc=0, scale=1) Median of the distribution.
mean(s, loc=0, scale=1) Mean of the distribution.
var(s, loc=0, scale=1) Variance of the distribution.
std(s, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, s, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.lomax = <scipy.stats._continuous_distns.lomax_gen object at 0x7fa40e95d9d0>
A Lomax (Pareto of the second kind) continuous random variable.

As an instance of the rv_continuous class, lomax object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

1330 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The Lomax distribution is a special case of the Pareto distribution, with (loc=-1.0).

The probability density function for lomax is:

lomax.pdf(x, c) = c / (1+x)**(c+1)

for x >= 0, c > 0.

lomax takes c as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, lomax.pdf(x, c, loc, scale) is identically equivalent
to lomax.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import lomax
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 1.88
>>> mean, var, skew, kurt = lomax.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(lomax.ppf(0.01, c),
... lomax.ppf(0.99, c), 100)
>>> ax.plot(x, lomax.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='lomax pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = lomax(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = lomax.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], lomax.cdf(vals, c))
True

Generate random numbers:

>>> r = lomax.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1331

SciPy Reference Guide, Release 0.16.0

0 5 10 15 20 25 30 35 40
0.0

0.5

1.0

1.5

2.0
lomax pdf
frozen pdf

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.maxwell = <scipy.stats._continuous_distns.maxwell_gen object at 0x7fa40e94f190>
A Maxwell continuous random variable.

As an instance of the rv_continuous class, maxwell object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

1332 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

A special case of a chi distribution, with df = 3, loc = 0.0, and given scale = a, where a is the
parameter used in the Mathworld description [R333].

The probability density function for maxwell is:

maxwell.pdf(x) = sqrt(2/pi)x**2 * exp(-x**2/2)

for x > 0.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, maxwell.pdf(x, loc, scale) is identically equivalent
to maxwell.pdf(y) / scale with y = (x - loc) / scale.

References

[R333]

Examples

>>> from scipy.stats import maxwell
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = maxwell.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(maxwell.ppf(0.01),
... maxwell.ppf(0.99), 100)
>>> ax.plot(x, maxwell.pdf(x),
... 'r-', lw=5, alpha=0.6, label='maxwell pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = maxwell()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = maxwell.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], maxwell.cdf(vals))
True

Generate random numbers:

>>> r = maxwell.rvs(size=1000)

And compare the histogram:

5.34. Statistical functions (scipy.stats) 1333

SciPy Reference Guide, Release 0.16.0

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6
maxwell pdf
frozen pdf

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.mielke = <scipy.stats._continuous_distns.mielke_gen object at 0x7fa40e94f390>
A Mielke’s Beta-Kappa continuous random variable.

As an instance of the rv_continuous class, mielke object inherits from it a collection of generic methods

1334 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for mielke is:

mielke.pdf(x, k, s) = k * x**(k-1) / (1+x**s)**(1+k/s)

for x > 0.

mielke takes k and s as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution
use the loc and scale parameters. Specifically, mielke.pdf(x, k, s, loc, scale) is identically
equivalent to mielke.pdf(y, k, s) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import mielke
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> k, s = 10.4, 3.6
>>> mean, var, skew, kurt = mielke.stats(k, s, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(mielke.ppf(0.01, k, s),
... mielke.ppf(0.99, k, s), 100)
>>> ax.plot(x, mielke.pdf(x, k, s),
... 'r-', lw=5, alpha=0.6, label='mielke pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = mielke(k, s)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = mielke.ppf([0.001, 0.5, 0.999], k, s)
>>> np.allclose([0.001, 0.5, 0.999], mielke.cdf(vals, k, s))
True

Generate random numbers:

>>> r = mielke.rvs(k, s, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1335

SciPy Reference Guide, Release 0.16.0

0 1 2 3 4 5 6 7 8 9
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

mielke pdf
frozen pdf

Methods

rvs(k, s, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, k, s, loc=0, scale=1) Probability density function.
logpdf(x, k, s, loc=0, scale=1) Log of the probability density function.
cdf(x, k, s, loc=0, scale=1) Cumulative density function.
logcdf(x, k, s, loc=0, scale=1) Log of the cumulative density function.
sf(x, k, s, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, k, s, loc=0, scale=1) Log of the survival function.
ppf(q, k, s, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, k, s, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, k, s, loc=0, scale=1) Non-central moment of order n
stats(k, s, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(k, s, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, k, s, loc=0, scale=1) Parameter estimates for generic data.
expect(func, k, s, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(k, s, loc=0, scale=1) Median of the distribution.
mean(k, s, loc=0, scale=1) Mean of the distribution.
var(k, s, loc=0, scale=1) Variance of the distribution.
std(k, s, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, k, s, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.nakagami = <scipy.stats._continuous_distns.nakagami_gen object at 0x7fa40e94f6d0>
A Nakagami continuous random variable.

As an instance of the rv_continuous class, nakagami object inherits from it a collection of generic meth-
ods (see below for the full list), and completes them with details specific for this particular distribution.

1336 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for nakagami is:

nakagami.pdf(x, nu) = 2 * nu**nu / gamma(nu) *
x**(2*nu-1) * exp(-nu*x**2)

for x > 0, nu > 0.

nakagami takes nu as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution
use the loc and scale parameters. Specifically, nakagami.pdf(x, nu, loc, scale) is identically
equivalent to nakagami.pdf(y, nu) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import nakagami
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> nu = 4.97
>>> mean, var, skew, kurt = nakagami.stats(nu, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(nakagami.ppf(0.01, nu),
... nakagami.ppf(0.99, nu), 100)
>>> ax.plot(x, nakagami.pdf(x, nu),
... 'r-', lw=5, alpha=0.6, label='nakagami pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = nakagami(nu)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = nakagami.ppf([0.001, 0.5, 0.999], nu)
>>> np.allclose([0.001, 0.5, 0.999], nakagami.cdf(vals, nu))
True

Generate random numbers:

>>> r = nakagami.rvs(nu, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1337

SciPy Reference Guide, Release 0.16.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.0

0.5

1.0

1.5

2.0
nakagami pdf
frozen pdf

Methods

rvs(nu, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, nu, loc=0, scale=1) Probability density function.
logpdf(x, nu, loc=0, scale=1) Log of the probability density function.
cdf(x, nu, loc=0, scale=1) Cumulative density function.
logcdf(x, nu, loc=0, scale=1) Log of the cumulative density function.
sf(x, nu, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, nu, loc=0, scale=1) Log of the survival function.
ppf(q, nu, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, nu, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, nu, loc=0, scale=1) Non-central moment of order n
stats(nu, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(nu, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, nu, loc=0, scale=1) Parameter estimates for generic data.
expect(func, nu, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(nu, loc=0, scale=1) Median of the distribution.
mean(nu, loc=0, scale=1) Mean of the distribution.
var(nu, loc=0, scale=1) Variance of the distribution.
std(nu, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, nu, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.ncx2 = <scipy.stats._continuous_distns.ncx2_gen object at 0x7fa40e94f990>
A non-central chi-squared continuous random variable.

As an instance of the rv_continuous class, ncx2 object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

1338 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for ncx2 is:

ncx2.pdf(x, df, nc) = exp(-(nc+x)/2) * 1/2 * (x/nc)**((df-2)/4)

* I[(df-2)/2](sqrt(nc*x))

for x > 0.

ncx2 takes df and nc as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution
use the loc and scale parameters. Specifically, ncx2.pdf(x, df, nc, loc, scale) is identically
equivalent to ncx2.pdf(y, df, nc) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import ncx2
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> df, nc = 21, 1.06
>>> mean, var, skew, kurt = ncx2.stats(df, nc, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(ncx2.ppf(0.01, df, nc),
... ncx2.ppf(0.99, df, nc), 100)
>>> ax.plot(x, ncx2.pdf(x, df, nc),
... 'r-', lw=5, alpha=0.6, label='ncx2 pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = ncx2(df, nc)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = ncx2.ppf([0.001, 0.5, 0.999], df, nc)
>>> np.allclose([0.001, 0.5, 0.999], ncx2.cdf(vals, df, nc))
True

Generate random numbers:

>>> r = ncx2.rvs(df, nc, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1339

SciPy Reference Guide, Release 0.16.0

5 10 15 20 25 30 35 40 45
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
ncx2 pdf
frozen pdf

Methods

rvs(df, nc, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, df, nc, loc=0, scale=1) Probability density function.
logpdf(x, df, nc, loc=0, scale=1) Log of the probability density function.
cdf(x, df, nc, loc=0, scale=1) Cumulative density function.
logcdf(x, df, nc, loc=0, scale=1) Log of the cumulative density function.
sf(x, df, nc, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, df, nc, loc=0, scale=1) Log of the survival function.
ppf(q, df, nc, loc=0, scale=1) Percent point function (inverse of cdf

— percentiles).
isf(q, df, nc, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, df, nc, loc=0, scale=1) Non-central moment of order n
stats(df, nc, loc=0, scale=1,
moments=’mv’)

Mean(‘m’), variance(‘v’), skew(‘s’),
and/or kurtosis(‘k’).

entropy(df, nc, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, df, nc, loc=0, scale=1) Parameter estimates for generic data.
expect(func, df, nc, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the
distribution.

median(df, nc, loc=0, scale=1) Median of the distribution.
mean(df, nc, loc=0, scale=1) Mean of the distribution.
var(df, nc, loc=0, scale=1) Variance of the distribution.
std(df, nc, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, df, nc, loc=0, scale=1) Endpoints of the range that contains

alpha percent of the distribution

scipy.stats.ncf = <scipy.stats._continuous_distns.ncf_gen object at 0x7fa40e94fcd0>
A non-central F distribution continuous random variable.

As an instance of the rv_continuous class, ncf object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

1340 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for ncf is:

ncf.pdf(x, df1, df2, nc) = exp(nc/2 + nc*df1*x/(2*(df1*x+df2))) *
df1**(df1/2) * df2**(df2/2) * x**(df1/2-1) *
(df2+df1*x)**(-(df1+df2)/2) *
gamma(df1/2)*gamma(1+df2/2) *
L^{v1/2-1}^{v2/2}(-nc*v1*x/(2*(v1*x+v2))) /
(B(v1/2, v2/2) * gamma((v1+v2)/2))

for df1, df2, nc > 0.

ncf takes df1, df2 and nc as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, ncf.pdf(x, dfn, dfd, nc, loc, scale) is identically
equivalent to ncf.pdf(y, dfn, dfd, nc) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import ncf
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> dfn, dfd, nc = 27, 27, 0.416
>>> mean, var, skew, kurt = ncf.stats(dfn, dfd, nc, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(ncf.ppf(0.01, dfn, dfd, nc),
... ncf.ppf(0.99, dfn, dfd, nc), 100)
>>> ax.plot(x, ncf.pdf(x, dfn, dfd, nc),
... 'r-', lw=5, alpha=0.6, label='ncf pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = ncf(dfn, dfd, nc)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = ncf.ppf([0.001, 0.5, 0.999], dfn, dfd, nc)
>>> np.allclose([0.001, 0.5, 0.999], ncf.cdf(vals, dfn, dfd, nc))
True

Generate random numbers:

>>> r = ncf.rvs(dfn, dfd, nc, size=1000)

And compare the histogram:

5.34. Statistical functions (scipy.stats) 1341

SciPy Reference Guide, Release 0.16.0

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2
ncf pdf
frozen pdf

Methods

rvs(dfn, dfd, nc, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, dfn, dfd, nc, loc=0, scale=1) Probability density function.
logpdf(x, dfn, dfd, nc, loc=0, scale=1) Log of the probability density function.
cdf(x, dfn, dfd, nc, loc=0, scale=1) Cumulative density function.
logcdf(x, dfn, dfd, nc, loc=0, scale=1) Log of the cumulative density function.
sf(x, dfn, dfd, nc, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, dfn, dfd, nc, loc=0, scale=1) Log of the survival function.
ppf(q, dfn, dfd, nc, loc=0, scale=1) Percent point function (inverse of cdf

— percentiles).
isf(q, dfn, dfd, nc, loc=0, scale=1) Inverse survival function (inverse of

sf).
moment(n, dfn, dfd, nc, loc=0, scale=1) Non-central moment of order n
stats(dfn, dfd, nc, loc=0, scale=1,
moments=’mv’)

Mean(‘m’), variance(‘v’), skew(‘s’),
and/or kurtosis(‘k’).

entropy(dfn, dfd, nc, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, dfn, dfd, nc, loc=0, scale=1) Parameter estimates for generic data.
expect(func, dfn, dfd, nc, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the
distribution.

median(dfn, dfd, nc, loc=0, scale=1) Median of the distribution.
mean(dfn, dfd, nc, loc=0, scale=1) Mean of the distribution.
var(dfn, dfd, nc, loc=0, scale=1) Variance of the distribution.
std(dfn, dfd, nc, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, dfn, dfd, nc, loc=0,
scale=1)

Endpoints of the range that contains
alpha percent of the distribution

scipy.stats.nct = <scipy.stats._continuous_distns.nct_gen object at 0x7fa40e95d350>

1342 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

A non-central Student’s T continuous random variable.

As an instance of the rv_continuous class, nct object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for nct is:

df**(df/2) * gamma(df+1)
nct.pdf(x, df, nc) = --

2**df*exp(nc**2/2) * (df+x**2)**(df/2) * gamma(df/2)

for df > 0.

nct takes df and nc as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, nct.pdf(x, df, nc, loc, scale) is identically equivalent
to nct.pdf(y, df, nc) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import nct
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> df, nc = 14, 0.24
>>> mean, var, skew, kurt = nct.stats(df, nc, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(nct.ppf(0.01, df, nc),
... nct.ppf(0.99, df, nc), 100)
>>> ax.plot(x, nct.pdf(x, df, nc),
... 'r-', lw=5, alpha=0.6, label='nct pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = nct(df, nc)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = nct.ppf([0.001, 0.5, 0.999], df, nc)
>>> np.allclose([0.001, 0.5, 0.999], nct.cdf(vals, df, nc))
True

Generate random numbers:

>>> r = nct.rvs(df, nc, size=1000)

And compare the histogram:

5.34. Statistical functions (scipy.stats) 1343

SciPy Reference Guide, Release 0.16.0

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

6 4 2 0 2 4 6 8
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

nct pdf
frozen pdf

Methods

rvs(df, nc, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, df, nc, loc=0, scale=1) Probability density function.
logpdf(x, df, nc, loc=0, scale=1) Log of the probability density function.
cdf(x, df, nc, loc=0, scale=1) Cumulative density function.
logcdf(x, df, nc, loc=0, scale=1) Log of the cumulative density function.
sf(x, df, nc, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, df, nc, loc=0, scale=1) Log of the survival function.
ppf(q, df, nc, loc=0, scale=1) Percent point function (inverse of cdf

— percentiles).
isf(q, df, nc, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, df, nc, loc=0, scale=1) Non-central moment of order n
stats(df, nc, loc=0, scale=1,
moments=’mv’)

Mean(‘m’), variance(‘v’), skew(‘s’),
and/or kurtosis(‘k’).

entropy(df, nc, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, df, nc, loc=0, scale=1) Parameter estimates for generic data.
expect(func, df, nc, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the
distribution.

median(df, nc, loc=0, scale=1) Median of the distribution.
mean(df, nc, loc=0, scale=1) Mean of the distribution.
var(df, nc, loc=0, scale=1) Variance of the distribution.
std(df, nc, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, df, nc, loc=0, scale=1) Endpoints of the range that contains

alpha percent of the distribution

scipy.stats.norm = <scipy.stats._continuous_distns.norm_gen object at 0x7fa40ebcf8d0>
A normal continuous random variable.

1344 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The location (loc) keyword specifies the mean. The scale (scale) keyword specifies the standard deviation.

As an instance of the rv_continuous class, norm object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for norm is:

norm.pdf(x) = exp(-x**2/2)/sqrt(2*pi)

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, norm.pdf(x, loc, scale) is identically equivalent to
norm.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import norm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = norm.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(norm.ppf(0.01),
... norm.ppf(0.99), 100)
>>> ax.plot(x, norm.pdf(x),
... 'r-', lw=5, alpha=0.6, label='norm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = norm()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = norm.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], norm.cdf(vals))
True

Generate random numbers:

>>> r = norm.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1345

SciPy Reference Guide, Release 0.16.0

4 3 2 1 0 1 2 3 4
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

norm pdf
frozen pdf

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.pareto = <scipy.stats._continuous_distns.pareto_gen object at 0x7fa40e95d6d0>
A Pareto continuous random variable.

As an instance of the rv_continuous class, pareto object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

1346 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for pareto is:

pareto.pdf(x, b) = b / x**(b+1)

for x >= 1, b > 0.

pareto takes b as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, pareto.pdf(x, b, loc, scale) is identically equivalent to
pareto.pdf(y, b) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import pareto
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> b = 2.62
>>> mean, var, skew, kurt = pareto.stats(b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(pareto.ppf(0.01, b),
... pareto.ppf(0.99, b), 100)
>>> ax.plot(x, pareto.pdf(x, b),
... 'r-', lw=5, alpha=0.6, label='pareto pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = pareto(b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = pareto.ppf([0.001, 0.5, 0.999], b)
>>> np.allclose([0.001, 0.5, 0.999], pareto.cdf(vals, b))
True

Generate random numbers:

>>> r = pareto.rvs(b, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1347

SciPy Reference Guide, Release 0.16.0

0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

2.5

3.0
pareto pdf
frozen pdf

Methods

rvs(b, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, b, loc=0, scale=1) Probability density function.
logpdf(x, b, loc=0, scale=1) Log of the probability density function.
cdf(x, b, loc=0, scale=1) Cumulative density function.
logcdf(x, b, loc=0, scale=1) Log of the cumulative density function.
sf(x, b, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, b, loc=0, scale=1) Log of the survival function.
ppf(q, b, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, b, loc=0, scale=1) Non-central moment of order n
stats(b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, b, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(b, loc=0, scale=1) Median of the distribution.
mean(b, loc=0, scale=1) Mean of the distribution.
var(b, loc=0, scale=1) Variance of the distribution.
std(b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.pearson3 = <scipy.stats._continuous_distns.pearson3_gen object at 0x7fa40e95dc90>
A pearson type III continuous random variable.

As an instance of the rv_continuous class, pearson3 object inherits from it a collection of generic meth-
ods (see below for the full list), and completes them with details specific for this particular distribution.

1348 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for pearson3 is:

pearson3.pdf(x, skew) = abs(beta) / gamma(alpha) *
(beta * (x - zeta))**(alpha - 1) * exp(-beta*(x - zeta))

where:

beta = 2 / (skew * stddev)
alpha = (stddev * beta)**2
zeta = loc - alpha / beta

pearson3 takes skew as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, pearson3.pdf(x, skew, loc, scale) is identically
equivalent to pearson3.pdf(y, skew) / scale with y = (x - loc) / scale.

References

R.W. Vogel and D.E. McMartin, “Probability Plot Goodness-of-Fit and Skewness Estimation Procedures for the
Pearson Type 3 Distribution”, Water Resources Research, Vol.27, 3149-3158 (1991).

L.R. Salvosa, “Tables of Pearson’s Type III Function”, Ann. Math. Statist., Vol.1, 191-198 (1930).

“Using Modern Computing Tools to Fit the Pearson Type III Distribution to Aviation Loads Data”, Office of
Aviation Research (2003).

Examples

>>> from scipy.stats import pearson3
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> skew = 0.1
>>> mean, var, skew, kurt = pearson3.stats(skew, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(pearson3.ppf(0.01, skew),
... pearson3.ppf(0.99, skew), 100)
>>> ax.plot(x, pearson3.pdf(x, skew),
... 'r-', lw=5, alpha=0.6, label='pearson3 pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = pearson3(skew)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

5.34. Statistical functions (scipy.stats) 1349

SciPy Reference Guide, Release 0.16.0

>>> vals = pearson3.ppf([0.001, 0.5, 0.999], skew)
>>> np.allclose([0.001, 0.5, 0.999], pearson3.cdf(vals, skew))
True

Generate random numbers:

>>> r = pearson3.rvs(skew, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

4 3 2 1 0 1 2 3 4
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

pearson3 pdf
frozen pdf

1350 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(skew, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, skew, loc=0, scale=1) Probability density function.
logpdf(x, skew, loc=0, scale=1) Log of the probability density function.
cdf(x, skew, loc=0, scale=1) Cumulative density function.
logcdf(x, skew, loc=0, scale=1) Log of the cumulative density function.
sf(x, skew, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, skew, loc=0, scale=1) Log of the survival function.
ppf(q, skew, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, skew, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, skew, loc=0, scale=1) Non-central moment of order n
stats(skew, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(skew, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, skew, loc=0, scale=1) Parameter estimates for generic data.
expect(func, skew, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(skew, loc=0, scale=1) Median of the distribution.
mean(skew, loc=0, scale=1) Mean of the distribution.
var(skew, loc=0, scale=1) Variance of the distribution.
std(skew, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, skew, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.powerlaw = <scipy.stats._continuous_distns.powerlaw_gen object at 0x7fa40e95df50>
A power-function continuous random variable.

As an instance of the rv_continuous class, powerlaw object inherits from it a collection of generic meth-
ods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for powerlaw is:

powerlaw.pdf(x, a) = a * x**(a-1)

for 0 <= x <= 1, a > 0.

powerlaw takes a as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, powerlaw.pdf(x, a, loc, scale) is identically equivalent
to powerlaw.pdf(y, a) / scale with y = (x - loc) / scale.

powerlaw is a special case of beta with b == 1.

Examples

>>> from scipy.stats import powerlaw
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

5.34. Statistical functions (scipy.stats) 1351

SciPy Reference Guide, Release 0.16.0

Calculate a few first moments:

>>> a = 1.66
>>> mean, var, skew, kurt = powerlaw.stats(a, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(powerlaw.ppf(0.01, a),
... powerlaw.ppf(0.99, a), 100)
>>> ax.plot(x, powerlaw.pdf(x, a),
... 'r-', lw=5, alpha=0.6, label='powerlaw pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = powerlaw(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = powerlaw.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], powerlaw.cdf(vals, a))
True

Generate random numbers:

>>> r = powerlaw.rvs(a, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

powerlaw pdf
frozen pdf

1352 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(a, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, a, loc=0, scale=1) Probability density function.
logpdf(x, a, loc=0, scale=1) Log of the probability density function.
cdf(x, a, loc=0, scale=1) Cumulative density function.
logcdf(x, a, loc=0, scale=1) Log of the cumulative density function.
sf(x, a, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, a, loc=0, scale=1) Log of the survival function.
ppf(q, a, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, a, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, loc=0, scale=1) Non-central moment of order n
stats(a, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(a, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, loc=0, scale=1) Parameter estimates for generic data.
expect(func, a, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(a, loc=0, scale=1) Median of the distribution.
mean(a, loc=0, scale=1) Mean of the distribution.
var(a, loc=0, scale=1) Variance of the distribution.
std(a, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.powerlognorm = <scipy.stats._continuous_distns.powerlognorm_gen object at 0x7fa40e965250>
A power log-normal continuous random variable.

As an instance of the rv_continuous class, powerlognorm object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for powerlognorm is:

powerlognorm.pdf(x, c, s) = c / (x*s) * phi(log(x)/s) *
(Phi(-log(x)/s))**(c-1),

where phi is the normal pdf, and Phi is the normal cdf, and x > 0, s, c > 0.

powerlognorm takes c and s as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, powerlognorm.pdf(x, c, s, loc, scale) is identically
equivalent to powerlognorm.pdf(y, c, s) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import powerlognorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

5.34. Statistical functions (scipy.stats) 1353

SciPy Reference Guide, Release 0.16.0

>>> c, s = 2.14, 0.446
>>> mean, var, skew, kurt = powerlognorm.stats(c, s, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(powerlognorm.ppf(0.01, c, s),
... powerlognorm.ppf(0.99, c, s), 100)
>>> ax.plot(x, powerlognorm.pdf(x, c, s),
... 'r-', lw=5, alpha=0.6, label='powerlognorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = powerlognorm(c, s)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = powerlognorm.ppf([0.001, 0.5, 0.999], c, s)
>>> np.allclose([0.001, 0.5, 0.999], powerlognorm.cdf(vals, c, s))
True

Generate random numbers:

>>> r = powerlognorm.rvs(c, s, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.5 1.0 1.5 2.0 2.5
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

powerlognorm pdf
frozen pdf

1354 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(c, s, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, s, loc=0, scale=1) Probability density function.
logpdf(x, c, s, loc=0, scale=1) Log of the probability density function.
cdf(x, c, s, loc=0, scale=1) Cumulative density function.
logcdf(x, c, s, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, s, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, s, loc=0, scale=1) Log of the survival function.
ppf(q, c, s, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, s, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, s, loc=0, scale=1) Non-central moment of order n
stats(c, s, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, s, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, s, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, s, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, s, loc=0, scale=1) Median of the distribution.
mean(c, s, loc=0, scale=1) Mean of the distribution.
var(c, s, loc=0, scale=1) Variance of the distribution.
std(c, s, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, s, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.powernorm = <scipy.stats._continuous_distns.powernorm_gen object at 0x7fa40e965590>
A power normal continuous random variable.

As an instance of the rv_continuous class, powernorm object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for powernorm is:

powernorm.pdf(x, c) = c * phi(x) * (Phi(-x))**(c-1)

where phi is the normal pdf, and Phi is the normal cdf, and x > 0, c > 0.

powernorm takes c as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution
use the loc and scale parameters. Specifically, powernorm.pdf(x, c, loc, scale) is identically
equivalent to powernorm.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import powernorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

5.34. Statistical functions (scipy.stats) 1355

SciPy Reference Guide, Release 0.16.0

>>> c = 4.45
>>> mean, var, skew, kurt = powernorm.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(powernorm.ppf(0.01, c),
... powernorm.ppf(0.99, c), 100)
>>> ax.plot(x, powernorm.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='powernorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = powernorm(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = powernorm.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], powernorm.cdf(vals, c))
True

Generate random numbers:

>>> r = powernorm.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5 4 3 2 1 0 1
0.0

0.1

0.2

0.3

0.4

0.5

0.6
powernorm pdf
frozen pdf

1356 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.rdist = <scipy.stats._continuous_distns.rdist_gen object at 0x7fa40e965850>
An R-distributed continuous random variable.

As an instance of the rv_continuous class, rdist object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for rdist is:

rdist.pdf(x, c) = (1-x**2)**(c/2-1) / B(1/2, c/2)

for -1 <= x <= 1, c > 0.

rdist takes c as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, rdist.pdf(x, c, loc, scale) is identically equivalent
to rdist.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import rdist
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

5.34. Statistical functions (scipy.stats) 1357

SciPy Reference Guide, Release 0.16.0

>>> c = 0.9
>>> mean, var, skew, kurt = rdist.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(rdist.ppf(0.01, c),
... rdist.ppf(0.99, c), 100)
>>> ax.plot(x, rdist.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='rdist pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = rdist(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = rdist.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], rdist.cdf(vals, c))
True

Generate random numbers:

>>> r = rdist.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

1.0 0.5 0.0 0.5 1.0
0

5

10

15

20

25
rdist pdf
frozen pdf

1358 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.reciprocal = <scipy.stats._continuous_distns.reciprocal_gen object at 0x7fa40e965d10>
A reciprocal continuous random variable.

As an instance of the rv_continuous class, reciprocal object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for reciprocal is:

reciprocal.pdf(x, a, b) = 1 / (x*log(b/a))

for a <= x <= b, a, b > 0.

reciprocal takes a and b as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, reciprocal.pdf(x, a, b, loc, scale) is identically
equivalent to reciprocal.pdf(y, a, b) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import reciprocal
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

5.34. Statistical functions (scipy.stats) 1359

SciPy Reference Guide, Release 0.16.0

>>> a, b = 0.00623, 1.01
>>> mean, var, skew, kurt = reciprocal.stats(a, b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(reciprocal.ppf(0.01, a, b),
... reciprocal.ppf(0.99, a, b), 100)
>>> ax.plot(x, reciprocal.pdf(x, a, b),
... 'r-', lw=5, alpha=0.6, label='reciprocal pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = reciprocal(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = reciprocal.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], reciprocal.cdf(vals, a, b))
True

Generate random numbers:

>>> r = reciprocal.rvs(a, b, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

5

10

15

20

25

30
reciprocal pdf
frozen pdf

1360 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(a, b, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, a, b, loc=0, scale=1) Probability density function.
logpdf(x, a, b, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, loc=0, scale=1) Cumulative density function.
logcdf(x, a, b, loc=0, scale=1) Log of the cumulative density function.
sf(x, a, b, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, a, b, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, a, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, b, loc=0, scale=1) Non-central moment of order n
stats(a, b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(a, b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, a, b, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(a, b, loc=0, scale=1) Median of the distribution.
mean(a, b, loc=0, scale=1) Mean of the distribution.
var(a, b, loc=0, scale=1) Variance of the distribution.
std(a, b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.rayleigh = <scipy.stats._continuous_distns.rayleigh_gen object at 0x7fa40e965b10>
A Rayleigh continuous random variable.

As an instance of the rv_continuous class, rayleigh object inherits from it a collection of generic meth-
ods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for rayleigh is:

rayleigh.pdf(r) = r * exp(-r**2/2)

for x >= 0.

rayleigh is a special case of chi with df == 2.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, rayleigh.pdf(x, loc, scale) is identically equivalent
to rayleigh.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import rayleigh
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

5.34. Statistical functions (scipy.stats) 1361

SciPy Reference Guide, Release 0.16.0

>>> mean, var, skew, kurt = rayleigh.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(rayleigh.ppf(0.01),
... rayleigh.ppf(0.99), 100)
>>> ax.plot(x, rayleigh.pdf(x),
... 'r-', lw=5, alpha=0.6, label='rayleigh pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = rayleigh()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = rayleigh.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], rayleigh.cdf(vals))
True

Generate random numbers:

>>> r = rayleigh.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
rayleigh pdf
frozen pdf

1362 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.rice = <scipy.stats._continuous_distns.rice_gen object at 0x7fa40e975090>
A Rice continuous random variable.

As an instance of the rv_continuous class, rice object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for rice is:

rice.pdf(x, b) = x * exp(-(x**2+b**2)/2) * I[0](x*b)

for x > 0, b > 0.

rice takes b as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, rice.pdf(x, b, loc, scale) is identically equivalent
to rice.pdf(y, b) / scale with y = (x - loc) / scale.

The Rice distribution describes the length, r, of a 2-D vector with components (U+u, V+v), where U, V
are constant, u, v are independent Gaussian random variables with standard deviation s. Let R = (U**2 +
V**2)**0.5. Then the pdf of r is rice.pdf(x, R/s, scale=s).

Examples

>>> from scipy.stats import rice
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

5.34. Statistical functions (scipy.stats) 1363

SciPy Reference Guide, Release 0.16.0

Calculate a few first moments:

>>> b = 0.775
>>> mean, var, skew, kurt = rice.stats(b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(rice.ppf(0.01, b),
... rice.ppf(0.99, b), 100)
>>> ax.plot(x, rice.pdf(x, b),
... 'r-', lw=5, alpha=0.6, label='rice pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = rice(b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = rice.ppf([0.001, 0.5, 0.999], b)
>>> np.allclose([0.001, 0.5, 0.999], rice.cdf(vals, b))
True

Generate random numbers:

>>> r = rice.rvs(b, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6
rice pdf
frozen pdf

1364 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(b, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, b, loc=0, scale=1) Probability density function.
logpdf(x, b, loc=0, scale=1) Log of the probability density function.
cdf(x, b, loc=0, scale=1) Cumulative density function.
logcdf(x, b, loc=0, scale=1) Log of the cumulative density function.
sf(x, b, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, b, loc=0, scale=1) Log of the survival function.
ppf(q, b, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, b, loc=0, scale=1) Non-central moment of order n
stats(b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, b, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(b, loc=0, scale=1) Median of the distribution.
mean(b, loc=0, scale=1) Mean of the distribution.
var(b, loc=0, scale=1) Variance of the distribution.
std(b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.recipinvgauss = <scipy.stats._continuous_distns.recipinvgauss_gen object at 0x7fa40e975350>
A reciprocal inverse Gaussian continuous random variable.

As an instance of the rv_continuous class, recipinvgauss object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for recipinvgauss is:

recipinvgauss.pdf(x, mu) = 1/sqrt(2*pi*x) * exp(-(1-mu*x)**2/(2*x*mu**2))

for x >= 0.

recipinvgauss takes mu as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, recipinvgauss.pdf(x, mu, loc, scale) is identically
equivalent to recipinvgauss.pdf(y, mu) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import recipinvgauss
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

5.34. Statistical functions (scipy.stats) 1365

SciPy Reference Guide, Release 0.16.0

>>> mu = 0.63
>>> mean, var, skew, kurt = recipinvgauss.stats(mu, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(recipinvgauss.ppf(0.01, mu),
... recipinvgauss.ppf(0.99, mu), 100)
>>> ax.plot(x, recipinvgauss.pdf(x, mu),
... 'r-', lw=5, alpha=0.6, label='recipinvgauss pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = recipinvgauss(mu)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = recipinvgauss.ppf([0.001, 0.5, 0.999], mu)
>>> np.allclose([0.001, 0.5, 0.999], recipinvgauss.cdf(vals, mu))
True

Generate random numbers:

>>> r = recipinvgauss.rvs(mu, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0 2 4 6 8 10 12 14 16
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
recipinvgauss pdf
frozen pdf

1366 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(mu, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, mu, loc=0, scale=1) Probability density function.
logpdf(x, mu, loc=0, scale=1) Log of the probability density function.
cdf(x, mu, loc=0, scale=1) Cumulative density function.
logcdf(x, mu, loc=0, scale=1) Log of the cumulative density function.
sf(x, mu, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, mu, loc=0, scale=1) Log of the survival function.
ppf(q, mu, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, mu, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, mu, loc=0, scale=1) Non-central moment of order n
stats(mu, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(mu, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, mu, loc=0, scale=1) Parameter estimates for generic data.
expect(func, mu, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(mu, loc=0, scale=1) Median of the distribution.
mean(mu, loc=0, scale=1) Mean of the distribution.
var(mu, loc=0, scale=1) Variance of the distribution.
std(mu, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, mu, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.semicircular = <scipy.stats._continuous_distns.semicircular_gen object at 0x7fa40e975610>
A semicircular continuous random variable.

As an instance of the rv_continuous class, semicircular object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for semicircular is:

semicircular.pdf(x) = 2/pi * sqrt(1-x**2)

for -1 <= x <= 1.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution
use the loc and scale parameters. Specifically, semicircular.pdf(x, loc, scale) is identically
equivalent to semicircular.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import semicircular
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = semicircular.stats(moments='mvsk')

5.34. Statistical functions (scipy.stats) 1367

SciPy Reference Guide, Release 0.16.0

Display the probability density function (pdf):

>>> x = np.linspace(semicircular.ppf(0.01),
... semicircular.ppf(0.99), 100)
>>> ax.plot(x, semicircular.pdf(x),
... 'r-', lw=5, alpha=0.6, label='semicircular pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = semicircular()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = semicircular.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], semicircular.cdf(vals))
True

Generate random numbers:

>>> r = semicircular.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

1.0 0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

semicircular pdf
frozen pdf

1368 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.t = <scipy.stats._continuous_distns.t_gen object at 0x7fa40e95d090>
A Student’s T continuous random variable.

As an instance of the rv_continuous class, t object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for t is:

gamma((df+1)/2)
t.pdf(x, df) = ---

sqrt(pi*df) * gamma(df/2) * (1+x**2/df)**((df+1)/2)

for df > 0.

t takes df as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, t.pdf(x, df, loc, scale) is identically equivalent to
t.pdf(y, df) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import t
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

5.34. Statistical functions (scipy.stats) 1369

SciPy Reference Guide, Release 0.16.0

>>> df = 2.74
>>> mean, var, skew, kurt = t.stats(df, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(t.ppf(0.01, df),
... t.ppf(0.99, df), 100)
>>> ax.plot(x, t.pdf(x, df),
... 'r-', lw=5, alpha=0.6, label='t pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = t(df)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = t.ppf([0.001, 0.5, 0.999], df)
>>> np.allclose([0.001, 0.5, 0.999], t.cdf(vals, df))
True

Generate random numbers:

>>> r = t.rvs(df, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

10 5 0 5 10 15 20 25
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

t pdf
frozen pdf

1370 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(df, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, df, loc=0, scale=1) Probability density function.
logpdf(x, df, loc=0, scale=1) Log of the probability density function.
cdf(x, df, loc=0, scale=1) Cumulative density function.
logcdf(x, df, loc=0, scale=1) Log of the cumulative density function.
sf(x, df, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, df, loc=0, scale=1) Log of the survival function.
ppf(q, df, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, df, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, df, loc=0, scale=1) Non-central moment of order n
stats(df, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(df, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, df, loc=0, scale=1) Parameter estimates for generic data.
expect(func, df, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(df, loc=0, scale=1) Median of the distribution.
mean(df, loc=0, scale=1) Mean of the distribution.
var(df, loc=0, scale=1) Variance of the distribution.
std(df, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, df, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.triang = <scipy.stats._continuous_distns.triang_gen object at 0x7fa40e975810>
A triangular continuous random variable.

As an instance of the rv_continuous class, triang object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The triangular distribution can be represented with an up-sloping line from loc to (loc + c*scale) and
then downsloping for (loc + c*scale) to (loc+scale).

triang takes c as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, triang.pdf(x, c, loc, scale) is identically equivalent to
triang.pdf(y, c) / scale with y = (x - loc) / scale.

The standard form is in the range [0, 1] with c the mode. The location parameter shifts the start to loc. The scale
parameter changes the width from 1 to scale.

Examples

>>> from scipy.stats import triang
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

5.34. Statistical functions (scipy.stats) 1371

SciPy Reference Guide, Release 0.16.0

>>> c = 0.158
>>> mean, var, skew, kurt = triang.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(triang.ppf(0.01, c),
... triang.ppf(0.99, c), 100)
>>> ax.plot(x, triang.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='triang pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = triang(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = triang.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], triang.cdf(vals, c))
True

Generate random numbers:

>>> r = triang.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0
triang pdf
frozen pdf

1372 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.truncexpon = <scipy.stats._continuous_distns.truncexpon_gen object at 0x7fa40e975ad0>
A truncated exponential continuous random variable.

As an instance of the rv_continuous class, truncexpon object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for truncexpon is:

truncexpon.pdf(x, b) = exp(-x) / (1-exp(-b))

for 0 < x < b.

truncexpon takes b as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, truncexpon.pdf(x, b, loc, scale) is identically
equivalent to truncexpon.pdf(y, b) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import truncexpon
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

5.34. Statistical functions (scipy.stats) 1373

SciPy Reference Guide, Release 0.16.0

>>> b = 4.69
>>> mean, var, skew, kurt = truncexpon.stats(b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(truncexpon.ppf(0.01, b),
... truncexpon.ppf(0.99, b), 100)
>>> ax.plot(x, truncexpon.pdf(x, b),
... 'r-', lw=5, alpha=0.6, label='truncexpon pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = truncexpon(b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = truncexpon.ppf([0.001, 0.5, 0.999], b)
>>> np.allclose([0.001, 0.5, 0.999], truncexpon.cdf(vals, b))
True

Generate random numbers:

>>> r = truncexpon.rvs(b, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
truncexpon pdf
frozen pdf

1374 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(b, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, b, loc=0, scale=1) Probability density function.
logpdf(x, b, loc=0, scale=1) Log of the probability density function.
cdf(x, b, loc=0, scale=1) Cumulative density function.
logcdf(x, b, loc=0, scale=1) Log of the cumulative density function.
sf(x, b, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, b, loc=0, scale=1) Log of the survival function.
ppf(q, b, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, b, loc=0, scale=1) Non-central moment of order n
stats(b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, b, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(b, loc=0, scale=1) Median of the distribution.
mean(b, loc=0, scale=1) Mean of the distribution.
var(b, loc=0, scale=1) Variance of the distribution.
std(b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.truncnorm = <scipy.stats._continuous_distns.truncnorm_gen object at 0x7fa40e975d90>
A truncated normal continuous random variable.

As an instance of the rv_continuous class, truncnorm object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The standard form of this distribution is a standard normal truncated to the range [a, b] — notice that a and b
are defined over the domain of the standard normal. To convert clip values for a specific mean and standard
deviation, use:

a, b = (myclip_a - my_mean) / my_std, (myclip_b - my_mean) / my_std

truncnorm takes a and b as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, truncnorm.pdf(x, a, b, loc, scale) is identically
equivalent to truncnorm.pdf(y, a, b) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import truncnorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

5.34. Statistical functions (scipy.stats) 1375

SciPy Reference Guide, Release 0.16.0

>>> a, b = 0.1, 2
>>> mean, var, skew, kurt = truncnorm.stats(a, b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(truncnorm.ppf(0.01, a, b),
... truncnorm.ppf(0.99, a, b), 100)
>>> ax.plot(x, truncnorm.pdf(x, a, b),
... 'r-', lw=5, alpha=0.6, label='truncnorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = truncnorm(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = truncnorm.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], truncnorm.cdf(vals, a, b))
True

Generate random numbers:

>>> r = truncnorm.rvs(a, b, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
truncnorm pdf
frozen pdf

1376 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(a, b, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, a, b, loc=0, scale=1) Probability density function.
logpdf(x, a, b, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, loc=0, scale=1) Cumulative density function.
logcdf(x, a, b, loc=0, scale=1) Log of the cumulative density function.
sf(x, a, b, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, a, b, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, a, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, b, loc=0, scale=1) Non-central moment of order n
stats(a, b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(a, b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, a, b, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(a, b, loc=0, scale=1) Median of the distribution.
mean(a, b, loc=0, scale=1) Mean of the distribution.
var(a, b, loc=0, scale=1) Variance of the distribution.
std(a, b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.tukeylambda = <scipy.stats._continuous_distns.tukeylambda_gen object at 0x7fa40e8fd110>
A Tukey-Lamdba continuous random variable.

As an instance of the rv_continuous class, tukeylambda object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

A flexible distribution, able to represent and interpolate between the following distributions:
•Cauchy (lam=-1)
•logistic (lam=0.0)
•approx Normal (lam=0.14)
•u-shape (lam = 0.5)
•uniform from -1 to 1 (lam = 1)

tukeylambda takes lam as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, tukeylambda.pdf(x, lam, loc, scale) is identically
equivalent to tukeylambda.pdf(y, lam) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import tukeylambda
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

5.34. Statistical functions (scipy.stats) 1377

SciPy Reference Guide, Release 0.16.0

>>> lam = 3.13
>>> mean, var, skew, kurt = tukeylambda.stats(lam, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(tukeylambda.ppf(0.01, lam),
... tukeylambda.ppf(0.99, lam), 100)
>>> ax.plot(x, tukeylambda.pdf(x, lam),
... 'r-', lw=5, alpha=0.6, label='tukeylambda pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = tukeylambda(lam)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = tukeylambda.ppf([0.001, 0.5, 0.999], lam)
>>> np.allclose([0.001, 0.5, 0.999], tukeylambda.cdf(vals, lam))
True

Generate random numbers:

>>> r = tukeylambda.rvs(lam, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
0.0

0.5

1.0

1.5

2.0

2.5

tukeylambda pdf
frozen pdf

1378 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(lam, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, lam, loc=0, scale=1) Probability density function.
logpdf(x, lam, loc=0, scale=1) Log of the probability density function.
cdf(x, lam, loc=0, scale=1) Cumulative density function.
logcdf(x, lam, loc=0, scale=1) Log of the cumulative density function.
sf(x, lam, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, lam, loc=0, scale=1) Log of the survival function.
ppf(q, lam, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, lam, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, lam, loc=0, scale=1) Non-central moment of order n
stats(lam, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(lam, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, lam, loc=0, scale=1) Parameter estimates for generic data.
expect(func, lam, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(lam, loc=0, scale=1) Median of the distribution.
mean(lam, loc=0, scale=1) Mean of the distribution.
var(lam, loc=0, scale=1) Variance of the distribution.
std(lam, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, lam, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.uniform = <scipy.stats._continuous_distns.uniform_gen object at 0x7fa40e8fd3d0>
A uniform continuous random variable.

This distribution is constant between loc and loc + scale.

As an instance of the rv_continuous class, uniform object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Examples

>>> from scipy.stats import uniform
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = uniform.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(uniform.ppf(0.01),
... uniform.ppf(0.99), 100)
>>> ax.plot(x, uniform.pdf(x),
... 'r-', lw=5, alpha=0.6, label='uniform pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

5.34. Statistical functions (scipy.stats) 1379

SciPy Reference Guide, Release 0.16.0

Freeze the distribution and display the frozen pdf:

>>> rv = uniform()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = uniform.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], uniform.cdf(vals))
True

Generate random numbers:

>>> r = uniform.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

uniform pdf
frozen pdf

1380 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.vonmises = <scipy.stats._continuous_distns.vonmises_gen object at 0x7fa40e8fd5d0>
A Von Mises continuous random variable.

As an instance of the rv_continuous class, vonmises object inherits from it a collection of generic meth-
ods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

vonmises_line
The same distribution, defined on a [-pi, pi] segment of the real line.

Notes

If x is not in range or loc is not in range it assumes they are angles and converts them to [-pi, pi] equivalents.

The probability density function for vonmises is:

vonmises.pdf(x, kappa) = exp(kappa * cos(x)) / (2*pi*I[0](kappa))

for -pi <= x <= pi, kappa > 0.

vonmises takes kappa as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, vonmises.pdf(x, kappa, loc, scale) is identically
equivalent to vonmises.pdf(y, kappa) / scale with y = (x - loc) / scale.

5.34. Statistical functions (scipy.stats) 1381

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.stats import vonmises
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> kappa = 3.99
>>> mean, var, skew, kurt = vonmises.stats(kappa, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(vonmises.ppf(0.01, kappa),
... vonmises.ppf(0.99, kappa), 100)
>>> ax.plot(x, vonmises.pdf(x, kappa),
... 'r-', lw=5, alpha=0.6, label='vonmises pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = vonmises(kappa)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = vonmises.ppf([0.001, 0.5, 0.999], kappa)
>>> np.allclose([0.001, 0.5, 0.999], vonmises.cdf(vals, kappa))
True

Generate random numbers:

>>> r = vonmises.rvs(kappa, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

1382 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

vonmises pdf
frozen pdf

Methods

rvs(kappa, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, kappa, loc=0, scale=1) Probability density function.
logpdf(x, kappa, loc=0, scale=1) Log of the probability density function.
cdf(x, kappa, loc=0, scale=1) Cumulative density function.
logcdf(x, kappa, loc=0, scale=1) Log of the cumulative density function.
sf(x, kappa, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, kappa, loc=0, scale=1) Log of the survival function.
ppf(q, kappa, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, kappa, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, kappa, loc=0, scale=1) Non-central moment of order n
stats(kappa, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(kappa, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, kappa, loc=0, scale=1) Parameter estimates for generic data.
expect(func, kappa, loc=0, scale=1,
lb=None, ub=None, conditional=False,

**kwds)

Expected value of a function (of one
argument) with respect to the
distribution.

median(kappa, loc=0, scale=1) Median of the distribution.
mean(kappa, loc=0, scale=1) Mean of the distribution.
var(kappa, loc=0, scale=1) Variance of the distribution.
std(kappa, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, kappa, loc=0, scale=1) Endpoints of the range that contains

alpha percent of the distribution

scipy.stats.wald = <scipy.stats._continuous_distns.wald_gen object at 0x7fa40e8fdb10>
A Wald continuous random variable.

As an instance of the rv_continuous class, wald object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

5.34. Statistical functions (scipy.stats) 1383

SciPy Reference Guide, Release 0.16.0

Notes

The probability density function for wald is:

wald.pdf(x) = 1/sqrt(2*pi*x**3) * exp(-(x-1)**2/(2*x))

for x > 0.

wald is a special case of invgauss with mu == 1.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, wald.pdf(x, loc, scale) is identically equivalent to
wald.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import wald
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = wald.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(wald.ppf(0.01),
... wald.ppf(0.99), 100)
>>> ax.plot(x, wald.pdf(x),
... 'r-', lw=5, alpha=0.6, label='wald pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = wald()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = wald.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], wald.cdf(vals))
True

Generate random numbers:

>>> r = wald.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

1384 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

1.2
wald pdf
frozen pdf

Methods

rvs(loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative density function.
logcdf(x, loc=0, scale=1) Log of the cumulative density function.
sf(x, loc=0, scale=1) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.weibull_min = <scipy.stats._continuous_distns.frechet_r_gen object at 0x7fa40e97ead0>
A Frechet right (or Weibull minimum) continuous random variable.

As an instance of the rv_continuous class, weibull_min object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

weibull_min

5.34. Statistical functions (scipy.stats) 1385

SciPy Reference Guide, Release 0.16.0

The same distribution as frechet_r.

frechet_l, weibull_max

Notes

The probability density function for frechet_r is:

frechet_r.pdf(x, c) = c * x**(c-1) * exp(-x**c)

for x > 0, c > 0.

frechet_r takes c as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, weibull_min.pdf(x, c, loc, scale) is identically
equivalent to weibull_min.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import weibull_min
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 1.79
>>> mean, var, skew, kurt = weibull_min.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(weibull_min.ppf(0.01, c),
... weibull_min.ppf(0.99, c), 100)
>>> ax.plot(x, weibull_min.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='weibull_min pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = weibull_min(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = weibull_min.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], weibull_min.cdf(vals, c))
True

Generate random numbers:

>>> r = weibull_min.rvs(c, size=1000)

And compare the histogram:

1386 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

weibull_min pdf
frozen pdf

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.weibull_max = <scipy.stats._continuous_distns.frechet_l_gen object at 0x7fa40e987050>
A Frechet left (or Weibull maximum) continuous random variable.

As an instance of the rv_continuous class, weibull_max object inherits from it a collection of generic

5.34. Statistical functions (scipy.stats) 1387

SciPy Reference Guide, Release 0.16.0

methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

weibull_max
The same distribution as frechet_l.

frechet_r, weibull_min

Notes

The probability density function for frechet_l is:

frechet_l.pdf(x, c) = c * (-x)**(c-1) * exp(-(-x)**c)

for x < 0, c > 0.

frechet_l takes c as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, weibull_max.pdf(x, c, loc, scale) is identically
equivalent to weibull_max.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import weibull_max
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 2.87
>>> mean, var, skew, kurt = weibull_max.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(weibull_max.ppf(0.01, c),
... weibull_max.ppf(0.99, c), 100)
>>> ax.plot(x, weibull_max.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='weibull_max pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = weibull_max(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = weibull_max.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], weibull_max.cdf(vals, c))
True

Generate random numbers:

>>> r = weibull_max.rvs(c, size=1000)

1388 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

2.5 2.0 1.5 1.0 0.5 0.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2
weibull_max pdf
frozen pdf

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.wrapcauchy = <scipy.stats._continuous_distns.wrapcauchy_gen object at 0x7fa40e8fdd10>

5.34. Statistical functions (scipy.stats) 1389

SciPy Reference Guide, Release 0.16.0

A wrapped Cauchy continuous random variable.

As an instance of the rv_continuous class, wrapcauchy object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for wrapcauchy is:

wrapcauchy.pdf(x, c) = (1-c**2) / (2*pi*(1+c**2-2*c*cos(x)))

for 0 <= x <= 2*pi, 0 < c < 1.

wrapcauchy takes c as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, wrapcauchy.pdf(x, c, loc, scale) is identically
equivalent to wrapcauchy.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import wrapcauchy
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 0.0311
>>> mean, var, skew, kurt = wrapcauchy.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(wrapcauchy.ppf(0.01, c),
... wrapcauchy.ppf(0.99, c), 100)
>>> ax.plot(x, wrapcauchy.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='wrapcauchy pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = wrapcauchy(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = wrapcauchy.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], wrapcauchy.cdf(vals, c))
True

Generate random numbers:

>>> r = wrapcauchy.rvs(c, size=1000)

And compare the histogram:

1390 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0 1 2 3 4 5 6 7
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

wrapcauchy pdf
frozen pdf

Methods

rvs(c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative density function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative density function.
sf(x, c, loc=0, scale=1) Survival function (1 - cdf —

sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf —

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’),

and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

5.34. Statistical functions (scipy.stats) 1391

SciPy Reference Guide, Release 0.16.0

5.34.2 Multivariate distributions

multivariate_normal A multivariate normal random variable.
dirichlet A Dirichlet random variable.
wishart A Wishart random variable.
invwishart An inverse Wishart random variable.

scipy.stats.multivariate_normal = <scipy.stats._multivariate.multivariate_normal_gen object at 0x7fa40e148e90>
A multivariate normal random variable.

The mean keyword specifies the mean. The cov keyword specifies the covariance matrix.

Parameters x : array_like
Quantiles, with the last axis of x denoting the components.

mean : array_like, optional
Mean of the distribution (default zero)

cov : array_like, optional
Covariance matrix of the distribution (default one)

allow_singular : bool, optional
Whether to allow a singular covariance matrix. (Default: False)

random_state : None or int or np.random.RandomState instance, optional
If int or RandomState, use it for drawing the random variates. If None (or
np.random), the global np.random state is used. Default is None.

Alternatively, the object may be called (as a function) to fix the mean
and covariance parameters, returning a “frozen” multivariate normal
random variable:
rv = multivariate_normal(mean=None, cov=1, allow_singular=False)

•Frozen object with the same methods but holding the given mean and co-
variance fixed.

Notes

Setting the parameter mean to None is equivalent to having mean
be the zero-vector. The parameter cov can be a scalar, in which case the covariance matrix is
the identity times that value, a vector of diagonal entries for the covariance matrix, or a two-
dimensional array_like.

The covariance matrix cov must be a (symmetric) positive semi-definite matrix. The determinant and inverse of
cov are computed as the pseudo-determinant and pseudo-inverse, respectively, so that cov does not need to have
full rank.

The probability density function for multivariate_normal is

𝑓(𝑥) =
1√︀

(2𝜋)𝑘 det Σ
exp

(︂
−1

2
(𝑥− 𝜇)𝑇 Σ−1(𝑥− 𝜇)

)︂
,

where 𝜇 is the mean, Σ the covariance matrix, and 𝑘 is the dimension of the space where 𝑥 takes values.

New in version 0.14.0.

Examples

>>> import matplotlib.pyplot as plt
>>> from scipy.stats import multivariate_normal

1392 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> x = np.linspace(0, 5, 10, endpoint=False)
>>> y = multivariate_normal.pdf(x, mean=2.5, cov=0.5); y
array([0.00108914, 0.01033349, 0.05946514, 0.20755375, 0.43939129,

0.56418958, 0.43939129, 0.20755375, 0.05946514, 0.01033349])
>>> fig1 = plt.figure()
>>> ax = fig1.add_subplot(111)
>>> ax.plot(x, y)

The input quantiles can be any shape of array, as long as the last axis labels the components. This allows us for
instance to display the frozen pdf for a non-isotropic random variable in 2D as follows:

>>> x, y = np.mgrid[-1:1:.01, -1:1:.01]
>>> pos = np.empty(x.shape + (2,))
>>> pos[:, :, 0] = x; pos[:, :, 1] = y
>>> rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]])
>>> fig2 = plt.figure()
>>> ax2 = fig2.add_subplot(111)
>>> ax2.contourf(x, y, rv.pdf(pos))

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

5.34. Statistical functions (scipy.stats) 1393

SciPy Reference Guide, Release 0.16.0

1.0 0.5 0.0 0.5
1.0

0.5

0.0

0.5

Methods

pdf(x, mean=None, cov=1,
allow_singular=False)

Probability density function.

logpdf(x, mean=None, cov=1,
allow_singular=False)

Log of the probability density function.

rvs(mean=None, cov=1, size=1,
random_state=None)

Draw random samples from a multivariate
normal distribution.

entropy() Compute the differential entropy of the
multivariate normal.

scipy.stats.dirichlet = <scipy.stats._multivariate.dirichlet_gen object at 0x7fa40e148fd0>
A Dirichlet random variable.

The alpha keyword specifies the concentration parameters of the distribution.

New in version 0.15.0.

Parameters x : array_like
Quantiles, with the last axis of x denoting the components.

alpha : array_like
The concentration parameters. The number of entries determines the di-
mensionality of the distribution.

random_state : None or int or np.random.RandomState instance, optional
If int or RandomState, use it for drawing the random variates. If None (or
np.random), the global np.random state is used. Default is None.

Alternatively, the object may be called (as a function) to fix
concentration parameters, returning a “frozen” Dirichlet
random variable:
rv = dirichlet(alpha)

•Frozen object with the same methods but holding the given concentration
parameters fixed.

1394 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

Each 𝛼 entry must be positive. The distribution has only support on the simplex defined by

𝐾∑︁
𝑖=1

𝑥𝑖 ≤ 1

The probability density function for dirichlet is

𝑓(𝑥) =
1

B(𝛼)

𝐾∏︁
𝑖=1

𝑥𝛼𝑖−1
𝑖

where

B(𝛼) =

∏︀𝐾
𝑖=1 Γ(𝛼𝑖)

Γ
(︀∑︀𝐾

𝑖=1 𝛼𝑖

)︀
and 𝛼 = (𝛼1, . . . , 𝛼𝐾), the concentration parameters and 𝐾 is the dimension of the space where 𝑥 takes values.

Methods

pdf(x, alpha) Probability density function.
logpdf(x, alpha) Log of the probability density function.
rvs(alpha, size=1,
random_state=None)

Draw random samples from a Dirichlet distribution.

mean(alpha) The mean of the Dirichlet distribution
var(alpha) The variance of the Dirichlet distribution
entropy(alpha) Compute the differential entropy of the multivariate

normal.

scipy.stats.wishart = <scipy.stats._multivariate.wishart_gen object at 0x7fa40e156110>
A Wishart random variable.

The df keyword specifies the degrees of freedom. The scale keyword specifies the scale matrix, which must be
symmetric and positive definite. In this context, the scale matrix is often interpreted in terms of a multivariate
normal precision matrix (the inverse of the covariance matrix).

Parameters x : array_like
Quantiles, with the last axis of x denoting the components.

df : int
Degrees of freedom, must be greater than or equal to dimension of the scale
matrix

scale : array_like
Symmetric positive definite scale matrix of the distribution

random_state : None or int or np.random.RandomState instance, optional
If int or RandomState, use it for drawing the random variates. If None (or
np.random), the global np.random state is used. Default is None.

Alternatively, the object may be called (as a function) to fix the degrees
of freedom and scale parameters, returning a “frozen” Wishart random
variable:
rv = wishart(df=1, scale=1)

•Frozen object with the same methods but holding the given degrees of free-
dom and scale fixed.

See also:

invwishart, chi2

5.34. Statistical functions (scipy.stats) 1395

SciPy Reference Guide, Release 0.16.0

Notes

The scale matrix scale must be a symmetric positive definite matrix. Singular matrices, including the symmetric
positive semi-definite case, are not supported.

The Wishart distribution is often denoted

𝑊𝑝(𝜈,Σ)

where 𝜈 is the degrees of freedom and Σ is the 𝑝× 𝑝 scale matrix.

The probability density function for wishart has support over positive definite matrices 𝑆; if 𝑆 ∼ 𝑊𝑝(𝜈,Σ),
then its PDF is given by:

𝑓(𝑆) =
|𝑆|

𝜈−𝑝−1
2

2
𝜈𝑝
2 |Σ| 𝜈2 Γ𝑝

(︀
𝜈
2

)︀ exp
(︀
−𝑡𝑟(Σ−1𝑆)/2

)︀
If 𝑆 ∼ 𝑊𝑝(𝜈,Σ) (Wishart) then 𝑆−1 ∼ 𝑊−1

𝑝 (𝜈,Σ−1) (inverse Wishart).

If the scale matrix is 1-dimensional and equal to one, then the Wishart distribution 𝑊1(𝜈, 1) collapses to the
𝜒2(𝜈) distribution.

New in version 0.16.0.

References

[R374], [R375]

Examples

>>> import matplotlib.pyplot as plt
>>> from scipy.stats import wishart, chi2
>>> x = np.linspace(1e-5, 8, 100)
>>> w = wishart.pdf(x, df=3, scale=1); w[:5]
array([0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.1929669])
>>> c = chi2.pdf(x, 3); c[:5]
array([0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.1929669])
>>> plt.plot(x, w)

The input quantiles can be any shape of array, as long as the last axis labels the components.

0 1 2 3 4 5 6 7 8
0.00

0.05

0.10

0.15

0.20

0.25

1396 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

pdf(x, df, scale) Probability density function.
logpdf(x, df, scale) Log of the probability density function.
rvs(df, scale, size=1,
random_state=None)

Draw random samples from a Wishart distribution.

entropy() Compute the differential entropy of the Wishart
distribution.

scipy.stats.invwishart = <scipy.stats._multivariate.invwishart_gen object at 0x7fa40e156390>
An inverse Wishart random variable.

The df keyword specifies the degrees of freedom. The scale keyword specifies the scale matrix, which must be
symmetric and positive definite. In this context, the scale matrix is often interpreted in terms of a multivariate
normal covariance matrix.

Parameters x : array_like
Quantiles, with the last axis of x denoting the components.

df : int
Degrees of freedom, must be greater than or equal to dimension of the scale
matrix

scale : array_like
Symmetric positive definite scale matrix of the distribution

random_state : None or int or np.random.RandomState instance, optional
If int or RandomState, use it for drawing the random variates. If None (or
np.random), the global np.random state is used. Default is None.

Alternatively, the object may be called (as a function) to fix the degrees
of freedom and scale parameters, returning a “frozen” inverse Wishart
random variable:
rv = invwishart(df=1, scale=1)

•Frozen object with the same methods but holding the given degrees of free-
dom and scale fixed.

See also:

wishart

Notes

The scale matrix scale must be a symmetric positive definite matrix. Singular matrices, including the symmetric
positive semi-definite case, are not supported.

The inverse Wishart distribution is often denoted

𝑊−1
𝑝 (𝜈,Ψ)

where 𝜈 is the degrees of freedom and Ψ is the 𝑝× 𝑝 scale matrix.

The probability density function for invwishart has support over positive definite matrices 𝑆; if 𝑆 ∼
𝑊−1

𝑝 (𝜈,Σ), then its PDF is given by:

𝑓(𝑆) =
|Σ| 𝜈2

2
𝜈𝑝
2 |𝑆| 𝜈+𝑝+1

2 Γ𝑝

(︀
𝜈
2

)︀ exp
(︀
−𝑡𝑟(Σ𝑆−1)/2

)︀
If 𝑆 ∼ 𝑊−1

𝑝 (𝜈,Ψ) (inverse Wishart) then 𝑆−1 ∼ 𝑊𝑝(𝜈,Ψ−1) (Wishart).

If the scale matrix is 1-dimensional and equal to one, then the inverse Wishart distribution 𝑊1(𝜈, 1) collapses to
the inverse Gamma distribution with parameters shape = 𝜈

2 and scale = 1
2 .

New in version 0.16.0.

5.34. Statistical functions (scipy.stats) 1397

SciPy Reference Guide, Release 0.16.0

References

[R326], [R327]

Examples

>>> import matplotlib.pyplot as plt
>>> from scipy.stats import invwishart, invgamma
>>> x = np.linspace(0.01, 1, 100)
>>> iw = invwishart.pdf(x, df=6, scale=1)
>>> iw[:3]
array([1.20546865e-15, 5.42497807e-06, 4.45813929e-03])
>>> ig = invgamma.pdf(x, 6/2., scale=1./2)
>>> ig[:3]
array([1.20546865e-15, 5.42497807e-06, 4.45813929e-03])
>>> plt.plot(x, iw)

The input quantiles can be any shape of array, as long as the last axis labels the components.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

Methods

pdf(x, df, scale) Probability density function.
logpdf(x, df, scale) Log of the probability density function.
rvs(df, scale, size=1,
random_state=None)

Draw random samples from an inverse Wishart
distribution.

5.34.3 Discrete distributions

bernoulli A Bernoulli discrete random variable.
binom A binomial discrete random variable.
boltzmann A Boltzmann (Truncated Discrete Exponential) random variable.
dlaplace A Laplacian discrete random variable.
geom A geometric discrete random variable.
hypergeom A hypergeometric discrete random variable.

Continued on next page

1398 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.254 – continued from previous page
logser A Logarithmic (Log-Series, Series) discrete random variable.
nbinom A negative binomial discrete random variable.
planck A Planck discrete exponential random variable.
poisson A Poisson discrete random variable.
randint A uniform discrete random variable.
skellam A Skellam discrete random variable.
zipf A Zipf discrete random variable.

scipy.stats.bernoulli = <scipy.stats._discrete_distns.bernoulli_gen object at 0x7fa40e995310>
A Bernoulli discrete random variable.

As an instance of the rv_discrete class, bernoulli object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for bernoulli is:

bernoulli.pmf(k) = 1-p if k = 0
= p if k = 1

for k in {0, 1}.

bernoulli takes p as shape parameter.

The probability mass function above is defined in the “standardized” form. To shift distribution use the loc
parameter. Specifically, bernoulli.pmf(k, p, loc) is identically equivalent to bernoulli.pmf(k
- loc, p).

Examples

>>> from scipy.stats import bernoulli
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> p = 0.3
>>> mean, var, skew, kurt = bernoulli.stats(p, moments='mvsk')

Display the probability mass function (pmf):

>>> x = np.arange(bernoulli.ppf(0.01, p),
... bernoulli.ppf(0.99, p))
>>> ax.plot(x, bernoulli.pmf(x, p), 'bo', ms=8, label='bernoulli pmf')
>>> ax.vlines(x, 0, bernoulli.pmf(x, p), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

>>> rv = bernoulli(p)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')

5.34. Statistical functions (scipy.stats) 1399

SciPy Reference Guide, Release 0.16.0

>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.06 0.04 0.02 0.00 0.02 0.04 0.06
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

bernoulli pmf
frozen pmf

Check accuracy of cdf and ppf:

>>> prob = bernoulli.cdf(x, p)
>>> np.allclose(x, bernoulli.ppf(prob, p))
True

Generate random numbers:

>>> r = bernoulli.rvs(p, size=1000)

1400 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(p, loc=0, size=1,
random_state=None)

Random variates.

pmf(x, p, loc=0) Probability mass function.
logpmf(x, p, loc=0) Log of the probability mass function.
cdf(x, p, loc=0) Cumulative density function.
logcdf(x, p, loc=0) Log of the cumulative density function.
sf(x, p, loc=0) Survival function (1 - cdf — sometimes more

accurate).
logsf(x, p, loc=0) Log of the survival function.
ppf(q, p, loc=0) Percent point function (inverse of cdf —

percentiles).
isf(q, p, loc=0) Inverse survival function (inverse of sf).
stats(p, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(p, loc=0) (Differential) entropy of the RV.
expect(func, p, loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument)
with respect to the distribution.

median(p, loc=0) Median of the distribution.
mean(p, loc=0) Mean of the distribution.
var(p, loc=0) Variance of the distribution.
std(p, loc=0) Standard deviation of the distribution.
interval(alpha, p, loc=0) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.binom = <scipy.stats._discrete_distns.binom_gen object at 0x7fa40e995090>
A binomial discrete random variable.

As an instance of the rv_discrete class, binom object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for binom is:

binom.pmf(k) = choose(n, k) * p**k * (1-p)**(n-k)

for k in {0, 1,..., n}.

binom takes n and p as shape parameters.

The probability mass function above is defined in the “standardized” form. To shift distribution use the loc pa-
rameter. Specifically, binom.pmf(k, n, p, loc) is identically equivalent to binom.pmf(k - loc,
n, p).

