SciPy Reference Guide
Release 0.16.0

Written by the SciPy community

July 24, 2015

CONTENTS

1 SciPy Tutorial 3
1.1 Introduction e e e e e e e e e e e 3
1.2 Basicfunctions e e e e e e e e e e e e e e e e 5
1.3 Special functions (scipy.special) v v v v v it e e e e 9
1.4 Integration (scipy.integrate) o v ittt e e 10
1.5 Optimization (SCipy.optimize) . . v v v v v v v i e e e e e e e e e e e e e e 17
1.6 Interpolation (scipy.interpolate) o v v i i it e e 31
1.7 Fourier Transforms (scipy.fftpack)« . . o o i i it e e 42
1.8 Signal Processing (scipy.signal) v v vt it it e e 51
1.9 Linear Algebra (scipy.1inalg) v v v vt v it it e e e e e e 69
1.10 Sparse Eigenvalue Problems with ARPACK 82
1.11 Compressed Sparse Graph Routines (scipy.sparse.csgraph). v v v v v v v .. 85
1.12 Spatial data structures and algorithms (scipy.spatial) v i v v i 88
1.13 Statistics (scipy.stats) . . o . v i v i i e e e e e e 94
1.14 Multidimensional image processing (scipy.ndimage)o i .. 113
1.15 FileIO (SCipy-10) . v v v v i i e 134
1.16 Weave (SCIPY.WEAVE) v . v v v v v e 140
2 Contributing to SciPy 175
2.1 Contributing new code L e e e e e e e e e e e e 175
2.2 Contributing by helping maintain existingcode e 176
2.3 Other waystocontribute o v i i i i e e e e e e e e e e e 176
2.4 Recommended development SEtUP oL oL e e e e e e e e e e 177
2.5 SciPystructure e e e e 177
2.6 Useful links, FAQ, checklist e 178
3 API - importing from Scipy 181
3.1 Guidelines for importing functions from Scipy oL oo Lo 181
3.2 APLdefinition L e e e e e e e e e e e e e e e e 182
4 Release Notes 185
4.1 SciPy 0.16.0 Release Notes o o i i i i et e e e 185
42 SciPy 0.15.0 Release NOtES o v i v i e e e e e e e e e e e e e e e e 201
43 SciPy 0.14.0 Release NOtES o v i v v i e e e e e e e e e e e e e 216
44 SciPy 0.132Release Notes L o e 227
4.5 SciPy 0.13.1 Release Notes o o o i e e e e e e e e e e e e 227
4.6 SciPy 0.13.0Release Notes o o i i it e e 227
4.7 SciPy 0.12.1 Release NOtes o o vt e et e e e e 234
4.8 SciPy 0.12.0 Release NOtES o v i v v i et e e e e e e e e e e e e 234
49 SciPy O0.11.0 Release NOteSt o v i e e e e e e e e e e e 240
4.10 SciPy 0.10.1 Release Notes 245

4.11 SciPy 0.10.0 Release NOtes o o o ittt et e e e e e
4.12 SciPy 0.9.0 Release NOtes o i v v i e e e e e e e e e e e
4.13 SciPy 0.8.0Release Notes o o i e e e e e
4.14 SciPy 0.7.2Release Notes o o i e e e e e e e
4.15 SciPy 0.7.1 Release NOtes o o v i ittt e e
4.16 SciPy 0.7.0Release Notes o o it i e e e

5 Reference
5.1 Clustering package (scipy.cluster) i ittt it
5.2 K-means clustering and vector quantization (scipy.cluster.vqg) oo oL
5.3 Hierarchical clustering (scipy.cluster.hierarchy),
5.4 Constants (SCI1py.CONSEANTS) .« v v v v v i e e e e e e e e e e e e e e e e e e e
5.5 Discrete Fourier transforms (scipy.fftpack) o . o o oL e
5.6 Integration and ODEs (scipy.integrate) o i e
5.7 Interpolation (scipy.interpolate) e
5.8 Inputand output (SCIPY.10) « « v v v v v v e
5.9 Linear algebra (scipy.1linalg) v v v v i ittt e e e e e e e e e
5.10 Low-level BLAS functions e
5.11 Finding functions L e e
5.12 BLAS Level 1 functions i i e e e e e e e e e e e
5.13 BLAS Level 2 functions o o v i it e e e e e e e e e e e e e e
5.14 BLAS Level 3functions o o v i it e e e e e e e e e e e e e e e
5.15 Low-level LAPACK functions 0 0 i i e e e e e e e
5.16 Finding functions L L e
507 AILTUnctions o e e e e e e e e e e e e e e e e
5.18 BLAS Functions for Cython e
5.19 LAPACK functions for Cython e e e e
5.20 Interpolative matrix decomposition (scipy.linalg.interpolative)
5.21 Miscellaneous routines (SCipy.misSC) . . .« v v v v v v it e e e e e e e e
5.22 Multi-dimensional image processing (scipy.ndimage)ot e e e
5.23 Orthogonal distance regression (SCipy.odr) v v i i it i i e e
5.24 Optimization and root finding (scipy.optimize) o o v v v i i i e
5.25 ROULNES . . o o v v i e
5.26 Examples e e e e e e e e e e e e
5.27 Signal processing (scipy.signal) oL e
5.28 Sparse matrices (SCIpY . SPATSE) « v v v v v v v v vt e e e e e e e e e e e e e
5.29 Sparse linear algebra (scipy.sparse.linalg)t iiieeee
5.30 Compressed Sparse Graph Routines (scipy.sparse.csgraph). oo v v v v v ..
5.31 Spatial algorithms and data structures (scipy.spatial)o v i v v i v v ..
5.32 Distance computations (scipy.spatial.distance)
5.33 Special functions (scipy.special)o i e e e
5.34 Statistical functions (scipy.stats) e
5.35 Statistical functions for masked arrays (scipy.stats.mstats)
5.36 C/C++1integration (SCLPY . WEAVE) v v v v v v v v v v e e e e e e e e e e e e e e e

Bibliography

Python Module Index

Index

267
267
267
271
286
302
318
337
407
419
478
478
479
494
506
513
513
513
592
596
634
643
654
709
718
799
800
801
949
1051
1081
1093
1128
1143
1200
1525
1552

1557

1573

1575

SciPy Reference Guide, Release 0.16.0

Release 0.16.0
Date July 24, 2015

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering.

CONTENTS 1

SciPy Reference Guide, Release 0.16.0

2 CONTENTS

CHAPTER
ONE

SCIPY TUTORIAL

1.1 Introduction

Contents

* Introduction
— SciPy Organization
— Finding Documentation

SciPy is a collection of mathematical algorithms and convenience functions built on the Numpy extension of Python. It
adds significant power to the interactive Python session by providing the user with high-level commands and classes for
manipulating and visualizing data. With SciPy an interactive Python session becomes a data-processing and system-
prototyping environment rivaling sytems such as MATLAB, IDL, Octave, R-Lab, and SciL.ab.

The additional benefit of basing SciPy on Python is that this also makes a powerful programming language available
for use in developing sophisticated programs and specialized applications. Scientific applications using SciPy benefit
from the development of additional modules in numerous niche’s of the software landscape by developers across the
world. Everything from parallel programming to web and data-base subroutines and classes have been made available
to the Python programmer. All of this power is available in addition to the mathematical libraries in SciPy.

This tutorial will acquaint the first-time user of SciPy with some of its most important features. It assumes that the
user has already installed the SciPy package. Some general Python facility is also assumed, such as could be acquired
by working through the Python distribution’s Tutorial. For further introductory help the user is directed to the Numpy
documentation.

For brevity and convenience, we will often assume that the main packages (numpy, scipy, and matplotlib) have been
imported as:

>>> import numpy as np
>>> import matplotlib as mpl
>>> import matplotlib.pyplot as plt

These are the import conventions that our community has adopted after discussion on public mailing lists. You will

see these conventions used throughout NumPy and SciPy source code and documentation. While we obviously don’t
require you to follow these conventions in your own code, it is highly recommended.

1.1.1 SciPy Organization

SciPy is organized into subpackages covering different scientific computing domains. These are summarized in the
following table:

SciPy Reference Guide, Release 0.16.0

Subpackage Description

cluster Clustering algorithms

constants Physical and mathematical constants
fftpack Fast Fourier Transform routines
integrate Integration and ordinary differential equation solvers
interpolate | Interpolation and smoothing splines

io Input and Output

linalg Linear algebra

ndimage N-dimensional image processing

odr Orthogonal distance regression
optimize Optimization and root-finding routines
signal Signal processing

sparse Sparse matrices and associated routines
spatial Spatial data structures and algorithms
special Special functions

stats Statistical distributions and functions
weave C/C++ integration

Scipy sub-packages need to be imported separately, for example:

>>> from scipy import linalg, optimize

Because of their ubiquitousness, some of the functions in these subpackages are also made available in the scipy
namespace to ease their use in interactive sessions and programs. In addition, many basic array functions from numpy
are also available at the top-level of the scipy package. Before looking at the sub-packages individually, we will first
look at some of these common functions.

1.1.2 Finding Documentation

SciPy and NumPy have documentation versions in both HTML and PDF format available at http://docs.scipy.org/, that
cover nearly all available functionality. However, this documentation is still work-in-progress and some parts may be
incomplete or sparse. As we are a volunteer organization and depend on the community for growth, your participation
- everything from providing feedback to improving the documentation and code - is welcome and actively encouraged.

Python’s documentation strings are used in SciPy for on-line documentation. There are two methods for reading
them and getting help. One is Python’s command help in the pydoc module. Entering this command with no
arguments (i.e. >>> help) launches an interactive help session that allows searching through the keywords and
modules available to all of Python. Secondly, running the command help(obj) with an object as the argument displays
that object’s calling signature, and documentation string.

The pydoc method of help is sophisticated but uses a pager to display the text. Sometimes this can interfere with the
terminal you are running the interactive session within. A numpy/scipy-specific help system is also available under
the command numpy . info. The signature and documentation string for the object passed to the help command
are printed to standard output (or to a writeable object passed as the third argument). The second keyword argument
of numpy . info defines the maximum width of the line for printing. If a module is passed as the argument to help
than a list of the functions and classes defined in that module is printed. For example:

>>> np.info (optimize.fmin)
fmin (func, x0, args=(), xtol=0.0001,
full_output=0, disp=1, retall=0,

ftol=0.0001,
callback=None)

maxiter=None, maxfun=None,

Minimize a function using the downhill simplex algorithm.

Parameters

func callable func(x,*args)

4 Chapter 1. SciPy Tutorial

http://docs.python.org/dev/library/io.html#module-io
http://docs.python.org/dev/library/signal.html#module-signal
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.scipy.org/
http://docs.python.org/dev/library/functions.html#help
http://docs.python.org/dev/library/pydoc.html#module-pydoc

SciPy Reference Guide, Release 0.16.0

The objective function to be minimized.
x0 : ndarray
Initial guess.
args : tuple
Extra arguments passed to func, i.e. °~ f(x,*args)
callback : callable
Called after each iteration, as callback(xk), where xk is the
current parameter vector.

Returns
xopt : ndarray
Parameter that minimizes function.
fopt : float
Value of function at minimum: °~ " fopt = func (xopt)
iter : int
Number of iterations performed.
funcalls : int
Number of function calls made.
warnflag : int

1 : Maximum number of function evaluations made.
2 : Maximum number of iterations reached.
allvecs : list

Solution at each iteration.

Other parameters
xtol : float

Relative error in xopt acceptable for convergence.
ftol : number

Relative error in func(xopt) acceptable for convergence.
maxiter : int

Maximum number of iterations to perform.
maxfun : number

Maximum number of function evaluations to make.
full_output : bool

Set to True if fopt and warnflag outputs are desired.
disp : bool

Set to True to print convergence messages.
retall : bool

Set to True to return list of solutions at each iteration.

Uses a Nelder-Mead simplex algorithm to find the minimum of function of
one or more variables.

Another useful command is source. When given a function written in Python as an argument, it prints out a listing
of the source code for that function. This can be helpful in learning about an algorithm or understanding exactly what
a function is doing with its arguments. Also don’t forget about the Python command di r which can be used to look
at the namespace of a module or package.

1.2 Basic functions

1.2. Basic functions 5

SciPy Reference Guide, Release 0.16.0

Contents

* Basic functions

— Interaction with Numpy

% Index Tricks

Shape manipulation
Polynomials
Vectorizing functions (vectorize)
Type handling
Other useful functions

* ¥k X X %

1.2.1 Interaction with Numpy

Scipy builds on Numpy, and for all basic array handling needs you can use Numpy functions:

>>> import numpy as np
>>> np.some_function ()

Rather than giving a detailed description of each of these functions (which is available in the Numpy Reference Guide
or by using the help, info and source commands), this tutorial will discuss some of the more useful commands
which require a little introduction to use to their full potential.

To use functions from some of the Scipy modules, you can do:

>>> from scipy import some_module
>>> some_module.some_function ()

The top level of scipy also contains functions from numpy and numpy . 1ib.scimath. However, it is better to
use them directly from the numpy module instead.

Index Tricks

There are some class instances that make special use of the slicing functionality to provide efficient means for array
construction. This part will discuss the operation of np.mgrid , np.ogrid, np.r_ , and np.c_ for quickly
constructing arrays.

For example, rather than writing something like the following

>>> concatenate (([3], [0]*5,arange(-1,1.002,2/9.0)))

with the r_ command one can enter this as

>>> r_[3,[0]x5,-1:1:107]

which can ease typing and make for more readable code. Notice how objects are concatenated, and the slicing syntax
is (ab)used to construct ranges. The other term that deserves a little explanation is the use of the complex number
10j as the step size in the slicing syntax. This non-standard use allows the number to be interpreted as the number of
points to produce in the range rather than as a step size (note we would have used the long integer notation, 10L, but
this notation may go away in Python as the integers become unified). This non-standard usage may be unsightly to
some, but it gives the user the ability to quickly construct complicated vectors in a very readable fashion. When the
number of points is specified in this way, the end- point is inclusive.

The “r” stands for row concatenation because if the objects between commas are 2 dimensional arrays, they are stacked
by rows (and thus must have commensurate columns). There is an equivalent command c__ that stacks 2d arrays by
columns but works identically to r__for 1d arrays.

6 Chapter 1. SciPy Tutorial

http://docs.python.org/dev/library/functions.html#help
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.scipy.org/doc/numpy/reference/routines.emath.html#module-numpy.lib.scimath
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

SciPy Reference Guide, Release 0.16.0

Another very useful class instance which makes use of extended slicing notation is the function mgrid. In the simplest
case, this function can be used to construct 1d ranges as a convenient substitute for arange. It also allows the use of
complex-numbers in the step-size to indicate the number of points to place between the (inclusive) end-points. The real
purpose of this function however is to produce N, N-d arrays which provide coordinate arrays for an N-dimensional
volume. The easiest way to understand this is with an example of its usage:

>>> mgrid[0:

~
(@)
w

array ([[[0,

~
~
~
~

4

~
~
~
~

’

~
~
~
~

’

~
~
~

o~
~

4

[
0
1
2
3
4
0,
0
0
0
0
[

~
~

[

’

~
~
~
~

4

~
~
~
~

’

~
~
~

~

>>> mgri
array ([[

(& e N e U S SR e IS
<

e~

e b b b e b e e e
~

e N

\

LN DD NN WD - O

< ~

o

e DWW W W WM O
N

N N N N N N N S S =)

iy

.6667,
.3333,

’

.6667,
.3333,
.3333,
.3333,
.3333,
.3333,

.6667
.3333

N
~

.6667,
.6667,
.6667,
.6667,

[

~

4

d
[
[
(
[
[
(
[
[
[
[
[
[
[
[
[
[
[
[

Coo0Oo0 U Wr o o-~
e e H‘; W o v
WWwwwoweo
P e e

11)

Having meshed arrays like this is sometimes very useful. However, it is not always needed just to evaluate some N-
dimensional function over a grid due to the array-broadcasting rules of Numpy and SciPy. If this is the only purpose for
generating a meshgrid, you should instead use the function ogrid which generates an “open” grid using newaxis
judiciously to create N, N-d arrays where only one dimension in each array has length greater than 1. This will save
memory and create the same result if the only purpose for the meshgrid is to generate sample points for evaluation of
an N-d function.

Shape manipulation

In this category of functions are routines for squeezing out length- one dimensions from N-dimensional arrays, ensur-
ing that an array is at least 1-, 2-, or 3-dimensional, and stacking (concatenating) arrays by rows, columns, and “pages
“(in the third dimension). Routines for splitting arrays (roughly the opposite of stacking arrays) are also available.

Polynomials

There are two (interchangeable) ways to deal with 1-d polynomials in SciPy. The first is to use the poly1d class from
Numpy. This class accepts coefficients or polynomial roots to initialize a polynomial. The polynomial object can then
be manipulated in algebraic expressions, integrated, differentiated, and evaluated. It even prints like a polynomial:

>>> p = polyld([3,4,5])
>>> print p
2
3 x+4x + 5
>>> print p#p
4 3 2
9 x + 24 x + 46 x + 40 x + 25
>>> print p.integ(k=6)
3 2
X+ 2x+5x+ 6

1.2. Basic functions 7

SciPy Reference Guide, Release 0.16.0

>>> print p.deriv ()
6 x + 4

>>> p([4,5])
array ([69, 1007)

The other way to handle polynomials is as an array of coefficients with the first element of the array giving the
coefficient of the highest power. There are explicit functions to add, subtract, multiply, divide, integrate, differentiate,
and evaluate polynomials represented as sequences of coefficients.

Vectorizing functions (vectorize)

One of the features that NumPy provides is a class vectorize to convert an ordinary Python function which accepts
scalars and returns scalars into a “vectorized-function” with the same broadcasting rules as other Numpy functions
(i.e. the Universal functions, or ufuncs). For example, suppose you have a Python function named addsubtract
defined as:

>>> def addsubtract (a,b):
if a > b:
return a - b
else:
return a + b

which defines a function of two scalar variables and returns a scalar result. The class vectorize can be used to “vectorize
“this function so that

>>> vec_addsubtract = vectorize (addsubtract)

returns a function which takes array arguments and returns an array result:

>>> vec_addsubtract ([0,3,6,91,[1,3,5,7])
array ([1, 6, 1, 21)

This particular function could have been written in vector form without the use of vectorize . But, what if the
function you have written is the result of some optimization or integration routine. Such functions can likely only be
vectorized using vectorize.

Type handling

Note the difference between np.iscomplex/np.isreal and np.iscomplexobj/np.isrealobj. The for-
mer command is array based and returns byte arrays of ones and zeros providing the result of the element-wise test.
The latter command is object based and returns a scalar describing the result of the test on the entire object.

Often it is required to get just the real and/or imaginary part of a complex number. While complex numbers and arrays
have attributes that return those values, if one is not sure whether or not the object will be complex-valued, it is better
to use the functional forms np.real and np.imag . These functions succeed for anything that can be turned into
a Numpy array. Consider also the function np.real_if_close which transforms a complex-valued number with
tiny imaginary part into a real number.

Occasionally the need to check whether or not a number is a scalar (Python (long)int, Python float, Python complex,
or rank-0 array) occurs in coding. This functionality is provided in the convenient function np.isscalar which
returnsa 1 ora 0.

Finally, ensuring that objects are a certain Numpy type occurs often enough that it has been given a convenient interface
in SciPy through the use of the np . cast dictionary. The dictionary is keyed by the type it is desired to cast to and
the dictionary stores functions to perform the casting. Thus, np.cast [’ £/] (d) returns an array of np. float32
from d. This function is also useful as an easy way to get a scalar of a certain type:

8 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> np.cast['f'] (np.pi)
array (3.1415927410125732, dtype=float32)

Other useful functions

There are also several other useful functions which should be mentioned. For doing phase processing, the functions
angle, and unwrap are useful. Also, the 1inspace and logspace functions return equally spaced samples in a
linear or log scale. Finally, it’s useful to be aware of the indexing capabilities of Numpy. Mention should be made of
the function select which extends the functionality of where to include multiple conditions and multiple choices.
The calling convention is select (condlist, choicelist,default=0). select is a vectorized form of
the multiple if-statement. It allows rapid construction of a function which returns an array of results based on a list
of conditions. Each element of the return array is taken from the array in a choicelist corresponding to the first
condition in condlist that is true. For example

>>> x = r_[-2:3]

>>> x

array ([-2, -1, 0, 1, 21)

>>> np.select([x > 3, x >= 0],1[0,x+2])
array ([0, 0, 2, 3, 41)

Some additional useful functions can also be found in the module scipy.misc. For example the factorial and
comb functions compute n! and n!/k!(n — k)! using either exact integer arithmetic (thanks to Python’s Long integer
object), or by using floating-point precision and the gamma function. Another function returns a common image used
in image processing: lena.

Finally, two functions are provided that are useful for approximating derivatives of functions using discrete-differences.
The function central_diff_weights returns weighting coefficients for an equally-spaced /N-point approxima-
tion to the derivative of order o. These weights must be multiplied by the function corresponding to these points and
the results added to obtain the derivative approximation. This function is intended for use when only samples of the
function are avaiable. When the function is an object that can be handed to a routine and evaluated, the function
derivative can be used to automatically evaluate the object at the correct points to obtain an N-point approxima-
tion to the o-th derivative at a given point.

1.3 Special functions (scipy.special)

The main feature of the scipy.special package is the definition of numerous special functions of mathematical
physics. Available functions include airy, elliptic, bessel, gamma, beta, hypergeometric, parabolic cylinder, mathieu,
spheroidal wave, struve, and kelvin. There are also some low-level stats functions that are not intended for general
use as an easier interface to these functions is provided by the st at s module. Most of these functions can take array
arguments and return array results following the same broadcasting rules as other math functions in Numerical Python.
Many of these functions also accept complex numbers as input. For a complete list of the available functions with a
one-line description type >>> help (special) . Each function also has its own documentation accessible using
help. If you don’t see a function you need, consider writing it and contributing it to the library. You can write the
function in either C, Fortran, or Python. Look in the source code of the library for examples of each of these kinds of
functions.

1.3.1 Bessel functions of real order(jn, jn_zeros)
Bessel functions are a family of solutions to Bessel’s differential equation with real or complex order alpha:

d?y dy
207y ay 2 2\
xdx2—|—xdx+(x a’)y=0

1.3. Special functions (scipy.special) 9

http://docs.python.org/dev/library/select.html#module-select
http://docs.python.org/dev/library/select.html#module-select

SciPy Reference Guide, Release 0.16.0

Among other uses, these functions arise in wave propagation problems such as the vibrational modes of a thin drum
head. Here is an example of a circular drum head anchored at the edge:

>>> from scipy import special
>>> def drumhead_height (n, k, distance, angle, t):
kth_zero = special.jn_zeros(n, k) [-1]
.. return np.cos(t) % np.cos(nxangle) % special.jn(n, distancexkth_zero)
>>> theta = np.r_[0:2xnp.pi:507]

>>> radius = np.r_[0:1:507]

>>> x = np.array([r » np.cos(theta) for r in radius])

>>> y = np.array([r » np.sin(theta) for r in radius])

>>> 7z = np.array ([drumhead_height (1, 1, r, theta, 0.5) for r in radius])

>>> import matplotlib.pyplot as plt

>>> from mpl_toolkits.mplot3d import Axes3D
>>> from matplotlib import cm

>>> fig = plt.figure()
>>> ax = Axes3D(fig)
>>> ax.plot_surface (x,
>>> ax.set_xlabel ('X")
>>> ax.set_ylabel('Y")
>>> ax.set_zlabel ('Z")
>>> plt.show ()

y, z, rstride=1l, cstride=1, cmap=cm. jet)

0.5

1n —1.0

1.4 Integration (scipy.integrate)

The scipy.integrate sub-package provides several integration techniques including an ordinary differential
equation integrator. An overview of the module is provided by the help command:

>>> help (integrate)
Methods for Integrating Functions given function object.

quad —— General purpose integration.

dblquad —— General purpose double integration.

tplguad —-— General purpose triple integration.

fixed_quad —-— Integrate func(x) using Gaussian quadrature of order n.

10 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

quadrature —-— Integrate with given tolerance using Gaussian quadrature.
romberg —-— Integrate func using Romberg integration.

Methods for Integrating Functions given fixed samples.

trapz —— Use trapezoidal rule to compute integral from samples.
cumtrapz —— Use trapezoidal rule to cumulatively compute integral.
simps —— Use Simpson's rule to compute integral from samples.
romb —— Use Romberg Integration to compute integral from

(2xxk + 1) evenly-spaced samples.

See the special module's orthogonal polynomials (special) for Gaussian
quadrature roots and weights for other weighting factors and regions.

Interface to numerical integrators of ODE systems.

odeint —— General integration of ordinary differential equations.
ode —-— Integrate ODE using VODE and ZVODE routines.

1.4.1 General integration (quad)

The function quad is provided to integrate a function of one variable between two points. The points can be +oo (£
inf) to indicate infinite limits. For example, suppose you wish to integrate a bessel function jv (2.5, x) along the
interval [0, 4.5].

4.5
1 :/ J2'5 ((ﬂ) dx.
0

This could be computed using quad:

>>> result = integrate.quad(lambda x: special.jv(2.5,x), 0, 4.5)
>>> print result
(1.1178179380783249, 7.8663172481899801e-09)

>>> T = sqrt(2/pi) *(18.0/27+sqrt (2) xcos(4.5)-4.0/27+sqrt (2)xsin(4.5)+
sqrt (2+pi) *special.fresnel (3/sqrt (pi)) [0])

>>> print I

1.117817938088701

>>> print abs (result[0]-I)
1.03761443881le-11

The first argument to quad is a “callable” Python object (i.e a function, method, or class instance). Notice the use of a
lambda- function in this case as the argument. The next two arguments are the limits of integration. The return value
is a tuple, with the first element holding the estimated value of the integral and the second element holding an upper
bound on the error. Notice, that in this case, the true value of this integral is

I— % (;iﬁcos (4.5) %ﬁsin (4.5) + V2rSi <\;’%>> :

where

Si (z) = /Ow sin (gﬁ) dt.

is the Fresnel sine integral. Note that the numerically-computed integral is within 1.04 x 10~'! of the exact result —
well below the reported error bound.

1.4. Integration (scipy.integrate) 11

SciPy Reference Guide, Release 0.16.0

If the function to integrate takes additional parameters, the can be provided in the args argument
following integral shall be calculated:

1
I(a,b) z/ az® + bde.
0

This integral can be evaluated by using the following code:

>>> from scipy.integrate import quad
>>> def integrand(x, a, b):
return a * x + b

>>> a = 2

>> b =1

>>> I = quad(integrand, 0, 1, args=(a,b))
>>> I = (2.0, 2.220446049250313e-14)

. Suppose that the

Infinite inputs are also allowed in quad by using &+ inf as one of the arguments. For example, suppose that a

numerical value for the exponential integral:

is desired (and the fact that this integral can be computed as special.expn (n, x) is forgotten)

. The functionality

of the function special.expn can be replicated by defining a new function vec_expint based on the routine

quad:

>>> from scipy.integrate import quad
>>> def integrand(t, n, x):
return exp (-x*t) / tx*n

>>> def expint (n, x):
return quad(integrand, 1, Inf, args=(n, x))[0]

>>> vec_expint = vectorize (expint)

>>> vec_expint (3,arange(1.0,4.0,0.5))

array ([0.1097, 0.0567, 0.0301, 0.0163, 0.0089, 0.00497)
>>> special.expn(3,arange(1.0,4.0,0.5))

array ([0.1097, 0.0567, 0.0301, 0.0163, 0.0089, 0.00491)

The function which is integrated can even use the quad argument (though the error bound may underestimate the error

due to possible numerical error in the integrand from the use of quad). The integral in this case is
e e} e e] e—wt 1
I, = / / ——dtdr = —.
o J1 " n

>>> result = quad(lambda x: expint (3, x), 0, inf)
>>> print result
(0.33333333324560266, 2.8548934485373678e-09)

>>> I3 = 1.0/3.0
>>> print I3

0.333333333333

>>> print I3 - result[0]
8.77306560731e-11

This last example shows that multiple integration can be handled using repeated calls to quad.

12 Chapter 1

. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

1.4.2 General multiple integration (dblquad, tplquad, nquad)

The mechanics for double and triple integration have been wrapped up into the functions dblgquad and tplquad.
These functions take the function to integrate and four, or six arguments, respecively. The limits of all inner integrals
need to be defined as functions.

An example of using double integration to compute several values of I,, is shown below:

>>> from scipy.integrate import quad, dblquad
>>> def I(n):
return dblquad(lambda t, x: exp(-x*t)/t*xn, 0, Inf, lambda x: 1, lambda x: Inf)

>>> print I (4)
(0.25000000000435768, 1.0518245707751597e-09)
>>> print I(3)
(0.33333333325010883, 2.8604069919261191e-09)
>>> print I(2)
(0.49999999999857514, 1.8855523253868967e-09)

As example for non-constant limits consider the integral

1/2 pl-2y 1
1= / / zydrdy = —.
y=0 Ja=0 96

This integral can be evaluated using the expression below (Note the use of the non-constant lambda functions for the
upper limit of the inner integral):

>>> from scipy.integrate import dblgquad

>>> area = dblquad(lambda x, y: x*y, 0, 0.5, lambda x: 0, lambda x: 1-2%Xx)
>>> area

(0.010416666666666668, 1.1564823173178715e-16)

For n-fold integration, scipy provides the function nquad. The integration bounds are an iterable object: either a
list of constant bounds, or a list of functions for the non-constant integration bounds. The order of integration (and
therefore the bounds) is from the innermost integral to the outermost one.

oo Ooefwt
n=f %
o J1 ¢t

>>> from scipy import integrate

The integral from above

1
dtder = —
n

can be calculated as

>>> N = 5
>>> def f(t, x):
>>> return np.exp (-x*t) / t*x*N

>>> integrate.nquad(f, [[1l, np.inf], [0, np.inf]])
(0.20000000000002294, 1.2239614263187945e-08)

Note that the order of arguments for f must match the order of the integration bounds; i.e. the inner integral with
respect to ¢ is on the interval [1, co] and the outer integral with respect to x is on the interval [0, co].

Non-constant integration bounds can be treated in a similar manner; the example from above

1/2 pl-2y 1
1= / / zydrdy = —.
y=0 Jax=0 96

can be evaluated by means of

1.4. Integration (scipy.integrate) 13

SciPy Reference Guide, Release 0.16.0

>>> from scipy import integrate

>>> def f(x, y):

>>> return xxy

>>> def bounds_y () :

>>> return [0, 0.5]

>>> def bounds_x(y):

>>> return [0, 1-2xy]

>>> integrate.nquad(f, [bounds_x, bounds_y])
(0.010416666666666668, 4.101620128472366e-16)

which is the same result as before.

1.4.3 Gaussian quadrature

A few functions are also provided in order to perform simple Gaussian quadrature over a fixed interval. The first
is fixed_quad which performs fixed-order Gaussian quadrature. The second function is quadrature which
performs Gaussian quadrature of multiple orders until the difference in the integral estimate is beneath some tolerance
supplied by the user. These functions both use the module special.orthogonal which can calculate the roots
and quadrature weights of a large variety of orthogonal polynomials (the polynomials themselves are available as
special functions returning instances of the polynomial class —e.g. special.legendre).

1.4.4 Romberg Integration

Romberg’s method [WPR] is another method for numerically evaluating an integral. See the help function for
rombe rg for further details.

1.4.5 Integrating using Samples

If the samples are equally-spaced and the number of samples available is 2¢ + 1 for some integer k, then Romberg
romb integration can be used to obtain high-precision estimates of the integral using the available samples. Romberg
integration uses the trapezoid rule at step-sizes related by a power of two and then performs Richardson extrapolation
on these estimates to approximate the integral with a higher-degree of accuracy.

In case of arbitrary spaced samples, the two functions trapz (defined in numpy [NPT]) and simps are available.
They are using Newton-Coates formulas of order 1 and 2 respectively to perform integration. The trapezoidal rule
approximates the function as a straight line between adjacent points, while Simpson’s rule approximates the function
between three adjacent points as a parabola.

For an odd number of samples that are equally spaced Simpson’s rule is exact if the function is a polynomial of order
3 or less. If the samples are not equally spaced, then the result is exact only if the function is a polynomial of order 2
or less.

>>> from scipy.integrate import simps
>>> import numpy as np
>>> def f(x):
R return xxx2
>>> def f2(x):
return xxx3
>>> x = np.array([1,3,4])
>>> yl = f1(x)

>>> I1 = integrate.simps(yl, x)
>>> print (I1)
21.0

14 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

This corresponds exactly to

4
/ z?dr = 21,
1

whereas integrating the second function

>>> y2 = f2(x)

>>> I2 = integrate.simps(y2, x)
>>> print (I2)
61.5

does not correspond to
4
/ z® dx = 63.75
1

because the order of the polynomial in f2 is larger than two.

1.4.6 Faster integration using Ctypes

A user desiring reduced integration times may pass a C function pointer through ctypes to quad, dblquad,
tplquad or nquad and it will be integrated and return a result in Python. The performance increase here arises from
two factors. The primary improvement is faster function evaluation, which is provided by compilation. This can also
be achieved using a library like Cython or F2Py that compiles Python. Additionally we have a speedup provided by
the removal of function calls between C and Python in quad - this cannot be achieved through Cython or F2Py. This
method will provide a speed increase of ~2x for trivial functions such as sine but can produce a much more noticeable
increase (10x+) for more complex functions. This feature then, is geared towards a user with numerically intensive
integrations willing to write a little C to reduce computation time significantly.

ctypes integration can be done in a few simple steps:

1.) Write an integrand function in C with the function signature double f (int n, double args[n]), where
args is an array containing the arguments of the function f.

//testlib.c
double f (int n, double args[n]) {
return args[0] - args([l] * args([2]; //corresponds to x0 — xl1 x x2

}

2.) Now compile this file to a shared/dynamic library (a quick search will help with this as it is OS-dependent). The
user must link any math libraries, etc. used. On linux this looks like:

$ gcc —-shared -o testlib.so —-fPIC testlib.c

The output library will be referred to as test1ib. so, but it may have a different file extension. A library has now
been created that can be loaded into Python with ct ypes.

3.) Load shared library into Python using ct ypes and set restypes and argtypes - this allows Scipy to interpret
the function correctly:

>>> import ctypes

>>> from scipy import integrate

>>> 1lib = ctypes.CDLL('/*x/testlib.so') # Use absolute path to testlib
>>> func = lib.f # Assign specific function to name func (for simplicity)
>>> func.restype ctypes.c_double

>>> func.argtypes = (ctypes.c_int, ctypes.c_double)

1.4. Integration (scipy.integrate) 15

http://docs.python.org/dev/library/ctypes.html#module-ctypes
http://docs.python.org/dev/library/ctypes.html#module-ctypes
http://docs.python.org/dev/library/ctypes.html#module-ctypes
http://docs.python.org/dev/library/ctypes.html#module-ctypes

SciPy Reference Guide, Release 0.16.0

Note that the argtypes will always be (ctypes.c_int, ctypes.c_double) regardless of the number of
parameters, and restype will always be ctypes.c_double.

4.) Now integrate the library function as normally, here using nquad:

>>> integrate.nquad(func, [[0,10],[-10,01,[-1,111)
(1000.0, 1.1102230246251565e-11)

And the Python tuple is returned as expected in a reduced amount of time. All optional parameters can be used with
this method including specifying singularities, infinite bounds, etc.

1.4.7 Ordinary differential equations (odeint)

Integrating a set of ordinary differential equations (ODEs) given initial conditions is another useful example. The
function odeint is available in SciPy for integrating a first-order vector differential equation:

dy
— =1 (y,t
o =),
given initial conditions y (0) = yo, where y is a length IV vector and f is a mapping from R to R . A higher-order
ordinary differential equation can always be reduced to a differential equation of this type by introducing intermediate
derivatives into the y vector.

For example suppose it is desired to find the solution to the following second-order differential equation:

dPw

12 zw(z) =0
with initial conditions w (0) = \s/gf%r(z) and % |Z_0 = —\3[3%(1). It is known that the solution to this differential
3 = 3

equation with these boundary conditions is the Airy function
w = Ai(z),
which gives a means to check the integrator using special.airy.

First, convert this ODE into standard form by setting y = [‘é—f, w] and ¢ = z. Thus, the differential equation becomes
dl o ty1 o 0 t Yo o 0 t
i |y | (10w]| T[1o0]”

f(y,t)=A()y.

As an interesting reminder, if A (¢) commutes with fot A (7) d7 under matrix multiplication, then this linear differen-
tial equation has an exact solution using the matrix exponential:

In other words,

v =en ([AGr)y0).

However, in this case, A (t) and its integral do not commute.

There are many optional inputs and outputs available when using odeint which can help tune the solver. These ad-
ditional inputs and outputs are not needed much of the time, however, and the three required input arguments and
the output solution suffice. The required inputs are the function defining the derivative, fprime, the initial conditions
vector, y0, and the time points to obtain a solution, ¢, (with the initial value point as the first element of this sequence).
The output to odeint is a matrix where each row contains the solution vector at each requested time point (thus, the
initial conditions are given in the first output row).

The following example illustrates the use of odeint including the usage of the Dfun option which allows the user to
specify a gradient (with respect to y) of the function, f (y, ¢).

16 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> from scipy.integrate import odeint
>>> from scipy.special import gamma, airy
>>> y1_0 = 1.0 / 3%x%(2.0/3.0) / gamma(2.0/3.0)
>>> y0_0 = -1.0 / 3%%x(1.0/3.0) / gamma(1.0/3.0)
>>> y0 = [y0_0, yl1_0]
>>> def func(y, t):

return [txy[1],yI[0]]

>>> def gradient(y, t):
return [[0,t], [1,0]]

>>> x = arange (0, 4.0, 0.01)

>>> t = x

>>> ychk = airy(x) [0]

>>> y = odeint (func, y0, t)

>>> y2 = odeint (func, y0, t, Dfun=gradient)

>>> print ychk[:36:6]
[0.355028 0.339511 0.324068 0.308763 0.293658 0.278806]

>>> print y[:36:6,1]
[0.355028 0.339511 0.324067 0.308763 0.293658 0.278806]

>>> print y2[:36:6,1]
[0.355028 0.339511 0.324067 0.308763 0.293658 0.278806]

References
1.5 Optimization (scipy.optimize)

The scipy.optimize package provides several commonly used optimization algorithms. A detailed listing is
available: scipy.optimize (can also be found by help (scipy.optimize)).

The module contains:

1. Unconstrained and constrained minimization of multivariate scalar functions (mninimize) using a variety of
algorithms (e.g. BFGS, Nelder-Mead simplex, Newton Conjugate Gradient, COBYLA or SLSQP)

Global (brute-force) optimization routines (e.g. basinhopping, differential_evolution)
Least-squares minimization (least sq) and curve fitting (curve_ fit) algorithms

Scalar univariate functions minimizers (minimize_scalar) and root finders (newt on)

A

Multivariate equation system solvers (root) using a variety of algorithms (e.g. hybrid Powell, Levenberg-
Marquardt or large-scale methods such as Newton-Krylov).

Below, several examples demonstrate their basic usage.

1.5.1 Unconstrained minimization of multivariate scalar functions (minimize)

The minimize function provides a common interface to unconstrained and constrained minimization algo-
rithms for multivariate scalar functions in scipy.optimize. To demonstrate the minimization function con-
sider the problem of minimizing the Rosenbrock function of N variables: f(x) = Zf\;l 100 (:ri - xf_l)z +
(1- xi,l)Q T heminimumualueo fthis functionisOwhichisachievedwhenx; = 1.

1.5. Optimization (scipy.optimize) 17

SciPy Reference Guide, Release 0.16.0

Note that the Rosenbrock function and its derivatives are included in scipy.optimize. The implementations
shown in the following sections provide examples of how to define an objective function as well as its jacobian and
hessian functions.

Nelder-Mead Simplex algorithm (method='Nelder-Mead’)

In the example below, the minimize routine is used with the Nelder-Mead simplex algorithm (selected through the
method parameter):

>>> import numpy as np
>>> from scipy.optimize import minimize

>>> def rosen(x):

mwn

"""The Rosenbrock function
return sum(100.0% (x[1l:]-x[:-1]1%%2.0)%%2.0 + (l-x[:-1])*x2.0)

>>> x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.21)
>>> res = minimize (rosen, x0, method='nelder-mead',
Ce options={'xtol': le-8, 'disp': True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 339
Function evaluations: 571

>>> print (res.x)
[1. 1. 1. 1. 1.]

The simplex algorithm is probably the simplest way to minimize a fairly well-behaved function. It requires only
function evaluations and is a good choice for simple minimization problems. However, because it does not use any
gradient evaluations, it may take longer to find the minimum.

Another optimization algorithm that needs only function calls to find the minimum is Powell‘s method available by
setting method='"powell’ inminimize.

Broyden-Fletcher-Goldfarb-Shanno algorithm (method='BFGS’)

In order to converge more quickly to the solution, this routine uses the gradient of the objective function. If the gradient
is not given by the user, then it is estimated using first-differences. The Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method typically requires fewer function calls than the simplex algorithm even when the gradient must be estimated.

To demonstrate this algorithm, the Rosenbrock function is again used. The gradient of the Rosenbrock function is the
vector:

9f

N
9 = 2200 (xi—xf_l) (6i,j —211_152‘_17]') _2(1_:172'—1)51'—1,]"
i i=1

200 (z; — 27_,) — 400z; (zj41 — xf) —2(1—2aj).

Jj—1

This expression is valid for the interior derivatives. Special cases are

of
i —400z (21 — 25) —2(1 — z0),
of
Brn s 200 (;vN,l — 1%\,72) .

A Python function which computes this gradient is constructed by the code-segment:

18 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> def rosen_der (x):
xm = x[1:-1]
xm_ml = x[:-2]
xm_pl = x[2:]
der = np.zeros_like (x)

der[l:-1] = 200% (xm—xm_mlxx2) — 400%(xm_pl — xm**2)xxm — 2% (l-xm)
der[0] = -400*x[0]*(X[1]-x[0]**2) — 2% (1-x[07)
der[-1] = 200 (x[-1]-x[-2]*%2)

return der

This gradient information is specified in the minimi ze function through the jac parameter as illustrated below.

>>> res = minimize (rosen, x0, method='BFGS', jac=rosen_der,
Ce options={'disp': True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 51
Function evaluations: 63
Gradient evaluations: 63
>>> print (res.x)
[1. 1. 1. 1. 1.1

Newton-Conjugate-Gradient algorithm (method='Newton-CG’)

The method which requires the fewest function calls and is therefore often the fastest method to minimize
functions of many variables uses the Newton-Conjugate Gradient algorithm. This method is a modified New-
ton’s method and uses a conjugate gradient algorithm to (approximately) invert the local Hessian. Newton’s
method is based on fitting the function locally to a quadratic form: f(x) ~ f(xo) + Vf(x0) - (x —x0) +
%(x —xO)TH(xo) (x — xq) .whereH (xg) is a matrix of second-derivatives (the Hessian). If the Hessian is
positive definite then the local minimum of this function can be found by setting the gradient of the quadratic
form to zero, resulting in Xop = x¢ — H ™'V f.TheinverseoftheHessianisevaluatedusingtheconjugate —
gradientmethod. Anexampleo femployingthismethodtominimizingthe Rosenbrock functionisgivenbelow.Totake fulladvantc
CGmethod, a functionwhichcomputesthe Hessianmustbeprovided. T he Hessianmatrizitsel f doesnotneedtobeconstructed, on

Full Hessian example:
The Hessian of the Rosenbrock function is
0% f

*J 8xi8a:j

200 ((51"]' — 2xi716i717j) — 400561 (6i+1,j — 2.%1(517]) — 40057,1] (ZL’Z'Jrl — .’E?) + 25i,j7
= (202 + 120027 — 400z;11) &; j — 400z;6;41,; — 400z;_10;_1 5,

ifi,j € [1, N — 2] with¢,j € [0, N — 1] defining the N X N matrix. Other non-zero entries of the matrix are

2
% = 120023 — 4002, + 2,
0
0% f 0% f
= = 74
8$08$1 81‘18%‘0 OO:L'O’
0% f 0% f
= = 74 —_
OzxN_10xN_2 OxN_20TN_1 002N -2,
82
TN-1

1.5. Optimization (scipy.optimize) 19

SciPy Reference Guide, Release 0.16.0

1200x3 —400x1 + 2 —400x 0 0

—400x¢ 202 + 120022 — 400z —400x1 0

For example, the Hessian when N = 5is H= 0 —400z, 202 + 1200:13% — 400x3 —40!
0 —400x2 202 + 1200:

0 0 0 —40

CGmethodisshowninthe f ollowingexample :

>>> def rosen_hess(x):

X = np.asarray (x)
H = np.diag(-400%x[:-1],1) — np.diag(400*x[:-1],-1)
diagonal = np.zeros_like (x)
diagonal[0] = 1200%x[0]**2-400%xx[1]+2
diagonal[-1] = 200
diagonal[l:-1] = 202 + 1200xx[1l:=1]1%%2 — 400%x[2:]
H = H + np.diag(diagonal)
return H
>>> res = minimize (rosen, x0, method='Newton-CG',

jac=rosen_der, hess=rosen_hess,

.. options={'xtol': 1le-8, 'disp': True})
Optimization terminated successfully.

Current function value: 0.000000

Iterations: 19

Function evaluations: 22

Gradient evaluations: 19

Hessian evaluations: 19
>>> print (res.x)
[1. 1. 1. 1. 1.]

Hessian product example:

For larger minimization problems, storing the entire Hessian matrix can consume considerable time and memory. The
Newton-CG algorithm only needs the product of the Hessian times an arbitrary vector. As a result, the user can supply
code to compute this product rather than the full Hessian by giving a hess function which take the minimization
vector as the first argument and the arbitrary vector as the second argument (along with extra arguments passed to the
function to be minimized). If possible, using Newton-CG with the Hessian product option is probably the fastest way
to minimize the function.

In this case, the product of the Rosenbrock Hessian with an arbitrary vector is not dif-
ficult to compute. If p is the arbitrary vector, then H(x)p has elements: H(x)p =
(120023 — 400z + 2) po — 400zp1

—400xz; _1p;—1 + (202 + 12002912 — 4()0:U1-+1) p; —400z;p; 41 | .Codewhichmakesuseo fthisH essianproducttominimizethel

—400z ny_2pN—2 + 200pN_1

>>> def rosen_hess_p(x, p):

X = np.asarray (x)

Hp = np.zeros_like (x)

Hp[0] = (1200%x[0]**2 — 400*x[1] + 2)*p[0] — 400xx[0]*p[1]

Hp[l:-1] = —400*x[:-2]1*p[:=2]+(202+1200%x[1:-1]1%%x2-400*x[2:])*p[Ll:=1] \
—400xx[1l:-1]*p[2:]

Hp[-1] = —-400*xx[-2]*p[-2] + 200xp[—-1]

return Hp

>>> res = minimize (rosen, x0, method='Newton-CG',
jac=rosen_der, hessp=rosen_hess_p,

20 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

.. options={'xtol': 1le-8, 'disp': True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 20
Function evaluations: 23
Gradient evaluations: 20
Hessian evaluations: 44
>>> print (res.x)
1. 1. 1. 1. 1.]

1.5.2 Constrained minimization of multivariate scalar functions (minimize)

The minimize function also provides an interface to several constrained minimization algorithm. As an example,
the Sequential Least SQuares Programming optimization algorithm (SLSQP) will be considered here. This algorithm
allows to deal with constrained minimization problems of the form:

min F'(z)
subject to C;(X) =0, ji=1,...,MEQ
Ci(x) >0, j=MEQ+1,...M
XL<zx<XU, I=1,..,N

As an example, let us consider the problem of maximizing the function: f(x, y) = 2 xy + 2 x - x? —

2% subjecttoanequalityandaninequalityconstraintsde finedas :to 2> —y=0
y — 1 > 0The objective function and its derivative are defined as follows.

>>> def func(x, sign=1.0):
""" Objective function
return sign# (2+x[0]*x[1] + 2%x[0] — x[0]#*%2 — 2%x[1]*%2)

mown

>>> def func_deriv(x, sign=1.0):
""" Derivative of objective function
dfdx0 = sign«* (-2*x[0] + 2xx[1] + 2)
dfdxl = sign* (2xx[0] - 4xx[1])
return np.array ([dfdx0, dfdxl])

mmn

Note that since minimize only minimizes functions, the sign parameter is introduced to multiply the objective
function (and its derivative) by -1 in order to perform a maximization.

Then constraints are defined as a sequence of dictionaries, with keys type, fun and jac.

>>> cons = ({'type': 'eq',
"fun' : lambda x: np.array([x[0]**3 - x[1]11]),
"Jac' : lambda x: np.array([3.0x(x[0]*%x2.0), —-1.0]1)1},
{'type': 'ineq',
'"fun' : lambda x: np.array([x[1] - 1]),
'"Jac' : lambda x: np.array([0.0, 1.0]1)1})

Now an unconstrained optimization can be performed as:

>>> res = minimize (func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,
C.. method='SLSQP', options={'disp': True})
Optimization terminated successfully. (Exit mode 0)

Current function value: -2.0

Iterations: 4
Function evaluations: 5
Gradient evaluations: 4

1.5. Optimization (scipy.optimize) 21

SciPy Reference Guide, Release 0.16.0

>>> print (res.x)
[2. 1.]

and a constrained optimization as:

>>> res = minimize (func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,
C.. constraints=cons, method='SLSQP', options={'disp': True})
Optimization terminated successfully. (Exit mode 0)

Current function value: -1.00000018311
Iterations: 9
Function evaluations: 14
Gradient evaluations: 9
>>> print (res.x)
[1.00000009 1.]

1.5.3 Least-square fitting (Leastsq)

All of the previously-explained minimization procedures can be used to solve a least-squares problem provided

the appropriate objective function is constructed. For example, suppose it is desired to fit a set of data {x;,y;}

to a known model, y = f (x,p) where p is a vector of parameters for the model that need to be found. A

common method for determining which parameter vector gives the best fit to the data is to minimize the sum

of squares of the residuals. The residual is usually defined for each observed data-point as e; (p,y:,X;) =

lly: — £ (x:, P)|| Anobjective functiontopasstoanyo fthepreviousminizationalgorithmstoobtainaleast -

squaresfitis.J (p) = Z?;Bl e? (p) .Theleastsqalgorithmper formsthissquaringandsummingo ftheresidual sautomaticall
and returns the value of p which minimizes .J (p) = e”'e directly. The user is also encouraged to provide the Jacobian

matrix of the function (with derivatives down the columns or across the rows). If the Jacobian is not provided, it is

estimated.