Examples

>>> from scipy.stats import binom
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> n, p = 5, 0.4
>>> mean, var, skew, kurt = binom.stats(n, p, moments='mvsk')

5.34. Statistical functions (scipy.stats) 1401

SciPy Reference Guide, Release 0.16.0

Display the probability mass function (pmf):

>>> x = np.arange(binom.ppf(0.01, n, p),
... binom.ppf(0.99, n, p))
>>> ax.plot(x, binom.pmf(x, n, p), 'bo', ms=8, label='binom pmf')
>>> ax.vlines(x, 0, binom.pmf(x, n, p), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

>>> rv = binom(n, p)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

binom pmf
frozen pmf

Check accuracy of cdf and ppf:

>>> prob = binom.cdf(x, n, p)
>>> np.allclose(x, binom.ppf(prob, n, p))
True

Generate random numbers:

>>> r = binom.rvs(n, p, size=1000)

1402 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(n, p, loc=0, size=1,
random_state=None)

Random variates.

pmf(x, n, p, loc=0) Probability mass function.
logpmf(x, n, p, loc=0) Log of the probability mass function.
cdf(x, n, p, loc=0) Cumulative density function.
logcdf(x, n, p, loc=0) Log of the cumulative density function.
sf(x, n, p, loc=0) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, n, p, loc=0) Log of the survival function.
ppf(q, n, p, loc=0) Percent point function (inverse of cdf —

percentiles).
isf(q, n, p, loc=0) Inverse survival function (inverse of sf).
stats(n, p, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(n, p, loc=0) (Differential) entropy of the RV.
expect(func, n, p, loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument)
with respect to the distribution.

median(n, p, loc=0) Median of the distribution.
mean(n, p, loc=0) Mean of the distribution.
var(n, p, loc=0) Variance of the distribution.
std(n, p, loc=0) Standard deviation of the distribution.
interval(alpha, n, p, loc=0) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.boltzmann = <scipy.stats._discrete_distns.boltzmann_gen object at 0x7fa40e9230d0>
A Boltzmann (Truncated Discrete Exponential) random variable.

As an instance of the rv_discrete class, boltzmann object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for boltzmann is:

boltzmann.pmf(k) = (1-exp(-lambda_)*exp(-lambda_*k)/(1-exp(-lambda_*N))

for k = 0,..., N-1.

boltzmann takes lambda_ and N as shape parameters.

The probability mass function above is defined in the “standardized” form. To shift distribution use the
loc parameter. Specifically, boltzmann.pmf(k, lambda_, N, loc) is identically equivalent to
boltzmann.pmf(k - loc, lambda_, N).

Examples

>>> from scipy.stats import boltzmann
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> lambda_, N = 1.4, 19
>>> mean, var, skew, kurt = boltzmann.stats(lambda_, N, moments='mvsk')

5.34. Statistical functions (scipy.stats) 1403

SciPy Reference Guide, Release 0.16.0

Display the probability mass function (pmf):

>>> x = np.arange(boltzmann.ppf(0.01, lambda_, N),
... boltzmann.ppf(0.99, lambda_, N))
>>> ax.plot(x, boltzmann.pmf(x, lambda_, N), 'bo', ms=8, label='boltzmann pmf')
>>> ax.vlines(x, 0, boltzmann.pmf(x, lambda_, N), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

>>> rv = boltzmann(lambda_, N)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.5 1.0 1.5 2.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

boltzmann pmf
frozen pmf

Check accuracy of cdf and ppf:

>>> prob = boltzmann.cdf(x, lambda_, N)
>>> np.allclose(x, boltzmann.ppf(prob, lambda_, N))
True

Generate random numbers:

>>> r = boltzmann.rvs(lambda_, N, size=1000)

1404 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(lambda_, N, loc=0, size=1,
random_state=None)

Random variates.

pmf(x, lambda_, N, loc=0) Probability mass function.
logpmf(x, lambda_, N, loc=0) Log of the probability mass function.
cdf(x, lambda_, N, loc=0) Cumulative density function.
logcdf(x, lambda_, N, loc=0) Log of the cumulative density function.
sf(x, lambda_, N, loc=0) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, lambda_, N, loc=0) Log of the survival function.
ppf(q, lambda_, N, loc=0) Percent point function (inverse of cdf —

percentiles).
isf(q, lambda_, N, loc=0) Inverse survival function (inverse of sf).
stats(lambda_, N, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(lambda_, N, loc=0) (Differential) entropy of the RV.
expect(func, lambda_, N, loc=0,
lb=None, ub=None, conditional=False)

Expected value of a function (of one
argument) with respect to the distribution.

median(lambda_, N, loc=0) Median of the distribution.
mean(lambda_, N, loc=0) Mean of the distribution.
var(lambda_, N, loc=0) Variance of the distribution.
std(lambda_, N, loc=0) Standard deviation of the distribution.
interval(alpha, lambda_, N, loc=0) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.dlaplace = <scipy.stats._discrete_distns.dlaplace_gen object at 0x7fa40e923810>
A Laplacian discrete random variable.

As an instance of the rv_discrete class, dlaplace object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for dlaplace is:

dlaplace.pmf(k) = tanh(a/2) * exp(-a*abs(k))

for a > 0.

dlaplace takes a as shape parameter.

The probability mass function above is defined in the “standardized” form. To shift distribution use the loc
parameter. Specifically, dlaplace.pmf(k, a, loc) is identically equivalent to dlaplace.pmf(k -
loc, a).

Examples

>>> from scipy.stats import dlaplace
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a = 0.8
>>> mean, var, skew, kurt = dlaplace.stats(a, moments='mvsk')

5.34. Statistical functions (scipy.stats) 1405

SciPy Reference Guide, Release 0.16.0

Display the probability mass function (pmf):

>>> x = np.arange(dlaplace.ppf(0.01, a),
... dlaplace.ppf(0.99, a))
>>> ax.plot(x, dlaplace.pmf(x, a), 'bo', ms=8, label='dlaplace pmf')
>>> ax.vlines(x, 0, dlaplace.pmf(x, a), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

>>> rv = dlaplace(a)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5 4 3 2 1 0 1 2 3 4
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

dlaplace pmf
frozen pmf

Check accuracy of cdf and ppf:

>>> prob = dlaplace.cdf(x, a)
>>> np.allclose(x, dlaplace.ppf(prob, a))
True

Generate random numbers:

>>> r = dlaplace.rvs(a, size=1000)

1406 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(a, loc=0, size=1,
random_state=None)

Random variates.

pmf(x, a, loc=0) Probability mass function.
logpmf(x, a, loc=0) Log of the probability mass function.
cdf(x, a, loc=0) Cumulative density function.
logcdf(x, a, loc=0) Log of the cumulative density function.
sf(x, a, loc=0) Survival function (1 - cdf — sometimes more

accurate).
logsf(x, a, loc=0) Log of the survival function.
ppf(q, a, loc=0) Percent point function (inverse of cdf —

percentiles).
isf(q, a, loc=0) Inverse survival function (inverse of sf).
stats(a, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, loc=0) (Differential) entropy of the RV.
expect(func, a, loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, loc=0) Median of the distribution.
mean(a, loc=0) Mean of the distribution.
var(a, loc=0) Variance of the distribution.
std(a, loc=0) Standard deviation of the distribution.
interval(alpha, a, loc=0) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.geom = <scipy.stats._discrete_distns.geom_gen object at 0x7fa40e995790>
A geometric discrete random variable.

As an instance of the rv_discrete class, geom object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for geom is:

geom.pmf(k) = (1-p)**(k-1)*p

for k >= 1.

geom takes p as shape parameter.

The probability mass function above is defined in the “standardized” form. To shift distribution use the loc
parameter. Specifically, geom.pmf(k, p, loc) is identically equivalent to geom.pmf(k - loc, p).

Examples

>>> from scipy.stats import geom
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> p = 0.5
>>> mean, var, skew, kurt = geom.stats(p, moments='mvsk')

Display the probability mass function (pmf):

5.34. Statistical functions (scipy.stats) 1407

SciPy Reference Guide, Release 0.16.0

>>> x = np.arange(geom.ppf(0.01, p),
... geom.ppf(0.99, p))
>>> ax.plot(x, geom.pmf(x, p), 'bo', ms=8, label='geom pmf')
>>> ax.vlines(x, 0, geom.pmf(x, p), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

>>> rv = geom(p)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5
geom pmf
frozen pmf

Check accuracy of cdf and ppf:

>>> prob = geom.cdf(x, p)
>>> np.allclose(x, geom.ppf(prob, p))
True

Generate random numbers:

>>> r = geom.rvs(p, size=1000)

1408 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(p, loc=0, size=1,
random_state=None)

Random variates.

pmf(x, p, loc=0) Probability mass function.
logpmf(x, p, loc=0) Log of the probability mass function.
cdf(x, p, loc=0) Cumulative density function.
logcdf(x, p, loc=0) Log of the cumulative density function.
sf(x, p, loc=0) Survival function (1 - cdf — sometimes more

accurate).
logsf(x, p, loc=0) Log of the survival function.
ppf(q, p, loc=0) Percent point function (inverse of cdf —

percentiles).
isf(q, p, loc=0) Inverse survival function (inverse of sf).
stats(p, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(p, loc=0) (Differential) entropy of the RV.
expect(func, p, loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument)
with respect to the distribution.

median(p, loc=0) Median of the distribution.
mean(p, loc=0) Mean of the distribution.
var(p, loc=0) Variance of the distribution.
std(p, loc=0) Standard deviation of the distribution.
interval(alpha, p, loc=0) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.hypergeom = <scipy.stats._discrete_distns.hypergeom_gen object at 0x7fa40e995650>
A hypergeometric discrete random variable.

The hypergeometric distribution models drawing objects from a bin. M is the total number of objects, n is total
number of Type I objects. The random variate represents the number of Type I objects in N drawn without
replacement from the total population.

As an instance of the rv_discrete class, hypergeom object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function is defined as:

pmf(k, M, n, N) = choose(n, k) * choose(M - n, N - k) / choose(M, N),
for max(0, N - (M-n)) <= k <= min(n, N)

The probability mass function above is defined in the “standardized” form. To shift distribution use
the loc parameter. Specifically, hypergeom.pmf(k, M, n, N, loc) is identically equivalent to
hypergeom.pmf(k - loc, M, n, N).

Examples

>>> from scipy.stats import hypergeom
>>> import matplotlib.pyplot as plt

Suppose we have a collection of 20 animals, of which 7 are dogs. Then if we want to know the probability
of finding a given number of dogs if we choose at random 12 of the 20 animals, we can initialize a frozen
distribution and plot the probability mass function:

5.34. Statistical functions (scipy.stats) 1409

SciPy Reference Guide, Release 0.16.0

>>> [M, n, N] = [20, 7, 12]
>>> rv = hypergeom(M, n, N)
>>> x = np.arange(0, n+1)
>>> pmf_dogs = rv.pmf(x)

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x, pmf_dogs, 'bo')
>>> ax.vlines(x, 0, pmf_dogs, lw=2)
>>> ax.set_xlabel('# of dogs in our group of chosen animals')
>>> ax.set_ylabel('hypergeom PMF')
>>> plt.show()

0 1 2 3 4 5 6 7
of dogs in our group of chosen animals

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

hy
pe

rg
eo

m
 P

M
F

Instead of using a frozen distribution we can also use hypergeom methods directly. To for example obtain the
cumulative distribution function, use:

>>> prb = hypergeom.cdf(x, M, n, N)

And to generate random numbers:

>>> R = hypergeom.rvs(M, n, N, size=10)

1410 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(M, n, N, loc=0, size=1,
random_state=None)

Random variates.

pmf(x, M, n, N, loc=0) Probability mass function.
logpmf(x, M, n, N, loc=0) Log of the probability mass function.
cdf(x, M, n, N, loc=0) Cumulative density function.
logcdf(x, M, n, N, loc=0) Log of the cumulative density function.
sf(x, M, n, N, loc=0) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, M, n, N, loc=0) Log of the survival function.
ppf(q, M, n, N, loc=0) Percent point function (inverse of cdf —

percentiles).
isf(q, M, n, N, loc=0) Inverse survival function (inverse of sf).
stats(M, n, N, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(M, n, N, loc=0) (Differential) entropy of the RV.
expect(func, M, n, N, loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one
argument) with respect to the distribution.

median(M, n, N, loc=0) Median of the distribution.
mean(M, n, N, loc=0) Mean of the distribution.
var(M, n, N, loc=0) Variance of the distribution.
std(M, n, N, loc=0) Standard deviation of the distribution.
interval(alpha, M, n, N, loc=0) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.logser = <scipy.stats._discrete_distns.logser_gen object at 0x7fa40e995990>
A Logarithmic (Log-Series, Series) discrete random variable.

As an instance of the rv_discrete class, logser object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for logser is:

logser.pmf(k) = - p**k / (k*log(1-p))

for k >= 1.

logser takes p as shape parameter.

The probability mass function above is defined in the “standardized” form. To shift distribution use the loc
parameter. Specifically, logser.pmf(k, p, loc) is identically equivalent to logser.pmf(k - loc,
p).

Examples

>>> from scipy.stats import logser
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> p = 0.6
>>> mean, var, skew, kurt = logser.stats(p, moments='mvsk')

5.34. Statistical functions (scipy.stats) 1411

SciPy Reference Guide, Release 0.16.0

Display the probability mass function (pmf):

>>> x = np.arange(logser.ppf(0.01, p),
... logser.ppf(0.99, p))
>>> ax.plot(x, logser.pmf(x, p), 'bo', ms=8, label='logser pmf')
>>> ax.vlines(x, 0, logser.pmf(x, p), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

>>> rv = logser(p)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
logser pmf
frozen pmf

Check accuracy of cdf and ppf:

>>> prob = logser.cdf(x, p)
>>> np.allclose(x, logser.ppf(prob, p))
True

Generate random numbers:

>>> r = logser.rvs(p, size=1000)

1412 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(p, loc=0, size=1,
random_state=None)

Random variates.

pmf(x, p, loc=0) Probability mass function.
logpmf(x, p, loc=0) Log of the probability mass function.
cdf(x, p, loc=0) Cumulative density function.
logcdf(x, p, loc=0) Log of the cumulative density function.
sf(x, p, loc=0) Survival function (1 - cdf — sometimes more

accurate).
logsf(x, p, loc=0) Log of the survival function.
ppf(q, p, loc=0) Percent point function (inverse of cdf —

percentiles).
isf(q, p, loc=0) Inverse survival function (inverse of sf).
stats(p, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(p, loc=0) (Differential) entropy of the RV.
expect(func, p, loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument)
with respect to the distribution.

median(p, loc=0) Median of the distribution.
mean(p, loc=0) Mean of the distribution.
var(p, loc=0) Variance of the distribution.
std(p, loc=0) Standard deviation of the distribution.
interval(alpha, p, loc=0) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.nbinom = <scipy.stats._discrete_distns.nbinom_gen object at 0x7fa40e9953d0>
A negative binomial discrete random variable.

As an instance of the rv_discrete class, nbinom object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for nbinom is:

nbinom.pmf(k) = choose(k+n-1, n-1) * p**n * (1-p)**k

for k >= 0.

nbinom takes n and p as shape parameters.

The probability mass function above is defined in the “standardized” form. To shift distribution use the loc
parameter. Specifically, nbinom.pmf(k, n, p, loc) is identically equivalent to nbinom.pmf(k -
loc, n, p).

Examples

>>> from scipy.stats import nbinom
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> n, p = 0.4, 0.4
>>> mean, var, skew, kurt = nbinom.stats(n, p, moments='mvsk')

5.34. Statistical functions (scipy.stats) 1413

SciPy Reference Guide, Release 0.16.0

Display the probability mass function (pmf):

>>> x = np.arange(nbinom.ppf(0.01, n, p),
... nbinom.ppf(0.99, n, p))
>>> ax.plot(x, nbinom.pmf(x, n, p), 'bo', ms=8, label='nbinom pmf')
>>> ax.vlines(x, 0, nbinom.pmf(x, n, p), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

>>> rv = nbinom(n, p)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
nbinom pmf
frozen pmf

Check accuracy of cdf and ppf:

>>> prob = nbinom.cdf(x, n, p)
>>> np.allclose(x, nbinom.ppf(prob, n, p))
True

Generate random numbers:

>>> r = nbinom.rvs(n, p, size=1000)

1414 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(n, p, loc=0, size=1,
random_state=None)

Random variates.

pmf(x, n, p, loc=0) Probability mass function.
logpmf(x, n, p, loc=0) Log of the probability mass function.
cdf(x, n, p, loc=0) Cumulative density function.
logcdf(x, n, p, loc=0) Log of the cumulative density function.
sf(x, n, p, loc=0) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, n, p, loc=0) Log of the survival function.
ppf(q, n, p, loc=0) Percent point function (inverse of cdf —

percentiles).
isf(q, n, p, loc=0) Inverse survival function (inverse of sf).
stats(n, p, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(n, p, loc=0) (Differential) entropy of the RV.
expect(func, n, p, loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument)
with respect to the distribution.

median(n, p, loc=0) Median of the distribution.
mean(n, p, loc=0) Mean of the distribution.
var(n, p, loc=0) Variance of the distribution.
std(n, p, loc=0) Standard deviation of the distribution.
interval(alpha, n, p, loc=0) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.planck = <scipy.stats._discrete_distns.planck_gen object at 0x7fa40e995e50>
A Planck discrete exponential random variable.

As an instance of the rv_discrete class, planck object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for planck is:

planck.pmf(k) = (1-exp(-lambda_))*exp(-lambda_*k)

for k*lambda_ >= 0.

planck takes lambda_ as shape parameter.

The probability mass function above is defined in the “standardized” form. To shift distribution use the loc
parameter. Specifically, planck.pmf(k, lambda_, loc) is identically equivalent to planck.pmf(k
- loc, lambda_).

Examples

>>> from scipy.stats import planck
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> lambda_ = 0.51
>>> mean, var, skew, kurt = planck.stats(lambda_, moments='mvsk')

5.34. Statistical functions (scipy.stats) 1415

SciPy Reference Guide, Release 0.16.0

Display the probability mass function (pmf):

>>> x = np.arange(planck.ppf(0.01, lambda_),
... planck.ppf(0.99, lambda_))
>>> ax.plot(x, planck.pmf(x, lambda_), 'bo', ms=8, label='planck pmf')
>>> ax.vlines(x, 0, planck.pmf(x, lambda_), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

>>> rv = planck(lambda_)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0 1 2 3 4 5 6 7 8
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

planck pmf
frozen pmf

Check accuracy of cdf and ppf:

>>> prob = planck.cdf(x, lambda_)
>>> np.allclose(x, planck.ppf(prob, lambda_))
True

Generate random numbers:

>>> r = planck.rvs(lambda_, size=1000)

1416 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(lambda_, loc=0, size=1,
random_state=None)

Random variates.

pmf(x, lambda_, loc=0) Probability mass function.
logpmf(x, lambda_, loc=0) Log of the probability mass function.
cdf(x, lambda_, loc=0) Cumulative density function.
logcdf(x, lambda_, loc=0) Log of the cumulative density function.
sf(x, lambda_, loc=0) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, lambda_, loc=0) Log of the survival function.
ppf(q, lambda_, loc=0) Percent point function (inverse of cdf —

percentiles).
isf(q, lambda_, loc=0) Inverse survival function (inverse of sf).
stats(lambda_, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(lambda_, loc=0) (Differential) entropy of the RV.
expect(func, lambda_, loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one
argument) with respect to the distribution.

median(lambda_, loc=0) Median of the distribution.
mean(lambda_, loc=0) Mean of the distribution.
var(lambda_, loc=0) Variance of the distribution.
std(lambda_, loc=0) Standard deviation of the distribution.
interval(alpha, lambda_, loc=0) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.poisson = <scipy.stats._discrete_distns.poisson_gen object at 0x7fa40e995dd0>
A Poisson discrete random variable.

As an instance of the rv_discrete class, poisson object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for poisson is:

poisson.pmf(k) = exp(-mu) * mu**k / k!

for k >= 0.

poisson takes mu as shape parameter.

The probability mass function above is defined in the “standardized” form. To shift distribution use the loc
parameter. Specifically, poisson.pmf(k, mu, loc) is identically equivalent to poisson.pmf(k -
loc, mu).

Examples

>>> from scipy.stats import poisson
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mu = 0.6
>>> mean, var, skew, kurt = poisson.stats(mu, moments='mvsk')

5.34. Statistical functions (scipy.stats) 1417

SciPy Reference Guide, Release 0.16.0

Display the probability mass function (pmf):

>>> x = np.arange(poisson.ppf(0.01, mu),
... poisson.ppf(0.99, mu))
>>> ax.plot(x, poisson.pmf(x, mu), 'bo', ms=8, label='poisson pmf')
>>> ax.vlines(x, 0, poisson.pmf(x, mu), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

>>> rv = poisson(mu)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6
poisson pmf
frozen pmf

Check accuracy of cdf and ppf:

>>> prob = poisson.cdf(x, mu)
>>> np.allclose(x, poisson.ppf(prob, mu))
True

Generate random numbers:

>>> r = poisson.rvs(mu, size=1000)

1418 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(mu, loc=0, size=1,
random_state=None)

Random variates.

pmf(x, mu, loc=0) Probability mass function.
logpmf(x, mu, loc=0) Log of the probability mass function.
cdf(x, mu, loc=0) Cumulative density function.
logcdf(x, mu, loc=0) Log of the cumulative density function.
sf(x, mu, loc=0) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, mu, loc=0) Log of the survival function.
ppf(q, mu, loc=0) Percent point function (inverse of cdf —

percentiles).
isf(q, mu, loc=0) Inverse survival function (inverse of sf).
stats(mu, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(mu, loc=0) (Differential) entropy of the RV.
expect(func, mu, loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument)
with respect to the distribution.

median(mu, loc=0) Median of the distribution.
mean(mu, loc=0) Mean of the distribution.
var(mu, loc=0) Variance of the distribution.
std(mu, loc=0) Standard deviation of the distribution.
interval(alpha, mu, loc=0) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.randint = <scipy.stats._discrete_distns.randint_gen object at 0x7fa40e923190>
A uniform discrete random variable.

As an instance of the rv_discrete class, randint object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for randint is:

randint.pmf(k) = 1./(high - low)

for k = low, ..., high - 1.

randint takes low and high as shape parameters.

Note the difference to the numpy random_integers which returns integers on a closed interval [low,
high].

The probability mass function above is defined in the “standardized” form. To shift distribution use
the loc parameter. Specifically, randint.pmf(k, low, high, loc) is identically equivalent to
randint.pmf(k - loc, low, high).

Examples

>>> from scipy.stats import randint
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

5.34. Statistical functions (scipy.stats) 1419

SciPy Reference Guide, Release 0.16.0

>>> low, high = 7, 31
>>> mean, var, skew, kurt = randint.stats(low, high, moments='mvsk')

Display the probability mass function (pmf):

>>> x = np.arange(randint.ppf(0.01, low, high),
... randint.ppf(0.99, low, high))
>>> ax.plot(x, randint.pmf(x, low, high), 'bo', ms=8, label='randint pmf')
>>> ax.vlines(x, 0, randint.pmf(x, low, high), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

>>> rv = randint(low, high)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5 10 15 20 25 30
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045

randint pmf
frozen pmf

Check accuracy of cdf and ppf:

>>> prob = randint.cdf(x, low, high)
>>> np.allclose(x, randint.ppf(prob, low, high))
True

Generate random numbers:

>>> r = randint.rvs(low, high, size=1000)

1420 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(low, high, loc=0, size=1,
random_state=None)

Random variates.

pmf(x, low, high, loc=0) Probability mass function.
logpmf(x, low, high, loc=0) Log of the probability mass function.
cdf(x, low, high, loc=0) Cumulative density function.
logcdf(x, low, high, loc=0) Log of the cumulative density function.
sf(x, low, high, loc=0) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, low, high, loc=0) Log of the survival function.
ppf(q, low, high, loc=0) Percent point function (inverse of cdf —

percentiles).
isf(q, low, high, loc=0) Inverse survival function (inverse of sf).
stats(low, high, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(low, high, loc=0) (Differential) entropy of the RV.
expect(func, low, high, loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one
argument) with respect to the distribution.

median(low, high, loc=0) Median of the distribution.
mean(low, high, loc=0) Mean of the distribution.
var(low, high, loc=0) Variance of the distribution.
std(low, high, loc=0) Standard deviation of the distribution.
interval(alpha, low, high, loc=0) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.skellam = <scipy.stats._discrete_distns.skellam_gen object at 0x7fa40e9237d0>
A Skellam discrete random variable.

As an instance of the rv_discrete class, skellam object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

Probability distribution of the difference of two correlated or uncorrelated Poisson random variables.

Let k1 and k2 be two Poisson-distributed r.v. with expected values lam1 and lam2. Then, k1 - k2 follows
a Skellam distribution with parameters mu1 = lam1 - rho*sqrt(lam1*lam2) and mu2 = lam2 -
rho*sqrt(lam1*lam2), where rho is the correlation coefficient between k1 and k2. If the two Poisson-
distributed r.v. are independent then rho = 0.

Parameters mu1 and mu2 must be strictly positive.

For details see: http://en.wikipedia.org/wiki/Skellam_distribution

skellam takes mu1 and mu2 as shape parameters.

The probability mass function above is defined in the “standardized” form. To shift distribution use
the loc parameter. Specifically, skellam.pmf(k, mu1, mu2, loc) is identically equivalent to
skellam.pmf(k - loc, mu1, mu2).

Examples

>>> from scipy.stats import skellam
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

5.34. Statistical functions (scipy.stats) 1421

http://en.wikipedia.org/wiki/Skellam_distribution

SciPy Reference Guide, Release 0.16.0

>>> mu1, mu2 = 15, 8
>>> mean, var, skew, kurt = skellam.stats(mu1, mu2, moments='mvsk')

Display the probability mass function (pmf):

>>> x = np.arange(skellam.ppf(0.01, mu1, mu2),
... skellam.ppf(0.99, mu1, mu2))
>>> ax.plot(x, skellam.pmf(x, mu1, mu2), 'bo', ms=8, label='skellam pmf')
>>> ax.vlines(x, 0, skellam.pmf(x, mu1, mu2), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

>>> rv = skellam(mu1, mu2)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

5 0 5 10 15 20
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

skellam pmf
frozen pmf

Check accuracy of cdf and ppf:

>>> prob = skellam.cdf(x, mu1, mu2)
>>> np.allclose(x, skellam.ppf(prob, mu1, mu2))
True

Generate random numbers:

>>> r = skellam.rvs(mu1, mu2, size=1000)

1422 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(mu1, mu2, loc=0, size=1,
random_state=None)

Random variates.

pmf(x, mu1, mu2, loc=0) Probability mass function.
logpmf(x, mu1, mu2, loc=0) Log of the probability mass function.
cdf(x, mu1, mu2, loc=0) Cumulative density function.
logcdf(x, mu1, mu2, loc=0) Log of the cumulative density function.
sf(x, mu1, mu2, loc=0) Survival function (1 - cdf — sometimes

more accurate).
logsf(x, mu1, mu2, loc=0) Log of the survival function.
ppf(q, mu1, mu2, loc=0) Percent point function (inverse of cdf —

percentiles).
isf(q, mu1, mu2, loc=0) Inverse survival function (inverse of sf).
stats(mu1, mu2, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(mu1, mu2, loc=0) (Differential) entropy of the RV.
expect(func, mu1, mu2, loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one
argument) with respect to the distribution.

median(mu1, mu2, loc=0) Median of the distribution.
mean(mu1, mu2, loc=0) Mean of the distribution.
var(mu1, mu2, loc=0) Variance of the distribution.
std(mu1, mu2, loc=0) Standard deviation of the distribution.
interval(alpha, mu1, mu2, loc=0) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.zipf = <scipy.stats._discrete_distns.zipf_gen object at 0x7fa40e923550>
A Zipf discrete random variable.

As an instance of the rv_discrete class, zipf object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for zipf is:

zipf.pmf(k, a) = 1/(zeta(a) * k**a)

for k >= 1.

zipf takes a as shape parameter.

The probability mass function above is defined in the “standardized” form. To shift distribution use the loc
parameter. Specifically, zipf.pmf(k, a, loc) is identically equivalent to zipf.pmf(k - loc, a).

Examples

>>> from scipy.stats import zipf
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a = 6.5
>>> mean, var, skew, kurt = zipf.stats(a, moments='mvsk')

Display the probability mass function (pmf):

5.34. Statistical functions (scipy.stats) 1423

SciPy Reference Guide, Release 0.16.0

>>> x = np.arange(zipf.ppf(0.01, a),
... zipf.ppf(0.99, a))
>>> ax.plot(x, zipf.pmf(x, a), 'bo', ms=8, label='zipf pmf')
>>> ax.vlines(x, 0, zipf.pmf(x, a), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

>>> rv = zipf(a)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.94 0.96 0.98 1.00 1.02 1.04 1.06
0.0

0.2

0.4

0.6

0.8

1.0
zipf pmf
frozen pmf

Check accuracy of cdf and ppf:

>>> prob = zipf.cdf(x, a)
>>> np.allclose(x, zipf.ppf(prob, a))
True

Generate random numbers:

>>> r = zipf.rvs(a, size=1000)

1424 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Methods

rvs(a, loc=0, size=1,
random_state=None)

Random variates.

pmf(x, a, loc=0) Probability mass function.
logpmf(x, a, loc=0) Log of the probability mass function.
cdf(x, a, loc=0) Cumulative density function.
logcdf(x, a, loc=0) Log of the cumulative density function.
sf(x, a, loc=0) Survival function (1 - cdf — sometimes more

accurate).
logsf(x, a, loc=0) Log of the survival function.
ppf(q, a, loc=0) Percent point function (inverse of cdf —

percentiles).
isf(q, a, loc=0) Inverse survival function (inverse of sf).
stats(a, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, loc=0) (Differential) entropy of the RV.
expect(func, a, loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, loc=0) Median of the distribution.
mean(a, loc=0) Mean of the distribution.
var(a, loc=0) Variance of the distribution.
std(a, loc=0) Standard deviation of the distribution.
interval(alpha, a, loc=0) Endpoints of the range that contains alpha

percent of the distribution

5.34.4 Statistical functions

Several of these functions have a similar version in scipy.stats.mstats which work for masked arrays.

describe(a[, axis, ddof]) Computes several descriptive statistics of the passed array.
gmean(a[, axis, dtype]) Compute the geometric mean along the specified axis.
hmean(a[, axis, dtype]) Calculates the harmonic mean along the specified axis.
kurtosis(a[, axis, fisher, bias]) Computes the kurtosis (Fisher or Pearson) of a dataset.
kurtosistest(a[, axis]) Tests whether a dataset has normal kurtosis
mode(a[, axis]) Returns an array of the modal (most common) value in the passed array.
moment(a[, moment, axis]) Calculates the nth moment about the mean for a sample.
normaltest(a[, axis]) Tests whether a sample differs from a normal distribution.
skew(a[, axis, bias]) Computes the skewness of a data set.
skewtest(a[, axis]) Tests whether the skew is different from the normal distribution.
kstat(data[, n]) Return the nth k-statistic (1<=n<=4 so far).
kstatvar(data[, n]) Returns an unbiased estimator of the variance of the k-statistic.
tmean(a[, limits, inclusive]) Compute the trimmed mean.
tvar(a[, limits, inclusive]) Compute the trimmed variance
tmin(a[, lowerlimit, axis, inclusive]) Compute the trimmed minimum
tmax(a[, upperlimit, axis, inclusive]) Compute the trimmed maximum
tstd(a[, limits, inclusive]) Compute the trimmed sample standard deviation
tsem(a[, limits, inclusive]) Compute the trimmed standard error of the mean.
nanmean(*args, **kwds) nanmean is deprecated!
nanstd(*args, **kwds) nanstd is deprecated!
nanmedian(*args, **kwds) nanmedian is deprecated!

Continued on next page

5.34. Statistical functions (scipy.stats) 1425

SciPy Reference Guide, Release 0.16.0

Table 5.255 – continued from previous page
variation(a[, axis]) Computes the coefficient of variation, the ratio of the biased standard deviation to the mean.

scipy.stats.describe(a, axis=0, ddof=1)
Computes several descriptive statistics of the passed array.

Parameters a : array_like
Input data.

axis : int or None, optional
Axis along which statistics are calculated. Default is 0. If None, compute
over the whole array a.

ddof : int, optional
Delta degrees of freedom. Default is 1.Returns nobs : int
Number of observations (length of data along axis).

minmax: tuple of ndarrays or floats
Minimum and maximum value of data array.

mean : ndarray or float
Arithmetic mean of data along axis.

variance : ndarray or float
Unbiased variance of the data along axis, denominator is number of obser-
vations minus one.

skewness : ndarray or float
Biased skewness, based on moment calculations with denominator equal to
the number of observations, i.e. no degrees of freedom correction.

kurtosis : ndarray or float
Biased kurtosis (Fisher). The kurtosis is normalized so that it is zero for the
normal distribution. No degrees of freedom or bias correction is used.

See also:

skew, kurtosis

scipy.stats.gmean(a, axis=0, dtype=None)
Compute the geometric mean along the specified axis.

Returns the geometric average of the array elements. That is: n-th root of (x1 * x2 * ... * xn)

Parameters a : array_like
Input array or object that can be converted to an array.

axis : int or None, optional
Axis along which the geometric mean is computed. Default is 0. If None,
compute over the whole array a.

dtype : dtype, optional
Type of the returned array and of the accumulator in which the elements
are summed. If dtype is not specified, it defaults to the dtype of a, unless a
has an integer dtype with a precision less than that of the default platform
integer. In that case, the default platform integer is used.Returns gmean : ndarray
see dtype parameter above

See also:

numpy.meanArithmetic average
numpy.average

Weighted average
hmean Harmonic mean

1426 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html#numpy.mean
http://docs.scipy.org/doc/numpy/reference/generated/numpy.average.html#numpy.average

SciPy Reference Guide, Release 0.16.0

Notes

The geometric average is computed over a single dimension of the input array, axis=0 by default, or all values
in the array if axis=None. float64 intermediate and return values are used for integer inputs.

Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a
Number and infinity because masked arrays automatically mask any non-finite values.

scipy.stats.hmean(a, axis=0, dtype=None)
Calculates the harmonic mean along the specified axis.

That is: n / (1/x1 + 1/x2 + ... + 1/xn)

Parameters a : array_like
Input array, masked array or object that can be converted to an array.

axis : int or None, optional
Axis along which the harmonic mean is computed. Default is 0. If None,
compute over the whole array a.

dtype : dtype, optional
Type of the returned array and of the accumulator in which the elements
are summed. If dtype is not specified, it defaults to the dtype of a, unless a
has an integer dtype with a precision less than that of the default platform
integer. In that case, the default platform integer is used.Returns hmean : ndarray
see dtype parameter above

See also:

numpy.meanArithmetic average
numpy.average

Weighted average
gmean Geometric mean

Notes

The harmonic mean is computed over a single dimension of the input array, axis=0 by default, or all values in
the array if axis=None. float64 intermediate and return values are used for integer inputs.

Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a
Number and infinity.

scipy.stats.kurtosis(a, axis=0, fisher=True, bias=True)
Computes the kurtosis (Fisher or Pearson) of a dataset.

Kurtosis is the fourth central moment divided by the square of the variance. If Fisher’s definition is used, then
3.0 is subtracted from the result to give 0.0 for a normal distribution.

If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment
estimators

Use kurtosistest to see if result is close enough to normal.

Parameters a : array
data for which the kurtosis is calculated

axis : int or None, optional
Axis along which the kurtosis is calculated. Default is 0. If None, compute
over the whole array a.

fisher : bool, optional
If True, Fisher’s definition is used (normal ==> 0.0). If False, Pearson’s
definition is used (normal ==> 3.0).

bias : bool, optional

5.34. Statistical functions (scipy.stats) 1427

http://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html#numpy.mean
http://docs.scipy.org/doc/numpy/reference/generated/numpy.average.html#numpy.average

SciPy Reference Guide, Release 0.16.0

If False, then the calculations are corrected for statistical bias.Returns kurtosis : array
The kurtosis of values along an axis. If all values are equal, return -3 for
Fisher’s definition and 0 for Pearson’s definition.

References

[R329]

scipy.stats.kurtosistest(a, axis=0)
Tests whether a dataset has normal kurtosis

This function tests the null hypothesis that the kurtosis of the population from which the sample was drawn is
that of the normal distribution: kurtosis = 3(n-1)/(n+1).

Parameters a : array
array of the sample data

axis : int or None, optional
Axis along which to compute test. Default is 0. If None, compute over the
whole array a.Returns statistic : float
The computed z-score for this test.

pvalue : float
The 2-sided p-value for the hypothesis test

Notes

Valid only for n>20. The Z-score is set to 0 for bad entries.

scipy.stats.mode(a, axis=0)
Returns an array of the modal (most common) value in the passed array.

If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned.

Parameters a : array_like
n-dimensional array of which to find mode(s).

axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the whole
array a.Returns mode : ndarray
Array of modal values.

count : ndarray
Array of counts for each mode.

Examples

>>> a = np.array([[6, 8, 3, 0],
... [3, 2, 1, 7],
... [8, 1, 8, 4],
... [5, 3, 0, 5],
... [4, 7, 5, 9]])
>>> from scipy import stats
>>> stats.mode(a)
(array([[3, 1, 0, 0]]), array([[1, 1, 1, 1]]))

To get mode of whole array, specify axis=None:

>>> stats.mode(a, axis=None)
(array([3]), array([3]))

1428 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.stats.moment(a, moment=1, axis=0)
Calculates the nth moment about the mean for a sample.

Generally used to calculate coefficients of skewness and kurtosis.

Parameters a : array_like
data

moment : int, optional
order of central moment that is returned

axis : int or None, optional
Axis along which the central moment is computed. Default is 0. If None,
compute over the whole array a.Returns n-th central moment : ndarray or float
The appropriate moment along the given axis or over all values if axis is
None. The denominator for the moment calculation is the number of obser-
vations, no degrees of freedom correction is done.

scipy.stats.normaltest(a, axis=0)
Tests whether a sample differs from a normal distribution.

This function tests the null hypothesis that a sample comes from a normal distribution. It is based on D’Agostino
and Pearson’s [R351], [R352] test that combines skew and kurtosis to produce an omnibus test of normality.

Parameters a : array_like
The array containing the data to be tested.

axis : int or None, optional
Axis along which to compute test. Default is 0. If None, compute over the
whole array a.Returns statistic : float or array
s^2 + k^2, where s is the z-score returned by skewtest and k is the z-
score returned by kurtosistest.

pvalue : float or array
A 2-sided chi squared probability for the hypothesis test.

References

[R351], [R352]

scipy.stats.skew(a, axis=0, bias=True)
Computes the skewness of a data set.

For normally distributed data, the skewness should be about 0. A skewness value > 0 means that there is more
weight in the left tail of the distribution. The function skewtest can be used to determine if the skewness
value is close enough to 0, statistically speaking.

Parameters a : ndarray
data

axis : int or None, optional
Axis along which skewness is calculated. Default is 0. If None, compute
over the whole array a.

bias : bool, optional
If False, then the calculations are corrected for statistical bias.Returns skewness : ndarray
The skewness of values along an axis, returning 0 where all values are equal.

References

[R362]

scipy.stats.skewtest(a, axis=0)
Tests whether the skew is different from the normal distribution.

5.34. Statistical functions (scipy.stats) 1429

SciPy Reference Guide, Release 0.16.0

This function tests the null hypothesis that the skewness of the population that the sample was drawn from is the
same as that of a corresponding normal distribution.

Parameters a : array
The data to be tested

axis : int or None, optional
Axis along which statistics are calculated. Default is 0. If None, compute
over the whole array a.Returns statistic : float
The computed z-score for this test.

pvalue : float
a 2-sided p-value for the hypothesis test

Notes

The sample size must be at least 8.

scipy.stats.kstat(data, n=2)
Return the nth k-statistic (1<=n<=4 so far).

The nth k-statistic is the unique symmetric unbiased estimator of the nth cumulant kappa_n.

Parameters data : array_like
Input array.

n : int, {1, 2, 3, 4}, optional
Default is equal to 2.Returns kstat : float
The nth k-statistic.

See also:

kstatvar Returns an unbiased estimator of the variance of the k-statistic.

Notes

The cumulants are related to central moments but are specifically defined using a power series expansion of the
logarithm of the characteristic function (which is the Fourier transform of the PDF). In particular let phi(t) be
the characteristic function, then:

ln phi(t) = > kappa_n (it)^n / n! (sum from n=0 to inf)

The first few cumulants (kappa_n) in terms of central moments (mu_n) are:

kappa_1 = mu_1
kappa_2 = mu_2
kappa_3 = mu_3
kappa_4 = mu_4 - 3*mu_2**2
kappa_5 = mu_5 - 10*mu_2 * mu_3

References

http://mathworld.wolfram.com/k-Statistic.html

http://mathworld.wolfram.com/Cumulant.html

scipy.stats.kstatvar(data, n=2)
Returns an unbiased estimator of the variance of the k-statistic.

See kstat for more details of the k-statistic.

Parameters data : array_like
Input array.

1430 Chapter 5. Reference

http://mathworld.wolfram.com/k-Statistic.html
http://mathworld.wolfram.com/Cumulant.html

SciPy Reference Guide, Release 0.16.0

n : int, {1, 2}, optional
Default is equal to 2.Returns kstatvar : float
The nth k-statistic variance.

See also:

kstat

scipy.stats.tmean(a, limits=None, inclusive=(True, True))
Compute the trimmed mean.

This function finds the arithmetic mean of given values, ignoring values outside the given limits.

Parameters a : array_like
Array of values.

limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the upper
limit will be ignored. When limits is None (default), then all values are
used. Either of the limit values in the tuple can also be None representing a
half-open interval.

inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags determine
whether values exactly equal to the lower or upper limits are included. The
default value is (True, True).Returns tmean : float

scipy.stats.tvar(a, limits=None, inclusive=(True, True))
Compute the trimmed variance

This function computes the sample variance of an array of values, while ignoring values which are outside of
given limits.

Parameters a : array_like
Array of values.

limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the upper
limit will be ignored. When limits is None, then all values are used. Either
of the limit values in the tuple can also be None representing a half-open
interval. The default value is None.

inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags determine
whether values exactly equal to the lower or upper limits are included. The
default value is (True, True).Returns tvar : float
Trimmed variance.

Notes

tvar computes the unbiased sample variance, i.e. it uses a correction factor n / (n - 1).

scipy.stats.tmin(a, lowerlimit=None, axis=0, inclusive=True)
Compute the trimmed minimum

This function finds the miminum value of an array a along the specified axis, but only considering values greater
than a specified lower limit.

Parameters a : array_like
array of values

lowerlimit : None or float, optional

5.34. Statistical functions (scipy.stats) 1431

SciPy Reference Guide, Release 0.16.0

Values in the input array less than the given limit will be ignored. When
lowerlimit is None, then all values are used. The default value is None.

axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the whole
array a.

inclusive : {True, False}, optional
This flag determines whether values exactly equal to the lower limit are
included. The default value is True.Returns tmin : float

scipy.stats.tmax(a, upperlimit=None, axis=0, inclusive=True)
Compute the trimmed maximum

This function computes the maximum value of an array along a given axis, while ignoring values larger than a
specified upper limit.

Parameters a : array_like
array of values

upperlimit : None or float, optional
Values in the input array greater than the given limit will be ignored. When
upperlimit is None, then all values are used. The default value is None.

axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the whole
array a.

inclusive : {True, False}, optional
This flag determines whether values exactly equal to the upper limit are
included. The default value is True.Returns tmax : float

scipy.stats.tstd(a, limits=None, inclusive=(True, True))
Compute the trimmed sample standard deviation

This function finds the sample standard deviation of given values, ignoring values outside the given limits.

Parameters a : array_like
array of values

limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the upper
limit will be ignored. When limits is None, then all values are used. Either
of the limit values in the tuple can also be None representing a half-open
interval. The default value is None.

inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags determine
whether values exactly equal to the lower or upper limits are included. The
default value is (True, True).Returns tstd : float

Notes

tstd computes the unbiased sample standard deviation, i.e. it uses a correction factor n / (n - 1).

scipy.stats.tsem(a, limits=None, inclusive=(True, True))
Compute the trimmed standard error of the mean.

This function finds the standard error of the mean for given values, ignoring values outside the given limits.

Parameters a : array_like
array of values

limits : None or (lower limit, upper limit), optional

1432 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Values in the input array less than the lower limit or greater than the upper
limit will be ignored. When limits is None, then all values are used. Either
of the limit values in the tuple can also be None representing a half-open
interval. The default value is None.

inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags determine
whether values exactly equal to the lower or upper limits are included. The
default value is (True, True).Returns tsem : float

Notes

tsem uses unbiased sample standard deviation, i.e. it uses a correction factor n / (n - 1).

scipy.stats.nanmean(*args, **kwds)
nanmean is deprecated! scipy.stats.nanmean is deprecated in scipy 0.15.0 in favour of numpy.nanmean.

Compute the mean over the given axis ignoring nans.

Parameters x : ndarray
Input array.

axis [int or None, optional] Axis along which the mean is com-
puted. Default is 0. If None, compute over the whole array
x.

Returns m : float
The mean of x, ignoring nans.

Examples

>>> from scipy import stats
>>> a = np.linspace(0, 4, 3)
>>> a
array([0., 2., 4.])
>>> a[-1] = np.nan
>>> stats.nanmean(a)
1.0

scipy.stats.nanstd(*args, **kwds)
nanstd is deprecated! scipy.stats.nanstd is deprecated in scipy 0.15 in favour of numpy.nanstd. Note that
numpy.nanstd has a different signature.

Compute the standard deviation over the given axis, ignoring nans.

Parameters x : array_like
Input array.

axis [int or None, optional] Axis along which the standard devi-
ation is computed. Default is 0. If None, compute over the
whole array x.bias [bool, optional] If True, the biased (normalized by N) def-
inition is used. If False (default), the unbiased definition is
used.

Returns s : float
The standard deviation.

5.34. Statistical functions (scipy.stats) 1433

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy import stats
>>> a = np.arange(10, dtype=float)
>>> a[1:3] = np.nan
>>> np.std(a)
nan
>>> stats.nanstd(a)
2.9154759474226504
>>> stats.nanstd(a.reshape(2, 5), axis=1)
array([2.0817, 1.5811])
>>> stats.nanstd(a.reshape(2, 5), axis=None)
2.9154759474226504

scipy.stats.nanmedian(*args, **kwds)
nanmedian is deprecated! scipy.stats.nanmedian is deprecated in scipy 0.15 in favour of numpy.nanmedian.

Compute the median along the given axis ignoring nan values.

Parameters x : array_like
Input array.

axis [int or None, optional] Axis along which the median is com-
puted. Default is 0. If None, compute over the whole array
x.

Returns m : float
The median of x along axis.

Examples

>>> from scipy import stats
>>> a = np.array([0, 3, 1, 5, 5, np.nan])
>>> stats.nanmedian(a)
array(3.0)

>>> b = np.array([0, 3, 1, 5, 5, np.nan, 5])
>>> stats.nanmedian(b)
array(4.0)

Example with axis:

>>> c = np.arange(30.).reshape(5,6)
>>> idx = np.array([False, False, False, True, False] * 6).reshape(5,6)
>>> c[idx] = np.nan
>>> c
array([[0., 1., 2., nan, 4., 5.],

[6., 7., nan, 9., 10., 11.],
[12., nan, 14., 15., 16., 17.],
[nan, 19., 20., 21., 22., nan],
[24., 25., 26., 27., nan, 29.]])

>>> stats.nanmedian(c, axis=1)
array([2. , 9. , 15. , 20.5, 26.])

scipy.stats.variation(a, axis=0)
Computes the coefficient of variation, the ratio of the biased standard deviation to the mean.

Parameters a : array_like

1434 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Input array.
axis : int or None, optional

Axis along which to calculate the coefficient of variation. Default is 0. If
None, compute over the whole array a.

References

[R372]

cumfreq(a[, numbins, defaultreallimits, weights]) Returns a cumulative frequency histogram, using the histogram function.
histogram2(*args, **kwds) histogram2 is deprecated!
histogram(a[, numbins, defaultlimits, ...]) Separates the range into several bins and returns the number of instances in each bin.
itemfreq(a) Returns a 2-D array of item frequencies.
percentileofscore(a, score[, kind]) The percentile rank of a score relative to a list of scores.
scoreatpercentile(a, per[, limit, ...]) Calculate the score at a given percentile of the input sequence.
relfreq(a[, numbins, defaultreallimits, weights]) Returns a relative frequency histogram, using the histogram function.

scipy.stats.cumfreq(a, numbins=10, defaultreallimits=None, weights=None)
Returns a cumulative frequency histogram, using the histogram function.

Parameters a : array_like
Input array.

numbins : int, optional
The number of bins to use for the histogram. Default is 10.

defaultreallimits : tuple (lower, upper), optional
The lower and upper values for the range of the histogram. If no
value is given, a range slightly larger than the range of the values in a
is used. Specifically (a.min() - s, a.max() + s), where s =
(1/2)(a.max() - a.min()) / (numbins - 1).

weights : array_like, optional
The weights for each value in a. Default is None, which gives each value a
weight of 1.0Returns cumcount : ndarray
Binned values of cumulative frequency.

lowerlimit : float
Lower real limit

binsize : float
Width of each bin.

extrapoints : int
Extra points.

Examples

>>> from scipy import stats
>>> x = [1, 4, 2, 1, 3, 1]
>>> cumfreqs, lowlim, binsize, extrapoints = stats.cumfreq(x, numbins=4)
>>> cumfreqs
array([3., 4., 5., 6.])
>>> cumfreqs, lowlim, binsize, extrapoints = ... stats.cumfreq(x, numbins=4, defaultreallimits=(1.5, 5))
>>> cumfreqs
array([1., 2., 3., 3.])
>>> extrapoints
3

scipy.stats.histogram2(*args, **kwds)
histogram2 is deprecated! scipy.stats.histogram2 is deprecated in scipy 0.16.0; use np.histogram2d instead

5.34. Statistical functions (scipy.stats) 1435

SciPy Reference Guide, Release 0.16.0

Compute histogram using divisions in bins.
Count the number of times values from array a fall into numerical ranges defined by bins. Range x is given
by bins[x] <= range_x < bins[x+1] where x =0,N and N is the length of the bins array. The last range is
given by bins[N] <= range_N < infinity. Values less than bins[0] are not included in the histogram.

Parameters a : array_like of rank 1
The array of values to be assigned into bins

bins [array_like of rank 1] Defines the ranges of values to use
during histogramming.

Returns histogram2 : ndarray of rank 1
Each value represents the occurrences for a given bin (range) of values.

scipy.stats.histogram(a, numbins=10, defaultlimits=None, weights=None, printextras=False)
Separates the range into several bins and returns the number of instances in each bin.

Parameters a : array_like
Array of scores which will be put into bins.

numbins : int, optional
The number of bins to use for the histogram. Default is 10.

defaultlimits : tuple (lower, upper), optional
The lower and upper values for the range of the histogram. If no
value is given, a range slightly larger than the range of the values in a
is used. Specifically (a.min() - s, a.max() + s), where s =
(1/2)(a.max() - a.min()) / (numbins - 1).

weights : array_like, optional
The weights for each value in a. Default is None, which gives each value a
weight of 1.0

printextras : bool, optional
If True, if there are extra points (i.e. the points that fall outside the bin lim-
its) a warning is raised saying how many of those points there are. Default
is False.Returns count : ndarray
Number of points (or sum of weights) in each bin.

lowerlimit : float
Lowest value of histogram, the lower limit of the first bin.

binsize : float
The size of the bins (all bins have the same size).

extrapoints : int
The number of points outside the range of the histogram.

See also:

numpy.histogram

Notes

This histogram is based on numpy’s histogram but has a larger range by default if default limits is not set.

scipy.stats.itemfreq(a)
Returns a 2-D array of item frequencies.

Parameters a : (N,) array_like
Input array.Returns itemfreq : (K, 2) ndarray
A 2-D frequency table. Column 1 contains sorted, unique values from a,
column 2 contains their respective counts.

1436 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html#numpy.histogram

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy import stats
>>> a = np.array([1, 1, 5, 0, 1, 2, 2, 0, 1, 4])
>>> stats.itemfreq(a)
array([[0., 2.],

[1., 4.],
[2., 2.],
[4., 1.],
[5., 1.]])

>>> np.bincount(a)
array([2, 4, 2, 0, 1, 1])

>>> stats.itemfreq(a/10.)
array([[0. , 2.],

[0.1, 4.],
[0.2, 2.],
[0.4, 1.],
[0.5, 1.]])

scipy.stats.percentileofscore(a, score, kind=’rank’)
The percentile rank of a score relative to a list of scores.

A percentileofscore of, for example, 80% means that 80% of the scores in a are below the given score.
In the case of gaps or ties, the exact definition depends on the optional keyword, kind.

Parameters a : array_like
Array of scores to which score is compared.

score : int or float
Score that is compared to the elements in a.

kind : {‘rank’, ‘weak’, ‘strict’, ‘mean’}, optional
This optional parameter specifies the interpretation of the resulting score:

•“rank”: Average percentage ranking of score. In case of
multiple matches, average the percentage
rankings of all matching scores.•“weak”: This kind corresponds to the definition of a cumulative

distribution function. A percentileofscore of
80% means that 80% of values are less than
or equal to the provided score.•“strict”: Similar to “weak”, except that only values that are

strictly less than the given score are counted.•“mean”: The average of the “weak” and “strict” scores, often used in

testing. See
http://en.wikipedia.org/wiki/Percentile_rankReturns pcos : float

Percentile-position of score (0-100) relative to a.

See also:

numpy.percentile

Examples

Three-quarters of the given values lie below a given score:

5.34. Statistical functions (scipy.stats) 1437

http://en.wikipedia.org/wiki/Percentile_rank
http://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html#numpy.percentile

SciPy Reference Guide, Release 0.16.0

>>> from scipy import stats
>>> stats.percentileofscore([1, 2, 3, 4], 3)
75.0

With multiple matches, note how the scores of the two matches, 0.6 and 0.8 respectively, are averaged:

>>> stats.percentileofscore([1, 2, 3, 3, 4], 3)
70.0

Only 2/5 values are strictly less than 3:

>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='strict')
40.0

But 4/5 values are less than or equal to 3:

>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='weak')
80.0

The average between the weak and the strict scores is

>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='mean')
60.0

scipy.stats.scoreatpercentile(a, per, limit=(), interpolation_method=’fraction’, axis=None)
Calculate the score at a given percentile of the input sequence.

For example, the score at per=50 is the median. If the desired quantile lies between two data points, we
interpolate between them, according to the value of interpolation. If the parameter limit is provided, it should
be a tuple (lower, upper) of two values.

Parameters a : array_like
A 1-D array of values from which to extract score.

per : array_like
Percentile(s) at which to extract score. Values should be in range [0,100].

limit : tuple, optional
Tuple of two scalars, the lower and upper limits within which to compute
the percentile. Values of a outside this (closed) interval will be ignored.

interpolation_method : {‘fraction’, ‘lower’, ‘higher’}, optional
This optional parameter specifies the interpolation method to use, when the
desired quantile lies between two data points i and j

•fraction: i + (j - i) * fraction where
fraction is the fractional part of the index surrounded by
i and j.•lower: i.•higher: j.

axis : int, optional
Axis along which the percentiles are computed. Default is None. If None,
compute over the whole array a.Returns score : float or ndarray
Score at percentile(s).

See also:

percentileofscore, numpy.percentile

1438 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html#numpy.percentile

SciPy Reference Guide, Release 0.16.0

Notes

This function will become obsolete in the future. For Numpy 1.9 and higher, numpy.percentile provides
all the functionality that scoreatpercentile provides. And it’s significantly faster. Therefore it’s recom-
mended to use numpy.percentile for users that have numpy >= 1.9.

Examples

>>> from scipy import stats
>>> a = np.arange(100)
>>> stats.scoreatpercentile(a, 50)
49.5

scipy.stats.relfreq(a, numbins=10, defaultreallimits=None, weights=None)
Returns a relative frequency histogram, using the histogram function.

Parameters a : array_like
Input array.

numbins : int, optional
The number of bins to use for the histogram. Default is 10.

defaultreallimits : tuple (lower, upper), optional
The lower and upper values for the range of the histogram. If no
value is given, a range slightly larger than the range of the values in a
is used. Specifically (a.min() - s, a.max() + s), where s =
(1/2)(a.max() - a.min()) / (numbins - 1).

weights : array_like, optional
The weights for each value in a. Default is None, which gives each value a
weight of 1.0Returns frequency : ndarray
Binned values of relative frequency.

lowerlimit : float
Lower real limit

binsize : float
Width of each bin.

extrapoints : int
Extra points.

Examples

>>> from scipy import stats
>>> a = np.array([1, 4, 2, 1, 3, 1])
>>> relfreqs, lowlim, binsize, extrapoints = stats.relfreq(a, numbins=4)
>>> relfreqs
array([0.5 , 0.16666667, 0.16666667, 0.16666667])
>>> np.sum(relfreqs) # relative frequencies should add up to 1
0.99999999999999989

binned_statistic(x, values[, statistic, ...]) Compute a binned statistic for a set of data.
binned_statistic_2d(x, y, values[, ...]) Compute a bidimensional binned statistic for a set of data.
binned_statistic_dd(sample, values[, ...]) Compute a multidimensional binned statistic for a set of data.

scipy.stats.binned_statistic(x, values, statistic=’mean’, bins=10, range=None)
Compute a binned statistic for a set of data.

This is a generalization of a histogram function. A histogram divides the space into bins, and returns the count
of the number of points in each bin. This function allows the computation of the sum, mean, median, or other

5.34. Statistical functions (scipy.stats) 1439

http://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html#numpy.percentile
http://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html#numpy.percentile

SciPy Reference Guide, Release 0.16.0

statistic of the values within each bin.

Parameters x : array_like
A sequence of values to be binned.

values : array_like
The values on which the statistic will be computed. This must be the same
shape as x.

statistic : string or callable, optional
The statistic to compute (default is ‘mean’). The following statistics are
available:

•‘mean’ : compute the mean of values for points within each
bin. Empty bins will be represented by NaN.•‘median’ : compute the median of values for points within
each bin. Empty bins will be represented by NaN.•‘count’ : compute the count of points within each bin. This
is identical to an unweighted histogram. values array is not
referenced.•‘sum’ : compute the sum of values for points within each
bin. This is identical to a weighted histogram.•function : a user-defined function which takes a 1D array of
values, and outputs a single numerical statistic. This func-
tion will be called on the values in each bin. Empty bins
will be represented by function([]), or NaN if this returns an
error.

bins : int or sequence of scalars, optional
If bins is an int, it defines the number of equal-width bins in the given range
(10 by default). If bins is a sequence, it defines the bin edges, including the
rightmost edge, allowing for non-uniform bin widths. Values in x that are
smaller than lowest bin edge are assigned to bin number 0, values beyond
the highest bin are assigned to bins[-1].

range : (float, float) or [(float, float)], optional
The lower and upper range of the bins. If not provided, range is simply
(x.min(), x.max()). Values outside the range are ignored.Returns statistic : array
The values of the selected statistic in each bin.

bin_edges : array of dtype float
Return the bin edges (length(statistic)+1).

binnumber : 1-D ndarray of ints
This assigns to each observation an integer that represents the bin in which
this observation falls. Array has the same length as values.

See also:

numpy.histogram, binned_statistic_2d, binned_statistic_dd

Notes

All but the last (righthand-most) bin is half-open. In other words, if bins is [1, 2, 3, 4], then the first bin
is [1, 2) (including 1, but excluding 2) and the second [2, 3). The last bin, however, is [3, 4], which
includes 4.

New in version 0.11.0.

Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt

First a basic example:

1440 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html#numpy.histogram

SciPy Reference Guide, Release 0.16.0

>>> stats.binned_statistic([1, 2, 1, 2, 4], np.arange(5), statistic='mean',
... bins=3)
(array([1., 2., 4.]), array([1., 2., 3., 4.]), array([1, 2, 1, 2, 3]))

As a second example, we now generate some random data of sailing boat speed as a function of wind speed, and
then determine how fast our boat is for certain wind speeds:

>>> windspeed = 8 * np.random.rand(500)
>>> boatspeed = .3 * windspeed**.5 + .2 * np.random.rand(500)
>>> bin_means, bin_edges, binnumber = stats.binned_statistic(windspeed,
... boatspeed, statistic='median', bins=[1,2,3,4,5,6,7])
>>> plt.figure()
>>> plt.plot(windspeed, boatspeed, 'b.', label='raw data')
>>> plt.hlines(bin_means, bin_edges[:-1], bin_edges[1:], colors='g', lw=5,
... label='binned statistic of data')
>>> plt.legend()

Now we can use binnumber to select all datapoints with a windspeed below 1:

>>> low_boatspeed = boatspeed[binnumber == 0]

As a final example, we will use bin_edges and binnumber to make a plot of a distribution that shows the
mean and distribution around that mean per bin, on top of a regular histogram and the probability distribution
function:

>>> x = np.linspace(0, 5, num=500)
>>> x_pdf = stats.maxwell.pdf(x)
>>> samples = stats.maxwell.rvs(size=10000)

>>> bin_means, bin_edges, binnumber = stats.binned_statistic(x, x_pdf,
... statistic='mean', bins=25)
>>> bin_width = (bin_edges[1] - bin_edges[0])
>>> bin_centers = bin_edges[1:] - bin_width/2

>>> plt.figure()
>>> plt.hist(samples, bins=50, normed=True, histtype='stepfilled', alpha=0.2,
... label='histogram of data')
>>> plt.plot(x, x_pdf, 'r-', label='analytical pdf')
>>> plt.hlines(bin_means, bin_edges[:-1], bin_edges[1:], colors='g', lw=2,
... label='binned statistic of data')
>>> plt.plot((binnumber - 0.5) * bin_width, x_pdf, 'g.', alpha=0.5)
>>> plt.legend(fontsize=10)
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1441

SciPy Reference Guide, Release 0.16.0

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2
raw data
binned statistic of data

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
analytical pdf
histogram of data
binned statistic of data

scipy.stats.binned_statistic_2d(x, y, values, statistic=’mean’, bins=10, range=None)
Compute a bidimensional binned statistic for a set of data.

This is a generalization of a histogram2d function. A histogram divides the space into bins, and returns the
count of the number of points in each bin. This function allows the computation of the sum, mean, median, or
other statistic of the values within each bin.

Parameters x : (N,) array_like
A sequence of values to be binned along the first dimension.

y : (M,) array_like
A sequence of values to be binned along the second dimension.

values : (N,) array_like
The values on which the statistic will be computed. This must be the same
shape as x.

statistic : string or callable, optional
The statistic to compute (default is ‘mean’). The following statistics are
available:

1442 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

•‘mean’ : compute the mean of values for points within each
bin. Empty bins will be represented by NaN.•‘median’ : compute the median of values for points within
each bin. Empty bins will be represented by NaN.•‘count’ : compute the count of points within each bin. This
is identical to an unweighted histogram. values array is not
referenced.•‘sum’ : compute the sum of values for points within each
bin. This is identical to a weighted histogram.•function : a user-defined function which takes a 1D array of
values, and outputs a single numerical statistic. This func-
tion will be called on the values in each bin. Empty bins
will be represented by function([]), or NaN if this returns an
error.

bins : int or [int, int] or array_like or [array, array], optional
The bin specification:

•the number of bins for the two dimensions (nx=ny=bins),•the number of bins in each dimension (nx, ny = bins),•the bin edges for the two dimensions (x_edges = y_edges =
bins),•the bin edges in each dimension (x_edges, y_edges = bins).

range : (2,2) array_like, optional
The leftmost and rightmost edges of the bins along each dimension (if not
specified explicitly in the bins parameters): [[xmin, xmax], [ymin, ymax]].
All values outside of this range will be considered outliers and not tallied in
the histogram.Returns statistic : (nx, ny) ndarray
The values of the selected statistic in each two-dimensional bin

x_edges : (nx + 1) ndarray
The bin edges along the first dimension.

y_edges : (ny + 1) ndarray
The bin edges along the second dimension.

binnumber : 1-D ndarray of ints
This assigns to each observation an integer that represents the bin in which
this observation falls. Array has the same length as values.

See also:

numpy.histogram2d, binned_statistic, binned_statistic_dd

Notes

New in version 0.11.0.

scipy.stats.binned_statistic_dd(sample, values, statistic=’mean’, bins=10, range=None)
Compute a multidimensional binned statistic for a set of data.

This is a generalization of a histogramdd function. A histogram divides the space into bins, and returns the
count of the number of points in each bin. This function allows the computation of the sum, mean, median, or
other statistic of the values within each bin.

Parameters sample : array_like
Data to histogram passed as a sequence of D arrays of length N, or as an
(N,D) array.

values : array_like
The values on which the statistic will be computed. This must be the same
shape as x.

statistic : string or callable, optional
The statistic to compute (default is ‘mean’). The following statistics are
available:

5.34. Statistical functions (scipy.stats) 1443

http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram2d.html#numpy.histogram2d

SciPy Reference Guide, Release 0.16.0

•‘mean’ : compute the mean of values for points within each
bin. Empty bins will be represented by NaN.•‘median’ : compute the median of values for points within
each bin. Empty bins will be represented by NaN.•‘count’ : compute the count of points within each bin. This
is identical to an unweighted histogram. values array is not
referenced.•‘sum’ : compute the sum of values for points within each
bin. This is identical to a weighted histogram.•function : a user-defined function which takes a 1D array of
values, and outputs a single numerical statistic. This func-
tion will be called on the values in each bin. Empty bins
will be represented by function([]), or NaN if this returns an
error.

bins : sequence or int, optional
The bin specification:

•A sequence of arrays describing the bin edges along each
dimension.•The number of bins for each dimension (nx, ny, ... =bins)•The number of bins for all dimensions (nx=ny=...=bins).

range : sequence, optional
A sequence of lower and upper bin edges to be used if the edges are not
given explicitely in bins. Defaults to the minimum and maximum values
along each dimension.Returns statistic : ndarray, shape(nx1, nx2, nx3,...)
The values of the selected statistic in each two-dimensional bin

bin_edges : list of ndarrays
A list of D arrays describing the (nxi + 1) bin edges for each dimension

binnumber : 1-D ndarray of ints
This assigns to each observation an integer that represents the bin in which
this observation falls. Array has the same length as values.

See also:

np.histogramdd, binned_statistic, binned_statistic_2d

Notes

New in version 0.11.0.

obrientransform(*args) Computes the O’Brien transform on input data (any number of arrays).
signaltonoise(*args, **kwds) signaltonoise is deprecated!
bayes_mvs(data[, alpha]) Bayesian confidence intervals for the mean, var, and std.
mvsdist(data) ‘Frozen’ distributions for mean, variance, and standard deviation of data.
sem(a[, axis, ddof]) Calculates the standard error of the mean (or standard error of measurement) of the values in the input array.
zmap(scores, compare[, axis, ddof]) Calculates the relative z-scores.
zscore(a[, axis, ddof]) Calculates the z score of each value in the sample, relative to the sample mean and standard deviation.

scipy.stats.obrientransform(*args)
Computes the O’Brien transform on input data (any number of arrays).

Used to test for homogeneity of variance prior to running one-way stats. Each array in *args is one level of
a factor. If f_oneway is run on the transformed data and found significant, the variances are unequal. From
Maxwell and Delaney [R353], p.112.

Parameters args : tuple of array_like
Any number of arrays.Returns obrientransform : ndarray
Transformed data for use in an ANOVA. The first dimension of the result
corresponds to the sequence of transformed arrays. If the arrays given are

1444 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

all 1-D of the same length, the return value is a 2-D array; otherwise it is a
1-D array of type object, with each element being an ndarray.

References

[R353]

Examples

We’ll test the following data sets for differences in their variance.

>>> x = [10, 11, 13, 9, 7, 12, 12, 9, 10]
>>> y = [13, 21, 5, 10, 8, 14, 10, 12, 7, 15]

Apply the O’Brien transform to the data.

>>> from scipy.stats import obrientransform
>>> tx, ty = obrientransform(x, y)

Use scipy.stats.f_oneway to apply a one-way ANOVA test to the transformed data.

>>> from scipy.stats import f_oneway
>>> F, p = f_oneway(tx, ty)
>>> p
0.1314139477040335

If we require that p < 0.05 for significance, we cannot conclude that the variances are different.

scipy.stats.signaltonoise(*args, **kwds)
signaltonoise is deprecated! scipy.stats.signaltonoise is deprecated in scipy 0.16.0

The signal-to-noise ratio of the input data.
Returns the signal-to-noise ratio of a, here defined as the mean divided by the standard deviation.

Parameters a : array_like
An array_like object containing the sample data.

axis [int or None, optional] Axis along which to operate. Default
is 0. If None, compute over the whole array a.ddof [int, optional] Degrees of freedom correction for standard
deviation. Default is 0.