An example should clarify the usage. Suppose it is believed some measured data follow a sinusoidal pat-

tern y; = Asin (2nkx; + 0) wheretheparametersA, k , and 0 are unknown. The residual vector is e; =

ly; — Asin (2wka; + 0)| .Byde fininga functiontocomputetheresidual sand(selectinganappropriatestartingposition), theleast
squares fitroutinecanbeusedto findthebest — fitparametersfi, k, 6. This is shown in the following example:

>>> from numpy import arange, sin, pi, random, array
>>> x = arange (0, 6e-2, 6e-2 / 30)

>>> A, k, theta = 10, 1.0 / 3e-2, pi / 6

>>> y_true = A * sin(2 « pi x* k * x + theta)

>>> y_meas = y_true + 2xrandom.randn(len (x))

>>> def residuals(p, vy, X):
A, k, theta =p
err =y — A * sin(2 » pi * k » x + theta)
return err

>>> def peval (x, p):
return p[0] * sin(2 * pi % p[l] * x + p[2])

>>> p0 = [8, 1 / 2.3e-2, pi / 3]
>>> print (array (p0))
[8. 43.4783 1.0472]

>>> from scipy.optimize import leastsqg

>>> plsqg = leastsqg(residuals, p0, args=(y_meas, X))
>>> print (plsq[0])

[10.9437 33.3605 0.5834]

22 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> print (array ([A, k, thetal))
[10. 33.3333 0.5236]

>>> import matplotlib.pyplot as plt

>>> plt.plot (x, peval(x, plsql0]),x,y_meas,'o',x,y_true)
>>> plt.title('Least-squares fit to noisy data')

>>> plt.legend(['Fit', 'Noisy', 'True'l])

>>> plt.show ()

Least-squares fit to noisy data
15 T T T ‘ T T

° o — Fit

Il Il Il Il Il
0.00 0.01 0.02 0.03 0.04 0.05 0.06

1.5.4 Univariate function minimizers (minimize_scalar)

Often only the minimum of an univariate function (i.e. a function that takes a scalar as input) is needed. In these
circumstances, other optimization techniques have been developed that can work faster. These are accessible from the
minimize_scalar function which proposes several algorithms.

Unconstrained minimization (method='brent’)

There are actually two methods that can be used to minimize an univariate function: brent and golden, but
golden isincluded only for academic purposes and should rarely be used. These can be respectively selected through
the method parameter in minimize_scalar. The brent method uses Brent’s algorithm for locating a minimum.
Optimally a bracket (the bs parameter) should be given which contains the minimum desired. A bracket is a triple
(a,b,c) such that f (a) > f(b) < f(c) and a < b < c. If this is not given, then alternatively two starting points can
be chosen and a bracket will be found from these points using a simple marching algorithm. If these two starting points
are not provided 0 and / will be used (this may not be the right choice for your function and result in an unexpected
minimum being returned).

Here is an example:

>>> from scipy.optimize import minimize_scalar
>>> f = lambda x: (x — 2) * (X + 1)*%*2

>>> res = minimize_scalar (f, method='brent'")
>>> print (res.x)
1.0

1.5. Optimization (scipy.optimize) 23

SciPy Reference Guide, Release 0.16.0

Bounded minimization (method='bounded’)

Very often, there are constraints that can be placed on the solution space before minimization occurs. The bounded
method in minimize_scalar is an example of a constrained minimization procedure that provides a rudimentary
interval constraint for scalar functions. The interval constraint allows the minimization to occur only between two
fixed endpoints, specified using the mandatory bs parameter.

For example, to find the minimum of .J; (z) near x = 5, minimize_scalar can be called using the interval [4, 7]
as a constraint. The result iS Z;, = 5.3314 :

>>> from scipy.special import jl

>>> res = minimize_scalar (jl, bs=(4, 7), method='bounded")
>>> print (res.x)

5.33144184241

1.5.5 Custom minimizers

Sometimes, it may be useful to use a custom method as a (multivariate or univariate) minimizer, for example when
using some library wrappers of minimize (e.g. basinhopping).

We can achieve that by, instead of passing a method name, we pass a callable (either a function or an object imple-
menting a __call__ method) as the method parameter.

Let us consider an (admittedly rather virtual) need to use a trivial custom multivariate minimization method that will
just search the neighborhood in each dimension independently with a fixed step size:

>>> def custmin (fun, x0, args=(), maxfev=None, stepsize=0.1,
maxiter=100, callback=None, =**options):

bestx = x0
besty = fun/(
funcalls = 1
niter = 0
improved = True
stop = False

x0)

while improved and not stop and niter < maxiter:
improved = False
niter += 1
for dim in range (np.size (x0)):
for s in [bestx[dim] - stepsize, bestx[dim] + stepsize]:
testx = np.copy (bestx)
testx[dim] = s
testy = fun(testx, =*args)
funcalls += 1
if testy < besty:
besty = testy
bestx = testx
improved = True
if callback is not None:
callback (bestx)
if maxfev is not None and funcalls >= maxfev:
stop = True
break

return OptimizeResult (fun=besty, x=bestx, nit=niter,
. nfev=funcalls, success=(niter > 1))
>>> x0 = [1.35, 0.9, 0.8, 1.1, 1.2]
>>> res = minimize (rosen, x0, method=custmin, options=dict (stepsize=0.05))

24 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> res.x
[1. 1. 1. 1. 1.]

This will work just as well in case of univariate optimization:

>>> def custmin (fun, bracket, args=(), maxfev=None, stepsize=0.1,
maxiter=100, callback=None, =**options):
bestx = (bracket[l] + bracket[0]) / 2.0
besty = fun (bestx)
funcalls = 1
niter = 0
improved = True
stop = False

while improved and not stop and niter < maxiter:
improved = False
niter += 1
for testx in [bestx - stepsize, bestx + stepsize]:
testy = fun(testx, =xargs)
funcalls += 1
if testy < besty:
besty = testy
bestx = testx
improved = True
if callback is not None:
callback (bestx)
if maxfev is not None and funcalls >= maxfev:
stop = True
break

return OptimizeResult (fun=besty, x=bestx, nit=niter,
.. nfev=funcalls, success=(niter > 1))
>>> res = minimize_scalar (f, bracket=(-3.5, 0), method=custmin,
options=dict (stepsize = 0.05))
>>> res.x
-2.0

1.5.6 Root finding

Scalar functions

If one has a single-variable equation, there are four different root finding algorithms that can be tried. Each of these
algorithms requires the endpoints of an interval in which a root is expected (because the function changes signs). In
general brentq is the best choice, but the other methods may be useful in certain circumstances or for academic
purposes.

Fixed-point solving

A problem closely related to finding the zeros of a function is the problem of finding a fixed-point of a function. A
fixed point of a function is the point at which evaluation of the function returns the point: g (z) = x. Clearly the fixed
point of g is the root of f (z) = g (z) — =. Equivalently, the root of f is the fixed_point of g (z) = f (z) + =. The
routine fixed_point provides a simple iterative method using Aitkens sequence acceleration to estimate the fixed
point of g given a starting point.

1.5. Optimization (scipy.optimize) 25

SciPy Reference Guide, Release 0.16.0

Sets of equations

Finding a root of a set of non-linear equations can be achieve using the root function. Several methods are available,
amongst which hybr (the default) and 1m which respectively use the hybrid method of Powell and the Levenberg-
Marquardt method from MINPACK.

The following example considers the single-variable transcendental equation x+2cos () =
0, arooto fwhichcanbe foundas follows :

>>> import numpy as np
>>> from scipy.optimize import root
>>> def func(x):
return x + 2 % np.cos(x)
>>> sol = root (func, 0.3)
>>> sol.x
array ([-1.02986653])
>>> sol.fun
array ([—-6.66133815e-16])

Consider now a set of non-linear equations
xocos(x1) = 4,
o1 — X1 = 5.

We define the objective function so that it also returns the Jacobian and indicate this by setting the jac parameter to
True. Also, the Levenberg-Marquardt solver is used here.

>>> def func2(x):

f = [x[0] * np.cos(x[1l]) - 4,
x[1]1*x[0] - x[1] — 5]
df = np.array([[np.cos(x[1]), —-x[0] * np.sin(x[1])],
[x[1], x[0] - 111)

.. return f, df

>>> sol = root (func2, [1, 1], jac=True, method='lm')
>>> sol.x

array ([6.50409711, 0.90841421])

Root finding for large problems

Methods hybr and 1min root cannot deal with a very large number of variables (N), as they need to calculate and
invert a dense N x N Jacobian matrix on every Newton step. This becomes rather inefficient when N grows.

Consider for instance the following problem: we need to solve the following integrodifferential equation on the square
[0, 1] x [0, 1]:
2

11
(8%+8§)P+5(/0 /0 cosh(P)da:dy) =0

with the boundary condition P(x, 1) = 1 on the upper edge and P = 0 elsewhere on the boundary of the square. This
can be done by approximating the continuous function P by its values on a grid, P, ,, ~ P(nh, mh), with a small
grid spacing h. The derivatives and integrals can then be approximated; for instance 2P (x,y) ~ (P(z + h,y) —
2P(z,y) + P(z — h,y))/h?. The problem is then equivalent to finding the root of some function residual (P),
where P is a vector of length N, V.

Now, because NN, can be large, methods hybr or 1min root will take a long time to solve this problem. The
solution can however be found using one of the large-scale solvers, for example krylov, broyden2, or anderson.
These use what is known as the inexact Newton method, which instead of computing the Jacobian matrix exactly, forms
an approximation for it.

26 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

The problem we have can now be solved as follows:

import numpy as np
from scipy.optimize import root

from numpy import cosh, zeros_like, mgrid,

parameters

nx, ny = 75, 75

hx, hy = 1./(nx-1), 1./ (ny-1)

P_left, P_right = 0, O

P_top, P_bottom = 1, O

def residual (P):
d2x = zeros_like (P)
d2y = zeros_like (P)
d2x[1l:-1] = (P[2:] - 2+%P[1:-1] + P[:-2])
d2x[0] = (P[1] - 2%P[0]
d2x[-1] = (P_right - 2xP[-1]
d2y[:,1:-1]1 = (P[:,2:] — 2%P[:,1:-1]
d2y[:,0] = (P[:,1] - 2%P[:,0]
dzy[:,-1] = (P_top - 2%P[:,-1]

return d2x + d2y + 5xcosh(P) .mean () =2

solve
guess = zeros((nx, ny),
sol = root (residual, guess,
#sol = root (residual,
#sol = root (residual,
print ('Residual:

float)

guess,
guess,

visualize

import matplotlib.pyplot as plt

x, v = mgrid[0:1: (nxx173), O0:1l:(ny*173)]
plt.pcolor(x, y, sol.x)

plt.colorbar ()

plt.show()

method="'krylov',
method="broydenZ2',
method="anderson',
2g' % abs(residual (sol.x)) .max())

zZzeros

/ hx/hx

+ P_left) /hx/hx
+ P[-2]) /hx/hx

+ P[:,:-2])/hy/hy
+ P_bottom) /hy/hy
+ P[:,-2])/hy/hy

True})
True,
True,

options={'disp':
options={'disp':
options={'disp':

'max_rank':
'M'": 10})

50})

1.5. Optimization (scipy.optimize)

27

SciPy Reference Guide, Release 0.16.0

0.90
0.75
0.60
0.45
0.30

0.15

Still too slow? Preconditioning.

When looking for the zero of the functions f;(x) = 0,i = 1, 2, ..., N, the krylov solver spends most of its time
inverting the Jacobian matrix,

_0fi

Jij = 61‘]‘ .

If you have an approximation for the inverse matrix M ~ .J~!, you can use it for preconditioning the linear inversion
problem. The idea is that instead of solving Js = y one solves M Js = My: since matrix M J is “closer” to the
identity matrix than J is, the equation should be easier for the Krylov method to deal with.

The matrix M can be passed to root with method krylov as an op-
tion options [’ jac_options’] [’ inner_M’]. It can be a (sparse) matrix or a
scipy.sparse.linalg.LinearOperator instance.

For the problem in the previous section, we note that the function to solve consists of two parts: the first one is
application of the Laplace operator, [02 + GS]P, and the second is the integral. We can actually easily compute the
Jacobian corresponding to the Laplace operator part: we know that in one dimension

-2 1 0
1

_ o O

=h; %L

so that the whole 2-D operator is represented by
S =024 0; ~h*Lol+h*I®L

The matrix Jo of the Jacobian corresponding to the integral is more difficult to calculate, and since all of it entries
are nonzero, it will be difficult to invert. J; on the other hand is a relatively simple matrix, and can be inverted by
scipy.sparse.linalg.splu (or the inverse can be approximated by scipy.sparse.linalg.spilu).
So we are content to take M = .J; ' and hope for the best.

In the example below, we use the preconditioner M = J; 1

28 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

import numpy as np

from scipy.optimize import root

from scipy.sparse import spdiags, kron

from scipy.sparse.linalg import spilu, LinearOperator
from numpy import cosh, zeros_like, mgrid, =zeros, eye

parameters
nx, ny = 75, 75
hx, hy 1./(nx-1), 1./ (ny-1)

P_left, P_right = 0, O
P_top, P_bottom = 1, O

def get_preconditioner () :
"""Compute the preconditioner M"""

diags_x = zeros((3, nx))
diags_x[0,:] = 1/hx/hx
diags_x[1,:] = -2/hx/hx
diags_x[2,:] = 1/hx/hx

Lx = spdiags(diags_x, [-1,0,1], nx, nx)

diags_y = zeros((3, ny))
diags_y[0,:] = 1/hy/hy
diags_yl[1l,:] = -2/hy/hy
diags_yI[2,:]1 = 1/hy/hy

Ly = spdiags(diags_y, [-1,0,1], ny, ny)
Jl = kron(Lx, eye(ny)) + kron(eye(nx), Ly)

Now we have the matrix “J_1° . We need to find its inverse 'M' —-—
however, since an approximate inverse 1is enough, we can use
the xincomplete LU* decomposition

Jl_ilu = spilu(Jl)

This returns an object with a method .solve() that evaluates
the corresponding matrix-vector product. We need to wrap it into
a LinearOperator before it can be passed to the Krylov methods:

M = LinearOperator (shape=(nx*ny, nxsny), matvec=J1_ilu.solve)
return M

def solve(preconditioning=True) :
"""Compute the solution"""
count = [0]

def residual (P):
count [0] += 1

d2x = zeros_like (P)
d2y = zeros_like (P)

d2x[1:-1] = (P[2:] - 2+%P[1:-1] + P[:-2])/hx/hx
d2x[0] (P[1] - 2xP[0] + P_left) /hx/hx
d2x[-1] = (P_right - 2xP[-1] + P[-2]1) /hx/hx
d2y[:,1:-1] = (P[:,2:] - 2%P[:,1:-1] + P[:,:-2])/hy/hy
d2y[:,0] = (P[:,1] - 2%P[:,0] + P_bottom) /hy/hy

1.5. Optimization (scipy.optimize) 29

SciPy Reference Guide, Release 0.16.0

d2y[:,-1]
return d2x + d2y + 5%cosh(P) .mean () «*2
preconditioner

if preconditioning:
M = get_preconditioner ()

else:
M = None
solve
guess = zeros((nx, ny), float)
sol = root (residual, guess, method='krylov',
options={'disp': True,
'jJac_options': {'inner_M':

print 'Residual', abs(residual(sol.x)) .max()
print 'Evaluations', count[0]

return sol.x

def main() :
sol = solve(preconditioning=True)

visualize

import matplotlib.pyplot as plt

X, v = mgrid[0:1: (nx*173), O0:1:(ny*17)]
plt.clf ()

plt.pcolor(x, y, sol)

plt.clim(0, 1)

plt.colorbar ()

plt.show ()

if name == "__main__ ":
main ()

Resulting run, first without preconditioning:

0: |[F(x)| = 803.614; step 1; tol 0.000257947

1: |[F(x)| = 345.912; step 1; tol 0.166755

2 [F(x)| = 139.159; step 1; tol 0.145657

3: |[F(x)| = 27.3682; step 1; tol 0.0348109

4: [F(x)| = 1.03303; step 1; tol 0.00128227

5: [F(x)| = 0.0406634; step 1; tol 0.00139451
6: [F(x)| = 0.00344341; step 1; tol 0.00645373
7 [F(x)| = 0.000153671; step 1; tol 0.00179246
8: |[F(x)| = 6.7424e-06; step 1; tol 0.00173256

Residual 3.57078908664e-07
Evaluations 317

and then with preconditioning:

0: |[F(x)] = 136.993; step 1; tol 7.49599e-06
1: |[F(x)|] = 4.80983; step 1; tol 0.00110945
2: |[F(x)] = 0.195942; step 1; tol 0.00149362
3: [F(x)| = 0.000563597; step 1; tol 7.44604e-06
4: [F(x)] = 1.00698e-09; step 1; tol 2.87308e-12

Residual 9.29603061195e-11
Evaluations 77

(P_top - 2%P[:,-1] + P[:,-2])/hy/hy

M} 1)

30

Chapter 1

. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Using a preconditioner reduced the number of evaluations of the residual function by a factor of 4. For problems
where the residual is expensive to compute, good preconditioning can be crucial — it can even decide whether the
problem is solvable in practice or not.

Preconditioning is an art, science, and industry. Here, we were lucky in making a simple choice that worked reasonably
well, but there is a lot more depth to this topic than is shown here.

References

Some further reading and related software:

1.6 Interpolation (scipy.interpolate)

Contents

* Interpolation (scipy.interpolate)
— 1-D interpolation (interpld)
— Multivariate data interpolation (griddata)
— Spline interpolation
* Spline interpolation in 1-d: Procedural (interpolate.splXXX)
* Spline interpolation in 1-d: Object-oriented (UnivariateSpline)
+ Two-dimensional spline representation: Procedural (bisplrep)
* Two-dimensional spline representation: Object-oriented (BivariateSpline)
— Using radial basis functions for smoothing/interpolation
* 1-d Example
* 2-d Example

There are several general interpolation facilities available in SciPy, for data in 1, 2, and higher dimensions:
* A class representing an interpolant (interpld) in 1-D, offering several interpolation methods.

» Convenience function griddata offering a simple interface to interpolation in N dimensions (N =1, 2, 3, 4,
...). Object-oriented interface for the underlying routines is also available.

* Functions for 1- and 2-dimensional (smoothed) cubic-spline interpolation, based on the FORTRAN library
FITPACK. There are both procedural and object-oriented interfaces for the FITPACK library.

* Interpolation using Radial Basis Functions.

1.6.1 1-D interpolation (interpld)

The interpld class in scipy.interpolate is a convenient method to create a function based on fixed data
points which can be evaluated anywhere within the domain defined by the given data using linear interpolation. An
instance of this class is created by passing the 1-d vectors comprising the data. The instance of this class defines a
__call__ method and can therefore by treated like a function which interpolates between known data values to obtain
unknown values (it also has a docstring for help). Behavior at the boundary can be specified at instantiation time. The
following example demonstrates its use, for linear and cubic spline interpolation:

>>> from scipy.interpolate import interpld

>>> x = np.linspace (0, 10, num=11, endpoint=True)
>>> y = np.cos (-x*x2/9.0)

>>> f = interpld(x, V)

>>> f2 = interpld(x, y, kind='cubic')

1.6. Interpolation (scipy.interpolate) 31

SciPy Reference Guide, Release 0.16.0

>>> xnew = np.linspace (0, 10, num=41, endpoint=True)

>>> import matplotlib.pyplot as plt

>>> plt.plot(x, y, 'o', xnew, f(xnew), '-', xnew, f2(xnew), '——")
>>> plt.legend(['data', 'linear', 'cubic'], loc='best')

>>> plt.show ()

1.0
0.5
0.0
-0.5
® @ data
—1.0H — linear \ !
— - cubic
-15 1 1 1 1
0 2 4 6 8 10

1.6.2 Multivariate data interpolation (griddata)

Suppose you have multidimensional data, for instance for an underlying function f{x, y) you only know the values at
points (x[i], y[i]) that do not form a regular grid.

Suppose we want to interpolate the 2-D function

>>> def func(x, y):
>>> return x+ (1-X)+*np.cos (4+np.pi*x) + np.sin(4+np.pixy++2)**2

on a grid in [0, 1]x[0, 1]
>>> grid_x, grid_y = np.mgrid[0:1:1007j, 0:1:2007]

but we only know its values at 1000 data points:

>>> points = np.random.rand (1000, 2)
>>> values = func(points[:,0], points[:,1])

This can be done with griddata —below we try out all of the interpolation methods:

>>> from scipy.interpolate import griddata

>>> grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest')
>>> grid_z1l = griddata(points, wvalues, (grid_x, grid_y), method='linear')
>>> grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic')

One can see that the exact result is reproduced by all of the methods to some degree, but for this smooth function the
piecewise cubic interpolant gives the best results:

>>> import matplotlib.pyplot as plt
>>> plt.subplot (221)
>>> plt.imshow (func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower'")

32 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

plt
plt

plt.
plt.
.title ('Nearest')

plt

plt.
plt.
.title('Linear")

plt

plt.
plt.
.title('Cubic")
plt.
plt.

plt

subplot (222)
imshow (grid_z0.T, extent=(0,1,0,1),

subplot (223)
imshow (grid_z1.T, extent=(0,1,0,1),

subplot (224)
imshow (grid_z2.T, extent=(0,1,0,1),

gcf () .set_size_inches (6, 6)
show ()

Original

1.0

00 | | | |
00 02 04 06 08 1.0

.plot (points([:,0], points([:,1], 'k.', ms=1)
.title('Original')

origin="lower")

origin="'"lower")

origin="'lower")

1.0

Nearest

0.8

0.6 |

04

02|

1.0

04|

02}

0.0

0.0

02 04 06 08

1.0

1.6. Interpolation (scipy.interpolate)

33

SciPy Reference Guide, Release 0.16.0

1.6.3 Spline interpolation
Spline interpolation in 1-d: Procedural (interpolate.spIXXX)

Spline interpolation requires two essential steps: (1) a spline representation of the curve is computed, and (2) the spline
is evaluated at the desired points. In order to find the spline representation, there are two different ways to represent
a curve and obtain (smoothing) spline coefficients: directly and parametrically. The direct method finds the spline
representation of a curve in a two- dimensional plane using the function splrep. The first two arguments are the
only ones required, and these provide the z and y components of the curve. The normal output is a 3-tuple, (¢,¢, k) ,
containing the knot-points, ¢ , the coefficients ¢ and the order % of the spline. The default spline order is cubic, but this
can be changed with the input keyword, k.

For curves in N -dimensional space the function splprep allows defining the curve parametrically. For this function
only 1 input argument is required. This input is a list of [V -arrays representing the curve in /N -dimensional space. The
length of each array is the number of curve points, and each array provides one component of the N -dimensional data
point. The parameter variable is given with the keword argument, u, which defaults to an equally-spaced monotonic
sequence between 0 and 1 . The default output consists of two objects: a 3-tuple, (¢,c¢, k) , containing the spline
representation and the parameter variable u.

The keyword argument, s , is used to specify the amount of smoothing to perform during the spline fit. The default
value of s is s = m — v/2m where m is the number of data-points being fit. Therefore, if no smoothing is desired a
value of s = 0 should be passed to the routines.

Once the spline representation of the data has been determined, functions are available for evaluating the spline
(splev) and its derivatives (splev, spalde) at any point and the integral of the spline between any two points
(splint). In addition, for cubic splines (£ = 3) with 8 or more knots, the roots of the spline can be estimated (
sproot). These functions are demonstrated in the example that follows.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate

Cubic-spline

>>> x = np.arange (0, 2*np.pi+np.pi/4, 2+np.pi/8)

>>> y = np.sin(x)

>>> tck = interpolate.splrep(x, y, s=0)

>>> xnew = np.arange(0,2+np.pi,np.pi/50)

>>> ynew = interpolate.splev(xnew, tck, der=0)

>>> plt.figure ()

>>> plt.plot(x, y, 'x', xnew, ynew, xnew, np.sin(xnew), x, y, 'b'")
>>> plt.legend(['Linear', 'Cubic Spline', 'True'])

>>> plt.axis([-0.05, 6.33, —-1.05, 1.051)

>>> plt.title('Cubic-spline interpolation')

>>> plt.show ()

34 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Cubic-spline interpolation

10F

0.5

0.0

-0.5

-1.0

X X Linear

Cubic Spline
True

Derivative of spline

>>>
>>>
>>>
>>>
>>>
>>>
>>>

yder
plt.
plt
plt.
plt.
plt
plt.

= int
figure

legend
axis ([

show ()

erpolate.splev (xnew, tck, der=1l)

0

(['Cubic Spline', 'True'l])
-0.05, 6.33, -1.05, 1.05])

.plot (xnew, yder, xnew, np.cos (xnew) , '——")

.title('Derivative estimation from spline')

Derivative estimation from spline

1.0 T T T

05}

00

—-1.0Lk

! | Z]

Cubic Spline

True

Integral of spline

>>> def integ(x, tck, constant=-1):

>>>
>>>
>>>
>>>
>>>

X = np
out =
for n
ou
out +=

.atleast_1d(x)

np.zeros (x.shape, dtype=x.dtype)

in xrange (len(out)):
t[n] = interpolate.splint (0,
constant

x[n], tck)

1.6. Interpolation (scipy.interpolate)

35

SciPy Reference Guide, Release 0.16.0

>>> return out
>>>
>>> yint = integ(xnew, tck)

>>> plt.figure()

>>> plt.plot (xnew, yint, xnew, -np.cos(xnew), '——')

>>> plt.legend(['Cubic Spline', 'T
>>> plt.axis([-0.05, 6.33, -1.05,

rue'])
1.057)

>>> plt.title('Integral estimation from spline')

>>> plt.show/()

Integral estimation from spline

0.5

0.0

-0.5

-1.0

1.0 T T T L—
— Cubic Spline
= - True

L L L
4 5 6

Roots of spline

>>> print (interpolate.sproot (tck))
[0. 3.1416]

Parametric spline

>>> t = np.arange (0, 1.1, .1)
>>> x = np.sin(2+np.pi*t)
>>> y = np.cos (2+np.pixt)

>>> tck,u = interpolate.splprep([x,v],

>>> unew = np.arange (0, 1.01, 0.01
>>> out = interpolate.splev (unew,
>>> plt.figure()

)
tck)

>>> plt.plot(x, vy, 'x', out[0], outl[l],
>>> plt.legend(['Linear', 'Cubic Spline', 'True'l])

>>> plt.axis([-1.05, 1.05, -1.05,

1.057)

s=0)

np.sin (2+np.pixunew),

>>> plt.title('Spline of parametrically-defined curve')

>>> plt.show()

np.cos (2*np.pi*xunew), x,

Yr

36

Chapter 1. SciPy Tutorial

lbl)

SciPy Reference Guide, Release 0.16.0

Spline of parametrically-defined curve

1.0F T =
X X Linear
— Cubic Spline
05 — True]
0.0 .
05} .
—1.0 Lk, =

-1.0 -0.5 0.0 0.5 1.0

Spline interpolation in 1-d: Object-oriented (UnivariateSpline)

The spline-fitting capabilities described above are also available via an objected-oriented interface. The one dimen-
sional splines are objects of the UnivariateSpline class, and are created with the £ and y components of the
curve provided as arguments to the constructor. The class defines __call__, allowing the object to be called with
the x-axis values at which the spline should be evaluated, returning the interpolated y-values. This is shown in the
example below for the subclass InterpolatedUnivariateSpline. The integral, derivatives, and
roots methods are also available on UnivariateSpline objects, allowing definite integrals, derivatives, and
roots to be computed for the spline.

The UnivariateSpline class can also be used to smooth data by providing a non-zero value of the smoothing parameter
s, with the same meaning as the s keyword of the splrep function described above. This results in a spline that
has fewer knots than the number of data points, and hence is no longer strictly an interpolating spline, but rather a
smoothing spline. If this is not desired, the InterpolatedUnivariateSpline classis available. It is a subclass
of UnivariateSpline that always passes through all points (equivalent to forcing the smoothing parameter to 0).
This class is demonstrated in the example below.

The LSQUnivariateSpline class is the other subclass of UnivariateSpline. It allows the user to specify
the number and location of internal knots explicitly with the parameter 7. This allows creation of customized splines
with non-linear spacing, to interpolate in some domains and smooth in others, or change the character of the spline.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate

InterpolatedUnivariateSpline

>>> x = np.arange (0, 2+np.pi+np.pi/4, 2*np.pi/8)

>>> y = np.sin(x)

>>> s = interpolate.InterpolatedUnivariateSpline(x, V)
>>> xnew = np.arange (0, 2xnp.pi, np.pi/50)

>>> ynew = s (xnew)

>>> plt.figure()

>>> plt.plot(x, y, 'x', xnew, ynew, xnew, np.sin(xnew), x, y, 'b'")
>>> plt.legend(['Linear', 'InterpolatedUnivariateSpline', 'True'l])
>>> plt.axis([-0.05, 6.33, -1.05, 1.057)

1.6. Interpolation (scipy.interpolate) 37

SciPy Reference Guide, Release 0.16.0

>>> plt.title('InterpolatedUnivariateSpline')
>>> plt.show ()

InterpolatedUnivariateSpline

1.0F T T T T T L—
X X Linear
— InterpolatedUnivariateSpline
05} — True 1
0.0
—-05F
_1.0 [1 Il
0 1 2

LSQUnivarateSpline with non-uniform knots

>>> t = [np.pi/2-.1, np.pi/2+.1, 3*np.pi/2-.1, 3*np.pi/2+.1]
>>> s = interpolate.LSQUnivariateSpline(x, vy, t, k=2)
>>> ynew = s (xnew)

>>> plt.figure()

>>> plt.plot(x, y, 'x', xnew, ynew, xnew, np.sin(xnew), x, y, 'b'")
>>> plt.legend(['Linear', 'LSQUnivariateSpline', 'True'])

>>> plt.axis([-0.05, 6.33, -1.05, 1.05])

>>> plt.title('Spline with Specified Interior Knots')

>>> plt.show ()

Spline with Specified Interior Knots

1.0F T T T T —
X X Linear
—— LSQUnivariateSpline
0.5 — True

0.0

-0.5

-1.0

38 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Two-dimensional spline representation: Procedural (bisplrep)

For (smooth) spline-fitting to a two dimensional surface, the function bisplrep is available. This function takes as
required inputs the 1-D arrays x, y, and z which represent points on the surface z = f (z,y) . The default output is a
list [tx, ty, ¢, kx, ky] whose entries represent respectively, the components of the knot positions, the coefficients of the
spline, and the order of the spline in each coordinate. It is convenient to hold this list in a single object, #ck, so that
it can be passed easily to the function bisplev. The keyword, s, can be used to change the amount of smoothing
performed on the data while determining the appropriate spline. The default value is s = m — v/2m where m is the
number of data points in the x, y, and z vectors. As a result, if no smoothing is desired, then s = 0 should be passed to
bisplrep.

To evaluate the two-dimensional spline and it’s partial derivatives (up to the order of the spline), the function bisplev
is required. This function takes as the first two arguments two 1-D arrays whose cross-product specifies the domain
over which to evaluate the spline. The third argument is the zck list returned from bisplrep. If desired, the fourth
and fifth arguments provide the orders of the partial derivative in the = and y direction respectively.

It is important to note that two dimensional interpolation should not be used to find the spline representation of images.
The algorithm used is not amenable to large numbers of input points. The signal processing toolbox contains more
appropriate algorithms for finding the spline representation of an image. The two dimensional interpolation commands
are intended for use when interpolating a two dimensional function as shown in the example that follows. This example
uses the mgrid command in NumPy which is useful for defining a “mesh-grid” in many dimensions. (See also the
ogrid command if the full-mesh is not needed). The number of output arguments and the number of dimensions of
each argument is determined by the number of indexing objects passed in mgrid.

>>> import numpy as np
>>> from scipy import interpolate
>>> import matplotlib.pyplot as plt

Define function over sparse 20x20 grid

>>> x, y = np.mgrid[-1:1:207, -1:1:207]
>>> 7z = (xty) * np.exp(—6.0x% (x*x+y*y))

>>> plt.figure()

>>> plt.pcolor(x, y, 2z)

>>> plt.colorbar ()

>>> plt.title("Sparsely sampled function.")
>>> plt.show ()

Sparsely sampled function.

1.0 , : :
0.20
0.15
051 1 Ho.10
0.05
0.0 4 |H0.00
~0.05
osl | | -o.10
~0.15
~0.20
~1.0 : : :
~1.0 ~0.5 0.0 0.5 1.0

1.6. Interpolation (scipy.interpolate) 39

http://docs.scipy.org/doc/numpy/reference/generated/numpy.mgrid.html#numpy.mgrid
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ogrid.html#numpy.ogrid
http://docs.scipy.org/doc/numpy/reference/generated/numpy.mgrid.html#numpy.mgrid

SciPy Reference Guide, Release 0.16.0

Interpolate function over new 70x70 grid

>>> xnew, ynew = np.mgrid[-1:1:7073, -1:1:707]
>>> tck = interpolate.bisplrep(x, vy, z, s=0)
>>> znew = interpolate.bisplev(xnew[:,0], ynew[O,:], tck)

>>> plt.figure()

>>> plt.pcolor (xnew, ynew, znew)

>>> plt.colorbar()

>>> plt.title("Interpolated function.")
>>> plt.show()

Interpolated function.

1.0 : : :
0.20
0.15
051 - 0.10
0.05
0.0 F i 0.00
-0.05
osh | -0.10
-0.15
-0.20
-1.0 L ' '
-1.0 -0.5 0.0 0.5 1.0

Two-dimensional spline representation: Object-oriented (BRivariateSpline)

The BivariateSpline class is the 2-dimensional analog of the UnivariateSpline class. It and its subclasses
implement the FITPACK functions described above in an object oriented fashion, allowing objects to be instantiated
that can be called to compute the spline value by passing in the two coordinates as the two arguments.

1.6.4 Using radial basis functions for smoothing/interpolation

Radial basis functions can be used for smoothing/interpolating scattered data in n-dimensions, but should be used with
caution for extrapolation outside of the observed data range.

1-d Example

This example compares the usage of the Rbf and UnivariateSpline classes from the scipy.interpolate module.

>>> import numpy as np
>>> from scipy.interpolate import Rbf, InterpolatedUnivariateSpline
>>> import matplotlib.pyplot as plt

>>> # setup data

>>> x = np.linspace (0, 10, 9)
>>> y = np.sin(x)

>>> xi = np.linspace (0, 10, 101)

40 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>

use fitpack2 method

ius = InterpolatedUnivariateSpline(x, V)
yi = ius(xi)
plt.subplot (2, 1, 1)

plt.plot(x, y, 'bo')

plt.plot(xi, vyvi, 'g')

plt.plot (xi, np.sin(xi), 'r')
plt.title('Interpolation using univariate spline')

use RBF method
rbf = Rbf(x, vy)
fi = rbf (x1i)

plt.subplot (2, 1, 2)

plt.plot(x, y, 'bo')

plt.plot(xi, fi, 'g'")

plt.plot(xi, np.sin(xi), 'r'")
plt.title('Interpolation using RBF - multiquadrics')
plt.show ()

Interpolation using univariate spline

2-d Example

This example shows how to interpolate scattered 2d data.

>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>

import numpy as np

from scipy.interpolate import Rbf
import matplotlib.pyplot as plt
from matplotlib import cm

2-d tests - setup scattered data
x = np.random.rand (100)*4.0-2.0

y = np.random.rand(100)*4.0-2.0

Z = XANP.eXP (—X**2-y*x*x2)

ti = np.linspace(-2.0, 2.0, 100)
XI, YI = np.meshgrid(ti, ti)

1.6.

Interpolation (scipy.interpolate)

41

SciPy Reference Guide, Release 0.16.0

>>> # use RBF

>>> rbf
>>> 71

= Rbf (%, vy,

z, epsilon=2)

rbf (XI, YI)

>>> # plot the result
plt.normalize(-2., 2.)

>>> n =

>>> plt.

>>> plt

>>> plt
>>> plt
>>> plt

1.7 Fourier Transforms (scipy. fftpack)

subplot (1,

.pcolor (XI,
>>> plt.
.title ('RBF
.xlim (-2, 2)
.ylim (-2, 2)
>>> plt.

scatter (x,

colorbar ()

1, 1)

YI, ZI, cmap=cmn.jet)

y, 100, z, cmap=cm.jet)
interpolation — multiquadrics')

RBF interpolation - multiquadrics

2.0 :
1.5P
1.0
0.5
0.0

-0.5

-1.0

-15

-2.0

COR U@C% |

M

20 -15 —-1.0 =05 0.0 05 1.0

0.4
0.3
0.2
0.1
0.0
-0.1
-0.2
-0.3
-04

42

Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Contents

* Fourier Transforms (scipy.fftpack)
— Fast Fourier transforms
One dimensional discrete Fourier transforms
Two and n-dimensional discrete Fourier transforms
x FFT convolution
Discrete Cosine Transforms
+* Type I DCT
* Type I DCT
* Type III DCT
DCT and IDCT
* BExample
Discrete Sine Transforms
* Type I DST
* Type II DST
* Type III DST
x DST and IDST
Cache Destruction
References

Fourier analysis is a method for expressing a function as a sum of periodic components, and for recovering the signal
from those components. When both the function and its Fourier transform are replaced with discretized counterparts,
it is called the discrete Fourier transform (DFT). The DFT has become a mainstay of numerical computing in part
because of a very fast algorithm for computing it, called the Fast Fourier Transform (FFT), which was known to
Gauss (1805) and was brought to light in its current form by Cooley and Tukey [CT65]. Press et al. [NR] provide an
accessible introduction to Fourier analysis and its applications.

1.7.1 Fast Fourier transforms
One dimensional discrete Fourier transforms

The FFT y/[k] of length IV of the length-/N sequence x/n] is defined as

k
E e~ 2 JGLx

and the inverse transform is defined as follows

These transforms can be calculated by means of £ £t and i fft, respectively as shown in the following example.

>>> from scipy.fftpack import fft, ifft
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.57])

>>> y = fft (x)

>>> y

[4.50000000+0.73 2.08155948-1.651098767 —-1.83155948+1.608220417
-1.83155948-1.608220413 2.08155948+1.651098767]

>>> yinv = 1ifft (y)

>>> yinv
[1.040.3 2.0+40.3 1.040.3 -1.040.3 1.5+0.7]

1.7. Fourier Transforms (scipy. £ftpack) 43

SciPy Reference Guide, Release 0.16.0

From the definition of the FFT it can be seen that

N-1

ylo] = Y z[n].

n=0
In the example

>>> np.sum(x)
4.5

which corresponds to y[0]. For N even, the elements y[1]...y[N/2 — 1] contain the positive-frequency terms, and the
elements y[N/2]...y[N — 1] contain the negative-frequency terms, in order of decreasingly negative frequency. For N
odd, the elements y[1]...y[(N — 1)/2] contain the positive- frequency terms, and the elements y[(N +1)/2]...y[N —1]
contain the negative- frequency terms, in order of decreasingly negative frequency.

In case the sequence x is real-valued, the values of y[n] for positive frequencies is the conjugate of the values y[n]
for negative frequencies (because the spectrum is symmetric). Typically, only the FFT corresponding to positive
frequencies is plotted.

The example plots the FFT of the sum of two sines.

>>> from scipy.fftpack import fft

>>> # Number of samplepoints

>>> N = 600

>>> # sample spacing

>>> T = 1.0 / 800.0

>>> x = np.linspace (0.0, NxT, N)

>>> vy = np.sin(50.0 %« 2.0xnp.pi*xx) + 0.5xnp.sin(80.0 % 2.0xnp.pix*x)

>>> yf = fft(y)

>>> xf = np.linspace (0.0, 1.0/(2.0+T), N/2)
>>> import matplotlib.pyplot as plt

>>> plt.plot(xf, 2.0/N % np.abs(yf[0:N/2]))
>>> plt.grid()

>>> plt.show ()

0.8 T T T T T T T

oaf]
06|
osf]
ol
03

100 150 200 250 300 350 400

The FFT input signal is inherently truncated. This truncation can be modelled as multiplication of an inifinte signal
with a rectangular window function. In the spectral domain this multiplication becomes convolution of the signal
spectrum with the window function spectrum, being of form sin(x)/x. This convolution is the cause of an effect
called spectral leakage (see [WPW]). Windowing the signal with a dedicated window function helps mitigate spectral

44 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

leakage. The example below uses a Blackman window from scipy.signal and shows the effect of windowing (the zero

component of the FFT has been truncated illustrative purposes).

>>> from scipy.fftpack import fft
>>> Number of samplepoints

>>> = 600

>>> sample spacing

#
N
#
>> T = 1.0 / 800.0
x
Yy
Y

>>> = np.linspace (0.0, NxT, N)

>>> = np.sin(50.0 % 2.0xnp.pi*x) + 0.5%np.sin(80.0 = 2.0+np.pixx)
>>> yf = fft(y)

>>> from scipy.signal import blackman

>>> w = blackman (N)

>>> ywf = fft (y*w)

>>> xf = np.linspace (0.0, 1.0/(2.0+T), N/2)

>>> import matplotlib.pyplot as plt

>>> plt.semilogy (xf[1:N/2], 2.0/N * np.abs(yf[1:N/2]), '-b")
>>> plt.semilogy (xf[1:N/2], 2.0/N * np.abs(ywf[1:N/2]), '-r')
>>> plt.legend (['FFT', 'FFT w. window'])

>>> plt.grid()

>>> plt.show()

W T ——
107 N T BT .

— FFT w. window |

In case the sequence x is complex-valued, the spectrum is no longer symmetric. To simplify working wit the FFT

functions, scipy provides the following two helper functions.
The function f ft freq returns the FFT sample frequency points.

>>> from scipy.fftpack import fftfreqg
>>> freq = fftfreg(np.arange(8), 0.125)
[0. 1. 2. 3. —-4. -3. -2. -1.]

In a similar spirit, the function £ ft shift allows swapping the lower and upper halves of a vector, so that it becomes

suitable for display.

>>> from scipy.fftpack import fftfreq
>>> x = np.arange(8)

>>> sf.fftshift (x)

[4 567012 3]

The example below plots the FFT of two complex exponentials; note the asymmetric spectrum.

1.7. Fourier Transforms (scipy. £ftpack)

SciPy Reference Guide, Release 0.16.0

>>> from scipy.fftpack import fft, fftfreq, fftshift
>>> # number of signal points

>>> N = 400

>>> # sample spacing

>>> T = 1.0 / 800.0

>>> x = np.linspace (0.0, NxT, N)

>>> vy = np.exp(50.0 » 1. » 2.0xnp.pixx) + 0.5+np.exp(-80.0 » 1.3 % 2.0xnp.pi*x)
>>> yf fft (y)

>>> xf fftfreq(N, T)

>>> xf = fftshift (xf)

>>> yplot = fftshift (yf)

>>> import matplotlib.pyplot as plt

>>> plt.plot(xf, 1.0/N % np.abs(yplot))

>>> plt.grid()

>>> plt.show()

1.0 ! ! ! ! ! ! !

IR R N R
I
oo

7S AN O Y O S SO

0.0 i i
2400 —300 —200 —100 O 100 200 300 400

The function rfft calculates the FFT of a real sequence and outputs the FFT coefficients y[n] with separate real
and imaginary parts. In case of N being even: [y[0], Re(y[1]), Im(y[1]), ..., Re(y[N/2])]; in case N being odd

[y[0, Re(y[1]), Im(y[1]), ..., Re(y[N/2]), Im(y[N/2])].
The corresponding function ir £ £t calculates the IFFT of the FFT coefficients with this special ordering.

>>> from scipy.fftpack import fft, rfft, irfft

>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5, 1.0])

>>> fft (x)

[5.50+0.7 2.25-0.43301273 -2.75-1.299038113 1.50+40.7
-2.75+1.299038113 2.25+0.43301277 |

>>> yr = rfft (x)

[5.5 2.25 -0.4330127 -2.75 -1.29903811 1.5]
>>> irfft (yr)

[1. 2. 1. -1. 1.5 1.]

>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.57])

>>> fft (x)

[4.50000000+0.7 2.08155948-1.651098767 —-1.83155948+1.608220417

-1.83155948-1.608220417 2.08155948+1.651098767]
>>> yr = rfft (x)
[4.5 2.08155948 -1.65109876 -1.83155948 1.60822041]

46 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Two and n-dimensional discrete Fourier transforms

The functions ££t2 and 1 fft2 provide 2-dimensional FFT, and IFFT, respectively. Similar, fftn and ifftn

provide n-dimensional FFT, and IFFT, respectively.

The example below demonstrates a 2-dimensional IFFT and plots the resulting (2-dimensional) time-domain signals.

>>>
>>>

>>> import matplotlib.cm as cm

>>> N = 30

>>> f, ((axl, ax2, ax3), (ax4, ax5,
>>> xf = np.zeros ((N,N))

>>> xf[0, 5] =1

>>> xf[0, N-5] = 1

>>> 7 = ifftn(xf)

>>> axl.imshow (xf, cmap=cm.Reds)
>>> ax4.imshow (np.real (Z), cmap=cm.binary)
>>> xf = np.zeros((N, N))

>>> xf[5, O] =1

>>> xf[N- 0] =1

>>> 7 = 1fftn(xf)

>>> ax2.imshow (xf, cmap=cm.Reds)

from scipy.fftpack import ifftn
import matplotlib.pyplot as plt

>>> ax5.imshow (np.real(2),

cmap=cm.binary)

cmap=cm.binary)

>>> xf = np.zeros ((N, N))

>>> xf[5, 10] =1

>>> xf[N-5, N-10] = 1

>>> 7 = ifftn(xf)

>>> ax3.imshow (xf, cmap=cm.Reds)
>>> ax6.imshow (np.real(Z2),

>>> plt.show ()

plt.subplots (2,

="'row')

R
QS
1 1 1

| | |
T I I

| | |

I I I
-

| | |

0 510152025 0 510152025 05 10152025

FFT convolution

scipy.fftpack.convolve performs a convolution of two one-dimensional arrays in frequency domain.

1.7. Fourier Transforms (scipy. £ftpack) 47

SciPy Reference Guide, Release 0.16.0

1.7.2 Discrete Cosine Transforms

Scipy provides a DCT with the function dct and a corresponding IDCT with the function idct. There are 8 types of
the DCT [WPC], [Mak]; however, only the first 3 types are implemented in scipy. “The” DCT generally refers to DCT
type 2, and “the” Inverse DCT generally refers to DCT type 3. In addition, the DCT coefficients can be normalized
differently (for most types, scipy provides None and ortho). Two parameters of the dct/idct function calls allow
setting the DCT type and coefficient normalization.

For a single dimension array x, dct(x, norm="ortho’) is equal to MATLAB dct(x).
Type | DCT
Scipy uses the following definition of the unnormalized DCT-I (norm='None’):

mnk
N -1

N-2
y[k]x0+(1)kxN_1+2Zx[n]cos(), 0<k<N.
n=1

Only None is supported as normalization mode for DCT-I1. Note also that the DCT-I is only supported for input size >
1

Type Il DCT

Scipy uses the following definition of the unnormalized DCT-II (norm='None’):

N—-1
ylk =2 3" afn] cos <”(27;;1)k) 0<k<N.

In case of the normalized DCT (norm=' ortho"), the DCT coefficients y[k] are multiplied by a scaling factor f:

[VIJaN), ifk=0
= V1/(2N), otherwise -

In this case, the DCT “base functions” ¢y [n] = 2f cos (W) become orthonormal:
N-1
> oulnlguln] = o
n=0

Type I DCT

Scipy uses the following definition of the unnormalized DCT-III (norm=' None’):

48 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

DCT and IDCT

The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up to a factor 2N. The orthonormalized
DCT-III is exactly the inverse of the orthonormalized DCT- II. The function idct performs the mappings between
the DCT and IDCT types.

The example below shows the relation between DCT and IDCT for different types and normalizations.

>>> from scipy.fftpack import dct, idct

>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.57])

>>> dct (dct (x, type=2, norm='ortho'), type=3, norm='ortho')
(1.0, 2.0, 1.0, -1.0, 1.5]

>>> # scaling factor 2+N = 10

>>> idct (dct (x, type=2), type=2)

[10. 20. 10. -10. 15.]

>>> # no scaling factor

>>> idct (dct (x, type=2, norm='ortho'), type=2, norm='ortho')
[1. 2. 1. -1. 1.5]

>>> # scaling factor 2+N = 10

>>> idct (dct (x, type=3), type=3)

[10. 20. 10. -10. 15.]

>>> # no scaling factor

>>> idct (dct (x, type=3, norm='ortho'), type=3, norm='ortho')
[1. 2. 1. -1. 1.5]

>>> # scaling factor 2+ (N-1) = 8

>>> idct (dct (x, type=1l), type=1l)

[8. 1l6. 8. -8. 12.]

Example

The DCT exhibits the “energy compaction property”, meaning that for many signals only the first few DCT coefficients
have significant magnitude. Zeroing out the other coefficients leads to a small reconstruction error, a fact which is
exploited in lossy signal compression (e.g. JPEG compression).

The example below shows a signal x and two reconstructions (x2¢ and x15)from the signal’s DCT coefficients. The
signal 9 is reconstructed from the first 20 DCT coefficients, x15 is reconstructed from the first 15 DCT coefficients.
It can be seen that the relative error of using 20 coefficients is still very small (~0.1%), but provides a five-fold
compression rate.

>>> from scipy.fftpack import dct, idct
>>> import matplotlib.pyplot as plt

>>> N = 100

>>> t = np.linspace(0,20,N)

>>> x = np.exp(-t/3)+np.cos (2xt)

>>> y = dct (x, norm='ortho')

>>> window = np.zeros (N)

>>> window[:20] = 1

>>> yr = idct (y*window, norm='ortho')

>>> sum(abs (x-yr) *x2) / sum(abs (x) «*2)
0.0010901402257

>>> plt.plot(t, x, '-bx'")

>>> plt.plot(t, yr, 'ro')

>>> window = np.zeros (N)
>>> window[:15] = 1
>>> yr = idct (y*window, norm='ortho')

>>> sum(abs (x-yr)*«x2) / sum(abs (x)**2)
0.0718818065008
>>> plt.plot(t, yr, 'g+'")

1.7. Fourier Transforms (scipy. £ftpack) 49

SciPy Reference Guide, Release 0.16.0

>>> plt.legend(['x"', 'S$x_{20}S', 'Sx_{15}35'])
>>> plt.grid()
>>> plt.show ()

1.7.3 Discrete Sine Transforms

Scipy provides a DST [Mak] with the function dst and a corresponding IDST with the function idst.

There are theoretically 8 types of the DST for different combinations of even/odd boundary conditions and boundary
off sets [WPS], only the first 3 types are implemented in scipy.

Type | DST
DST-I assumes the input is odd around n=-1 and n=N. Scipy uses the following definition of the unnormalized DST-I

(norm='None’):

y[k]:2z_x[n]sin<W>, 0<k<N.

Only None is supported as normalization mode for DST-I. Note also that the DST-I is only supported for input size >
1. The (unnormalized) DST-I is its own inverse, up to a factor 2(N+1).

Type Il DST

DST-II assumes the input is odd around n=-1/2 and even around n=N. Scipy uses the following definition of the
unnormalized DST-II (norm=' None"):

N-1
ylk =2 3 afn]sin (”(“ 1/13)(’” ”) . 0<k<N.
n=0

50 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Type 1l DST

DST-IIT assumes the input is odd around n=-1 and even around n=N-1. Scipy uses the following definition of the
unnormalized DST-III (norm='"None’):

N-2
ylk] = (~1)F 2N = 1] +2 3 wln]sin (”(” a ”ka a 1/2)) . 0<k<A.

n=0

DST and IDST

The example below shows the relation between DST and IDST for different types and normalizations.

>>> from scipy.fftpack import dst, idst

>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.57])

>>> # scaling factor 2+N = 10

>>> idst (dst (x, type=2), type=2)

[10. 20. 10. -10. 15.]

>>> # no scaling factor

>>> idst (dst (x, type=2, norm='ortho'), type=2, norm='ortho')
[1. 2. 1. 1. 1.5]

>>> # scaling factor 2+N = 10

>>> idst (dst (x, type=3), type=3)

[10. 20. 10. -10. 15.]

>>> # no scaling factor

>>> idst (dst (x, type=3, norm='ortho'), type=3, norm='ortho')

[1. 2. 1. -1. 1.5]

>>> # scaling factor 2+ (N+1) = 8
>>> idst (dst (x, type=1l), type=1l)

[8. 1e6. 8. -—-8. 12.]