Returns s2n : ndarray
The mean to standard deviation ratio(s) along axis, or 0 where the standard
deviation is 0.

scipy.stats.bayes_mvs(data, alpha=0.9)
Bayesian confidence intervals for the mean, var, and std.

Parameters data : array_like
Input data, if multi-dimensional it is flattened to 1-D by bayes_mvs. Re-
quires 2 or more data points.

alpha : float, optional
Probability that the returned confidence interval contains the true parameter.Returns mean_cntr, var_cntr, std_cntr : tuple
The three results are for the mean, variance and standard deviation, respec-
tively. Each result is a tuple of the form:

(center, (lower, upper))

5.34. Statistical functions (scipy.stats) 1445

SciPy Reference Guide, Release 0.16.0

with center the mean of the conditional pdf of the value given the data, and
(lower, upper) a confidence interval, centered on the median, containing the
estimate to a probability alpha.

Notes

Each tuple of mean, variance, and standard deviation estimates represent the (center, (lower, upper)) with center
the mean of the conditional pdf of the value given the data and (lower, upper) is a confidence interval centered
on the median, containing the estimate to a probability alpha.

Converts data to 1-D and assumes all data has the same mean and variance. Uses Jeffrey’s prior for variance and
std.

Equivalent to tuple((x.mean(), x.interval(alpha)) for x in mvsdist(dat))

References

T.E. Oliphant, “A Bayesian perspective on estimating mean, variance, and standard-deviation from data”,
http://hdl.handle.net/1877/438, 2006.

scipy.stats.mvsdist(data)
‘Frozen’ distributions for mean, variance, and standard deviation of data.

Parameters data : array_like
Input array. Converted to 1-D using ravel. Requires 2 or more data-points.Returns mdist : “frozen” distribution object
Distribution object representing the mean of the data

vdist : “frozen” distribution object
Distribution object representing the variance of the data

sdist : “frozen” distribution object
Distribution object representing the standard deviation of the data

Notes

The return values from bayes_mvs(data) is equivalent to tuple((x.mean(), x.interval(0.90))
for x in mvsdist(data)).

In other words, calling <dist>.mean() and <dist>.interval(0.90) on the three distribution objects
returned from this function will give the same results that are returned from bayes_mvs.

Examples

>>> from scipy import stats
>>> data = [6, 9, 12, 7, 8, 8, 13]
>>> mean, var, std = stats.mvsdist(data)

We now have frozen distribution objects “mean”, “var” and “std” that we can examine:

>>> mean.mean()
9.0
>>> mean.interval(0.95)
(6.6120585482655692, 11.387941451734431)
>>> mean.std()
1.1952286093343936

scipy.stats.sem(a, axis=0, ddof=1)
Calculates the standard error of the mean (or standard error of measurement) of the values in the input array.

Parameters a : array_like
An array containing the values for which the standard error is returned.

1446 Chapter 5. Reference

http://hdl.handle.net/1877/438

SciPy Reference Guide, Release 0.16.0

axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the whole
array a.

ddof : int, optional
Delta degrees-of-freedom. How many degrees of freedom to adjust for bias
in limited samples relative to the population estimate of variance. Defaults
to 1.Returns s : ndarray or float
The standard error of the mean in the sample(s), along the input axis.

Notes

The default value for ddof is different to the default (0) used by other ddof containing routines, such as np.std
nd stats.nanstd.

Examples

Find standard error along the first axis:

>>> from scipy import stats
>>> a = np.arange(20).reshape(5,4)
>>> stats.sem(a)
array([2.8284, 2.8284, 2.8284, 2.8284])

Find standard error across the whole array, using n degrees of freedom:

>>> stats.sem(a, axis=None, ddof=0)
1.2893796958227628

scipy.stats.zmap(scores, compare, axis=0, ddof=0)
Calculates the relative z-scores.

Returns an array of z-scores, i.e., scores that are standardized to zero mean and unit variance, where mean and
variance are calculated from the comparison array.

Parameters scores : array_like
The input for which z-scores are calculated.

compare : array_like
The input from which the mean and standard deviation of the normalization
are taken; assumed to have the same dimension as scores.

axis : int or None, optional
Axis over which mean and variance of compare are calculated. Default is
0. If None, compute over the whole array scores.

ddof : int, optional
Degrees of freedom correction in the calculation of the standard deviation.
Default is 0.Returns zscore : array_like
Z-scores, in the same shape as scores.

Notes

This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray
instead of asarray for parameters).

Examples

5.34. Statistical functions (scipy.stats) 1447

SciPy Reference Guide, Release 0.16.0

>>> from scipy.stats import zmap
>>> a = [0.5, 2.0, 2.5, 3]
>>> b = [0, 1, 2, 3, 4]
>>> zmap(a, b)
array([-1.06066017, 0. , 0.35355339, 0.70710678])

scipy.stats.zscore(a, axis=0, ddof=0)
Calculates the z score of each value in the sample, relative to the sample mean and standard deviation.

Parameters a : array_like
An array like object containing the sample data.

axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the whole
array a.

ddof : int, optional
Degrees of freedom correction in the calculation of the standard deviation.
Default is 0.Returns zscore : array_like
The z-scores, standardized by mean and standard deviation of input array a.

Notes

This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray
instead of asarray for parameters).

Examples

>>> a = np.array([0.7972, 0.0767, 0.4383, 0.7866, 0.8091, 0.1954,
... 0.6307, 0.6599, 0.1065, 0.0508])
>>> from scipy import stats
>>> stats.zscore(a)
array([1.1273, -1.247 , -0.0552, 1.0923, 1.1664, -0.8559, 0.5786,

0.6748, -1.1488, -1.3324])

Computing along a specified axis, using n-1 degrees of freedom (ddof=1) to calculate the standard deviation:

>>> b = np.array([[0.3148, 0.0478, 0.6243, 0.4608],
... [0.7149, 0.0775, 0.6072, 0.9656],
... [0.6341, 0.1403, 0.9759, 0.4064],
... [0.5918, 0.6948, 0.904 , 0.3721],
... [0.0921, 0.2481, 0.1188, 0.1366]])
>>> stats.zscore(b, axis=1, ddof=1)
array([[-0.19264823, -1.28415119, 1.07259584, 0.40420358],

[0.33048416, -1.37380874, 0.04251374, 1.00081084],
[0.26796377, -1.12598418, 1.23283094, -0.37481053],
[-0.22095197, 0.24468594, 1.19042819, -1.21416216],
[-0.82780366, 1.4457416 , -0.43867764, -0.1792603]])

sigmaclip(a[, low, high]) Iterative sigma-clipping of array elements.
threshold(a[, threshmin, threshmax, newval]) Clip array to a given value.
trimboth(a, proportiontocut[, axis]) Slices off a proportion of items from both ends of an array.
trim1(a, proportiontocut[, tail]) Slices off a proportion of items from ONE end of the passed array distribution.

scipy.stats.sigmaclip(a, low=4.0, high=4.0)
Iterative sigma-clipping of array elements.

The output array contains only those elements of the input array c that satisfy the conditions

1448 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

mean(c) - std(c)*low < c < mean(c) + std(c)*high

Starting from the full sample, all elements outside the critical range are removed. The iteration continues with a
new critical range until no elements are outside the range.

Parameters a : array_like
Data array, will be raveled if not 1-D.

low : float, optional
Lower bound factor of sigma clipping. Default is 4.

high : float, optional
Upper bound factor of sigma clipping. Default is 4.Returns clipped : ndarray
Input array with clipped elements removed.

lower : float
Lower threshold value use for clipping.

upper : float
Upper threshold value use for clipping.

Examples

>>> from scipy.stats import sigmaclip
>>> a = np.concatenate((np.linspace(9.5, 10.5, 31),
... np.linspace(0, 20, 5)))
>>> fact = 1.5
>>> c, low, upp = sigmaclip(a, fact, fact)
>>> c
array([9.96666667, 10. , 10.03333333, 10.])
>>> c.var(), c.std()
(0.00055555555555555165, 0.023570226039551501)
>>> low, c.mean() - fact*c.std(), c.min()
(9.9646446609406727, 9.9646446609406727, 9.9666666666666668)
>>> upp, c.mean() + fact*c.std(), c.max()
(10.035355339059327, 10.035355339059327, 10.033333333333333)

>>> a = np.concatenate((np.linspace(9.5, 10.5, 11),
... np.linspace(-100, -50, 3)))
>>> c, low, upp = sigmaclip(a, 1.8, 1.8)
>>> (c == np.linspace(9.5, 10.5, 11)).all()
True

scipy.stats.threshold(a, threshmin=None, threshmax=None, newval=0)
Clip array to a given value.

Similar to numpy.clip(), except that values less than threshmin or greater than threshmax are replaced by newval,
instead of by threshmin and threshmax respectively.

Parameters a : array_like
Data to threshold.

threshmin : float, int or None, optional
Minimum threshold, defaults to None.

threshmax : float, int or None, optional
Maximum threshold, defaults to None.

newval : float or int, optional
Value to put in place of values in a outside of bounds. Defaults to 0.Returns out : ndarray
The clipped input array, with values less than threshmin or greater than
threshmax replaced with newval.

5.34. Statistical functions (scipy.stats) 1449

SciPy Reference Guide, Release 0.16.0

Examples

>>> a = np.array([9, 9, 6, 3, 1, 6, 1, 0, 0, 8])
>>> from scipy import stats
>>> stats.threshold(a, threshmin=2, threshmax=8, newval=-1)
array([-1, -1, 6, 3, -1, 6, -1, -1, -1, 8])

scipy.stats.trimboth(a, proportiontocut, axis=0)
Slices off a proportion of items from both ends of an array.

Slices off the passed proportion of items from both ends of the passed array (i.e., with proportiontocut = 0.1,
slices leftmost 10% and rightmost 10% of scores). You must pre-sort the array if you want ‘proper’ trimming.
Slices off less if proportion results in a non-integer slice index (i.e., conservatively slices off proportiontocut).

Parameters a : array_like
Data to trim.

proportiontocut : float
Proportion (in range 0-1) of total data set to trim of each end.

axis : int or None, optional
Axis along which to trim data. Default is 0. If None, compute over the
whole array a.Returns out : ndarray
Trimmed version of array a.

See also:

trim_mean

Examples

>>> from scipy import stats
>>> a = np.arange(20)
>>> b = stats.trimboth(a, 0.1)
>>> b.shape
(16,)

scipy.stats.trim1(a, proportiontocut, tail=’right’)
Slices off a proportion of items from ONE end of the passed array distribution.

If proportiontocut = 0.1, slices off ‘leftmost’ or ‘rightmost’ 10% of scores. Slices off LESS if proportion results
in a non-integer slice index (i.e., conservatively slices off proportiontocut).

Parameters a : array_like
Input array

proportiontocut : float
Fraction to cut off of ‘left’ or ‘right’ of distribution

tail : {‘left’, ‘right’}, optional
Defaults to ‘right’.Returns trim1 : ndarray
Trimmed version of array a

f_oneway(*args) Performs a 1-way ANOVA.
pearsonr(x, y) Calculates a Pearson correlation coefficient and the p-value for testing non-correlation.
spearmanr(a[, b, axis]) Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation.
pointbiserialr(x, y) Calculates a point biserial correlation coefficient and the associated p-value.
kendalltau(x, y[, initial_lexsort]) Calculates Kendall’s tau, a correlation measure for ordinal data.
linregress(x[, y]) Calculate a regression line
theilslopes(y[, x, alpha]) Computes the Theil-Sen estimator for a set of points (x, y).

1450 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.stats.f_oneway(*args)
Performs a 1-way ANOVA.

The one-way ANOVA tests the null hypothesis that two or more groups have the same population mean. The
test is applied to samples from two or more groups, possibly with differing sizes.

Parameters sample1, sample2, ... : array_like
The sample measurements for each group.Returns statistic : float
The computed F-value of the test.

pvalue : float
The associated p-value from the F-distribution.

Notes

The ANOVA test has important assumptions that must be satisfied in order for the associated p-value to be valid.
1.The samples are independent.
2.Each sample is from a normally distributed population.
3.The population standard deviations of the groups are all equal. This property is known as homoscedastic-

ity.
If these assumptions are not true for a given set of data, it may still be possible to use the Kruskal-Wallis H-test
(scipy.stats.kruskal) although with some loss of power.

The algorithm is from Heiman[2], pp.394-7.

References

[R314], [R315]

scipy.stats.pearsonr(x, y)
Calculates a Pearson correlation coefficient and the p-value for testing non-correlation.

The Pearson correlation coefficient measures the linear relationship between two datasets. Strictly speaking,
Pearson’s correlation requires that each dataset be normally distributed. Like other correlation coefficients, this
one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear
relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x
increases, y decreases.

The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson
correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable
but are probably reasonable for datasets larger than 500 or so.

Parameters x : (N,) array_like
Input

y : (N,) array_like
InputReturns (Pearson’s correlation coefficient,
2-tailed p-value)

References

http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation

scipy.stats.spearmanr(a, b=None, axis=0)
Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation.

The Spearman correlation is a nonparametric measure of the monotonicity of the relationship between two
datasets. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are nor-
mally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no
correlation. Correlations of -1 or +1 imply an exact monotonic relationship. Positive correlations imply that as
x increases, so does y. Negative correlations imply that as x increases, y decreases.

5.34. Statistical functions (scipy.stats) 1451

http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation

SciPy Reference Guide, Release 0.16.0

The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman
correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable
but are probably reasonable for datasets larger than 500 or so.

Parameters a, b : 1D or 2D array_like, b is optional
One or two 1-D or 2-D arrays containing multiple variables and observa-
tions. Each column of a and b represents a variable, and each row entry a
single observation of those variables. See also axis. Both arrays need to
have the same length in the axis dimension.

axis : int or None, optional
If axis=0 (default), then each column represents a variable, with observa-
tions in the rows. If axis=0, the relationship is transposed: each row rep-
resents a variable, while the columns contain observations. If axis=None,
then both arrays will be raveled.Returns correlation : float or ndarray (2-D square)
Spearman correlation matrix or correlation coefficient (if only 2 variables
are given as parameters. Correlation matrix is square with length equal to
total number of variables (columns or rows) in a and b combined.

pvalue : float
The two-sided p-value for a hypothesis test whose null hypothesis is that
two sets of data are uncorrelated, has same dimension as rho.

Notes

Changes in scipy 0.8.0: rewrite to add tie-handling, and axis.

References

[R363]

Examples

>>> from scipy import stats
>>> stats.spearmanr([1,2,3,4,5], [5,6,7,8,7])
(0.82078268166812329, 0.088587005313543798)
>>> np.random.seed(1234321)
>>> x2n = np.random.randn(100, 2)
>>> y2n = np.random.randn(100, 2)
>>> stats.spearmanr(x2n)
(0.059969996999699973, 0.55338590803773591)
>>> stats.spearmanr(x2n[:,0], x2n[:,1])
(0.059969996999699973, 0.55338590803773591)
>>> rho, pval = stats.spearmanr(x2n, y2n)
>>> rho
array([[1. , 0.05997 , 0.18569457, 0.06258626],

[0.05997 , 1. , 0.110003 , 0.02534653],
[0.18569457, 0.110003 , 1. , 0.03488749],
[0.06258626, 0.02534653, 0.03488749, 1.]])

>>> pval
array([[0. , 0.55338591, 0.06435364, 0.53617935],

[0.55338591, 0. , 0.27592895, 0.80234077],
[0.06435364, 0.27592895, 0. , 0.73039992],
[0.53617935, 0.80234077, 0.73039992, 0.]])

>>> rho, pval = stats.spearmanr(x2n.T, y2n.T, axis=1)
>>> rho
array([[1. , 0.05997 , 0.18569457, 0.06258626],

[0.05997 , 1. , 0.110003 , 0.02534653],
[0.18569457, 0.110003 , 1. , 0.03488749],

1452 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

[0.06258626, 0.02534653, 0.03488749, 1.]])
>>> stats.spearmanr(x2n, y2n, axis=None)
(0.10816770419260482, 0.1273562188027364)
>>> stats.spearmanr(x2n.ravel(), y2n.ravel())
(0.10816770419260482, 0.1273562188027364)

>>> xint = np.random.randint(10, size=(100, 2))
>>> stats.spearmanr(xint)
(0.052760927029710199, 0.60213045837062351)

scipy.stats.pointbiserialr(x, y)
Calculates a point biserial correlation coefficient and the associated p-value.

The point biserial correlation is used to measure the relationship between a binary variable, x, and a continuous
variable, y. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation.
Correlations of -1 or +1 imply a determinative relationship.

This function uses a shortcut formula but produces the same result as pearsonr.

Parameters x : array_like of bools
Input array.

y : array_like
Input array.Returns correlation : float
R value

pvalue : float
2-tailed p-value

References

http://en.wikipedia.org/wiki/Point-biserial_correlation_coefficient

Examples

>>> from scipy import stats
>>> a = np.array([0, 0, 0, 1, 1, 1, 1])
>>> b = np.arange(7)
>>> stats.pointbiserialr(a, b)
(0.8660254037844386, 0.011724811003954652)
>>> stats.pearsonr(a, b)
(0.86602540378443871, 0.011724811003954626)
>>> np.corrcoef(a, b)
array([[1. , 0.8660254],

[0.8660254, 1.]])

scipy.stats.kendalltau(x, y, initial_lexsort=True)
Calculates Kendall’s tau, a correlation measure for ordinal data.

Kendall’s tau is a measure of the correspondence between two rankings. Values close to 1 indicate strong
agreement, values close to -1 indicate strong disagreement. This is the tau-b version of Kendall’s tau which
accounts for ties.

Parameters x, y : array_like
Arrays of rankings, of the same shape. If arrays are not 1-D, they will be
flattened to 1-D.

initial_lexsort : bool, optional
Whether to use lexsort or quicksort as the sorting method for the initial
sort of the inputs. Default is lexsort (True), for which kendalltau is

5.34. Statistical functions (scipy.stats) 1453

http://en.wikipedia.org/wiki/Point-biserial_correlation_coefficient

SciPy Reference Guide, Release 0.16.0

of complexity O(n log(n)). If False, the complexity is O(n^2), but with a
smaller pre-factor (so quicksort may be faster for small arrays).Returns correlation : float
The tau statistic.

pvalue : float
The two-sided p-value for a hypothesis test whose null hypothesis is an
absence of association, tau = 0.

Notes

The definition of Kendall’s tau that is used is:

tau = (P - Q) / sqrt((P + Q + T) * (P + Q + U))

where P is the number of concordant pairs, Q the number of discordant pairs, T the number of ties only in x, and
U the number of ties only in y. If a tie occurs for the same pair in both x and y, it is not added to either T or U.

References

W.R. Knight, “A Computer Method for Calculating Kendall’s Tau with Ungrouped Data”, Journal of the Amer-
ican Statistical Association, Vol. 61, No. 314, Part 1, pp. 436-439, 1966.

Examples

>>> from scipy import stats
>>> x1 = [12, 2, 1, 12, 2]
>>> x2 = [1, 4, 7, 1, 0]
>>> tau, p_value = stats.kendalltau(x1, x2)
>>> tau
-0.47140452079103173
>>> p_value
0.24821309157521476

scipy.stats.linregress(x, y=None)
Calculate a regression line

This computes a least-squares regression for two sets of measurements.

Parameters x, y : array_like
two sets of measurements. Both arrays should have the same length. If only
x is given (and y=None), then it must be a two-dimensional array where one
dimension has length 2. The two sets of measurements are then found by
splitting the array along the length-2 dimension.Returns slope : float
slope of the regression line

intercept : float
intercept of the regression line

rvalue : float
correlation coefficient

pvalue : float
two-sided p-value for a hypothesis test whose null hypothesis is that the
slope is zero.

stderr : float
Standard error of the estimate

1454 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy import stats
>>> x = np.random.random(10)
>>> y = np.random.random(10)
>>> slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)

To get coefficient of determination (r_squared)

>>> print("r-squared:", r_value**2)
r-squared: 0.15286643777

scipy.stats.theilslopes(y, x=None, alpha=0.95)
Computes the Theil-Sen estimator for a set of points (x, y).

theilslopes implements a method for robust linear regression. It computes the slope as the median of all
slopes between paired values.

Parameters y : array_like
Dependent variable.

x : array_like or None, optional
Independent variable. If None, use arange(len(y)) instead.

alpha : float, optional
Confidence degree between 0 and 1. Default is 95% confidence. Note that
alpha is symmetric around 0.5, i.e. both 0.1 and 0.9 are interpreted as
“find the 90% confidence interval”.Returns medslope : float
Theil slope.

medintercept : float
Intercept of the Theil line, as median(y) - medslope*median(x).

lo_slope : float
Lower bound of the confidence interval on medslope.

up_slope : float
Upper bound of the confidence interval on medslope.

Notes

The implementation of theilslopes follows [R364]. The intercept is not defined in [R364], and here it
is defined as median(y) - medslope*median(x), which is given in [R366]. Other definitions of the
intercept exist in the literature. A confidence interval for the intercept is not given as this question is not
addressed in [R364].

References

[R364], [R365], [R366]

Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-5, 5, num=150)
>>> y = x + np.random.normal(size=x.size)
>>> y[11:15] += 10 # add outliers
>>> y[-5:] -= 7

5.34. Statistical functions (scipy.stats) 1455

SciPy Reference Guide, Release 0.16.0

Compute the slope, intercept and 90% confidence interval. For comparison, also compute the least-squares fit
with linregress:

>>> res = stats.theilslopes(y, x, 0.90)
>>> lsq_res = stats.linregress(x, y)

Plot the results. The Theil-Sen regression line is shown in red, with the dashed red lines illustrating the confi-
dence interval of the slope (note that the dashed red lines are not the confidence interval of the regression as the
confidence interval of the intercept is not included). The green line shows the least-squares fit for comparison.

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x, y, 'b.')
>>> ax.plot(x, res[1] + res[0] * x, 'r-')
>>> ax.plot(x, res[1] + res[2] * x, 'r--')
>>> ax.plot(x, res[1] + res[3] * x, 'r--')
>>> ax.plot(x, lsq_res[1] + lsq_res[0] * x, 'g-')
>>> plt.show()

6 4 2 0 2 4 6
8
6
4
2
0
2
4
6
8

ttest_1samp(a, popmean[, axis]) Calculates the T-test for the mean of ONE group of scores.
ttest_ind(a, b[, axis, equal_var]) Calculates the T-test for the means of TWO INDEPENDENT samples of scores.
ttest_ind_from_stats(mean1, std1, nobs1, ...) T-test for means of two independent samples from descriptive statistics.
ttest_rel(a, b[, axis]) Calculates the T-test on TWO RELATED samples of scores, a and b.
kstest(rvs, cdf[, args, N, alternative, mode]) Perform the Kolmogorov-Smirnov test for goodness of fit.
chisquare(f_obs[, f_exp, ddof, axis]) Calculates a one-way chi square test.
power_divergence(f_obs[, f_exp, ddof, axis, ...]) Cressie-Read power divergence statistic and goodness of fit test.
ks_2samp(data1, data2) Computes the Kolmogorov-Smirnov statistic on 2 samples.
mannwhitneyu(x, y[, use_continuity]) Computes the Mann-Whitney rank test on samples x and y.
tiecorrect(rankvals) Tie correction factor for ties in the Mann-Whitney U and Kruskal-Wallis H tests.
rankdata(a[, method]) Assign ranks to data, dealing with ties appropriately.
ranksums(x, y) Compute the Wilcoxon rank-sum statistic for two samples.
wilcoxon(x[, y, zero_method, correction]) Calculate the Wilcoxon signed-rank test.
kruskal(*args) Compute the Kruskal-Wallis H-test for independent samples
friedmanchisquare(*args) Computes the Friedman test for repeated measurements

Continued on next page

1456 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.261 – continued from previous page
combine_pvalues(pvalues[, method, weights]) Methods for combining the p-values of independent tests bearing upon the same hypothesis.

scipy.stats.ttest_1samp(a, popmean, axis=0)
Calculates the T-test for the mean of ONE group of scores.

This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent
observations a is equal to the given population mean, popmean.

Parameters a : array_like
sample observation

popmean : float or array_like
expected value in null hypothesis, if array_like than it must have the same
shape as a excluding the axis dimension

axis : int or None, optional
Axis along which to compute test. If None, compute over the whole array
a.Returns statistic : float or array
t-statistic

pvalue : float or array
two-tailed p-value

Examples

>>> from scipy import stats

>>> np.random.seed(7654567) # fix seed to get the same result
>>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2))

Test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the
second case and don’t reject it in the first case.

>>> stats.ttest_1samp(rvs,5.0)
(array([-0.68014479, -0.04323899]), array([0.49961383, 0.96568674]))
>>> stats.ttest_1samp(rvs,0.0)
(array([2.77025808, 4.11038784]), array([0.00789095, 0.00014999]))

Examples using axis and non-scalar dimension for population mean.

>>> stats.ttest_1samp(rvs,[5.0,0.0])
(array([-0.68014479, 4.11038784]), array([4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1)
(array([-0.68014479, 4.11038784]), array([4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs,[[5.0],[0.0]])
(array([[-0.68014479, -0.04323899],

[2.77025808, 4.11038784]]), array([[4.99613833e-01, 9.65686743e-01],
[7.89094663e-03, 1.49986458e-04]]))

scipy.stats.ttest_ind(a, b, axis=0, equal_var=True)
Calculates the T-test for the means of TWO INDEPENDENT samples of scores.

This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected)
values. This test assumes that the populations have identical variances by default.

Parameters a, b : array_like
The arrays must have the same shape, except in the dimension correspond-
ing to axis (the first, by default).

5.34. Statistical functions (scipy.stats) 1457

SciPy Reference Guide, Release 0.16.0

axis : int or None, optional
Axis along which to compute test. If None, compute over the whole arrays,
a, and b.

equal_var : bool, optional
If True (default), perform a standard independent 2 sample test that assumes
equal population variances [R368]. If False, perform Welch’s t-test, which
does not assume equal population variance [R369]. .. versionadded:: 0.11.0Returns statistic : float or array
The calculated t-statistic.

pvalue : float or array
The two-tailed p-value.

Notes

We can use this test, if we observe two independent samples from the same or different population, e.g. exam
scores of boys and girls or of two ethnic groups. The test measures whether the average (expected) value differs
significantly across samples. If we observe a large p-value, for example larger than 0.05 or 0.1, then we cannot
reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5%
or 10%, then we reject the null hypothesis of equal averages.

References

[R368], [R369]

Examples

>>> from scipy import stats
>>> np.random.seed(12345678)

Test with sample with identical means:

>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> stats.ttest_ind(rvs1,rvs2)
(0.26833823296239279, 0.78849443369564776)
>>> stats.ttest_ind(rvs1,rvs2, equal_var = False)
(0.26833823296239279, 0.78849452749500748)

ttest_ind underestimates p for unequal variances:

>>> rvs3 = stats.norm.rvs(loc=5, scale=20, size=500)
>>> stats.ttest_ind(rvs1, rvs3)
(-0.46580283298287162, 0.64145827413436174)
>>> stats.ttest_ind(rvs1, rvs3, equal_var = False)
(-0.46580283298287162, 0.64149646246569292)

When n1 != n2, the equal variance t-statistic is no longer equal to the unequal variance t-statistic:

>>> rvs4 = stats.norm.rvs(loc=5, scale=20, size=100)
>>> stats.ttest_ind(rvs1, rvs4)
(-0.99882539442782481, 0.3182832709103896)
>>> stats.ttest_ind(rvs1, rvs4, equal_var = False)
(-0.69712570584654099, 0.48716927725402048)

T-test with different means, variance, and n:

1458 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> rvs5 = stats.norm.rvs(loc=8, scale=20, size=100)
>>> stats.ttest_ind(rvs1, rvs5)
(-1.4679669854490653, 0.14263895620529152)
>>> stats.ttest_ind(rvs1, rvs5, equal_var = False)
(-0.94365973617132992, 0.34744170334794122)

scipy.stats.ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2, equal_var=True)
T-test for means of two independent samples from descriptive statistics.

This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected)
values.

Parameters mean1 : array_like
The mean(s) of sample 1.

std1 : array_like
The standard deviation(s) of sample 1.

nobs1 : array_like
The number(s) of observations of sample 1.

mean2 : array_like
The mean(s) of sample 2

std2 : array_like
The standard deviations(s) of sample 2.

nobs2 : array_like
The number(s) of observations of sample 2.

equal_var : bool, optional
If True (default), perform a standard independent 2 sample test that assumes
equal population variances [R370]. If False, perform Welch’s t-test, which
does not assume equal population variance [R371].Returns statistic : float or array
The calculated t-statistics

pvalue : float or array
The two-tailed p-value.

See also:

scipy.stats.ttest_ind

Notes

New in version 0.16.0.

References

[R370], [R371]

scipy.stats.ttest_rel(a, b, axis=0)
Calculates the T-test on TWO RELATED samples of scores, a and b.

This is a two-sided test for the null hypothesis that 2 related or repeated samples have identical average (ex-
pected) values.

Parameters a, b : array_like
The arrays must have the same shape.

axis : int or None, optional
Axis along which to compute test. If None, compute over the whole arrays,
a, and b.Returns statistic : float or array
t-statistic

pvalue : float or array
two-tailed p-value

5.34. Statistical functions (scipy.stats) 1459

SciPy Reference Guide, Release 0.16.0

Notes

Examples for the use are scores of the same set of student in different exams, or repeated sampling from the
same units. The test measures whether the average score differs significantly across samples (e.g. exams). If
we observe a large p-value, for example greater than 0.05 or 0.1 then we cannot reject the null hypothesis of
identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%, then we reject the
null hypothesis of equal averages. Small p-values are associated with large t-statistics.

References

http://en.wikipedia.org/wiki/T-test#Dependent_t-test

Examples

>>> from scipy import stats
>>> np.random.seed(12345678) # fix random seed to get same numbers

>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) +
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs2)
(0.24101764965300962, 0.80964043445811562)
>>> rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) +
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs3)
(-3.9995108708727933, 7.3082402191726459e-005)

scipy.stats.kstest(rvs, cdf, args=(), N=20, alternative=’two-sided’, mode=’approx’)
Perform the Kolmogorov-Smirnov test for goodness of fit.

This performs a test of the distribution G(x) of an observed random variable against a given distribution F(x).
Under the null hypothesis the two distributions are identical, G(x)=F(x). The alternative hypothesis can be either
‘two-sided’ (default), ‘less’ or ‘greater’. The KS test is only valid for continuous distributions.

Parameters rvs : str, array or callable
If a string, it should be the name of a distribution in scipy.stats. If
an array, it should be a 1-D array of observations of random variables. If a
callable, it should be a function to generate random variables; it is required
to have a keyword argument size.

cdf : str or callable
If a string, it should be the name of a distribution in scipy.stats. If
rvs is a string then cdf can be False or the same as rvs. If a callable, that
callable is used to calculate the cdf.

args : tuple, sequence, optional
Distribution parameters, used if rvs or cdf are strings.

N : int, optional
Sample size if rvs is string or callable. Default is 20.

alternative : {‘two-sided’, ‘less’,’greater’}, optional
Defines the alternative hypothesis (see explanation above). Default is ‘two-
sided’.

mode : ‘approx’ (default) or ‘asymp’, optional
Defines the distribution used for calculating the p-value.

•‘approx’ : use approximation to exact distribution of test
statistic•‘asymp’ : use asymptotic distribution of test statisticReturns statistic : float

KS test statistic, either D, D+ or D-.
pvalue : float

1460 Chapter 5. Reference

http://en.wikipedia.org/wiki/T-test#Dependent_t-test

SciPy Reference Guide, Release 0.16.0

One-tailed or two-tailed p-value.

Notes

In the one-sided test, the alternative is that the empirical cumulative distribution function of the random variable
is “less” or “greater” than the cumulative distribution function F(x) of the hypothesis, G(x)<=F(x), resp.
G(x)>=F(x).

Examples

>>> from scipy import stats

>>> x = np.linspace(-15, 15, 9)
>>> stats.kstest(x, 'norm')
(0.44435602715924361, 0.038850142705171065)

>>> np.random.seed(987654321) # set random seed to get the same result
>>> stats.kstest('norm', False, N=100)
(0.058352892479417884, 0.88531190944151261)

The above lines are equivalent to:

>>> np.random.seed(987654321)
>>> stats.kstest(stats.norm.rvs(size=100), 'norm')
(0.058352892479417884, 0.88531190944151261)

Test against one-sided alternative hypothesis

Shift distribution to larger values, so that cdf_dgp(x) < norm.cdf(x):

>>> np.random.seed(987654321)
>>> x = stats.norm.rvs(loc=0.2, size=100)
>>> stats.kstest(x,'norm', alternative = 'less')
(0.12464329735846891, 0.040989164077641749)

Reject equal distribution against alternative hypothesis: less

>>> stats.kstest(x,'norm', alternative = 'greater')
(0.0072115233216311081, 0.98531158590396395)

Don’t reject equal distribution against alternative hypothesis: greater

>>> stats.kstest(x,'norm', mode='asymp')
(0.12464329735846891, 0.08944488871182088)

Testing t distributed random variables against normal distribution

With 100 degrees of freedom the t distribution looks close to the normal distribution, and the K-S test does not
reject the hypothesis that the sample came from the normal distribution:

>>> np.random.seed(987654321)
>>> stats.kstest(stats.t.rvs(100,size=100),'norm')
(0.072018929165471257, 0.67630062862479168)

With 3 degrees of freedom the t distribution looks sufficiently different from the normal distribution, that we
can reject the hypothesis that the sample came from the normal distribution at the 10% level:

5.34. Statistical functions (scipy.stats) 1461

SciPy Reference Guide, Release 0.16.0

>>> np.random.seed(987654321)
>>> stats.kstest(stats.t.rvs(3,size=100),'norm')
(0.131016895759829, 0.058826222555312224)

scipy.stats.chisquare(f_obs, f_exp=None, ddof=0, axis=0)
Calculates a one-way chi square test.

The chi square test tests the null hypothesis that the categorical data has the given frequencies.

Parameters f_obs : array_like
Observed frequencies in each category.

f_exp : array_like, optional
Expected frequencies in each category. By default the categories are as-
sumed to be equally likely.

ddof : int, optional
“Delta degrees of freedom”: adjustment to the degrees of freedom for the
p-value. The p-value is computed using a chi-squared distribution with k
- 1 - ddof degrees of freedom, where k is the number of observed fre-
quencies. The default value of ddof is 0.

axis : int or None, optional
The axis of the broadcast result of f_obs and f_exp along which to apply
the test. If axis is None, all values in f_obs are treated as a single data set.
Default is 0.Returns chisq : float or ndarray
The chi-squared test statistic. The value is a float if axis is None or f_obs
and f_exp are 1-D.

p : float or ndarray
The p-value of the test. The value is a float if ddof and the return value
chisq are scalars.

See also:

power_divergence, mstats.chisquare

Notes

This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is
that all of the observed and expected frequencies should be at least 5.

The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If
p parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If
the parameters are estimated in a different way, then the dof can be between k-1-p and k-1. However, it is also
possible that the asymptotic distribution is not a chisquare, in which case this test is not appropriate.

References

[R307], [R308]

Examples

When just f_obs is given, it is assumed that the expected frequencies are uniform and given by the mean of the
observed frequencies.

>>> from scipy.stats import chisquare
>>> chisquare([16, 18, 16, 14, 12, 12])
(2.0, 0.84914503608460956)

With f_exp the expected frequencies can be given.

1462 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> chisquare([16, 18, 16, 14, 12, 12], f_exp=[16, 16, 16, 16, 16, 8])
(3.5, 0.62338762774958223)

When f_obs is 2-D, by default the test is applied to each column.

>>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
>>> obs.shape
(6, 2)
>>> chisquare(obs)
(array([2. , 6.66666667]), array([0.84914504, 0.24663415]))

By setting axis=None, the test is applied to all data in the array, which is equivalent to applying the test to the
flattened array.

>>> chisquare(obs, axis=None)
(23.31034482758621, 0.015975692534127565)
>>> chisquare(obs.ravel())
(23.31034482758621, 0.015975692534127565)

ddof is the change to make to the default degrees of freedom.

>>> chisquare([16, 18, 16, 14, 12, 12], ddof=1)
(2.0, 0.73575888234288467)

The calculation of the p-values is done by broadcasting the chi-squared statistic with ddof.

>>> chisquare([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
(2.0, array([0.84914504, 0.73575888, 0.5724067]))

f_obs and f_exp are also broadcast. In the following, f_obs has shape (6,) and f_exp has shape (2, 6), so the
result of broadcasting f_obs and f_exp has shape (2, 6). To compute the desired chi-squared statistics, we use
axis=1:

>>> chisquare([16, 18, 16, 14, 12, 12],
... f_exp=[[16, 16, 16, 16, 16, 8], [8, 20, 20, 16, 12, 12]],
... axis=1)
(array([3.5 , 9.25]), array([0.62338763, 0.09949846]))

scipy.stats.power_divergence(f_obs, f_exp=None, ddof=0, axis=0, lambda_=None)
Cressie-Read power divergence statistic and goodness of fit test.

This function tests the null hypothesis that the categorical data has the given frequencies, using the Cressie-Read
power divergence statistic.

Parameters f_obs : array_like
Observed frequencies in each category.

f_exp : array_like, optional
Expected frequencies in each category. By default the categories are as-
sumed to be equally likely.

ddof : int, optional
“Delta degrees of freedom”: adjustment to the degrees of freedom for the
p-value. The p-value is computed using a chi-squared distribution with k
- 1 - ddof degrees of freedom, where k is the number of observed fre-
quencies. The default value of ddof is 0.

axis : int or None, optional

5.34. Statistical functions (scipy.stats) 1463

SciPy Reference Guide, Release 0.16.0

The axis of the broadcast result of f_obs and f_exp along which to apply
the test. If axis is None, all values in f_obs are treated as a single data set.
Default is 0.

lambda_ : float or str, optional
lambda_ gives the power in the Cressie-Read power divergence statistic.
The default is 1. For convenience, lambda_ may be assigned one of the
following strings, in which case the corresponding numerical value is used:

String Value Description
"pearson" 1 Pearson's chi-squared statistic.

In this case, the function is
equivalent to `stats.chisquare`.

"log-likelihood" 0 Log-likelihood ratio. Also known as
the G-test [R356]_.

"freeman-tukey" -1/2 Freeman-Tukey statistic.
"mod-log-likelihood" -1 Modified log-likelihood ratio.
"neyman" -2 Neyman's statistic.
"cressie-read" 2/3 The power recommended in [R358]_.

Returns statistic : float or ndarray
The Cressie-Read power divergence test statistic. The value is a float if axis
is None or if‘ f_obs and f_exp are 1-D.

pvalue : float or ndarray
The p-value of the test. The value is a float if ddof and the return value
stat are scalars.

See also:

chisquare

Notes

This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is
that all of the observed and expected frequencies should be at least 5.

When lambda_ is less than zero, the formula for the statistic involves dividing by f_obs, so a warning or error
may be generated if any value in f_obs is 0.

Similarly, a warning or error may be generated if any value in f_exp is zero when lambda_ >= 0.

The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If
p parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If
the parameters are estimated in a different way, then the dof can be between k-1-p and k-1. However, it is also
possible that the asymptotic distribution is not a chisquare, in which case this test is not appropriate.

This function handles masked arrays. If an element of f_obs or f_exp is masked, then data at that position is
ignored, and does not count towards the size of the data set.

New in version 0.13.0.

References

[R354], [R355], [R356], [R357], [R358]

Examples

(See chisquare for more examples.)

When just f_obs is given, it is assumed that the expected frequencies are uniform and given by the mean of the
observed frequencies. Here we perform a G-test (i.e. use the log-likelihood ratio statistic):

1464 Chapter 5. Reference

http://docs.python.org/dev/library/stat.html#module-stat

SciPy Reference Guide, Release 0.16.0

>>> from scipy.stats import power_divergence
>>> power_divergence([16, 18, 16, 14, 12, 12], lambda_='log-likelihood')
(2.006573162632538, 0.84823476779463769)

The expected frequencies can be given with the f_exp argument:

>>> power_divergence([16, 18, 16, 14, 12, 12],
... f_exp=[16, 16, 16, 16, 16, 8],
... lambda_='log-likelihood')
(3.5, 0.62338762774958223)

When f_obs is 2-D, by default the test is applied to each column.

>>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
>>> obs.shape
(6, 2)
>>> power_divergence(obs, lambda_="log-likelihood")
(array([2.00657316, 6.77634498]), array([0.84823477, 0.23781225]))

By setting axis=None, the test is applied to all data in the array, which is equivalent to applying the test to the
flattened array.

>>> power_divergence(obs, axis=None)
(23.31034482758621, 0.015975692534127565)
>>> power_divergence(obs.ravel())
(23.31034482758621, 0.015975692534127565)

ddof is the change to make to the default degrees of freedom.

>>> power_divergence([16, 18, 16, 14, 12, 12], ddof=1)
(2.0, 0.73575888234288467)

The calculation of the p-values is done by broadcasting the test statistic with ddof.

>>> power_divergence([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
(2.0, array([0.84914504, 0.73575888, 0.5724067]))

f_obs and f_exp are also broadcast. In the following, f_obs has shape (6,) and f_exp has shape (2, 6), so the result
of broadcasting f_obs and f_exp has shape (2, 6). To compute the desired chi-squared statistics, we must use
axis=1:

>>> power_divergence([16, 18, 16, 14, 12, 12],
... f_exp=[[16, 16, 16, 16, 16, 8],
... [8, 20, 20, 16, 12, 12]],
... axis=1)
(array([3.5 , 9.25]), array([0.62338763, 0.09949846]))

scipy.stats.ks_2samp(data1, data2)
Computes the Kolmogorov-Smirnov statistic on 2 samples.

This is a two-sided test for the null hypothesis that 2 independent samples are drawn from the same continuous
distribution.

Parameters data1, data2 : sequence of 1-D ndarrays
two arrays of sample observations assumed to be drawn from a continuous
distribution, sample sizes can be differentReturns statistic : float

5.34. Statistical functions (scipy.stats) 1465

SciPy Reference Guide, Release 0.16.0

KS statistic
pvalue : float

two-tailed p-value

Notes

This tests whether 2 samples are drawn from the same distribution. Note that, like in the case of the one-sample
K-S test, the distribution is assumed to be continuous.

This is the two-sided test, one-sided tests are not implemented. The test uses the two-sided asymptotic
Kolmogorov-Smirnov distribution.

If the K-S statistic is small or the p-value is high, then we cannot reject the hypothesis that the distributions of
the two samples are the same.

Examples

>>> from scipy import stats
>>> np.random.seed(12345678) #fix random seed to get the same result
>>> n1 = 200 # size of first sample
>>> n2 = 300 # size of second sample

For a different distribution, we can reject the null hypothesis since the pvalue is below 1%:

>>> rvs1 = stats.norm.rvs(size=n1, loc=0., scale=1)
>>> rvs2 = stats.norm.rvs(size=n2, loc=0.5, scale=1.5)
>>> stats.ks_2samp(rvs1, rvs2)
(0.20833333333333337, 4.6674975515806989e-005)

For a slightly different distribution, we cannot reject the null hypothesis at a 10% or lower alpha since the
p-value at 0.144 is higher than 10%

>>> rvs3 = stats.norm.rvs(size=n2, loc=0.01, scale=1.0)
>>> stats.ks_2samp(rvs1, rvs3)
(0.10333333333333333, 0.14498781825751686)

For an identical distribution, we cannot reject the null hypothesis since the p-value is high, 41%:

>>> rvs4 = stats.norm.rvs(size=n2, loc=0.0, scale=1.0)
>>> stats.ks_2samp(rvs1, rvs4)
(0.07999999999999996, 0.41126949729859719)

scipy.stats.mannwhitneyu(x, y, use_continuity=True)
Computes the Mann-Whitney rank test on samples x and y.

Parameters x, y : array_like
Array of samples, should be one-dimensional.

use_continuity : bool, optional
Whether a continuity correction (1/2.) should be taken into account. Default
is True.Returns statistic : float
The Mann-Whitney statistics.

pvalue : float
One-sided p-value assuming a asymptotic normal distribution.

1466 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

Use only when the number of observation in each sample is > 20 and you have 2 independent samples of ranks.
Mann-Whitney U is significant if the u-obtained is LESS THAN or equal to the critical value of U.

This test corrects for ties and by default uses a continuity correction. The reported p-value is for a one-sided
hypothesis, to get the two-sided p-value multiply the returned p-value by 2.

scipy.stats.tiecorrect(rankvals)
Tie correction factor for ties in the Mann-Whitney U and Kruskal-Wallis H tests.

Parameters rankvals : array_like
A 1-D sequence of ranks. Typically this will be the array returned by
stats.rankdata.Returns factor : float
Correction factor for U or H.

See also:

rankdata Assign ranks to the data
mannwhitneyu

Mann-Whitney rank test
kruskal Kruskal-Wallis H test

References

[R367]

Examples

>>> from scipy.stats import tiecorrect, rankdata
>>> tiecorrect([1, 2.5, 2.5, 4])
0.9
>>> ranks = rankdata([1, 3, 2, 4, 5, 7, 2, 8, 4])
>>> ranks
array([1. , 4. , 2.5, 5.5, 7. , 8. , 2.5, 9. , 5.5])
>>> tiecorrect(ranks)
0.9833333333333333

scipy.stats.rankdata(a, method=’average’)
Assign ranks to data, dealing with ties appropriately.

Ranks begin at 1. The method argument controls how ranks are assigned to equal values. See [R359] for further
discussion of ranking methods.

Parameters a : array_like
The array of values to be ranked. The array is first flattened.

method : str, optional
The method used to assign ranks to tied elements. The options are ‘aver-
age’, ‘min’, ‘max’, ‘dense’ and ‘ordinal’.
‘average’: The average of the ranks that would have been assigned to

all the tied values is assigned to each value.‘min’: The minimum of the ranks that would have been assigned
to all the tied values is assigned to each value. (This is also
referred to as “competition” ranking.)‘max’: The maximum of the ranks that would have been assigned to
all the tied values is assigned to each value.‘dense’: Like ‘min’, but the rank of the next highest element is as-
signed the rank immediately after those assigned to the tied
elements.‘ordinal’: All values are given a distinct rank, corresponding to the
order that the values occur in a.

5.34. Statistical functions (scipy.stats) 1467

SciPy Reference Guide, Release 0.16.0

The default is ‘average’.Returns ranks : ndarray
An array of length equal to the size of a, containing rank scores.

Notes

All floating point types are converted to numpy.float64 before ranking. This may result in spurious ties if an
input array of floats has a wider data type than numpy.float64 (e.g. numpy.float128).

References

[R359]

Examples

>>> from scipy.stats import rankdata
>>> rankdata([0, 2, 3, 2])
array([1. , 2.5, 4. , 2.5])
>>> rankdata([0, 2, 3, 2], method='min')
array([1., 2., 4., 2.])
>>> rankdata([0, 2, 3, 2], method='max')
array([1., 3., 4., 3.])
>>> rankdata([0, 2, 3, 2], method='dense')
array([1., 2., 3., 2.])
>>> rankdata([0, 2, 3, 2], method='ordinal')
array([1., 2., 4., 3.])

scipy.stats.ranksums(x, y)
Compute the Wilcoxon rank-sum statistic for two samples.

The Wilcoxon rank-sum test tests the null hypothesis that two sets of measurements are drawn from the same
distribution. The alternative hypothesis is that values in one sample are more likely to be larger than the values
in the other sample.

This test should be used to compare two samples from continuous distributions. It does not han-
dle ties between measurements in x and y. For tie-handling and an optional continuity correction see
scipy.stats.mannwhitneyu.

Parameters x,y : array_like
The data from the two samplesReturns statistic : float
The test statistic under the large-sample approximation that the rank sum
statistic is normally distributed

pvalue : float
The two-sided p-value of the test

References

[R360]

scipy.stats.wilcoxon(x, y=None, zero_method=’wilcox’, correction=False)
Calculate the Wilcoxon signed-rank test.

The Wilcoxon signed-rank test tests the null hypothesis that two related paired samples come from the same
distribution. In particular, it tests whether the distribution of the differences x - y is symmetric about zero. It is
a non-parametric version of the paired T-test.

Parameters x : array_like
The first set of measurements.

y : array_like, optional

1468 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The second set of measurements. If y is not given, then the x array is con-
sidered to be the differences between the two sets of measurements.

zero_method : string, {“pratt”, “wilcox”, “zsplit”}, optional
“pratt”: Pratt treatment: includes zero-differences in the ranking pro-

cess (more conservative)“wilcox”: Wilcox treatment: discards all zero-differences“zsplit”: Zero rank split: just like Pratt, but spliting the zero rank be-
tween positive and negative ones

correction : bool, optional
If True, apply continuity correction by adjusting the Wilcoxon rank statistic
by 0.5 towards the mean value when computing the z-statistic. Default is
False.Returns statistic : float
The sum of the ranks of the differences above or below zero, whichever is
smaller.

pvalue : float
The two-sided p-value for the test.

Notes

Because the normal approximation is used for the calculations, the samples used should be large. A typical rule
is to require that n > 20.

References

[R373]

scipy.stats.kruskal(*args)
Compute the Kruskal-Wallis H-test for independent samples

The Kruskal-Wallis H-test tests the null hypothesis that the population median of all of the groups are equal.
It is a non-parametric version of ANOVA. The test works on 2 or more independent samples, which may have
different sizes. Note that rejecting the null hypothesis does not indicate which of the groups differs. Post-hoc
comparisons between groups are required to determine which groups are different.

Parameters sample1, sample2, ... : array_like
Two or more arrays with the sample measurements can be given as argu-
ments.Returns statistic : float
The Kruskal-Wallis H statistic, corrected for ties

pvalue : float
The p-value for the test using the assumption that H has a chi square distri-
bution

Notes

Due to the assumption that H has a chi square distribution, the number of samples in each group must not be too
small. A typical rule is that each sample must have at least 5 measurements.

References

[R328]

scipy.stats.friedmanchisquare(*args)
Computes the Friedman test for repeated measurements

The Friedman test tests the null hypothesis that repeated measurements of the same individuals have the same
distribution. It is often used to test for consistency among measurements obtained in different ways. For exam-
ple, if two measurement techniques are used on the same set of individuals, the Friedman test can be used to
determine if the two measurement techniques are consistent.

5.34. Statistical functions (scipy.stats) 1469

SciPy Reference Guide, Release 0.16.0

Parameters measurements1, measurements2, measurements3... : array_like
Arrays of measurements. All of the arrays must have the same number of
elements. At least 3 sets of measurements must be given.Returns statistic : float
the test statistic, correcting for ties

pvalue : float
the associated p-value assuming that the test statistic has a chi squared dis-
tribution

Notes

Due to the assumption that the test statistic has a chi squared distribution, the p-value is only reliable for n > 10
and more than 6 repeated measurements.

References

[R319]

scipy.stats.combine_pvalues(pvalues, method=’fisher’, weights=None)
Methods for combining the p-values of independent tests bearing upon the same hypothesis.

Parameters pvalues : array_like, 1-D
Array of p-values assumed to come from independent tests.

method : {‘fisher’, ‘stouffer’}, optional
Name of method to use to combine p-values. The following methods are
available: - “fisher”: Fisher’s method (Fisher’s combined probability test),

the default.

•“stouffer”: Stouffer’s Z-score method.

weights : array_like, 1-D, optional
Optional array of weights used only for Stouffer’s Z-score method.Returns statistic: float
The statistic calculated by the specified method: - “fisher”: The chi-squared
statistic - “stouffer”: The Z-score

pval: float
The combined p-value.

Notes

Fisher’s method (also known as Fisher’s combined probability test) [R309] uses a chi-squared statistic to com-
pute a combined p-value. The closely related Stouffer’s Z-score method [R310] uses Z-scores rather than p-
values. The advantage of Stouffer’s method is that it is straightforward to introduce weights, which can make
Stouffer’s method more powerful than Fisher’s method when the p-values are from studies of different size
[R311] [R312].

Fisher’s method may be extended to combine p-values from dependent tests [R313]. Extensions such as Brown’s
method and Kost’s method are not currently implemented.

New in version 0.15.0.

References

[R309], [R310], [R311], [R312], [R313]

ansari(x, y) Perform the Ansari-Bradley test for equal scale parameters
bartlett(*args) Perform Bartlett’s test for equal variances
levene(*args, **kwds) Perform Levene test for equal variances.
shapiro(x[, a, reta]) Perform the Shapiro-Wilk test for normality.

Continued on next page

1470 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.262 – continued from previous page
anderson(x[, dist]) Anderson-Darling test for data coming from a particular distribution
anderson_ksamp(samples[, midrank]) The Anderson-Darling test for k-samples.
binom_test(x[, n, p]) Perform a test that the probability of success is p.
fligner(*args, **kwds) Perform Fligner’s test for equal variances.
median_test(*args, **kwds) Mood’s median test.
mood(x, y[, axis]) Perform Mood’s test for equal scale parameters.

scipy.stats.ansari(x, y)
Perform the Ansari-Bradley test for equal scale parameters

The Ansari-Bradley test is a non-parametric test for the equality of the scale parameter of the distributions from
which two samples were drawn.

Parameters x, y : array_like
arrays of sample dataReturns statistic : float
The Ansari-Bradley test statistic

pvalue : float
The p-value of the hypothesis test

See also:

fligner A non-parametric test for the equality of k variances
mood A non-parametric test for the equality of two scale parameters

Notes

The p-value given is exact when the sample sizes are both less than 55 and there are no ties, otherwise a normal
approximation for the p-value is used.

References

[R300]

scipy.stats.bartlett(*args)
Perform Bartlett’s test for equal variances

Bartlett’s test tests the null hypothesis that all input samples are from populations with equal variances. For
samples from significantly non-normal populations, Levene’s test levene is more robust.

Parameters sample1, sample2,... : array_like
arrays of sample data. May be different lengths.Returns statistic : float
The test statistic.

pvalue : float
The p-value of the test.

References

[R301], [R302]

scipy.stats.levene(*args, **kwds)
Perform Levene test for equal variances.

The Levene test tests the null hypothesis that all input samples are from populations with equal variances.
Levene’s test is an alternative to Bartlett’s test bartlett in the case where there are significant deviations
from normality.

Parameters sample1, sample2, ... : array_like
The sample data, possibly with different lengths

5.34. Statistical functions (scipy.stats) 1471

SciPy Reference Guide, Release 0.16.0

center : {‘mean’, ‘median’, ‘trimmed’}, optional
Which function of the data to use in the test. The default is ‘median’.

proportiontocut : float, optional
When center is ‘trimmed’, this gives the proportion of data points to cut
from each end. (See scipy.stats.trim_mean.) Default is 0.05.Returns statistic : float
The test statistic.

pvalue : float
The p-value for the test.

Notes

Three variations of Levene’s test are possible. The possibilities and their recommended usages are:
•‘median’ : Recommended for skewed (non-normal) distributions>
•‘mean’ : Recommended for symmetric, moderate-tailed distributions.
•‘trimmed’ : Recommended for heavy-tailed distributions.

References

[R330], [R331], [R332]

scipy.stats.shapiro(x, a=None, reta=False)
Perform the Shapiro-Wilk test for normality.

The Shapiro-Wilk test tests the null hypothesis that the data was drawn from a normal distribution.

Parameters x : array_like
Array of sample data.

a : array_like, optional
Array of internal parameters used in the calculation. If these are not given,
they will be computed internally. If x has length n, then a must have length
n/2.

reta : bool, optional
Whether or not to return the internally computed a values. The default is
False.Returns W : float
The test statistic.

p-value : float
The p-value for the hypothesis test.

a : array_like, optional
If reta is True, then these are the internally computed “a” values that may
be passed into this function on future calls.

See also:

anderson The Anderson-Darling test for normality

References

[R361]

scipy.stats.anderson(x, dist=’norm’)
Anderson-Darling test for data coming from a particular distribution

The Anderson-Darling test is a modification of the Kolmogorov- Smirnov test kstest for the null hypothesis
that a sample is drawn from a population that follows a particular distribution. For the Anderson-Darling test, the
critical values depend on which distribution is being tested against. This function works for normal, exponential,
logistic, or Gumbel (Extreme Value Type I) distributions.

Parameters x : array_like
array of sample data

1472 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

dist : {‘norm’,’expon’,’logistic’,’gumbel’,’extreme1’}, optional
the type of distribution to test against. The default is ‘norm’ and ‘extreme1’
is a synonym for ‘gumbel’Returns statistic : float
The Anderson-Darling test statistic

critical_values : list
The critical values for this distribution

significance_level : list
The significance levels for the corresponding critical values in percents.
The function returns critical values for a differing set of significance levels
depending on the distribution that is being tested against.

Notes

Critical values provided are for the following significance levels:
normal/exponenential

15%, 10%, 5%, 2.5%, 1%
logistic 25%, 10%, 5%, 2.5%, 1%, 0.5%
Gumbel 25%, 10%, 5%, 2.5%, 1%
If A2 is larger than these critical values then for the corresponding significance level, the null hypothesis that
the data come from the chosen distribution can be rejected.

References

[R293], [R294], [R295], [R296], [R297], [R298]

scipy.stats.anderson_ksamp(samples, midrank=True)
The Anderson-Darling test for k-samples.

The k-sample Anderson-Darling test is a modification of the one-sample Anderson-Darling test. It tests the
null hypothesis that k-samples are drawn from the same population without having to specify the distribution
function of that population. The critical values depend on the number of samples.

Parameters samples : sequence of 1-D array_like
Array of sample data in arrays.

midrank : bool, optional
Type of Anderson-Darling test which is computed. Default (True) is the
midrank test applicable to continuous and discrete populations. If False,
the right side empirical distribution is used.Returns statistic : float
Normalized k-sample Anderson-Darling test statistic.

critical_values : array
The critical values for significance levels 25%, 10%, 5%, 2.5%, 1%.

significance_level : float
An approximate significance level at which the null hypothesis for the pro-
vided samples can be rejected.Raises ValueError
If less than 2 samples are provided, a sample is empty, or no distinct obser-
vations are in the samples.

See also:

ks_2samp 2 sample Kolmogorov-Smirnov test
anderson 1 sample Anderson-Darling test

Notes

[R299] Defines three versions of the k-sample Anderson-Darling test: one for continuous distributions and two
for discrete distributions, in which ties between samples may occur. The default of this routine is to compute the
version based on the midrank empirical distribution function. This test is applicable to continuous and discrete

5.34. Statistical functions (scipy.stats) 1473

SciPy Reference Guide, Release 0.16.0

data. If midrank is set to False, the right side empirical distribution is used for a test for discrete data. According
to [R299], the two discrete test statistics differ only slightly if a few collisions due to round-off errors occur in
the test not adjusted for ties between samples.

New in version 0.14.0.

References

[R299]

Examples

>>> from scipy import stats
>>> np.random.seed(314159)

The null hypothesis that the two random samples come from the same distribution can be rejected at the 5%
level because the returned test value is greater than the critical value for 5% (1.961) but not at the 2.5% level.
The interpolation gives an approximate significance level of 3.1%:

>>> stats.anderson_ksamp([np.random.normal(size=50),
... np.random.normal(loc=0.5, size=30)])
(2.4615796189876105,
array([0.325, 1.226, 1.961, 2.718, 3.752]),
0.03134990135800783)

The null hypothesis cannot be rejected for three samples from an identical distribution. The approximate p-value
(87%) has to be computed by extrapolation and may not be very accurate:

>>> stats.anderson_ksamp([np.random.normal(size=50),
... np.random.normal(size=30), np.random.normal(size=20)])
(-0.73091722665244196,
array([0.44925884, 1.3052767 , 1.9434184 , 2.57696569, 3.41634856]),
0.8789283903979661)

scipy.stats.binom_test(x, n=None, p=0.5)
Perform a test that the probability of success is p.

This is an exact, two-sided test of the null hypothesis that the probability of success in a Bernoulli experiment
is p.

Parameters x : integer or array_like
the number of successes, or if x has length 2, it is the number of successes
and the number of failures.

n : integer
the number of trials. This is ignored if x gives both the number of successes
and failures

p : float, optional
The hypothesized probability of success. 0 <= p <= 1. The default value is
p = 0.5Returns p-value : float
The p-value of the hypothesis test

References

[R303]

scipy.stats.fligner(*args, **kwds)
Perform Fligner’s test for equal variances.

1474 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Fligner’s test tests the null hypothesis that all input samples are from populations with equal variances. Fligner’s
test is non-parametric in contrast to Bartlett’s test bartlett and Levene’s test levene.

Parameters sample1, sample2, ... : array_like
Arrays of sample data. Need not be the same length.

center : {‘mean’, ‘median’, ‘trimmed’}, optional
Keyword argument controlling which function of the data is used in com-
puting the test statistic. The default is ‘median’.

proportiontocut : float, optional
When center is ‘trimmed’, this gives the proportion of data points to cut
from each end. (See scipy.stats.trim_mean.) Default is 0.05.Returns Xsq : float
The test statistic.

p-value : float
The p-value for the hypothesis test.

Notes

As with Levene’s test there are three variants of Fligner’s test that differ by the measure of central tendency used
in the test. See levene for more information.

References

[R317], [R318]

scipy.stats.median_test(*args, **kwds)
Mood’s median test.

Test that two or more samples come from populations with the same median.

Let n = len(args) be the number of samples. The “grand median” of all the data is computed, and a con-
tingency table is formed by classifying the values in each sample as being above or below the grand median. The
contingency table, along with correction and lambda_, are passed to scipy.stats.chi2_contingency
to compute the test statistic and p-value.

Parameters sample1, sample2, ... : array_like
The set of samples. There must be at least two samples. Each sample must
be a one-dimensional sequence containing at least one value. The samples
are not required to have the same length.

ties : str, optional
Determines how values equal to the grand median are classified in the con-
tingency table. The string must be one of:

"below":
Values equal to the grand median are counted as "below".

"above":
Values equal to the grand median are counted as "above".

"ignore":
Values equal to the grand median are not counted.

The default is “below”.
correction : bool, optional

If True, and there are just two samples, apply Yates’ correction for continu-
ity when computing the test statistic associated with the contingency table.
Default is True.

lambda_ : float or str, optional.
By default, the statistic computed in this test is Pearson’s chi-squared statis-
tic. lambda_ allows a statistic from the Cressie-Read power divergence

5.34. Statistical functions (scipy.stats) 1475

SciPy Reference Guide, Release 0.16.0

family to be used instead. See power_divergence for details. Default
is 1 (Pearson’s chi-squared statistic).Returns stat : float
The test statistic. The statistic that is returned is determined by lambda_.
The default is Pearson’s chi-squared statistic.

p : float
The p-value of the test.

m : float
The grand median.

table : ndarray
The contingency table. The shape of the table is (2, n), where n is
the number of samples. The first row holds the counts of the val-
ues above the grand median, and the second row holds the counts of
the values below the grand median. The table allows further analy-
sis with, for example, scipy.stats.chi2_contingency, or with
scipy.stats.fisher_exact if there are two samples, without hav-
ing to recompute the table.

See also:

kruskal Compute the Kruskal-Wallis H-test for independent samples.
mannwhitneyu

Computes the Mann-Whitney rank test on samples x and y.

Notes

New in version 0.15.0.

References

[R334], [R335]

Examples

A biologist runs an experiment in which there are three groups of plants. Group 1 has 16 plants, group 2 has 15
plants, and group 3 has 17 plants. Each plant produces a number of seeds. The seed counts for each group are:

Group 1: 10 14 14 18 20 22 24 25 31 31 32 39 43 43 48 49
Group 2: 28 30 31 33 34 35 36 40 44 55 57 61 91 92 99
Group 3: 0 3 9 22 23 25 25 33 34 34 40 45 46 48 62 67 84

The following code applies Mood’s median test to these samples.

>>> g1 = [10, 14, 14, 18, 20, 22, 24, 25, 31, 31, 32, 39, 43, 43, 48, 49]
>>> g2 = [28, 30, 31, 33, 34, 35, 36, 40, 44, 55, 57, 61, 91, 92, 99]
>>> g3 = [0, 3, 9, 22, 23, 25, 25, 33, 34, 34, 40, 45, 46, 48, 62, 67, 84]
>>> from scipy.stats import median_test
>>> stat, p, med, tbl = median_test(g1, g2, g3)

The median is

>>> med
34.0

and the contingency table is

1476 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> tbl
array([[5, 10, 7],

[11, 5, 10]])

p is too large to conclude that the medians are not the same:

>>> p
0.12609082774093244

The “G-test” can be performed by passing lambda_="log-likelihood" to median_test.

>>> g, p, med, tbl = median_test(g1, g2, g3, lambda_="log-likelihood")
>>> p
0.12224779737117837

The median occurs several times in the data, so we’ll get a different result if, for example, ties="above" is
used:

>>> stat, p, med, tbl = median_test(g1, g2, g3, ties="above")
>>> p
0.063873276069553273

>>> tbl
array([[5, 11, 9],

[11, 4, 8]])

This example demonstrates that if the data set is not large and there are values equal to the median, the p-value
can be sensitive to the choice of ties.

scipy.stats.mood(x, y, axis=0)
Perform Mood’s test for equal scale parameters.

Mood’s two-sample test for scale parameters is a non-parametric test for the null hypothesis that two samples
are drawn from the same distribution with the same scale parameter.

Parameters x, y : array_like
Arrays of sample data.

axis : int, optional
The axis along which the samples are tested. x and y can be of different
length along axis. If axis is None, x and y are flattened and the test is done
on all values in the flattened arrays.Returns z : scalar or ndarray
The z-score for the hypothesis test. For 1-D inputs a scalar is returned.

p-value : scalar ndarray
The p-value for the hypothesis test.

See also:

fligner A non-parametric test for the equality of k variances
ansari A non-parametric test for the equality of 2 variances
bartlett A parametric test for equality of k variances in normal samples
levene A parametric test for equality of k variances

5.34. Statistical functions (scipy.stats) 1477

SciPy Reference Guide, Release 0.16.0

Notes

The data are assumed to be drawn from probability distributions f(x) and f(x/s) / s respectively, for
some probability density function f. The null hypothesis is that s == 1.

For multi-dimensional arrays, if the inputs are of shapes (n0, n1, n2, n3) and (n0, m1, n2, n3),
then if axis=1, the resulting z and p values will have shape (n0, n2, n3). Note that n1 and m1 don’t have
to be equal, but the other dimensions do.

Examples

>>> from scipy import stats
>>> x2 = np.random.randn(2, 45, 6, 7)
>>> x1 = np.random.randn(2, 30, 6, 7)
>>> z, p = stats.mood(x1, x2, axis=1)
>>> p.shape
(2, 6, 7)

Find the number of points where the difference in scale is not significant:

>>> (p > 0.1).sum()
74

Perform the test with different scales:

>>> x1 = np.random.randn(2, 30)
>>> x2 = np.random.randn(2, 35) * 10.0
>>> stats.mood(x1, x2, axis=1)
(array([-5.84332354, -5.6840814]), array([5.11694980e-09, 1.31517628e-08]))

boxcox(x[, lmbda, alpha]) Return a positive dataset transformed by a Box-Cox power transformation.
boxcox_normmax(x[, brack, method]) Compute optimal Box-Cox transform parameter for input data.
boxcox_llf(lmb, data) The boxcox log-likelihood function.
entropy(pk[, qk, base]) Calculate the entropy of a distribution for given probability values.

scipy.stats.boxcox(x, lmbda=None, alpha=None)
Return a positive dataset transformed by a Box-Cox power transformation.

Parameters x : ndarray
Input array. Should be 1-dimensional.

lmbda : {None, scalar}, optional
If lmbda is not None, do the transformation for that value.
If lmbda is None, find the lambda that maximizes the log-likelihood func-
tion and return it as the second output argument.

alpha : {None, float}, optional
If alpha is not None, return the 100 * (1-alpha)% confidence in-
terval for lmbda as the third output argument. Must be between 0.0 and
1.0.Returns boxcox : ndarray
Box-Cox power transformed array.

maxlog : float, optional
If the lmbda parameter is None, the second returned argument is the lambda
that maximizes the log-likelihood function.