1.7.4 Cache Destruction

To accelerate repeat transforms on arrays of the same shape and dtype, scipy.fftpack keeps a cache of the prime
factorization of length of the array and pre-computed trigonometric functions. These caches can be destroyed by
calling the appropriate function in scipy.fftpack._fftpack. dst(type=1) and idst(type=1) share a cache
(xdst1l_cache). As do dst(type=2), dst(type=3), idst(type=3), and idst(type=3) (xdst2_cache).

1.7.5 References

1.8 Signal Processing (scipy.signal)

The signal processing toolbox currently contains some filtering functions, a limited set of filter design tools, and a few
B-spline interpolation algorithms for one- and two-dimensional data. While the B-spline algorithms could technically
be placed under the interpolation category, they are included here because they only work with equally-spaced data and
make heavy use of filter-theory and transfer-function formalism to provide a fast B-spline transform. To understand
this section you will need to understand that a signal in SciPy is an array of real or complex numbers.

1.8.1 B-splines

A B-spline is an approximation of a continuous function over a finite- domain in terms of B-spline coefficients and knot
points. If the knot- points are equally spaced with spacing Az , then the B-spline approximation to a 1-dimensional

1.8. Signal Processing (scipy.signal) 51

SciPy Reference Guide, Release 0.16.0

function is the finite-basis expansion.
x
x) & ciB° (— —) .
y (z) Z i \(Ap
J
In two dimensions with knot-spacing Az and Ay , the function representation is

T . Y
R kB — — N-——-k]).
S =N e (55 -1)5 (2 -+)
In these expressions, 5° () is the space-limited B-spline basis function of order, o . The requirement of equally-
spaced knot-points and equally-spaced data points, allows the development of fast (inverse-filtering) algorithms for

determining the coefficients, ¢; , from sample-values, y,, . Unlike the general spline interpolation algorithms, these
algorithms can quickly find the spline coefficients for large images.

The advantage of representing a set of samples via B-spline basis functions is that continuous-domain operators
(derivatives, re- sampling, integral, etc.) which assume that the data samples are drawn from an underlying con-
tinuous function can be computed with relative ease from the spline coefficients. For example, the second-derivative
of a spline is

V)= Y e ().
J

Using the property of B-splines that
d*8° (w)

) R (1) = 2677 (w) + 57 (w - 1)

it can be seen that

y' (z) = A%UQZCJ- [5"_2 (Aix—jJrl) — 24072 (Aia:_j) + o2 (Aix_j_l)]'

J

If o = 3, then at the sample points,

2
AP Y (2)|ympne = D CiOn—gi1 — 26500 + €001,
J
= Cp+1 — 2Cn +cCp—1.

Thus, the second-derivative signal can be easily calculated from the spline fit. if desired, smoothing splines can be
found to make the second-derivative less sensitive to random-errors.

The savvy reader will have already noticed that the data samples are related to the knot coefficients via a convolution
operator, so that simple convolution with the sampled B-spline function recovers the original data from the spline coef-
ficients. The output of convolutions can change depending on how boundaries are handled (this becomes increasingly
more important as the number of dimensions in the data- set increases). The algorithms relating to B-splines in the
signal- processing sub package assume mirror-symmetric boundary conditions. Thus, spline coefficients are computed
based on that assumption, and data-samples can be recovered exactly from the spline coefficients by assuming them
to be mirror-symmetric also.

Currently the package provides functions for determining second- and third- order cubic spline coefficients from
equally spaced samples in one- and two- dimensions (gsplineld, gspline2d, csplineld, cspline2d). The
package also supplies a function (bspline) for evaluating the bspline basis function, /3° () for arbitrary order
and x. For large o , the B-spline basis function can be approximated well by a zero-mean Gaussian function with
standard-deviation equal to o, = (0 + 1) /12:

87 (2) ~ ——— o
Tr) =~ 27{_0-2 eXp 20_0 .

52 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

A function to compute this Gaussian for arbitrary = and o is also available (gauss_spline). The following code
and Figure uses spline-filtering to compute an edge-image (the second-derivative of a smoothed spline) of Lena’s face
which is an array returned by the command misc.lena. The command sepfir2d was used to apply a separable
two-dimensional FIR filter with mirror- symmetric boundary conditions to the spline coefficients. This function is
ideally suited for reconstructing samples from spline coefficients and is faster than convolve2d which convolves
arbitrary two-dimensional filters and allows for choosing mirror-symmetric boundary conditions.

>>> import numpy as np
>>> from scipy import signal, misc
>>> import matplotlib.pyplot as plt

>>> image = misc.lena() .astype(np.float32)

>>> derfilt = np.array([1.0, -2, 1.0], dtype=np.float32)

>>> ck = signal.cspline2d(image, 8.0)

>>> deriv = (signal.sepfir2d(ck, derfilt, [1]) +
signal.sepfir2d(ck, [1], derfilt))

Alternatively we could have done:

laplacian = np.array([[0,1,0], [1,-4,11, [0,1,0]1], dtype=np.float32)
deriv2 = signal.convolve2d(ck, laplacian,mode="same',boundary="symm")

>>> plt.figure()

>>> plt.imshow (image)

>>> plt.gray()

>>> plt.title('Original image')
>>> plt.show()

Original image

0 100 200 300 400 500

>>> plt.figure()

>>> plt.imshow (deriv)

>>> plt.gray()

>>> plt.title ('Output of spline edge filter')
>>> plt.show()

1.8. Signal Processing (scipy.signal) 53

SciPy Reference Guide, Release 0.16.0

Output of spline edge filter

100

200

300

400

500 LA
0 100 200 300 400 500

1.8.2 Filtering

Filtering is a generic name for any system that modifies an input signal in some way. In SciPy a signal can be thought
of as a Numpy array. There are different kinds of filters for different kinds of operations. There are two broad kinds
of filtering operations: linear and non-linear. Linear filters can always be reduced to multiplication of the flattened
Numpy array by an appropriate matrix resulting in another flattened Numpy array. Of course, this is not usually the
best way to compute the filter as the matrices and vectors involved may be huge. For example filtering a 512 x 512
image with this method would require multiplication of a 5122 x 5122 matrix with a 5122 vector. Just trying to store the
5122 x 5122 matrix using a standard Numpy array would require 68,719, 476, 736 elements. At 4 bytes per element
this would require 256GB of memory. In most applications most of the elements of this matrix are zero and a different
method for computing the output of the filter is employed.

Convolution/Correlation

Many linear filters also have the property of shift-invariance. This means that the filtering operation is the same at
different locations in the signal and it implies that the filtering matrix can be constructed from knowledge of one row
(or column) of the matrix alone. In this case, the matrix multiplication can be accomplished using Fourier transforms.

Let z [n] define a one-dimensional signal indexed by the integer n. Full convolution of two one-dimensional signals
can be expressed as

y[n] = Z x[klhn—k].

k=—o0

This equation can only be implemented directly if we limit the sequences to finite support sequences that can be stored
in a computer, choose n = 0 to be the starting point of both sequences, let K + 1 be that value for which y [n] = 0
forall n > K + 1 and M + 1 be that value for which z [n] = 0 for all n > M + 1, then the discrete convolution
expression is

min(n,K)

y[n] = Z x[klhn—k].

k=max(n—M,0)

54 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

For convenience assume /K > M. Then, more explicitly the output of this operation is

yl0] = =z[0]nr[0]
y[1] = x[0]A[]+=[1]A[0)
y[2] = z[0]h[2]+x[1]h[1]+x[2]R][0]
yM] = z[0]h[M]+z[1]h[M —1]+ -+ 2z [M]h[0]
yM+1] = z[l]hM]+z2]h[M —1]+ -+ x[M + 1] h[0]
y[Kj : ;E[K—M]h[M]—k---%—x[K h (0]
y[K+1] = z[K+1—-Mh[M]+---+z[K]h[1]
y[K+M—1j : .x[K—l}h[M]—i—x[K]h[M—l]
y[K+M] = z[K]h[M].

Thus, the full discrete convolution of two finite sequences of lengths K + 1 and M + 1 respectively results in a finite
sequence of length K + M +1=(K+1)+ (M +1) — 1.

One dimensional convolution is implemented in SciPy with the function convolve. This function takes as inputs
the signals x, h , and an optional flag and returns the signal y. The optional flag allows for specification of which part
of the output signal to return. The default value of ‘full’ returns the entire signal. If the flag has a value of ‘same’ then
only the middle K values are returned starting at y H%H so that the output has the same length as the first input. If
the flag has a value of ‘valid’ then only the middle K — M + 1 = (K + 1) — (M + 1) + 1 output values are returned
where z depends on all of the values of the smallest input from % [0] to & [M] . In other words only the values y [M] to

y [K] inclusive are returned.
The code below shows a simple example for convolution of 2 sequences

>>> x = np.array([1.0, 2.0, 3.0])

>>> h = np.array([(0.0, 1.0, 0.0, 0.0, 0.07])
>>> signal.convolve (x, h)

[0. 1. 2. 3. 0. 0. 0.]

>>> signal.convolve(x, h, 'same')

[2. 3. 0.]

This same function convolve can actually take N -dimensional arrays as inputs and will return the N -dimensional
convolution of the two arrays as is shown in the code example below. The same input flags are available for that case
as well.

>>> x = np.array([([(1., 1., 0., O0.],(1., 1., O., O0.],10., O., O., 0.1,[0., O., O., 0.10)
>>> h = np.array([[1l., 0., ., 0.1,10., 0., 0., 0.1,10., O., 1., 0.1,10., O., O., 0.101)
>>> signal.convolve (x, h)

(1 1 1. 0. 0. 0. O 0.]

[1 1. 0. 0. 0. 0. 0.]

[0. 0. 1. 1. 0. O 0.]

[0. 0. 1. 1. 0. O 0.]

[0 0. 0. 0. 0. O 0.]

[0 0. 0. 0. 0. O 0.]

[0 0. 0. 0. 0. O 0.7]

Correlation is very similar to convolution except for the minus sign becomes a plus sign. Thus

oo

wln) = Y ykazh+k

k=—o00

1.8. Signal Processing (scipy.signal) 55

SciPy Reference Guide, Release 0.16.0

is the (cross) correlation of the signals y and x. For finite-length signals with y [n] = 0 outside of the range [0, K] and
a [n] = 0 outside of the range [0, M|, the summation can simplify to

min(K,M—n)
wil= S ylkah k.
k=max(0,—n)
Assuming again that K > M this is
wi-K] = y[K]a)
w[—K +1] y|[K —1]z[0] +y [K]z[1]
w[M — K] y[K —M]z[0]+y[K —M+1z[l]+ - +y[K]z[M]
wM-K+1 = yl[K-—M-1z[0]+ - +y[K—1]z[M]
wl=1] = y[Jz[0]+y2Jz[l]+---+y[M+1]z[M]
wl0] = y[0]=[0] +y[]z[l]+---+y[M]z[M]
wll] = yOlz[l]+y[]z2]+--+y[M—1]z[M]
w2l = yOlz2]+y[]z 8]+ +y[M -2z [M]
w[M -1 = y[0]z[M—1]+y[1]z[M]
w[M] = y[0]x[M].

The SciPy function correlate implements this operation. Equivalent flags are available for this operation to return
the full K + M + 1 length sequence (‘full’) or a sequence with the same size as the largest sequence starting at

w [—

K + | M=11] (‘same’) or a sequence where the values depend on all the values of the smallest sequence (‘valid’).

This final option returns the K’ — M + 1 values w [M — K] to w [0] inclusive.

The function correlate can also take arbitrary N -dimensional arrays as input and return the N -dimensional
convolution of the two arrays on output.

When N = 2, correlate and/or convolve can be used to construct arbitrary image filters to perform actions
such as blurring, enhancing, and edge-detection for an image.

>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>

import numpy as np
from scipy import signal, misc
import matplotlib.pyplot as plt

image = misc.lenaf()
w = np.zeros((50, 50))

w[0][0] = 1.0

w[49][25] = 1.0

image_new = signal.fftconvolve (image, w)

plt.
plt.
plt.

plt

figure ()
imshow (image)
gray ()

.title('Original image')
plt.

show ()

56

Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Original image

0 100 200 300 400 500

>>> plt.figure ()

>>> plt.imshow (image_new)

>>> plt.gray()

>>> plt.title('Filtered image')
>>> plt.show()

Filtered image
200

300

400

0 100 200 300 400 500

Using convolve in the above example would take quite long to run. Calculating the convolution in the time domain
as above is mainly used for filtering when one of the signals is much smaller than the other (K > M), otherwise
linear filtering is more efficiently calculated in the frequency domain provided by the function fftconvolve.

If the filter function w[n, m| can be factored according to
h[n,m] = hq[n]ha[m],

convolution can be calculated by means of the function sepfir2d. As an example we consider a Gaussian filter
gaussian

hln,m] x eV — ey’

1.8. Signal Processing (scipy.signal) 57

SciPy Reference Guide, Release 0.16.0

which is often used for blurring.

>>>
>>>
>>>

>>>
>>>
>>>

import numpy as np
from scipy import signal, misc

import matplotlib.pyplot as plt

image = misc.lena()

w =

signal.gaussian (50,
signal.sepfir2d(image, w, w)

image_new =

5.0)

>>> plt.figure()
>>> plt.imshow (image)
>>> plt.gray()
>>> plt.title('Original image')
>>> plt.show()
0 Original image

100

200

300

400 8

500 li

0 100 200 300 400 500

>>> plt.figure ()
>>> plt.imshow (image_new)
>>> plt.gray()
>>> plt.title('Filtered image')
>>> plt.show()
58 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Filtered image

0 100 200 300 400 500

Difference-equation filtering

A general class of linear one-dimensional filters (that includes convolution filters) are filters described by the difference
equation

Zaky[n—k] = Zbkx[n—k]
k=0 k=0

where z [n] is the input sequence and y [n] is the output sequence. If we assume initial rest so that y [n] = 0 forn < 0
, then this kind of filter can be implemented using convolution. However, the convolution filter sequence h [n] could
be infinite if a; # 0 for & > 1. In addition, this general class of linear filter allows initial conditions to be placed on
y [n] for n < 0 resulting in a filter that cannot be expressed using convolution.

The difference equation filter can be thought of as finding y [n] recursively in terms of it’s previous values
apy[n] = —aryn—1—---—anyy[n—N|+---+boz [n] + -+ bpyx [n — M].

Often agp = 1 is chosen for normalization. The implementation in SciPy of this general difference equation filter is
a little more complicated then would be implied by the previous equation. It is implemented so that only one signal
needs to be delayed. The actual implementation equations are (assuming ag = 1).

y[n] = box[n]+ z[n—1]
z0[n] = bzn]+z1n—1]—ary[n]
zi[n] = baxn]+ 22 [n — 1] — agy [n]
zk—2[n] = brx_ix[n]+zx_1[n—1]—ax_1y[n]
zk-1[n] = brzn]—axylnl,

where K = max (N, M) . Note that by = 0if K > M and ax = 0if K > N. In this way, the output at time n
depends only on the input at time n and the value of z; at the previous time. This can always be calculated as long as
the K values zg [n — 1] ... zx_1 [n — 1] are computed and stored at each time step.

The difference-equation filter is called using the command 1filter in SciPy. This command takes as inputs the
vector b, the vector, a, a signal x and returns the vector y (the same length as x) computed using the equation given

1.8. Signal Processing (scipy.signal) 59

SciPy Reference Guide, Release 0.16.0

above. If z is N -dimensional, then the filter is computed along the axis provided. If, desired, initial conditions
providing the values of zg [—1] to zx —1 [—1] can be provided or else it will be assumed that they are all zero. If initial
conditions are provided, then the final conditions on the intermediate variables are also returned. These could be used,
for example, to restart the calculation in the same state.

Sometimes it is more convenient to express the initial conditions in terms of the signals z [n] and y [n] . In other words,
perhaps you have the values of 2: [— M| to 2 [—1] and the values of y [—N] to y [—1] and would like to determine what
values of z,, [—1] should be delivered as initial conditions to the difference-equation filter. It is not difficult to show
that for 0 < m < K,

K—m-—1

Zm [n] = Z (bmtp+12 [0 = P] = @mypr1y [0 —p)).

Using this formula we can find the initial condition vector zo [—1] to zx 1 [—1] given initial conditions on y (and x).
The command 1fi1tic performs this function.

As an example consider the following system:

1 1 1
yln] = goln] + galn — 1]+ gyl — 1]
The code calculates the signal y[n] for a given signal x[n]; first for initial condiditions y[—1] = 0 (default case), then
fory[—1] =2bymeansof 1filtic.

>>> import numpy as np
>>> from scipy import signal

>>> x = np.array([1l., 0., 0., 0.])

>>> b = np.array([1.0/2, 1.0/47)

>>> a = np.array([1.0, -1.0/31)

>>> signal.lfilter (b, a, x)

[0.5 0.41666667 0.13888889 0.0462963]
>>> zi = signal.lfiltic(b, a, y=[2.])

>>> signal.lfilter (b, a, x, zi=zi)

[1.16666667, 0.63888889, 0.21296296, 0.07098765]

Note that the output signal y[n] has the same length as the length as the input signal z[n].

Analysis of Linear Systems

Linear system described a linear difference equation can be fully described by the coefficient vectors a and b as was
done above; an alternative representation is to provide a factor k, N, zeros z; and N, poles py,, respectively, to describe
the system by means of its transfer function H (z) according to

(z—2z1)(z — z2)...(z — 2n.)
(z = p1)(z —p2)...(2 = pn,)

H(z)=k

This alternative representation can be obtain wit hthe scipy function t £ 2 zpk; the inverse is provided by zpk2t f.
For the example from above we have

>>> b = np.array([1.0/2, 1.0/41)
>>> a = np.array([1.0, -1.0/31)
>>> signal.tf2zpk (b, a)

[-0.5] [0.33333333] 0.5

i.e. the system has a zero at z = —1/2 and a pole at z = 1/3.

The scipy function freqgz allows calculation of the frequency response of a system described by the coeffcients ay,
and by. See the help of the freqz function of a comprehensive example.

60 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Filter Design

Time-discrete filters can be classified into finite response (FIR) filters and infinite response (IIR) filters. FIR filters pro-
vide a linear phase response, whereas IIR filters do not exhibit this behaviour. Scipy provides functions for designing
both types of filters.

FIR Filter

The function £irwin designs filters according to the window method. Depending on the provided arguments, the
function returns different filter types (e.g. low-pass, band-pass...).

The example below designs a low-pass and a band-stop filter, respectively.

>>> import numpy as np

>>> import scipy.signal as signal

>>>

>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>

import matplotlib.pyplot as plt

bl =
b2
wl,
w2,

plt
plt
plt
plt
plt
plt.
plt.

signal.firwin (40, O
signal.firwin (41, [
signal.freqgz (bl
signal.freqgz (b2

hl =
h2 =

grid()
show ()

.5

)

0.3, 0.8])
)
)

20xnp.logl0 (np.abs (hl)
20+*np.1logl0 (np.abs (h2)
(dB)

)
)

(rad/sample) ")

’

’

)

.title('Digital filter frequency response')
.plot (wl,
.plot (w2,
.ylabel ("Amplitude Response
.xlabel ('Frequency

lbl)
vrv)

Digital filter frequency response

—100 -

—-120 . . : i . .

140 i i i i i i

0.0 0.5 1.0 1.5 2.0 2.5
Frequency (rad/sample)

Amplitude Response (dB)
|
oy
S
T

Note that firwin uses per default a normalized frequency defined such that the value 1 corresponds to the Nyquist
frequency, whereas the function freqgz is defined such that the value 7 corresponds to the Nyquist frequency.

The function £irwin?2 allows design of almost arbitrary frequency responses by specifying an array of corner fre-
quencies and corresponding gains, respectively.

The example below designs a filter with such an arbitrary amplitude response.

1.8. Signal Processing (scipy.signal) 61

SciPy Reference Guide, Release 0.16.0

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b = signal.firwin2(150, [0.0, 0.3, 0.6, 1.0]1, [1.0, 2.0, 0.5, 0.01])
>>> w, h = signal.freqgz(b)

>>> plt.title('Digital filter frequency response')
>>> plt.plot (w, np.abs(h))

>>> plt.title('Digital filter frequency response')
>>> plt.ylabel ('Amplitude Response')

>>> plt.xlabel ('Frequency (rad/sample)')

>>> plt.grid()

>>> plt.show ()

Digital filter frequency response
20 ! ' ! ! ! !

Amplitude Response

00 i i i i i
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35
Frequency (rad/sample)

Note the linear scaling of the y-axis and the different definition of the Nyquist frequency in £irwin2 and freqgz (as
explained above).

IIR Filter

Scipy provides two functions to directly design [IR i irdesign and iirfilter where the filter type (e.g. elliptic)
is passed as an argument and several more filter design functions for specific filter types; e.g. el 1ip.

The example below designs an elliptic low-pass filter with defined passband and stopband ripple, respectively. Note
the much lower filter order (order 4) compared with the FIR filters from the examples above in order to reach the same
stop-band attenuation of ~ 60 dB.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.iirfilter (4, Wn=0.2, rp=5, rs=60, btype='lowpass', ftype='ellip')
>>> w, h = signal.freqgz (b, a)

>>> plt.title('Digital filter frequency response')
>>> plt.plot(w, 20*np.logl0(np.abs(h)))

>>> plt.title('Digital filter frequency response')
>>> plt.ylabel ('Amplitude Response [dB]")

62 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> plt.xlabel ('Frequency (rad/sample)')
>>> plt.grid()
>>> plt.show()

Digital filter frequency response
20 ! ! ! ! ! !

-20
—40
-60
-80

Amplitude Response [dB]

—100

120 i i i . i i
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Frequency (rad/sample)

Other filters

The signal processing package provides many more filters as well.

Median Filter

A median filter is commonly applied when noise is markedly non-Gaussian or when it is desired to preserve edges. The
median filter works by sorting all of the array pixel values in a rectangular region surrounding the point of interest.
The sample median of this list of neighborhood pixel values is used as the value for the output array. The sample
median is the middle array value in a sorted list of neighborhood values. If there are an even number of elements in
the neighborhood, then the average of the middle two values is used as the median. A general purpose median filter
that works on N-dimensional arrays is medfilt . A specialized version that works only for two-dimensional arrays
is available as medfilt2d.

Order Filter

A median filter is a specific example of a more general class of filters called order filters. To compute the output at a
particular pixel, all order filters use the array values in a region surrounding that pixel. These array values are sorted
and then one of them is selected as the output value. For the median filter, the sample median of the list of array values
is used as the output. A general order filter allows the user to select which of the sorted values will be used as the
output. So, for example one could choose to pick the maximum in the list or the minimum. The order filter takes an
additional argument besides the input array and the region mask that specifies which of the elements in the sorted list
of neighbor array values should be used as the output. The command to perform an order filter is order_filter.

Wiener filter

The Wiener filter is a simple deblurring filter for denoising images. This is not the Wiener filter commonly described
in image reconstruction problems but instead it is a simple, local-mean filter. Let « be the input signal, then the output

is
y:{ Z—;mz—l-(l—g—;)x o

2
€T
My a§< 2

Z 07,

1.8. Signal Processing (scipy.signal) 63

SciPy Reference Guide, Release 0.16.0

where m,, is the local estimate of the mean and o2 is the local estimate of the variance. The window for these estimates
is an optional input parameter (default is 3 x 3). The parameter o2 is a threshold noise parameter. If ¢ is not given
then it is estimated as the average of the local variances.

Hilbert filter

The Hilbert transform constructs the complex-valued analytic signal from a real signal. For example if © = coswn
then y = hilbert (z) would return (except near the edges) y = exp (jwn). In the frequency domain, the hilbert

transform performs

Y=XH

where H is 2 for positive frequencies, 0 for negative frequencies and 1 for zero-frequencies.

Analog Filter Design

The functions iirdesign, iirfilter, and the filter design functions for specific filter types (e.g. el1lip) all
have a flag analog which allows design of analog filters as well.

The example below designs an analog (IIR) filter, obtains via t £2zpk the poles and zeros and plots them in the
complex s-plane. The zeros at w ~ 150 and w =~ 300 can be clearly seen in the amplitude response.

>>> import
>>> import
>>> import

>>> w, h

>>> b, a =

numpy as np
scipy.signal as signal
matplotlib.pyplot as plt

signal.iirdesign (wp=100, ws=200, gpass=2.0, gstop=40.,
signal. fregs (b, a)

>>> plt.title('Analog filter frequency response')
>>> plt.plot(w, 20*np.logll(np.abs(h)))

>>> plt.ylabel ('Amplitude Response [dB]"'")

>>> plt.xlabel ('Frequency')

>>> plt.grid()
>>> plt.show()

Amplitude Response [dB]

Analog filter frequency response

I I I I
...

Frequency

800 1000

analog=True)

64

Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>>

>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>

z, p, k = signal.tf2zpk(b, a)

plt.plot (np.real(z), np.imag(z), 'xb')
plt.plot (np.real(p), np.imag(p), 'or')
plt.legend(['Zeros', 'Poles'], loc=2)

plt.title('Pole / Zero Plot')
plt.ylabel ('Real')

plt.xlabel ('Imaginary"')
plt.grid()

plt.show()

Pole / Zero Plot
400 ' ! ! ! ! !
300 | X X Zeros| i S S X
@ @® Poles|
200 - ERSEEEEEEELEEEEEEEE SRR ARRRRREE SRR 7
: : : : : X
100fF------- REREEEEE SRR R P @ ARRRREE -
— e
B O _
~ e : : : : :
100 b L
: : : : : X
=200 ------- RERETETES R R EEEEPERE CEEPERERE SEERREE -
P00 AR S S X
—400 ! ! ! I I I
-30 -25 -20 -15 -10 -5 0 5
Imaginary

1.8.3 Spectral Analysis

Periodogram Measurements

The scipy function periodogram provides a method to estimate the spectral density using the periodogram method.

The example below calculates the periodogram of a sine signal in white Gaussian noise.

>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>

import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt

fs = 10e3
N = 1leb
amp = 2*np.sqrt (2)

freqg = 1270.0

noise_power = 0.001 = fs / 2

time = np.arange(N) / fs

X = amp#*np.sin(2+*np.pirfreg+time)

x += np.random.normal (scale=np.sqgrt (noise_power), size=time.shape)

f, Pper_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum')

1.8.

Signal Processing (scipy.signal) 65

SciPy Reference Guide, Release 0.16.0

>>>
>>>
>>>
>>>
>>>

plt.semilogy (f, Pper_spec)
plt.xlabel ('frequency [Hz]")
plt.ylabel ('PSD")

plt.grid()

plt.show ()

PSD

0 1000 2000 3000 4000 5000
frequency [Hz]

Spectral Analysis using Welch’s Method

An improved method, especially with respect to noise immunity, is Welch’s method which is implemented by the scipy
function welch.

The example below estimates the spectrum using Welch’s method and uses the same parameters as the example above.
Note the much smoother noise floor of the spectogram.

>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>

>>>

import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt

fs = 10e3
N = 1leb5
amp = 2*np.sqrt (2)

freq = 1270.0

noise_power = 0.001 = fs / 2

time = np.arange(N) / fs

X = amp#*np.sin(2*np.pixfregxtime)

x += np.random.normal (scale=np.sqrt (noise_power), size=time.shape)

f, Pwelch_spec = signal.welch(x, fs, scaling='spectrum')

plt.semilogy (f, Pwelch_spec)

>>> plt.xlabel ('frequency [Hz]")

>>> plt.ylabel ('PSD")

>>> plt.grid()

>>> plt.show/()

66 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

PSD

0 1000 2000 3000 4000 5000
frequency [Hz]

Lomb-Scargle Periodograms (Lombscargle)

Least-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum, based on a least squares fit
of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science,
generally boosts long-periodic noise in long gapped records; LSSA mitigates such problems.

The Lomb-Scargle method performs spectral analysis on unevenly sampled data and is known to be a powerful way
to find, and test the significance of, weak periodic signals.

For a time series comprising NV; measurements X; = X (¢;) sampled at times ¢; where (j = 1,...,N;), assumed
to have been scaled and shifted such that its mean is zero and its variance is unity, the normalized Lomb-Scargle
periodogram at frequency f is

2 2
1 [Z;Vt X cosw(t; — T):| {Z;Vt X;sinw(t; —7)

> +
2] SMcos2w(t; —7) S sin?w(t; — 1)

P (f)

Here, w = 27 f is the angular frequency. The frequency dependent time offset 7 is given by

N
> sin2wt;

N; :
> " cos2wt;

tan 2wt =

The 1ombscargle function calculates the periodogram using a slightly modified algorithm due to Townsend ' which
allows the periodogram to be calculated using only a single pass through the input arrays for each frequency.

The equation is refactored as:

Pu(f) = 1 (e, XC +5,X8)? n (c; XS — 5, XC)?
"2 2CC + 2¢,8,C8 + 5285 288 — 2¢,5,CS + s2CC
and
tan 2wt = 205
-~ CC-8S’

I R.H.D. Townsend, “Fast calculation of the Lomb-Scargle periodogram using graphics processing units.”, The Astrophysical Journal Supple-
ment Series, vol 191, pp. 247-253, 2010

1.8. Signal Processing (scipy.signal) 67

SciPy Reference Guide, Release 0.16.0

Here,
Cr = COSWT, S, = sinwTt

while the sums are

Ny

XC = ZXj cos wt;
J
Nt

XS = ZXj sinwt;
J
Nt

cC = Zcos2 wt;

J
Ny

SS = Z sin? wt;
J

Ny
CS = Z cos wt; sinwt;.

J

This requires N (2N, + 3) trigonometric function evaluations giving a factor of ~ 2 speed increase over the straight-

forward implementation.

1.8.4 Detrend

Scipy provides the function det rend to remove a constant or linear trend in a data series in order to see effect of

higher order.

The example below removes the constant and linear trend of a 2-nd order polynomial time series and plots the remain-

ing signal components.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> t = np.linspace(-10, 10, 20)

>>> vy =1 + t + 0.01+tx*2

>>> yconst = signal.detrend(y, type='constant')
>>> ylin = signal.detrend(y, type='linear')

>>> plt.plot
>>> plt.plot
>>> plt.plot
>>> plt.grid
>>> plt.legen
>>> plt.show(

r Yr '—IX')
, yconst, '-bo'")

(t
(t
(t, ylin, '—-k+")
()
d
)

(["signal', 'const. detrend', 'linear detrend'])

68

Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

15 ! T T

: : »—x signal
1()_ @—® const. detrend
: : +—+ linear detrend

R

References

Some further reading and related software:

1.9 Linear Algebra (scipy.linalg)

When SciPy is built using the optimized ATLAS LAPACK and BLAS libraries, it has very fast linear algebra capabil-
ities. If you dig deep enough, all of the raw lapack and blas libraries are available for your use for even more speed.
In this section, some easier-to-use interfaces to these routines are described.

All of these linear algebra routines expect an object that can be converted into a 2-dimensional array. The output of
these routines is also a two-dimensional array.

scipy.linalg contains all the functions in numpy . linalg. plus some other more advanced ones not contained
in numpy.linalg

Another advantage of using scipy.linalg over numpy.linalg is that it is always compiled with
BLAS/LAPACK support, while for numpy this is optional. Therefore, the scipy version might be faster depending
on how numpy was installed.

Therefore, unless you don’t want to add scipy as a dependency to your numpy program, use scipy.linalg
instead of numpy.linalg

1.9.1 numpy.matrix vs 2D numpy.ndarray

The classes that represent matrices, and basic operations such as matrix multiplications and transpose are a part of
numpy. For convenience, we summarize the differences between numpy . mat rix and numpy .ndarray here.

numpy .mat rix is matrix class that has a more convenient interface than numpy . ndarray for matrix operations.
This class supports for example MATLAB-like creation syntax via the, has matrix multiplication as default for the
operator, and contains I and T members that serve as shortcuts for inverse and transpose:

>>> import numpy as np

>>> A = np.mat('[1 2;3 4]")
>>> A

matrix ([[1, 21,

1.9. Linear Algebra (scipy.linalg) 69

SciPy Reference Guide, Release 0.16.0

(3, 411)
>>> A.T
matrix ([[-2. , 1.1,
[1.5, =-0.511)
>>> b = np.mat ('[5 6]")
>>> Db
matrix ([[5, 6]11)
>>> b.T
matrix ([[5],
[611)
>>> A«b.T
matrix ([[17],
[3911)

Despite its convenience, the use of the numpy .matrix class is discouraged, since it adds nothing that cannot be
accomplished with 2D numpy .ndarray objects, and may lead to a confusion of which class is being used. For
example, the above code can be rewritten as:

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2],13,411)

>>> A
array ([[1, 2],
[3, 411])
>>> linalg.inv (A)
array ([[-2. , 1.1,
[1.5, -0.511)
>>> b = np.array([[5,6]]) #2D array
>>> Db
array ([[5, 611)
>>> b.T
array ([[5],
[611)
>>> Axb #not matrix multiplication!
array([[5, 127,
[15, 24]1])
>>> A.dot (b.T) #matrix multiplication
array ([[17],
[3911)
>>> b = np.array([5,6]) #I1D array
>>> Db

array ([5, 6])

>>> b.T #not matrix transpose!

array ([5, 61)

>>> A.dot (b) #does not matter for multiplication
array ([17, 391])

scipy.linalg operations can be applied equally to numpy .matrix or to 2D numpy .ndarray objects.

1.9.2 Basic routines

Finding Inverse

The inverse of a matrix A is the matrix B such that AB = I where I is the identity matrix consisting of ones down
the main diagonal. Usually B is denoted B = A~! . In SciPy, the matrix inverse of the Numpy array, A, is obtained

70 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

using linalg.inv (A) ,orusing A. I if A is a Matrix. For example, let

1 3 5
A=12 51
2 3 8

then
1 =37 9 22 —1.48 0.36 0.88
Al = % 14 2 -9 | = 0.56 0.08 —0.36
4 -3 1 0.16 —-0.12 0.04

The following example demonstrates this computation in SciPy

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array ([[1,2]1,103,411)

array ([[1, 2],
[3, 411)
>>> linalg.inv (A)
array ([[-2. , 1.1,
[1.5, -0.511)
>>> A.dot (linalg.inv (A)) #double check
array ([[1.00000000e+00, 0.00000000e+00]

[4.44089210e-16, 1.00000000e+007]

Solving linear system

Solving linear systems of equations is straightforward using the scipy command 1inalg.solve. This command
expects an input matrix and a right-hand-side vector. The solution vector is then computed. An option for entering a
symmetrix matrix is offered which can speed up the processing when applicable. As an example, suppose it is desired
to solve the following simultaneous equations:

r+3y+52 = 10
2c+5y+z = 8
2c+3y+82 = 3

We could find the solution vector using a matrix inverse:

—1

z 1 3 5 10 1 —232 —9.28
y|=1]12 5 1 8 | = 5 129 = 5.16
z 2 3 8 3 19 0.76

However, it is better to use the linalg.solve command which can be faster and more numerically stable. In this case it
however gives the same answer as shown in the following example:

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array ([[1,2],13,411)

>>> A
array ([[1, 21,
[3, 411])
>>> b = np.array ([[5],[6]1])
>>> b
array ([[5]

[611)
>>> linalg.inv (A) .dot (b) #slow

1.9. Linear Algebra (scipy.linalg) 71

SciPy Reference Guide, Release 0.16.0

array ([[-4. 1,

[4.5]]
>>> A.dot (linalg.inv (A) .dot (b)) -b #check
array ([[8.88178420e-16],

[2.66453526e-15]11)
>>> np.linalg.solve (A,b) #fast

array ([[-4. 1,

[4.51])
>>> A.dot (np.linalg.solve(A,b))-b #check
array ([[0.1,

[0.11)

Finding Determinant

The determinant of a square matrix A is often denoted |A| and is a quantity often used in linear algebra. Suppose a;;
are the elements of the matrix A and let M;; = |A;;| be the determinant of the matrix left by removing the i row
and j column from A . Then for any row i,

Al = (-1 ay My,
J
This is a recursive way to define the determinant where the base case is defined by accepting that the determinant of a

1 x 1 matrix is the only matrix element. In SciPy the determinant can be calculated with 1inalg.det . For example,
the determinant of

is

5 1 2 1 5
U R PRI R
= 1(5-8-3-1)-3(2-8-2-1)+5(2-3-2-5)=-25

In SciPy this is computed as shown in this example:

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array ([[1,2]1,103,411)

>>> A

array ([[1, 2],
[3, 411)

>>> linalg.det (A)

-2.0

Computing horms

Matrix and vector norms can also be computed with SciPy. A wide range of norm definitions are available using
different parameters to the order argument of 1inalg.norm . This function takes a rank-1 (vectors) or a rank-2
(matrices) array and an optional order argument (default is 2). Based on these inputs a vector or matrix norm of the
requested order is computed.

72 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

For vector x , the order parameter can be any real number including inf or —inf. The computed norm is

max |x;| ord = inf
min || ord = —inf

ord 1/ord
> il lord| < 0.

For matrix A the only valid values for norm are 42, +1, 4 inf, and ‘fro’ (or ‘f’) Thus,

[l =

max;) |a;;| ord =inf
mini Zj |aij\ ord = —inf
max; Zl |aij| ord =1
|A| = min; Y. |a;;| ord = —1
max o; ord = 2
min o; ord = -2
trace (A7 A) ord = fro’

where o; are the singular values of A .
Examples:

>>> import numpy as np
>>> from scipy import linalg
>>> A=np.array ([[1,2],[3,411])
>>> A
array ([[1, 2],
[3, 411)
>>> linalg.norm(A)
5.4772255750516612
>>> linalg.norm(A, 'fro') # frobenius norm is the default
5.4772255750516612
>>> linalg.norm(A,1l) # L1 norm (max column sum)
6
>>> linalg.norm(A,-1)
4
>>> linalg.norm(A,inf) # L inf norm (max row sum)
5

Solving linear least-squares problems and pseudo-inverses

Linear least-squares problems occur in many branches of applied mathematics. In this problem a set of linear scaling
coefficients is sought that allow a model to fit data. In particular it is assumed that data y; is related to data x; through
a set of coefficients ¢; and model functions f; (x;) via the model

Yi = chfj (%) + €
J

where ¢; represents uncertainty in the data. The strategy of least squares is to pick the coefficients ¢; to minimize

2

J(e) = |vi— chfj (zi)

%

Theoretically, a global minimum will occur when

oo =0=3 (= Y eadi () | (-1)

1.9. Linear Algebra (scipy.linalg) 73

SciPy Reference Guide, Release 0.16.0

or

Do fi@) fiw) = D wid ()

AfAc = Afly
where
(A} =i (@)
When AP A is invertible, then
c=(A7A) T Afly = Aly
where AT is called the pseudo-inverse of A.. Notice that using this definition of A the model can be written
y =Ac+e

The command 1inalg.lstsqg will solve the linear least squares problem for ¢ given A and y . In addition
linalg.pinv or linalg.pinv2 (uses a different method based on singular value decomposition) will find Af
given A.

The following example and figure demonstrate the use of 1inalg.lstsqgand 1inalg.pinv for solving a data-
fitting problem. The data shown below were generated using the model:

Yi = c1e” "+ cawy

where x; = 0.1ifori =1...10,c; = 5, and co = 4. Noise is added to y; and the coefficients c¢; and c» are estimated
using linear least squares.

>>> import numpy as np
>>> from scipy import linalg
>>> import matplotlib.pyplot as plt

>>> ¢cl, c2 = 5.0, 2.0

>>> 1 = np.r_[1:11]

>>> xi = 0.1+1

>>> yi = clxnp.exp(-—xi) + c2xxi

>>> zi = yi + 0.05 » np.max(yi) » np.random.randn(len(yi))
>>> A = np.c_[np.exp(-x1i)[:, np.newaxis], xi[:, np.newaxis]]
>>> ¢, resid, rank, sigma = linalg.lstsqg(A, zi)

>>> xi2 = np.r_[0.1:1.0:1007]
>>> yi2 = c[0]*np.exp(-xi2) + c[l]+*xi2

>>> plt.plot(xi,zi, 'x',xi2,yi2)

>>> plt.axis([0,1.1,3.0,5.51)

>>> plt.xlabel ("Sx_i")

>>> plt.title('Data fitting with linalg.lstsqg')
>>> plt.show ()

74 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Data fitting with linalg.Istsq
5 5 T T T i I

50F e

45

40

35} e

30 | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

Generalized inverse

The generalized inverse is calculated using the command 1inalg.pinvor linalg.pinv2. These two commands
differ in how they compute the generalized inverse. The first uses the linalg.Istsq algorithm while the second uses
singular value decomposition. Let A be an M x N matrix, then if M > N the generalized inverse is

AT = (AA)"AH
while if M < N matrix the generalized inverse is
A* = AT (AAT)T
In both cases for M = N , then
AT=A%=A""

as long as A is invertible.

1.9.3 Decompositions

In many applications it is useful to decompose a matrix using other representations. There are several decompositions
supported by SciPy.

Eigenvalues and eigenvectors

The eigenvalue-eigenvector problem is one of the most commonly employed linear algebra operations. In one popular
form, the eigenvalue-eigenvector problem is to find for some square matrix A scalars A and corresponding vectors v
such that

Av =)v.
For an N x N matrix, there are N (not necessarily distinct) eigenvalues — roots of the (characteristic) polynomial

|A — M| = 0.

1.9. Linear Algebra (scipy.linalg) 75

SciPy Reference Guide, Release 0.16.0

The eigenvectors, v , are also sometimes called right eigenvectors to distinguish them from another set of left eigen-
vectors that satisfy

H _ H
Vi A =Av]
or
AHVL =)*VL.

With it’s default optional arguments, the command 1inalg.eig returns A and v. However, it can also return vy, and
just A by itself (1inalg.eigvals returns just A as well).
In addition, 1inalg.eig can also solve the more general eigenvalue problem

Av = J)\Bv

AHVL =)*BHVL

for square matrices A and B. The standard eigenvalue problem is an example of the general eigenvalue problem for
B = I. When a generalized eigenvalue problem can be solved, then it provides a decomposition of A as

A =BVAV!

where V is the collection of eigenvectors into columns and A is a diagonal matrix of eigenvalues.

By definition, eigenvectors are only defined up to a constant scale factor. In SciPy, the scaling factor for the eigenvec-
tors is chosen so that |[v|* = 3, v? = 1.

;=

As an example, consider finding the eigenvalues and eigenvectors of the matrix
1 5 2
A=1|2 41
3 6 2
The characteristic polynomial is

|A — |

(1-=MN[A-N(2-A)—6]-
5[2(2—X\) —3]+2[12—-3(4—\)]
= A 4+7\24+8)\-3.

The roots of this polynomial are the eigenvalues of A :

A= T7.9579
Ay = —1.2577
Az = 0.2997.

The eigenvectors corresponding to each eigenvalue can be found using the original equation. The eigenvectors associ-
ated with these eigenvalues can then be found.

>>> import numpy as np

>>> from scipy import linalg

>>> A = np.array ([[1,2],1[3,411])

>>> la,v = linalg.eig(A)

>>> 11,12 = la

>>> print 11, 12 #eigenvalues
(-0.372281323269+07) (5.37228132327+07)

>>> print v[:,0] #first eigenvector
[-0.82456484 0.56576746]
>>> print v([:,1] #second eigenvector

76 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

[-0.41597356 -0.90937671]

>>> print np.sum(abs(v+x*2),axis=0) #eigenvectors are unitary
[1. 1.]

>>> vl = np.array(v[:,0]).T

>>> print linalg.norm(A.dot (vl)-11xvl) #check the computation
3.23682852457e-16

Singular value decomposition

Singular Value Decomposition (SVD) can be thought of as an extension of the eigenvalue problem to matrices that are
not square. Let A be an M x N matrix with M and N arbitrary. The matrices A A and AA¥ are square hermitian
matrices * of size N x N and M x M respectively. It is known that the eigenvalues of square hermitian matrices are
real and non-negative. In addition, there are at most min (M, N) identical non-zero eigenvalues of A A and AA*.
Define these positive eigenvalues as o2. The square-root of these are called singular values of A. The eigenvectors of
A A are collected by columns into an N x N unitary * matrix V while the eigenvectors of AAX are collected by
columns in the unitary matrix U , the singular values are collected in an M x N zero matrix 3 with main diagonal
entries set to the singular values. Then

A =UxVa

is the singular-value decomposition of A. Every matrix has a singular value decomposition. Sometimes, the singular
values are called the spectrum of A. The command 1inalg.svd will return U , VH and o, as an array of the
singular values. To obtain the matrix 3 use 1linalg.diagsvd. The following example illustrates the use of
linalg.svd.

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2,31,[4,5,611)

,S$,Vh = linalg.svd(A)
ig = linalg.diagsvd(s,M,N)
>>> U, Vh = U, Vh

>>> U

array ([[-0.3863177 , -0.92236578],
[-0.92236578, 0.3863177 11)

>>> Sig

array ([[9.508032 , O. p 0. 1,
[0. , 0.77286964, 0. 11)

>>> Vh

array ([[-0.42866713, -0.56630692, -0.703%9467 7,

[

[0.80596391, 0.11238241, -0.58119908],
[0.40824829, -0.81649658, 0.40824829]1])
>>> U.dot (Sig.dot (Vh)) #check computation
array ([[1., 2., 3.1,

[4., 5., 6.11)

LU decomposition

The LU decomposition finds a representation for the M x N matrix A as

A=PLU

2 A hermitian matrix D satisfies DY = D.
3 A unitary matrix D satisfies DHFD =TI = DD sothat D~ = D,

1.9. Linear Algebra (scipy.linalg) 77

SciPy Reference Guide, Release 0.16.0

where P is an M x M permutation matrix (a permutation of the rows of the identity matrix), L is in M x K lower
triangular or trapezoidal matrix (K = min (M, N)) with unit-diagonal, and U is an upper triangular or trapezoidal
matrix. The SciPy command for this decomposition is 1inalg.lu.

Such a decomposition is often useful for solving many simultaneous equations where the left-hand-side does not
change but the right hand side does. For example, suppose we are going to solve

AXi = bz
for many different b; . The LU decomposition allows this to be written as
PLUXZ' = bz

Because L is lower-triangular, the equation can be solved for Ux; and finally x; very rapidly using forward- and
back-substitution. An initial time spent factoring A allows for very rapid solution of similar systems of equa-
tions in the future. If the intent for performing LU decomposition is for solving linear systems then the command
linalg.lu_factor should be used followed by repeated applications of the command 1inalg.lu_solve to
solve the system for each new right-hand-side.

Cholesky decomposition

Cholesky decomposition is a special case of LU decomposition applicable to Hermitian positive definite matrices.
When A = A" and x¥ Ax > 0 for all x, then decompositions of A can be found so that

A = Ufu
A = LLY”

where L is lower-triangular and U is upper triangular. Notice that L = U . The command 1inalg.cholesky
computes the cholesky factorization. For using cholesky factorization to solve systems of equations there are also
linalg.cho_factor and 1inalg.cho_solve routines that work similarly to their LU decomposition coun-
terparts.

QR decomposition

The QR decomposition (sometimes called a polar decomposition) works for any M x N array and finds an M x M
unitary matrix Q and an M x N upper-trapezoidal matrix R such that

A =QR.
Notice that if the SVD of A is known then the QR decomposition can be found
A =UxV? =QR
implies that @ = U and R = V¥ Note, however, that in SciPy independent algorithms are used to find QR and

SVD decompositions. The command for QR decompositionis 1inalg.qr .

Schur decomposition

For a square N x NN matrix, A , the Schur decomposition finds (not-necessarily unique) matrices T and Z such that
A =7TZ"

where Z is a unitary matrix and T is either upper-triangular or quasi-upper triangular depending on whether or not a
real schur form or complex schur form is requested. For a real schur form both T and Z are real-valued when A is
real-valued. When A is a real-valued matrix the real schur form is only quasi-upper triangular because 2 x 2 blocks

78 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

extrude from the main diagonal corresponding to any complex- valued eigenvalues. The command 1inalg.schur
finds the Schur decomposition while the command 1inalg.rsf2csf converts T and Z from a real Schur form to
a complex Schur form. The Schur form is especially useful in calculating functions of matrices.

The following example illustrates the schur decomposition:

>>> from scipy import linalg

>>> A =mat('[1 3 2; 1 4 5;, 2 3 6]")

>>> T,7Z = linalg.schur (A)

>>> T1,7Z1 = linalg.schur (A, "complex"')

>>> T2,722 = linalg.rsf2csf (T, 7)

>>> print T

[[9.90012467 1.78947961 -0.65498528]
[0. 0.54993766 —-1.57754789]
[0. 0.51260928 0.54993766]]

>>> print T2

[[9.90012467 +0.00000000e+007 —-0.32436598 +1.55463542e+007

0.88619748 +5.69027615e-017]

0.00000000 +0.00000000e+003 0.54993766 +8.99258408e-017

1.06493862 +1.37016050e-177]

0.00000000 +0.00000000e+00j 0.00000000 +0.00000000e+007

0.54993766 -8.99258408e-017]]

>>> print abs (T1-T2) # different

[[1.24357637e-14 2.09205364e+00 6.56028192e-01]
[0.00000000e+00 4.00296604e-16 1.83223097e+00]
[0.00000000e+00 0.00000000e+00 4.57756680e-16]]

>>> print abs (Z21-Z2) # different

[[0.06833781 1.10591375 0.23662249]
[0.11857169 0.5585604 0.29617525]
[0.12624999 0.75656818 0.22975038]]

>>> T7,72,T1,21,T2,722 = map(mat, (T,2,T1,21,T2,722))

>>> print abs (A-Z+xTxZ.H) # same

[[1.11022302e-16 4.44089210e-16 4.44089210e-16]
[4.44089210e-16 1.33226763e-15 8.88178420e-16]
[8.88178420e-16 4.44089210e-16 2.66453526e-15]]

>>> print abs (A-Z1xT1xZ1.H) # same

[[1.00043248e-15 2.22301403e-15 5.55749485e-15]
[2.88899660e-15 8.44927041e-15 9.77322008e-15]
[3.11291538e-15 1.15463228e-14 1.15464861e-141]]

>>> print abs (A-Z2xT2xZ2.H) # same

[[3.34058710e-16 8.88611201e-16 4.18773089%9e-18]
[1.48694940e-16 8.95109973e-16 8.92966151e-16]
[1.33228956e-15 1.33582317e-15 3.55373104e-15]1]

Interpolative Decomposition

scipy.linalg.interpolative contains routines for computing the interpolative decomposition (ID) of a ma-
trix. For a matrix A € C"™*" of rank k < min{m, n} this is a factorization

All = [AIl; Al = AIlL [I T,

where IT = [II;,II,] is a permutation matrix with IT; € {0,1}"** ie., ATl = AII;T. This can equivalently be
written as A = BP, where B = AIl; and P = [I, T|II" are the skeleton and interpolation matrices, respectively.

See also:

scipy.linalg.interpolative — for more information.

1.9. Linear Algebra (scipy.linalg) 79

SciPy Reference Guide, Release 0.16.0

1.9.4 Matrix Functions
Consider the function f (z) with Taylor series expansion
_SM(0)
k=0
A matrix function can be defined using this Taylor series for the square matrix A as

O (k)
k=0 ’

While, this serves as a useful representation of a matrix function, it is rarely the best way to calculate a matrix function.

Exponential and logarithm functions

The matrix exponential is one of the more common matrix functions. It can be defined for square matrices as

— 1
et = Z HA’“.
k=0
The command 1linalg.expm3 uses this Taylor series definition to compute the matrix exponential. Due to poor
convergence properties it is not often used.
Another method to compute the matrix exponential is to find an eigenvalue decomposition of A :
A=VAV™!
and note that
er =Vertv?

where the matrix exponential of the diagonal matrix A is just the exponential of its elements. This method is imple-
mented in 1inalg.expm?2 .