(min_ci, max_ci) : tuple of float, optional
If lmbda parameter is None and alpha is not None, this returned tuple
of floats represents the minimum and maximum confidence limits given

1478 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

alpha.

See also:

probplot, boxcox_normplot, boxcox_normmax, boxcox_llf

Notes

The Box-Cox transform is given by:

y = (x**lmbda - 1) / lmbda, for lmbda > 0
log(x), for lmbda = 0

boxcox requires the input data to be positive. Sometimes a Box-Cox transformation provides a shift parameter
to achieve this; boxcox does not. Such a shift parameter is equivalent to adding a positive constant to x before
calling boxcox.

The confidence limits returned when alpha is provided give the interval where:

𝑙𝑙𝑓(𝜆̂) − 𝑙𝑙𝑓(𝜆) <
1

2
𝜒2(1 − 𝛼, 1),

with llf the log-likelihood function and 𝜒2 the chi-squared function.

References

G.E.P. Box and D.R. Cox, “An Analysis of Transformations”, Journal of the Royal Statistical Society B, 26,
211-252 (1964).

Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt

We generate some random variates from a non-normal distribution and make a probability plot for it, to show it
is non-normal in the tails:

>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(211)
>>> x = stats.loggamma.rvs(5, size=500) + 5
>>> stats.probplot(x, dist=stats.norm, plot=ax1)
>>> ax1.set_xlabel('')
>>> ax1.set_title('Probplot against normal distribution')

We now use boxcox to transform the data so it’s closest to normal:

>>> ax2 = fig.add_subplot(212)
>>> xt, _ = stats.boxcox(x)
>>> stats.probplot(xt, dist=stats.norm, plot=ax2)
>>> ax2.set_title('Probplot after Box-Cox transformation')

>>> plt.show()

5.34. Statistical functions (scipy.stats) 1479

SciPy Reference Guide, Release 0.16.0

3 2 1 0 1 2 3
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

Or
de

re
d

Va
lu

es
R2 =0.9800

Probplot against normal distribution

3 2 1 0 1 2 3
Quantiles

0
50

100
150
200
250
300

Or
de

re
d

Va
lu

es

R2 =0.9975

Probplot after Box-Cox transformation

scipy.stats.boxcox_normmax(x, brack=(-2.0, 2.0), method=’pearsonr’)
Compute optimal Box-Cox transform parameter for input data.

Parameters x : array_like
Input array.

brack : 2-tuple, optional
The starting interval for a downhill bracket search with optimize.brent. Note
that this is in most cases not critical; the final result is allowed to be outside
this bracket.

method : str, optional
The method to determine the optimal transform parameter (boxcox
lmbda parameter). Options are:
‘pearsonr’ (default)

Maximizes the Pearson correlation coefficient between y =
boxcox(x) and the expected values for y if x would be
normally-distributed.‘mle’ Minimizes the log-likelihood boxcox_llf. This is the
method used in boxcox.‘all’ Use all optimization methods available, and return all re-
sults. Useful to compare different methods.Returns maxlog : float or ndarray

The optimal transform parameter found. An array instead of a scalar for
method=’all’.

See also:

boxcox, boxcox_llf, boxcox_normplot

Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> np.random.seed(1234) # make this example reproducible

Generate some data and determine optimal lmbda in various ways:

>>> x = stats.loggamma.rvs(5, size=30) + 5
>>> y, lmax_mle = stats.boxcox(x)

1480 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> lmax_pearsonr = stats.boxcox_normmax(x)

>>> lmax_mle
7.177...
>>> lmax_pearsonr
7.916...
>>> stats.boxcox_normmax(x, method='all')
array([7.91667384, 7.17718692])

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> stats.boxcox_normplot(x, -10, 10, plot=ax)
>>> ax.axvline(lmax_mle, color='r')
>>> ax.axvline(lmax_pearsonr, color='g', ls='--')

>>> plt.show()

10 5 0 5 10
0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ob

 P
lo

t C
or

r.
Co

ef
.

Box-Cox Normality Plot

scipy.stats.boxcox_llf(lmb, data)
The boxcox log-likelihood function.

Parameters lmb : scalar
Parameter for Box-Cox transformation. See boxcox for details.

data : array_like
Data to calculate Box-Cox log-likelihood for. If data is multi-dimensional,
the log-likelihood is calculated along the first axis.Returns llf : float or ndarray
Box-Cox log-likelihood of data given lmb. A float for 1-D data, an array
otherwise.

See also:

boxcox, probplot, boxcox_normplot, boxcox_normmax

5.34. Statistical functions (scipy.stats) 1481

SciPy Reference Guide, Release 0.16.0

Notes

The Box-Cox log-likelihood function is defined here as

𝑙𝑙𝑓 = (𝜆− 1)
∑︁
𝑖

(log(𝑥𝑖)) −𝑁/2 log(
∑︁
𝑖

(𝑦𝑖 − 𝑦)2/𝑁),

where y is the Box-Cox transformed input data x.

Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.axes_grid1.inset_locator import inset_axes
>>> np.random.seed(1245)

Generate some random variates and calculate Box-Cox log-likelihood values for them for a range of lmbda
values:

>>> x = stats.loggamma.rvs(5, loc=10, size=1000)
>>> lmbdas = np.linspace(-2, 10)
>>> llf = np.zeros(lmbdas.shape, dtype=np.float)
>>> for ii, lmbda in enumerate(lmbdas):
... llf[ii] = stats.boxcox_llf(lmbda, x)

Also find the optimal lmbda value with boxcox:

>>> x_most_normal, lmbda_optimal = stats.boxcox(x)

Plot the log-likelihood as function of lmbda. Add the optimal lmbda as a horizontal line to check that that’s
really the optimum:

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(lmbdas, llf, 'b.-')
>>> ax.axhline(stats.boxcox_llf(lmbda_optimal, x), color='r')
>>> ax.set_xlabel('lmbda parameter')
>>> ax.set_ylabel('Box-Cox log-likelihood')

Now add some probability plots to show that where the log-likelihood is maximized the data transformed with
boxcox looks closest to normal:

>>> locs = [3, 10, 4] # 'lower left', 'center', 'lower right'
>>> for lmbda, loc in zip([-1, lmbda_optimal, 9], locs):
... xt = stats.boxcox(x, lmbda=lmbda)
... (osm, osr), (slope, intercept, r_sq) = stats.probplot(xt)
... ax_inset = inset_axes(ax, width="20%", height="20%", loc=loc)
... ax_inset.plot(osm, osr, 'c.', osm, slope*osm + intercept, 'k-')
... ax_inset.set_xticklabels([])
... ax_inset.set_yticklabels([])
... ax_inset.set_title('$\lambda=%1.2f$' % lmbda)

>>> plt.show()

1482 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

2 0 2 4 6 8 10
lmbda parameter

670

680

690

700

710

720

730

Bo
x-

Co
x

lo
g-

lik
eli

ho
od

= 1.00

=4.08

=9.00

scipy.stats.entropy(pk, qk=None, base=None)
Calculate the entropy of a distribution for given probability values.

If only probabilities pk are given, the entropy is calculated as S = -sum(pk * log(pk), axis=0).

If qk is not None, then compute the Kullback-Leibler divergence S = sum(pk * log(pk / qk),
axis=0).

This routine will normalize pk and qk if they don’t sum to 1.

Parameters pk : sequence
Defines the (discrete) distribution. pk[i] is the (possibly unnormalized)
probability of event i.

qk : sequence, optional
Sequence against which the relative entropy is computed. Should be in the
same format as pk.

base : float, optional
The logarithmic base to use, defaults to e (natural logarithm).Returns S : float
The calculated entropy.

5.34.5 Circular statistical functions

circmean(samples[, high, low, axis]) Compute the circular mean for samples in a range.
circvar(samples[, high, low, axis]) Compute the circular variance for samples assumed to be in a range
circstd(samples[, high, low, axis]) Compute the circular standard deviation for samples assumed to be in the range [low to high].

scipy.stats.circmean(samples, high=6.283185307179586, low=0, axis=None)
Compute the circular mean for samples in a range.

Parameters samples : array_like
Input array.

high : float or int, optional
High boundary for circular mean range. Default is 2*pi.

low : float or int, optional
Low boundary for circular mean range. Default is 0.

5.34. Statistical functions (scipy.stats) 1483

SciPy Reference Guide, Release 0.16.0

axis : int, optional
Axis along which means are computed. The default is to compute the mean
of the flattened array.Returns circmean : float
Circular mean.

scipy.stats.circvar(samples, high=6.283185307179586, low=0, axis=None)
Compute the circular variance for samples assumed to be in a range

Parameters samples : array_like
Input array.

low : float or int, optional
Low boundary for circular variance range. Default is 0.

high : float or int, optional
High boundary for circular variance range. Default is 2*pi.

axis : int, optional
Axis along which variances are computed. The default is to compute the
variance of the flattened array.Returns circvar : float
Circular variance.

Notes

This uses a definition of circular variance that in the limit of small angles returns a number close to the ‘linear’
variance.

scipy.stats.circstd(samples, high=6.283185307179586, low=0, axis=None)
Compute the circular standard deviation for samples assumed to be in the range [low to high].

Parameters samples : array_like
Input array.

low : float or int, optional
Low boundary for circular standard deviation range. Default is 0.

high : float or int, optional
High boundary for circular standard deviation range. Default is 2*pi.

axis : int, optional
Axis along which standard deviations are computed. The default is to com-
pute the standard deviation of the flattened array.Returns circstd : float
Circular standard deviation.

Notes

This uses a definition of circular standard deviation that in the limit of small angles returns a number close to
the ‘linear’ standard deviation.

5.34.6 Contingency table functions

chi2_contingency(observed[, correction, lambda_]) Chi-square test of independence of variables in a contingency table.
contingency.expected_freq(observed) Compute the expected frequencies from a contingency table.
contingency.margins(a) Return a list of the marginal sums of the array a.
fisher_exact(table[, alternative]) Performs a Fisher exact test on a 2x2 contingency table.

scipy.stats.chi2_contingency(observed, correction=True, lambda_=None)
Chi-square test of independence of variables in a contingency table.

This function computes the chi-square statistic and p-value for the hypothesis test of indepen-

1484 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

dence of the observed frequencies in the contingency table [R304] observed. The expected fre-
quencies are computed based on the marginal sums under the assumption of independence; see
scipy.stats.contingency.expected_freq. The number of degrees of freedom is (expressed us-
ing numpy functions and attributes):

dof = observed.size - sum(observed.shape) + observed.ndim - 1

Parameters observed : array_like
The contingency table. The table contains the observed frequencies (i.e.
number of occurrences) in each category. In the two-dimensional case, the
table is often described as an “R x C table”.

correction : bool, optional
If True, and the degrees of freedom is 1, apply Yates’ correction for conti-
nuity. The effect of the correction is to adjust each observed value by 0.5
towards the corresponding expected value.

lambda_ : float or str, optional.
By default, the statistic computed in this test is Pearson’s chi-squared statis-
tic [R305]. lambda_ allows a statistic from the Cressie-Read power diver-
gence family [R306] to be used instead. See power_divergence for
details.Returns chi2 : float
The test statistic.

p : float
The p-value of the test

dof : int
Degrees of freedom

expected : ndarray, same shape as observed
The expected frequencies, based on the marginal sums of the table.

See also:

contingency.expected_freq, fisher_exact, chisquare, power_divergence

Notes

An often quoted guideline for the validity of this calculation is that the test should be used only if the observed
and expected frequency in each cell is at least 5.

This is a test for the independence of different categories of a population. The test is only meaningful when
the dimension of observed is two or more. Applying the test to a one-dimensional table will always result in
expected equal to observed and a chi-square statistic equal to 0.

This function does not handle masked arrays, because the calculation does not make sense with missing values.

Like stats.chisquare, this function computes a chi-square statistic; the convenience this function provides is to
figure out the expected frequencies and degrees of freedom from the given contingency table. If these were
already known, and if the Yates’ correction was not required, one could use stats.chisquare. That is, if one calls:

chi2, p, dof, ex = chi2_contingency(obs, correction=False)

then the following is true:

(chi2, p) == stats.chisquare(obs.ravel(), f_exp=ex.ravel(),
ddof=obs.size - 1 - dof)

The lambda_ argument was added in version 0.13.0 of scipy.

5.34. Statistical functions (scipy.stats) 1485

SciPy Reference Guide, Release 0.16.0

References

[R304], [R305], [R306]

Examples

A two-way example (2 x 3):

>>> from scipy.stats import chi2_contingency
>>> obs = np.array([[10, 10, 20], [20, 20, 20]])
>>> chi2_contingency(obs)
(2.7777777777777777,
0.24935220877729619,
2,
array([[12., 12., 16.],

[18., 18., 24.]]))

Perform the test using the log-likelihood ratio (i.e. the “G-test”) instead of Pearson’s chi-squared statistic.

>>> g, p, dof, expctd = chi2_contingency(obs, lambda_="log-likelihood")
>>> g, p
(2.7688587616781319, 0.25046668010954165)

A four-way example (2 x 2 x 2 x 2):

>>> obs = np.array(
... [[[[12, 17],
... [11, 16]],
... [[11, 12],
... [15, 16]]],
... [[[23, 15],
... [30, 22]],
... [[14, 17],
... [15, 16]]]])
>>> chi2_contingency(obs)
(8.7584514426741897,
0.64417725029295503,
11,
array([[[[14.15462386, 14.15462386],

[16.49423111, 16.49423111]],
[[11.2461395 , 11.2461395],
[13.10500554, 13.10500554]]],

[[[19.5591166 , 19.5591166],
[22.79202844, 22.79202844]],

[[15.54012004, 15.54012004],
[18.10873492, 18.10873492]]]]))

scipy.stats.contingency.expected_freq(observed)
Compute the expected frequencies from a contingency table.

Given an n-dimensional contingency table of observed frequencies, compute the expected frequencies for the
table based on the marginal sums under the assumption that the groups associated with each dimension are
independent.

Parameters observed : array_like
The table of observed frequencies. (While this function can handle a 1-D
array, that case is trivial. Generally observed is at least 2-D.)Returns expected : ndarray of float64

1486 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The expected frequencies, based on the marginal sums of the table. Same
shape as observed.

Examples

>>> observed = np.array([[10, 10, 20],[20, 20, 20]])
>>> from scipy.stats import expected_freq
>>> expected_freq(observed)
array([[12., 12., 16.],

[18., 18., 24.]])

scipy.stats.contingency.margins(a)
Return a list of the marginal sums of the array a.

Parameters a : ndarray
The array for which to compute the marginal sums.Returns margsums : list of ndarrays
A list of length a.ndim. margsums[k] is the result of summing a over all
axes except k; it has the same number of dimensions as a, but the length of
each axis except axis k will be 1.

Examples

>>> a = np.arange(12).reshape(2, 6)
>>> a
array([[0, 1, 2, 3, 4, 5],

[6, 7, 8, 9, 10, 11]])
>>> m0, m1 = margins(a)
>>> m0
array([[15],

[51]])
>>> m1
array([[6, 8, 10, 12, 14, 16]])

>>> b = np.arange(24).reshape(2,3,4)
>>> m0, m1, m2 = margins(b)
>>> m0
array([[[66]],

[[210]]])
>>> m1
array([[[60],

[92],
[124]]])

>>> m2
array([[[60, 66, 72, 78]]])

scipy.stats.fisher_exact(table, alternative=’two-sided’)
Performs a Fisher exact test on a 2x2 contingency table.

Parameters table : array_like of ints
A 2x2 contingency table. Elements should be non-negative integers.

alternative : {‘two-sided’, ‘less’, ‘greater’}, optional
Which alternative hypothesis to the null hypothesis the test uses. Default is
‘two-sided’.Returns oddsratio : float
This is prior odds ratio and not a posterior estimate.

p_value : float

5.34. Statistical functions (scipy.stats) 1487

SciPy Reference Guide, Release 0.16.0

P-value, the probability of obtaining a distribution at least as extreme as the
one that was actually observed, assuming that the null hypothesis is true.

See also:

chi2_contingency
Chi-square test of independence of variables in a contingency table.

Notes

The calculated odds ratio is different from the one R uses. This scipy implementation returns the (more common)
“unconditional Maximum Likelihood Estimate”, while R uses the “conditional Maximum Likelihood Estimate”.

For tables with large numbers, the (inexact) chi-square test implemented in the function chi2_contingency
can also be used.

Examples

Say we spend a few days counting whales and sharks in the Atlantic and Indian oceans. In the Atlantic ocean
we find 8 whales and 1 shark, in the Indian ocean 2 whales and 5 sharks. Then our contingency table is:

Atlantic Indian
whales 8 2
sharks 1 5

We use this table to find the p-value:

>>> import scipy.stats as stats
>>> oddsratio, pvalue = stats.fisher_exact([[8, 2], [1, 5]])
>>> pvalue
0.0349...

The probability that we would observe this or an even more imbalanced ratio by chance is about 3.5%. A
commonly used significance level is 5%–if we adopt that, we can therefore conclude that our observed imbalance
is statistically significant; whales prefer the Atlantic while sharks prefer the Indian ocean.

5.34.7 Plot-tests

ppcc_max(x[, brack, dist]) Returns the shape parameter that maximizes the probability plot correlation coefficient for the given data to a one-parameter family of distributions.
ppcc_plot(x, a, b[, dist, plot, N]) Calculate and optionally plot probability plot correlation coefficient.
probplot(x[, sparams, dist, fit, plot]) Calculate quantiles for a probability plot, and optionally show the plot.
boxcox_normplot(x, la, lb[, plot, N]) Compute parameters for a Box-Cox normality plot, optionally show it.

scipy.stats.ppcc_max(x, brack=(0.0, 1.0), dist=’tukeylambda’)
Returns the shape parameter that maximizes the probability plot correlation coefficient for the given data to a
one-parameter family of distributions.

See also ppcc_plot

scipy.stats.ppcc_plot(x, a, b, dist=’tukeylambda’, plot=None, N=80)
Calculate and optionally plot probability plot correlation coefficient.

The probability plot correlation coefficient (PPCC) plot can be used to determine the optimal shape parameter
for a one-parameter family of distributions. It cannot be used for distributions without shape parameters (like
the normal distribution) or with multiple shape parameters.

By default a Tukey-Lambda distribution (stats.tukeylambda) is used. A Tukey-Lambda PPCC plot interpolates

1488 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

from long-tailed to short-tailed distributions via an approximately normal one, and is therefore particularly
useful in practice.

Parameters x : array_like
Input array.

a, b: scalar
Lower and upper bounds of the shape parameter to use.

dist : str or stats.distributions instance, optional
Distribution or distribution function name. Objects that look enough like a
stats.distributions instance (i.e. they have a ppf method) are also accepted.
The default is ’tukeylambda’.

plot : object, optional
If given, plots PPCC against the shape parameter. plot is an object that has
to have methods “plot” and “text”. The matplotlib.pyplot module
or a Matplotlib Axes object can be used, or a custom object with the same
methods. Default is None, which means that no plot is created.

N : int, optional
Number of points on the horizontal axis (equally distributed from a to b).Returns svals : ndarray
The shape values for which ppcc was calculated.

ppcc : ndarray
The calculated probability plot correlation coefficient values.

See also:

ppcc_max, probplot, boxcox_normplot, tukeylambda

References

J.J. Filliben, “The Probability Plot Correlation Coefficient Test for Normality”, Technometrics, Vol. 17, pp.
111-117, 1975.

Examples

First we generate some random data from a Tukey-Lambda distribution, with shape parameter -0.7:

>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> np.random.seed(1234567)
>>> x = stats.tukeylambda.rvs(-0.7, loc=2, scale=0.5, size=10000) + 1e4

Now we explore this data with a PPCC plot as well as the related probability plot and Box-Cox normplot. A red
line is drawn where we expect the PPCC value to be maximal (at the shape parameter -0.7 used above):

>>> fig = plt.figure(figsize=(12, 4))
>>> ax1 = fig.add_subplot(131)
>>> ax2 = fig.add_subplot(132)
>>> ax3 = fig.add_subplot(133)
>>> stats.probplot(x, plot=ax1)
>>> stats.boxcox_normplot(x, -5, 5, plot=ax2)
>>> stats.ppcc_plot(x, -5, 5, plot=ax3)
>>> ax3.vlines(-0.7, 0, 1, colors='r', label='Expected shape value')
>>> plt.show()

5.34. Statistical functions (scipy.stats) 1489

SciPy Reference Guide, Release 0.16.0

4 3 2 1 0 1 2 3 4
Quantiles

9600

9800

10000

10200

10400

10600

10800

11000

Or
de

re
d

Va
lu

es

R2 =0.1476

Probability Plot

6 4 2 0 2 4 6
0.1

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

 P
lo

t C
or

r.
Co

ef
.

Box-Cox Normality Plot

6 4 2 0 2 4 6
Shape Values

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

 P
lo

t C
or

r.
Co

ef
.

(tukeylambda) PPCC Plot

scipy.stats.probplot(x, sparams=(), dist=’norm’, fit=True, plot=None)
Calculate quantiles for a probability plot, and optionally show the plot.

Generates a probability plot of sample data against the quantiles of a specified theoretical distribution (the
normal distribution by default). probplot optionally calculates a best-fit line for the data and plots the results
using Matplotlib or a given plot function.

Parameters x : array_like
Sample/response data from which probplot creates the plot.

sparams : tuple, optional
Distribution-specific shape parameters (shape parameters plus location and
scale).

dist : str or stats.distributions instance, optional
Distribution or distribution function name. The default is ‘norm’ for a nor-
mal probability plot. Objects that look enough like a stats.distributions in-
stance (i.e. they have a ppf method) are also accepted.

fit : bool, optional
Fit a least-squares regression (best-fit) line to the sample data if True (de-
fault).

plot : object, optional
If given, plots the quantiles and least squares fit. plot is an object that has
to have methods “plot” and “text”. The matplotlib.pyplot module
or a Matplotlib Axes object can be used, or a custom object with the same
methods. Default is None, which means that no plot is created.Returns (osm, osr) : tuple of ndarrays
Tuple of theoretical quantiles (osm, or order statistic medians) and ordered
responses (osr). osr is simply sorted input x. For details on how osm is
calculated see the Notes section.

(slope, intercept, r) : tuple of floats, optional
Tuple containing the result of the least-squares fit, if that is performed by
probplot. r is the square root of the coefficient of determination. If
fit=False and plot=None, this tuple is not returned.

Notes

Even if plot is given, the figure is not shown or saved by probplot; plt.show() or
plt.savefig(’figname.png’) should be used after calling probplot.

probplot generates a probability plot, which should not be confused with a Q-Q or a P-P plot. Statsmodels
has more extensive functionality of this type, see statsmodels.api.ProbPlot.

The formula used for the theoretical quantiles (horizontal axis of the probability plot) is Filliben’s estimate:

1490 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

quantiles = dist.ppf(val), for

0.5**(1/n), for i = n
val = (i - 0.3175) / (n + 0.365), for i = 2, ..., n-1

1 - 0.5**(1/n), for i = 1

where i indicates the i-th ordered value and n is the total number of values.

Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> nsample = 100
>>> np.random.seed(7654321)

A t distribution with small degrees of freedom:

>>> ax1 = plt.subplot(221)
>>> x = stats.t.rvs(3, size=nsample)
>>> res = stats.probplot(x, plot=plt)

A t distribution with larger degrees of freedom:

>>> ax2 = plt.subplot(222)
>>> x = stats.t.rvs(25, size=nsample)
>>> res = stats.probplot(x, plot=plt)

A mixture of two normal distributions with broadcasting:

>>> ax3 = plt.subplot(223)
>>> x = stats.norm.rvs(loc=[0,5], scale=[1,1.5],
... size=(nsample/2.,2)).ravel()
>>> res = stats.probplot(x, plot=plt)

A standard normal distribution:

>>> ax4 = plt.subplot(224)
>>> x = stats.norm.rvs(loc=0, scale=1, size=nsample)
>>> res = stats.probplot(x, plot=plt)

Produce a new figure with a loggamma distribution, using the dist and sparams keywords:

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> x = stats.loggamma.rvs(c=2.5, size=500)
>>> stats.probplot(x, dist=stats.loggamma, sparams=(2.5,), plot=ax)
>>> ax.set_title("Probplot for loggamma dist with shape parameter 2.5")

Show the results with Matplotlib:

>>> plt.show()

5.34. Statistical functions (scipy.stats) 1491

SciPy Reference Guide, Release 0.16.0

3 2 1 0 1 2 3
Quantiles

6
4
2
0
2
4
6
8

Or
de

re
d

Va
lu

es
R2 =0.9247

Probability Plot

3 2 1 0 1 2 3
Quantiles

4
3
2
1
0
1
2
3

Or
de

re
d

Va
lu

es

R2 =0.9909

Probability Plot

3 2 1 0 1 2 3
Quantiles

6
4
2
0
2
4
6
8

10

Or
de

re
d

Va
lu

es

R2 =0.9147

Probability Plot

3 2 1 0 1 2 3
Quantiles

3
2
1
0
1
2
3

Or
de

re
d

Va
lu

es

R2 =0.9888

Probability Plot

3 2 1 0 1 2 3
Quantiles

3

2

1

0

1

2

3

Or
de

re
d

Va
lu

es

R2 =0.9975

Probplot for loggamma dist with shape parameter 2.5

scipy.stats.boxcox_normplot(x, la, lb, plot=None, N=80)
Compute parameters for a Box-Cox normality plot, optionally show it.

A Box-Cox normality plot shows graphically what the best transformation parameter is to use in boxcox to
obtain a distribution that is close to normal.

Parameters x : array_like
Input array.

la, lb : scalar
The lower and upper bounds for the lmbda values to pass to boxcox for
Box-Cox transformations. These are also the limits of the horizontal axis
of the plot if that is generated.

plot : object, optional
If given, plots the quantiles and least squares fit. plot is an object that has
to have methods “plot” and “text”. The matplotlib.pyplot module
or a Matplotlib Axes object can be used, or a custom object with the same
methods. Default is None, which means that no plot is created.

1492 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

N : int, optional
Number of points on the horizontal axis (equally distributed from la to lb).Returns lmbdas : ndarray
The lmbda values for which a Box-Cox transform was done.

ppcc : ndarray
Probability Plot Correlelation Coefficient, as obtained from probplot
when fitting the Box-Cox transformed input x against a normal distribution.

See also:

probplot, boxcox, boxcox_normmax, boxcox_llf, ppcc_max

Notes

Even if plot is given, the figure is not shown or saved by boxcox_normplot; plt.show() or
plt.savefig(’figname.png’) should be used after calling probplot.

Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt

Generate some non-normally distributed data, and create a Box-Cox plot:

>>> x = stats.loggamma.rvs(5, size=500) + 5
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> stats.boxcox_normplot(x, -20, 20, plot=ax)

Determine and plot the optimal lmbda to transform x and plot it in the same plot:

>>> _, maxlog = stats.boxcox(x)
>>> ax.axvline(maxlog, color='r')

>>> plt.show()

20 15 10 5 0 5 10 15 20
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ob

 P
lo

t C
or

r.
Co

ef
.

Box-Cox Normality Plot

5.34. Statistical functions (scipy.stats) 1493

SciPy Reference Guide, Release 0.16.0

5.34.8 Masked statistics functions

Statistical functions for masked arrays (scipy.stats.mstats)

This module contains a large number of statistical functions that can be used with masked arrays.

Most of these functions are similar to those in scipy.stats but might have small differences in the API or in the algorithm
used. Since this is a relatively new package, some API changes are still possible.

argstoarray(*args) Constructs a 2D array from a group of sequences.
betai(a, b, x) Returns the incomplete beta function.
chisquare(f_obs[, f_exp, ddof, axis]) Calculates a one-way chi square test.
count_tied_groups(x[, use_missing]) Counts the number of tied values.
describe(a[, axis, ddof]) Computes several descriptive statistics of the passed array.
f_oneway(*args) Performs a 1-way ANOVA, returning an F-value and probability given any number of groups.
f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b) Calculation of Wilks lambda F-statistic for multivariate data, per Maxwell & Delaney p.657.
find_repeats(arr) Find repeats in arr and return a tuple (repeats, repeat_count).
friedmanchisquare(*args) Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA.
kendalltau(x, y[, use_ties, use_missing]) Computes Kendall’s rank correlation tau on two variables x and y.
kendalltau_seasonal(x) Computes a multivariate Kendall’s rank correlation tau, for seasonal data.
kruskalwallis(*args) Compute the Kruskal-Wallis H-test for independent samples
ks_twosamp(data1, data2[, alternative]) Computes the Kolmogorov-Smirnov test on two samples.
kurtosis(a[, axis, fisher, bias]) Computes the kurtosis (Fisher or Pearson) of a dataset.
kurtosistest(a[, axis]) Tests whether a dataset has normal kurtosis
linregress(*args) Calculate a regression line
mannwhitneyu(x, y[, use_continuity]) Computes the Mann-Whitney statistic
plotting_positions(data[, alpha, beta]) Returns plotting positions (or empirical percentile points) for the data.
mode(a[, axis]) Returns an array of the modal (most common) value in the passed array.
moment(a[, moment, axis]) Calculates the nth moment about the mean for a sample.
mquantiles(a[, prob, alphap, betap, axis, limit]) Computes empirical quantiles for a data array.
msign(x) Returns the sign of x, or 0 if x is masked.
normaltest(a[, axis]) Tests whether a sample differs from a normal distribution.
obrientransform(*args) Computes a transform on input data (any number of columns).
pearsonr(x, y) Calculates a Pearson correlation coefficient and the p-value for testing non-correlation.
plotting_positions(data[, alpha, beta]) Returns plotting positions (or empirical percentile points) for the data.
pointbiserialr(x, y) Calculates a point biserial correlation coefficient and the associated p-value.
rankdata(data[, axis, use_missing]) Returns the rank (also known as order statistics) of each data point along the given axis.
scoreatpercentile(data, per[, limit, ...]) Calculate the score at the given ‘per’ percentile of the sequence a.
sem(a[, axis, ddof]) Calculates the standard error of the mean of the input array.
signaltonoise(*args, **kwds) signaltonoise is deprecated!
skew(a[, axis, bias]) Computes the skewness of a data set.
skewtest(a[, axis]) Tests whether the skew is different from the normal distribution.
spearmanr(x, y[, use_ties]) Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation.
theilslopes(y[, x, alpha]) Computes the Theil-Sen estimator for a set of points (x, y).
threshold(a[, threshmin, threshmax, newval]) Clip array to a given value.
tmax(a, upperlimit[, axis, inclusive]) Compute the trimmed maximum
tmean(a[, limits, inclusive]) Compute the trimmed mean.
tmin(a[, lowerlimit, axis, inclusive]) Compute the trimmed minimum
trim(a[, limits, inclusive, relative, axis]) Trims an array by masking the data outside some given limits.
trima(a[, limits, inclusive]) Trims an array by masking the data outside some given limits.
trimboth(data[, proportiontocut, inclusive, ...]) Trims the smallest and largest data values.
trimmed_stde(a[, limits, inclusive, axis]) Returns the standard error of the trimmed mean along the given axis.

Continued on next page

1494 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.267 – continued from previous page
trimr(a[, limits, inclusive, axis]) Trims an array by masking some proportion of the data on each end.
trimtail(data[, proportiontocut, tail, ...]) Trims the data by masking values from one tail.
tsem(a[, limits, inclusive]) Compute the trimmed standard error of the mean.
ttest_onesamp(a, popmean[, axis]) Calculates the T-test for the mean of ONE group of scores.
ttest_ind(a, b[, axis]) Calculates the T-test for the means of TWO INDEPENDENT samples of scores.
ttest_onesamp(a, popmean[, axis]) Calculates the T-test for the mean of ONE group of scores.
ttest_rel(a, b[, axis]) Calculates the T-test on TWO RELATED samples of scores, a and b.
tvar(a[, limits, inclusive]) Compute the trimmed variance
variation(a[, axis]) Computes the coefficient of variation, the ratio of the biased standard deviation to the mean.
winsorize(a[, limits, inclusive, inplace, axis]) Returns a Winsorized version of the input array.
zmap(scores, compare[, axis, ddof]) Calculates the relative z-scores.
zscore(a[, axis, ddof]) Calculates the z score of each value in the sample, relative to the sample mean and standard deviation.

scipy.stats.mstats.argstoarray(*args)
Constructs a 2D array from a group of sequences.

Sequences are filled with missing values to match the length of the longest sequence.

Parameters args : sequences
Group of sequences.Returns argstoarray : MaskedArray
A (m x n) masked array, where m is the number of arguments and n the
length of the longest argument.

Notes

numpy.ma.row_stack has identical behavior, but is called with a sequence of sequences.

scipy.stats.mstats.betai(a, b, x)
Returns the incomplete beta function.

I_x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt)

where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma function of a.

The standard broadcasting rules apply to a, b, and x.

Parameters a : array_like or float > 0
b : array_like or float > 0
x : array_like or float

x will be clipped to be no greater than 1.0 .Returns betai : ndarray
Incomplete beta function.

scipy.stats.mstats.chisquare(f_obs, f_exp=None, ddof=0, axis=0)
Calculates a one-way chi square test.

The chi square test tests the null hypothesis that the categorical data has the given frequencies.

Parameters f_obs : array_like
Observed frequencies in each category.

f_exp : array_like, optional
Expected frequencies in each category. By default the categories are as-
sumed to be equally likely.

ddof : int, optional
“Delta degrees of freedom”: adjustment to the degrees of freedom for the
p-value. The p-value is computed using a chi-squared distribution with k
- 1 - ddof degrees of freedom, where k is the number of observed fre-
quencies. The default value of ddof is 0.

5.34. Statistical functions (scipy.stats) 1495

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.row_stack.html#numpy.ma.row_stack

SciPy Reference Guide, Release 0.16.0

axis : int or None, optional
The axis of the broadcast result of f_obs and f_exp along which to apply
the test. If axis is None, all values in f_obs are treated as a single data set.
Default is 0.Returns chisq : float or ndarray
The chi-squared test statistic. The value is a float if axis is None or f_obs
and f_exp are 1-D.

p : float or ndarray
The p-value of the test. The value is a float if ddof and the return value
chisq are scalars.

See also:

power_divergence, mstats.chisquare

Notes

This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is
that all of the observed and expected frequencies should be at least 5.

The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If
p parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If
the parameters are estimated in a different way, then the dof can be between k-1-p and k-1. However, it is also
possible that the asymptotic distribution is not a chisquare, in which case this test is not appropriate.

References

[R336], [R337]

Examples

When just f_obs is given, it is assumed that the expected frequencies are uniform and given by the mean of the
observed frequencies.

>>> from scipy.stats import chisquare
>>> chisquare([16, 18, 16, 14, 12, 12])
(2.0, 0.84914503608460956)

With f_exp the expected frequencies can be given.

>>> chisquare([16, 18, 16, 14, 12, 12], f_exp=[16, 16, 16, 16, 16, 8])
(3.5, 0.62338762774958223)

When f_obs is 2-D, by default the test is applied to each column.

>>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
>>> obs.shape
(6, 2)
>>> chisquare(obs)
(array([2. , 6.66666667]), array([0.84914504, 0.24663415]))

By setting axis=None, the test is applied to all data in the array, which is equivalent to applying the test to the
flattened array.

>>> chisquare(obs, axis=None)
(23.31034482758621, 0.015975692534127565)
>>> chisquare(obs.ravel())
(23.31034482758621, 0.015975692534127565)

1496 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

ddof is the change to make to the default degrees of freedom.

>>> chisquare([16, 18, 16, 14, 12, 12], ddof=1)
(2.0, 0.73575888234288467)

The calculation of the p-values is done by broadcasting the chi-squared statistic with ddof.

>>> chisquare([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
(2.0, array([0.84914504, 0.73575888, 0.5724067]))

f_obs and f_exp are also broadcast. In the following, f_obs has shape (6,) and f_exp has shape (2, 6), so the
result of broadcasting f_obs and f_exp has shape (2, 6). To compute the desired chi-squared statistics, we use
axis=1:

>>> chisquare([16, 18, 16, 14, 12, 12],
... f_exp=[[16, 16, 16, 16, 16, 8], [8, 20, 20, 16, 12, 12]],
... axis=1)
(array([3.5 , 9.25]), array([0.62338763, 0.09949846]))

scipy.stats.mstats.count_tied_groups(x, use_missing=False)
Counts the number of tied values.

Parameters x : sequence
Sequence of data on which to counts the ties

use_missing : bool, optional
Whether to consider missing values as tied.Returns count_tied_groups : dict
Returns a dictionary (nb of ties: nb of groups).

Examples

>>> from scipy.stats import mstats
>>> z = [0, 0, 0, 2, 2, 2, 3, 3, 4, 5, 6]
>>> mstats.count_tied_groups(z)
{2: 1, 3: 2}

In the above example, the ties were 0 (3x), 2 (3x) and 3 (2x).

>>> z = np.ma.array([0, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6])
>>> mstats.count_tied_groups(z)
{2: 2, 3: 1}
>>> z[[1,-1]] = np.ma.masked
>>> mstats.count_tied_groups(z, use_missing=True)
{2: 2, 3: 1}

scipy.stats.mstats.describe(a, axis=0, ddof=0)
Computes several descriptive statistics of the passed array.

Parameters a : array_like
Data array

axis : int or None, optional
Axis along which to calculate statistics. Default 0. If None, compute over
the whole array a.

ddof : int, optional
degree of freedom (default 0); note that default ddof is different from the
same routine in stats.describeReturns nobs : int
(size of the data (discarding missing values)

5.34. Statistical functions (scipy.stats) 1497

SciPy Reference Guide, Release 0.16.0

minmax : (int, int)
min, max

mean : float
arithmetic mean

variance : float
unbiased variance

skewness : float
biased skewness

kurtosis : float
biased kurtosis

Examples

>>> ma = np.ma.array(range(6), mask=[0, 0, 0, 1, 1, 1])
>>> describe(ma)
(array(3),
(0, 2),
1.0,
1.0,
masked_array(data = 0.0,

mask = False,
fill_value = 1e+20)

,
-1.5)

scipy.stats.mstats.f_oneway(*args)
Performs a 1-way ANOVA, returning an F-value and probability given any number of groups. From Heiman,
pp.394-7.

Usage: f_oneway(*args), where *args is 2 or more arrays, one per treatment group.

Returns statistic : float
The computed F-value of the test.

pvalue : float
The associated p-value from the F-distribution.

scipy.stats.mstats.f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b)
Calculation of Wilks lambda F-statistic for multivariate data, per Maxwell & Delaney p.657.

scipy.stats.mstats.find_repeats(arr)
Find repeats in arr and return a tuple (repeats, repeat_count). Masked values are discarded.

Parameters arr : sequence
Input array. The array is flattened if it is not 1D.Returns repeats : ndarray
Array of repeated values.

counts : ndarray
Array of counts.

scipy.stats.mstats.friedmanchisquare(*args)
Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA. This function calculates the Fried-
man Chi-square test for repeated measures and returns the result, along with the associated probability
value.

Each input is considered a given group. Ideally, the number of treatments among each group should be equal.
If this is not the case, only the first n treatments are taken into account, where n is the number of treatments of
the smallest group. If a group has some missing values, the corresponding treatments are masked in the other
groups. The test statistic is corrected for ties.

Masked values in one group are propagated to the other groups.

1498 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Returns statistic : float
the test statistic.

pvalue : float
the associated p-value.

scipy.stats.mstats.kendalltau(x, y, use_ties=True, use_missing=False)
Computes Kendall’s rank correlation tau on two variables x and y.

Parameters x : sequence
First data list (for example, time).

y : sequence
Second data list.

use_ties : {True, False}, optional
Whether ties correction should be performed.

use_missing : {False, True}, optional
Whether missing data should be allocated a rank of 0 (False) or the average
rank (True)Returns correlation : float
Kendall tau

pvalue : float
Approximate 2-side p-value.

scipy.stats.mstats.kendalltau_seasonal(x)
Computes a multivariate Kendall’s rank correlation tau, for seasonal data.

Parameters x : 2-D ndarray
Array of seasonal data, with seasons in columns.

scipy.stats.mstats.kruskalwallis(*args)
Compute the Kruskal-Wallis H-test for independent samples

The Kruskal-Wallis H-test tests the null hypothesis that the population median of all of the groups are equal.
It is a non-parametric version of ANOVA. The test works on 2 or more independent samples, which may have
different sizes. Note that rejecting the null hypothesis does not indicate which of the groups differs. Post-hoc
comparisons between groups are required to determine which groups are different.

Parameters sample1, sample2, ... : array_like
Two or more arrays with the sample measurements can be given as argu-
ments.Returns statistic : float
The Kruskal-Wallis H statistic, corrected for ties

pvalue : float
The p-value for the test using the assumption that H has a chi square distri-
bution

Notes

Due to the assumption that H has a chi square distribution, the number of samples in each group must not be too
small. A typical rule is that each sample must have at least 5 measurements.

References

[R338]

scipy.stats.mstats.ks_twosamp(data1, data2, alternative=’two-sided’)
Computes the Kolmogorov-Smirnov test on two samples.

Missing values are discarded.

Parameters data1 : array_like
First data set

5.34. Statistical functions (scipy.stats) 1499

SciPy Reference Guide, Release 0.16.0

data2 : array_like
Second data set

alternative : {‘two-sided’, ‘less’, ‘greater’}, optional
Indicates the alternative hypothesis. Default is ‘two-sided’.Returns d : float
Value of the Kolmogorov Smirnov test

p : float
Corresponding p-value.

scipy.stats.mstats.kurtosis(a, axis=0, fisher=True, bias=True)
Computes the kurtosis (Fisher or Pearson) of a dataset.

Kurtosis is the fourth central moment divided by the square of the variance. If Fisher’s definition is used, then
3.0 is subtracted from the result to give 0.0 for a normal distribution.

If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment
estimators

Use kurtosistest to see if result is close enough to normal.

Parameters a : array
data for which the kurtosis is calculated

axis : int or None, optional
Axis along which the kurtosis is calculated. Default is 0. If None, compute
over the whole array a.

fisher : bool, optional
If True, Fisher’s definition is used (normal ==> 0.0). If False, Pearson’s
definition is used (normal ==> 3.0).

bias : bool, optional
If False, then the calculations are corrected for statistical bias.Returns kurtosis : array
The kurtosis of values along an axis. If all values are equal, return -3 for
Fisher’s definition and 0 for Pearson’s definition.

References

[R339]

scipy.stats.mstats.kurtosistest(a, axis=0)
Tests whether a dataset has normal kurtosis

This function tests the null hypothesis that the kurtosis of the population from which the sample was drawn is
that of the normal distribution: kurtosis = 3(n-1)/(n+1).

Parameters a : array
array of the sample data

axis : int or None, optional
Axis along which to compute test. Default is 0. If None, compute over the
whole array a.Returns statistic : float
The computed z-score for this test.

pvalue : float
The 2-sided p-value for the hypothesis test

Notes

Valid only for n>20. The Z-score is set to 0 for bad entries.

scipy.stats.mstats.linregress(*args)
Calculate a regression line

This computes a least-squares regression for two sets of measurements.

1500 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters x, y : array_like
two sets of measurements. Both arrays should have the same length. If only
x is given (and y=None), then it must be a two-dimensional array where one
dimension has length 2. The two sets of measurements are then found by
splitting the array along the length-2 dimension.Returns slope : float
slope of the regression line

intercept : float
intercept of the regression line

rvalue : float
correlation coefficient

pvalue : float
two-sided p-value for a hypothesis test whose null hypothesis is that the
slope is zero.

stderr : float
Standard error of the estimate

Notes

Missing values are considered pair-wise: if a value is missing in x, the corresponding value in y is masked.

Examples

>>> from scipy import stats
>>> x = np.random.random(10)
>>> y = np.random.random(10)
>>> slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)

To get coefficient of determination (r_squared)

>>> print("r-squared:", r_value**2)
r-squared: 0.15286643777

scipy.stats.mstats.mannwhitneyu(x, y, use_continuity=True)
Computes the Mann-Whitney statistic

Missing values in x and/or y are discarded.

Parameters x : sequence
Input

y : sequence
Input

use_continuity : {True, False}, optional
Whether a continuity correction (1/2.) should be taken into account.Returns statistic : float
The Mann-Whitney statistics

pvalue : float
Approximate p-value assuming a normal distribution.

scipy.stats.mstats.plotting_positions(data, alpha=0.4, beta=0.4)
Returns plotting positions (or empirical percentile points) for the data.
Plotting positions are defined as (i-alpha)/(n+1-alpha-beta), where:

•i is the rank order statistics
•n is the number of unmasked values along the given axis
•alpha and beta are two parameters.

Typical values for alpha and beta are:

5.34. Statistical functions (scipy.stats) 1501

SciPy Reference Guide, Release 0.16.0

•(0,1) : p(k) = k/n, linear interpolation of cdf (R, type 4)
•(.5,.5) : p(k) = (k-1/2.)/n, piecewise linear function (R, type 5)
•(0,0) : p(k) = k/(n+1), Weibull (R type 6)
•(1,1) : p(k) = (k-1)/(n-1), in this case, p(k) = mode[F(x[k])].
That’s R default (R type 7)

•(1/3,1/3): p(k) = (k-1/3)/(n+1/3), then p(k) ~
median[F(x[k])]. The resulting quantile estimates are approximately
median-unbiased regardless of the distribution of x. (R type 8)

•(3/8,3/8): p(k) = (k-3/8)/(n+1/4), Blom. The resulting quantile esti-
mates are approximately unbiased if x is normally distributed (R type 9)

•(.4,.4) : approximately quantile unbiased (Cunnane)
•(.35,.35): APL, used with PWM
•(.3175, .3175): used in scipy.stats.probplot

Parameters data : array_like
Input data, as a sequence or array of dimension at most 2.

alpha : float, optional
Plotting positions parameter. Default is 0.4.

beta : float, optional
Plotting positions parameter. Default is 0.4.Returns positions : MaskedArray
The calculated plotting positions.

scipy.stats.mstats.mode(a, axis=0)
Returns an array of the modal (most common) value in the passed array.

If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned.

Parameters a : array_like
n-dimensional array of which to find mode(s).

axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the whole
array a.Returns mode : ndarray
Array of modal values.

count : ndarray
Array of counts for each mode.

Examples

>>> a = np.array([[6, 8, 3, 0],
... [3, 2, 1, 7],
... [8, 1, 8, 4],
... [5, 3, 0, 5],
... [4, 7, 5, 9]])
>>> from scipy import stats
>>> stats.mode(a)
(array([[3, 1, 0, 0]]), array([[1, 1, 1, 1]]))

To get mode of whole array, specify axis=None:

>>> stats.mode(a, axis=None)
(array([3]), array([3]))

scipy.stats.mstats.moment(a, moment=1, axis=0)
Calculates the nth moment about the mean for a sample.

1502 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Generally used to calculate coefficients of skewness and kurtosis.

Parameters a : array_like
data

moment : int, optional
order of central moment that is returned

axis : int or None, optional
Axis along which the central moment is computed. Default is 0. If None,
compute over the whole array a.Returns n-th central moment : ndarray or float
The appropriate moment along the given axis or over all values if axis is
None. The denominator for the moment calculation is the number of obser-
vations, no degrees of freedom correction is done.

scipy.stats.mstats.mquantiles(a, prob=[0.25, 0.5, 0.75], alphap=0.4, betap=0.4, axis=None,
limit=())

Computes empirical quantiles for a data array.

Samples quantile are defined by Q(p) = (1-gamma)*x[j] + gamma*x[j+1], where x[j] is the j-th
order statistic, and gamma is a function of j = floor(n*p + m), m = alphap + p*(1 - alphap
- betap) and g = n*p + m - j.

Reinterpreting the above equations to compare to R lead to the equation: p(k) = (k - alphap)/(n +
1 - alphap - betap)
Typical values of (alphap,betap) are:

•(0,1) : p(k) = k/n : linear interpolation of cdf (R type 4)
•(.5,.5) : p(k) = (k - 1/2.)/n : piecewise linear function (R type 5)
•(0,0) : p(k) = k/(n+1) : (R type 6)
•(1,1) : p(k) = (k-1)/(n-1): p(k) = mode[F(x[k])]. (R type 7, R default)
•(1/3,1/3): p(k) = (k-1/3)/(n+1/3): Then p(k) ~ median[F(x[k])]. The
resulting quantile estimates are approximately median-unbiased regardless of the
distribution of x. (R type 8)

•(3/8,3/8): p(k) = (k-3/8)/(n+1/4): Blom. The resulting quantile esti-
mates are approximately unbiased if x is normally distributed (R type 9)

•(.4,.4) : approximately quantile unbiased (Cunnane)
•(.35,.35): APL, used with PWM

Parameters a : array_like
Input data, as a sequence or array of dimension at most 2.

prob : array_like, optional
List of quantiles to compute.

alphap : float, optional
Plotting positions parameter, default is 0.4.

betap : float, optional
Plotting positions parameter, default is 0.4.

axis : int, optional
Axis along which to perform the trimming. If None (default), the input
array is first flattened.

limit : tuple, optional
Tuple of (lower, upper) values. Values of a outside this open interval are
ignored.Returns mquantiles : MaskedArray
An array containing the calculated quantiles.

5.34. Statistical functions (scipy.stats) 1503

SciPy Reference Guide, Release 0.16.0

Notes

This formulation is very similar to R except the calculation of m from alphap and betap, where in R m is
defined with each type.

References

[R340], [R341]

Examples

>>> from scipy.stats.mstats import mquantiles
>>> a = np.array([6., 47., 49., 15., 42., 41., 7., 39., 43., 40., 36.])
>>> mquantiles(a)
array([19.2, 40. , 42.8])

Using a 2D array, specifying axis and limit.

>>> data = np.array([[6., 7., 1.],
[47., 15., 2.],
[49., 36., 3.],
[15., 39., 4.],
[42., 40., -999.],
[41., 41., -999.],
[7., -999., -999.],
[39., -999., -999.],
[43., -999., -999.],
[40., -999., -999.],
[36., -999., -999.]])

>>> mquantiles(data, axis=0, limit=(0, 50))
array([[19.2 , 14.6 , 1.45],

[40. , 37.5 , 2.5],
[42.8 , 40.05, 3.55]])

>>> data[:, 2] = -999.
>>> mquantiles(data, axis=0, limit=(0, 50))
masked_array(data =
[[19.2 14.6 --]
[40.0 37.5 --]
[42.8 40.05 --]],

mask =
[[False False True]
[False False True]
[False False True]],

fill_value = 1e+20)

scipy.stats.mstats.msign(x)
Returns the sign of x, or 0 if x is masked.

scipy.stats.mstats.normaltest(a, axis=0)
Tests whether a sample differs from a normal distribution.

This function tests the null hypothesis that a sample comes from a normal distribution. It is based on D’Agostino
and Pearson’s [R342], [R343] test that combines skew and kurtosis to produce an omnibus test of normality.

Parameters a : array_like
The array containing the data to be tested.

axis : int or None, optional

1504 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Axis along which to compute test. Default is 0. If None, compute over the
whole array a.Returns statistic : float or array
s^2 + k^2, where s is the z-score returned by skewtest and k is the z-score
returned by kurtosistest.

pvalue : float or array
A 2-sided chi squared probability for the hypothesis test.

References

[R342], [R343]

scipy.stats.mstats.obrientransform(*args)
Computes a transform on input data (any number of columns). Used to test for homogeneity of variance prior
to running one-way stats. Each array in *args is one level of a factor. If an f_oneway() run on the transformed
data and found significant, variances are unequal. From Maxwell and Delaney, p.112.

Returns: transformed data for use in an ANOVA

scipy.stats.mstats.pearsonr(x, y)
Calculates a Pearson correlation coefficient and the p-value for testing non-correlation.

The Pearson correlation coefficient measures the linear relationship between two datasets. Strictly speaking,
Pearson’s correlation requires that each dataset be normally distributed. Like other correlation coefficients, this
one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear
relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x
increases, y decreases.

The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson
correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable
but are probably reasonable for datasets larger than 500 or so.

Parameters x : 1-D array_like
Input

y : 1-D array_like
InputReturns pearsonr : float
Pearson’s correlation coefficient, 2-tailed p-value.

References

http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation

scipy.stats.mstats.plotting_positions(data, alpha=0.4, beta=0.4)
Returns plotting positions (or empirical percentile points) for the data.
Plotting positions are defined as (i-alpha)/(n+1-alpha-beta), where:

•i is the rank order statistics
•n is the number of unmasked values along the given axis
•alpha and beta are two parameters.

Typical values for alpha and beta are:

•(0,1) : p(k) = k/n, linear interpolation of cdf (R, type 4)
•(.5,.5) : p(k) = (k-1/2.)/n, piecewise linear function (R, type 5)
•(0,0) : p(k) = k/(n+1), Weibull (R type 6)
•(1,1) : p(k) = (k-1)/(n-1), in this case, p(k) = mode[F(x[k])].
That’s R default (R type 7)

•(1/3,1/3): p(k) = (k-1/3)/(n+1/3), then p(k) ~
median[F(x[k])]. The resulting quantile estimates are approximately
median-unbiased regardless of the distribution of x. (R type 8)

5.34. Statistical functions (scipy.stats) 1505

http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation

SciPy Reference Guide, Release 0.16.0

•(3/8,3/8): p(k) = (k-3/8)/(n+1/4), Blom. The resulting quantile esti-
mates are approximately unbiased if x is normally distributed (R type 9)

•(.4,.4) : approximately quantile unbiased (Cunnane)
•(.35,.35): APL, used with PWM
•(.3175, .3175): used in scipy.stats.probplot

Parameters data : array_like
Input data, as a sequence or array of dimension at most 2.

alpha : float, optional
Plotting positions parameter. Default is 0.4.

beta : float, optional
Plotting positions parameter. Default is 0.4.Returns positions : MaskedArray
The calculated plotting positions.

scipy.stats.mstats.pointbiserialr(x, y)
Calculates a point biserial correlation coefficient and the associated p-value.

The point biserial correlation is used to measure the relationship between a binary variable, x, and a continuous
variable, y. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation.
Correlations of -1 or +1 imply a determinative relationship.

This function uses a shortcut formula but produces the same result as pearsonr.

Parameters x : array_like of bools
Input array.

y : array_like
Input array.Returns correlation : float
R value

pvalue : float
2-tailed p-value

Notes

Missing values are considered pair-wise: if a value is missing in x, the corresponding value in y is masked.

References

http://en.wikipedia.org/wiki/Point-biserial_correlation_coefficient

Examples

>>> from scipy import stats
>>> a = np.array([0, 0, 0, 1, 1, 1, 1])
>>> b = np.arange(7)
>>> stats.pointbiserialr(a, b)
(0.8660254037844386, 0.011724811003954652)
>>> stats.pearsonr(a, b)
(0.86602540378443871, 0.011724811003954626)
>>> np.corrcoef(a, b)
array([[1. , 0.8660254],

[0.8660254, 1.]])

scipy.stats.mstats.rankdata(data, axis=None, use_missing=False)
Returns the rank (also known as order statistics) of each data point along the given axis.

If some values are tied, their rank is averaged. If some values are masked, their rank is set to 0 if use_missing is
False, or set to the average rank of the unmasked values if use_missing is True.

1506 Chapter 5. Reference

http://en.wikipedia.org/wiki/Point-biserial_correlation_coefficient

SciPy Reference Guide, Release 0.16.0

Parameters data : sequence
Input data. The data is transformed to a masked array

axis : {None,int}, optional
Axis along which to perform the ranking. If None, the array is first flattened.
An exception is raised if the axis is specified for arrays with a dimension
larger than 2

use_missing : bool, optional
Whether the masked values have a rank of 0 (False) or equal to the average
rank of the unmasked values (True).

scipy.stats.mstats.scoreatpercentile(data, per, limit=(), alphap=0.4, betap=0.4)
Calculate the score at the given ‘per’ percentile of the sequence a. For example, the score at per=50 is the
median.

This function is a shortcut to mquantile

scipy.stats.mstats.sem(a, axis=0, ddof=1)
Calculates the standard error of the mean of the input array.

Also sometimes called standard error of measurement.

Parameters a : array_like
An array containing the values for which the standard error is returned.

axis : int or None, optional
If axis is None, ravel a first. If axis is an integer, this will be the axis over
which to operate. Defaults to 0.

ddof : int, optional
Delta degrees-of-freedom. How many degrees of freedom to adjust for bias
in limited samples relative to the population estimate of variance. Defaults
to 1.Returns s : ndarray or float
The standard error of the mean in the sample(s), along the input axis.

Notes

The default value for ddof changed in scipy 0.15.0 to be consistent with stats.sem as well as with the most
common definition used (like in the R documentation).

Examples

Find standard error along the first axis:

>>> from scipy import stats
>>> a = np.arange(20).reshape(5,4)
>>> stats.sem(a)
array([2.8284, 2.8284, 2.8284, 2.8284])

Find standard error across the whole array, using n degrees of freedom:

>>> stats.sem(a, axis=None, ddof=0)
1.2893796958227628

scipy.stats.mstats.signaltonoise(*args, **kwds)
signaltonoise is deprecated! mstats.signaltonoise is deprecated in scipy 0.16.0
Calculates the signal-to-noise ratio, as the ratio of the mean over

standard deviation along the given axis.

Parameters data : sequence
Input data

5.34. Statistical functions (scipy.stats) 1507

SciPy Reference Guide, Release 0.16.0

axis [{0, int}, optional] Axis along which to compute. If None,
the computation is performed on a flat version of the array.

scipy.stats.mstats.skew(a, axis=0, bias=True)
Computes the skewness of a data set.

For normally distributed data, the skewness should be about 0. A skewness value > 0 means that there is more
weight in the left tail of the distribution. The function skewtest can be used to determine if the skewness
value is close enough to 0, statistically speaking.

Parameters a : ndarray
data

axis : int or None, optional
Axis along which skewness is calculated. Default is 0. If None, compute
over the whole array a.

bias : bool, optional
If False, then the calculations are corrected for statistical bias.Returns skewness : ndarray
The skewness of values along an axis, returning 0 where all values are equal.

References

[R344]

scipy.stats.mstats.skewtest(a, axis=0)
Tests whether the skew is different from the normal distribution.

This function tests the null hypothesis that the skewness of the population that the sample was drawn from is the
same as that of a corresponding normal distribution.

Parameters a : array
The data to be tested

axis : int or None, optional
Axis along which statistics are calculated. Default is 0. If None, compute
over the whole array a.Returns statistic : float
The computed z-score for this test.

pvalue : float
a 2-sided p-value for the hypothesis test

Notes

The sample size must be at least 8.

scipy.stats.mstats.spearmanr(x, y, use_ties=True)
Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation.

The Spearman correlation is a nonparametric measure of the linear relationship between two datasets. Unlike the
Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. Like
other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of
-1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative
correlations imply that as x increases, y decreases.

Missing values are discarded pair-wise: if a value is missing in x, the corresponding value in y is masked.

The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman
correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable
but are probably reasonable for datasets larger than 500 or so.

Parameters x : array_like
The length of x must be > 2.

1508 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

y : array_like
The length of y must be > 2.

use_ties : bool, optional
Whether the correction for ties should be computed.Returns correlation : float
Spearman correlation coefficient

pvalue : float
2-tailed p-value.

References

[CRCProbStat2000] section 14.7

scipy.stats.mstats.theilslopes(y, x=None, alpha=0.95)
Computes the Theil-Sen estimator for a set of points (x, y).

theilslopes implements a method for robust linear regression. It computes the slope as the median of all
slopes between paired values.

Parameters y : array_like
Dependent variable.

x : array_like or None, optional
Independent variable. If None, use arange(len(y)) instead.

alpha : float, optional
Confidence degree between 0 and 1. Default is 95% confidence. Note that
alpha is symmetric around 0.5, i.e. both 0.1 and 0.9 are interpreted as “find
the 90% confidence interval”.Returns medslope : float
Theil slope.

medintercept : float
Intercept of the Theil line, as median(y) - medslope*median(x).

lo_slope : float
Lower bound of the confidence interval on medslope.

up_slope : float
Upper bound of the confidence interval on medslope.

Notes

The implementation of theilslopes follows [R345]. The intercept is not defined in [R345], and here it
is defined as median(y) - medslope*median(x), which is given in [R347]. Other definitions of the
intercept exist in the literature. A confidence interval for the intercept is not given as this question is not
addressed in [R345].

References

[R345], [R346], [R347]

Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-5, 5, num=150)
>>> y = x + np.random.normal(size=x.size)
>>> y[11:15] += 10 # add outliers
>>> y[-5:] -= 7

5.34. Statistical functions (scipy.stats) 1509

SciPy Reference Guide, Release 0.16.0

Compute the slope, intercept and 90% confidence interval. For comparison, also compute the least-squares fit
with linregress:

>>> res = stats.theilslopes(y, x, 0.90)
>>> lsq_res = stats.linregress(x, y)

Plot the results. The Theil-Sen regression line is shown in red, with the dashed red lines illustrating the confi-
dence interval of the slope (note that the dashed red lines are not the confidence interval of the regression as the
confidence interval of the intercept is not included). The green line shows the least-squares fit for comparison.

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x, y, 'b.')
>>> ax.plot(x, res[1] + res[0] * x, 'r-')
>>> ax.plot(x, res[1] + res[2] * x, 'r--')
>>> ax.plot(x, res[1] + res[3] * x, 'r--')
>>> ax.plot(x, lsq_res[1] + lsq_res[0] * x, 'g-')
>>> plt.show()

6 4 2 0 2 4 6
8
6
4
2
0
2
4
6
8

scipy.stats.mstats.threshold(a, threshmin=None, threshmax=None, newval=0)
Clip array to a given value.

Similar to numpy.clip(), except that values less than threshmin or greater than threshmax are replaced by newval,
instead of by threshmin and threshmax respectively.

Parameters a : ndarray
Input data

threshmin : {None, float}, optional
Lower threshold. If None, set to the minimum value.

threshmax : {None, float}, optional
Upper threshold. If None, set to the maximum value.

newval : {0, float}, optional
Value outside the thresholds.Returns threshold : ndarray
Returns a, with values less then threshmin and values greater threshmax
replaced with newval.

1510 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.stats.mstats.tmax(a, upperlimit, axis=0, inclusive=True)
Compute the trimmed maximum

This function computes the maximum value of an array along a given axis, while ignoring values larger than a
specified upper limit.

Parameters a : array_like
array of values

upperlimit : None or float, optional
Values in the input array greater than the given limit will be ignored. When
upperlimit is None, then all values are used. The default value is None.

axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the whole
array a.

inclusive : {True, False}, optional
This flag determines whether values exactly equal to the upper limit are
included. The default value is True.Returns tmax : float

scipy.stats.mstats.tmean(a, limits=None, inclusive=(True, True))
Compute the trimmed mean.

This function finds the arithmetic mean of given values, ignoring values outside the given limits.

Parameters a : array_like
Array of values.

limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the upper
limit will be ignored. When limits is None (default), then all values are
used. Either of the limit values in the tuple can also be None representing a
half-open interval.

inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags determine
whether values exactly equal to the lower or upper limits are included. The
default value is (True, True).Returns tmean : float

scipy.stats.mstats.tmin(a, lowerlimit=None, axis=0, inclusive=True)
Compute the trimmed minimum

This function finds the miminum value of an array a along the specified axis, but only considering values greater
than a specified lower limit.

Parameters a : array_like
array of values

lowerlimit : None or float, optional
Values in the input array less than the given limit will be ignored. When
lowerlimit is None, then all values are used. The default value is None.

axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the whole
array a.

inclusive : {True, False}, optional
This flag determines whether values exactly equal to the lower limit are
included. The default value is True.Returns tmin : float

scipy.stats.mstats.trim(a, limits=None, inclusive=(True, True), relative=False, axis=None)
Trims an array by masking the data outside some given limits.

Returns a masked version of the input array.

5.34. Statistical functions (scipy.stats) 1511

SciPy Reference Guide, Release 0.16.0

Parameters a : sequence
Input array

limits : {None, tuple}, optional
If relative is False, tuple (lower limit, upper limit) in absolute values. Values
of the input array lower (greater) than the lower (upper) limit are masked.
If relative is True, tuple (lower percentage, upper percentage) to cut on each
side of the array, with respect to the number of unmasked data.
Noting n the number of unmasked data before trimming, the (n*limits[0])th
smallest data and the (n*limits[1])th largest data are masked, and the total
number of unmasked data after trimming is n*(1.-sum(limits)) In each case,
the value of one limit can be set to None to indicate an open interval.
If limits is None, no trimming is performed

inclusive : {(bool, bool) tuple}, optional
If relative is False, tuple indicating whether values exactly equal to the ab-
solute limits are allowed. If relative is True, tuple indicating whether the
number of data being masked on each side should be rounded (True) or
truncated (False).

relative : bool, optional
Whether to consider the limits as absolute values (False) or proportions to
cut (True).

axis : int, optional
Axis along which to trim.

Examples

>>> z = [1, 2, 3, 4, 5, 6, 7, 8, 9,10]
>>> trim(z,(3,8))
[--,--, 3, 4, 5, 6, 7, 8,--,--]
>>> trim(z,(0.1,0.2),relative=True)
[--, 2, 3, 4, 5, 6, 7, 8,--,--]

scipy.stats.mstats.trima(a, limits=None, inclusive=(True, True))
Trims an array by masking the data outside some given limits.

Returns a masked version of the input array.

Parameters a : array_like
Input array.

limits : {None, tuple}, optional
Tuple of (lower limit, upper limit) in absolute values. Values of the input
array lower (greater) than the lower (upper) limit will be masked. A limit is
None indicates an open interval.

inclusive : (bool, bool) tuple, optional
Tuple of (lower flag, upper flag), indicating whether values exactly equal to
the lower (upper) limit are allowed.

scipy.stats.mstats.trimboth(data, proportiontocut=0.2, inclusive=(True, True), axis=None)
Trims the smallest and largest data values.

Trims the data by masking the int(proportiontocut * n) smallest and int(proportiontocut

* n) largest values of data along the given axis, where n is the number of unmasked values before trimming.

Parameters data : ndarray
Data to trim.

proportiontocut : float, optional

1512 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Percentage of trimming (as a float between 0 and 1). If n is the number of
unmasked values before trimming, the number of values after trimming is
(1 - 2*proportiontocut) * n. Default is 0.2.

inclusive : {(bool, bool) tuple}, optional
Tuple indicating whether the number of data being masked on each side
should be rounded (True) or truncated (False).

axis : int, optional
Axis along which to perform the trimming. If None, the input array is first
flattened.

scipy.stats.mstats.trimmed_stde(a, limits=(0.1, 0.1), inclusive=(1, 1), axis=None)
Returns the standard error of the trimmed mean along the given axis.

Parameters a : sequence
Input array

limits : {(0.1,0.1), tuple of float}, optional
tuple (lower percentage, upper percentage) to cut on each side of the array,
with respect to the number of unmasked data.
If n is the number of unmasked data before trimming, the values smaller
than n * limits[0] and the values larger than n * ‘limits[1]
are masked, and the total number of unmasked data after trimming is n
* (1.-sum(limits)). In each case, the value of one limit can be set
to None to indicate an open interval. If limits is None, no trimming is per-
formed.

inclusive : {(bool, bool) tuple} optional
Tuple indicating whether the number of data being masked on each side
should be rounded (True) or truncated (False).

axis : int, optional
Axis along which to trim.Returns trimmed_stde : scalar or ndarray

scipy.stats.mstats.trimr(a, limits=None, inclusive=(True, True), axis=None)
Trims an array by masking some proportion of the data on each end. Returns a masked version of the input
array.

Parameters a : sequence
Input array.

limits : {None, tuple}, optional
Tuple of the percentages to cut on each side of the array, with respect to the
number of unmasked data, as floats between 0. and 1. Noting n the number
of unmasked data before trimming, the (n*limits[0])th smallest data and the
(n*limits[1])th largest data are masked, and the total number of unmasked
data after trimming is n*(1.-sum(limits)). The value of one limit can be set
to None to indicate an open interval.

inclusive : {(True,True) tuple}, optional
Tuple of flags indicating whether the number of data being masked on the
left (right) end should be truncated (True) or rounded (False) to integers.

axis : {None,int}, optional
Axis along which to trim. If None, the whole array is trimmed, but its shape
is maintained.

scipy.stats.mstats.trimtail(data, proportiontocut=0.2, tail=’left’, inclusive=(True, True),
axis=None)

Trims the data by masking values from one tail.

Parameters data : array_like
Data to trim.

proportiontocut : float, optional

5.34. Statistical functions (scipy.stats) 1513

SciPy Reference Guide, Release 0.16.0

Percentage of trimming. If n is the number of unmasked val-
ues before trimming, the number of values after trimming is (1 -
proportiontocut) * n. Default is 0.2.

tail : {‘left’,’right’}, optional
If ‘left’ the proportiontocut lowest values will be masked. If ‘right’ the
proportiontocut highest values will be masked. Default is ‘left’.

inclusive : {(bool, bool) tuple}, optional
Tuple indicating whether the number of data being masked on each side
should be rounded (True) or truncated (False). Default is (True, True).

axis : int, optional
Axis along which to perform the trimming. If None, the input array is first
flattened. Default is None.Returns trimtail : ndarray
Returned array of same shape as data with masked tail values.

scipy.stats.mstats.tsem(a, limits=None, inclusive=(True, True))
Compute the trimmed standard error of the mean.

This function finds the standard error of the mean for given values, ignoring values outside the given limits.

Parameters a : array_like
array of values

limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the upper
limit will be ignored. When limits is None, then all values are used. Either
of the limit values in the tuple can also be None representing a half-open
interval. The default value is None.

inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags determine
whether values exactly equal to the lower or upper limits are included. The
default value is (True, True).Returns tsem : float

Notes

tsem uses unbiased sample standard deviation, i.e. it uses a correction factor n / (n - 1).

scipy.stats.mstats.ttest_onesamp(a, popmean, axis=0)
Calculates the T-test for the mean of ONE group of scores.

This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent
observations a is equal to the given population mean, popmean.

Parameters a : array_like
sample observation

popmean : float or array_like
expected value in null hypothesis, if array_like than it must have the same
shape as a excluding the axis dimension

axis : int or None, optional
Axis along which to compute test. If None, compute over the whole array
a.Returns statistic : float or array
t-statistic

pvalue : float or array
two-tailed p-value

1514 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy import stats

>>> np.random.seed(7654567) # fix seed to get the same result
>>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2))

Test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the
second case and don’t reject it in the first case.

>>> stats.ttest_1samp(rvs,5.0)
(array([-0.68014479, -0.04323899]), array([0.49961383, 0.96568674]))
>>> stats.ttest_1samp(rvs,0.0)
(array([2.77025808, 4.11038784]), array([0.00789095, 0.00014999]))

Examples using axis and non-scalar dimension for population mean.

>>> stats.ttest_1samp(rvs,[5.0,0.0])
(array([-0.68014479, 4.11038784]), array([4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1)
(array([-0.68014479, 4.11038784]), array([4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs,[[5.0],[0.0]])
(array([[-0.68014479, -0.04323899],

[2.77025808, 4.11038784]]), array([[4.99613833e-01, 9.65686743e-01],
[7.89094663e-03, 1.49986458e-04]]))

scipy.stats.mstats.ttest_ind(a, b, axis=0)
Calculates the T-test for the means of TWO INDEPENDENT samples of scores.

This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected)
values. This test assumes that the populations have identical variances by default.

Parameters a, b : array_like
The arrays must have the same shape, except in the dimension correspond-
ing to axis (the first, by default).

axis : int or None, optional
Axis along which to compute test. If None, compute over the whole arrays,
a, and b.

equal_var : bool, optional
If True (default), perform a standard independent 2 sample test that assumes
equal population variances [R348]. If False, perform Welch’s t-test, which
does not assume equal population variance [R349]. .. versionadded:: 0.11.0Returns statistic : float or array
The calculated t-statistic.

pvalue : float or array
The two-tailed p-value.

Notes

We can use this test, if we observe two independent samples from the same or different population, e.g. exam
scores of boys and girls or of two ethnic groups. The test measures whether the average (expected) value differs
significantly across samples. If we observe a large p-value, for example larger than 0.05 or 0.1, then we cannot
reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5%
or 10%, then we reject the null hypothesis of equal averages.

References

[R348], [R349]

5.34. Statistical functions (scipy.stats) 1515

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy import stats
>>> np.random.seed(12345678)

Test with sample with identical means:

>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> stats.ttest_ind(rvs1,rvs2)
(0.26833823296239279, 0.78849443369564776)
>>> stats.ttest_ind(rvs1,rvs2, equal_var = False)
(0.26833823296239279, 0.78849452749500748)

ttest_ind underestimates p for unequal variances:

>>> rvs3 = stats.norm.rvs(loc=5, scale=20, size=500)
>>> stats.ttest_ind(rvs1, rvs3)
(-0.46580283298287162, 0.64145827413436174)
>>> stats.ttest_ind(rvs1, rvs3, equal_var = False)
(-0.46580283298287162, 0.64149646246569292)

When n1 != n2, the equal variance t-statistic is no longer equal to the unequal variance t-statistic:

>>> rvs4 = stats.norm.rvs(loc=5, scale=20, size=100)
>>> stats.ttest_ind(rvs1, rvs4)
(-0.99882539442782481, 0.3182832709103896)
>>> stats.ttest_ind(rvs1, rvs4, equal_var = False)
(-0.69712570584654099, 0.48716927725402048)

T-test with different means, variance, and n:

>>> rvs5 = stats.norm.rvs(loc=8, scale=20, size=100)
>>> stats.ttest_ind(rvs1, rvs5)
(-1.4679669854490653, 0.14263895620529152)
>>> stats.ttest_ind(rvs1, rvs5, equal_var = False)
(-0.94365973617132992, 0.34744170334794122)

scipy.stats.mstats.ttest_onesamp(a, popmean, axis=0)
Calculates the T-test for the mean of ONE group of scores.

This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent
observations a is equal to the given population mean, popmean.

Parameters a : array_like
sample observation

popmean : float or array_like
expected value in null hypothesis, if array_like than it must have the same
shape as a excluding the axis dimension

axis : int or None, optional
Axis along which to compute test. If None, compute over the whole array
a.Returns statistic : float or array
t-statistic

pvalue : float or array
two-tailed p-value

1516 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy import stats

>>> np.random.seed(7654567) # fix seed to get the same result
>>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2))

Test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the
second case and don’t reject it in the first case.

>>> stats.ttest_1samp(rvs,5.0)
(array([-0.68014479, -0.04323899]), array([0.49961383, 0.96568674]))
>>> stats.ttest_1samp(rvs,0.0)
(array([2.77025808, 4.11038784]), array([0.00789095, 0.00014999]))

Examples using axis and non-scalar dimension for population mean.

>>> stats.ttest_1samp(rvs,[5.0,0.0])
(array([-0.68014479, 4.11038784]), array([4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1)
(array([-0.68014479, 4.11038784]), array([4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs,[[5.0],[0.0]])
(array([[-0.68014479, -0.04323899],

[2.77025808, 4.11038784]]), array([[4.99613833e-01, 9.65686743e-01],
[7.89094663e-03, 1.49986458e-04]]))

scipy.stats.mstats.ttest_rel(a, b, axis=0)
Calculates the T-test on TWO RELATED samples of scores, a and b.

This is a two-sided test for the null hypothesis that 2 related or repeated samples have identical average (ex-
pected) values.

Parameters a, b : array_like
The arrays must have the same shape.

axis : int or None, optional
Axis along which to compute test. If None, compute over the whole arrays,
a, and b.Returns statistic : float or array
t-statistic

pvalue : float or array
two-tailed p-value

Notes

Examples for the use are scores of the same set of student in different exams, or repeated sampling from the
same units. The test measures whether the average score differs significantly across samples (e.g. exams). If
we observe a large p-value, for example greater than 0.05 or 0.1 then we cannot reject the null hypothesis of
identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%, then we reject the
null hypothesis of equal averages. Small p-values are associated with large t-statistics.

References

http://en.wikipedia.org/wiki/T-test#Dependent_t-test

5.34. Statistical functions (scipy.stats) 1517

http://en.wikipedia.org/wiki/T-test#Dependent_t-test

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy import stats
>>> np.random.seed(12345678) # fix random seed to get same numbers

>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) +
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs2)
(0.24101764965300962, 0.80964043445811562)
>>> rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) +
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs3)
(-3.9995108708727933, 7.3082402191726459e-005)

scipy.stats.mstats.tvar(a, limits=None, inclusive=(True, True))
Compute the trimmed variance

This function computes the sample variance of an array of values, while ignoring values which are outside of
given limits.

Parameters a : array_like
Array of values.

limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the upper
limit will be ignored. When limits is None, then all values are used. Either
of the limit values in the tuple can also be None representing a half-open
interval. The default value is None.

inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags determine
whether values exactly equal to the lower or upper limits are included. The
default value is (True, True).Returns tvar : float
Trimmed variance.

Notes

tvar computes the unbiased sample variance, i.e. it uses a correction factor n / (n - 1).

scipy.stats.mstats.variation(a, axis=0)
Computes the coefficient of variation, the ratio of the biased standard deviation to the mean.

Parameters a : array_like
Input array.

axis : int or None, optional
Axis along which to calculate the coefficient of variation. Default is 0. If
None, compute over the whole array a.

References

[R350]

scipy.stats.mstats.winsorize(a, limits=None, inclusive=(True, True), inplace=False,
axis=None)

Returns a Winsorized version of the input array.

The (limits[0])th lowest values are set to the (limits[0])th percentile, and the (limits[1])th highest values are set
to the (1 - limits[1])th percentile. Masked values are skipped.

Parameters a : sequence

1518 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Input array.
limits : {None, tuple of float}, optional

Tuple of the percentages to cut on each side of the array, with respect to the
number of unmasked data, as floats between 0. and 1. Noting n the number
of unmasked data before trimming, the (n*limits[0])th smallest data and the
(n*limits[1])th largest data are masked, and the total number of unmasked
data after trimming is n*(1.-sum(limits)) The value of one limit can be set
to None to indicate an open interval.

inclusive : {(True, True) tuple}, optional
Tuple indicating whether the number of data being masked on each side
should be rounded (True) or truncated (False).

inplace : {False, True}, optional
Whether to winsorize in place (True) or to use a copy (False)

axis : {None, int}, optional
Axis along which to trim. If None, the whole array is trimmed, but its shape
is maintained.

Notes

This function is applied to reduce the effect of possibly spurious outliers by limiting the extreme values.

scipy.stats.mstats.zmap(scores, compare, axis=0, ddof=0)
Calculates the relative z-scores.

Returns an array of z-scores, i.e., scores that are standardized to zero mean and unit variance, where mean and
variance are calculated from the comparison array.

Parameters scores : array_like
The input for which z-scores are calculated.

compare : array_like
The input from which the mean and standard deviation of the normalization
are taken; assumed to have the same dimension as scores.

axis : int or None, optional
Axis over which mean and variance of compare are calculated. Default is
0. If None, compute over the whole array scores.

ddof : int, optional
Degrees of freedom correction in the calculation of the standard deviation.
Default is 0.Returns zscore : array_like
Z-scores, in the same shape as scores.

Notes

This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray
instead of asarray for parameters).

Examples

>>> from scipy.stats import zmap
>>> a = [0.5, 2.0, 2.5, 3]
>>> b = [0, 1, 2, 3, 4]
>>> zmap(a, b)
array([-1.06066017, 0. , 0.35355339, 0.70710678])

scipy.stats.mstats.zscore(a, axis=0, ddof=0)
Calculates the z score of each value in the sample, relative to the sample mean and standard deviation.

Parameters a : array_like

5.34. Statistical functions (scipy.stats) 1519

SciPy Reference Guide, Release 0.16.0

An array like object containing the sample data.
axis : int or None, optional

Axis along which to operate. Default is 0. If None, compute over the whole
array a.

ddof : int, optional
Degrees of freedom correction in the calculation of the standard deviation.
Default is 0.Returns zscore : array_like
The z-scores, standardized by mean and standard deviation of input array a.

Notes

This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray
instead of asarray for parameters).

Examples

>>> a = np.array([0.7972, 0.0767, 0.4383, 0.7866, 0.8091, 0.1954,
... 0.6307, 0.6599, 0.1065, 0.0508])
>>> from scipy import stats
>>> stats.zscore(a)
array([1.1273, -1.247 , -0.0552, 1.0923, 1.1664, -0.8559, 0.5786,

0.6748, -1.1488, -1.3324])

Computing along a specified axis, using n-1 degrees of freedom (ddof=1) to calculate the standard deviation:

>>> b = np.array([[0.3148, 0.0478, 0.6243, 0.4608],
... [0.7149, 0.0775, 0.6072, 0.9656],
... [0.6341, 0.1403, 0.9759, 0.4064],
... [0.5918, 0.6948, 0.904 , 0.3721],
... [0.0921, 0.2481, 0.1188, 0.1366]])
>>> stats.zscore(b, axis=1, ddof=1)
array([[-0.19264823, -1.28415119, 1.07259584, 0.40420358],

[0.33048416, -1.37380874, 0.04251374, 1.00081084],
[0.26796377, -1.12598418, 1.23283094, -0.37481053],
[-0.22095197, 0.24468594, 1.19042819, -1.21416216],
[-0.82780366, 1.4457416 , -0.43867764, -0.1792603]])

5.34.9 Univariate and multivariate kernel density estimation (scipy.stats.kde)

gaussian_kde(dataset[, bw_method]) Representation of a kernel-density estimate using Gaussian kernels.

class scipy.stats.gaussian_kde(dataset, bw_method=None)
Representation of a kernel-density estimate using Gaussian kernels.

Kernel density estimation is a way to estimate the probability density function (PDF) of a random variable in
a non-parametric way. gaussian_kde works for both uni-variate and multi-variate data. It includes auto-
matic bandwidth determination. The estimation works best for a unimodal distribution; bimodal or multi-modal
distributions tend to be oversmoothed.

Parameters dataset : array_like
Datapoints to estimate from. In case of univariate data this is a 1-D array,
otherwise a 2-D array with shape (# of dims, # of data).

bw_method : str, scalar or callable, optional

1520 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The method used to calculate the estimator bandwidth. This can be ‘scott’,
‘silverman’, a scalar constant or a callable. If a scalar, this will be used
directly as kde.factor. If a callable, it should take a gaussian_kde in-
stance as only parameter and return a scalar. If None (default), ‘scott’ is
used. See Notes for more details.

Notes

Bandwidth selection strongly influences the estimate obtained from the KDE (much more so than the actual
shape of the kernel). Bandwidth selection can be done by a “rule of thumb”, by cross-validation, by “plug-in
methods” or by other means; see [R322], [R323] for reviews. gaussian_kde uses a rule of thumb, the default
is Scott’s Rule.

Scott’s Rule [R320], implemented as scotts_factor, is:

n**(-1./(d+4)),

with n the number of data points and d the number of dimensions. Silverman’s Rule [R321], implemented as
silverman_factor, is:

(n * (d + 2) / 4.)**(-1. / (d + 4)).

Good general descriptions of kernel density estimation can be found in [R320] and [R321], the mathematics for
this multi-dimensional implementation can be found in [R320].

References

[R320], [R321], [R322], [R323]

Examples

Generate some random two-dimensional data:

>>> from scipy import stats
>>> def measure(n):
... "Measurement model, return two coupled measurements."
... m1 = np.random.normal(size=n)
... m2 = np.random.normal(scale=0.5, size=n)
... return m1+m2, m1-m2

>>> m1, m2 = measure(2000)
>>> xmin = m1.min()
>>> xmax = m1.max()
>>> ymin = m2.min()
>>> ymax = m2.max()

Perform a kernel density estimate on the data:

>>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
>>> positions = np.vstack([X.ravel(), Y.ravel()])
>>> values = np.vstack([m1, m2])
>>> kernel = stats.gaussian_kde(values)
>>> Z = np.reshape(kernel(positions).T, X.shape)

Plot the results:

5.34. Statistical functions (scipy.stats) 1521

SciPy Reference Guide, Release 0.16.0

>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r,
... extent=[xmin, xmax, ymin, ymax])
>>> ax.plot(m1, m2, 'k.', markersize=2)
>>> ax.set_xlim([xmin, xmax])
>>> ax.set_ylim([ymin, ymax])
>>> plt.show()

4 3 2 1 0 1 2 3
4

3

2

1

0

1

2

3

Attributes

dataset (ndarray) The dataset with which gaussian_kde was initialized.
d (int) Number of dimensions.
n (int) Number of datapoints.
factor (float) The bandwidth factor, obtained from kde.covariance_factor, with which the covariance

matrix is multiplied.
covari-
ance

(ndarray) The covariance matrix of dataset, scaled by the calculated bandwidth (kde.factor).

inv_cov (ndarray) The inverse of covariance.

Methods

evaluate(points) Evaluate the estimated pdf on a set of points.
__call__(points) Evaluate the estimated pdf on a set of points.
integrate_gaussian(mean, cov) Multiply estimated density by a multivariate Gaussian and integrate over the whole space.
integrate_box_1d(low, high) Computes the integral of a 1D pdf between two bounds.
integrate_box(low_bounds, high_bounds[, maxpts]) Computes the integral of a pdf over a rectangular interval.
integrate_kde(other) Computes the integral of the product of this kernel density estimate with another.
pdf(x) Evaluate the estimated pdf on a provided set of points.
logpdf(x) Evaluate the log of the estimated pdf on a provided set of points.
resample([size]) Randomly sample a dataset from the estimated pdf.
set_bandwidth([bw_method]) Compute the estimator bandwidth with given method.
covariance_factor() Computes the coefficient (kde.factor) that multiplies the data covariance matrix to obtain the kernel covariance matrix.

1522 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

gaussian_kde.evaluate(points)
Evaluate the estimated pdf on a set of points.

Parameters points : (# of dimensions, # of points)-array
Alternatively, a (# of dimensions,) vector can be passed in and treated
as a single point.Returns values : (# of points,)-array
The values at each point.Raises ValueError : if the dimensionality of the input points is different than
the dimensionality of the KDE.

gaussian_kde.__call__(points)
Evaluate the estimated pdf on a set of points.

Parameters points : (# of dimensions, # of points)-array
Alternatively, a (# of dimensions,) vector can be passed in and treated
as a single point.Returns values : (# of points,)-array
The values at each point.Raises ValueError : if the dimensionality of the input points is different than
the dimensionality of the KDE.

gaussian_kde.integrate_gaussian(mean, cov)
Multiply estimated density by a multivariate Gaussian and integrate over the whole space.

Parameters mean : aray_like
A 1-D array, specifying the mean of the Gaussian.

cov : array_like
A 2-D array, specifying the covariance matrix of the Gaussian.Returns result : scalar
The value of the integral.Raises ValueError :
If the mean or covariance of the input Gaussian differs from the
KDE’s dimensionality.

gaussian_kde.integrate_box_1d(low, high)
Computes the integral of a 1D pdf between two bounds.

Parameters low : scalar
Lower bound of integration.

high : scalar
Upper bound of integration.Returns value : scalar
The result of the integral.Raises ValueError
If the KDE is over more than one dimension.

gaussian_kde.integrate_box(low_bounds, high_bounds, maxpts=None)
Computes the integral of a pdf over a rectangular interval.

Parameters low_bounds : array_like
A 1-D array containing the lower bounds of integration.

high_bounds : array_like
A 1-D array containing the upper bounds of integration.

maxpts : int, optional
The maximum number of points to use for integration.Returns value : scalar
The result of the integral.

gaussian_kde.integrate_kde(other)
Computes the integral of the product of this kernel density estimate with another.

Parameters other : gaussian_kde instance
The other kde.

5.34. Statistical functions (scipy.stats) 1523

SciPy Reference Guide, Release 0.16.0

Returns value : scalar
The result of the integral.Raises ValueError
If the KDEs have different dimensionality.

gaussian_kde.pdf(x)
Evaluate the estimated pdf on a provided set of points.

Notes

This is an alias for gaussian_kde.evaluate. See the evaluate docstring for more details.

gaussian_kde.logpdf(x)
Evaluate the log of the estimated pdf on a provided set of points.

Notes

See gaussian_kde.evaluate for more details; this method simply returns
np.log(gaussian_kde.evaluate(x)).

gaussian_kde.resample(size=None)
Randomly sample a dataset from the estimated pdf.

Parameters size : int, optional
The number of samples to draw. If not provided, then the size is the
same as the underlying dataset.Returns resample : (self.d, size) ndarray
The sampled dataset.

gaussian_kde.set_bandwidth(bw_method=None)
Compute the estimator bandwidth with given method.

The new bandwidth calculated after a call to set_bandwidth is used for subsequent evaluations of the
estimated density.

Parameters bw_method : str, scalar or callable, optional
The method used to calculate the estimator bandwidth. This can be
‘scott’, ‘silverman’, a scalar constant or a callable. If a scalar, this
will be used directly as kde.factor. If a callable, it should take a
gaussian_kde instance as only parameter and return a scalar. If
None (default), nothing happens; the current kde.covariance_factor
method is kept.

Notes

New in version 0.11.

Examples

>>> import scipy.stats as stats
>>> x1 = np.array([-7, -5, 1, 4, 5.])
>>> kde = stats.gaussian_kde(x1)
>>> xs = np.linspace(-10, 10, num=50)
>>> y1 = kde(xs)
>>> kde.set_bandwidth(bw_method='silverman')
>>> y2 = kde(xs)
>>> kde.set_bandwidth(bw_method=kde.factor / 3.)
>>> y3 = kde(xs)

1524 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> ax.plot(x1, np.ones(x1.shape) / (4. * x1.size), 'bo',
... label='Data points (rescaled)')
>>> ax.plot(xs, y1, label='Scott (default)')
>>> ax.plot(xs, y2, label='Silverman')
>>> ax.plot(xs, y3, label='Const (1/3 * Silverman)')
>>> ax.legend()
>>> plt.show()

10 5 0 5 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12
Data points (rescaled)
Scott (default)
Silverman
Const (1/3 * Silverman)

gaussian_kde.covariance_factor()
Computes the coefficient (kde.factor) that multiplies the data covariance matrix to obtain the kernel
covariance matrix. The default is scotts_factor. A subclass can overwrite this method to provide a
different method, or set it through a call to kde.set_bandwidth.

For many more stat related functions install the software R and the interface package rpy.

5.35 Statistical functions for masked arrays (scipy.stats.mstats)

This module contains a large number of statistical functions that can be used with masked arrays.

Most of these functions are similar to those in scipy.stats but might have small differences in the API or in the algorithm
used. Since this is a relatively new package, some API changes are still possible.

argstoarray(*args) Constructs a 2D array from a group of sequences.
betai(a, b, x) Returns the incomplete beta function.
chisquare(f_obs[, f_exp, ddof, axis]) Calculates a one-way chi square test.
count_tied_groups(x[, use_missing]) Counts the number of tied values.
describe(a[, axis, ddof]) Computes several descriptive statistics of the passed array.
f_oneway(*args) Performs a 1-way ANOVA, returning an F-value and probability given any number of groups.
f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b) Calculation of Wilks lambda F-statistic for multivariate data, per Maxwell & Delaney p.657.
find_repeats(arr) Find repeats in arr and return a tuple (repeats, repeat_count).
friedmanchisquare(*args) Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA.
kendalltau(x, y[, use_ties, use_missing]) Computes Kendall’s rank correlation tau on two variables x and y.

Continued on next page

5.35. Statistical functions for masked arrays (scipy.stats.mstats) 1525

SciPy Reference Guide, Release 0.16.0

Table 5.270 – continued from previous page
kendalltau_seasonal(x) Computes a multivariate Kendall’s rank correlation tau, for seasonal data.
kruskalwallis(*args) Compute the Kruskal-Wallis H-test for independent samples
ks_twosamp(data1, data2[, alternative]) Computes the Kolmogorov-Smirnov test on two samples.
kurtosis(a[, axis, fisher, bias]) Computes the kurtosis (Fisher or Pearson) of a dataset.
kurtosistest(a[, axis]) Tests whether a dataset has normal kurtosis
linregress(*args) Calculate a regression line
mannwhitneyu(x, y[, use_continuity]) Computes the Mann-Whitney statistic
plotting_positions(data[, alpha, beta]) Returns plotting positions (or empirical percentile points) for the data.
mode(a[, axis]) Returns an array of the modal (most common) value in the passed array.
moment(a[, moment, axis]) Calculates the nth moment about the mean for a sample.
mquantiles(a[, prob, alphap, betap, axis, limit]) Computes empirical quantiles for a data array.
msign(x) Returns the sign of x, or 0 if x is masked.
normaltest(a[, axis]) Tests whether a sample differs from a normal distribution.
obrientransform(*args) Computes a transform on input data (any number of columns).
pearsonr(x, y) Calculates a Pearson correlation coefficient and the p-value for testing non-correlation.
plotting_positions(data[, alpha, beta]) Returns plotting positions (or empirical percentile points) for the data.
pointbiserialr(x, y) Calculates a point biserial correlation coefficient and the associated p-value.
rankdata(data[, axis, use_missing]) Returns the rank (also known as order statistics) of each data point along the given axis.
scoreatpercentile(data, per[, limit, ...]) Calculate the score at the given ‘per’ percentile of the sequence a.
sem(a[, axis, ddof]) Calculates the standard error of the mean of the input array.
signaltonoise(*args, **kwds) signaltonoise is deprecated!
skew(a[, axis, bias]) Computes the skewness of a data set.
skewtest(a[, axis]) Tests whether the skew is different from the normal distribution.
spearmanr(x, y[, use_ties]) Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation.
theilslopes(y[, x, alpha]) Computes the Theil-Sen estimator for a set of points (x, y).
threshold(a[, threshmin, threshmax, newval]) Clip array to a given value.
tmax(a, upperlimit[, axis, inclusive]) Compute the trimmed maximum
tmean(a[, limits, inclusive]) Compute the trimmed mean.
tmin(a[, lowerlimit, axis, inclusive]) Compute the trimmed minimum
trim(a[, limits, inclusive, relative, axis]) Trims an array by masking the data outside some given limits.
trima(a[, limits, inclusive]) Trims an array by masking the data outside some given limits.
trimboth(data[, proportiontocut, inclusive, ...]) Trims the smallest and largest data values.
trimmed_stde(a[, limits, inclusive, axis]) Returns the standard error of the trimmed mean along the given axis.
trimr(a[, limits, inclusive, axis]) Trims an array by masking some proportion of the data on each end.
trimtail(data[, proportiontocut, tail, ...]) Trims the data by masking values from one tail.
tsem(a[, limits, inclusive]) Compute the trimmed standard error of the mean.
ttest_onesamp(a, popmean[, axis]) Calculates the T-test for the mean of ONE group of scores.
ttest_ind(a, b[, axis]) Calculates the T-test for the means of TWO INDEPENDENT samples of scores.
ttest_onesamp(a, popmean[, axis]) Calculates the T-test for the mean of ONE group of scores.
ttest_rel(a, b[, axis]) Calculates the T-test on TWO RELATED samples of scores, a and b.
tvar(a[, limits, inclusive]) Compute the trimmed variance
variation(a[, axis]) Computes the coefficient of variation, the ratio of the biased standard deviation to the mean.
winsorize(a[, limits, inclusive, inplace, axis]) Returns a Winsorized version of the input array.
zmap(scores, compare[, axis, ddof]) Calculates the relative z-scores.
zscore(a[, axis, ddof]) Calculates the z score of each value in the sample, relative to the sample mean and standard deviation.

scipy.stats.mstats.argstoarray(*args)
Constructs a 2D array from a group of sequences.

Sequences are filled with missing values to match the length of the longest sequence.

Parameters args : sequences

1526 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Group of sequences.Returns argstoarray : MaskedArray
A (m x n) masked array, where m is the number of arguments and n the
length of the longest argument.

Notes

numpy.ma.row_stack has identical behavior, but is called with a sequence of sequences.

scipy.stats.mstats.betai(a, b, x)
Returns the incomplete beta function.

I_x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt)

where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma function of a.

The standard broadcasting rules apply to a, b, and x.

Parameters a : array_like or float > 0
b : array_like or float > 0
x : array_like or float

x will be clipped to be no greater than 1.0 .Returns betai : ndarray
Incomplete beta function.

scipy.stats.mstats.chisquare(f_obs, f_exp=None, ddof=0, axis=0)
Calculates a one-way chi square test.

The chi square test tests the null hypothesis that the categorical data has the given frequencies.

Parameters f_obs : array_like
Observed frequencies in each category.

f_exp : array_like, optional
Expected frequencies in each category. By default the categories are as-
sumed to be equally likely.

ddof : int, optional
“Delta degrees of freedom”: adjustment to the degrees of freedom for the
p-value. The p-value is computed using a chi-squared distribution with k
- 1 - ddof degrees of freedom, where k is the number of observed fre-
quencies. The default value of ddof is 0.

axis : int or None, optional
The axis of the broadcast result of f_obs and f_exp along which to apply
the test. If axis is None, all values in f_obs are treated as a single data set.
Default is 0.Returns chisq : float or ndarray
The chi-squared test statistic. The value is a float if axis is None or f_obs
and f_exp are 1-D.

p : float or ndarray
The p-value of the test. The value is a float if ddof and the return value
chisq are scalars.

See also:

power_divergence, mstats.chisquare

Notes

This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is
that all of the observed and expected frequencies should be at least 5.

The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If
p parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If

5.35. Statistical functions for masked arrays (scipy.stats.mstats) 1527

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.row_stack.html#numpy.ma.row_stack

SciPy Reference Guide, Release 0.16.0

the parameters are estimated in a different way, then the dof can be between k-1-p and k-1. However, it is also
possible that the asymptotic distribution is not a chisquare, in which case this test is not appropriate.

References

[R336], [R337]

Examples

When just f_obs is given, it is assumed that the expected frequencies are uniform and given by the mean of the
observed frequencies.

>>> from scipy.stats import chisquare
>>> chisquare([16, 18, 16, 14, 12, 12])
(2.0, 0.84914503608460956)

With f_exp the expected frequencies can be given.

>>> chisquare([16, 18, 16, 14, 12, 12], f_exp=[16, 16, 16, 16, 16, 8])
(3.5, 0.62338762774958223)

When f_obs is 2-D, by default the test is applied to each column.

>>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
>>> obs.shape
(6, 2)
>>> chisquare(obs)
(array([2. , 6.66666667]), array([0.84914504, 0.24663415]))

By setting axis=None, the test is applied to all data in the array, which is equivalent to applying the test to the
flattened array.

>>> chisquare(obs, axis=None)
(23.31034482758621, 0.015975692534127565)
>>> chisquare(obs.ravel())
(23.31034482758621, 0.015975692534127565)

ddof is the change to make to the default degrees of freedom.

>>> chisquare([16, 18, 16, 14, 12, 12], ddof=1)
(2.0, 0.73575888234288467)

The calculation of the p-values is done by broadcasting the chi-squared statistic with ddof.

>>> chisquare([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
(2.0, array([0.84914504, 0.73575888, 0.5724067]))

f_obs and f_exp are also broadcast. In the following, f_obs has shape (6,) and f_exp has shape (2, 6), so the
result of broadcasting f_obs and f_exp has shape (2, 6). To compute the desired chi-squared statistics, we use
axis=1:

>>> chisquare([16, 18, 16, 14, 12, 12],
... f_exp=[[16, 16, 16, 16, 16, 8], [8, 20, 20, 16, 12, 12]],
... axis=1)
(array([3.5 , 9.25]), array([0.62338763, 0.09949846]))

1528 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.stats.mstats.count_tied_groups(x, use_missing=False)
Counts the number of tied values.

Parameters x : sequence
Sequence of data on which to counts the ties

use_missing : bool, optional
Whether to consider missing values as tied.Returns count_tied_groups : dict
Returns a dictionary (nb of ties: nb of groups).

Examples

>>> from scipy.stats import mstats
>>> z = [0, 0, 0, 2, 2, 2, 3, 3, 4, 5, 6]
>>> mstats.count_tied_groups(z)
{2: 1, 3: 2}

In the above example, the ties were 0 (3x), 2 (3x) and 3 (2x).

>>> z = np.ma.array([0, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6])
>>> mstats.count_tied_groups(z)
{2: 2, 3: 1}
>>> z[[1,-1]] = np.ma.masked
>>> mstats.count_tied_groups(z, use_missing=True)
{2: 2, 3: 1}

scipy.stats.mstats.describe(a, axis=0, ddof=0)
Computes several descriptive statistics of the passed array.

Parameters a : array_like
Data array

axis : int or None, optional
Axis along which to calculate statistics. Default 0. If None, compute over
the whole array a.

ddof : int, optional
degree of freedom (default 0); note that default ddof is different from the
same routine in stats.describeReturns nobs : int
(size of the data (discarding missing values)

minmax : (int, int)
min, max

mean : float
arithmetic mean

variance : float
unbiased variance

skewness : float
biased skewness

kurtosis : float
biased kurtosis

Examples

>>> ma = np.ma.array(range(6), mask=[0, 0, 0, 1, 1, 1])
>>> describe(ma)
(array(3),
(0, 2),
1.0,

5.35. Statistical functions for masked arrays (scipy.stats.mstats) 1529

SciPy Reference Guide, Release 0.16.0

1.0,
masked_array(data = 0.0,

mask = False,
fill_value = 1e+20)

,
-1.5)

scipy.stats.mstats.f_oneway(*args)
Performs a 1-way ANOVA, returning an F-value and probability given any number of groups. From Heiman,
pp.394-7.

Usage: f_oneway(*args), where *args is 2 or more arrays, one per treatment group.

Returns statistic : float
The computed F-value of the test.

pvalue : float
The associated p-value from the F-distribution.

scipy.stats.mstats.f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b)
Calculation of Wilks lambda F-statistic for multivariate data, per Maxwell & Delaney p.657.

scipy.stats.mstats.find_repeats(arr)
Find repeats in arr and return a tuple (repeats, repeat_count). Masked values are discarded.

Parameters arr : sequence
Input array. The array is flattened if it is not 1D.Returns repeats : ndarray
Array of repeated values.

counts : ndarray
Array of counts.

scipy.stats.mstats.friedmanchisquare(*args)
Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA. This function calculates the Fried-
man Chi-square test for repeated measures and returns the result, along with the associated probability
value.

Each input is considered a given group. Ideally, the number of treatments among each group should be equal.
If this is not the case, only the first n treatments are taken into account, where n is the number of treatments of
the smallest group. If a group has some missing values, the corresponding treatments are masked in the other
groups. The test statistic is corrected for ties.

Masked values in one group are propagated to the other groups.

Returns statistic : float
the test statistic.

pvalue : float
the associated p-value.

scipy.stats.mstats.kendalltau(x, y, use_ties=True, use_missing=False)
Computes Kendall’s rank correlation tau on two variables x and y.

Parameters x : sequence
First data list (for example, time).

y : sequence
Second data list.

use_ties : {True, False}, optional
Whether ties correction should be performed.

use_missing : {False, True}, optional
Whether missing data should be allocated a rank of 0 (False) or the average
rank (True)Returns correlation : float

1530 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Kendall tau
pvalue : float

Approximate 2-side p-value.

scipy.stats.mstats.kendalltau_seasonal(x)
Computes a multivariate Kendall’s rank correlation tau, for seasonal data.

Parameters x : 2-D ndarray
Array of seasonal data, with seasons in columns.

scipy.stats.mstats.kruskalwallis(*args)
Compute the Kruskal-Wallis H-test for independent samples

The Kruskal-Wallis H-test tests the null hypothesis that the population median of all of the groups are equal.
It is a non-parametric version of ANOVA. The test works on 2 or more independent samples, which may have
different sizes. Note that rejecting the null hypothesis does not indicate which of the groups differs. Post-hoc
comparisons between groups are required to determine which groups are different.

Parameters sample1, sample2, ... : array_like
Two or more arrays with the sample measurements can be given as argu-
ments.Returns statistic : float
The Kruskal-Wallis H statistic, corrected for ties

pvalue : float
The p-value for the test using the assumption that H has a chi square distri-
bution

Notes

Due to the assumption that H has a chi square distribution, the number of samples in each group must not be too
small. A typical rule is that each sample must have at least 5 measurements.

References

[R338]

scipy.stats.mstats.ks_twosamp(data1, data2, alternative=’two-sided’)
Computes the Kolmogorov-Smirnov test on two samples.

Missing values are discarded.

Parameters data1 : array_like
First data set

data2 : array_like
Second data set

alternative : {‘two-sided’, ‘less’, ‘greater’}, optional
Indicates the alternative hypothesis. Default is ‘two-sided’.Returns d : float
Value of the Kolmogorov Smirnov test

p : float
Corresponding p-value.

scipy.stats.mstats.kurtosis(a, axis=0, fisher=True, bias=True)
Computes the kurtosis (Fisher or Pearson) of a dataset.

Kurtosis is the fourth central moment divided by the square of the variance. If Fisher’s definition is used, then
3.0 is subtracted from the result to give 0.0 for a normal distribution.

If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment
estimators

Use kurtosistest to see if result is close enough to normal.

5.35. Statistical functions for masked arrays (scipy.stats.mstats) 1531

SciPy Reference Guide, Release 0.16.0

Parameters a : array
data for which the kurtosis is calculated

axis : int or None, optional
Axis along which the kurtosis is calculated. Default is 0. If None, compute
over the whole array a.

fisher : bool, optional
If True, Fisher’s definition is used (normal ==> 0.0). If False, Pearson’s
definition is used (normal ==> 3.0).

bias : bool, optional
If False, then the calculations are corrected for statistical bias.Returns kurtosis : array
The kurtosis of values along an axis. If all values are equal, return -3 for
Fisher’s definition and 0 for Pearson’s definition.

References

[R339]

scipy.stats.mstats.kurtosistest(a, axis=0)
Tests whether a dataset has normal kurtosis

This function tests the null hypothesis that the kurtosis of the population from which the sample was drawn is
that of the normal distribution: kurtosis = 3(n-1)/(n+1).

Parameters a : array
array of the sample data

axis : int or None, optional
Axis along which to compute test. Default is 0. If None, compute over the
whole array a.Returns statistic : float
The computed z-score for this test.

pvalue : float
The 2-sided p-value for the hypothesis test

Notes

Valid only for n>20. The Z-score is set to 0 for bad entries.

scipy.stats.mstats.linregress(*args)
Calculate a regression line

This computes a least-squares regression for two sets of measurements.

Parameters x, y : array_like
two sets of measurements. Both arrays should have the same length. If only
x is given (and y=None), then it must be a two-dimensional array where one
dimension has length 2. The two sets of measurements are then found by
splitting the array along the length-2 dimension.Returns slope : float
slope of the regression line

intercept : float
intercept of the regression line

rvalue : float
correlation coefficient

pvalue : float
two-sided p-value for a hypothesis test whose null hypothesis is that the
slope is zero.

stderr : float
Standard error of the estimate

1532 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

Missing values are considered pair-wise: if a value is missing in x, the corresponding value in y is masked.

Examples

>>> from scipy import stats
>>> x = np.random.random(10)
>>> y = np.random.random(10)
>>> slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)

To get coefficient of determination (r_squared)

>>> print("r-squared:", r_value**2)
r-squared: 0.15286643777

scipy.stats.mstats.mannwhitneyu(x, y, use_continuity=True)
Computes the Mann-Whitney statistic

Missing values in x and/or y are discarded.

Parameters x : sequence
Input

y : sequence
Input

use_continuity : {True, False}, optional
Whether a continuity correction (1/2.) should be taken into account.Returns statistic : float
The Mann-Whitney statistics

pvalue : float
Approximate p-value assuming a normal distribution.

scipy.stats.mstats.plotting_positions(data, alpha=0.4, beta=0.4)
Returns plotting positions (or empirical percentile points) for the data.
Plotting positions are defined as (i-alpha)/(n+1-alpha-beta), where:

•i is the rank order statistics
•n is the number of unmasked values along the given axis
•alpha and beta are two parameters.

Typical values for alpha and beta are:

•(0,1) : p(k) = k/n, linear interpolation of cdf (R, type 4)
•(.5,.5) : p(k) = (k-1/2.)/n, piecewise linear function (R, type 5)
•(0,0) : p(k) = k/(n+1), Weibull (R type 6)
•(1,1) : p(k) = (k-1)/(n-1), in this case, p(k) = mode[F(x[k])].
That’s R default (R type 7)

•(1/3,1/3): p(k) = (k-1/3)/(n+1/3), then p(k) ~
median[F(x[k])]. The resulting quantile estimates are approximately
median-unbiased regardless of the distribution of x. (R type 8)

•(3/8,3/8): p(k) = (k-3/8)/(n+1/4), Blom. The resulting quantile esti-
mates are approximately unbiased if x is normally distributed (R type 9)

•(.4,.4) : approximately quantile unbiased (Cunnane)
•(.35,.35): APL, used with PWM
•(.3175, .3175): used in scipy.stats.probplot

Parameters data : array_like
Input data, as a sequence or array of dimension at most 2.

5.35. Statistical functions for masked arrays (scipy.stats.mstats) 1533

SciPy Reference Guide, Release 0.16.0

alpha : float, optional
Plotting positions parameter. Default is 0.4.

beta : float, optional
Plotting positions parameter. Default is 0.4.Returns positions : MaskedArray
The calculated plotting positions.

scipy.stats.mstats.mode(a, axis=0)
Returns an array of the modal (most common) value in the passed array.

If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned.

Parameters a : array_like
n-dimensional array of which to find mode(s).

axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the whole
array a.Returns mode : ndarray
Array of modal values.

count : ndarray
Array of counts for each mode.

Examples

>>> a = np.array([[6, 8, 3, 0],
... [3, 2, 1, 7],
... [8, 1, 8, 4],
... [5, 3, 0, 5],
... [4, 7, 5, 9]])
>>> from scipy import stats
>>> stats.mode(a)
(array([[3, 1, 0, 0]]), array([[1, 1, 1, 1]]))

To get mode of whole array, specify axis=None:

>>> stats.mode(a, axis=None)
(array([3]), array([3]))

scipy.stats.mstats.moment(a, moment=1, axis=0)
Calculates the nth moment about the mean for a sample.

Generally used to calculate coefficients of skewness and kurtosis.

Parameters a : array_like
data

moment : int, optional
order of central moment that is returned

axis : int or None, optional
Axis along which the central moment is computed. Default is 0. If None,
compute over the whole array a.Returns n-th central moment : ndarray or float
The appropriate moment along the given axis or over all values if axis is
None. The denominator for the moment calculation is the number of obser-
vations, no degrees of freedom correction is done.

scipy.stats.mstats.mquantiles(a, prob=[0.25, 0.5, 0.75], alphap=0.4, betap=0.4, axis=None,
limit=())

Computes empirical quantiles for a data array.

1534 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Samples quantile are defined by Q(p) = (1-gamma)*x[j] + gamma*x[j+1], where x[j] is the j-th
order statistic, and gamma is a function of j = floor(n*p + m), m = alphap + p*(1 - alphap
- betap) and g = n*p + m - j.

Reinterpreting the above equations to compare to R lead to the equation: p(k) = (k - alphap)/(n +
1 - alphap - betap)
Typical values of (alphap,betap) are:

•(0,1) : p(k) = k/n : linear interpolation of cdf (R type 4)
•(.5,.5) : p(k) = (k - 1/2.)/n : piecewise linear function (R type 5)
•(0,0) : p(k) = k/(n+1) : (R type 6)
•(1,1) : p(k) = (k-1)/(n-1): p(k) = mode[F(x[k])]. (R type 7, R default)
•(1/3,1/3): p(k) = (k-1/3)/(n+1/3): Then p(k) ~ median[F(x[k])]. The
resulting quantile estimates are approximately median-unbiased regardless of the
distribution of x. (R type 8)

•(3/8,3/8): p(k) = (k-3/8)/(n+1/4): Blom. The resulting quantile esti-
mates are approximately unbiased if x is normally distributed (R type 9)

•(.4,.4) : approximately quantile unbiased (Cunnane)
•(.35,.35): APL, used with PWM

Parameters a : array_like
Input data, as a sequence or array of dimension at most 2.

prob : array_like, optional
List of quantiles to compute.

alphap : float, optional
Plotting positions parameter, default is 0.4.

betap : float, optional
Plotting positions parameter, default is 0.4.

axis : int, optional
Axis along which to perform the trimming. If None (default), the input
array is first flattened.

limit : tuple, optional
Tuple of (lower, upper) values. Values of a outside this open interval are
ignored.Returns mquantiles : MaskedArray
An array containing the calculated quantiles.

Notes

This formulation is very similar to R except the calculation of m from alphap and betap, where in R m is
defined with each type.

References

[R340], [R341]

Examples

>>> from scipy.stats.mstats import mquantiles
>>> a = np.array([6., 47., 49., 15., 42., 41., 7., 39., 43., 40., 36.])
>>> mquantiles(a)
array([19.2, 40. , 42.8])

Using a 2D array, specifying axis and limit.

5.35. Statistical functions for masked arrays (scipy.stats.mstats) 1535

SciPy Reference Guide, Release 0.16.0

>>> data = np.array([[6., 7., 1.],
[47., 15., 2.],
[49., 36., 3.],
[15., 39., 4.],
[42., 40., -999.],
[41., 41., -999.],
[7., -999., -999.],
[39., -999., -999.],
[43., -999., -999.],
[40., -999., -999.],
[36., -999., -999.]])

>>> mquantiles(data, axis=0, limit=(0, 50))
array([[19.2 , 14.6 , 1.45],

[40. , 37.5 , 2.5],
[42.8 , 40.05, 3.55]])

>>> data[:, 2] = -999.
>>> mquantiles(data, axis=0, limit=(0, 50))
masked_array(data =
[[19.2 14.6 --]
[40.0 37.5 --]
[42.8 40.05 --]],

mask =
[[False False True]
[False False True]
[False False True]],

fill_value = 1e+20)

scipy.stats.mstats.msign(x)
Returns the sign of x, or 0 if x is masked.

scipy.stats.mstats.normaltest(a, axis=0)
Tests whether a sample differs from a normal distribution.

This function tests the null hypothesis that a sample comes from a normal distribution. It is based on D’Agostino
and Pearson’s [R342], [R343] test that combines skew and kurtosis to produce an omnibus test of normality.

Parameters a : array_like
The array containing the data to be tested.

axis : int or None, optional
Axis along which to compute test. Default is 0. If None, compute over the
whole array a.Returns statistic : float or array
s^2 + k^2, where s is the z-score returned by skewtest and k is the z-score
returned by kurtosistest.

pvalue : float or array
A 2-sided chi squared probability for the hypothesis test.

References

[R342], [R343]

scipy.stats.mstats.obrientransform(*args)
Computes a transform on input data (any number of columns). Used to test for homogeneity of variance prior
to running one-way stats. Each array in *args is one level of a factor. If an f_oneway() run on the transformed
data and found significant, variances are unequal. From Maxwell and Delaney, p.112.

Returns: transformed data for use in an ANOVA

1536 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.stats.mstats.pearsonr(x, y)
Calculates a Pearson correlation coefficient and the p-value for testing non-correlation.

The Pearson correlation coefficient measures the linear relationship between two datasets. Strictly speaking,
Pearson’s correlation requires that each dataset be normally distributed. Like other correlation coefficients, this
one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear
relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x
increases, y decreases.

The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson
correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable
but are probably reasonable for datasets larger than 500 or so.

Parameters x : 1-D array_like
Input

y : 1-D array_like
InputReturns pearsonr : float
Pearson’s correlation coefficient, 2-tailed p-value.

References

http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation

scipy.stats.mstats.plotting_positions(data, alpha=0.4, beta=0.4)
Returns plotting positions (or empirical percentile points) for the data.
Plotting positions are defined as (i-alpha)/(n+1-alpha-beta), where:

•i is the rank order statistics
•n is the number of unmasked values along the given axis
•alpha and beta are two parameters.

Typical values for alpha and beta are:

•(0,1) : p(k) = k/n, linear interpolation of cdf (R, type 4)
•(.5,.5) : p(k) = (k-1/2.)/n, piecewise linear function (R, type 5)
•(0,0) : p(k) = k/(n+1), Weibull (R type 6)
•(1,1) : p(k) = (k-1)/(n-1), in this case, p(k) = mode[F(x[k])].
That’s R default (R type 7)

•(1/3,1/3): p(k) = (k-1/3)/(n+1/3), then p(k) ~
median[F(x[k])]. The resulting quantile estimates are approximately
median-unbiased regardless of the distribution of x. (R type 8)

•(3/8,3/8): p(k) = (k-3/8)/(n+1/4), Blom. The resulting quantile esti-
mates are approximately unbiased if x is normally distributed (R type 9)

•(.4,.4) : approximately quantile unbiased (Cunnane)
•(.35,.35): APL, used with PWM
•(.3175, .3175): used in scipy.stats.probplot

Parameters data : array_like
Input data, as a sequence or array of dimension at most 2.

alpha : float, optional
Plotting positions parameter. Default is 0.4.

beta : float, optional
Plotting positions parameter. Default is 0.4.Returns positions : MaskedArray
The calculated plotting positions.

5.35. Statistical functions for masked arrays (scipy.stats.mstats) 1537

http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation

SciPy Reference Guide, Release 0.16.0

scipy.stats.mstats.pointbiserialr(x, y)
Calculates a point biserial correlation coefficient and the associated p-value.

The point biserial correlation is used to measure the relationship between a binary variable, x, and a continuous
variable, y. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation.
Correlations of -1 or +1 imply a determinative relationship.

This function uses a shortcut formula but produces the same result as pearsonr.

Parameters x : array_like of bools
Input array.

y : array_like
Input array.Returns correlation : float
R value

pvalue : float
2-tailed p-value

Notes

Missing values are considered pair-wise: if a value is missing in x, the corresponding value in y is masked.

References

http://en.wikipedia.org/wiki/Point-biserial_correlation_coefficient

Examples

>>> from scipy import stats
>>> a = np.array([0, 0, 0, 1, 1, 1, 1])
>>> b = np.arange(7)
>>> stats.pointbiserialr(a, b)
(0.8660254037844386, 0.011724811003954652)
>>> stats.pearsonr(a, b)
(0.86602540378443871, 0.011724811003954626)
>>> np.corrcoef(a, b)
array([[1. , 0.8660254],

[0.8660254, 1.]])

scipy.stats.mstats.rankdata(data, axis=None, use_missing=False)
Returns the rank (also known as order statistics) of each data point along the given axis.

If some values are tied, their rank is averaged. If some values are masked, their rank is set to 0 if use_missing is
False, or set to the average rank of the unmasked values if use_missing is True.

Parameters data : sequence
Input data. The data is transformed to a masked array

axis : {None,int}, optional
Axis along which to perform the ranking. If None, the array is first flattened.
An exception is raised if the axis is specified for arrays with a dimension
larger than 2

use_missing : bool, optional
Whether the masked values have a rank of 0 (False) or equal to the average
rank of the unmasked values (True).

scipy.stats.mstats.scoreatpercentile(data, per, limit=(), alphap=0.4, betap=0.4)
Calculate the score at the given ‘per’ percentile of the sequence a. For example, the score at per=50 is the
median.

This function is a shortcut to mquantile

1538 Chapter 5. Reference

http://en.wikipedia.org/wiki/Point-biserial_correlation_coefficient

SciPy Reference Guide, Release 0.16.0

scipy.stats.mstats.sem(a, axis=0, ddof=1)
Calculates the standard error of the mean of the input array.

Also sometimes called standard error of measurement.

Parameters a : array_like
An array containing the values for which the standard error is returned.

axis : int or None, optional
If axis is None, ravel a first. If axis is an integer, this will be the axis over
which to operate. Defaults to 0.

ddof : int, optional
Delta degrees-of-freedom. How many degrees of freedom to adjust for bias
in limited samples relative to the population estimate of variance. Defaults
to 1.Returns s : ndarray or float
The standard error of the mean in the sample(s), along the input axis.

Notes

The default value for ddof changed in scipy 0.15.0 to be consistent with stats.sem as well as with the most
common definition used (like in the R documentation).

Examples

Find standard error along the first axis:

>>> from scipy import stats
>>> a = np.arange(20).reshape(5,4)
>>> stats.sem(a)
array([2.8284, 2.8284, 2.8284, 2.8284])

Find standard error across the whole array, using n degrees of freedom:

>>> stats.sem(a, axis=None, ddof=0)
1.2893796958227628

scipy.stats.mstats.signaltonoise(*args, **kwds)
signaltonoise is deprecated! mstats.signaltonoise is deprecated in scipy 0.16.0
Calculates the signal-to-noise ratio, as the ratio of the mean over

standard deviation along the given axis.

Parameters data : sequence
Input data

axis [{0, int}, optional] Axis along which to compute. If None,
the computation is performed on a flat version of the array.

scipy.stats.mstats.skew(a, axis=0, bias=True)
Computes the skewness of a data set.

For normally distributed data, the skewness should be about 0. A skewness value > 0 means that there is more
weight in the left tail of the distribution. The function skewtest can be used to determine if the skewness
value is close enough to 0, statistically speaking.

Parameters a : ndarray
data

axis : int or None, optional
Axis along which skewness is calculated. Default is 0. If None, compute
over the whole array a.

5.35. Statistical functions for masked arrays (scipy.stats.mstats) 1539

SciPy Reference Guide, Release 0.16.0

bias : bool, optional
If False, then the calculations are corrected for statistical bias.Returns skewness : ndarray
The skewness of values along an axis, returning 0 where all values are equal.

References

[R344]

scipy.stats.mstats.skewtest(a, axis=0)
Tests whether the skew is different from the normal distribution.

This function tests the null hypothesis that the skewness of the population that the sample was drawn from is the
same as that of a corresponding normal distribution.

Parameters a : array
The data to be tested

axis : int or None, optional
Axis along which statistics are calculated. Default is 0. If None, compute
over the whole array a.Returns statistic : float
The computed z-score for this test.

pvalue : float
a 2-sided p-value for the hypothesis test

Notes

The sample size must be at least 8.

scipy.stats.mstats.spearmanr(x, y, use_ties=True)
Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation.

The Spearman correlation is a nonparametric measure of the linear relationship between two datasets. Unlike the
Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. Like
other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of
-1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative
correlations imply that as x increases, y decreases.

Missing values are discarded pair-wise: if a value is missing in x, the corresponding value in y is masked.

The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman
correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable
but are probably reasonable for datasets larger than 500 or so.

Parameters x : array_like
The length of x must be > 2.

y : array_like
The length of y must be > 2.

use_ties : bool, optional
Whether the correction for ties should be computed.Returns correlation : float
Spearman correlation coefficient

pvalue : float
2-tailed p-value.

References

[CRCProbStat2000] section 14.7

scipy.stats.mstats.theilslopes(y, x=None, alpha=0.95)
Computes the Theil-Sen estimator for a set of points (x, y).

1540 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

theilslopes implements a method for robust linear regression. It computes the slope as the median of all
slopes between paired values.

Parameters y : array_like
Dependent variable.

x : array_like or None, optional
Independent variable. If None, use arange(len(y)) instead.

alpha : float, optional
Confidence degree between 0 and 1. Default is 95% confidence. Note that
alpha is symmetric around 0.5, i.e. both 0.1 and 0.9 are interpreted as “find
the 90% confidence interval”.Returns medslope : float
Theil slope.

medintercept : float
Intercept of the Theil line, as median(y) - medslope*median(x).

lo_slope : float
Lower bound of the confidence interval on medslope.

up_slope : float
Upper bound of the confidence interval on medslope.

Notes

The implementation of theilslopes follows [R345]. The intercept is not defined in [R345], and here it
is defined as median(y) - medslope*median(x), which is given in [R347]. Other definitions of the
intercept exist in the literature. A confidence interval for the intercept is not given as this question is not
addressed in [R345].

References

[R345], [R346], [R347]

Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-5, 5, num=150)
>>> y = x + np.random.normal(size=x.size)
>>> y[11:15] += 10 # add outliers
>>> y[-5:] -= 7

Compute the slope, intercept and 90% confidence interval. For comparison, also compute the least-squares fit
with linregress:

>>> res = stats.theilslopes(y, x, 0.90)
>>> lsq_res = stats.linregress(x, y)

Plot the results. The Theil-Sen regression line is shown in red, with the dashed red lines illustrating the confi-
dence interval of the slope (note that the dashed red lines are not the confidence interval of the regression as the
confidence interval of the intercept is not included). The green line shows the least-squares fit for comparison.

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x, y, 'b.')
>>> ax.plot(x, res[1] + res[0] * x, 'r-')
>>> ax.plot(x, res[1] + res[2] * x, 'r--')
>>> ax.plot(x, res[1] + res[3] * x, 'r--')

5.35. Statistical functions for masked arrays (scipy.stats.mstats) 1541

SciPy Reference Guide, Release 0.16.0

>>> ax.plot(x, lsq_res[1] + lsq_res[0] * x, 'g-')
>>> plt.show()

6 4 2 0 2 4 6
8
6
4
2
0
2
4
6
8

scipy.stats.mstats.threshold(a, threshmin=None, threshmax=None, newval=0)
Clip array to a given value.

Similar to numpy.clip(), except that values less than threshmin or greater than threshmax are replaced by newval,
instead of by threshmin and threshmax respectively.

Parameters a : ndarray
Input data

threshmin : {None, float}, optional
Lower threshold. If None, set to the minimum value.

threshmax : {None, float}, optional
Upper threshold. If None, set to the maximum value.

newval : {0, float}, optional
Value outside the thresholds.Returns threshold : ndarray
Returns a, with values less then threshmin and values greater threshmax
replaced with newval.

scipy.stats.mstats.tmax(a, upperlimit, axis=0, inclusive=True)
Compute the trimmed maximum

This function computes the maximum value of an array along a given axis, while ignoring values larger than a
specified upper limit.

Parameters a : array_like
array of values

upperlimit : None or float, optional
Values in the input array greater than the given limit will be ignored. When
upperlimit is None, then all values are used. The default value is None.

axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the whole
array a.

inclusive : {True, False}, optional
This flag determines whether values exactly equal to the upper limit are
included. The default value is True.Returns tmax : float

1542 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.stats.mstats.tmean(a, limits=None, inclusive=(True, True))
Compute the trimmed mean.

This function finds the arithmetic mean of given values, ignoring values outside the given limits.

Parameters a : array_like
Array of values.

limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the upper
limit will be ignored. When limits is None (default), then all values are
used. Either of the limit values in the tuple can also be None representing a
half-open interval.

inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags determine
whether values exactly equal to the lower or upper limits are included. The
default value is (True, True).Returns tmean : float

scipy.stats.mstats.tmin(a, lowerlimit=None, axis=0, inclusive=True)
Compute the trimmed minimum

This function finds the miminum value of an array a along the specified axis, but only considering values greater
than a specified lower limit.

Parameters a : array_like
array of values

lowerlimit : None or float, optional
Values in the input array less than the given limit will be ignored. When
lowerlimit is None, then all values are used. The default value is None.

axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the whole
array a.

inclusive : {True, False}, optional
This flag determines whether values exactly equal to the lower limit are
included. The default value is True.Returns tmin : float

scipy.stats.mstats.trim(a, limits=None, inclusive=(True, True), relative=False, axis=None)
Trims an array by masking the data outside some given limits.

Returns a masked version of the input array.

Parameters a : sequence
Input array

limits : {None, tuple}, optional
If relative is False, tuple (lower limit, upper limit) in absolute values. Values
of the input array lower (greater) than the lower (upper) limit are masked.
If relative is True, tuple (lower percentage, upper percentage) to cut on each
side of the array, with respect to the number of unmasked data.
Noting n the number of unmasked data before trimming, the (n*limits[0])th
smallest data and the (n*limits[1])th largest data are masked, and the total
number of unmasked data after trimming is n*(1.-sum(limits)) In each case,
the value of one limit can be set to None to indicate an open interval.
If limits is None, no trimming is performed

inclusive : {(bool, bool) tuple}, optional
If relative is False, tuple indicating whether values exactly equal to the ab-
solute limits are allowed. If relative is True, tuple indicating whether the
number of data being masked on each side should be rounded (True) or
truncated (False).

5.35. Statistical functions for masked arrays (scipy.stats.mstats) 1543

SciPy Reference Guide, Release 0.16.0

relative : bool, optional
Whether to consider the limits as absolute values (False) or proportions to
cut (True).

axis : int, optional
Axis along which to trim.

Examples

>>> z = [1, 2, 3, 4, 5, 6, 7, 8, 9,10]
>>> trim(z,(3,8))
[--,--, 3, 4, 5, 6, 7, 8,--,--]
>>> trim(z,(0.1,0.2),relative=True)
[--, 2, 3, 4, 5, 6, 7, 8,--,--]

scipy.stats.mstats.trima(a, limits=None, inclusive=(True, True))
Trims an array by masking the data outside some given limits.

Returns a masked version of the input array.

Parameters a : array_like
Input array.

limits : {None, tuple}, optional
Tuple of (lower limit, upper limit) in absolute values. Values of the input
array lower (greater) than the lower (upper) limit will be masked. A limit is
None indicates an open interval.

inclusive : (bool, bool) tuple, optional
Tuple of (lower flag, upper flag), indicating whether values exactly equal to
the lower (upper) limit are allowed.

scipy.stats.mstats.trimboth(data, proportiontocut=0.2, inclusive=(True, True), axis=None)
Trims the smallest and largest data values.

Trims the data by masking the int(proportiontocut * n) smallest and int(proportiontocut

* n) largest values of data along the given axis, where n is the number of unmasked values before trimming.

Parameters data : ndarray
Data to trim.

proportiontocut : float, optional
Percentage of trimming (as a float between 0 and 1). If n is the number of
unmasked values before trimming, the number of values after trimming is
(1 - 2*proportiontocut) * n. Default is 0.2.

inclusive : {(bool, bool) tuple}, optional
Tuple indicating whether the number of data being masked on each side
should be rounded (True) or truncated (False).

axis : int, optional
Axis along which to perform the trimming. If None, the input array is first
flattened.

scipy.stats.mstats.trimmed_stde(a, limits=(0.1, 0.1), inclusive=(1, 1), axis=None)
Returns the standard error of the trimmed mean along the given axis.

Parameters a : sequence
Input array

limits : {(0.1,0.1), tuple of float}, optional
tuple (lower percentage, upper percentage) to cut on each side of the array,
with respect to the number of unmasked data.
If n is the number of unmasked data before trimming, the values smaller
than n * limits[0] and the values larger than n * ‘limits[1]

1544 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

are masked, and the total number of unmasked data after trimming is n
* (1.-sum(limits)). In each case, the value of one limit can be set
to None to indicate an open interval. If limits is None, no trimming is per-
formed.

inclusive : {(bool, bool) tuple} optional
Tuple indicating whether the number of data being masked on each side
should be rounded (True) or truncated (False).

axis : int, optional
Axis along which to trim.Returns trimmed_stde : scalar or ndarray

scipy.stats.mstats.trimr(a, limits=None, inclusive=(True, True), axis=None)
Trims an array by masking some proportion of the data on each end. Returns a masked version of the input
array.

Parameters a : sequence
Input array.

limits : {None, tuple}, optional
Tuple of the percentages to cut on each side of the array, with respect to the
number of unmasked data, as floats between 0. and 1. Noting n the number
of unmasked data before trimming, the (n*limits[0])th smallest data and the
(n*limits[1])th largest data are masked, and the total number of unmasked
data after trimming is n*(1.-sum(limits)). The value of one limit can be set
to None to indicate an open interval.

inclusive : {(True,True) tuple}, optional
Tuple of flags indicating whether the number of data being masked on the
left (right) end should be truncated (True) or rounded (False) to integers.

axis : {None,int}, optional
Axis along which to trim. If None, the whole array is trimmed, but its shape
is maintained.

scipy.stats.mstats.trimtail(data, proportiontocut=0.2, tail=’left’, inclusive=(True, True),
axis=None)

Trims the data by masking values from one tail.

Parameters data : array_like
Data to trim.

proportiontocut : float, optional
Percentage of trimming. If n is the number of unmasked val-
ues before trimming, the number of values after trimming is (1 -
proportiontocut) * n. Default is 0.2.

tail : {‘left’,’right’}, optional
If ‘left’ the proportiontocut lowest values will be masked. If ‘right’ the
proportiontocut highest values will be masked. Default is ‘left’.

inclusive : {(bool, bool) tuple}, optional
Tuple indicating whether the number of data being masked on each side
should be rounded (True) or truncated (False). Default is (True, True).

axis : int, optional
Axis along which to perform the trimming. If None, the input array is first
flattened. Default is None.Returns trimtail : ndarray
Returned array of same shape as data with masked tail values.

scipy.stats.mstats.tsem(a, limits=None, inclusive=(True, True))
Compute the trimmed standard error of the mean.

This function finds the standard error of the mean for given values, ignoring values outside the given limits.

Parameters a : array_like

5.35. Statistical functions for masked arrays (scipy.stats.mstats) 1545

SciPy Reference Guide, Release 0.16.0

array of values
limits : None or (lower limit, upper limit), optional

Values in the input array less than the lower limit or greater than the upper
limit will be ignored. When limits is None, then all values are used. Either
of the limit values in the tuple can also be None representing a half-open
interval. The default value is None.

inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags determine
whether values exactly equal to the lower or upper limits are included. The
default value is (True, True).Returns tsem : float

Notes

tsem uses unbiased sample standard deviation, i.e. it uses a correction factor n / (n - 1).

scipy.stats.mstats.ttest_onesamp(a, popmean, axis=0)
Calculates the T-test for the mean of ONE group of scores.

This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent
observations a is equal to the given population mean, popmean.

Parameters a : array_like
sample observation

popmean : float or array_like
expected value in null hypothesis, if array_like than it must have the same
shape as a excluding the axis dimension

axis : int or None, optional
Axis along which to compute test. If None, compute over the whole array
a.Returns statistic : float or array
t-statistic

pvalue : float or array
two-tailed p-value

Examples

>>> from scipy import stats

>>> np.random.seed(7654567) # fix seed to get the same result
>>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2))

Test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the
second case and don’t reject it in the first case.

>>> stats.ttest_1samp(rvs,5.0)
(array([-0.68014479, -0.04323899]), array([0.49961383, 0.96568674]))
>>> stats.ttest_1samp(rvs,0.0)
(array([2.77025808, 4.11038784]), array([0.00789095, 0.00014999]))

Examples using axis and non-scalar dimension for population mean.

>>> stats.ttest_1samp(rvs,[5.0,0.0])
(array([-0.68014479, 4.11038784]), array([4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1)
(array([-0.68014479, 4.11038784]), array([4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs,[[5.0],[0.0]])

1546 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

(array([[-0.68014479, -0.04323899],
[2.77025808, 4.11038784]]), array([[4.99613833e-01, 9.65686743e-01],
[7.89094663e-03, 1.49986458e-04]]))

scipy.stats.mstats.ttest_ind(a, b, axis=0)
Calculates the T-test for the means of TWO INDEPENDENT samples of scores.

This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected)
values. This test assumes that the populations have identical variances by default.

Parameters a, b : array_like
The arrays must have the same shape, except in the dimension correspond-
ing to axis (the first, by default).

axis : int or None, optional
Axis along which to compute test. If None, compute over the whole arrays,
a, and b.

equal_var : bool, optional
If True (default), perform a standard independent 2 sample test that assumes
equal population variances [R348]. If False, perform Welch’s t-test, which
does not assume equal population variance [R349]. .. versionadded:: 0.11.0Returns statistic : float or array
The calculated t-statistic.

pvalue : float or array
The two-tailed p-value.

Notes

We can use this test, if we observe two independent samples from the same or different population, e.g. exam
scores of boys and girls or of two ethnic groups. The test measures whether the average (expected) value differs
significantly across samples. If we observe a large p-value, for example larger than 0.05 or 0.1, then we cannot
reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5%
or 10%, then we reject the null hypothesis of equal averages.