The preferred method for implementing the matrix exponential is to use scaling and a Padé approximation for e” .
This algorithm is implemented as 1inalg.expm.

The inverse of the matrix exponential is the matrix logarithm defined as the inverse of the matrix exponential.
A =exp (log (A)).

The matrix logarithm can be obtained with 1inalg.logm.

Trigonometric functions

The trigonometric functions sin , cos , and tan are implemented for matrices in 1inalg.sinm, linalg.cosm,
and 1inalg.tanm respectively. The matrix sin and cosine can be defined using Euler’s identity as

JA _ o—iA
sin(A) = S —°¢
2j
JA —JjA
cos(A) = erte’™
2
The tangent is
tan (z) = i;r; Ei)) = [cos ()] " sin (z)

and so the matrix tangent is defined as

[cos (A)] 'sin (A).

80 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Hyperbolic trigonometric functions

The hyperbolic trigonemetric functions sinh , cosh , and tanh can also be defined for matrices using the familiar
definitions:

A _—A
sinh (A) = & 26
A —A
cosh (A) = %
tanh (A) = [cosh(A)] 'sinh(A).

These matrix functions can be found using 1inalg.sinhm, 1inalg.coshm,and 1inalg.tanhm.

Arbitrary function

Finally, any arbitrary function that takes one complex number and returns a complex number can be called as a matrix
function using the command 1inalg. funm. This command takes the matrix and an arbitrary Python function. It
then implements an algorithm from Golub and Van Loan’s book “Matrix Computations “to compute function applied
to the matrix using a Schur decomposition. Note that the function needs to accept complex numbers as input in order
to work with this algorithm. For example the following code computes the zeroth-order Bessel function applied to a
matrix.

>>> from scipy import special, random, linalg
>>> A = random.rand (3, 3)
>>> B = linalg.funm(A,lambda x: special.jv(0,x))
>>> print A
[[0.72578091 0.34105276 0.79570345]
[0.65767207 0.73855618 0.541453]
[0.78397086 0.68043507 0.4837898 1]
>>> print B
[[0.72599893 -0.20545711 -0.22721101]
[-0.27426769 0.77255139 -0.23422637]
[-0.27612103 -0.21754832 0.7556849 1]
>>> print linalg.eigvals (A)
[1.91262611+0.3 0.21846476+0.7 -0.18296399+0.7]
>>> print special.jv (0, linalg.eigvals(d))
[0.27448286+0.7 0.98810383+0.3 0.99164854+0.7]
>>> print linalg.eigvals (B)
[0.27448286+0.7 0.98810383+0.3 0.99164854+0.7]

Note how, by virtue of how matrix analytic functions are defined, the Bessel function has acted on the matrix eigen-
values.

1.9.5 Special matrices

SciPy and NumPy provide several functions for creating special matrices that are frequently used in engineering and
science.

1.9. Linear Algebra (scipy.linalg) 81

SciPy Reference Guide, Release 0.16.0

Type Function Description

block diagonal | scipy.linalg.block_diag | Create a block diagonal matrix from the provided arrays.
circulant scipy.linalg.circulant Construct a circulant matrix.

companion scipy.linalg.companion Create a companion matrix.

Hadamard scipy.linalg.hadamard Construct a Hadamard matrix.

Hankel scipy.linalg.hankel Construct a Hankel matrix.

Hilbert scipy.linalg.hilbert Construct a Hilbert matrix.

Inverse Hilbert | scipy.linalg.invhilbert | Construct the inverse of a Hilbert matrix.
Leslie scipy.linalg.leslie Create a Leslie matrix.

Pascal scipy.linalg.pascal Create a Pascal matrix.

Toeplitz scipy.linalg.toeplitz Construct a Toeplitz matrix.

Van der Monde | numpy .vander Generate a Van der Monde matrix.

For examples of the use of these functions, see their respective docstrings.

1.10 Sparse Eigenvalue Problems with ARPACK

1.10.1 Introduction

ARPACK is a Fortran package which provides routines for quickly finding a few eigenvalues/eigenvectors of large
sparse matrices. In order to find these solutions, it requires only left-multiplication by the matrix in question. This
operation is performed through a reverse-communication interface. The result of this structure is that ARPACK is able
to find eigenvalues and eigenvectors of any linear function mapping a vector to a vector.

All of the functionality provided in ARPACK is contained within the two high-level interfaces
scipy.sparse.linalg.eigs and scipy.sparse.linalg.eigsh. eigs provides interfaces to
find the eigenvalues/vectors of real or complex nonsymmetric square matrices, while e igsh provides interfaces for
real-symmetric or complex-hermitian matrices.

1.10.2 Basic Functionality

ARPACK can solve either standard eigenvalue problems of the form
Ax = Mx
or general eigenvalue problems of the form
Ax = A\Mx

The power of ARPACK is that it can compute only a specified subset of eigenvalue/eigenvector pairs. This is accom-
plished through the keyword which. The following values of which are available:

e which = ’LM’ : Figenvalues with largest magnitude (eigs, eigsh), that is, largest eigenvalues in the
euclidean norm of complex numbers.

e which = ’SM’ : Eigenvalues with smallest magnitude (eigs, eigsh), that is, smallest eigenvalues in the
euclidean norm of complex numbers.

e which = ’LR’ : Eigenvalues with largest real part (eigs)

e which = 'SR’ : Eigenvalues with smallest real part (eigs)

* which = /LI’ :Eigenvalues with largest imaginary part (eigs)
e which = 7SI’ :FEigenvalues with smallest imaginary part (eigs)

82 Chapter 1. SciPy Tutorial

http://docs.scipy.org/doc/numpy/reference/generated/numpy.vander.html#numpy.vander

SciPy Reference Guide, Release 0.16.0

e which = ’LA’ : Eigenvalues with largest algebraic value (eigsh), that is, largest eigenvalues inclusive of
any negative sign.

* which = ’SA’ : Eigenvalues with smallest algebraic value (eigsh), that is, smallest eigenvalues inclusive
of any negative sign.

e which = ’BE’ : Eigenvalues from both ends of the spectrum (eigsh)

Note that ARPACK is generally better at finding extremal eigenvalues: that is, eigenvalues with large magnitudes. In
particular, using which = ’SM’ may lead to slow execution time and/or anomalous results. A better approach is to
use shift-invert mode.

1.10.3 Shift-Invert Mode
Shift invert mode relies on the following observation. For the generalized eigenvalue problem
Ax = AMx
it can be shown that
(A—oM)'Mx =vx

where

1.10.4 Examples

Imagine you’d like to find the smallest and largest eigenvalues and the corresponding eigenvectors for a
large matrix. ARPACK can handle many forms of input: dense matrices such as numpy.ndarray in-
stances, sparse matrices such as scipy.sparse.csr_matrix, or a general linear operator derived from
scipy.sparse.linalg.LinearOperator. For this example, for simplicity, we’ll construct a symmetric,
positive-definite matrix.

>>> import numpy as np

>>> from scipy.linalg import eigh

>>> from scipy.sparse.linalg import eigsh

>>> np.set_printoptions (suppress=True)

>>>

>>> np.random.seed(0)

>>> X = np.random.random((100,100)) - 0.5

>>> X np.dot (X, X.T) #create a symmetric matrix

We now have a symmetric matrix X with which to test the routines. First compute a standard eigenvalue decomposition
using eigh:

>>> evals_all, evecs_all = eigh (X)

As the dimension of X grows, this routine becomes very slow. Especially if only a few eigenvectors and eigenvalues
are needed, ARPACK can be a better option. First let’s compute the largest eigenvalues (which = ’LM’) of X and
compare them to the known results:

>>> evals_large, evecs_large = eigsh (X, 3, which='LM")
>>> print evals_all[-3:]

[29.1446102 30.05821805 31.19467646]

>>> print evals_large

[29.1446102 30.05821805 31.19467646]

1.10. Sparse Eigenvalue Problems with ARPACK 83

SciPy Reference Guide, Release 0.16.0

>>> print np.dot (evecs_large.T, evecs_all[:,-3:1])
[[-1. 0. 0.]

[0. 1. 0.]

[-0. 0. -1.11]

The results are as expected. ARPACK recovers the desired eigenvalues, and they match the previously known results.
Furthermore, the eigenvectors are orthogonal, as we’d expect. Now let’s attempt to solve for the eigenvalues with
smallest magnitude:

>>> evals_small, evecs_small = eigsh (X, 3, which='SM")
scipy.sparse.linalg.eigen.arpack.arpack.ArpackNoConvergence:
ARPACK error -1: No convergence (1001 iterations, 0/3 eigenvectors converged)

Oops. We see that as mentioned above, ARPACK is not quite as adept at finding small eigenvalues. There are a few
ways this problem can be addressed. We could increase the tolerance (to1l) to lead to faster convergence:

>>> evals_small, evecs_small = eigsh (X, 3, which='SM', tol=1E-2)
>>> print evals_all[:3]

[0.0003783 0.00122714 0.00715878]

>>> print evals_small

[0.00037831 0.00122714 0.00715881]

>>> print np.dot (evecs_small.T, evecs_all[:,:3])

[[0.99999999 0.00000024 -0.00000049]
[-0.00000023 0.99999999 0.00000056]
[0.00000031 -0.00000037 0.999998527]

This works, but we lose the precision in the results. Another option is to increase the maximum number of iterations
(maxiter) from 1000 to 5000:

>>> evals_small, evecs_small = eigsh(X, 3, which='SM', maxiter=5000)
>>> print evals_all[:3]

[0.0003783 0.00122714 0.00715878]

>>> print evals_small

[0.0003783 0.00122714 0.00715878]

>>> print np.dot (evecs_small.T, evecs_all[:,:3])

[l 1. 0. 0.]
[-0. 1. 0.]
[0. 0. -1.1]

We get the results we’d hoped for, but the computation time is much longer. Fortunately, ARPACK contains a mode that
allows quick determination of non-external eigenvalues: shift-invert mode. As mentioned above, this mode involves
transforming the eigenvalue problem to an equivalent problem with different eigenvalues. In this case, we hope to find
eigenvalues near zero, so we’ll choose sigma = 0. The transformed eigenvalues will then satisfy v = 1/(0 — A\) =
1/, so our small eigenvalues X become large eigenvalues v.

>>> evals_small, evecs_small = eigsh(X, 3, sigma=0, which='LM")
>>> print evals_all[:3]

[0.0003783 0.00122714 0.00715878]

>>> print evals_small

[0.0003783 0.00122714 0.00715878]

>>> print np.dot (evecs_small.T, evecs_all[:,:3])

[[1. 0. 0.]
[0. -1. -0.]
[-0. -0. 1.1]

We get the results we were hoping for, with much less computational time. Note that the transformation from v — A
takes place entirely in the background. The user need not worry about the details.

The shift-invert mode provides more than just a fast way to obtain a few small eigenvalues. Say you desire to find

84 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

internal eigenvalues and eigenvectors, e.g. those nearest to A = 1. Simply set sigma = 1 and ARPACK takes care
of the rest:

>>> evals_mid, evecs_mid = eigsh(X, 3, sigma=1, which="'LM")
>>> i_sort = np.argsort(abs(l. / (1 - evals_all)))[-3:]

>>> print evals_all[i_sort]

[1.16577199 0.85081388 1.06642272]

>>> print evals_mid

[0.85081388 1.06642272 1.16577199]

>>> print np.dot (evecs_mid.T, evecs_all[:,i_sort])

[[-0. 1. 0.]
[-0. -0. 1.]
[1. 0. 0.7]

The eigenvalues come out in a different order, but they’re all there. Note that the shift-invert mode requires
the internal solution of a matrix inverse. This is taken care of automatically by eigsh and eigs, but the
operation can also be specified by the user. See the docstring of scipy.sparse.linalg.eigsh and
scipy.sparse.linalg.eigs for details.

1.10.5 References
1.11 Compressed Sparse Graph Routines (scipy.sparse.csgraph)

1.11.1 Example: Word Ladders

A Word Ladder is a word game invented by Lewis Carroll in which players find paths between words by switching
one letter at a time. For example, one can link “ape” and “man” in the following way:

ape — apt — ait — bit — big — bag — mag — man

Note that each step involves changing just one letter of the word. This is just one possible path from “ape” to “man”,
but is it the shortest possible path? If we desire to find the shortest word ladder path between two given words, the
sparse graph submodule can help.

First we need a list of valid words. Many operating systems have such a list built-in. For example, on linux, a word
list can often be found at one of the following locations:

/usr/share/dict
/var/lib/dict

Another easy source for words are the scrabble word lists available at various sites around the internet (search with
your favorite search engine). We’ll first create this list. The system word lists consist of a file with one word per line.
The following should be modified to use the particular word list you have available:

>>> word_list = open('/usr/share/dict/words').readlines ()
>>> word_list = map(str.strip, word_list)

We want to look at words of length 3, so let’s select just those words of the correct length. We’ll also eliminate words
which start with upper-case (proper nouns) or contain non alpha-numeric characters like apostrophes and hyphens.
Finally, we’ll make sure everything is lower-case for comparison later:

>>> word_list = [word for word in word_list if len(word) == 3]
>>> word_list = [word for word in word_list if word[0].islower ()]
>>> word_list = [word for word in word_list if word.isalpha()]
>>> word_list = map(str.lower, word_list)

>>> len (word_list)

586

1.11. Compressed Sparse Graph Routines (scipy.sparse.csgraph) 85

http://en.wikipedia.org/wiki/Word_ladder

SciPy Reference Guide, Release 0.16.0

Now we have a list of 586 valid three-letter words (the exact number may change depending on the particular list
used). Each of these words will become a node in our graph, and we will create edges connecting the nodes associated
with each pair of words which differs by only one letter.

There are efficient ways to do this, and inefficient ways to do this. To do this as efficiently as possible, we’re going to
use some sophisticated numpy array manipulation:

>>> import numpy as np

>>> word_list = np.asarray(word_list)
>>> word_list.dtype
dtype ('[S3")

>>> word_list.sort () # sort for quick searching later

We have an array where each entry is three bytes. We’d like to find all pairs where exactly one byte is different. We’ll
start by converting each word to a three-dimensional vector:

>>> word_bytes = np.ndarray ((word_list.size, word_list.itemsize),
dtype="int8"',

C buffer=word_list.data)

>>> word_bytes.shape
(586, 3)

Now we’ll use the Hamming distance between each point to determine which pairs of words are connected. The
Hamming distance measures the fraction of entries between two vectors which differ: any two words with a hamming
distance equal to 1/N, where N is the number of letters, are connected in the word ladder:

>>> from scipy.spatial.distance import pdist, squareform

>>> from scipy.sparse import csr_matrix

>>> hamming_dist = pdist (word_bytes, metric='hamming')

>>> graph = csr_matrix (squareform(hamming_dist < 1.5 / word_list.itemsize))

When comparing the distances, we don’t use an equality because this can be unstable for floating point values. The
inequality produces the desired result as long as no two entries of the word list are identical. Now that our graph is set
up, we’ll use a shortest path search to find the path between any two words in the graph:

>>> il = word_list.searchsorted('ape')
>>> 12 = word_list.searchsorted('man')
>>> word_list[il]

vapev

>>> word_list[i2]

'man'

‘We need to check that these match, because if the words are not in the list that will not be the case. Now all we need
is to find the shortest path between these two indices in the graph. We’ll use dijkstra’s algorithm, because it allows us
to find the path for just one node:

>>> from scipy.sparse.csgraph import dijkstra

>>> distances, predecessors = dijkstra(graph, indices=il,

.. return_predecessors=True)
>>> print distances[i2]
5.0

So we see that the shortest path between ‘ape’ and ‘man’ contains only five steps. We can use the predecessors returned
by the algorithm to reconstruct this path:

>>> path = []

>>> i = 1i2

>>> while i != 1il:

>>> path.append (word_list[i])
>>> i = predecessors[i]

86 Chapter 1. SciPy Tutorial

http://en.wikipedia.org/wiki/Hamming_distance

SciPy Reference Guide, Release 0.16.0

>>> path.append (word_list[il])
>>> print path[::-1]
["ape', 'apt', 'opt', 'ocat', 'mat', 'man']

This is three fewer links than our initial example: the path from ape to man is only five steps.

Using other tools in the module, we can answer other questions. For example, are there three-letter words which are
not linked in a word ladder? This is a question of connected components in the graph:

>>> from scipy.sparse.csgraph import connected_components

>>> N_components, component_list = connected_components (graph)
>>> print N_components

15

In this particular sample of three-letter words, there are 15 connected components: that is, 15 distinct sets of words with
no paths between the sets. How many words are in each of these sets? We can learn this from the list of components:

>>> [np.sum(component_list == i) for i in range(15)]
(712, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

There is one large connected set, and 14 smaller ones. Let’s look at the words in the smaller ones:

>>> [list (word_list[np.where (component_list == 1i)]) for i in range(l, 15)]
[['aha'],
"chi'],

[
[
[
[
[
[
["'nth'
[
[
[
[
[
[

]
These are all the three-letter words which do not connect to others via a word ladder.

We might also be curious about which words are maximally separated. Which two words take the most links to
connect? We can determine this by computing the matrix of all shortest paths. Note that by convention, the distance
between two non-connected points is reported to be infinity, so we’ll need to remove these before finding the maximum:

>>> distances, predecessors = dijkstra(graph, return_predecessors=True)
>>> np.max (distances[~np.isinf (distances)])
13.0

So there is at least one pair of words which takes 13 steps to get from one to the other! Let’s determine which these
are:

>>> 11, 12 = np.where(distances == 13)
>>> zip(word_list[il], word_list[i2])
[("imp', 'ohm'),

1.11. Compressed Sparse Graph Routines (scipy.sparse.csgraph) 87

SciPy Reference Guide, Release 0.16.0

('ump', 'ohm'),
('ump', 'ohs')]

We see that there are two pairs of words which are maximally separated from each other: ‘imp’ and ‘ump’ on one
hand, and ‘ohm’ and ‘ohs’ on the other hand. We can find the connecting list in the same way as above:

>>> path = []

>>> 1 = 1i2[0]

>>> while i != i1[0]:

>>> path.append (word_list[i])
>>> i = predecessors[il1[0], 1i]
>>> path.append (word_list[i1[0]])
>>> print path[::-1]

["imp', 'amp', 'asp', 'ask', 'ark', 'are', 'aye', 'rye', 'roe', 'woe', 'woo', 'who', 'oho', 'ohm']

This gives us the path we desired to see.

Word ladders are just one potential application of scipy’s fast graph algorithms for sparse matrices. Graph theory
makes appearances in many areas of mathematics, data analysis, and machine learning. The sparse graph tools are
flexible enough to handle many of these situations.

1.12 Spatial data structures and algorithms (scipy.spatial)

scipy.spatial can compute triangulations, Voronoi diagrams, and convex hulls of a set of points, by leveraging
the Qhull library.

Moreover, it contains KDTree implementations for nearest-neighbor point queries, and utilities for distance compu-
tations in various metrics.

1.12.1 Delaunay triangulations

The Delaunay triangulation is a subdivision of a set of points into a non-overlapping set of triangles, such that no point
is inside the circumcircle of any triangle. In practice, such triangulations tend to avoid triangles with small angles.

Delaunay triangulation can be computed using scipy.spatial as follows:

>>> from scipy.spatial import Delaunay
>>> points = np.array([[0O, O], [O, 1.11, [1, O], [1, 111)
>>> tri = Delaunay (points)

We can visualize it:

>>> import matplotlib.pyplot as plt
>>> plt.triplot (points[:,0], points[:,1], tri.simplices.copy())
>>> plt.plot (points[:,0], points[:,1], 'o")

And add some further decorations:

>>> for j, p in enumerate (points):

plt.text (p[0]-0.03, p[1]1+0.03, Jj, ha='right') # label the points
>>> for j, s in enumerate (tri.simplices):

p = points([s].mean (axis=0)
. plt.text(pl[0], p[1l], '# ' % j, ha='center') # label triangles
>>> plt.xlim(-0.5, 1.5); plt.ylim(-0.5, 1.5)
>>> plt.show()

88 Chapter 1. SciPy Tutorial

http://qhull.org/

SciPy Reference Guide, Release 0.16.0

15 . . .
|
1.0} 3 -
05| i
40
00} 0 2 -
~05 ' ' '
~05 0.0 0.5 1.0 15

The structure of the triangulation is encoded in the following way: the simplices attribute contains the indices of
the points in the point s array that make up the triangle. For instance:

>> i =1

>>> tri.simplices[i, :]

array ([3, 1, 0], dtype=int32)
>>> points[tri.simplices[i, :]]

array ([[1. , 1. 1,
[0., 1.1],
[0., 0.10

Moreover, neighboring triangles can also be found out:

>>> tri.neighbors([i]

array ([-1, 0, -1], dtype=int32)

What this tells us is that this triangle has triangle #0 as a neighbor, but no other neighbors. Moreover, it tells us that
neighbor 0 is opposite the vertex 1 of the triangle:

>>> points[tri.simplices([i, 1]]

array ([0. , 1.11)

Indeed, from the figure we see that this is the case.

Qhull can also perform tesselations to simplices also for higher-dimensional point sets (for instance, subdivision into
tetrahedra in 3-D).

Coplanar points

It is important to note that not all points necessarily appear as vertices of the triangulation, due to numerical precision
issues in forming the triangulation. Consider the above with a duplicated point:

>>> points = np.array([[O0O, O], [O, 11, [1, O], [1, 11, [1, 111)
>>> tri = Delaunay (points)

>>> np.unique (tri.simplices.ravel())

array ([0, 1, 2, 3], dtype=int32)

Observe that point #4, which is a duplicate, does not occur as a vertex of the triangulation. That this happened is
recorded:

1.12. Spatial data structures and algorithms (scipy.spatial) 89

SciPy Reference Guide, Release 0.16.0

>>> tri.coplanar
array ([[4, 0, 3]], dtype=int32)

This means that point 4 resides near triangle 0 and vertex 3, but is not included in the triangulation.

Note that such degeneracies can occur not only because of duplicated points, but also for more complicated geometrical
reasons, even in point sets that at first sight seem well-behaved.

However, Qhull has the “QJ” option, which instructs it to perturb the input data randomly until degeneracies are
resolved:

>>> tri = Delaunay (points, ghull_options="QJ Pp")
>>> points[tri.simplices]
array ([[[1, 11,

=
~
o

~ N~ 0~

~

~ 0~

~

PR OORFR ORREREO
<
P PR OR R ORREO

~

~

Two new triangles appeared. However, we see that they are degenerate and have zero area.

1.12.2 Convex hulls

Convex hull is the smallest convex object containing all points in a given point set.
These can be computed via the Qhull wrappers in scipy.spatial as follows:

>>> from scipy.spatial import ConvexHull
>>> points = np.random.rand (30, 2) # 30 random points in 2-D
>>> hull = ConvexHull (points)

The convex hull is represented as a set of N-1 dimensional simplices, which in 2-D means line segments. The storage
scheme is exactly the same as for the simplices in the Delaunay triangulation discussed above.

We can illustrate the above result:

>>> import matplotlib.pyplot as plt

>>> plt.plot (points[:,0], points[:,1], 'o")

>>> for simplex in hull.simplices:

>>> plt.plot (points[simplex, 0], points[simplex, 1], 'k-")
>>> plt.show ()

90 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

1.0

0.8}

04

02}

0.0
0.0

The same can be achieved with scipy.spatial.convex_hull_plot_2d.

1.12.3 Voronoi diagrams

A Voronoi diagram is a subdivision of the space into the nearest neighborhoods of a given set of points.

There are two ways to approach this object using scipy.spatial. First, one can use the KDTree to answer the
question “which of the points is closest to this one”, and define the regions that way:

>>> from scipy.spatial import KDTree

>>> points = np.array([([(o, 01, (0, 11, [0, 2], [, O, T[1, 11, [1, 2],
[2, 01, 12, 11, [2, 211)

>>> tree = KDTree (points)
>>> tree.query ([0.1, 0.117)
(0.14142135623730953, 0)

So the point (0.1, 0.1) belongs to region 0. In color:

>>> x = np.linspace(-0.5, 2.5, 31)

>>> y = np.linspace(-0.5, 2.5, 33)

>>> xx, yy = np.meshgrid(x, vy)

>>> xy = np.c_[xx.ravel(), yy.ravel()]

>>> import matplotlib.pyplot as plt

>>> plt.pcolor(x, y, tree.query(xy)[l].reshape (33, 31))
>>> plt.plot (points[:,0], points[:,1], 'ko'")

>>> plt.show ()

1.12. Spatial data structures and algorithms (scipy.spatial) 91

SciPy Reference Guide, Release 0.16.0

([
o
([o
! ! !
1.0 1.5 2.0 2.5

This does not, however, give the Voronoi diagram as a geometrical object.
The representation in terms of lines and points can be again obtained via the Qhull wrappers in scipy.spatial:

>>> from scipy.spatial import Voronoi

>>> vor = Voronoi (points)
>>> vor.vertices
array ([[0.5, 0.571,

[1.5, 0.5],

[0.5, 1.5]7,

[1.5, 1.511)

The Voronoi vertices denote the set of points forming the polygonal edges of the Voronoi regions. In this case, there
are 9 different regions:

>>> vor.regions
[[_lr O]/ [_17 l]/ [lr _17 O]I [31 _17 2]/ [_11 3}1 [_ll 2}7 [31 lr Or 2]! [21 _ll O]r

Negative value —1 again indicates a point at infinity. Indeed, only one of the regions, [3, 1, 0, 2], is bounded.
Note here that due to similar numerical precision issues as in Delaunay triangulation above, there may be fewer
Voronoi regions than input points.

The ridges (lines in 2-D) separating the regions are described as a similar collection of simplices as the convex hull
pieces:

>>> vor.ridge_vertices
[[711 O]/ [717 O]/ [711 lJI [711 lJI [O/ l}l [711 31! [711 2]! [21 3}, [711 3]! [711 2]/

These numbers indicate indices of the Voronoi vertices making up the line segments. —1 is again a point at infinity —
only four of the 12 lines is a bounded line segment while the others extend to infinity.