References

[R348], [R349]

Examples

>>> from scipy import stats
>>> np.random.seed(12345678)

Test with sample with identical means:

>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> stats.ttest_ind(rvs1,rvs2)
(0.26833823296239279, 0.78849443369564776)
>>> stats.ttest_ind(rvs1,rvs2, equal_var = False)
(0.26833823296239279, 0.78849452749500748)

ttest_ind underestimates p for unequal variances:

>>> rvs3 = stats.norm.rvs(loc=5, scale=20, size=500)
>>> stats.ttest_ind(rvs1, rvs3)
(-0.46580283298287162, 0.64145827413436174)
>>> stats.ttest_ind(rvs1, rvs3, equal_var = False)
(-0.46580283298287162, 0.64149646246569292)

5.35. Statistical functions for masked arrays (scipy.stats.mstats) 1547

SciPy Reference Guide, Release 0.16.0

When n1 != n2, the equal variance t-statistic is no longer equal to the unequal variance t-statistic:

>>> rvs4 = stats.norm.rvs(loc=5, scale=20, size=100)
>>> stats.ttest_ind(rvs1, rvs4)
(-0.99882539442782481, 0.3182832709103896)
>>> stats.ttest_ind(rvs1, rvs4, equal_var = False)
(-0.69712570584654099, 0.48716927725402048)

T-test with different means, variance, and n:

>>> rvs5 = stats.norm.rvs(loc=8, scale=20, size=100)
>>> stats.ttest_ind(rvs1, rvs5)
(-1.4679669854490653, 0.14263895620529152)
>>> stats.ttest_ind(rvs1, rvs5, equal_var = False)
(-0.94365973617132992, 0.34744170334794122)

scipy.stats.mstats.ttest_onesamp(a, popmean, axis=0)
Calculates the T-test for the mean of ONE group of scores.

This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent
observations a is equal to the given population mean, popmean.

Parameters a : array_like
sample observation

popmean : float or array_like
expected value in null hypothesis, if array_like than it must have the same
shape as a excluding the axis dimension

axis : int or None, optional
Axis along which to compute test. If None, compute over the whole array
a.Returns statistic : float or array
t-statistic

pvalue : float or array
two-tailed p-value

Examples

>>> from scipy import stats

>>> np.random.seed(7654567) # fix seed to get the same result
>>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2))

Test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the
second case and don’t reject it in the first case.

>>> stats.ttest_1samp(rvs,5.0)
(array([-0.68014479, -0.04323899]), array([0.49961383, 0.96568674]))
>>> stats.ttest_1samp(rvs,0.0)
(array([2.77025808, 4.11038784]), array([0.00789095, 0.00014999]))

Examples using axis and non-scalar dimension for population mean.

>>> stats.ttest_1samp(rvs,[5.0,0.0])
(array([-0.68014479, 4.11038784]), array([4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1)
(array([-0.68014479, 4.11038784]), array([4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs,[[5.0],[0.0]])

1548 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

(array([[-0.68014479, -0.04323899],
[2.77025808, 4.11038784]]), array([[4.99613833e-01, 9.65686743e-01],
[7.89094663e-03, 1.49986458e-04]]))

scipy.stats.mstats.ttest_rel(a, b, axis=0)
Calculates the T-test on TWO RELATED samples of scores, a and b.

This is a two-sided test for the null hypothesis that 2 related or repeated samples have identical average (ex-
pected) values.

Parameters a, b : array_like
The arrays must have the same shape.

axis : int or None, optional
Axis along which to compute test. If None, compute over the whole arrays,
a, and b.Returns statistic : float or array
t-statistic

pvalue : float or array
two-tailed p-value

Notes

Examples for the use are scores of the same set of student in different exams, or repeated sampling from the
same units. The test measures whether the average score differs significantly across samples (e.g. exams). If
we observe a large p-value, for example greater than 0.05 or 0.1 then we cannot reject the null hypothesis of
identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%, then we reject the
null hypothesis of equal averages. Small p-values are associated with large t-statistics.

References

http://en.wikipedia.org/wiki/T-test#Dependent_t-test

Examples

>>> from scipy import stats
>>> np.random.seed(12345678) # fix random seed to get same numbers

>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) +
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs2)
(0.24101764965300962, 0.80964043445811562)
>>> rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) +
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs3)
(-3.9995108708727933, 7.3082402191726459e-005)

scipy.stats.mstats.tvar(a, limits=None, inclusive=(True, True))
Compute the trimmed variance

This function computes the sample variance of an array of values, while ignoring values which are outside of
given limits.

Parameters a : array_like
Array of values.

limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the upper
limit will be ignored. When limits is None, then all values are used. Either

5.35. Statistical functions for masked arrays (scipy.stats.mstats) 1549

http://en.wikipedia.org/wiki/T-test#Dependent_t-test

SciPy Reference Guide, Release 0.16.0

of the limit values in the tuple can also be None representing a half-open
interval. The default value is None.

inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags determine
whether values exactly equal to the lower or upper limits are included. The
default value is (True, True).Returns tvar : float
Trimmed variance.

Notes

tvar computes the unbiased sample variance, i.e. it uses a correction factor n / (n - 1).

scipy.stats.mstats.variation(a, axis=0)
Computes the coefficient of variation, the ratio of the biased standard deviation to the mean.

Parameters a : array_like
Input array.

axis : int or None, optional
Axis along which to calculate the coefficient of variation. Default is 0. If
None, compute over the whole array a.

References

[R350]

scipy.stats.mstats.winsorize(a, limits=None, inclusive=(True, True), inplace=False,
axis=None)

Returns a Winsorized version of the input array.

The (limits[0])th lowest values are set to the (limits[0])th percentile, and the (limits[1])th highest values are set
to the (1 - limits[1])th percentile. Masked values are skipped.

Parameters a : sequence
Input array.

limits : {None, tuple of float}, optional
Tuple of the percentages to cut on each side of the array, with respect to the
number of unmasked data, as floats between 0. and 1. Noting n the number
of unmasked data before trimming, the (n*limits[0])th smallest data and the
(n*limits[1])th largest data are masked, and the total number of unmasked
data after trimming is n*(1.-sum(limits)) The value of one limit can be set
to None to indicate an open interval.

inclusive : {(True, True) tuple}, optional
Tuple indicating whether the number of data being masked on each side
should be rounded (True) or truncated (False).

inplace : {False, True}, optional
Whether to winsorize in place (True) or to use a copy (False)

axis : {None, int}, optional
Axis along which to trim. If None, the whole array is trimmed, but its shape
is maintained.

Notes

This function is applied to reduce the effect of possibly spurious outliers by limiting the extreme values.

scipy.stats.mstats.zmap(scores, compare, axis=0, ddof=0)
Calculates the relative z-scores.

Returns an array of z-scores, i.e., scores that are standardized to zero mean and unit variance, where mean and
variance are calculated from the comparison array.

1550 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters scores : array_like
The input for which z-scores are calculated.

compare : array_like
The input from which the mean and standard deviation of the normalization
are taken; assumed to have the same dimension as scores.

axis : int or None, optional
Axis over which mean and variance of compare are calculated. Default is
0. If None, compute over the whole array scores.

ddof : int, optional
Degrees of freedom correction in the calculation of the standard deviation.
Default is 0.Returns zscore : array_like
Z-scores, in the same shape as scores.

Notes

This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray
instead of asarray for parameters).

Examples

>>> from scipy.stats import zmap
>>> a = [0.5, 2.0, 2.5, 3]
>>> b = [0, 1, 2, 3, 4]
>>> zmap(a, b)
array([-1.06066017, 0. , 0.35355339, 0.70710678])

scipy.stats.mstats.zscore(a, axis=0, ddof=0)
Calculates the z score of each value in the sample, relative to the sample mean and standard deviation.

Parameters a : array_like
An array like object containing the sample data.

axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the whole
array a.

ddof : int, optional
Degrees of freedom correction in the calculation of the standard deviation.
Default is 0.Returns zscore : array_like
The z-scores, standardized by mean and standard deviation of input array a.

Notes

This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray
instead of asarray for parameters).

Examples

>>> a = np.array([0.7972, 0.0767, 0.4383, 0.7866, 0.8091, 0.1954,
... 0.6307, 0.6599, 0.1065, 0.0508])
>>> from scipy import stats
>>> stats.zscore(a)
array([1.1273, -1.247 , -0.0552, 1.0923, 1.1664, -0.8559, 0.5786,

0.6748, -1.1488, -1.3324])

Computing along a specified axis, using n-1 degrees of freedom (ddof=1) to calculate the standard deviation:

5.35. Statistical functions for masked arrays (scipy.stats.mstats) 1551

SciPy Reference Guide, Release 0.16.0

>>> b = np.array([[0.3148, 0.0478, 0.6243, 0.4608],
... [0.7149, 0.0775, 0.6072, 0.9656],
... [0.6341, 0.1403, 0.9759, 0.4064],
... [0.5918, 0.6948, 0.904 , 0.3721],
... [0.0921, 0.2481, 0.1188, 0.1366]])
>>> stats.zscore(b, axis=1, ddof=1)
array([[-0.19264823, -1.28415119, 1.07259584, 0.40420358],

[0.33048416, -1.37380874, 0.04251374, 1.00081084],
[0.26796377, -1.12598418, 1.23283094, -0.37481053],
[-0.22095197, 0.24468594, 1.19042819, -1.21416216],
[-0.82780366, 1.4457416 , -0.43867764, -0.1792603]])

5.36 C/C++ integration (scipy.weave)

Warning: This documentation is work-in-progress and unorganized.

5.36.1 C/C++ integration

NOTE: this module is deprecated and will be removed from Scipy before the 1.0 release – use the standalone weave
package (‘https://github.com/scipy/weave‘_) instead.

inline – a function for including C/C++ code within Python blitz – a function for compiling Numeric expressions
to C++ ext_tools – a module that helps construct C/C++ extension modules. accelerate – a module that inline
accelerates Python functions

Note: On Linux one needs to have the Python development headers installed in order to be able to compile things
with the weave module. Since this is a runtime dependency these headers (typically in a pythonX.Y-dev package) are
not always installed when installing scipy.

inline(code[, arg_names, local_dict, ...]) Inline C/C++ code within Python scripts.
blitz(expr[, local_dict, global_dict, ...])
ext_tools
accelerate

scipy.weave.inline(code, arg_names=[], local_dict=None, global_dict=None, force=0, com-
piler=’‘, verbose=0, support_code=None, headers=[], customize=None,
type_converters=None, auto_downcast=1, newarr_converter=0, **kw)

Inline C/C++ code within Python scripts.

inline() compiles and executes C/C++ code on the fly. Variables in the local and global Python scope are
also available in the C/C++ code. Values are passed to the C/C++ code by assignment much like variables
passed are passed into a standard Python function. Values are returned from the C/C++ code through a special
argument called return_val. Also, the contents of mutable objects can be changed within the C/C++ code and
the changes remain after the C code exits and returns to Python.

inline has quite a few options as listed below. Also, the keyword arguments for distutils extension modules are
accepted to specify extra information needed for compiling.

Parameters code : string

1552 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

A string of valid C++ code. It should not specify a return statement. Instead
it should assign results that need to be returned to Python in the return_val.

arg_names : [str], optional
A list of Python variable names that should be transferred from Python into
the C/C++ code. It defaults to an empty string.

local_dict : dict, optional
If specified, it is a dictionary of values that should be used as the local scope
for the C/C++ code. If local_dict is not specified the local dictionary of the
calling function is used.

global_dict : dict, optional
If specified, it is a dictionary of values that should be used as the global
scope for the C/C++ code. If global_dict is not specified, the global dictio-
nary of the calling function is used.

force : {0, 1}, optional
If 1, the C++ code is compiled every time inline is called. This is really only
useful for debugging, and probably only useful if your editing support_code
a lot.

compiler : str, optional
The name of compiler to use when compiling. On windows, it understands
‘msvc’ and ‘gcc’ as well as all the compiler names understood by distutils.
On Unix, it’ll only understand the values understood by distutils. (I should
add ‘gcc’ though to this).
On windows, the compiler defaults to the Microsoft C++ compiler. If this
isn’t available, it looks for mingw32 (the gcc compiler).
On Unix, it’ll probably use the same compiler that was used when compil-
ing Python. Cygwin’s behavior should be similar.

verbose : {0,1,2}, optional
Specifies how much information is printed during the compile phase of in-
lining code. 0 is silent (except on windows with msvc where it still prints
some garbage). 1 informs you when compiling starts, finishes, and how
long it took. 2 prints out the command lines for the compilation process
and can be useful if your having problems getting code to work. Its handy
for finding the name of the .cpp file if you need to examine it. verbose has
no effect if the compilation isn’t necessary.

support_code : str, optional
A string of valid C++ code declaring extra code that might be needed by
your compiled function. This could be declarations of functions, classes, or
structures.

headers : [str], optional
A list of strings specifying header files to use when compiling the code.
The list might look like ["<vector>","’my_header’"]. Note that
the header strings need to be in a form than can be pasted at the end of a
#include statement in the C++ code.

customize : base_info.custom_info, optional
An alternative way to specify support_code, headers, etc. needed by the
function. See scipy.weave.base_info for more details. (not sure
this’ll be used much).

type_converters : [type converters], optional
These guys are what convert Python data types to C/C++ data types. If
you’d like to use a different set of type conversions than the default, specify
them here. Look in the type conversions section of the main documentation
for examples.

auto_downcast : {1,0}, optional

5.36. C/C++ integration (scipy.weave) 1553

SciPy Reference Guide, Release 0.16.0

This only affects functions that have numpy arrays as input variables. Set-
ting this to 1 will cause all floating point values to be cast as float instead of
double if all the Numeric arrays are of type float. If even one of the arrays
has type double or double complex, all variables maintain their standard
types.

newarr_converter : int, optional
Unused.Other Parameters

Relevant :mod:‘distutils‘ keywords. These are duplicated from Greg Ward’s
:class:‘distutils.extension.Extension‘ class for convenience:
sources : [string]

List of source filenames, relative to the distribution root (where the setup
script lives), in Unix form (slash-separated) for portability. Source files may
be C, C++, SWIG (.i), platform-specific resource files, or whatever else is
recognized by the “build_ext” command as source for a Python extension.

Note: The module_path file is always appended to the front of this list

include_dirs : [string]
List of directories to search for C/C++ header files (in Unix form for porta-
bility).

define_macros : [(name
List of macros to define; each macro is defined using a 2-tuple, where
‘value’ is either the string to define it to or None to define it without a
particular value (equivalent of “#define FOO” in source or -DFOO on Unix
C compiler command line).

undef_macros : [string]
List of macros to undefine explicitly.

library_dirs : [string]
List of directories to search for C/C++ libraries at link time.

libraries : [string]
List of library names (not filenames or paths) to link against.

runtime_library_dirs : [string]
List of directories to search for C/C++ libraries at run time (for shared ex-
tensions, this is when the extension is loaded).

extra_objects : [string]
List of extra files to link with (e.g. object files not implied by ‘sources’,
static libraries that must be explicitly specified, binary resource files, etc.)

extra_compile_args : [string]
Any extra platform- and compiler-specific information to use when compil-
ing the source files in ‘sources’. For platforms and compilers where “com-
mand line” makes sense, this is typically a list of command-line arguments,
but for other platforms it could be anything.

extra_link_args : [string]
Any extra platform- and compiler-specific information to use when linking
object files together to create the extension (or to create a new static Python
interpreter). Similar interpretation as for ‘extra_compile_args’.

export_symbols : [string]
List of symbols to be exported from a shared extension. Not used on all
platforms, and not generally necessary for Python extensions, which typi-
cally export exactly one symbol: “init” + extension_name.

swig_opts : [string]
Any extra options to pass to SWIG if a source file has the .i extension.

depends : [string]
List of files that the extension depends on.

1554 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

language : string
Extension language (i.e. “c”, “c++”, “objc”). Will be detected from the
source extensions if not provided.

See also:

distutils.extension.Extension
Describes additional parameters.

scipy.weave.blitz(expr, local_dict=None, global_dict=None, check_size=1, verbose=0, **kw)

Functions

assign_variable_types(variables[, ...])
downcast(var_specs) Cast python scalars down to most common type of arrays used.
format_error_msg(errors)
generate_file_name(module_name, module_location)
generate_module(module_string, module_file) generate the source code file. Only overwrite
indent(st, spaces)

Classes

ext_function(name, code_block, args[, ...]) Methods
ext_function_from_specs(name, code_block, ...) Methods
ext_module(name[, compiler]) Methods

5.36. C/C++ integration (scipy.weave) 1555

SciPy Reference Guide, Release 0.16.0

1556 Chapter 5. Reference

BIBLIOGRAPHY

[WPR] http://en.wikipedia.org/wiki/Romberg’s_method

[NPT] http://docs.scipy.org/doc/numpy/reference/generated/numpy.trapz.html

[KK] D.A. Knoll and D.E. Keyes, “Jacobian-free Newton-Krylov methods”, J. Comp. Phys. 193, 357 (2003).

[PP] PETSc http://www.mcs.anl.gov/petsc/ and its Python bindings http://code.google.com/p/petsc4py/

[AMG] PyAMG (algebraic multigrid preconditioners/solvers) http://code.google.com/p/pyamg/

[CT65] Cooley, James W., and John W. Tukey, 1965, “An algorithm for the machine calculation of complex Fourier
series,” Math. Comput. 19: 297-301.

[NR] Press, W., Teukolsky, S., Vetterline, W.T., and Flannery, B.P., 2007, Numerical Recipes: The Art of Scientific
Computing, ch. 12-13. Cambridge Univ. Press, Cambridge, UK.

[Mak] J. Makhoul, 1980, ‘A Fast Cosine Transform in One and Two Dimensions’, IEEE Transactions on acoustics,
speech and signal processing vol. 28(1), pp. 27-34, http://dx.doi.org/10.1109/TASSP.1980.1163351

[WPW] http://en.wikipedia.org/wiki/Window_function

[WPC] http://en.wikipedia.org/wiki/Discrete_cosine_transform

[WPS] http://en.wikipedia.org/wiki/Discrete_sine_transform

[R1] “Statistics toolbox.” API Reference Documentation. The MathWorks.
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/. Accessed October 1, 2007.

[R2] “Hierarchical clustering.” API Reference Documentation. The Wolfram Research, Inc.
http://reference.wolfram.com/mathematica/HierarchicalClustering/tutorial/ HierarchicalClustering.html. Ac-
cessed October 1, 2007.

[R3] Gower, JC and Ross, GJS. “Minimum Spanning Trees and Single Linkage Cluster Analysis.” Applied Statistics.
18(1): pp. 54–64. 1969.

[R4] Ward Jr, JH. “Hierarchical grouping to optimize an objective function.” Journal of the American Statistical
Association. 58(301): pp. 236–44. 1963.

[R5] Johnson, SC. “Hierarchical clustering schemes.” Psychometrika. 32(2): pp. 241–54. 1966.

[R6] Sneath, PH and Sokal, RR. “Numerical taxonomy.” Nature. 193: pp. 855–60. 1962.

[R7] Batagelj, V. “Comparing resemblance measures.” Journal of Classification. 12: pp. 73–90. 1995.

[R8] Sokal, RR and Michener, CD. “A statistical method for evaluating systematic relationships.” Scientific Bulletins.
38(22): pp. 1409–38. 1958.

[R9] Edelbrock, C. “Mixture model tests of hierarchical clustering algorithms: the problem of classifying everybody.”
Multivariate Behavioral Research. 14: pp. 367–84. 1979.

1557

http://en.wikipedia.org/wiki/Romberg's_method
http://docs.scipy.org/doc/numpy/reference/generated/numpy.trapz.html
http://www.mcs.anl.gov/petsc/
http://code.google.com/p/petsc4py/
http://code.google.com/p/pyamg/
http://dx.doi.org/10.1109/TASSP.1980.1163351
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Discrete_cosine_transform
http://en.wikipedia.org/wiki/Discrete_sine_transform
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/
http://reference.wolfram.com/mathematica/HierarchicalClustering/tutorial/

SciPy Reference Guide, Release 0.16.0

[CODATA2010] CODATA Recommended Values of the Fundamental Physical Constants 2010.

http://physics.nist.gov/cuu/Constants/index.html

[R36] ‘A Fast Cosine Transform in One and Two Dimensions’, by J. Makhoul, IEEE Transactions on acoustics,
speech and signal processing vol. 28(1), pp. 27-34, http://dx.doi.org/10.1109/TASSP.1980.1163351 (1980).

[R37] Wikipedia, “Discrete cosine transform”, http://en.wikipedia.org/wiki/Discrete_cosine_transform

[R38] Wikipedia, “Discrete sine transform”, http://en.wikipedia.org/wiki/Discrete_sine_transform

[R39] ‘Romberg’s method’ http://en.wikipedia.org/wiki/Romberg%27s_method

[HNW93] E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary Differential Equations i. Nonstiff Problems. 2nd
edition. Springer Series in Computational Mathematics, Springer-Verlag (1993)

[R44] Krogh, “Efficient Algorithms for Polynomial Interpolation and Numerical Differentiation”, 1970.

[R40] http://en.wikipedia.org/wiki/Bernstein_polynomial

[R41] Kenneth I. Joy, Bernstein polynomials, http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-
Polynomials.pdf

[R42] E. H. Doha, A. H. Bhrawy, and M. A. Saker, Boundary Value Problems, vol 2011, article ID 829546,
doi:10.1155/2011/829543

[R45] http://www.qhull.org/

[R43] http://www.qhull.org/

[CT] See, for example, P. Alfeld, ‘’A trivariate Clough-Tocher scheme for tetrahedral data’‘. Computer Aided Ge-
ometric Design, 1, 169 (1984); G. Farin, ‘’Triangular Bernstein-Bezier patches’‘. Computer Aided Geometric
Design, 3, 83 (1986).

[Nielson83] G. Nielson, ‘’A method for interpolating scattered data based upon a minimum norm network’‘. Math.
Comp., 40, 253 (1983).

[Renka84] R. J. Renka and A. K. Cline. ‘’A Triangle-based C1 interpolation method.’‘, Rocky Mountain J. Math.,
14, 223 (1984).

[R46] Python package regulargrid by Johannes Buchner, see https://pypi.python.org/pypi/regulargrid/

[R47] Trilinear interpolation. (2013, January 17). In Wikipedia, The Free Encyclopedia. Retrieved 27 Feb 2013
01:28. http://en.wikipedia.org/w/index.php?title=Trilinear_interpolation&oldid=533448871

[R48] Weiser, Alan, and Sergio E. Zarantonello. “A note on piecewise linear and multilinear table interpolation
in many dimensions.” MATH. COMPUT. 50.181 (1988): 189-196. http://www.ams.org/journals/mcom/1988-50-
181/S0025-5718-1988-0917826-0/S0025-5718-1988-0917826-0.pdf

[R66] P. Dierckx, “An algorithm for smoothing, differentiation and integration of experimental data using spline
functions”, J.Comp.Appl.Maths 1 (1975) 165-184.

[R67] P. Dierckx, “A fast algorithm for smoothing data on a rectangular grid while using spline functions”, SIAM
J.Numer.Anal. 19 (1982) 1286-1304.

[R68] P. Dierckx, “An improved algorithm for curve fitting with spline functions”, report tw54, Dept. Computer
Science,K.U. Leuven, 1981.

[R69] P. Dierckx, “Curve and surface fitting with splines”, Monographs on Numerical Analysis, Oxford University
Press, 1993.

[R63] P. Dierckx, “Algorithms for smoothing data with periodic and parametric splines, Computer Graphics and
Image Processing”, 20 (1982) 171-184.

[R64] P. Dierckx, “Algorithms for smoothing data with periodic and parametric splines”, report tw55, Dept. Com-
puter Science, K.U.Leuven, 1981.

1558 Bibliography

http://physics.nist.gov/cuu/Constants/index.html
http://dx.doi.org/10.1109/TASSP.1980.1163351
http://en.wikipedia.org/wiki/Discrete_cosine_transform
http://en.wikipedia.org/wiki/Discrete_sine_transform
http://en.wikipedia.org/wiki/Romberg%27s_method
http://en.wikipedia.org/wiki/Bernstein_polynomial
http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf
http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf
http://www.qhull.org/
http://www.qhull.org/
https://pypi.python.org/pypi/regulargrid/
http://en.wikipedia.org/w/index.php?title=Trilinear_interpolation&oldid=533448871
http://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917826-0/S0025-5718-1988-0917826-0.pdf
http://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917826-0/S0025-5718-1988-0917826-0.pdf

SciPy Reference Guide, Release 0.16.0

[R65] P. Dierckx, “Curve and surface fitting with splines”, Monographs on Numerical Analysis, Oxford University
Press, 1993.

[R58] C. de Boor, “On calculating with b-splines”, J. Approximation Theory, 6, p.50-62, 1972.

[R59] M.G. Cox, “The numerical evaluation of b-splines”, J. Inst. Maths Applics, 10, p.134-149, 1972.

[R60] P. Dierckx, “Curve and surface fitting with splines”, Monographs on Numerical Analysis, Oxford University
Press, 1993.

[R61] P.W. Gaffney, The calculation of indefinite integrals of b-splines”, J. Inst. Maths Applics, 17, p.37-41, 1976.

[R62] P. Dierckx, “Curve and surface fitting with splines”, Monographs on Numerical Analysis, Oxford University
Press, 1993.

[R70] C. de Boor, “On calculating with b-splines”, J. Approximation Theory, 6, p.50-62, 1972.

[R71] M.G. Cox, “The numerical evaluation of b-splines”, J. Inst. Maths Applics, 10, p.134-149, 1972.

[R72] P. Dierckx, “Curve and surface fitting with splines”, Monographs on Numerical Analysis, Oxford University
Press, 1993.

[R55] de Boor C : On calculating with b-splines, J. Approximation Theory 6 (1972) 50-62.

[R56] Cox M.G. : The numerical evaluation of b-splines, J. Inst. Maths applics 10 (1972) 134-149.

[R57] Dierckx P. : Curve and surface fitting with splines, Monographs on Numerical Analysis, Oxford University
Press, 1993.

[R52] Dierckx P.:An algorithm for surface fitting with spline functions Ima J. Numer. Anal. 1 (1981) 267-283.

[R53] Dierckx P.:An algorithm for surface fitting with spline functions report tw50, Dept. Computer Sci-
ence,K.U.Leuven, 1980.

[R54] Dierckx P.:Curve and surface fitting with splines, Monographs on Numerical Analysis, Oxford University
Press, 1993.

[R49] Dierckx P. : An algorithm for surface fitting with spline functions Ima J. Numer. Anal. 1 (1981) 267-283.

[R50] Dierckx P. : An algorithm for surface fitting with spline functions report tw50, Dept. Computer Sci-
ence,K.U.Leuven, 1980.

[R51] Dierckx P. : Curve and surface fitting with splines, Monographs on Numerical Analysis, Oxford University
Press, 1993.

[R86] G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore, MD, Johns Hopkins University Press, 1985,
pg. 15

[R87] Peter H. Schonemann, “A generalized solution of the orthogonal Procrustes problem”, Psychometrica – Vol.
31, No. 1, March, 1996.

[R88] R. A. Horn and C. R. Johnson, “Matrix Analysis”, Cambridge University Press, 1985.

[R89] N. J. Higham, “Functions of Matrices: Theory and Computation”, SIAM, 2008.

[R96] Golub, G. H. & Van Loan, C. F. Matrix Computations, 3rd Ed. (Johns Hopkins University Press, 1996).

[R97] Daniel, J. W., Gragg, W. B., Kaufman, L. & Stewart, G. W. Reorthogonalization and stable algorithms for
updating the Gram-Schmidt QR factorization. Math. Comput. 30, 772-795 (1976).

[R98] Reichel, L. & Gragg, W. B. Algorithm 686: FORTRAN Subroutines for Updating the QR Decomposition.
ACM Trans. Math. Softw. 16, 369-377 (1990).

[R90] Golub, G. H. & Van Loan, C. F. Matrix Computations, 3rd Ed. (Johns Hopkins University Press, 1996).

[R91] Daniel, J. W., Gragg, W. B., Kaufman, L. & Stewart, G. W. Reorthogonalization and stable algorithms for
updating the Gram-Schmidt QR factorization. Math. Comput. 30, 772-795 (1976).

Bibliography 1559

SciPy Reference Guide, Release 0.16.0

[R92] Reichel, L. & Gragg, W. B. Algorithm 686: FORTRAN Subroutines for Updating the QR Decomposition.
ACM Trans. Math. Softw. 16, 369-377 (1990).

[R93] Golub, G. H. & Van Loan, C. F. Matrix Computations, 3rd Ed. (Johns Hopkins University Press, 1996).

[R94] Daniel, J. W., Gragg, W. B., Kaufman, L. & Stewart, G. W. Reorthogonalization and stable algorithms for
updating the Gram-Schmidt QR factorization. Math. Comput. 30, 772-795 (1976).

[R95] Reichel, L. & Gragg, W. B. Algorithm 686: FORTRAN Subroutines for Updating the QR Decomposition.
ACM Trans. Math. Softw. 16, 369-377 (1990).

[R75] Awad H. Al-Mohy and Nicholas J. Higham (2009) “A New Scaling and Squaring Algorithm for the Matrix
Exponential.” SIAM Journal on Matrix Analysis and Applications. 31 (3). pp. 970-989. ISSN 1095-7162

[R83] Awad H. Al-Mohy and Nicholas J. Higham (2012) “Improved Inverse Scaling and Squaring Algorithms for
the Matrix Logarithm.” SIAM Journal on Scientific Computing, 34 (4). C152-C169. ISSN 1095-7197

[R84] Nicholas J. Higham (2008) “Functions of Matrices: Theory and Computation” ISBN 978-0-898716-46-7

[R85] Nicholas J. Higham and Lijing lin (2011) “A Schur-Pade Algorithm for Fractional Powers of a Matrix.” SIAM
Journal on Matrix Analysis and Applications, 32 (3). pp. 1056-1078. ISSN 0895-4798

[R101] Edvin Deadman, Nicholas J. Higham, Rui Ralha (2013) “Blocked Schur Algorithms for Computing the
Matrix Square Root, Lecture Notes in Computer Science, 7782. pp. 171-182.

[R78] Gene H. Golub, Charles F. van Loan, Matrix Computations 4th ed.

[R76] Awad H. Al-Mohy and Nicholas J. Higham (2009) Computing the Frechet Derivative of the Matrix Exponen-
tial, with an application to Condition Number Estimation. SIAM Journal On Matrix Analysis and Applications.,
30 (4). pp. 1639-1657. ISSN 1095-7162

[R77] Nicholas J. Higham and Lijing lin (2011) “A Schur-Pade Algorithm for Fractional Powers of a Matrix.” SIAM
Journal on Matrix Analysis and Applications, 32 (3). pp. 1056-1078. ISSN 0895-4798

[R99] Hamilton, James D. Time Series Analysis, Princeton: Princeton University Press, 1994. 265. Print.
http://www.scribd.com/doc/20577138/Hamilton-1994-Time-Series-Analysis

[R100] Gajic, Z., and M.T.J. Qureshi. 2008. Lyapunov Matrix Equation in System Stability and Control. Dover Books
on Engineering Series. Dover Publications.

[R73] R. A. Horn & C. R. Johnson, Matrix Analysis. Cambridge, UK: Cambridge University Press, 1999, pp. 146-7.

[R74] “DFT matrix”, http://en.wikipedia.org/wiki/DFT_matrix

[R81] P. H. Leslie, On the use of matrices in certain population mathematics, Biometrika, Vol. 33, No. 3, 183–212
(Nov. 1945)

[R82] P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, Vol. 35, No.
3/4, 213–245 (Dec. 1948)

[R79] “Pascal matrix”, http://en.wikipedia.org/wiki/Pascal_matrix

[R80] Cohen, A. M., “The inverse of a Pascal matrix”, Mathematical Gazette, 59(408), pp. 111-112, 1975.

[R439] P.G. Martinsson, V. Rokhlin, Y. Shkolnisky, M. Tygert. “ID: a software package for low-rank approximation
of matrices via interpolative decompositions, version 0.2.” http://cims.nyu.edu/~tygert/id_doc.pdf.

[R440] H. Cheng, Z. Gimbutas, P.G. Martinsson, V. Rokhlin. “On the compression of low rank matrices.” SIAM J.
Sci. Comput. 26 (4): 1389–1404, 2005. doi:10.1137/030602678.

[R441] E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, M. Tygert. “Randomized algorithms for the
low-rank approximation of matrices.” Proc. Natl. Acad. Sci. U.S.A. 104 (51): 20167–20172, 2007.
doi:10.1073/pnas.0709640104.

1560 Bibliography

http://www.scribd.com/doc/20577138/Hamilton-1994-Time-Series-Analysis
http://en.wikipedia.org/wiki/DFT_matrix
http://en.wikipedia.org/wiki/Pascal_matrix
http://cims.nyu.edu/~tygert/id_doc.pdf
http://dx.doi.org/10.1137/030602678
http://dx.doi.org/10.1073/pnas.0709640104

SciPy Reference Guide, Release 0.16.0

[R442] P.G. Martinsson, V. Rokhlin, M. Tygert. “A randomized algorithm for the decomposition of matrices.” Appl.
Comput. Harmon. Anal. 30 (1): 47–68, 2011. doi:10.1016/j.acha.2010.02.003.

[R443] F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert. “A fast randomized algorithm for the approximation of matri-
ces.” Appl. Comput. Harmon. Anal. 25 (3): 335–366, 2008. doi:10.1016/j.acha.2007.12.002.

[R102] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777

[R103] http://www.richardhartersworld.com/cri/2001/slidingmin.html

[R104] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777

[R105] http://www.richardhartersworld.com/cri/2001/slidingmin.html

[R106] A.X. Falcao, J. Stolfi and R. de Alencar Lotufo, “The image foresting transform: theory, algorithms, and
applications”, Pattern Analysis and Machine Intelligence, vol. 26, pp. 19-29, 2004.

[R107] http://en.wikipedia.org/wiki/Closing_%28morphology%29

[R108] http://en.wikipedia.org/wiki/Mathematical_morphology

[R109] http://en.wikipedia.org/wiki/Dilation_%28morphology%29

[R110] http://en.wikipedia.org/wiki/Mathematical_morphology

[R111] http://en.wikipedia.org/wiki/Erosion_%28morphology%29

[R112] http://en.wikipedia.org/wiki/Mathematical_morphology

[R113] http://en.wikipedia.org/wiki/Mathematical_morphology

[R114] http://en.wikipedia.org/wiki/Hit-or-miss_transform

[R115] http://en.wikipedia.org/wiki/Opening_%28morphology%29

[R116] http://en.wikipedia.org/wiki/Mathematical_morphology

[R117] http://cmm.ensmp.fr/~serra/cours/pdf/en/ch6en.pdf, slide 15.

[R118] http://www.qi.tnw.tudelft.nl/Courses/FIP/noframes/fip-Morpholo.html#Heading102

[R119] http://en.wikipedia.org/wiki/Mathematical_morphology

[R120] http://en.wikipedia.org/wiki/Dilation_%28morphology%29

[R121] http://en.wikipedia.org/wiki/Mathematical_morphology

[R122] http://en.wikipedia.org/wiki/Erosion_%28morphology%29

[R123] http://en.wikipedia.org/wiki/Mathematical_morphology

[R124] http://en.wikipedia.org/wiki/Mathematical_morphology

[R125] http://en.wikipedia.org/wiki/Mathematical_morphology

[R468] P. T. Boggs and J. E. Rogers, “Orthogonal Distance Regression,” in “Statistical analysis of measurement error
models and applications: proceedings of the AMS-IMS-SIAM joint summer research conference held June 10-16,
1989,” Contemporary Mathematics, vol. 112, pg. 186, 1990.

[R142] Nelder, J A, and R Mead. 1965. A Simplex Method for Function Minimization. The Computer Journal 7:
308-13.

[R143] Wright M H. 1996. Direct search methods: Once scorned, now respectable, in Numerical Analysis 1995:
Proceedings of the 1995 Dundee Biennial Conference in Numerical Analysis (Eds. D F Griffiths and G A Watson).
Addison Wesley Longman, Harlow, UK. 191-208.

[R144] Powell, M J D. 1964. An efficient method for finding the minimum of a function of several variables without
calculating derivatives. The Computer Journal 7: 155-162.

Bibliography 1561

http://dx.doi.org/10.1016/j.acha.2010.02.003
http://dx.doi.org/10.1016/j.acha.2007.12.002
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777
http://www.richardhartersworld.com/cri/2001/slidingmin.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777
http://www.richardhartersworld.com/cri/2001/slidingmin.html
http://en.wikipedia.org/wiki/Closing_%28morphology%29
http://en.wikipedia.org/wiki/Mathematical_morphology
http://en.wikipedia.org/wiki/Dilation_%28morphology%29
http://en.wikipedia.org/wiki/Mathematical_morphology
http://en.wikipedia.org/wiki/Erosion_%28morphology%29
http://en.wikipedia.org/wiki/Mathematical_morphology
http://en.wikipedia.org/wiki/Mathematical_morphology
http://en.wikipedia.org/wiki/Hit-or-miss_transform
http://en.wikipedia.org/wiki/Opening_%28morphology%29
http://en.wikipedia.org/wiki/Mathematical_morphology
http://cmm.ensmp.fr/~serra/cours/pdf/en/ch6en.pdf
http://www.qi.tnw.tudelft.nl/Courses/FIP/noframes/fip-Morpholo.html#Heading102
http://en.wikipedia.org/wiki/Mathematical_morphology
http://en.wikipedia.org/wiki/Dilation_%28morphology%29
http://en.wikipedia.org/wiki/Mathematical_morphology
http://en.wikipedia.org/wiki/Erosion_%28morphology%29
http://en.wikipedia.org/wiki/Mathematical_morphology
http://en.wikipedia.org/wiki/Mathematical_morphology
http://en.wikipedia.org/wiki/Mathematical_morphology

SciPy Reference Guide, Release 0.16.0

[R145] Press W, S A Teukolsky, W T Vetterling and B P Flannery. Numerical Recipes (any edition), Cambridge
University Press.

[R146] Nocedal, J, and S J Wright. 2006. Numerical Optimization. Springer New York.

[R147] Byrd, R H and P Lu and J. Nocedal. 1995. A Limited Memory Algorithm for Bound Constrained Optimiza-
tion. SIAM Journal on Scientific and Statistical Computing 16 (5): 1190-1208.

[R148] Zhu, C and R H Byrd and J Nocedal. 1997. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for
large scale bound constrained optimization. ACM Transactions on Mathematical Software 23 (4): 550-560.

[R149] Nash, S G. Newton-Type Minimization Via the Lanczos Method. 1984. SIAM Journal of Numerical Analysis
21: 770-778.

[R150] Powell, M J D. A direct search optimization method that models the objective and constraint functions by
linear interpolation. 1994. Advances in Optimization and Numerical Analysis, eds. S. Gomez and J-P Hennart,
Kluwer Academic (Dordrecht), 51-67.

[R136] Nelder, J.A. and Mead, R. (1965), “A simplex method for function minimization”, The Computer Journal, 7,
pp. 308-313

[R137] Wright, M.H. (1996), “Direct Search Methods: Once Scorned, Now Respectable”, in Numerical Analysis
1995, Proceedings of the 1995 Dundee Biennial Conference in Numerical Analysis, D.F. Griffiths and G.A. Wat-
son (Eds.), Addison Wesley Longman, Harlow, UK, pp. 191-208.

[R138] Wright & Nocedal, “Numerical Optimization”, 1999, pp. 120-122.

[R133] Storn, R and Price, K, Differential Evolution - a Simple and Efficient Heuristic for Global Optimization over
Continuous Spaces, Journal of Global Optimization, 1997, 11, 341 - 359.

[R134] http://www1.icsi.berkeley.edu/~storn/code.html

[R135] http://en.wikipedia.org/wiki/Differential_evolution

[R127] Wales, David J. 2003, Energy Landscapes, Cambridge University Press, Cambridge, UK.

[R128] Wales, D J, and Doye J P K, Global Optimization by Basin-Hopping and the Lowest Energy Structures of
Lennard-Jones Clusters Containing up to 110 Atoms. Journal of Physical Chemistry A, 1997, 101, 5111.

[R129] Li, Z. and Scheraga, H. A., Monte Carlo-minimization approach to the multiple-minima problem in protein
folding, Proc. Natl. Acad. Sci. USA, 1987, 84, 6611.

[R130] Wales, D. J. and Scheraga, H. A., Global optimization of clusters, crystals, and biomolecules, Science, 1999,
285, 1368.

[R133] Storn, R and Price, K, Differential Evolution - a Simple and Efficient Heuristic for Global Optimization over
Continuous Spaces, Journal of Global Optimization, 1997, 11, 341 - 359.

[R134] http://www1.icsi.berkeley.edu/~storn/code.html

[R135] http://en.wikipedia.org/wiki/Differential_evolution

[Brent1973] Brent, R. P., Algorithms for Minimization Without Derivatives. Englewood Cliffs, NJ: Prentice-Hall,
1973. Ch. 3-4.

[PressEtal1992] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FOR-
TRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 352-355,
1992. Section 9.3: “Van Wijngaarden-Dekker-Brent Method.”

[Ridders1979] Ridders, C. F. J. “A New Algorithm for Computing a Single Root of a Real Continuous Function.”
IEEE Trans. Circuits Systems 26, 979-980, 1979.

[R153] More, Jorge J., Burton S. Garbow, and Kenneth E. Hillstrom. 1980. User Guide for MINPACK-1.

1562 Bibliography

http://www1.icsi.berkeley.edu/~storn/code.html
http://en.wikipedia.org/wiki/Differential_evolution
http://www1.icsi.berkeley.edu/~storn/code.html
http://en.wikipedia.org/wiki/Differential_evolution

SciPy Reference Guide, Release 0.16.0

[R154] C. T. Kelley. 1995. Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and Applied
Mathematics. <http://www.siam.org/books/kelley/>

[R155] 23. La Cruz, J.M. Martinez, M. Raydan. Math. Comp. 75, 1429 (2006).

[R131] B.A. van der Rotten, PhD thesis, “A limited memory Broyden method to solve high-dimensional systems of
nonlinear equations”. Mathematisch Instituut, Universiteit Leiden, The Netherlands (2003).

http://www.math.leidenuniv.nl/scripties/Rotten.pdf

[R132] B.A. van der Rotten, PhD thesis, “A limited memory Broyden method to solve high-dimensional systems of
nonlinear equations”. Mathematisch Instituut, Universiteit Leiden, The Netherlands (2003).

http://www.math.leidenuniv.nl/scripties/Rotten.pdf

[R509] “Spectral residual method without gradient information for solving large-scale nonlinear systems of equa-
tions.” W. La Cruz, J.M. Martinez, M. Raydan. Math. Comp. 75, 1429 (2006).

[R510] 23. La Cruz, Opt. Meth. Software, 29, 24 (2014).

[R511] 23. Cheng, D.-H. Li. IMA J. Numer. Anal. 29, 814 (2009).

[R151] D.A. Knoll and D.E. Keyes, J. Comp. Phys. 193, 357 (2003).

[R152] A.H. Baker and E.R. Jessup and T. Manteuffel, SIAM J. Matrix Anal. Appl. 26, 962 (2005).

[Ey] 22. Eyert, J. Comp. Phys., 124, 271 (1996).

[R139] Dantzig, George B., Linear programming and extensions. Rand Corporation Research Study Princeton Univ.
Press, Princeton, NJ, 1963

[R140] Hillier, S.H. and Lieberman, G.J. (1995), “Introduction to Mathematical Programming”, McGraw-Hill, Chap-
ter 4.

[R141] Bland, Robert G. New finite pivoting rules for the simplex method. Mathematics of Operations Research (2),
1977: pp. 103-107.

[R502] Dantzig, George B., Linear programming and extensions. Rand Corporation Research Study Princeton Univ.
Press, Princeton, NJ, 1963

[R503] Hillier, S.H. and Lieberman, G.J. (1995), “Introduction to Mathematical Programming”, McGraw-Hill, Chap-
ter 4.

[R504] Bland, Robert G. New finite pivoting rules for the simplex method. Mathematics of Operations Research (2),
1977: pp. 103-107.

[R126] Nocedal, Jorge. “Updating quasi-Newton matrices with limited storage.” Mathematics of computation 35.151
(1980): 773-782.

[R173] F. Gustaffson, “Determining the initial states in forward-backward filtering”, Transactions on Signal Process-
ing, Vol. 46, pp. 988-992, 1996.

[R186] Wikipedia, “Analytic signal”. http://en.wikipedia.org/wiki/Analytic_signal

[R187] Wikipedia, “Analytic signal”, http://en.wikipedia.org/wiki/Analytic_signal

[R175] Oppenheim, A. V. and Schafer, R. W., “Discrete-Time Signal Processing”, Prentice-Hall, Englewood Cliffs,
New Jersey (1989). (See, for example, Section 7.4.)

[R176] Smith, Steven W., “The Scientist and Engineer’s Guide to Digital Signal Processing”, Ch. 17.
http://www.dspguide.com/ch17/1.htm

[R177] Richard G. Lyons, “Understanding Digital Signal Processing, 3rd edition”, p. 830.

[R196] J. H. McClellan and T. W. Parks, “A unified approach to the design of optimum FIR linear phase digital
filters”, IEEE Trans. Circuit Theory, vol. CT-20, pp. 697-701, 1973.

Bibliography 1563

http://www.siam.org/books/kelley/
http://www.math.leidenuniv.nl/scripties/Rotten.pdf
http://www.math.leidenuniv.nl/scripties/Rotten.pdf
http://en.wikipedia.org/wiki/Analytic_signal
http://en.wikipedia.org/wiki/Analytic_signal
http://www.dspguide.com/ch17/1.htm

SciPy Reference Guide, Release 0.16.0

[R197] J. H. McClellan, T. W. Parks and L. R. Rabiner, “A Computer Program for Designing Optimum FIR Linear
Phase Digital Filters”, IEEE Trans. Audio Electroacoust., vol. AU-21, pp. 506-525, 1973.

[R168] http://en.wikipedia.org/wiki/Discretization#Discretization_of_linear_state_space_models

[R169] http://techteach.no/publications/discretetime_signals_systems/discrete.pdf

[R170] G. Zhang, X. Chen, and T. Chen, Digital redesign via the generalized bilinear transformation, Int. J. Control,
vol. 82, no. 4, pp. 741-754, 2009. (http://www.ece.ualberta.ca/~gfzhang/research/ZCC07_preprint.pdf)

[R194] J. Kautsky, N.K. Nichols and P. van Dooren, “Robust pole assignment in linear state feedback”, International
Journal of Control, Vol. 41 pp. 1129-1155, 1985.

[R195] A.L. Tits and Y. Yang, “Globally convergent algorithms for robust pole assignment by state feedback, IEEE
Transactions on Automatic Control, Vol. 41, pp. 1432-1452, 1996.

[R156] M.S. Bartlett, “Periodogram Analysis and Continuous Spectra”, Biometrika 37, 1-16, 1950.

[R157] E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp.
109-110.

[R158] A.V. Oppenheim and R.W. Schafer, “Discrete-Time Signal Processing”, Prentice-Hall, 1999, pp. 468-471.

[R159] Wikipedia, “Window function”, http://en.wikipedia.org/wiki/Window_function

[R160] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Numerical Recipes”, Cambridge University
Press, 1986, page 429.

[R161] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York.

[R162] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-
Hall, 1999, pp. 468-471.

[R163] C. Dolph, “A current distribution for broadside arrays which optimizes the relationship between beam width
and side-lobe level”, Proceedings of the IEEE, Vol. 34, Issue 6

[R164] Peter Lynch, “The Dolph-Chebyshev Window: A Simple Optimal Filter”, American Meteorological Society
(April 1997) http://mathsci.ucd.ie/~plynch/Publications/Dolph.pdf

[R165] F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transforms”, Proceedings
of the IEEE, Vol. 66, No. 1, January 1978

[R178] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York.

[R179] E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp.
109-110.

[R180] Wikipedia, “Window function”, http://en.wikipedia.org/wiki/Window_function

[R181] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Numerical Recipes”, Cambridge University
Press, 1986, page 425.

[R182] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York.

[R183] E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp.
106-108.

[R184] Wikipedia, “Window function”, http://en.wikipedia.org/wiki/Window_function

[R185] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Numerical Recipes”, Cambridge University
Press, 1986, page 425.

[R188] J. F. Kaiser, “Digital Filters” - Ch 7 in “Systems analysis by digital computer”, Editors: F.F. Kuo and J.F.
Kaiser, p 218-285. John Wiley and Sons, New York, (1966).

1564 Bibliography

http://en.wikipedia.org/wiki/Discretization#Discretization_of_linear_state_space_models
http://techteach.no/publications/discretetime_signals_systems/discrete.pdf
http://www.ece.ualberta.ca/~gfzhang/research/ZCC07_preprint.pdf
http://en.wikipedia.org/wiki/Window_function
http://mathsci.ucd.ie/~plynch/Publications/Dolph.pdf
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function

SciPy Reference Guide, Release 0.16.0

[R189] E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp.
177-178.

[R190] Wikipedia, “Window function”, http://en.wikipedia.org/wiki/Window_function

[R198] Harris, Fredric J. (Jan 1978). “On the use of Windows for Harmonic Analysis with the Discrete Fourier
Transform”. Proceedings of the IEEE 66 (1): 51-83. doi:10.1109/PROC.1978.10837

[R199] Wikipedia, “Window function”, http://en.wikipedia.org/wiki/Window_function#Tukey_window

[R174] Bioinformatics (2006) 22 (17): 2059-2065. doi: 10.1093/bioinformatics/btl355
http://bioinformatics.oxfordjournals.org/content/22/17/2059.long

[R200] P. Welch, “The use of the fast Fourier transform for the estimation of power spectra: A method based on time
averaging over short, modified periodograms”, IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967.

[R201] M.S. Bartlett, “Periodogram Analysis and Continuous Spectra”, Biometrika, vol. 37, pp. 1-16, 1950.

[R171] P. Welch, “The use of the fast Fourier transform for the estimation of power spectra: A method based on time
averaging over short, modified periodograms”, IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967.

[R172] Rabiner, Lawrence R., and B. Gold. “Theory and Application of Digital Signal Processing” Prentice-Hall,
pp. 414-419, 1975

[R166] P. Welch, “The use of the fast Fourier transform for the estimation of power spectra: A method based on time
averaging over short, modified periodograms”, IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967.

[R167] Stoica, Petre, and Randolph Moses, “Spectral Analysis of Signals” Prentice Hall, 2005

[R191] N.R. Lomb “Least-squares frequency analysis of unequally spaced data”, Astrophysics and Space Science,
vol 39, pp. 447-462, 1976

[R192] J.D. Scargle “Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of un-
evenly spaced data”, The Astrophysical Journal, vol 263, pp. 835-853, 1982

[R193] R.H.D. Townsend, “Fast calculation of the Lomb-Scargle periodogram using graphics processing units.”, The
Astrophysical Journal Supplement Series, vol 191, pp. 247-253, 2010

[R13] D. J. Pearce, “An Improved Algorithm for Finding the Strongly Connected Components of a Directed Graph”,
Technical Report, 2005

[R18] Awad H. Al-Mohy and Nicholas J. Higham (2009) “A New Scaling and Squaring Algorithm for the Matrix
Exponential.” SIAM Journal on Matrix Analysis and Applications. 31 (3). pp. 970-989. ISSN 1095-7162

[R19] Awad H. Al-Mohy and Nicholas J. Higham (2011) “Computing the Action of the Matrix Exponential, with
an Application to Exponential Integrators.” SIAM Journal on Scientific Computing, 33 (2). pp. 488-511. ISSN
1064-8275 http://eprints.ma.man.ac.uk/1591/

[R20] Nicholas J. Higham and Awad H. Al-Mohy (2010) “Computing Matrix Functions.” Acta Numerica, 19. 159-
208. ISSN 0962-4929 http://eprints.ma.man.ac.uk/1451/

[R31] Nicholas J. Higham and Francoise Tisseur (2000), “A Block Algorithm for Matrix 1-Norm Estimation, with
an Application to 1-Norm Pseudospectra.” SIAM J. Matrix Anal. Appl. Vol. 21, No. 4, pp. 1185-1201.

[R32] Awad H. Al-Mohy and Nicholas J. Higham (2009), “A new scaling and squaring algorithm for the matrix
exponential.” SIAM J. Matrix Anal. Appl. Vol. 31, No. 3, pp. 970-989.

[R21] A.H. Baker and E.R. Jessup and T. Manteuffel, SIAM J. Matrix Anal. Appl. 26, 962 (2005).

[R22] A.H. Baker, PhD thesis, University of Colorado (2003). http://amath.colorado.edu/activities/thesis/allisonb/Thesis.ps

[R28] C. C. Paige and M. A. Saunders (1982a). “LSQR: An algorithm for sparse linear equations and sparse least
squares”, ACM TOMS 8(1), 43-71.

Bibliography 1565

http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function#Tukey_window
http://bioinformatics.oxfordjournals.org/content/22/17/2059.long
http://eprints.ma.man.ac.uk/1591/
http://eprints.ma.man.ac.uk/1451/
http://amath.colorado.edu/activities/thesis/allisonb/Thesis.ps

SciPy Reference Guide, Release 0.16.0

[R29] C. C. Paige and M. A. Saunders (1982b). “Algorithm 583. LSQR: Sparse linear equations and least squares
problems”, ACM TOMS 8(2), 195-209.

[R30] M. A. Saunders (1995). “Solution of sparse rectangular systems using LSQR and CRAIG”, BIT 35, 588-604.

[R26] D. C.-L. Fong and M. A. Saunders, “LSMR: An iterative algorithm for sparse least-squares problems”, SIAM
J. Sci. Comput., vol. 33, pp. 2950-2971, 2011. http://arxiv.org/abs/1006.0758

[R27] LSMR Software, http://web.stanford.edu/group/SOL/software/lsmr/

[R14] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/

[R15] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue
Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998.

[R16] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/

[R17] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue
Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998.

[R23] A. V. Knyazev (2001), Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Pre-
conditioned Conjugate Gradient Method. SIAM Journal on Scientific Computing 23, no. 2, pp. 517-541.
http://dx.doi.org/10.1137/S1064827500366124

[R24] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov (2007), Block Locally Optimal Preconditioned
Eigenvalue Xolvers (BLOPEX) in hypre and PETSc. http://arxiv.org/abs/0705.2626

[R25] A. V. Knyazev’s C and MATLAB implementations: http://www-
math.cudenver.edu/~aknyazev/software/BLOPEX/

[R35] SuperLU http://crd.lbl.gov/~xiaoye/SuperLU/

[R254] Awad H. Al-Mohy and Nicholas J. Higham (2009) “A New Scaling and Squaring Algorithm for the Matrix
Exponential.” SIAM Journal on Matrix Analysis and Applications. 31 (3). pp. 970-989. ISSN 1095-7162

[R255] Awad H. Al-Mohy and Nicholas J. Higham (2011) “Computing the Action of the Matrix Exponential, with
an Application to Exponential Integrators.” SIAM Journal on Scientific Computing, 33 (2). pp. 488-511. ISSN
1064-8275 http://eprints.ma.man.ac.uk/1591/

[R256] Nicholas J. Higham and Awad H. Al-Mohy (2010) “Computing Matrix Functions.” Acta Numerica, 19. 159-
208. ISSN 0962-4929 http://eprints.ma.man.ac.uk/1451/

[R267] Nicholas J. Higham and Francoise Tisseur (2000), “A Block Algorithm for Matrix 1-Norm Estimation, with
an Application to 1-Norm Pseudospectra.” SIAM J. Matrix Anal. Appl. Vol. 21, No. 4, pp. 1185-1201.

[R268] Awad H. Al-Mohy and Nicholas J. Higham (2009), “A new scaling and squaring algorithm for the matrix
exponential.” SIAM J. Matrix Anal. Appl. Vol. 31, No. 3, pp. 970-989.

[R257] A.H. Baker and E.R. Jessup and T. Manteuffel, SIAM J. Matrix Anal. Appl. 26, 962 (2005).

[R258] A.H. Baker, PhD thesis, University of Colorado (2003). http://amath.colorado.edu/activities/thesis/allisonb/Thesis.ps

[R264] C. C. Paige and M. A. Saunders (1982a). “LSQR: An algorithm for sparse linear equations and sparse least
squares”, ACM TOMS 8(1), 43-71.

[R265] C. C. Paige and M. A. Saunders (1982b). “Algorithm 583. LSQR: Sparse linear equations and least squares
problems”, ACM TOMS 8(2), 195-209.

[R266] M. A. Saunders (1995). “Solution of sparse rectangular systems using LSQR and CRAIG”, BIT 35, 588-604.

[R262] D. C.-L. Fong and M. A. Saunders, “LSMR: An iterative algorithm for sparse least-squares problems”, SIAM
J. Sci. Comput., vol. 33, pp. 2950-2971, 2011. http://arxiv.org/abs/1006.0758

[R263] LSMR Software, http://web.stanford.edu/group/SOL/software/lsmr/

[R250] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/

1566 Bibliography

http://arxiv.org/abs/1006.0758
http://web.stanford.edu/group/SOL/software/lsmr/
http://www.caam.rice.edu/software/ARPACK/
http://www.caam.rice.edu/software/ARPACK/
http://dx.doi.org/10.1137/S1064827500366124
http://arxiv.org/abs/0705.2626
http://www-math.cudenver.edu/~aknyazev/software/BLOPEX/
http://www-math.cudenver.edu/~aknyazev/software/BLOPEX/
http://crd.lbl.gov/~xiaoye/SuperLU/
http://eprints.ma.man.ac.uk/1591/
http://eprints.ma.man.ac.uk/1451/
http://amath.colorado.edu/activities/thesis/allisonb/Thesis.ps
http://arxiv.org/abs/1006.0758
http://web.stanford.edu/group/SOL/software/lsmr/
http://www.caam.rice.edu/software/ARPACK/

SciPy Reference Guide, Release 0.16.0

[R251] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue
Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998.

[R252] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/

[R253] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue
Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998.

[R259] A. V. Knyazev (2001), Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Pre-
conditioned Conjugate Gradient Method. SIAM Journal on Scientific Computing 23, no. 2, pp. 517-541.
http://dx.doi.org/10.1137/S1064827500366124

[R260] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov (2007), Block Locally Optimal Precondi-
tioned Eigenvalue Xolvers (BLOPEX) in hypre and PETSc. http://arxiv.org/abs/0705.2626

[R261] A. V. Knyazev’s C and MATLAB implementations: http://www-
math.cudenver.edu/~aknyazev/software/BLOPEX/

[R271] SuperLU http://crd.lbl.gov/~xiaoye/SuperLU/

[R204] D. J. Pearce, “An Improved Algorithm for Finding the Strongly Connected Components of a Directed Graph”,
Technical Report, 2005

[Qhull] http://www.qhull.org/

[R273] Krzanowski, W. J. (2000). “Principles of Multivariate analysis”.

[R274] Gower, J. C. (1975). “Generalized procrustes analysis”.

[R282] http://en.wikipedia.org/wiki/Error_function

[R283] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables. New York: Dover, 1972. http://www.math.sfu.ca/~cbm/aands/page_297.htm

[R284] Steven G. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/Faddeeva

[R285] Steven G. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/Faddeeva

[R286] Steven G. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/Faddeeva

[R287] Steven G. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/Faddeeva

[R292] Steven G. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/Faddeeva

[R277] Steven G. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/Faddeeva

[R291] Digital Library of Mathematical Functions, 14.30. http://dlmf.nist.gov/14.30

[R275] NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/14.21

[R290] NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/14.3

[R278] Digital Libary of Mathematical Functions 29.12 http://dlmf.nist.gov/29.12

[R279] Bardhan and Knepley, “Computational science and re-discovery: open-source implementations of ellip-
soidal harmonics for problems in potential theory”, Comput. Sci. Disc. 5, 014006 (2012) doi:10.1088/1749-
4699/5/1/014006

[R280] David J.and Dechambre P, “Computation of Ellipsoidal Gravity Field Harmonics for small solar system bod-
ies” pp. 30-36, 2000

[R281] George Dassios, “Ellipsoidal Harmonics: Theory and Applications” pp. 418, 2012

[R288] http://en.wikipedia.org/wiki/Lambert_W_function

[R289] Corless et al, “On the Lambert W function”, Adv. Comp. Math. 5 (1996) 329-359.
http://www.apmaths.uwo.ca/~djeffrey/Offprints/W-adv-cm.pdf

Bibliography 1567

http://www.caam.rice.edu/software/ARPACK/
http://dx.doi.org/10.1137/S1064827500366124
http://arxiv.org/abs/0705.2626
http://www-math.cudenver.edu/~aknyazev/software/BLOPEX/
http://www-math.cudenver.edu/~aknyazev/software/BLOPEX/
http://crd.lbl.gov/~xiaoye/SuperLU/
http://www.qhull.org/
http://en.wikipedia.org/wiki/Error_function
http://www.math.sfu.ca/~cbm/aands/page_297.htm
http://ab-initio.mit.edu/Faddeeva
http://ab-initio.mit.edu/Faddeeva
http://ab-initio.mit.edu/Faddeeva
http://ab-initio.mit.edu/Faddeeva
http://ab-initio.mit.edu/Faddeeva
http://ab-initio.mit.edu/Faddeeva
http://dlmf.nist.gov/14.30
http://dlmf.nist.gov/14.21
http://dlmf.nist.gov/14.3
http://dlmf.nist.gov/29.12
http://en.wikipedia.org/wiki/Lambert_W_function
http://www.apmaths.uwo.ca/~djeffrey/Offprints/W-adv-cm.pdf

SciPy Reference Guide, Release 0.16.0

[R316] “Birnbaum-Saunders distribution”, http://en.wikipedia.org/wiki/Birnbaum-Saunders_distribution

[R324] “Generalized normal distribution, Version 1”, https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1

[R325] “Generalized normal distribution, Version 1”, https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1

[R333] http://mathworld.wolfram.com/MaxwellDistribution.html

[R374] M.L. Eaton, “Multivariate Statistics: A Vector Space Approach”, Wiley, 1983.

[R375] W.B. Smith and R.R. Hocking, “Algorithm AS 53: Wishart Variate Generator”, Applied Statistics, vol. 21,
pp. 341-345, 1972.

[R326] M.L. Eaton, “Multivariate Statistics: A Vector Space Approach”, Wiley, 1983.

[R327] M.C. Jones, “Generating Inverse Wishart Matrices”, Communications in Statistics - Simulation and Compu-
tation, vol. 14.2, pp.511-514, 1985.

[R329] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chap-
man & Hall: New York. 2000.

[R351] D’Agostino, R. B. (1971), “An omnibus test of normality for moderate and large sample size,” Biometrika,
58, 341-348

[R352] D’Agostino, R. and Pearson, E. S. (1973), “Testing for departures from normality,” Biometrika, 60, 613-622

[R362] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chap-
man & Hall: New York. 2000. Section 2.2.24.1

[R372] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chap-
man & Hall: New York. 2000.

[R353] S. E. Maxwell and H. D. Delaney, “Designing Experiments and Analyzing Data: A Model Comparison
Perspective”, Wadsworth, 1990.

[R314] Lowry, Richard. “Concepts and Applications of Inferential Statistics”. Chapter 14.
http://faculty.vassar.edu/lowry/ch14pt1.html

[R315] Heiman, G.W. Research Methods in Statistics. 2002.

[R363] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chap-
man & Hall: New York. 2000. Section 14.7

[R364] P.K. Sen, “Estimates of the regression coefficient based on Kendall’s tau”, J. Am. Stat. Assoc., Vol. 63, pp.
1379-1389, 1968.

[R365] H. Theil, “A rank-invariant method of linear and polynomial regression analysis I, II and III”, Nederl. Akad.
Wetensch., Proc. 53:, pp. 386-392, pp. 521-525, pp. 1397-1412, 1950.

[R366] W.L. Conover, “Practical nonparametric statistics”, 2nd ed., John Wiley and Sons, New York, pp. 493.

[R368] http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test

[R369] http://en.wikipedia.org/wiki/Welch%27s_t_test

[R370] http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test

[R371] http://en.wikipedia.org/wiki/Welch%27s_t_test

[R307] Lowry, Richard. “Concepts and Applications of Inferential Statistics”. Chapter 8.
http://faculty.vassar.edu/lowry/ch8pt1.html

[R308] “Chi-squared test”, http://en.wikipedia.org/wiki/Chi-squared_test

[R354] Lowry, Richard. “Concepts and Applications of Inferential Statistics”. Chapter 8.
http://faculty.vassar.edu/lowry/ch8pt1.html

1568 Bibliography

http://en.wikipedia.org/wiki/Birnbaum-Saunders_distribution
https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1
https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1
http://mathworld.wolfram.com/MaxwellDistribution.html
http://faculty.vassar.edu/lowry/ch14pt1.html
http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test
http://en.wikipedia.org/wiki/Welch%27s_t_test
http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test
http://en.wikipedia.org/wiki/Welch%27s_t_test
http://faculty.vassar.edu/lowry/ch8pt1.html
http://en.wikipedia.org/wiki/Chi-squared_test
http://faculty.vassar.edu/lowry/ch8pt1.html

SciPy Reference Guide, Release 0.16.0

[R355] “Chi-squared test”, http://en.wikipedia.org/wiki/Chi-squared_test

[R356] “G-test”, http://en.wikipedia.org/wiki/G-test

[R357] Sokal, R. R. and Rohlf, F. J. “Biometry: the principles and practice of statistics in biological research”, New
York: Freeman (1981)

[R358] Cressie, N. and Read, T. R. C., “Multinomial Goodness-of-Fit Tests”, J. Royal Stat. Soc. Series B, Vol. 46,
No. 3 (1984), pp. 440-464.

[R367] Siegel, S. (1956) Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill.

[R359] “Ranking”, http://en.wikipedia.org/wiki/Ranking

[R360] http://en.wikipedia.org/wiki/Wilcoxon_rank-sum_test

[R373] http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test

[R328] http://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance

[R319] http://en.wikipedia.org/wiki/Friedman_test

[R309] https://en.wikipedia.org/wiki/Fisher%27s_method

[R310] http://en.wikipedia.org/wiki/Fisher’s_method#Relation_to_Stouffer.27s_Z-score_method

[R311] Whitlock, M. C. “Combining probability from independent tests: the weighted Z-method is superior to
Fisher’s approach.” Journal of Evolutionary Biology 18, no. 5 (2005): 1368-1373.

[R312] Zaykin, Dmitri V. “Optimally weighted Z-test is a powerful method for combining probabilities in meta-
analysis.” Journal of Evolutionary Biology 24, no. 8 (2011): 1836-1841.

[R313] https://en.wikipedia.org/wiki/Extensions_of_Fisher%27s_method

[R300] Sprent, Peter and N.C. Smeeton. Applied nonparametric statistical methods. 3rd ed. Chapman and Hall/CRC.
2001. Section 5.8.2.

[R301] http://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm

[R302] Snedecor, George W. and Cochran, William G. (1989), Statistical Methods, Eighth Edition, Iowa State Uni-
versity Press.

[R330] http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm

[R331] Levene, H. (1960). In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, I.
Olkin et al. eds., Stanford University Press, pp. 278-292.

[R332] Brown, M. B. and Forsythe, A. B. (1974), Journal of the American Statistical Association, 69, 364-367

[R361] http://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm

[R293] http://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm

[R294] Stephens, M. A. (1974). EDF Statistics for Goodness of Fit and Some Comparisons, Journal of the American
Statistical Association, Vol. 69, pp. 730-737.

[R295] Stephens, M. A. (1976). Asymptotic Results for Goodness-of-Fit Statistics with Unknown Parameters, Annals
of Statistics, Vol. 4, pp. 357-369.

[R296] Stephens, M. A. (1977). Goodness of Fit for the Extreme Value Distribution, Biometrika, Vol. 64, pp. 583-
588.

[R297] Stephens, M. A. (1977). Goodness of Fit with Special Reference to Tests for Exponentiality , Technical
Report No. 262, Department of Statistics, Stanford University, Stanford, CA.

[R298] Stephens, M. A. (1979). Tests of Fit for the Logistic Distribution Based on the Empirical Distribution Func-
tion, Biometrika, Vol. 66, pp. 591-595.

Bibliography 1569

http://en.wikipedia.org/wiki/Chi-squared_test
http://en.wikipedia.org/wiki/G-test
http://en.wikipedia.org/wiki/Ranking
http://en.wikipedia.org/wiki/Wilcoxon_rank-sum_test
http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
http://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance
http://en.wikipedia.org/wiki/Friedman_test
https://en.wikipedia.org/wiki/Fisher%27s_method
http://en.wikipedia.org/wiki/Fisher's_method#Relation_to_Stouffer.27s_Z-score_method
https://en.wikipedia.org/wiki/Extensions_of_Fisher%27s_method
http://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm
http://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm
http://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm

SciPy Reference Guide, Release 0.16.0

[R299] Scholz, F. W and Stephens, M. A. (1987), K-Sample Anderson-Darling Tests, Journal of the American Sta-
tistical Association, Vol. 82, pp. 918-924.

[R303] http://en.wikipedia.org/wiki/Binomial_test

[R317] http://www.stat.psu.edu/~bgl/center/tr/TR993.ps

[R318] Fligner, M.A. and Killeen, T.J. (1976). Distribution-free two-sample tests for scale. ‘Journal of the American
Statistical Association.’ 71(353), 210-213.

[R334] Mood, A. M., Introduction to the Theory of Statistics. McGraw-Hill (1950), pp. 394-399.

[R335] Zar, J. H., Biostatistical Analysis, 5th ed. Prentice Hall (2010). See Sections 8.12 and 10.15.

[R304] “Contingency table”, http://en.wikipedia.org/wiki/Contingency_table

[R305] “Pearson’s chi-squared test”, http://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test

[R306] Cressie, N. and Read, T. R. C., “Multinomial Goodness-of-Fit Tests”, J. Royal Stat. Soc. Series B, Vol. 46,
No. 3 (1984), pp. 440-464.

[R336] Lowry, Richard. “Concepts and Applications of Inferential Statistics”. Chapter 8.
http://faculty.vassar.edu/lowry/ch8pt1.html

[R337] “Chi-squared test”, http://en.wikipedia.org/wiki/Chi-squared_test

[R338] http://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance

[R339] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chap-
man & Hall: New York. 2000.

[R340] R statistical software: http://www.r-project.org/

[R341] R quantile function: http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html

[R342] D’Agostino, R. B. (1971), “An omnibus test of normality for moderate and large sample size,” Biometrika,
58, 341-348

[R343] D’Agostino, R. and Pearson, E. S. (1973), “Testing for departures from normality,” Biometrika, 60, 613-622

[R344] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chap-
man & Hall: New York. 2000. Section 2.2.24.1

[R345] P.K. Sen, “Estimates of the regression coefficient based on Kendall’s tau”, J. Am. Stat. Assoc., Vol. 63, pp.
1379-1389, 1968.

[R346] H. Theil, “A rank-invariant method of linear and polynomial regression analysis I, II and III”, Nederl. Akad.
Wetensch., Proc. 53:, pp. 386-392, pp. 521-525, pp. 1397-1412, 1950.

[R347] W.L. Conover, “Practical nonparametric statistics”, 2nd ed., John Wiley and Sons, New York, pp. 493.

[R348] http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test

[R349] http://en.wikipedia.org/wiki/Welch%27s_t_test

[R350] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chap-
man & Hall: New York. 2000.

[R320] D.W. Scott, “Multivariate Density Estimation: Theory, Practice, and Visualization”, John Wiley & Sons, New
York, Chicester, 1992.

[R321] B.W. Silverman, “Density Estimation for Statistics and Data Analysis”, Vol. 26, Monographs on Statistics
and Applied Probability, Chapman and Hall, London, 1986.

[R322] B.A. Turlach, “Bandwidth Selection in Kernel Density Estimation: A Review”, CORE and Institut de Statis-
tique, Vol. 19, pp. 1-33, 1993.

1570 Bibliography

http://en.wikipedia.org/wiki/Binomial_test
http://www.stat.psu.edu/~bgl/center/tr/TR993.ps
http://en.wikipedia.org/wiki/Contingency_table
http://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
http://faculty.vassar.edu/lowry/ch8pt1.html
http://en.wikipedia.org/wiki/Chi-squared_test
http://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance
http://www.r-project.org/
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html
http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test
http://en.wikipedia.org/wiki/Welch%27s_t_test

SciPy Reference Guide, Release 0.16.0

[R323] D.M. Bashtannyk and R.J. Hyndman, “Bandwidth selection for kernel conditional density estimation”, Com-
putational Statistics & Data Analysis, Vol. 36, pp. 279-298, 2001.

[R336] Lowry, Richard. “Concepts and Applications of Inferential Statistics”. Chapter 8.
http://faculty.vassar.edu/lowry/ch8pt1.html

[R337] “Chi-squared test”, http://en.wikipedia.org/wiki/Chi-squared_test

[R338] http://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance

[R339] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chap-
man & Hall: New York. 2000.

[R340] R statistical software: http://www.r-project.org/

[R341] R quantile function: http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html

[R342] D’Agostino, R. B. (1971), “An omnibus test of normality for moderate and large sample size,” Biometrika,
58, 341-348

[R343] D’Agostino, R. and Pearson, E. S. (1973), “Testing for departures from normality,” Biometrika, 60, 613-622

[R344] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chap-
man & Hall: New York. 2000. Section 2.2.24.1

[R345] P.K. Sen, “Estimates of the regression coefficient based on Kendall’s tau”, J. Am. Stat. Assoc., Vol. 63, pp.
1379-1389, 1968.

[R346] H. Theil, “A rank-invariant method of linear and polynomial regression analysis I, II and III”, Nederl. Akad.
Wetensch., Proc. 53:, pp. 386-392, pp. 521-525, pp. 1397-1412, 1950.

[R347] W.L. Conover, “Practical nonparametric statistics”, 2nd ed., John Wiley and Sons, New York, pp. 493.

[R348] http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test

[R349] http://en.wikipedia.org/wiki/Welch%27s_t_test

[R350] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chap-
man & Hall: New York. 2000.

Bibliography 1571

http://faculty.vassar.edu/lowry/ch8pt1.html
http://en.wikipedia.org/wiki/Chi-squared_test
http://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance
http://www.r-project.org/
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html
http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test
http://en.wikipedia.org/wiki/Welch%27s_t_test

SciPy Reference Guide, Release 0.16.0

1572 Bibliography

PYTHON MODULE INDEX

s
scipy.cluster, 267
scipy.cluster.hierarchy, 271
scipy.cluster.vq, 267
scipy.constants, 286
scipy.fftpack, 302
scipy.fftpack.convolve, 316
scipy.integrate, 317
scipy.interpolate, 337
scipy.io, 407
scipy.io.arff, 414
scipy.io.netcdf, 415
scipy.io.wavfile, 413
scipy.linalg, 419
scipy.linalg.blas, 478
scipy.linalg.cython_blas, 592
scipy.linalg.cython_lapack, 596
scipy.linalg.interpolative, 633
scipy.linalg.lapack, 513
scipy.misc, 642
scipy.ndimage, 654
scipy.ndimage.filters, 654
scipy.ndimage.fourier, 666
scipy.ndimage.interpolation, 668
scipy.ndimage.measurements, 673
scipy.ndimage.morphology, 685
scipy.odr, 709
scipy.optimize, 718
scipy.optimize.nonlin, 799
scipy.signal, 801
scipy.sparse, 948
scipy.sparse.csgraph, 1081
scipy.sparse.linalg, 1051
scipy.spatial, 1092
scipy.spatial.distance, 1128
scipy.special, 1143
scipy.stats, 1200
scipy.stats.mstats, 1525
scipy.weave, 1552
scipy.weave.ext_tools, 1555

1573

SciPy Reference Guide, Release 0.16.0

1574 Python Module Index

INDEX

Symbols
__call__() (scipy.interpolate.Akima1DInterpolator

method), 348
__call__() (scipy.interpolate.BPoly method), 354
__call__() (scipy.interpolate.BarycentricInterpolator

method), 340
__call__() (scipy.interpolate.BivariateSpline method),

395
__call__() (scipy.interpolate.CloughTocher2DInterpolator

method), 360
__call__() (scipy.interpolate.InterpolatedUnivariateSpline

method), 374
__call__() (scipy.interpolate.KroghInterpolator method),

341
__call__() (scipy.interpolate.LSQBivariateSpline

method), 401
__call__() (scipy.interpolate.LSQSphereBivariateSpline

method), 403
__call__() (scipy.interpolate.LSQUnivariateSpline

method), 379
__call__() (scipy.interpolate.LinearNDInterpolator

method), 359
__call__() (scipy.interpolate.NearestNDInterpolator

method), 359
__call__() (scipy.interpolate.PPoly method), 351
__call__() (scipy.interpolate.PchipInterpolator method),

345
__call__() (scipy.interpolate.PiecewisePolynomial

method), 343
__call__() (scipy.interpolate.Rbf method), 361
__call__() (scipy.interpolate.RectBivariateSpline

method), 366, 389
__call__() (scipy.interpolate.RectSphereBivariateSpline

method), 393
__call__() (scipy.interpolate.RegularGridInterpolator

method), 365
__call__() (scipy.interpolate.SmoothBivariateSpline

method), 396
__call__() (scipy.interpolate.SmoothSphereBivariateSpline

method), 399
__call__() (scipy.interpolate.UnivariateSpline method),

369

__call__() (scipy.interpolate.interp1d method), 339
__call__() (scipy.interpolate.interp2d method), 363
__call__() (scipy.optimize.LbfgsInvHessProduct

method), 798
__call__() (scipy.sparse.linalg.LinearOperator method),

1019, 1053
__call__() (scipy.stats.gaussian_kde method), 1523
__call__() (scipy.stats.rv_continuous method), 1208
__call__() (scipy.stats.rv_discrete method), 1217

A
A (scipy.signal.lti attribute), 860
A (scipy.signal.StateSpace attribute), 863
A (scipy.signal.TransferFunction attribute), 866
A (scipy.signal.ZerosPolesGain attribute), 868
abcd_normalize() (in module scipy.signal), 842
add_points() (scipy.spatial.ConvexHull method), 1122
add_points() (scipy.spatial.Delaunay method), 1119
add_points() (scipy.spatial.Voronoi method), 1124
add_xi() (scipy.interpolate.BarycentricInterpolator

method), 340
adjoint() (scipy.optimize.LbfgsInvHessProduct method),

798
adjoint() (scipy.sparse.linalg.LinearOperator method),

1019, 1053
affine_transform() (in module

scipy.ndimage.interpolation), 669
agm() (in module scipy.special), 1192
ai_zeros() (in module scipy.special), 1144
airy (in module scipy.special), 1144
airye (in module scipy.special), 1144
Akima1DInterpolator (class in scipy.interpolate), 348
alpha (in module scipy.stats), 1218
anderson() (in module scipy.optimize), 784
anderson() (in module scipy.stats), 1472
anderson_ksamp() (in module scipy.stats), 1473
anglit (in module scipy.stats), 1220
ansari() (in module scipy.stats), 1471
antiderivative() (scipy.interpolate.Akima1DInterpolator

method), 349
antiderivative() (scipy.interpolate.BPoly method), 355
antiderivative() (scipy.interpolate.InterpolatedUnivariateSpline

method), 374

1575

SciPy Reference Guide, Release 0.16.0

antiderivative() (scipy.interpolate.LSQUnivariateSpline
method), 379

antiderivative() (scipy.interpolate.PchipInterpolator
method), 345

antiderivative() (scipy.interpolate.PPoly method), 351
antiderivative() (scipy.interpolate.UnivariateSpline

method), 370
append() (scipy.interpolate.PiecewisePolynomial

method), 343
approx_fprime() (in module scipy.optimize), 793
approximate_taylor_polynomial() (in module

scipy.interpolate), 406
arcsin() (scipy.sparse.bsr_matrix method), 952
arcsin() (scipy.sparse.coo_matrix method), 959
arcsin() (scipy.sparse.csc_matrix method), 967
arcsin() (scipy.sparse.csr_matrix method), 975
arcsin() (scipy.sparse.dia_matrix method), 982
arcsine (in module scipy.stats), 1222
arcsinh() (scipy.sparse.bsr_matrix method), 952
arcsinh() (scipy.sparse.coo_matrix method), 959
arcsinh() (scipy.sparse.csc_matrix method), 967
arcsinh() (scipy.sparse.csr_matrix method), 975
arcsinh() (scipy.sparse.dia_matrix method), 982
arctan() (scipy.sparse.bsr_matrix method), 952
arctan() (scipy.sparse.coo_matrix method), 960
arctan() (scipy.sparse.csc_matrix method), 967
arctan() (scipy.sparse.csr_matrix method), 975
arctan() (scipy.sparse.dia_matrix method), 982
arctanh() (scipy.sparse.bsr_matrix method), 952
arctanh() (scipy.sparse.coo_matrix method), 960
arctanh() (scipy.sparse.csc_matrix method), 967
arctanh() (scipy.sparse.csr_matrix method), 975
arctanh() (scipy.sparse.dia_matrix method), 982
argrelextrema() (in module scipy.signal), 934
argrelmax() (in module scipy.signal), 933
argrelmin() (in module scipy.signal), 933
argstoarray() (in module scipy.stats.mstats), 1495, 1526
ArpackError, 1046, 1079
ArpackNoConvergence, 1046, 1079
ascent() (in module scipy.misc), 643
asformat() (scipy.sparse.bsr_matrix method), 952
asformat() (scipy.sparse.coo_matrix method), 960
asformat() (scipy.sparse.csc_matrix method), 967
asformat() (scipy.sparse.csr_matrix method), 975
asformat() (scipy.sparse.dia_matrix method), 982
asformat() (scipy.sparse.dok_matrix method), 988
asformat() (scipy.sparse.lil_matrix method), 994
asfptype() (scipy.sparse.bsr_matrix method), 952
asfptype() (scipy.sparse.coo_matrix method), 960
asfptype() (scipy.sparse.csc_matrix method), 968
asfptype() (scipy.sparse.csr_matrix method), 975
asfptype() (scipy.sparse.dia_matrix method), 982
asfptype() (scipy.sparse.dok_matrix method), 988
asfptype() (scipy.sparse.lil_matrix method), 994

aslinearoperator() (in module scipy.sparse.linalg), 1020,
1054

assignValue() (scipy.io.netcdf.netcdf_variable method),
418

assoc_laguerre() (in module scipy.special), 1180
astype() (scipy.sparse.bsr_matrix method), 952
astype() (scipy.sparse.coo_matrix method), 960
astype() (scipy.sparse.csc_matrix method), 968
astype() (scipy.sparse.csr_matrix method), 975
astype() (scipy.sparse.dia_matrix method), 982
astype() (scipy.sparse.dok_matrix method), 988
astype() (scipy.sparse.lil_matrix method), 994
average() (in module scipy.cluster.hierarchy), 276

B
B (scipy.signal.lti attribute), 860
B (scipy.signal.StateSpace attribute), 863
B (scipy.signal.TransferFunction attribute), 866
B (scipy.signal.ZerosPolesGain attribute), 868
band_stop_obj() (in module scipy.signal), 842
barthann() (in module scipy.signal), 894
bartlett() (in module scipy.signal), 895
bartlett() (in module scipy.stats), 1471
barycentric_interpolate() (in module scipy.interpolate),

345
BarycentricInterpolator (class in scipy.interpolate), 339
basinhopping() (in module scipy.optimize), 752
bayes_mvs() (in module scipy.stats), 1445
bdtr (in module scipy.special), 1155
bdtrc (in module scipy.special), 1156
bdtri (in module scipy.special), 1156
bdtrik (in module scipy.special), 1156
bdtrin (in module scipy.special), 1156
bei (in module scipy.special), 1190
bei_zeros() (in module scipy.special), 1190
beip (in module scipy.special), 1190
beip_zeros() (in module scipy.special), 1190
bellman_ford() (in module scipy.sparse.csgraph), 1010,

1085
ber (in module scipy.special), 1190
ber_zeros() (in module scipy.special), 1190
bernoulli (in module scipy.stats), 1399
bernoulli() (in module scipy.special), 1193
berp (in module scipy.special), 1190
berp_zeros() (in module scipy.special), 1190
bessel() (in module scipy.signal), 856
besselap() (in module scipy.signal), 842
besselpoly (in module scipy.special), 1152
beta (in module scipy.special), 1170
beta (in module scipy.stats), 1224
betai() (in module scipy.stats.mstats), 1495, 1527
betainc (in module scipy.special), 1170
betaincinv (in module scipy.special), 1170
betaln (in module scipy.special), 1170

1576 Index

SciPy Reference Guide, Release 0.16.0

betaprime (in module scipy.stats), 1226
bi_zeros() (in module scipy.special), 1144
bicg() (in module scipy.sparse.linalg), 1024, 1058
bicgstab() (in module scipy.sparse.linalg), 1025, 1058
bilinear() (in module scipy.signal), 825
binary_closing() (in module scipy.ndimage.morphology),

685
binary_dilation() (in module scipy.ndimage.morphology),

687
binary_erosion() (in module scipy.ndimage.morphology),

688
binary_fill_holes() (in module

scipy.ndimage.morphology), 690
binary_hit_or_miss() (in module

scipy.ndimage.morphology), 691
binary_opening() (in module

scipy.ndimage.morphology), 692
binary_propagation() (in module

scipy.ndimage.morphology), 693
binned_statistic() (in module scipy.stats), 1439
binned_statistic_2d() (in module scipy.stats), 1442
binned_statistic_dd() (in module scipy.stats), 1443
binom (in module scipy.special), 1193
binom (in module scipy.stats), 1401
binom_test() (in module scipy.stats), 1474
bisect() (in module scipy.optimize), 766
bisplev() (in module scipy.interpolate), 405
bisplrep() (in module scipy.interpolate), 404
BivariateSpline (class in scipy.interpolate), 394
black_tophat() (in module scipy.ndimage.morphology),

695
blackman() (in module scipy.signal), 897
blackmanharris() (in module scipy.signal), 899
blitz() (in module scipy.weave), 1555
block_diag() (in module scipy.linalg), 468
block_diag() (in module scipy.sparse), 1000
bmat() (in module scipy.sparse), 1002
bode() (in module scipy.signal), 875
bode() (scipy.signal.lti method), 860
bode() (scipy.signal.StateSpace method), 863
bode() (scipy.signal.TransferFunction method), 866
bode() (scipy.signal.ZerosPolesGain method), 869
bohman() (in module scipy.signal), 900
boltzmann (in module scipy.stats), 1403
boxcar() (in module scipy.signal), 902
boxcox (in module scipy.special), 1166
boxcox() (in module scipy.stats), 1478
boxcox1p (in module scipy.special), 1166
boxcox_llf() (in module scipy.stats), 1481
boxcox_normmax() (in module scipy.stats), 1480
boxcox_normplot() (in module scipy.stats), 1492
BPoly (class in scipy.interpolate), 353
bracket() (in module scipy.optimize), 794
bradford (in module scipy.stats), 1228

braycurtis() (in module scipy.spatial.distance), 1109,
1137

breadth_first_order() (in module scipy.sparse.csgraph),
1011, 1086

breadth_first_tree() (in module scipy.sparse.csgraph),
1012, 1087

brent() (in module scipy.optimize), 749
brenth() (in module scipy.optimize), 764
brentq() (in module scipy.optimize), 763
broyden1() (in module scipy.optimize), 771
broyden2() (in module scipy.optimize), 773
brute() (in module scipy.optimize), 756
bspline() (in module scipy.signal), 809
bsr_matrix (class in scipy.sparse), 949
btdtr (in module scipy.special), 1156
btdtri (in module scipy.special), 1156
btdtria (in module scipy.special), 1156
btdtrib (in module scipy.special), 1156
burr (in module scipy.stats), 1230
buttap() (in module scipy.signal), 843
butter() (in module scipy.signal), 844
buttord() (in module scipy.signal), 845
bytescale() (in module scipy.misc), 644

C
C (scipy.signal.lti attribute), 860
C (scipy.signal.StateSpace attribute), 863
C (scipy.signal.TransferFunction attribute), 866
C (scipy.signal.ZerosPolesGain attribute), 868
C2F() (in module scipy.constants), 300
C2K() (in module scipy.constants), 299
canberra() (in module scipy.spatial.distance), 1109, 1137
cascade() (in module scipy.signal), 928
cauchy (in module scipy.stats), 1232
caxpy (in module scipy.linalg.blas), 480
cbrt (in module scipy.special), 1198
cc_diff() (in module scipy.fftpack), 314
ccopy (in module scipy.linalg.blas), 480
cdf() (scipy.stats.rv_continuous method), 1203
cdf() (scipy.stats.rv_discrete method), 1213
cdist() (in module scipy.spatial.distance), 1103, 1131
cdotc (in module scipy.linalg.blas), 481
cdotu (in module scipy.linalg.blas), 481
ceil() (scipy.sparse.bsr_matrix method), 952
ceil() (scipy.sparse.coo_matrix method), 960
ceil() (scipy.sparse.csc_matrix method), 968
ceil() (scipy.sparse.csr_matrix method), 975
ceil() (scipy.sparse.dia_matrix method), 982
center_of_mass() (in module

scipy.ndimage.measurements), 674
central_diff_weights() (in module scipy.misc), 644
centroid() (in module scipy.cluster.hierarchy), 276
cg() (in module scipy.sparse.linalg), 1025, 1059
cgbsv (in module scipy.linalg.lapack), 519

Index 1577

SciPy Reference Guide, Release 0.16.0

cgbtrf (in module scipy.linalg.lapack), 520
cgbtrs (in module scipy.linalg.lapack), 522
cgebal (in module scipy.linalg.lapack), 523
cgees (in module scipy.linalg.lapack), 525
cgeev (in module scipy.linalg.lapack), 527
cgeev_lwork (in module scipy.linalg.lapack), 528
cgegv (in module scipy.linalg.lapack), 529
cgehrd (in module scipy.linalg.lapack), 530
cgehrd_lwork (in module scipy.linalg.lapack), 531
cgelsd (in module scipy.linalg.lapack), 535
cgelsd_lwork (in module scipy.linalg.lapack), 536
cgelss (in module scipy.linalg.lapack), 533
cgelss_lwork (in module scipy.linalg.lapack), 534
cgelsy (in module scipy.linalg.lapack), 538
cgelsy_lwork (in module scipy.linalg.lapack), 539
cgemm (in module scipy.linalg.blas), 506
cgemv (in module scipy.linalg.blas), 495
cgeqp3 (in module scipy.linalg.lapack), 540
cgeqrf (in module scipy.linalg.lapack), 541
cgerc (in module scipy.linalg.blas), 495
cgerqf (in module scipy.linalg.lapack), 542
cgeru (in module scipy.linalg.blas), 495
cgesdd (in module scipy.linalg.lapack), 543
cgesdd_lwork (in module scipy.linalg.lapack), 544
cgesv (in module scipy.linalg.lapack), 545
cgetrf (in module scipy.linalg.lapack), 546
cgetri (in module scipy.linalg.lapack), 547
cgetri_lwork (in module scipy.linalg.lapack), 547
cgetrs (in module scipy.linalg.lapack), 548
cgges (in module scipy.linalg.lapack), 550
cggev (in module scipy.linalg.lapack), 553
cgs() (in module scipy.sparse.linalg), 1026, 1060
cgtsv (in module scipy.linalg.lapack), 580
chbevd (in module scipy.linalg.lapack), 554
chbevx (in module scipy.linalg.lapack), 555
chdtr (in module scipy.special), 1164
chdtrc (in module scipy.special), 1164
chdtri (in module scipy.special), 1164
chdtriv (in module scipy.special), 1164
cheb1ap() (in module scipy.signal), 843
cheb1ord() (in module scipy.signal), 848
cheb2ap() (in module scipy.signal), 843
cheb2ord() (in module scipy.signal), 851
chebwin() (in module scipy.signal), 903
cheby1() (in module scipy.signal), 847
cheby2() (in module scipy.signal), 850
chebyc() (in module scipy.special), 1181
chebys() (in module scipy.special), 1181
chebyshev() (in module scipy.spatial.distance), 1110,

1138
chebyt() (in module scipy.special), 1181
chebyu() (in module scipy.special), 1181
check_format() (scipy.sparse.bsr_matrix method), 952
check_format() (scipy.sparse.csc_matrix method), 968

check_format() (scipy.sparse.csr_matrix method), 976
check_grad() (in module scipy.optimize), 794
cheev (in module scipy.linalg.lapack), 556
cheevd (in module scipy.linalg.lapack), 556
cheevr (in module scipy.linalg.lapack), 557
chegv (in module scipy.linalg.lapack), 558
chegvd (in module scipy.linalg.lapack), 558
chegvx (in module scipy.linalg.lapack), 559
chemm (in module scipy.linalg.blas), 507
chemv (in module scipy.linalg.blas), 496
cher (in module scipy.linalg.blas), 497
cher2 (in module scipy.linalg.blas), 497
cher2k (in module scipy.linalg.blas), 507
cherk (in module scipy.linalg.blas), 507
chi (in module scipy.stats), 1234
chi2 (in module scipy.stats), 1236
chi2_contingency() (in module scipy.stats), 1484
chirp() (in module scipy.signal), 887
chisquare() (in module scipy.stats), 1462
chisquare() (in module scipy.stats.mstats), 1495, 1527
chndtr (in module scipy.special), 1165
chndtridf (in module scipy.special), 1165
chndtrinc (in module scipy.special), 1165
chndtrix (in module scipy.special), 1165
cho_factor() (in module scipy.linalg), 443
cho_solve() (in module scipy.linalg), 443
cho_solve_banded() (in module scipy.linalg), 444
cholesky() (in module scipy.linalg), 441
cholesky_banded() (in module scipy.linalg), 442
circmean() (in module scipy.stats), 1483
circstd() (in module scipy.stats), 1484
circulant() (in module scipy.linalg), 468
circvar() (in module scipy.stats), 1484
cityblock() (in module scipy.spatial.distance), 1110, 1138
cKDTree (class in scipy.spatial), 1097
clange (in module scipy.linalg.lapack), 592
clarf (in module scipy.linalg.lapack), 561
clarfg (in module scipy.linalg.lapack), 562
clartg (in module scipy.linalg.lapack), 563
claswp (in module scipy.linalg.lapack), 564
clauum (in module scipy.linalg.lapack), 565
clear() (scipy.optimize.OptimizeResult method), 724
clear() (scipy.sparse.dok_matrix method), 988
close() (scipy.io.FortranFile method), 412
close() (scipy.io.netcdf.netcdf_file method), 417
close() (scipy.spatial.ConvexHull method), 1122
close() (scipy.spatial.Delaunay method), 1119
close() (scipy.spatial.Voronoi method), 1124
CloughTocher2DInterpolator (class in scipy.interpolate),

359
clpmn() (in module scipy.special), 1175
ClusterNode (class in scipy.cluster.hierarchy), 282
cmplx_sort() (in module scipy.signal), 843
coherence() (in module scipy.signal), 942

1578 Index

SciPy Reference Guide, Release 0.16.0

comb() (in module scipy.misc), 645
comb() (in module scipy.special), 1191
combine_pvalues() (in module scipy.stats), 1470
companion() (in module scipy.linalg), 469
complete() (in module scipy.cluster.hierarchy), 276
complex_ode (class in scipy.integrate), 336
conj() (scipy.sparse.bsr_matrix method), 952
conj() (scipy.sparse.coo_matrix method), 960
conj() (scipy.sparse.csc_matrix method), 968
conj() (scipy.sparse.csr_matrix method), 976
conj() (scipy.sparse.dia_matrix method), 982
conj() (scipy.sparse.dok_matrix method), 988
conj() (scipy.sparse.lil_matrix method), 994
conjtransp() (scipy.sparse.dok_matrix method), 988
conjugate() (scipy.sparse.bsr_matrix method), 953
conjugate() (scipy.sparse.coo_matrix method), 960
conjugate() (scipy.sparse.csc_matrix method), 968
conjugate() (scipy.sparse.csr_matrix method), 976
conjugate() (scipy.sparse.dia_matrix method), 982
conjugate() (scipy.sparse.dok_matrix method), 988
conjugate() (scipy.sparse.lil_matrix method), 994
connected_components() (in module

scipy.sparse.csgraph), 1006, 1081
ConstantWarning, 288
construct_fast() (scipy.interpolate.BPoly class method),

355
construct_fast() (scipy.interpolate.PPoly class method),

353
cont2discrete() (in module scipy.signal), 883
convex_hull (scipy.spatial.Delaunay attribute), 1118
convex_hull_plot_2d() (in module scipy.spatial), 1125
ConvexHull (class in scipy.spatial), 1120
convolve (in module scipy.fftpack.convolve), 317
convolve() (in module scipy.ndimage.filters), 655
convolve() (in module scipy.signal), 801
convolve1d() (in module scipy.ndimage.filters), 656
convolve2d() (in module scipy.signal), 806
convolve_z (in module scipy.fftpack.convolve), 317
coo_matrix (class in scipy.sparse), 957
cophenet() (in module scipy.cluster.hierarchy), 278
copy() (scipy.optimize.OptimizeResult method), 724
copy() (scipy.sparse.bsr_matrix method), 953
copy() (scipy.sparse.coo_matrix method), 960
copy() (scipy.sparse.csc_matrix method), 968
copy() (scipy.sparse.csr_matrix method), 976
copy() (scipy.sparse.dia_matrix method), 982
copy() (scipy.sparse.dok_matrix method), 988
copy() (scipy.sparse.lil_matrix method), 994
correlate() (in module scipy.ndimage.filters), 657
correlate() (in module scipy.signal), 802
correlate1d() (in module scipy.ndimage.filters), 657
correlate2d() (in module scipy.signal), 807
correlation() (in module scipy.spatial.distance), 1110,

1138

correspond() (in module scipy.cluster.hierarchy), 285
cosdg (in module scipy.special), 1199
coshm() (in module scipy.linalg), 460
cosine (in module scipy.stats), 1238
cosine() (in module scipy.signal), 905
cosine() (in module scipy.spatial.distance), 1110, 1138
cosm() (in module scipy.linalg), 458
cosm1 (in module scipy.special), 1199
cotdg (in module scipy.special), 1199
count_neighbors() (scipy.spatial.cKDTree method), 1098
count_neighbors() (scipy.spatial.KDTree method), 1094
count_tied_groups() (in module scipy.stats.mstats), 1497,

1528
covariance_factor() (scipy.stats.gaussian_kde method),

1525
cpbsv (in module scipy.linalg.lapack), 566
cpbtrf (in module scipy.linalg.lapack), 567
cpbtrs (in module scipy.linalg.lapack), 568
cposv (in module scipy.linalg.lapack), 569
cpotrf (in module scipy.linalg.lapack), 570
cpotri (in module scipy.linalg.lapack), 571
cpotrs (in module scipy.linalg.lapack), 572
cptsv (in module scipy.linalg.lapack), 582
createDimension() (scipy.io.netcdf.netcdf_file method),

417
createVariable() (scipy.io.netcdf.netcdf_file method), 417
crot (in module scipy.linalg.lapack), 573
crotg (in module scipy.linalg.blas), 481
cs_diff() (in module scipy.fftpack), 313
csc_matrix (class in scipy.sparse), 964
cscal (in module scipy.linalg.blas), 481
csd() (in module scipy.signal), 940
cspline1d() (in module scipy.signal), 809
cspline1d_eval() (in module scipy.signal), 810
cspline2d() (in module scipy.signal), 809
csr_matrix (class in scipy.sparse), 972
csrot (in module scipy.linalg.blas), 482
csscal (in module scipy.linalg.blas), 482
cswap (in module scipy.linalg.blas), 482
csymm (in module scipy.linalg.blas), 508
csyr (in module scipy.linalg.blas), 497
csyr2k (in module scipy.linalg.blas), 508
csyrk (in module scipy.linalg.blas), 508
ctrmv (in module scipy.linalg.blas), 496
ctrsyl (in module scipy.linalg.lapack), 574
ctrtri (in module scipy.linalg.lapack), 575
ctrtrs (in module scipy.linalg.lapack), 577
cubic() (in module scipy.signal), 809
cumfreq() (in module scipy.stats), 1435
cumtrapz() (in module scipy.integrate), 328
cunghr (in module scipy.linalg.lapack), 577
cungqr (in module scipy.linalg.lapack), 578
cungrq (in module scipy.linalg.lapack), 578
cunmqr (in module scipy.linalg.lapack), 579

Index 1579

SciPy Reference Guide, Release 0.16.0

curve_fit() (in module scipy.optimize), 762
cwt() (in module scipy.signal), 930

D
D (scipy.signal.lti attribute), 860
D (scipy.signal.StateSpace attribute), 863
D (scipy.signal.TransferFunction attribute), 866
D (scipy.signal.ZerosPolesGain attribute), 869
dasum (in module scipy.linalg.blas), 483
Data (class in scipy.odr), 709
data (scipy.spatial.cKDTree attribute), 1098
daub() (in module scipy.signal), 928
dawsn (in module scipy.special), 1173
daxpy (in module scipy.linalg.blas), 483
dblquad() (in module scipy.integrate), 321
dcopy (in module scipy.linalg.blas), 483
dct() (in module scipy.fftpack), 307
ddot (in module scipy.linalg.blas), 484
decimate() (in module scipy.signal), 823
deconvolve() (in module scipy.signal), 820
deg2rad() (scipy.sparse.bsr_matrix method), 953
deg2rad() (scipy.sparse.coo_matrix method), 960
deg2rad() (scipy.sparse.csc_matrix method), 968
deg2rad() (scipy.sparse.csr_matrix method), 976
deg2rad() (scipy.sparse.dia_matrix method), 983
Delaunay (class in scipy.spatial), 1116
delaunay_plot_2d() (in module scipy.spatial), 1125
den (scipy.signal.lti attribute), 860
den (scipy.signal.StateSpace attribute), 863
den (scipy.signal.TransferFunction attribute), 866
den (scipy.signal.ZerosPolesGain attribute), 869
dendrogram() (in module scipy.cluster.hierarchy), 280
depth_first_order() (in module scipy.sparse.csgraph),

1011, 1087
depth_first_tree() (in module scipy.sparse.csgraph), 1013,

1088
derivative() (in module scipy.misc), 645
derivative() (scipy.interpolate.Akima1DInterpolator

method), 349
derivative() (scipy.interpolate.BPoly method), 354
derivative() (scipy.interpolate.InterpolatedUnivariateSpline

method), 375
derivative() (scipy.interpolate.KroghInterpolator method),

341
derivative() (scipy.interpolate.LSQUnivariateSpline

method), 379
derivative() (scipy.interpolate.PchipInterpolator method),

345
derivative() (scipy.interpolate.PiecewisePolynomial

method), 343
derivative() (scipy.interpolate.PPoly method), 351
derivative() (scipy.interpolate.UnivariateSpline method),

370

derivatives() (scipy.interpolate.InterpolatedUnivariateSpline
method), 375

derivatives() (scipy.interpolate.KroghInterpolator
method), 342

derivatives() (scipy.interpolate.LSQUnivariateSpline
method), 380

derivatives() (scipy.interpolate.PiecewisePolynomial
method), 343

derivatives() (scipy.interpolate.UnivariateSpline method),
371

describe() (in module scipy.stats), 1426
describe() (in module scipy.stats.mstats), 1497, 1529
destroy_convolve_cache (in module

scipy.fftpack.convolve), 317
det() (in module scipy.linalg), 425
detrend() (in module scipy.signal), 824
dft() (in module scipy.linalg), 469
dgamma (in module scipy.stats), 1240
dgbsv (in module scipy.linalg.lapack), 519
dgbtrf (in module scipy.linalg.lapack), 520
dgbtrs (in module scipy.linalg.lapack), 521
dgebal (in module scipy.linalg.lapack), 523
dgees (in module scipy.linalg.lapack), 524
dgeev (in module scipy.linalg.lapack), 526
dgeev_lwork (in module scipy.linalg.lapack), 528
dgegv (in module scipy.linalg.lapack), 529
dgehrd (in module scipy.linalg.lapack), 530
dgehrd_lwork (in module scipy.linalg.lapack), 531
dgelsd (in module scipy.linalg.lapack), 535
dgelsd_lwork (in module scipy.linalg.lapack), 536
dgelss (in module scipy.linalg.lapack), 532
dgelss_lwork (in module scipy.linalg.lapack), 534
dgelsy (in module scipy.linalg.lapack), 537
dgelsy_lwork (in module scipy.linalg.lapack), 539
dgemm (in module scipy.linalg.blas), 508
dgemv (in module scipy.linalg.blas), 498
dgeqp3 (in module scipy.linalg.lapack), 540
dgeqrf (in module scipy.linalg.lapack), 541
dger (in module scipy.linalg.blas), 498
dgerqf (in module scipy.linalg.lapack), 542
dgesdd (in module scipy.linalg.lapack), 543
dgesdd_lwork (in module scipy.linalg.lapack), 544
dgesv (in module scipy.linalg.lapack), 545
dgetrf (in module scipy.linalg.lapack), 546
dgetri (in module scipy.linalg.lapack), 546
dgetri_lwork (in module scipy.linalg.lapack), 547
dgetrs (in module scipy.linalg.lapack), 548
dgges (in module scipy.linalg.lapack), 549
dggev (in module scipy.linalg.lapack), 552
dgtsv (in module scipy.linalg.lapack), 580
dia_matrix (class in scipy.sparse), 980
diagbroyden() (in module scipy.optimize), 787
diagonal() (scipy.sparse.bsr_matrix method), 953
diagonal() (scipy.sparse.coo_matrix method), 960

1580 Index

SciPy Reference Guide, Release 0.16.0

diagonal() (scipy.sparse.csc_matrix method), 968
diagonal() (scipy.sparse.csr_matrix method), 976
diagonal() (scipy.sparse.dia_matrix method), 983
diagonal() (scipy.sparse.dok_matrix method), 988
diagonal() (scipy.sparse.lil_matrix method), 994
diags() (in module scipy.sparse), 998
diagsvd() (in module scipy.linalg), 441
dice() (in module scipy.spatial.distance), 1111, 1139
diff() (in module scipy.fftpack), 311
differential_evolution() (in module scipy.optimize), 746,

758
digamma (in module scipy.special), 1171
dijkstra() (in module scipy.sparse.csgraph), 1008, 1084
dimpulse() (in module scipy.signal), 877
diric() (in module scipy.special), 1193
dirichlet (in module scipy.stats), 1394
distance_matrix() (in module scipy.spatial), 1126
distance_transform_bf() (in module

scipy.ndimage.morphology), 696
distance_transform_cdt() (in module

scipy.ndimage.morphology), 697
distance_transform_edt() (in module

scipy.ndimage.morphology), 697
dlamch (in module scipy.linalg.lapack), 582
dlange (in module scipy.linalg.lapack), 591
dlaplace (in module scipy.stats), 1405
dlarf (in module scipy.linalg.lapack), 560
dlarfg (in module scipy.linalg.lapack), 562
dlartg (in module scipy.linalg.lapack), 562
dlasd4 (in module scipy.linalg.lapack), 563
dlaswp (in module scipy.linalg.lapack), 564
dlauum (in module scipy.linalg.lapack), 565
dlsim() (in module scipy.signal), 877
dnrm2 (in module scipy.linalg.blas), 484
dok_matrix (class in scipy.sparse), 986
dorghr (in module scipy.linalg.lapack), 583
dorgqr (in module scipy.linalg.lapack), 583
dorgrq (in module scipy.linalg.lapack), 584
dormqr (in module scipy.linalg.lapack), 584
dot() (scipy.optimize.LbfgsInvHessProduct method), 798
dot() (scipy.sparse.bsr_matrix method), 953
dot() (scipy.sparse.coo_matrix method), 960
dot() (scipy.sparse.csc_matrix method), 968
dot() (scipy.sparse.csr_matrix method), 976
dot() (scipy.sparse.dia_matrix method), 983
dot() (scipy.sparse.dok_matrix method), 988
dot() (scipy.sparse.lil_matrix method), 994
dot() (scipy.sparse.linalg.LinearOperator method), 1019,

1053
dpbsv (in module scipy.linalg.lapack), 566
dpbtrf (in module scipy.linalg.lapack), 567
dpbtrs (in module scipy.linalg.lapack), 568
dposv (in module scipy.linalg.lapack), 569
dpotrf (in module scipy.linalg.lapack), 570

dpotri (in module scipy.linalg.lapack), 571
dpotrs (in module scipy.linalg.lapack), 572
dptsv (in module scipy.linalg.lapack), 581
drot (in module scipy.linalg.blas), 484
drotg (in module scipy.linalg.blas), 485
drotm (in module scipy.linalg.blas), 485
drotmg (in module scipy.linalg.blas), 485
dsbev (in module scipy.linalg.lapack), 585
dsbevd (in module scipy.linalg.lapack), 585
dsbevx (in module scipy.linalg.lapack), 586
dscal (in module scipy.linalg.blas), 485
dst() (in module scipy.fftpack), 309
dstep() (in module scipy.signal), 878
dswap (in module scipy.linalg.blas), 486
dsyev (in module scipy.linalg.lapack), 587
dsyevd (in module scipy.linalg.lapack), 588
dsyevr (in module scipy.linalg.lapack), 588
dsygv (in module scipy.linalg.lapack), 589
dsygvd (in module scipy.linalg.lapack), 590
dsygvx (in module scipy.linalg.lapack), 591
dsymm (in module scipy.linalg.blas), 509
dsymv (in module scipy.linalg.blas), 499
dsyr (in module scipy.linalg.blas), 499
dsyr2 (in module scipy.linalg.blas), 500
dsyr2k (in module scipy.linalg.blas), 509
dsyrk (in module scipy.linalg.blas), 509
dtrmv (in module scipy.linalg.blas), 499
dtrsyl (in module scipy.linalg.lapack), 574
dtrtri (in module scipy.linalg.lapack), 575
dtrtrs (in module scipy.linalg.lapack), 576
dweibull (in module scipy.stats), 1242
dzasum (in module scipy.linalg.blas), 486
dznrm2 (in module scipy.linalg.blas), 486

E
eig() (in module scipy.linalg), 432
eig_banded() (in module scipy.linalg), 435
eigh() (in module scipy.linalg), 433
eigs() (in module scipy.sparse.linalg), 1035, 1068
eigsh() (in module scipy.sparse.linalg), 1037, 1070
eigvals() (in module scipy.linalg), 432
eigvals_banded() (in module scipy.linalg), 436
eigvalsh() (in module scipy.linalg), 434
eliminate_zeros() (scipy.sparse.bsr_matrix method), 953
eliminate_zeros() (scipy.sparse.csc_matrix method), 968
eliminate_zeros() (scipy.sparse.csr_matrix method), 976
ellip() (in module scipy.signal), 853
ellip_harm() (in module scipy.special), 1177
ellip_harm_2() (in module scipy.special), 1178
ellip_normal() (in module scipy.special), 1179
ellipap() (in module scipy.signal), 843
ellipe (in module scipy.special), 1146
ellipeinc (in module scipy.special), 1147
ellipj (in module scipy.special), 1145

Index 1581

SciPy Reference Guide, Release 0.16.0

ellipk() (in module scipy.special), 1145
ellipkinc (in module scipy.special), 1146
ellipkm1 (in module scipy.special), 1146
ellipord() (in module scipy.signal), 854
entr (in module scipy.special), 1167
entropy() (in module scipy.stats), 1483
entropy() (scipy.stats.rv_continuous method), 1205
entropy() (scipy.stats.rv_discrete method), 1214
erf (in module scipy.special), 1172
erf_zeros() (in module scipy.special), 1174
erfc (in module scipy.special), 1172
erfcinv() (in module scipy.special), 1173
erfcx (in module scipy.special), 1173
erfi (in module scipy.special), 1173
erfinv() (in module scipy.special), 1173
erlang (in module scipy.stats), 1244
errprint() (in module scipy.special), 1143
estimate_rank() (in module scipy.linalg.interpolative),

637
estimate_spectral_norm() (in module

scipy.linalg.interpolative), 637
estimate_spectral_norm_diff() (in module

scipy.linalg.interpolative), 637
euclidean() (in module scipy.spatial.distance), 1111, 1139
euler() (in module scipy.special), 1194
ev() (scipy.interpolate.BivariateSpline method), 395
ev() (scipy.interpolate.LSQBivariateSpline method), 401
ev() (scipy.interpolate.LSQSphereBivariateSpline

method), 404
ev() (scipy.interpolate.RectBivariateSpline method), 367,

389
ev() (scipy.interpolate.RectSphereBivariateSpline

method), 393
ev() (scipy.interpolate.SmoothBivariateSpline method),

397
ev() (scipy.interpolate.SmoothSphereBivariateSpline

method), 399
eval_chebyc (in module scipy.special), 1180
eval_chebys (in module scipy.special), 1180
eval_chebyt (in module scipy.special), 1180
eval_chebyu (in module scipy.special), 1180
eval_gegenbauer (in module scipy.special), 1180
eval_genlaguerre (in module scipy.special), 1180
eval_hermite (in module scipy.special), 1180
eval_hermitenorm (in module scipy.special), 1180
eval_jacobi (in module scipy.special), 1180
eval_laguerre (in module scipy.special), 1180
eval_legendre (in module scipy.special), 1180
eval_sh_chebyt (in module scipy.special), 1180
eval_sh_chebyu (in module scipy.special), 1180
eval_sh_jacobi (in module scipy.special), 1181
eval_sh_legendre (in module scipy.special), 1180
evaluate() (scipy.stats.gaussian_kde method), 1523
excitingmixing() (in module scipy.optimize), 785

exp1 (in module scipy.special), 1194
exp10 (in module scipy.special), 1198
exp2 (in module scipy.special), 1199
expect() (scipy.stats.rv_continuous method), 1206
expect() (scipy.stats.rv_discrete method), 1215
expected_freq() (in module scipy.stats.contingency), 1486
expi (in module scipy.special), 1194
expit (in module scipy.special), 1166
expm() (in module scipy.linalg), 457
expm() (in module scipy.sparse.linalg), 1021, 1055
expm1 (in module scipy.special), 1199
expm1() (scipy.sparse.bsr_matrix method), 953
expm1() (scipy.sparse.coo_matrix method), 960
expm1() (scipy.sparse.csc_matrix method), 968
expm1() (scipy.sparse.csr_matrix method), 976
expm1() (scipy.sparse.dia_matrix method), 983
expm_cond() (in module scipy.linalg), 464
expm_frechet() (in module scipy.linalg), 463
expm_multiply() (in module scipy.sparse.linalg), 1021,

1055
expn (in module scipy.special), 1194
expon (in module scipy.stats), 1245
exponential() (in module scipy.signal), 907
exponnorm (in module scipy.stats), 1247
exponpow (in module scipy.stats), 1251
exponweib (in module scipy.stats), 1249
extend() (scipy.interpolate.BPoly method), 354
extend() (scipy.interpolate.PiecewisePolynomial

method), 344
extend() (scipy.interpolate.PPoly method), 352
extrema() (in module scipy.ndimage.measurements), 674
eye() (in module scipy.sparse), 997

F
f (in module scipy.stats), 1253
F2C() (in module scipy.constants), 300
F2K() (in module scipy.constants), 300
f_oneway() (in module scipy.stats), 1450
f_oneway() (in module scipy.stats.mstats), 1498, 1530
f_value_wilks_lambda() (in module scipy.stats.mstats),

1498, 1530
face() (in module scipy.misc), 646
factorial() (in module scipy.misc), 647
factorial() (in module scipy.special), 1195
factorial2() (in module scipy.misc), 647
factorial2() (in module scipy.special), 1195
factorialk() (in module scipy.misc), 648
factorialk() (in module scipy.special), 1196
factorized() (in module scipy.sparse.linalg), 1023, 1057
fatiguelife (in module scipy.stats), 1255
fcluster() (in module scipy.cluster.hierarchy), 271
fclusterdata() (in module scipy.cluster.hierarchy), 272
fdtr (in module scipy.special), 1157
fdtrc (in module scipy.special), 1157

1582 Index

SciPy Reference Guide, Release 0.16.0

fdtri (in module scipy.special), 1157
fft() (in module scipy.fftpack), 303
fft2() (in module scipy.fftpack), 304
fftconvolve() (in module scipy.signal), 804
fftfreq() (in module scipy.fftpack), 315
fftn() (in module scipy.fftpack), 304
fftshift() (in module scipy.fftpack), 314
filtfilt() (in module scipy.signal), 815
find() (in module scipy.constants), 288
find() (in module scipy.sparse), 1004
find_best_blas_type() (in module scipy.linalg), 477
find_best_blas_type() (in module scipy.linalg.blas), 479
find_objects() (in module scipy.ndimage.measurements),

675
find_peaks_cwt() (in module scipy.signal), 931
find_repeats() (in module scipy.stats.mstats), 1498, 1530
find_simplex() (scipy.spatial.Delaunay method), 1119
findfreqs() (in module scipy.signal), 825
firwin() (in module scipy.signal), 826
firwin2() (in module scipy.signal), 827
fisher_exact() (in module scipy.stats), 1487
fisk (in module scipy.stats), 1258
fit() (scipy.stats.rv_continuous method), 1208
fit_loc_scale() (scipy.stats.rv_continuous method), 1209
fixed_point() (in module scipy.optimize), 768
fixed_quad() (in module scipy.integrate), 325
flattop() (in module scipy.signal), 909
fligner() (in module scipy.stats), 1474
floor() (scipy.sparse.bsr_matrix method), 953
floor() (scipy.sparse.coo_matrix method), 961
floor() (scipy.sparse.csc_matrix method), 968
floor() (scipy.sparse.csr_matrix method), 976
floor() (scipy.sparse.dia_matrix method), 983
floyd_warshall() (in module scipy.sparse.csgraph), 1009,

1084
flush() (scipy.io.netcdf.netcdf_file method), 417
fmin() (in module scipy.optimize), 731
fmin_bfgs() (in module scipy.optimize), 736
fmin_cg() (in module scipy.optimize), 734
fmin_cobyla() (in module scipy.optimize), 742
fmin_l_bfgs_b() (in module scipy.optimize), 738
fmin_ncg() (in module scipy.optimize), 737
fmin_powell() (in module scipy.optimize), 732
fmin_slsqp() (in module scipy.optimize), 744
fmin_tnc() (in module scipy.optimize), 740
fminbound() (in module scipy.optimize), 748
foldcauchy (in module scipy.stats), 1260
foldnorm (in module scipy.stats), 1262
FortranFile (class in scipy.io), 411
fourier_ellipsoid() (in module scipy.ndimage.fourier),

667
fourier_gaussian() (in module scipy.ndimage.fourier),

667
fourier_shift() (in module scipy.ndimage.fourier), 667

fourier_uniform() (in module scipy.ndimage.fourier), 668
fractional_matrix_power() (in module scipy.linalg), 464
frechet_l (in module scipy.stats), 1266
frechet_r (in module scipy.stats), 1264
freqresp() (in module scipy.signal), 858
freqresp() (scipy.signal.lti method), 862
freqresp() (scipy.signal.StateSpace method), 864
freqresp() (scipy.signal.TransferFunction method), 867
freqresp() (scipy.signal.ZerosPolesGain method), 870
freqs() (in module scipy.signal), 828
freqz() (in module scipy.signal), 830
fresnel (in module scipy.special), 1173
fresnel_zeros() (in module scipy.special), 1174
fresnelc_zeros() (in module scipy.special), 1174
fresnels_zeros() (in module scipy.special), 1174
friedmanchisquare() (in module scipy.stats), 1469
friedmanchisquare() (in module scipy.stats.mstats), 1498,

1530
from_bernstein_basis() (scipy.interpolate.PPoly class

method), 352
from_derivatives() (scipy.interpolate.BPoly class

method), 355
from_mlab_linkage() (in module scipy.cluster.hierarchy),

278
from_power_basis() (scipy.interpolate.BPoly class

method), 355
from_spline() (scipy.interpolate.PPoly class method), 352
fromimage() (in module scipy.misc), 648
fromkeys() (scipy.optimize.OptimizeResult static

method), 724
fromkeys() (scipy.sparse.dok_matrix static method), 989
fsolve() (in module scipy.optimize), 770
funm() (in module scipy.linalg), 462

G
gain (scipy.signal.lti attribute), 860
gain (scipy.signal.StateSpace attribute), 863
gain (scipy.signal.TransferFunction attribute), 866
gain (scipy.signal.ZerosPolesGain attribute), 869
gamma (in module scipy.special), 1169
gamma (in module scipy.stats), 1281
gammainc (in module scipy.special), 1170
gammaincc (in module scipy.special), 1170
gammainccinv (in module scipy.special), 1170
gammaincinv (in module scipy.special), 1170
gammaln (in module scipy.special), 1169
gammasgn (in module scipy.special), 1169
gauss_spline() (in module scipy.signal), 809
gausshyper (in module scipy.stats), 1279
gaussian() (in module scipy.signal), 911
gaussian_filter() (in module scipy.ndimage.filters), 657
gaussian_filter1d() (in module scipy.ndimage.filters), 658
gaussian_gradient_magnitude() (in module

scipy.ndimage.filters), 658

Index 1583

SciPy Reference Guide, Release 0.16.0

gaussian_kde (class in scipy.stats), 1520
gaussian_laplace() (in module scipy.ndimage.filters), 659
gausspulse() (in module scipy.signal), 888
gdtr (in module scipy.special), 1157
gdtrc (in module scipy.special), 1157
gdtria (in module scipy.special), 1157
gdtrib (in module scipy.special), 1158
gdtrix (in module scipy.special), 1158
gegenbauer() (in module scipy.special), 1182
general_gaussian() (in module scipy.signal), 912
generate_binary_structure() (in module

scipy.ndimage.morphology), 699
generic_filter() (in module scipy.ndimage.filters), 659
generic_filter1d() (in module scipy.ndimage.filters), 660
generic_gradient_magnitude() (in module

scipy.ndimage.filters), 660
generic_laplace() (in module scipy.ndimage.filters), 661
genexpon (in module scipy.stats), 1275
genextreme (in module scipy.stats), 1277
gengamma (in module scipy.stats), 1284
genhalflogistic (in module scipy.stats), 1286
genlaguerre() (in module scipy.special), 1182
genlogistic (in module scipy.stats), 1268
gennorm (in module scipy.stats), 1270
genpareto (in module scipy.stats), 1272
geom (in module scipy.stats), 1407
geometric_transform() (in module

scipy.ndimage.interpolation), 669
get() (scipy.optimize.OptimizeResult method), 724
get() (scipy.sparse.dok_matrix method), 989
get_blas_funcs() (in module scipy.linalg), 477
get_blas_funcs() (in module scipy.linalg.blas), 478
get_coeffs() (scipy.interpolate.BivariateSpline method),

395
get_coeffs() (scipy.interpolate.InterpolatedUnivariateSpline

method), 376
get_coeffs() (scipy.interpolate.LSQBivariateSpline

method), 401
get_coeffs() (scipy.interpolate.LSQSphereBivariateSpline

method), 404
get_coeffs() (scipy.interpolate.LSQUnivariateSpline

method), 380
get_coeffs() (scipy.interpolate.RectBivariateSpline

method), 367, 389
get_coeffs() (scipy.interpolate.RectSphereBivariateSpline

method), 394
get_coeffs() (scipy.interpolate.SmoothBivariateSpline

method), 397
get_coeffs() (scipy.interpolate.SmoothSphereBivariateSpline

method), 400
get_coeffs() (scipy.interpolate.UnivariateSpline method),

371
get_count() (scipy.cluster.hierarchy.ClusterNode

method), 283

get_id() (scipy.cluster.hierarchy.ClusterNode method),
283

get_knots() (scipy.interpolate.BivariateSpline method),
395

get_knots() (scipy.interpolate.InterpolatedUnivariateSpline
method), 376

get_knots() (scipy.interpolate.LSQBivariateSpline
method), 401

get_knots() (scipy.interpolate.LSQSphereBivariateSpline
method), 404

get_knots() (scipy.interpolate.LSQUnivariateSpline
method), 380

get_knots() (scipy.interpolate.RectBivariateSpline
method), 367, 389

get_knots() (scipy.interpolate.RectSphereBivariateSpline
method), 394

get_knots() (scipy.interpolate.SmoothBivariateSpline
method), 397

get_knots() (scipy.interpolate.SmoothSphereBivariateSpline
method), 400

get_knots() (scipy.interpolate.UnivariateSpline method),
371

get_lapack_funcs() (in module scipy.linalg), 477
get_left() (scipy.cluster.hierarchy.ClusterNode method),

283
get_residual() (scipy.interpolate.BivariateSpline method),

395
get_residual() (scipy.interpolate.InterpolatedUnivariateSpline

method), 376
get_residual() (scipy.interpolate.LSQBivariateSpline

method), 401
get_residual() (scipy.interpolate.LSQSphereBivariateSpline

method), 404
get_residual() (scipy.interpolate.LSQUnivariateSpline

method), 380
get_residual() (scipy.interpolate.RectBivariateSpline

method), 367, 390
get_residual() (scipy.interpolate.RectSphereBivariateSpline

method), 394
get_residual() (scipy.interpolate.SmoothBivariateSpline

method), 397
get_residual() (scipy.interpolate.SmoothSphereBivariateSpline

method), 400
get_residual() (scipy.interpolate.UnivariateSpline

method), 371
get_right() (scipy.cluster.hierarchy.ClusterNode method),

283
get_shape() (scipy.sparse.bsr_matrix method), 953
get_shape() (scipy.sparse.coo_matrix method), 961
get_shape() (scipy.sparse.csc_matrix method), 969
get_shape() (scipy.sparse.csr_matrix method), 976
get_shape() (scipy.sparse.dia_matrix method), 983
get_shape() (scipy.sparse.dok_matrix method), 989
get_shape() (scipy.sparse.lil_matrix method), 994

1584 Index

SciPy Reference Guide, Release 0.16.0

get_window() (in module scipy.signal), 893
getcol() (scipy.sparse.bsr_matrix method), 953
getcol() (scipy.sparse.coo_matrix method), 961
getcol() (scipy.sparse.csc_matrix method), 969
getcol() (scipy.sparse.csr_matrix method), 976
getcol() (scipy.sparse.dia_matrix method), 983
getcol() (scipy.sparse.dok_matrix method), 989
getcol() (scipy.sparse.lil_matrix method), 994
getdata() (scipy.sparse.bsr_matrix method), 953
getformat() (scipy.sparse.bsr_matrix method), 953
getformat() (scipy.sparse.coo_matrix method), 961
getformat() (scipy.sparse.csc_matrix method), 969
getformat() (scipy.sparse.csr_matrix method), 977
getformat() (scipy.sparse.dia_matrix method), 983
getformat() (scipy.sparse.dok_matrix method), 989
getformat() (scipy.sparse.lil_matrix method), 994
getH() (scipy.sparse.bsr_matrix method), 953
getH() (scipy.sparse.coo_matrix method), 961
getH() (scipy.sparse.csc_matrix method), 969
getH() (scipy.sparse.csr_matrix method), 976
getH() (scipy.sparse.dia_matrix method), 983
getH() (scipy.sparse.dok_matrix method), 989
getH() (scipy.sparse.lil_matrix method), 994
getmaxprint() (scipy.sparse.bsr_matrix method), 953
getmaxprint() (scipy.sparse.coo_matrix method), 961
getmaxprint() (scipy.sparse.csc_matrix method), 969
getmaxprint() (scipy.sparse.csr_matrix method), 977
getmaxprint() (scipy.sparse.dia_matrix method), 983
getmaxprint() (scipy.sparse.dok_matrix method), 989
getmaxprint() (scipy.sparse.lil_matrix method), 994
getnnz() (scipy.sparse.bsr_matrix method), 953
getnnz() (scipy.sparse.coo_matrix method), 961
getnnz() (scipy.sparse.csc_matrix method), 969
getnnz() (scipy.sparse.csr_matrix method), 977
getnnz() (scipy.sparse.dia_matrix method), 983
getnnz() (scipy.sparse.dok_matrix method), 989
getnnz() (scipy.sparse.lil_matrix method), 994
getrow() (scipy.sparse.bsr_matrix method), 953
getrow() (scipy.sparse.coo_matrix method), 961
getrow() (scipy.sparse.csc_matrix method), 969
getrow() (scipy.sparse.csr_matrix method), 977
getrow() (scipy.sparse.dia_matrix method), 983
getrow() (scipy.sparse.dok_matrix method), 989
getrow() (scipy.sparse.lil_matrix method), 995
getrowview() (scipy.sparse.lil_matrix method), 995
getValue() (scipy.io.netcdf.netcdf_variable method), 418
gilbrat (in module scipy.stats), 1288
gmean() (in module scipy.stats), 1426
gmres() (in module scipy.sparse.linalg), 1027, 1060
golden() (in module scipy.optimize), 749
gompertz (in module scipy.stats), 1290
grey_closing() (in module scipy.ndimage.morphology),

700

grey_dilation() (in module scipy.ndimage.morphology),
701

grey_erosion() (in module scipy.ndimage.morphology),
703

grey_opening() (in module scipy.ndimage.morphology),
704

griddata() (in module scipy.interpolate), 356
group_delay() (in module scipy.signal), 831
gumbel_l (in module scipy.stats), 1294
gumbel_r (in module scipy.stats), 1292

H
H (scipy.optimize.LbfgsInvHessProduct attribute), 797
h1vp() (in module scipy.special), 1153
h2vp() (in module scipy.special), 1153
hadamard() (in module scipy.linalg), 470
halfcauchy (in module scipy.stats), 1296
halfgennorm (in module scipy.stats), 1302
halflogistic (in module scipy.stats), 1298
halfnorm (in module scipy.stats), 1300
hamming() (in module scipy.signal), 914
hamming() (in module scipy.spatial.distance), 1111, 1139
hankel() (in module scipy.linalg), 471
hankel1 (in module scipy.special), 1148
hankel1e (in module scipy.special), 1148
hankel2 (in module scipy.special), 1149
hankel2e (in module scipy.special), 1149
hann() (in module scipy.signal), 916
has_key() (scipy.optimize.OptimizeResult method), 724
has_key() (scipy.sparse.dok_matrix method), 989
has_sorted_indices (scipy.sparse.bsr_matrix attribute),

950
has_sorted_indices (scipy.sparse.csc_matrix attribute),

966
has_sorted_indices (scipy.sparse.csr_matrix attribute),

973
helmert() (in module scipy.linalg), 471
hermite() (in module scipy.special), 1182
hermitenorm() (in module scipy.special), 1182
hessenberg() (in module scipy.linalg), 456
hilbert() (in module scipy.fftpack), 312
hilbert() (in module scipy.linalg), 472
hilbert() (in module scipy.signal), 822
hilbert2() (in module scipy.signal), 823
histogram() (in module scipy.ndimage.measurements),

676
histogram() (in module scipy.stats), 1436
histogram2() (in module scipy.stats), 1435
hmean() (in module scipy.stats), 1427
hstack() (in module scipy.sparse), 1003
huber (in module scipy.special), 1168
hyp0f1() (in module scipy.special), 1183
hyp1f1 (in module scipy.special), 1182
hyp1f2 (in module scipy.special), 1183

Index 1585

SciPy Reference Guide, Release 0.16.0

hyp2f0 (in module scipy.special), 1183
hyp2f1 (in module scipy.special), 1182
hyp3f0 (in module scipy.special), 1183
hypergeom (in module scipy.stats), 1409
hyperu (in module scipy.special), 1183
hypsecant (in module scipy.stats), 1304

I
i0 (in module scipy.special), 1151
i0e (in module scipy.special), 1151
i1 (in module scipy.special), 1151
i1e (in module scipy.special), 1151
icamax (in module scipy.linalg.blas), 486
id_to_svd() (in module scipy.linalg.interpolative), 636
idamax (in module scipy.linalg.blas), 487
idct() (in module scipy.fftpack), 308
identity() (in module scipy.sparse), 997
idst() (in module scipy.fftpack), 310
ifft() (in module scipy.fftpack), 304
ifft2() (in module scipy.fftpack), 304
ifftn() (in module scipy.fftpack), 305
ifftshift() (in module scipy.fftpack), 315
ihilbert() (in module scipy.fftpack), 312
iirdesign() (in module scipy.signal), 833
iirfilter() (in module scipy.signal), 834
imfilter() (in module scipy.misc), 648
impulse() (in module scipy.signal), 872
impulse() (scipy.signal.lti method), 862
impulse() (scipy.signal.StateSpace method), 865
impulse() (scipy.signal.TransferFunction method), 867
impulse() (scipy.signal.ZerosPolesGain method), 870
impulse2() (in module scipy.signal), 873
imread() (in module scipy.misc), 649
imread() (in module scipy.ndimage), 709
imresize() (in module scipy.misc), 649
imrotate() (in module scipy.misc), 649
imsave() (in module scipy.misc), 649
imshow() (in module scipy.misc), 650
inconsistent() (in module scipy.cluster.hierarchy), 278
indices (scipy.spatial.cKDTree attribute), 1098
info() (in module scipy.misc), 650
init_convolution_kernel (in module

scipy.fftpack.convolve), 317
inline() (in module scipy.weave), 1552
integral() (scipy.interpolate.BivariateSpline method), 395
integral() (scipy.interpolate.InterpolatedUnivariateSpline

method), 376
integral() (scipy.interpolate.LSQBivariateSpline method),

401
integral() (scipy.interpolate.LSQUnivariateSpline

method), 380
integral() (scipy.interpolate.RectBivariateSpline method),

367, 390

integral() (scipy.interpolate.SmoothBivariateSpline
method), 397

integral() (scipy.interpolate.UnivariateSpline method),
371

integrate() (scipy.integrate.complex_ode method), 336
integrate() (scipy.integrate.ode method), 335
integrate() (scipy.interpolate.BPoly method), 355
integrate() (scipy.interpolate.PPoly method), 351
integrate_box() (scipy.stats.gaussian_kde method), 1523
integrate_box_1d() (scipy.stats.gaussian_kde method),

1523
integrate_gaussian() (scipy.stats.gaussian_kde method),

1523
integrate_kde() (scipy.stats.gaussian_kde method), 1523
interp1d (class in scipy.interpolate), 337
interp2d (class in scipy.interpolate), 361
interp_decomp() (in module scipy.linalg.interpolative),

634
interpn() (in module scipy.interpolate), 363
InterpolatedUnivariateSpline (class in scipy.interpolate),

372
interval() (scipy.stats.rv_continuous method), 1207
interval() (scipy.stats.rv_discrete method), 1216
inv() (in module scipy.linalg), 419
inv() (in module scipy.sparse.linalg), 1021, 1054
invgamma (in module scipy.stats), 1306
invgauss (in module scipy.stats), 1308
invhilbert() (in module scipy.linalg), 472
invpascal() (in module scipy.linalg), 474
invres() (in module scipy.signal), 840
invresz() (in module scipy.signal), 841
invweibull (in module scipy.stats), 1310
invwishart (in module scipy.stats), 1397
irfft() (in module scipy.fftpack), 306
is_isomorphic() (in module scipy.cluster.hierarchy), 285
is_leaf() (scipy.cluster.hierarchy.ClusterNode method),

283
is_monotonic() (in module scipy.cluster.hierarchy), 285
is_valid_dm() (in module scipy.spatial.distance), 1108,

1136
is_valid_im() (in module scipy.cluster.hierarchy), 284
is_valid_linkage() (in module scipy.cluster.hierarchy),

285
is_valid_y() (in module scipy.spatial.distance), 1108,

1136
isamax (in module scipy.linalg.blas), 487
isf() (scipy.stats.rv_continuous method), 1205
isf() (scipy.stats.rv_discrete method), 1214
issparse() (in module scipy.sparse), 1005
isspmatrix() (in module scipy.sparse), 1005
isspmatrix_bsr() (in module scipy.sparse), 1005
isspmatrix_coo() (in module scipy.sparse), 1005
isspmatrix_csc() (in module scipy.sparse), 1005
isspmatrix_csr() (in module scipy.sparse), 1005

1586 Index

SciPy Reference Guide, Release 0.16.0

isspmatrix_dia() (in module scipy.sparse), 1005
isspmatrix_dok() (in module scipy.sparse), 1005
isspmatrix_lil() (in module scipy.sparse), 1005
it2i0k0 (in module scipy.special), 1152
it2j0y0 (in module scipy.special), 1152
it2struve0 (in module scipy.special), 1154
itairy (in module scipy.special), 1145
itemfreq() (in module scipy.stats), 1436
items() (scipy.optimize.OptimizeResult method), 724
items() (scipy.sparse.dok_matrix method), 989
itemsize() (scipy.io.netcdf.netcdf_variable method), 419
iterate_structure() (in module

scipy.ndimage.morphology), 705
iteritems() (scipy.optimize.OptimizeResult method), 724
iteritems() (scipy.sparse.dok_matrix method), 989
iterkeys() (scipy.optimize.OptimizeResult method), 724
iterkeys() (scipy.sparse.dok_matrix method), 989
itervalues() (scipy.optimize.OptimizeResult method), 725
itervalues() (scipy.sparse.dok_matrix method), 989
iti0k0 (in module scipy.special), 1152
itilbert() (in module scipy.fftpack), 312
itj0y0 (in module scipy.special), 1152
itmodstruve0 (in module scipy.special), 1154
itstruve0 (in module scipy.special), 1154
iv (in module scipy.special), 1148
ive (in module scipy.special), 1148
ivp() (in module scipy.special), 1153
izamax (in module scipy.linalg.blas), 487

J
j0 (in module scipy.special), 1151
j1 (in module scipy.special), 1151
jaccard() (in module scipy.spatial.distance), 1112, 1140
jacobi() (in module scipy.special), 1182
jn_zeros() (in module scipy.special), 1150
jnjnp_zeros() (in module scipy.special), 1149
jnp_zeros() (in module scipy.special), 1150
jnyn_zeros() (in module scipy.special), 1150
johnson() (in module scipy.sparse.csgraph), 1010, 1086
johnsonsb (in module scipy.stats), 1312
johnsonsu (in module scipy.stats), 1314
jv (in module scipy.special), 1147
jve (in module scipy.special), 1147
jvp() (in module scipy.special), 1153

K
k0 (in module scipy.special), 1151
k0e (in module scipy.special), 1151
k1 (in module scipy.special), 1151
k1e (in module scipy.special), 1151
K2C() (in module scipy.constants), 299
K2F() (in module scipy.constants), 301
kaiser() (in module scipy.signal), 918
kaiser_atten() (in module scipy.signal), 835

kaiser_beta() (in module scipy.signal), 836
kaiserord() (in module scipy.signal), 836
KDTree (class in scipy.spatial), 1093
kei (in module scipy.special), 1190
kei_zeros() (in module scipy.special), 1191
keip (in module scipy.special), 1190
keip_zeros() (in module scipy.special), 1191
kelvin (in module scipy.special), 1190
kelvin_zeros() (in module scipy.special), 1190
kendalltau() (in module scipy.stats), 1453
kendalltau() (in module scipy.stats.mstats), 1499, 1530
kendalltau_seasonal() (in module scipy.stats.mstats),

1499, 1531
ker (in module scipy.special), 1190
ker_zeros() (in module scipy.special), 1191
kerp (in module scipy.special), 1190
kerp_zeros() (in module scipy.special), 1191
keys() (scipy.optimize.OptimizeResult method), 725
keys() (scipy.sparse.dok_matrix method), 989
kl_div (in module scipy.special), 1168
kmeans() (in module scipy.cluster.vq), 269
kmeans2() (in module scipy.cluster.vq), 270
kn (in module scipy.special), 1148
kolmogi (in module scipy.special), 1165
kolmogorov (in module scipy.special), 1165
krogh_interpolate() (in module scipy.interpolate), 346
KroghInterpolator (class in scipy.interpolate), 340
kron() (in module scipy.linalg), 430
kron() (in module scipy.sparse), 998
kronsum() (in module scipy.sparse), 998
kruskal() (in module scipy.stats), 1469
kruskalwallis() (in module scipy.stats.mstats), 1499, 1531
ks_2samp() (in module scipy.stats), 1465
ks_twosamp() (in module scipy.stats.mstats), 1499, 1531
ksone (in module scipy.stats), 1316
kstat() (in module scipy.stats), 1430
kstatvar() (in module scipy.stats), 1430
kstest() (in module scipy.stats), 1460
kstwobign (in module scipy.stats), 1318
kulsinski() (in module scipy.spatial.distance), 1112, 1140
kurtosis() (in module scipy.stats), 1427
kurtosis() (in module scipy.stats.mstats), 1500, 1531
kurtosistest() (in module scipy.stats), 1428
kurtosistest() (in module scipy.stats.mstats), 1500, 1532
kv (in module scipy.special), 1148
kve (in module scipy.special), 1148
kvp() (in module scipy.special), 1153

L
L (scipy.sparse.linalg.SuperLU attribute), 1045, 1079
label() (in module scipy.ndimage.measurements), 677
labeled_comprehension() (in module

scipy.ndimage.measurements), 678
lagrange() (in module scipy.interpolate), 406

Index 1587

SciPy Reference Guide, Release 0.16.0

laguerre() (in module scipy.special), 1182
lambda2nu() (in module scipy.constants), 302
lambertw() (in module scipy.special), 1196
laplace (in module scipy.stats), 1320
laplace() (in module scipy.ndimage.filters), 661
laplacian() (in module scipy.sparse.csgraph), 1006, 1082
LbfgsInvHessProduct (class in scipy.optimize), 797
leaders() (in module scipy.cluster.hierarchy), 273
leafsize (scipy.spatial.cKDTree attribute), 1098
leastsq() (in module scipy.optimize), 750
leaves_list() (in module scipy.cluster.hierarchy), 284
legendre() (in module scipy.special), 1181
lena() (in module scipy.misc), 651
leslie() (in module scipy.linalg), 473
levene() (in module scipy.stats), 1471
lfilter() (in module scipy.signal), 813
lfilter_zi() (in module scipy.signal), 814
lfiltic() (in module scipy.signal), 814
lgmres() (in module scipy.sparse.linalg), 1028, 1062
lift_points() (scipy.spatial.Delaunay method), 1120
lil_matrix (class in scipy.sparse), 992
line_search() (in module scipy.optimize), 795
linearmixing() (in module scipy.optimize), 786
LinearNDInterpolator (class in scipy.interpolate), 358
LinearOperator (class in scipy.sparse.linalg), 1018, 1051
linkage() (in module scipy.cluster.hierarchy), 274
linprog() (in module scipy.optimize), 788
linregress() (in module scipy.stats), 1454
linregress() (in module scipy.stats.mstats), 1500, 1532
lmbda() (in module scipy.special), 1149
loadarff() (in module scipy.io.arff), 414
loadmat() (in module scipy.io), 407
lobpcg() (in module scipy.sparse.linalg), 1039, 1073
log1p (in module scipy.special), 1199
log1p() (scipy.sparse.bsr_matrix method), 954
log1p() (scipy.sparse.coo_matrix method), 961
log1p() (scipy.sparse.csc_matrix method), 969
log1p() (scipy.sparse.csr_matrix method), 977
log1p() (scipy.sparse.dia_matrix method), 983
log_ndtr (in module scipy.special), 1164
logcdf() (scipy.stats.rv_continuous method), 1204
logcdf() (scipy.stats.rv_discrete method), 1213
loggamma (in module scipy.stats), 1324
logistic (in module scipy.stats), 1322
logit (in module scipy.special), 1165
loglaplace (in module scipy.stats), 1326
logm() (in module scipy.linalg), 458
lognorm (in module scipy.stats), 1328
logpdf() (scipy.stats.gaussian_kde method), 1524
logpdf() (scipy.stats.rv_continuous method), 1203
logpmf() (scipy.stats.rv_discrete method), 1212
logser (in module scipy.stats), 1411
logsf() (scipy.stats.rv_continuous method), 1204
logsf() (scipy.stats.rv_discrete method), 1213

logsumexp() (in module scipy.misc), 652
lomax (in module scipy.stats), 1330
lombscargle() (in module scipy.signal), 946
lp2bp() (in module scipy.signal), 843
lp2bs() (in module scipy.signal), 843
lp2hp() (in module scipy.signal), 844
lp2lp() (in module scipy.signal), 844
lpmn() (in module scipy.special), 1176
lpmv (in module scipy.special), 1174
lpn() (in module scipy.special), 1176
lqmn() (in module scipy.special), 1177
lqn() (in module scipy.special), 1176
lsim() (in module scipy.signal), 871
lsim2() (in module scipy.signal), 872
lsmr() (in module scipy.sparse.linalg), 1033, 1067
LSQBivariateSpline (class in scipy.interpolate), 400
lsqr() (in module scipy.sparse.linalg), 1031, 1065
LSQSphereBivariateSpline (class in scipy.interpolate),

402
LSQUnivariateSpline (class in scipy.interpolate), 376
lstsq() (in module scipy.linalg), 427
lti (class in scipy.signal), 859
lu() (in module scipy.linalg), 438
lu_factor() (in module scipy.linalg), 438
lu_solve() (in module scipy.linalg), 439

M
m (scipy.spatial.cKDTree attribute), 1098
mahalanobis() (in module scipy.spatial.distance), 1112,

1140
mannwhitneyu() (in module scipy.stats), 1466
mannwhitneyu() (in module scipy.stats.mstats), 1501,

1533
map_coordinates() (in module

scipy.ndimage.interpolation), 670
margins() (in module scipy.stats.contingency), 1487
matching() (in module scipy.spatial.distance), 1112, 1140
mathieu_a (in module scipy.special), 1184
mathieu_b (in module scipy.special), 1184
mathieu_cem (in module scipy.special), 1185
mathieu_even_coef() (in module scipy.special), 1185
mathieu_modcem1 (in module scipy.special), 1185
mathieu_modcem2 (in module scipy.special), 1186
mathieu_modsem1 (in module scipy.special), 1186
mathieu_modsem2 (in module scipy.special), 1186
mathieu_odd_coef() (in module scipy.special), 1185
mathieu_sem (in module scipy.special), 1185
matmat() (scipy.optimize.LbfgsInvHessProduct method),

798
matmat() (scipy.sparse.bsr_matrix method), 954
matmat() (scipy.sparse.linalg.LinearOperator method),

1019, 1053
matvec() (scipy.optimize.LbfgsInvHessProduct method),

798

1588 Index

SciPy Reference Guide, Release 0.16.0

matvec() (scipy.sparse.bsr_matrix method), 954
matvec() (scipy.sparse.linalg.LinearOperator method),

1020, 1053
max() (scipy.sparse.bsr_matrix method), 954
max() (scipy.sparse.coo_matrix method), 961
max() (scipy.sparse.csc_matrix method), 969
max() (scipy.sparse.csr_matrix method), 977
max_len_seq() (in module scipy.signal), 889
maxdists() (in module scipy.cluster.hierarchy), 279
maxes (scipy.spatial.cKDTree attribute), 1098
maximum() (in module scipy.ndimage.measurements),

679
maximum() (scipy.sparse.bsr_matrix method), 954
maximum() (scipy.sparse.coo_matrix method), 961
maximum() (scipy.sparse.csc_matrix method), 969
maximum() (scipy.sparse.csr_matrix method), 977
maximum() (scipy.sparse.dia_matrix method), 983
maximum() (scipy.sparse.dok_matrix method), 989
maximum() (scipy.sparse.lil_matrix method), 995
maximum_bipartite_matching() (in module

scipy.sparse.csgraph), 1015, 1091
maximum_filter() (in module scipy.ndimage.filters), 661
maximum_filter1d() (in module scipy.ndimage.filters),

662
maximum_position() (in module

scipy.ndimage.measurements), 680
maxinconsts() (in module scipy.cluster.hierarchy), 279
maxRstat() (in module scipy.cluster.hierarchy), 279
maxwell (in module scipy.stats), 1332
mean() (in module scipy.ndimage.measurements), 681
mean() (scipy.sparse.bsr_matrix method), 954
mean() (scipy.sparse.coo_matrix method), 961
mean() (scipy.sparse.csc_matrix method), 969
mean() (scipy.sparse.csr_matrix method), 977
mean() (scipy.sparse.dia_matrix method), 983
mean() (scipy.sparse.dok_matrix method), 989
mean() (scipy.sparse.lil_matrix method), 995
mean() (scipy.stats.rv_continuous method), 1207
mean() (scipy.stats.rv_discrete method), 1216
medfilt() (in module scipy.signal), 811
medfilt2d() (in module scipy.signal), 812
median() (in module scipy.cluster.hierarchy), 277
median() (scipy.stats.rv_continuous method), 1206
median() (scipy.stats.rv_discrete method), 1215
median_filter() (in module scipy.ndimage.filters), 662
median_test() (in module scipy.stats), 1475
mielke (in module scipy.stats), 1334
min() (scipy.sparse.bsr_matrix method), 954
min() (scipy.sparse.coo_matrix method), 961
min() (scipy.sparse.csc_matrix method), 969
min() (scipy.sparse.csr_matrix method), 977
minimize() (in module scipy.optimize), 718
minimize_scalar() (in module scipy.optimize), 722

minimum() (in module scipy.ndimage.measurements),
681

minimum() (scipy.sparse.bsr_matrix method), 954
minimum() (scipy.sparse.coo_matrix method), 961
minimum() (scipy.sparse.csc_matrix method), 969
minimum() (scipy.sparse.csr_matrix method), 977
minimum() (scipy.sparse.dia_matrix method), 984
minimum() (scipy.sparse.dok_matrix method), 989
minimum() (scipy.sparse.lil_matrix method), 995
minimum_filter() (in module scipy.ndimage.filters), 663
minimum_filter1d() (in module scipy.ndimage.filters),

663
minimum_position() (in module

scipy.ndimage.measurements), 682
minimum_spanning_tree() (in module

scipy.sparse.csgraph), 1014, 1089
minkowski() (in module scipy.spatial.distance), 1113,

1141
minkowski_distance() (in module scipy.spatial), 1127
minkowski_distance_p() (in module scipy.spatial), 1127
minres() (in module scipy.sparse.linalg), 1029, 1063
mins (scipy.spatial.cKDTree attribute), 1098
mminfo() (in module scipy.io), 410
mmread() (in module scipy.io), 410
mmwrite() (in module scipy.io), 410
mode() (in module scipy.stats), 1428
mode() (in module scipy.stats.mstats), 1502, 1534
Model (class in scipy.odr), 711
modfresnelm (in module scipy.special), 1174
modfresnelp (in module scipy.special), 1174
modstruve (in module scipy.special), 1154
moment() (in module scipy.stats), 1428
moment() (in module scipy.stats.mstats), 1502, 1534
moment() (scipy.stats.rv_continuous method), 1205
moment() (scipy.stats.rv_discrete method), 1214
mood() (in module scipy.stats), 1477
morlet() (in module scipy.signal), 929
morphological_gradient() (in module

scipy.ndimage.morphology), 706
morphological_laplace() (in module

scipy.ndimage.morphology), 707
mquantiles() (in module scipy.stats.mstats), 1503, 1534
msign() (in module scipy.stats.mstats), 1504, 1536
multigammaln() (in module scipy.special), 1171
multiply() (scipy.sparse.bsr_matrix method), 954
multiply() (scipy.sparse.coo_matrix method), 961
multiply() (scipy.sparse.csc_matrix method), 969
multiply() (scipy.sparse.csr_matrix method), 977
multiply() (scipy.sparse.dia_matrix method), 984
multiply() (scipy.sparse.dok_matrix method), 989
multiply() (scipy.sparse.lil_matrix method), 995
multivariate_normal (in module scipy.stats), 1392
mvsdist() (in module scipy.stats), 1446

Index 1589

SciPy Reference Guide, Release 0.16.0

N
n (scipy.spatial.cKDTree attribute), 1098
nakagami (in module scipy.stats), 1336
nanmean() (in module scipy.stats), 1433
nanmedian() (in module scipy.stats), 1434
nanstd() (in module scipy.stats), 1433
nbdtr (in module scipy.special), 1159
nbdtrc (in module scipy.special), 1159
nbdtri (in module scipy.special), 1159
nbdtrik (in module scipy.special), 1159
nbdtrin (in module scipy.special), 1159
nbinom (in module scipy.stats), 1413
ncf (in module scipy.stats), 1340
ncfdtr (in module scipy.special), 1160
ncfdtri (in module scipy.special), 1161
ncfdtridfd (in module scipy.special), 1161
ncfdtridfn (in module scipy.special), 1161
ncfdtrinc (in module scipy.special), 1161
nct (in module scipy.stats), 1342
nctdtr (in module scipy.special), 1161
nctdtridf (in module scipy.special), 1162
nctdtrinc (in module scipy.special), 1163
nctdtrit (in module scipy.special), 1162
ncx2 (in module scipy.stats), 1338
ndtr (in module scipy.special), 1164
ndtri (in module scipy.special), 1165
NearestNDInterpolator (class in scipy.interpolate), 359
netcdf_file (class in scipy.io.netcdf), 415
netcdf_variable (class in scipy.io.netcdf), 417
newton() (in module scipy.optimize), 767
newton_krylov() (in module scipy.optimize), 783
nnlf() (scipy.stats.rv_continuous method), 1209
nnls() (in module scipy.optimize), 752
nnz (scipy.sparse.coo_matrix attribute), 958
nnz (scipy.sparse.csc_matrix attribute), 965
nnz (scipy.sparse.csr_matrix attribute), 973
nnz (scipy.sparse.dia_matrix attribute), 980
nnz (scipy.sparse.lil_matrix attribute), 993
nnz (scipy.sparse.linalg.SuperLU attribute), 1045, 1078
nonzero() (scipy.sparse.bsr_matrix method), 954
nonzero() (scipy.sparse.coo_matrix method), 962
nonzero() (scipy.sparse.csc_matrix method), 969
nonzero() (scipy.sparse.csr_matrix method), 977
nonzero() (scipy.sparse.dia_matrix method), 984
nonzero() (scipy.sparse.dok_matrix method), 990
nonzero() (scipy.sparse.lil_matrix method), 995
norm (in module scipy.stats), 1344
norm() (in module scipy.linalg), 426
normalize() (in module scipy.signal), 844
normaltest() (in module scipy.stats), 1429
normaltest() (in module scipy.stats.mstats), 1504, 1536
nquad() (in module scipy.integrate), 323
nrdtrimn (in module scipy.special), 1163
nrdtrisd (in module scipy.special), 1163

nu2lambda() (in module scipy.constants), 302
num (scipy.signal.lti attribute), 860
num (scipy.signal.StateSpace attribute), 863
num (scipy.signal.TransferFunction attribute), 866
num (scipy.signal.ZerosPolesGain attribute), 869
num_obs_dm() (in module scipy.spatial.distance), 1108,

1136
num_obs_linkage() (in module scipy.cluster.hierarchy),

286
num_obs_y() (in module scipy.spatial.distance), 1109,

1137
nuttall() (in module scipy.signal), 920

O
obl_ang1 (in module scipy.special), 1187
obl_ang1_cv (in module scipy.special), 1189
obl_cv (in module scipy.special), 1188
obl_cv_seq() (in module scipy.special), 1188
obl_rad1 (in module scipy.special), 1187
obl_rad1_cv (in module scipy.special), 1189
obl_rad2 (in module scipy.special), 1187
obl_rad2_cv (in module scipy.special), 1189
obrientransform() (in module scipy.stats), 1444
obrientransform() (in module scipy.stats.mstats), 1505,

1536
ode (class in scipy.integrate), 333
odeint() (in module scipy.integrate), 331
ODR (class in scipy.odr), 712
odr() (in module scipy.odr), 716
odr_error, 716
odr_stop, 716
onenormest() (in module scipy.sparse.linalg), 1022, 1056
OptimizeResult (class in scipy.optimize), 723
order_filter() (in module scipy.signal), 811
orth() (in module scipy.linalg), 441
orthogonal_procrustes() (in module scipy.linalg), 431
Output (class in scipy.odr), 715
output() (scipy.signal.lti method), 862
output() (scipy.signal.StateSpace method), 865
output() (scipy.signal.TransferFunction method), 867
output() (scipy.signal.ZerosPolesGain method), 870

P
pade() (in module scipy.misc), 653
pareto (in module scipy.stats), 1346
parzen() (in module scipy.signal), 922
pascal() (in module scipy.linalg), 473
pbdn_seq() (in module scipy.special), 1184
pbdv (in module scipy.special), 1183
pbdv_seq() (in module scipy.special), 1184
pbvv (in module scipy.special), 1184
pbvv_seq() (in module scipy.special), 1184
pbwa (in module scipy.special), 1184
pchip_interpolate() (in module scipy.interpolate), 347

1590 Index

SciPy Reference Guide, Release 0.16.0

PchipInterpolator (class in scipy.interpolate), 344
pdf() (scipy.stats.gaussian_kde method), 1524
pdf() (scipy.stats.rv_continuous method), 1203
pdist() (in module scipy.spatial.distance), 1101, 1129
pdtr (in module scipy.special), 1163
pdtrc (in module scipy.special), 1163
pdtri (in module scipy.special), 1163
pdtrik (in module scipy.special), 1164
pearson3 (in module scipy.stats), 1348
pearsonr() (in module scipy.stats), 1451
pearsonr() (in module scipy.stats.mstats), 1505, 1536
percentile_filter() (in module scipy.ndimage.filters), 664
percentileofscore() (in module scipy.stats), 1437
periodogram() (in module scipy.signal), 935
perm() (in module scipy.special), 1191
perm_c (scipy.sparse.linalg.SuperLU attribute), 1045,

1078
perm_r (scipy.sparse.linalg.SuperLU attribute), 1045,

1079
physical_constants (in module scipy.constants), 288
piecewise_polynomial_interpolate() (in module

scipy.interpolate), 346
PiecewisePolynomial (class in scipy.interpolate), 342
pinv() (in module scipy.linalg), 428
pinv2() (in module scipy.linalg), 428
pinvh() (in module scipy.linalg), 429
place_poles() (in module scipy.signal), 884
planck (in module scipy.stats), 1415
plane_distance() (scipy.spatial.Delaunay method), 1120
plotting_positions() (in module scipy.stats.mstats), 1501,

1505, 1533, 1537
pmf() (scipy.stats.rv_discrete method), 1212
poch (in module scipy.special), 1172
pointbiserialr() (in module scipy.stats), 1453
pointbiserialr() (in module scipy.stats.mstats), 1506, 1537
poisson (in module scipy.stats), 1417
polar() (in module scipy.linalg), 444
poles (scipy.signal.lti attribute), 860
poles (scipy.signal.StateSpace attribute), 863
poles (scipy.signal.TransferFunction attribute), 866
poles (scipy.signal.ZerosPolesGain attribute), 869
polygamma() (in module scipy.special), 1171
pop() (scipy.optimize.OptimizeResult method), 725
pop() (scipy.sparse.dok_matrix method), 990
popitem() (scipy.optimize.OptimizeResult method), 725
popitem() (scipy.sparse.dok_matrix method), 990
power() (scipy.sparse.bsr_matrix method), 954
power() (scipy.sparse.coo_matrix method), 962
power() (scipy.sparse.csc_matrix method), 970
power() (scipy.sparse.csr_matrix method), 977
power() (scipy.sparse.dia_matrix method), 984
power() (scipy.sparse.dok_matrix method), 990
power() (scipy.sparse.lil_matrix method), 995
power_divergence() (in module scipy.stats), 1463

powerlaw (in module scipy.stats), 1351
powerlognorm (in module scipy.stats), 1353
powernorm (in module scipy.stats), 1355
ppcc_max() (in module scipy.stats), 1488
ppcc_plot() (in module scipy.stats), 1488
ppf() (scipy.stats.rv_continuous method), 1204
ppf() (scipy.stats.rv_discrete method), 1213
PPoly (class in scipy.interpolate), 350
pprint() (scipy.odr.Output method), 716
pre_order() (scipy.cluster.hierarchy.ClusterNode

method), 283
precision() (in module scipy.constants), 288
prewitt() (in module scipy.ndimage.filters), 665
pro_ang1 (in module scipy.special), 1187
pro_ang1_cv (in module scipy.special), 1188
pro_cv (in module scipy.special), 1188
pro_cv_seq() (in module scipy.special), 1188
pro_rad1 (in module scipy.special), 1187
pro_rad1_cv (in module scipy.special), 1188
pro_rad2 (in module scipy.special), 1187
pro_rad2_cv (in module scipy.special), 1188
probplot() (in module scipy.stats), 1490
procrustes() (in module scipy.spatial), 1127
prune() (scipy.sparse.bsr_matrix method), 954
prune() (scipy.sparse.csc_matrix method), 970
prune() (scipy.sparse.csr_matrix method), 978
pseudo_huber (in module scipy.special), 1168
psi (in module scipy.special), 1170

Q
qmf() (in module scipy.signal), 929
qmr() (in module scipy.sparse.linalg), 1030, 1064
qr() (in module scipy.linalg), 445
qr_delete() (in module scipy.linalg), 449
qr_insert() (in module scipy.linalg), 451
qr_multiply() (in module scipy.linalg), 446
qr_update() (in module scipy.linalg), 447
qspline1d() (in module scipy.signal), 809
qspline1d_eval() (in module scipy.signal), 810
qspline2d() (in module scipy.signal), 810
quad() (in module scipy.integrate), 318
quadratic() (in module scipy.signal), 809
quadrature() (in module scipy.integrate), 326
query() (scipy.spatial.cKDTree method), 1098
query() (scipy.spatial.KDTree method), 1094
query_ball_point() (scipy.spatial.cKDTree method), 1099
query_ball_point() (scipy.spatial.KDTree method), 1095
query_ball_tree() (scipy.spatial.cKDTree method), 1099
query_ball_tree() (scipy.spatial.KDTree method), 1096
query_pairs() (scipy.spatial.cKDTree method), 1100
query_pairs() (scipy.spatial.KDTree method), 1096
qz() (in module scipy.linalg), 453

Index 1591

SciPy Reference Guide, Release 0.16.0

R
rad2deg() (scipy.sparse.bsr_matrix method), 954
rad2deg() (scipy.sparse.coo_matrix method), 962
rad2deg() (scipy.sparse.csc_matrix method), 970
rad2deg() (scipy.sparse.csr_matrix method), 978
rad2deg() (scipy.sparse.dia_matrix method), 984
radian (in module scipy.special), 1199
rand() (in module scipy.linalg.interpolative), 638
rand() (in module scipy.sparse), 1004
randint (in module scipy.stats), 1419
random_state (scipy.stats.rv_continuous attribute), 1202
random_state (scipy.stats.rv_discrete attribute), 1211
rank_filter() (in module scipy.ndimage.filters), 665
rankdata() (in module scipy.stats), 1467
rankdata() (in module scipy.stats.mstats), 1506, 1538
ranksums() (in module scipy.stats), 1468
rayleigh (in module scipy.stats), 1361
Rbf (class in scipy.interpolate), 360
rdist (in module scipy.stats), 1357
read() (in module scipy.io.wavfile), 413
read_ints() (scipy.io.FortranFile method), 412
read_reals() (scipy.io.FortranFile method), 412
read_record() (scipy.io.FortranFile method), 412
readsav() (in module scipy.io), 409
RealData (class in scipy.odr), 710
recipinvgauss (in module scipy.stats), 1365
reciprocal (in module scipy.stats), 1359
reconstruct_interp_matrix() (in module

scipy.linalg.interpolative), 635
reconstruct_matrix_from_id() (in module

scipy.linalg.interpolative), 635
reconstruct_skel_matrix() (in module

scipy.linalg.interpolative), 636
RectBivariateSpline (class in scipy.interpolate), 365, 388
RectSphereBivariateSpline (class in scipy.interpolate),

390
RegularGridInterpolator (class in scipy.interpolate), 364
rel_entr (in module scipy.special), 1167
relfreq() (in module scipy.stats), 1439
remez() (in module scipy.signal), 837
resample() (in module scipy.signal), 824
resample() (scipy.stats.gaussian_kde method), 1524
reshape() (scipy.sparse.bsr_matrix method), 955
reshape() (scipy.sparse.coo_matrix method), 962
reshape() (scipy.sparse.csc_matrix method), 970
reshape() (scipy.sparse.csr_matrix method), 978
reshape() (scipy.sparse.dia_matrix method), 984
reshape() (scipy.sparse.dok_matrix method), 990
reshape() (scipy.sparse.lil_matrix method), 995
residue() (in module scipy.signal), 840
residuez() (in module scipy.signal), 840
resize() (scipy.sparse.dok_matrix method), 990
restart() (scipy.odr.ODR method), 714

reverse_cuthill_mckee() (in module
scipy.sparse.csgraph), 1015, 1090

rfft() (in module scipy.fftpack), 305
rfftfreq() (in module scipy.fftpack), 316
rgamma (in module scipy.special), 1171
riccati_jn() (in module scipy.special), 1153
riccati_yn() (in module scipy.special), 1153
rice (in module scipy.stats), 1363
ricker() (in module scipy.signal), 929
ridder() (in module scipy.optimize), 765
rint() (scipy.sparse.bsr_matrix method), 955
rint() (scipy.sparse.coo_matrix method), 962
rint() (scipy.sparse.csc_matrix method), 970
rint() (scipy.sparse.csr_matrix method), 978
rint() (scipy.sparse.dia_matrix method), 984
rmatvec() (scipy.optimize.LbfgsInvHessProduct method),

798
rmatvec() (scipy.sparse.linalg.LinearOperator method),

1020, 1053
rogerstanimoto() (in module scipy.spatial.distance), 1113,

1141
romb() (in module scipy.integrate), 330
romberg() (in module scipy.integrate), 326
root() (in module scipy.optimize), 768
roots() (scipy.interpolate.Akima1DInterpolator method),

349
roots() (scipy.interpolate.InterpolatedUnivariateSpline

method), 376
roots() (scipy.interpolate.LSQUnivariateSpline method),

381
roots() (scipy.interpolate.PPoly method), 352
roots() (scipy.interpolate.UnivariateSpline method), 372
rosen() (in module scipy.optimize), 761
rosen_der() (in module scipy.optimize), 761
rosen_hess() (in module scipy.optimize), 761
rosen_hess_prod() (in module scipy.optimize), 761
rotate() (in module scipy.ndimage.interpolation), 671
round (in module scipy.special), 1199
rq() (in module scipy.linalg), 453
rsf2csf() (in module scipy.linalg), 456
run() (scipy.odr.ODR method), 714
russellrao() (in module scipy.spatial.distance), 1113, 1141
rv_continuous (class in scipy.stats), 1200
rv_discrete (class in scipy.stats), 1209
rvs() (scipy.stats.rv_continuous method), 1203
rvs() (scipy.stats.rv_discrete method), 1212

S
sasum (in module scipy.linalg.blas), 487
savemat() (in module scipy.io), 408
savgol_coeffs() (in module scipy.signal), 836
savgol_filter() (in module scipy.signal), 818
sawtooth() (in module scipy.signal), 890
saxpy (in module scipy.linalg.blas), 488

1592 Index

SciPy Reference Guide, Release 0.16.0

sc_diff() (in module scipy.fftpack), 313
scasum (in module scipy.linalg.blas), 488
schur() (in module scipy.linalg), 455
scipy.cluster (module), 267
scipy.cluster.hierarchy (module), 271
scipy.cluster.vq (module), 267
scipy.constants (module), 286
scipy.fftpack (module), 302
scipy.fftpack.convolve (module), 316
scipy.integrate (module), 317
scipy.interpolate (module), 337
scipy.io (module), 407
scipy.io.arff (module), 139, 414
scipy.io.netcdf (module), 140, 415
scipy.io.wavfile (module), 139, 413
scipy.linalg (module), 419
scipy.linalg.blas (module), 478
scipy.linalg.cython_blas (module), 592
scipy.linalg.cython_lapack (module), 596
scipy.linalg.interpolative (module), 633
scipy.linalg.lapack (module), 513
scipy.misc (module), 642
scipy.ndimage (module), 654
scipy.ndimage.filters (module), 654
scipy.ndimage.fourier (module), 666
scipy.ndimage.interpolation (module), 668
scipy.ndimage.measurements (module), 673
scipy.ndimage.morphology (module), 685
scipy.odr (module), 709
scipy.optimize (module), 718
scipy.optimize.nonlin (module), 799
scipy.signal (module), 801
scipy.sparse (module), 948
scipy.sparse.csgraph (module), 1005, 1081
scipy.sparse.linalg (module), 1018, 1051
scipy.spatial (module), 1092
scipy.spatial.distance (module), 1100, 1128
scipy.special (module), 1143
scipy.stats (module), 1200
scipy.stats.mstats (module), 1494, 1525
scipy.weave (module), 1552
scipy.weave.ext_tools (module), 1555
scnrm2 (in module scipy.linalg.blas), 488
scopy (in module scipy.linalg.blas), 488
scoreatpercentile() (in module scipy.stats), 1438
scoreatpercentile() (in module scipy.stats.mstats), 1507,

1538
sdot (in module scipy.linalg.blas), 489
seed() (in module scipy.linalg.interpolative), 638
sem() (in module scipy.stats), 1446
sem() (in module scipy.stats.mstats), 1507, 1538
semicircular (in module scipy.stats), 1367
sepfir2d() (in module scipy.signal), 808
set_bandwidth() (scipy.stats.gaussian_kde method), 1524

set_f_params() (scipy.integrate.complex_ode method),
336

set_f_params() (scipy.integrate.ode method), 335
set_initial_value() (scipy.integrate.complex_ode method),

337
set_initial_value() (scipy.integrate.ode method), 335
set_integrator() (scipy.integrate.complex_ode method),

337
set_integrator() (scipy.integrate.ode method), 336
set_iprint() (scipy.odr.ODR method), 714
set_jac_params() (scipy.integrate.complex_ode method),

337
set_jac_params() (scipy.integrate.ode method), 336
set_job() (scipy.odr.ODR method), 715
set_link_color_palette() (in module

scipy.cluster.hierarchy), 286
set_meta() (scipy.odr.Data method), 710
set_meta() (scipy.odr.Model method), 712
set_meta() (scipy.odr.RealData method), 711
set_shape() (scipy.sparse.bsr_matrix method), 955
set_shape() (scipy.sparse.coo_matrix method), 962
set_shape() (scipy.sparse.csc_matrix method), 970
set_shape() (scipy.sparse.csr_matrix method), 978
set_shape() (scipy.sparse.dia_matrix method), 984
set_shape() (scipy.sparse.dok_matrix method), 990
set_shape() (scipy.sparse.lil_matrix method), 995
set_smoothing_factor() (scipy.interpolate.InterpolatedUnivariateSpline

method), 376
set_smoothing_factor() (scipy.interpolate.LSQUnivariateSpline

method), 381
set_smoothing_factor() (scipy.interpolate.UnivariateSpline

method), 372
set_solout() (scipy.integrate.complex_ode method), 337
set_solout() (scipy.integrate.ode method), 336
set_yi() (scipy.interpolate.BarycentricInterpolator

method), 340
setdefault() (scipy.optimize.OptimizeResult method), 725
setdefault() (scipy.sparse.dok_matrix method), 990
setdiag() (scipy.sparse.bsr_matrix method), 955
setdiag() (scipy.sparse.coo_matrix method), 962
setdiag() (scipy.sparse.csc_matrix method), 970
setdiag() (scipy.sparse.csr_matrix method), 978
setdiag() (scipy.sparse.dia_matrix method), 984
setdiag() (scipy.sparse.dok_matrix method), 990
setdiag() (scipy.sparse.lil_matrix method), 995
seuclidean() (in module scipy.spatial.distance), 1113,

1141
sf() (scipy.stats.rv_continuous method), 1204
sf() (scipy.stats.rv_discrete method), 1213
sgbsv (in module scipy.linalg.lapack), 518
sgbtrf (in module scipy.linalg.lapack), 519
sgbtrs (in module scipy.linalg.lapack), 521
sgebal (in module scipy.linalg.lapack), 522
sgees (in module scipy.linalg.lapack), 524

Index 1593

SciPy Reference Guide, Release 0.16.0

sgeev (in module scipy.linalg.lapack), 526
sgeev_lwork (in module scipy.linalg.lapack), 527
sgegv (in module scipy.linalg.lapack), 528
sgehrd (in module scipy.linalg.lapack), 530
sgehrd_lwork (in module scipy.linalg.lapack), 531
sgelsd (in module scipy.linalg.lapack), 534
sgelsd_lwork (in module scipy.linalg.lapack), 536
sgelss (in module scipy.linalg.lapack), 532
sgelss_lwork (in module scipy.linalg.lapack), 533
sgelsy (in module scipy.linalg.lapack), 537
sgelsy_lwork (in module scipy.linalg.lapack), 538
sgemm (in module scipy.linalg.blas), 510
sgemv (in module scipy.linalg.blas), 500
sgeqp3 (in module scipy.linalg.lapack), 539
sgeqrf (in module scipy.linalg.lapack), 540
sger (in module scipy.linalg.blas), 501
sgerqf (in module scipy.linalg.lapack), 541
sgesdd (in module scipy.linalg.lapack), 542
sgesdd_lwork (in module scipy.linalg.lapack), 544
sgesv (in module scipy.linalg.lapack), 544
sgetrf (in module scipy.linalg.lapack), 546
sgetri (in module scipy.linalg.lapack), 546
sgetri_lwork (in module scipy.linalg.lapack), 547
sgetrs (in module scipy.linalg.lapack), 548
sgges (in module scipy.linalg.lapack), 549
sggev (in module scipy.linalg.lapack), 552
sgtsv (in module scipy.linalg.lapack), 579
sh_chebyt() (in module scipy.special), 1182
sh_chebyu() (in module scipy.special), 1182
sh_jacobi() (in module scipy.special), 1182
sh_legendre() (in module scipy.special), 1182
shape (scipy.sparse.linalg.SuperLU attribute), 1045, 1078
shapiro() (in module scipy.stats), 1472
shichi (in module scipy.special), 1196
shift() (in module scipy.fftpack), 314
shift() (in module scipy.ndimage.interpolation), 672
shortest_path() (in module scipy.sparse.csgraph), 1007,

1082
show_options() (in module scipy.optimize), 796
sici (in module scipy.special), 1196
sigmaclip() (in module scipy.stats), 1448
sign() (scipy.sparse.bsr_matrix method), 955
sign() (scipy.sparse.coo_matrix method), 962
sign() (scipy.sparse.csc_matrix method), 970
sign() (scipy.sparse.csr_matrix method), 978
sign() (scipy.sparse.dia_matrix method), 984
signaltonoise() (in module scipy.stats), 1445
signaltonoise() (in module scipy.stats.mstats), 1507, 1539
signm() (in module scipy.linalg), 461
simps() (in module scipy.integrate), 329
sin() (scipy.sparse.bsr_matrix method), 955
sin() (scipy.sparse.coo_matrix method), 962
sin() (scipy.sparse.csc_matrix method), 970
sin() (scipy.sparse.csr_matrix method), 978

sin() (scipy.sparse.dia_matrix method), 984
sindg (in module scipy.special), 1199
single() (in module scipy.cluster.hierarchy), 275
sinh() (scipy.sparse.bsr_matrix method), 955
sinh() (scipy.sparse.coo_matrix method), 962
sinh() (scipy.sparse.csc_matrix method), 970
sinh() (scipy.sparse.csr_matrix method), 978
sinh() (scipy.sparse.dia_matrix method), 985
sinhm() (in module scipy.linalg), 460
sinm() (in module scipy.linalg), 459
skellam (in module scipy.stats), 1421
skew() (in module scipy.stats), 1429
skew() (in module scipy.stats.mstats), 1508, 1539
skewtest() (in module scipy.stats), 1429
skewtest() (in module scipy.stats.mstats), 1508, 1540
slamch (in module scipy.linalg.lapack), 582
slange (in module scipy.linalg.lapack), 591
slarf (in module scipy.linalg.lapack), 560
slarfg (in module scipy.linalg.lapack), 561
slartg (in module scipy.linalg.lapack), 562
slasd4 (in module scipy.linalg.lapack), 563
slaswp (in module scipy.linalg.lapack), 563
slauum (in module scipy.linalg.lapack), 565
slepian() (in module scipy.signal), 923
smirnov (in module scipy.special), 1165
smirnovi (in module scipy.special), 1165
SmoothBivariateSpline (class in scipy.interpolate), 396
SmoothSphereBivariateSpline (class in scipy.interpolate),

397
snrm2 (in module scipy.linalg.blas), 489
sobel() (in module scipy.ndimage.filters), 665
sokalmichener() (in module scipy.spatial.distance), 1114,

1142
sokalsneath() (in module scipy.spatial.distance), 1114,

1142
solve() (in module scipy.linalg), 420
solve() (scipy.sparse.linalg.SuperLU method), 1045, 1079
solve_banded() (in module scipy.linalg), 421
solve_circulant() (in module scipy.linalg), 422
solve_continuous_are() (in module scipy.linalg), 465
solve_discrete_are() (in module scipy.linalg), 466
solve_discrete_lyapunov() (in module scipy.linalg), 466
solve_lyapunov() (in module scipy.linalg), 467
solve_sylvester() (in module scipy.linalg), 465
solve_toeplitz() (in module scipy.linalg), 424
solve_triangular() (in module scipy.linalg), 424
solveh_banded() (in module scipy.linalg), 421
sorghr (in module scipy.linalg.lapack), 582
sorgqr (in module scipy.linalg.lapack), 583
sorgrq (in module scipy.linalg.lapack), 584
sormqr (in module scipy.linalg.lapack), 584
sort_indices() (scipy.sparse.bsr_matrix method), 955
sort_indices() (scipy.sparse.csc_matrix method), 970
sort_indices() (scipy.sparse.csr_matrix method), 978

1594 Index

SciPy Reference Guide, Release 0.16.0

sorted_indices() (scipy.sparse.bsr_matrix method), 955
sorted_indices() (scipy.sparse.csc_matrix method), 970
sorted_indices() (scipy.sparse.csr_matrix method), 978
sos2tf() (in module scipy.signal), 883
sos2zpk() (in module scipy.signal), 883
sosfilt() (in module scipy.signal), 820
sosfilt_zi() (in module scipy.signal), 821
spalde() (in module scipy.interpolate), 386
sparse_distance_matrix() (scipy.spatial.cKDTree

method), 1100
sparse_distance_matrix() (scipy.spatial.KDTree method),

1096
SparseEfficiencyWarning, 1049
SparseWarning, 1049
spbsv (in module scipy.linalg.lapack), 566
spbtrf (in module scipy.linalg.lapack), 567
spbtrs (in module scipy.linalg.lapack), 568
spdiags() (in module scipy.sparse), 999
spearmanr() (in module scipy.stats), 1451
spearmanr() (in module scipy.stats.mstats), 1508, 1540
SpecialFunctionWarning, 1144
spectrogram() (in module scipy.signal), 944
spence (in module scipy.special), 1196
sph_harm (in module scipy.special), 1174
sph_in() (in module scipy.special), 1153
sph_inkn() (in module scipy.special), 1153
sph_jn() (in module scipy.special), 1153
sph_jnyn() (in module scipy.special), 1153
sph_kn() (in module scipy.special), 1153
sph_yn() (in module scipy.special), 1153
spilu() (in module scipy.sparse.linalg), 1043, 1076
splantider() (in module scipy.interpolate), 387
splder() (in module scipy.interpolate), 387
splev() (in module scipy.interpolate), 385
spline_filter() (in module scipy.ndimage.interpolation),

672
spline_filter() (in module scipy.signal), 810
spline_filter1d() (in module scipy.ndimage.interpolation),

672
splint() (in module scipy.interpolate), 385
splprep() (in module scipy.interpolate), 383
splrep() (in module scipy.interpolate), 381
splu() (in module scipy.sparse.linalg), 1042, 1076
sposv (in module scipy.linalg.lapack), 569
spotrf (in module scipy.linalg.lapack), 570
spotri (in module scipy.linalg.lapack), 571
spotrs (in module scipy.linalg.lapack), 572
sproot() (in module scipy.interpolate), 386
spsolve() (in module scipy.sparse.linalg), 1023, 1056
sptsv (in module scipy.linalg.lapack), 581
sqeuclidean() (in module scipy.spatial.distance), 1114,

1142
sqrt() (scipy.sparse.bsr_matrix method), 955
sqrt() (scipy.sparse.coo_matrix method), 963

sqrt() (scipy.sparse.csc_matrix method), 971
sqrt() (scipy.sparse.csr_matrix method), 978
sqrt() (scipy.sparse.dia_matrix method), 985
sqrtm() (in module scipy.linalg), 461
square() (in module scipy.signal), 891
squareform() (in module scipy.spatial.distance), 1107,

1135
srot (in module scipy.linalg.blas), 489
srotg (in module scipy.linalg.blas), 490
srotm (in module scipy.linalg.blas), 490
srotmg (in module scipy.linalg.blas), 490
ss2tf() (in module scipy.signal), 882
ss2zpk() (in module scipy.signal), 882
ss_diff() (in module scipy.fftpack), 313
ssbev (in module scipy.linalg.lapack), 585
ssbevd (in module scipy.linalg.lapack), 585
ssbevx (in module scipy.linalg.lapack), 586
sscal (in module scipy.linalg.blas), 490
sswap (in module scipy.linalg.blas), 491
ssyev (in module scipy.linalg.lapack), 587
ssyevd (in module scipy.linalg.lapack), 587
ssyevr (in module scipy.linalg.lapack), 588
ssygv (in module scipy.linalg.lapack), 589
ssygvd (in module scipy.linalg.lapack), 590
ssygvx (in module scipy.linalg.lapack), 590
ssymm (in module scipy.linalg.blas), 510
ssymv (in module scipy.linalg.blas), 501
ssyr (in module scipy.linalg.blas), 502
ssyr2 (in module scipy.linalg.blas), 502
ssyr2k (in module scipy.linalg.blas), 511
ssyrk (in module scipy.linalg.blas), 510
standard_deviation() (in module

scipy.ndimage.measurements), 682
StateSpace (class in scipy.signal), 862
stats() (scipy.stats.rv_continuous method), 1205
stats() (scipy.stats.rv_discrete method), 1214
std() (scipy.stats.rv_continuous method), 1207
std() (scipy.stats.rv_discrete method), 1216
stdtr (in module scipy.special), 1164
stdtridf (in module scipy.special), 1164
stdtrit (in module scipy.special), 1164
step() (in module scipy.signal), 874
step() (scipy.signal.lti method), 862
step() (scipy.signal.StateSpace method), 865
step() (scipy.signal.TransferFunction method), 868
step() (scipy.signal.ZerosPolesGain method), 870
step2() (in module scipy.signal), 874
strmv (in module scipy.linalg.blas), 501
strsyl (in module scipy.linalg.lapack), 574
strtri (in module scipy.linalg.lapack), 575
strtrs (in module scipy.linalg.lapack), 576
struve (in module scipy.special), 1154
successful() (scipy.integrate.complex_ode method), 337
successful() (scipy.integrate.ode method), 336

Index 1595

SciPy Reference Guide, Release 0.16.0

sum() (in module scipy.ndimage.measurements), 683
sum() (scipy.sparse.bsr_matrix method), 955
sum() (scipy.sparse.coo_matrix method), 963
sum() (scipy.sparse.csc_matrix method), 971
sum() (scipy.sparse.csr_matrix method), 978
sum() (scipy.sparse.dia_matrix method), 985
sum() (scipy.sparse.dok_matrix method), 990
sum() (scipy.sparse.lil_matrix method), 995
sum_duplicates() (scipy.sparse.bsr_matrix method), 955
sum_duplicates() (scipy.sparse.coo_matrix method), 963
sum_duplicates() (scipy.sparse.csc_matrix method), 971
sum_duplicates() (scipy.sparse.csr_matrix method), 979
SuperLU (class in scipy.sparse.linalg), 1043, 1077
svd() (in module scipy.linalg), 439
svd() (in module scipy.linalg.interpolative), 637
svds() (in module scipy.sparse.linalg), 1041, 1075
svdvals() (in module scipy.linalg), 440
sweep_poly() (in module scipy.signal), 892
symiirorder1() (in module scipy.signal), 812
symiirorder2() (in module scipy.signal), 812
sync() (scipy.io.netcdf.netcdf_file method), 417

T
t (in module scipy.stats), 1369
T (scipy.optimize.LbfgsInvHessProduct attribute), 797
tan() (scipy.sparse.bsr_matrix method), 955
tan() (scipy.sparse.coo_matrix method), 963
tan() (scipy.sparse.csc_matrix method), 971
tan() (scipy.sparse.csr_matrix method), 979
tan() (scipy.sparse.dia_matrix method), 985
tandg (in module scipy.special), 1199
tanh() (scipy.sparse.bsr_matrix method), 956
tanh() (scipy.sparse.coo_matrix method), 963
tanh() (scipy.sparse.csc_matrix method), 971
tanh() (scipy.sparse.csr_matrix method), 979
tanh() (scipy.sparse.dia_matrix method), 985
tanhm() (in module scipy.linalg), 461
tanm() (in module scipy.linalg), 459
tf2sos() (in module scipy.signal), 879
tf2ss() (in module scipy.signal), 879
tf2zpk() (in module scipy.signal), 878
theilslopes() (in module scipy.stats), 1455
theilslopes() (in module scipy.stats.mstats), 1509, 1540
threshold() (in module scipy.stats), 1449
threshold() (in module scipy.stats.mstats), 1510, 1542
tiecorrect() (in module scipy.stats), 1467
tilbert() (in module scipy.fftpack), 311
tklmbda (in module scipy.special), 1165
tmax() (in module scipy.stats), 1432
tmax() (in module scipy.stats.mstats), 1510, 1542
tmean() (in module scipy.stats), 1431
tmean() (in module scipy.stats.mstats), 1511, 1542
tmin() (in module scipy.stats), 1431
tmin() (in module scipy.stats.mstats), 1511, 1543

to_mlab_linkage() (in module scipy.cluster.hierarchy),
279

to_ss() (scipy.signal.StateSpace method), 865
to_ss() (scipy.signal.TransferFunction method), 868
to_ss() (scipy.signal.ZerosPolesGain method), 870
to_tf() (scipy.signal.StateSpace method), 865
to_tf() (scipy.signal.TransferFunction method), 868
to_tf() (scipy.signal.ZerosPolesGain method), 871
to_tree() (in module scipy.cluster.hierarchy), 284
to_zpk() (scipy.signal.StateSpace method), 865
to_zpk() (scipy.signal.TransferFunction method), 868
to_zpk() (scipy.signal.ZerosPolesGain method), 871
toarray() (scipy.sparse.bsr_matrix method), 956
toarray() (scipy.sparse.coo_matrix method), 963
toarray() (scipy.sparse.csc_matrix method), 971
toarray() (scipy.sparse.csr_matrix method), 979
toarray() (scipy.sparse.dia_matrix method), 985
toarray() (scipy.sparse.dok_matrix method), 990
toarray() (scipy.sparse.lil_matrix method), 996
tobsr() (scipy.sparse.bsr_matrix method), 956
tobsr() (scipy.sparse.coo_matrix method), 963
tobsr() (scipy.sparse.csc_matrix method), 971
tobsr() (scipy.sparse.csr_matrix method), 979
tobsr() (scipy.sparse.dia_matrix method), 985
tobsr() (scipy.sparse.dok_matrix method), 991
tobsr() (scipy.sparse.lil_matrix method), 996
tocoo() (scipy.sparse.bsr_matrix method), 956
tocoo() (scipy.sparse.coo_matrix method), 963
tocoo() (scipy.sparse.csc_matrix method), 971
tocoo() (scipy.sparse.csr_matrix method), 979
tocoo() (scipy.sparse.dia_matrix method), 985
tocoo() (scipy.sparse.dok_matrix method), 991
tocoo() (scipy.sparse.lil_matrix method), 996
tocsc() (scipy.sparse.bsr_matrix method), 956
tocsc() (scipy.sparse.coo_matrix method), 963
tocsc() (scipy.sparse.csc_matrix method), 971
tocsc() (scipy.sparse.csr_matrix method), 979
tocsc() (scipy.sparse.dia_matrix method), 985
tocsc() (scipy.sparse.dok_matrix method), 991
tocsc() (scipy.sparse.lil_matrix method), 996
tocsr() (scipy.sparse.bsr_matrix method), 956
tocsr() (scipy.sparse.coo_matrix method), 963
tocsr() (scipy.sparse.csc_matrix method), 971
tocsr() (scipy.sparse.csr_matrix method), 979
tocsr() (scipy.sparse.dia_matrix method), 985
tocsr() (scipy.sparse.dok_matrix method), 991
tocsr() (scipy.sparse.lil_matrix method), 996
todense() (scipy.optimize.LbfgsInvHessProduct method),

799
todense() (scipy.sparse.bsr_matrix method), 956
todense() (scipy.sparse.coo_matrix method), 964
todense() (scipy.sparse.csc_matrix method), 971
todense() (scipy.sparse.csr_matrix method), 979
todense() (scipy.sparse.dia_matrix method), 985

1596 Index

SciPy Reference Guide, Release 0.16.0

todense() (scipy.sparse.dok_matrix method), 991
todense() (scipy.sparse.lil_matrix method), 996
todia() (scipy.sparse.bsr_matrix method), 956
todia() (scipy.sparse.coo_matrix method), 964
todia() (scipy.sparse.csc_matrix method), 972
todia() (scipy.sparse.csr_matrix method), 979
todia() (scipy.sparse.dia_matrix method), 986
todia() (scipy.sparse.dok_matrix method), 991
todia() (scipy.sparse.lil_matrix method), 996
todok() (scipy.sparse.bsr_matrix method), 956
todok() (scipy.sparse.coo_matrix method), 964
todok() (scipy.sparse.csc_matrix method), 972
todok() (scipy.sparse.csr_matrix method), 979
todok() (scipy.sparse.dia_matrix method), 986
todok() (scipy.sparse.dok_matrix method), 991
todok() (scipy.sparse.lil_matrix method), 996
toeplitz() (in module scipy.linalg), 475
toimage() (in module scipy.misc), 653
tolil() (scipy.sparse.bsr_matrix method), 956
tolil() (scipy.sparse.coo_matrix method), 964
tolil() (scipy.sparse.csc_matrix method), 972
tolil() (scipy.sparse.csr_matrix method), 979
tolil() (scipy.sparse.dia_matrix method), 986
tolil() (scipy.sparse.dok_matrix method), 991
tolil() (scipy.sparse.lil_matrix method), 996
tplquad() (in module scipy.integrate), 322
TransferFunction (class in scipy.signal), 865
transform (scipy.spatial.Delaunay attribute), 1118
transpose() (scipy.optimize.LbfgsInvHessProduct

method), 799
transpose() (scipy.sparse.bsr_matrix method), 956
transpose() (scipy.sparse.coo_matrix method), 964
transpose() (scipy.sparse.csc_matrix method), 972
transpose() (scipy.sparse.csr_matrix method), 980
transpose() (scipy.sparse.dia_matrix method), 986
transpose() (scipy.sparse.dok_matrix method), 991
transpose() (scipy.sparse.lil_matrix method), 996
transpose() (scipy.sparse.linalg.LinearOperator method),

1020, 1054
tree (scipy.spatial.cKDTree attribute), 1098
tri() (in module scipy.linalg), 476
triang (in module scipy.stats), 1371
triang() (in module scipy.signal), 925
tril() (in module scipy.linalg), 430
tril() (in module scipy.sparse), 1001
trim() (in module scipy.stats.mstats), 1511, 1543
trim1() (in module scipy.stats), 1450
trima() (in module scipy.stats.mstats), 1512, 1544
trimboth() (in module scipy.stats), 1450
trimboth() (in module scipy.stats.mstats), 1512, 1544
trimmed_stde() (in module scipy.stats.mstats), 1513, 1544
trimr() (in module scipy.stats.mstats), 1513, 1545
trimtail() (in module scipy.stats.mstats), 1513, 1545
triu() (in module scipy.linalg), 430

triu() (in module scipy.sparse), 1001
trunc() (scipy.sparse.bsr_matrix method), 956
trunc() (scipy.sparse.coo_matrix method), 964
trunc() (scipy.sparse.csc_matrix method), 972
trunc() (scipy.sparse.csr_matrix method), 980
trunc() (scipy.sparse.dia_matrix method), 986
truncexpon (in module scipy.stats), 1373
truncnorm (in module scipy.stats), 1375
tsearch() (in module scipy.spatial), 1126
tsem() (in module scipy.stats), 1432
tsem() (in module scipy.stats.mstats), 1514, 1545
tstd() (in module scipy.stats), 1432
ttest_1samp() (in module scipy.stats), 1457
ttest_ind() (in module scipy.stats), 1457
ttest_ind() (in module scipy.stats.mstats), 1515, 1547
ttest_ind_from_stats() (in module scipy.stats), 1459
ttest_onesamp() (in module scipy.stats.mstats), 1514,

1516, 1546, 1548
ttest_rel() (in module scipy.stats), 1459
ttest_rel() (in module scipy.stats.mstats), 1517, 1549
tukey() (in module scipy.signal), 926
tukeylambda (in module scipy.stats), 1377
tvar() (in module scipy.stats), 1431
tvar() (in module scipy.stats.mstats), 1518, 1549
typecode() (scipy.io.netcdf.netcdf_variable method), 419

U
U (scipy.sparse.linalg.SuperLU attribute), 1045, 1079
uniform (in module scipy.stats), 1379
uniform_filter() (in module scipy.ndimage.filters), 666
uniform_filter1d() (in module scipy.ndimage.filters), 666
unique_roots() (in module scipy.signal), 839
unit() (in module scipy.constants), 287
UnivariateSpline (class in scipy.interpolate), 367
update() (scipy.optimize.OptimizeResult method), 725
update() (scipy.sparse.dok_matrix method), 991

V
value() (in module scipy.constants), 287
values() (scipy.optimize.OptimizeResult method), 725
values() (scipy.sparse.dok_matrix method), 992
var() (scipy.stats.rv_continuous method), 1207
var() (scipy.stats.rv_discrete method), 1216
variance() (in module scipy.ndimage.measurements), 684
variation() (in module scipy.stats), 1434
variation() (in module scipy.stats.mstats), 1518, 1550
vectorstrength() (in module scipy.signal), 948
vertex_neighbor_vertices (scipy.spatial.Delaunay at-

tribute), 1118
vertex_to_simplex (scipy.spatial.Delaunay attribute),

1118
viewitems() (scipy.optimize.OptimizeResult method),

725
viewitems() (scipy.sparse.dok_matrix method), 992

Index 1597

SciPy Reference Guide, Release 0.16.0

viewkeys() (scipy.optimize.OptimizeResult method), 725
viewkeys() (scipy.sparse.dok_matrix method), 992
viewvalues() (scipy.optimize.OptimizeResult method),

725
viewvalues() (scipy.sparse.dok_matrix method), 992
vonmises (in module scipy.stats), 1381
Voronoi (class in scipy.spatial), 1122
voronoi_plot_2d() (in module scipy.spatial), 1125
vq() (in module scipy.cluster.vq), 268
vstack() (in module scipy.sparse), 1003

W
wald (in module scipy.stats), 1383
ward() (in module scipy.cluster.hierarchy), 277
watershed_ift() (in module

scipy.ndimage.measurements), 684
weibull_max (in module scipy.stats), 1387
weibull_min (in module scipy.stats), 1385
weighted() (in module scipy.cluster.hierarchy), 276
welch() (in module scipy.signal), 937
white_tophat() (in module scipy.ndimage.morphology),

708
whiten() (in module scipy.cluster.vq), 267
who() (in module scipy.misc), 653
whosmat() (in module scipy.io), 409
wiener() (in module scipy.signal), 812
wilcoxon() (in module scipy.stats), 1468
winsorize() (in module scipy.stats.mstats), 1518, 1550
wishart (in module scipy.stats), 1395
wminkowski() (in module scipy.spatial.distance), 1114,

1142
wofz (in module scipy.special), 1173
wrapcauchy (in module scipy.stats), 1389
write() (in module scipy.io.wavfile), 414
write_record() (scipy.io.FortranFile method), 413

X
xlog1py (in module scipy.special), 1199
xlogy (in module scipy.special), 1199

Y
y0 (in module scipy.special), 1151
y0_zeros() (in module scipy.special), 1150
y1 (in module scipy.special), 1151
y1_zeros() (in module scipy.special), 1150
y1p_zeros() (in module scipy.special), 1150
yn (in module scipy.special), 1147
yn_zeros() (in module scipy.special), 1150
ynp_zeros() (in module scipy.special), 1150
yule() (in module scipy.spatial.distance), 1115, 1143
yv (in module scipy.special), 1148
yve (in module scipy.special), 1148
yvp() (in module scipy.special), 1153

Z
zaxpy (in module scipy.linalg.blas), 491
zcopy (in module scipy.linalg.blas), 491
zdotc (in module scipy.linalg.blas), 492
zdotu (in module scipy.linalg.blas), 492
zdrot (in module scipy.linalg.blas), 492
zdscal (in module scipy.linalg.blas), 493
zeros (scipy.signal.lti attribute), 860
zeros (scipy.signal.StateSpace attribute), 863
zeros (scipy.signal.TransferFunction attribute), 866
zeros (scipy.signal.ZerosPolesGain attribute), 869
ZerosPolesGain (class in scipy.signal), 868
zeta (in module scipy.special), 1198
zetac (in module scipy.special), 1198
zgbsv (in module scipy.linalg.lapack), 519
zgbtrf (in module scipy.linalg.lapack), 520
zgbtrs (in module scipy.linalg.lapack), 522
zgebal (in module scipy.linalg.lapack), 523
zgees (in module scipy.linalg.lapack), 525
zgeev (in module scipy.linalg.lapack), 527
zgeev_lwork (in module scipy.linalg.lapack), 528
zgegv (in module scipy.linalg.lapack), 529
zgehrd (in module scipy.linalg.lapack), 531
zgehrd_lwork (in module scipy.linalg.lapack), 532
zgelsd (in module scipy.linalg.lapack), 535
zgelsd_lwork (in module scipy.linalg.lapack), 537
zgelss (in module scipy.linalg.lapack), 533
zgelss_lwork (in module scipy.linalg.lapack), 534
zgelsy (in module scipy.linalg.lapack), 538
zgelsy_lwork (in module scipy.linalg.lapack), 539
zgemm (in module scipy.linalg.blas), 511
zgemv (in module scipy.linalg.blas), 503
zgeqp3 (in module scipy.linalg.lapack), 540
zgeqrf (in module scipy.linalg.lapack), 541
zgerc (in module scipy.linalg.blas), 503
zgerqf (in module scipy.linalg.lapack), 542
zgeru (in module scipy.linalg.blas), 503
zgesdd (in module scipy.linalg.lapack), 543
zgesdd_lwork (in module scipy.linalg.lapack), 544
zgesv (in module scipy.linalg.lapack), 545
zgetrf (in module scipy.linalg.lapack), 546
zgetri (in module scipy.linalg.lapack), 547
zgetri_lwork (in module scipy.linalg.lapack), 547
zgetrs (in module scipy.linalg.lapack), 548
zgges (in module scipy.linalg.lapack), 551
zggev (in module scipy.linalg.lapack), 553
zgtsv (in module scipy.linalg.lapack), 581
zhbevd (in module scipy.linalg.lapack), 554
zhbevx (in module scipy.linalg.lapack), 555
zheev (in module scipy.linalg.lapack), 556
zheevd (in module scipy.linalg.lapack), 557
zheevr (in module scipy.linalg.lapack), 557
zhegv (in module scipy.linalg.lapack), 558
zhegvd (in module scipy.linalg.lapack), 559

1598 Index

SciPy Reference Guide, Release 0.16.0

zhegvx (in module scipy.linalg.lapack), 560
zhemm (in module scipy.linalg.blas), 511
zhemv (in module scipy.linalg.blas), 504
zher (in module scipy.linalg.blas), 505
zher2 (in module scipy.linalg.blas), 505
zher2k (in module scipy.linalg.blas), 512
zherk (in module scipy.linalg.blas), 512
zipf (in module scipy.stats), 1423
zlange (in module scipy.linalg.lapack), 592
zlarf (in module scipy.linalg.lapack), 561
zlarfg (in module scipy.linalg.lapack), 562
zlartg (in module scipy.linalg.lapack), 563
zlaswp (in module scipy.linalg.lapack), 564
zlauum (in module scipy.linalg.lapack), 565
zmap() (in module scipy.stats), 1447
zmap() (in module scipy.stats.mstats), 1519, 1550
zoom() (in module scipy.ndimage.interpolation), 673
zpbsv (in module scipy.linalg.lapack), 566
zpbtrf (in module scipy.linalg.lapack), 568
zpbtrs (in module scipy.linalg.lapack), 569
zpk2sos() (in module scipy.signal), 880
zpk2ss() (in module scipy.signal), 882
zpk2tf() (in module scipy.signal), 880
zposv (in module scipy.linalg.lapack), 570
zpotrf (in module scipy.linalg.lapack), 571
zpotri (in module scipy.linalg.lapack), 572
zpotrs (in module scipy.linalg.lapack), 572
zptsv (in module scipy.linalg.lapack), 582
zrot (in module scipy.linalg.lapack), 573
zrotg (in module scipy.linalg.blas), 493
zscal (in module scipy.linalg.blas), 493
zscore() (in module scipy.stats), 1448
zscore() (in module scipy.stats.mstats), 1519, 1551
zswap (in module scipy.linalg.blas), 494
zsymm (in module scipy.linalg.blas), 512
zsyr (in module scipy.linalg.blas), 505
zsyr2k (in module scipy.linalg.blas), 513
zsyrk (in module scipy.linalg.blas), 512
ztrmv (in module scipy.linalg.blas), 504
ztrsyl (in module scipy.linalg.lapack), 575
ztrtri (in module scipy.linalg.lapack), 576
ztrtrs (in module scipy.linalg.lapack), 577
zunghr (in module scipy.linalg.lapack), 577
zungqr (in module scipy.linalg.lapack), 578
zungrq (in module scipy.linalg.lapack), 579
zunmqr (in module scipy.linalg.lapack), 579

Index 1599

	SciPy Tutorial
	Introduction
	Basic functions
	Special functions (scipy.special)
	Integration (scipy.integrate)
	Optimization (scipy.optimize)
	Interpolation (scipy.interpolate)
	Fourier Transforms (scipy.fftpack)
	Signal Processing (scipy.signal)
	Linear Algebra (scipy.linalg)
	Sparse Eigenvalue Problems with ARPACK
	Compressed Sparse Graph Routines (scipy.sparse.csgraph)
	Spatial data structures and algorithms (scipy.spatial)
	Statistics (scipy.stats)
	Multidimensional image processing (scipy.ndimage)
	File IO (scipy.io)
	Weave (scipy.weave)

	Contributing to SciPy
	Contributing new code
	Contributing by helping maintain existing code
	Other ways to contribute
	Recommended development setup
	SciPy structure
	Useful links, FAQ, checklist

	API - importing from Scipy
	Guidelines for importing functions from Scipy
	API definition

	Release Notes
	SciPy 0.16.0 Release Notes
	SciPy 0.15.0 Release Notes
	SciPy 0.14.0 Release Notes
	SciPy 0.13.2 Release Notes
	SciPy 0.13.1 Release Notes
	SciPy 0.13.0 Release Notes
	SciPy 0.12.1 Release Notes
	SciPy 0.12.0 Release Notes
	SciPy 0.11.0 Release Notes
	SciPy 0.10.1 Release Notes
	SciPy 0.10.0 Release Notes
	SciPy 0.9.0 Release Notes
	SciPy 0.8.0 Release Notes
	SciPy 0.7.2 Release Notes
	SciPy 0.7.1 Release Notes
	SciPy 0.7.0 Release Notes

	Reference
	Clustering package (scipy.cluster)
	K-means clustering and vector quantization (scipy.cluster.vq)
	Hierarchical clustering (scipy.cluster.hierarchy)
	Constants (scipy.constants)
	Discrete Fourier transforms (scipy.fftpack)
	Integration and ODEs (scipy.integrate)
	Interpolation (scipy.interpolate)
	Input and output (scipy.io)
	Linear algebra (scipy.linalg)
	Low-level BLAS functions
	Finding functions
	BLAS Level 1 functions
	BLAS Level 2 functions
	BLAS Level 3 functions
	Low-level LAPACK functions
	Finding functions
	All functions
	BLAS Functions for Cython
	LAPACK functions for Cython
	Interpolative matrix decomposition (scipy.linalg.interpolative)
	Miscellaneous routines (scipy.misc)
	Multi-dimensional image processing (scipy.ndimage)
	Orthogonal distance regression (scipy.odr)
	Optimization and root finding (scipy.optimize)
	Routines
	Examples
	Signal processing (scipy.signal)
	Sparse matrices (scipy.sparse)
	Sparse linear algebra (scipy.sparse.linalg)
	Compressed Sparse Graph Routines (scipy.sparse.csgraph)
	Spatial algorithms and data structures (scipy.spatial)
	Distance computations (scipy.spatial.distance)
	Special functions (scipy.special)
	Statistical functions (scipy.stats)
	Statistical functions for masked arrays (scipy.stats.mstats)
	C/C++ integration (scipy.weave)

	Bibliography
	Python Module Index
	Index