The Voronoi ridges are perpendicular to lines drawn between the input points. Which two points each ridge corre-
sponds to is also recorded:

>>> vor.ridge_points

array ([[0, 31,

14 l r

, 3

, 7
4

’

]
]V
1,
]

’

[
[
[
[
[

w o o O

92 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

~ 0~

~

~

~

SO N oo U1 o ol
~

~N P P d N
~

], dtype=int32)

~

This information, taken together, is enough to construct the full diagram.
We can plot it as follows. First the points and the Voronoi vertices:

>>> plt.plot (points[:,0], points[:,1], 'o'")
>>> plt.plot (vor.vertices[:,0], vor.vertices[:,1], 'x'")
>>> plt.xlim(-1, 3); plt.ylim(-1, 3)

Plotting the finite line segments goes as for the convex hull, but now we have to guard for the infinite edges:

>>> for simplex in vor.ridge_vertices:

>>> simplex = np.asarray (simplex)
>>> if np.all(simplex >= 0):
>>> plt.plot (vor.vertices[simplex, 0], vor.vertices[simplex,1], 'k-")

The ridges extending to infinity require a bit more care:

>>> center = points.mean (axis=0)
>>> for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices):

>>> simplex = np.asarray (simplex)
>>> if np.any(simplex < 0):
>>> i = simplex[simplex >= 0][0] # finite end Voronoi vertex
>>> t = points[pointidx[1]] - points[pointidx[0]] # tangent
>>> t /= np.linalg.norm(t)
>>> n = np.array ([-t[1], t[0]]) # normal
>>> midpoint = points[pointidx].mean (axis=0)
>>> far_point = vor.vertices[i] + np.sign(np.dot (midpoint - center, n)) » n = 100
>>> plt.plot ([vor.vertices[i,0], far_point[0]],
. [vor.vertices[i,1], far_point[1]], 'k—-")
>>> plt.show ()

3.0 T T T T T I I

2.5F | | .

| |

20} ® | ° | ° .

I5f— = = = = — = — - -

1.0F o Y _

05l = = = = — — g 4 - — — — -

0.0 | ° I () I () .

| |
—-05}F I I s
_1.0 Il Il 1 Il 1 Il Il
-1.0 -05 00 0.5 1.0 1.5 2.0 2.5 3.0

1.12. Spatial data structures and algorithms (scipy.spatial) 93

SciPy Reference Guide, Release 0.16.0

This plot can also be created using scipy.spatial.voronoi_plot_2d.

1.13 Statistics (scipy.stats)

1.13.1 Introduction

In this tutorial we discuss many, but certainly not all, features of scipy.stats. The intention here is to provide a
user with a working knowledge of this package. We refer to the reference manual for further details.

Note: This documentation is work in progress.

1.13.2 Random Variables

There are two general distribution classes that have been implemented for encapsulating continuous random variables
and discrete random variables . Over 80 continuous random variables (RVs) and 10 discrete random variables have
been implemented using these classes. Besides this, new routines and distributions can easily added by the end user.
(If you create one, please contribute it).

All of the statistics functions are located in the sub-package scipy.stats and a fairly complete listing of these
functions can be obtained using info (stats) . The list of the random variables available can also be obtained from
the docstring for the stats sub-package.

In the discussion below we mostly focus on continuous RVs. Nearly all applies to discrete variables also, but we point
out some differences here: Specific Points for Discrete Distributions.

Getting Help

First of all, all distributions are accompanied with help functions. To obtain just some basic information we can call

>>> from scipy import stats
>>> from scipy.stats import norm
>>> print norm.__doc___

To find the support, i.e., upper and lower bound of the distribution, call:

°

>>> print 'bounds of distribution lower: , upper: ' % (norm.a,norm.b)
bounds of distribution lower: —-inf, upper: inf

We can list all methods and properties of the distribution with dir (norm). As it turns out, some of the methods
are private methods although they are not named as such (their name does not start with a leading underscore), for
example veccdf, are only available for internal calculation (those methods will give warnings when one tries to use
them, and will be removed at some point).

To obtain the real main methods, we list the methods of the frozen distribution. (We explain the meaning of a frozen
distribution below).

>>> rv = norm/()

>>> dir (rv) # reformatted
['"_class__ ', '__delattr_ ', '__dict__', '__doc__', '__getattribute__ "',
' hash__ ', '__init_ "', '__module__ ', '__new__ ', '_ _reduce__ ', '_ reduce_ex__ ',
' _repr__ ', '__setattr ', '_str_ ', '__weakref__', 'args', 'cdf', 'dist',

'entropy', 'isf', 'kwds', 'moment', 'pdf', 'pmf', 'ppf', 'rvs', 'sf', 'stats']

Finally, we can obtain the list of available distribution through introspection:

94 Chapter 1. SciPy Tutorial

http://docs.scipy.org/doc/scipy/reference/stats.html

SciPy Reference Guide, Release 0.16.0

>>> import warnings
>>> warnings.simplefilter ('ignore', DeprecationWarning)

>>> dist_continu = [d for d in dir(stats) if
. isinstance (getattr(stats,d), stats.rv_continuous)]
>>> dist_discrete = [d for d in dir(stats) if

. isinstance (getattr(stats,d), stats.rv_discrete)]
>>> print 'number of continuous distributions:', len(dist_continu)
number of continuous distributions: 84

>>> print 'number of discrete distributions: ', len(dist_discrete)
number of discrete distributions: 12

Common Methods

The main public methods for continuous RVs are:
* rvs: Random Variates
* pdf: Probability Density Function
¢ cdf: Cumulative Distribution Function
e sf: Survival Function (1-CDF)
* ppf: Percent Point Function (Inverse of CDF)
e isf: Inverse Survival Function (Inverse of SF)
e stats: Return mean, variance, (Fisher’s) skew, or (Fisher’s) kurtosis
* moment: non-central moments of the distribution
Let’s take a normal RV as an example.

>>> norm.cdf (0)
0.5

To compute the cdf at a number of points, we can pass a list or a numpy array.

>>> norm.cdf ([-1., O, 11)

array ([0.15865525, 0.5 , 0.841344757)
>>> import numpy as np

>>> norm.cdf (np.array([-1., 0, 11))

array ([0.15865525, 0.5 , 0.841344757)

Thus, the basic methods such as pdf, cdf, and so on are vectorized with np.vectorize.
Other generally useful methods are supported too:

>>> norm.mean (), norm.std(), norm.var()
(0.0, 1.0, 1.0)

>>> norm.stats (moments = "mv")

(array (0.0), array(1.0))

To find the median of a distribution we can use the percent point function pp £, which is the inverse of the cdf:

>>> norm.ppf (0.5)
0.0

To generate a sequence of random variates, use the size keyword argument:

>>> norm.rvs (size=5)
array ([-0.35687759, 1.34347647, -0.11710531, -1.00725181, -0.51275702])

1.13. Statistics (scipy.stats) 95

SciPy Reference Guide, Release 0.16.0

Don’t think that norm. rvs (5) generates 5 variates:

>>> norm.rvs (5)
7.131624370075814

Here, 5 with no keyword is being interpreted as the first possible keyword argument, 1oc, which is the first of a pair
of keyword arguments taken by all continuous distributions. This brings us to the topic of the next subsection.

Shifting and Scaling
All continuous distributions take 1oc and scale as keyword parameters to adjust the location and scale of the
distribution, e.g. for the standard normal distribution the location is the mean and the scale is the standard deviation.

>>> norm.stats(loc = 3, scale = 4, moments = "mv")
(array (3.0), array(16.0))

In many cases the standardized distribution for a random variable X is obtained through the transformation (X -
loc) / scale. The default values are loc = 0 and scale = 1.

Smart use of 1oc and scale can help modify the standard distributions in many ways. To illustrate the scaling
further, the cdf of an exponentially distributed RV with mean 1/ is given by

F(z) =1—exp(—Ax)

By applying the scaling rule above, it can be seen that by taking scale = 1./lambda we get the proper scale.

>>> from scipy.stats import expon
>>> expon.mean (scale=3.)
3.0

Note: Distributions that take shape parameters may require more than simple application of 1oc and/or scale to
achieve the desired form. For example, the distribution of 2-D vector lengths given a constant vector of length R

perturbed by independent N(0, o2) deviations in each component is rice(R /o, scale= o). The first argument is a shape
parameter that needs to be scaled along with z.

The uniform distribution is also interesting:

>>> from scipy.stats import uniform
>>> uniform.cdf ([0, 1, 2, 3, 4, 51, loc = 1, scale = 4)
array([0. , 0. , 0.25, 0.5, 0.75, 1. 1)

Finally, recall from the previous paragraph that we are left with the problem of the meaning of norm.rvs (5). As it
turns out, calling a distribution like this, the first argument, i.e., the 5, gets passed to set the 1oc parameter. Let’s see:

>>> np.mean (norm.rvs (5, size=500))
4.983550784784704

Thus, to explain the output of the example of the last section: norm.rvs (5) generates a single normally distributed
random variate with mean 1oc=5, because of the default size=1.

We recommend that you set 1oc and scale parameters explicitly, by passing the values as keywords rather than as
arguments. Repetition can be minimized when calling more than one method of a given RV by using the technique of
Freezing a Distribution, as explained below.

96 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Shape Parameters

While a general continuous random variable can be shifted and scaled with the 1oc and scale parameters, some
distributions require additional shape parameters. For instance, the gamma distribution, with density

)\()\x)a—l -z

Y(z,a) = We ,

requires the shape parameter a. Observe that setting A\ can be obtained by setting the scale keyword to 1/\.

Let’s check the number and name of the shape parameters of the gamma distribution. (We know from the above that
this should be 1.)

>>> from scipy.stats import gamma
>>> gamma.numargs

>>> gamma.shapes

Now we set the value of the shape variable to 1 to obtain the exponential distribution, so that we compare easily
whether we get the results we expect.

>>> gamma(l, scale=2.).stats (moments="mv")
(array (2.0), array(4.0))

Notice that we can also specify shape parameters as keywords:

>>> gamma (a=1, scale=2.).stats (moments="mv")
(array (2.0), array(4.0))

Freezing a Distribution

Passing the 1oc and scale keywords time and again can become quite bothersome. The concept of freezing a RV is
used to solve such problems.

>>> rv = gamma (l, scale=2.)

By using rv we no longer have to include the scale or the shape parameters anymore. Thus, distributions can be used

in one of two ways, either by passing all distribution parameters to each method call (such as we did earlier) or by
freezing the parameters for the instance of the distribution. Let us check this:

>>> rv.mean (), rv.std()
(2.0, 2.0)

This is indeed what we should get.

Broadcasting

The basic methods pdf and so on satisfy the usual numpy broadcasting rules. For example, we can calculate the
critical values for the upper tail of the t distribution for different probabilites and degrees of freedom.

>>> stats.t.isf([0.1, 0.05, 0.011, [[10], [1111)
array ([[1.37218364, 1.81246112, 2.7637694¢6],
[1.36343032, 1.79588482, 2.71807918]1])

Here, the first row are the critical values for 10 degrees of freedom and the second row for 11 degrees of freedom
(d.o.f.). Thus, the broadcasting rules give the same result of calling i s f twice:

1.13. Statistics (scipy.stats) 97

SciPy Reference Guide, Release 0.16.0

>>> stats.t.isf([0.1, 0.05, 0.01], 10)
array ([1.37218364, 1.81246112, 2.76376946])
>>> stats.t.isf([0.1, 0.05, 0.01], 11)
array ([1.36343032, 1.79588482, 2.71807918])

If the array with probabilities, i.e, [0.1, 0.05, 0.01] and the array of degrees of freedom i.e., [10, 11,
1217, have the same array shape, then element wise matching is used. As an example, we can obtain the 10% tail for
10 d.o.f., the 5% tail for 11 d.o.f. and the 1% tail for 12 d.o.f. by calling

>>> stats.t.isf([0.1, 0.05, 0.011, [10, 11, 121)
array ([1.37218364, 1.79588482, 2.68099799])

Specific Points for Discrete Distributions

Discrete distribution have mostly the same basic methods as the continuous distributions. However pdf is replaced
the probability mass function pmf, no estimation methods, such as fit, are available, and scale is not a valid keyword
parameter. The location parameter, keyword 1oc can still be used to shift the distribution.

The computation of the cdf requires some extra attention. In the case of continuous distribution the cumulative distri-
bution function is in most standard cases strictly monotonic increasing in the bounds (a,b) and has therefore a unique
inverse. The cdf of a discrete distribution, however, is a step function, hence the inverse cdf, i.e., the percent point
function, requires a different definition:

ppf(q) = min{x : cdf(x) >= g, x integer}

For further info, see the docs here.
We can look at the hypergeometric distribution as an example

>>> from scipy.stats import hypergeom
>>> [M, n, N] = [20, 7, 12]

If we use the cdf at some integer points and then evaluate the ppf at those cdf values, we get the initial integers back,
for example

>>> x = np.arange (4) 2

>>> x

array ([0, 2, 4, 61)

>>> prb = hypergeom.cdf (x, M, n, N)

>>> prb

array ([0.0001031991744066, 0.0521155830753351, 0.6083591331269301,
0.9897832817337386])

>>> hypergeom.ppf (prb, M, n, N)

array ([0., 2., 4., 6.])

If we use values that are not at the kinks of the cdf step function, we get the next higher integer back:

>>> hypergeom.ppf (prb + 1le-8, M, n, N)
array ([1., 3., 5., 7.1)
>>> hypergeom.ppf (prb - 1le-8, M, n, N)
array ([0., 2., 4., 6.])

Fitting Distributions

The main additional methods of the not frozen distribution are related to the estimation of distribution parameters:

98 Chapter 1. SciPy Tutorial

http://docs.scipy.org/doc/scipy/reference/tutorial/stats/discrete.html#percent-point-function-inverse-cdf

SciPy Reference Guide, Release 0.16.0

* fit: maximum likelihood estimation of distribution parameters, including location
and scale

» fit_loc_scale: estimation of location and scale when shape parameters are given
* nnlf: negative log likelihood function

* expect: Calculate the expectation of a function against the pdf or pmf

Performance Issues and Cautionary Remarks

The performance of the individual methods, in terms of speed, varies widely by distribution and method. The results of
a method are obtained in one of two ways: either by explicit calculation, or by a generic algorithm that is independent
of the specific distribution.

Explicit calculation, on the one hand, requires that the method is directly specified for the given distribution, either
through analytic formulas or through special functions in scipy.special or numpy.random for rvs. These are
usually relatively fast calculations.

The generic methods, on the other hand, are used if the distribution does not specify any explicit calcula-
tion. To define a distribution, only one of pdf or cdf is necessary; all other methods can be derived using nu-
meric integration and root finding. However, these indirect methods can be very slow. As an example, rgh =
stats.gausshyper.rvs (0.5, 2, 2, 2, size=100) creates random variables in a very indirect way and
takes about 19 seconds for 100 random variables on my computer, while one million random variables from the
standard normal or from the t distribution take just above one second.

Remaining Issues

The distributions in scipy . stats have recently been corrected and improved and gained a considerable test suite,
however a few issues remain:

« the distributions have been tested over some range of parameters, however in some corner ranges, a few incorrect
results may remain.

¢ the maximum likelihood estimation in fif does not work with default starting parameters for all distributions
and the user needs to supply good starting parameters. Also, for some distribution using a maximum likelihood
estimator might inherently not be the best choice.

1.13.3 Building Specific Distributions

The next examples shows how to build your own distributions. Further examples show the usage of the distributions
and some statistical tests.

Making a Continuous Distribution, i.e., Subclassing rv_continuous

Making continuous distributions is fairly simple.

>>> from scipy import stats
>>> class deterministic_gen (stats.rv_continuous):
def _cdf (self, x):
return np.where(x < 0, 0., 1.)
def _stats(self):
return 0., 0., 0., O.

1.13. Statistics (scipy.stats) 99

SciPy Reference Guide, Release 0.16.0

>>> deterministic = deterministic_gen (name="deterministic™)
>>> deterministic.cdf (np.arange (-3, 3, 0.5))
array ([0., 0., ©0., 0., 0., O., 1., 1., 1., 1., 1., 1.1)

Interestingly, the pdf is now computed automatically:

>>> deterministic.pdf (np.arange (-3, 3, 0.5))

array ([0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00,
5.83333333e+04, 4.16333634e-12,
4.16333634e-12, 4.16333634e-12,

.00000000e+00,
.00000000e+00,
.16333634e-12,
.16333634e-1271)

Do O O

Be aware of the performance issues mentions in Performance Issues and Cautionary Remarks. The computation of
unspecified common methods can become very slow, since only general methods are called which, by their very nature,
cannot use any specific information about the distribution. Thus, as a cautionary example:

>>> from scipy.integrate import quad
>>> quad(deterministic.pdf, -le-1, le-1)
(4.163336342344337e-13, 0.0)

But this is not correct: the integral over this pdf should be 1. Let’s make the integration interval smaller:

>>> quad(deterministic.pdf, -le-3, le-3) # warning removed
(1.000076872229173, 0.0010625571718182458)

This looks better. However, the problem originated from the fact that the pdf is not specified in the class definition of
the deterministic distribution.

Subclassing rv_discrete

In the following we use stats.rv_discrete to generate a discrete distribution that has the probabilities of the
truncated normal for the intervals centered around the integers.

General Info

From the docstring of rv_discrete, i.e.,

>>> from scipy.stats import rv_discrete
>>> help (rv_discrete)

we learn that:

“You can construct an aribtrary discrete rv where P{X=xk} = pk by passing to the rv_discrete initialization
method (through the values= keyword) a tuple of sequences (xk, pk) which describes only those values of X
(xk) that occur with nonzero probability (pk).”

Next to this, there are some further requirements for this approach to work:
* The keyword name is required.
* The support points of the distribution xk have to be integers.
* The number of significant digits (decimals) needs to be specified.

In fact, if the last two requirements are not satisfied an exception may be raised or the resulting numbers may be
incorrect.

An Example

Let’s do the work. First

100 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> npoints = 20 # number of integer support points of the distribution minus 1
>>> npointsh = npoints / 2

>>> npointsf = float (npoints)

>>> nbound = 4 # bounds for the truncated normal

>>> normbound = (l1+1/npointsf) * nbound # actual bounds of truncated normal

>>> grid = np.arange (-npointsh, npointsh+2, 1) # integer grid

>>> gridlimitsnorm = (grid-0.5) / npointsh * nbound # bin limits for the truncnorm
>>> gridlimits = grid - 0.5 # used later in the analysis

>>> grid = grid[:-1]

>>> probs = np.diff (stats.truncnorm.cdf (gridlimitsnorm, -normbound, normbound))
>>> gridint = grid

And finally we can subclass rv_discrete:

>>> normdiscrete = stats.rv_discrete(values=(gridint,
np.round (probs, decimals=7)), name='normdiscrete')

Now that we have defined the distribution, we have access to all common methods of discrete distributions.

>>> print 'mean = $6.4f, variance = $%6.4f, skew = $6.4f, kurtosis = $6.4f'% \
Ce. normdiscrete.stats (moments = 'mvsk"')
mean = —-0.0000, wvariance = 6.3302, skew = 0.0000, kurtosis = -0.0076

>>> nd_std = np.sqgrt (normdiscrete.stats (moments='v"'))

Testing the Implementation
Let’s generate a random sample and compare observed frequencies with the probabilities.

>>> n_sample = 500

>>> np.random.seed (87655678) # fix the seed for replicability
>>> rvs = normdiscrete.rvs(size=n_sample)

>>> rvsnd = rvs

>>> f, 1 = np.histogram(rvs, bins=gridlimits)

>>> sfreq = np.vstack([gridint, £, probsxn_sample]).T

>>> print sfreqg

[[-1.00000000e+01 0.00000000e+00 2.95019349e-02]
[=9.00000000e+00 0.00000000e+00 1.32294142e-01]
[-8.00000000e+00 0.00000000e+00 5.06497902e-01]
[-7.00000000e+00 2.00000000e+00 1.65568919e+00]
[-6.00000000e+00 1.00000000e+00 4.62125309e+00]
[-5.00000000e+00 9.00000000e+00 1.10137298e+01]
[-4.00000000e+00 2.60000000e+01 2.24137683e+01]
[-3.00000000e+00 3.70000000e+01 3.89503370e+01]
[-2.00000000e+00 5.10000000e+01 5.78004747e+01]
[-1.00000000e+00 7.10000000e+01 7.32455414e+01]
[0.00000000e+00 7.40000000e+01 7.92618251e+01]
[1.00000000e+00 8.90000000e+01 7.32455414e+01]
[2.00000000e+00 5.50000000e+01 5.78004747e+01]
[3.00000000e+00 5.00000000e+01 3.89503370e+01]
[4.00000000e+00 1.70000000e+01 2.24137683e+01]
[5.00000000e+00 1.10000000e+01 1.10137298e+01]
[6.00000000e+00 4.00000000e+00 4.62125309e+00]
[7.00000000e+00 3.00000000e+00 1.65568919e+00]
[8.00000000e+00 0.00000000e+00 5.06497902e-01]
[9.00000000e+00 0.00000000e+00 1.32294142e-01]
[1.00000000e+01 0.00000000e+00 2.95019349e-02]]

1.13. Statistics (scipy.stats) 101

SciPy Reference Guide, Release 0.16.0

Frequency and Probability of normdiscrete
0' 1 8 I I I I I I I I I I I I I I I I I ! ! !

0.16 |- B true |
0.14 L - sample |

0.12 |- 1
0.10 |- e
0.08 - 1
0.06 |- e
0.04 e
0.02 - 1
0.00

Frequency

-109-8-7-6-5-4-3-2-10 1234567 8910

L0 Cumulative Frequency and CDF of normdiscrete
. I I I I I I I I I I I

0.8

0.6

cdf

0.4

0.2

0.0
-109-8-7-6-5-4-3-2-10 1234567 8910

Next, we can test, whether our sample was generated by our normdiscrete distribution. This also verifies whether the
random numbers are generated correctly.

The chisquare test requires that there are a minimum number of observations in each bin. We combine the tail bins
into larger bins so that they contain enough observations.

>>> f2 = np.hstack ([f[:5] .sum(), £[5:-5], f£[-5:]1.sum()])

>>> p2 = np.hstack ([probs[:5].sum(), probs[5:-5], probs[-5:].sum()])

>>> ch2, pval = stats.chisquare(f2, p2+n_sample)

>>> print 'chisquare for normdiscrete: chi2 = pvalue = ' % (ch2, pval)

chisquare for normdiscrete: chi2 = 12.466 pvalue = 0.4090

The pvalue in this case is high, so we can be quite confident that our random sample was actually generated by the
distribution.

102 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

1.13.4 Analysing One Sample

First, we create some random variables. We set a seed so that in each run we get identical results to look at. As an
example we take a sample from the Student t distribution:

>>> np.random.seed (282629734)
>>> x = stats.t.rvs (10, size=1000)

Here, we set the required shape parameter of the t distribution, which in statistics corresponds to the degrees of
freedom, to 10. Using size=1000 means that our sample consists of 1000 independently drawn (pseudo) random
numbers. Since we did not specify the keyword arguments /oc and scale, those are set to their default values zero and
one.

Descriptive Statistics

X is a numpy array, and we have direct access to all array methods, e.g.

>>> print x.max (), x.min() # equivalent to np.max(x), np.min(x)
5.26327732981 -3.78975572422

>>> print x.mean(), x.var() # equivalent to np.mean(x), np.var(x)
0.0140610663985 1.28899386208

How do the some sample properties compare to their theoretical counterparts?

>>> m, v, s, k = stats.t.stats (10, moments='mvsk')
>>> n, (smin, smax), sm, sv, ss, sk = stats.describe (x)

>>> print 'distribution:',

distribution:

>>> sstr = 'mean = , variance = , skew = , kurtosis = !
>>> print sstr % (m, v, s ,k)

mean = 0.0000, variance = 1.2500, skew = 0.0000, kurtosis = 1.0000

>>> print 'sample: ',

sample:

>>> print sstr % (sm, sv, ss, sk)

mean = 0.0141, variance = 1.2903, skew = 0.2165, kurtosis = 1.0556

Note: stats.describe uses the unbiased estimator for the variance, while np.var is the biased estimator.

For our sample the sample statistics differ a by a small amount from their theoretical counterparts.

T-test and KS-test
We can use the t-test to test whether the mean of our sample differs in a statistcally significant way from the theoretical
expectation.

>>> print 't-statistic = pvalue = ' % stats.ttest_lsamp(x, m)
t-statistic = 0.391 pvalue = 0.6955

The pvalue is 0.7, this means that with an alpha error of, for example, 10%, we cannot reject the hypothesis that the
sample mean is equal to zero, the expectation of the standard t-distribution.

As an exercise, we can calculate our ttest also directly without using the provided function, which should give us the
same answer, and so it does:

>>> tt = (sm-m)/np.sqgrt(sv/float (n)) # t-statistic for mean
>>> pval = stats.t.sf(np.abs(tt), n-1)*2 # two-sided pvalue = Prob(abs(t)>tt)

1.13. Statistics (scipy.stats) 103

SciPy Reference Guide, Release 0.16.0

>>> print 't-statistic = pvalue = "% (tt, pval)
t-statistic = 0.391 pvalue = 0.6955

The Kolmogorov-Smirnov test can be used to test the hypothesis that the sample comes from the standard t-distribution

>>> print 'KS-statistic D = pvalue = ' % stats.kstest(x, 't', (10,))
KS-statistic D = 0.016 pvalue = 0.9606

Again the p-value is high enough that we cannot reject the hypothesis that the random sample really is distributed
according to the t-distribution. In real applications, we don’t know what the underlying distribution is. If we perform
the Kolmogorov-Smirnov test of our sample against the standard normal distribution, then we also cannot reject the
hypothesis that our sample was generated by the normal distribution given that in this example the p-value is almost
40%.

>>> print 'KS-statistic D = pvalue = ' % stats.kstest (x, 'norm'")
KS-statistic D = 0.028 pvalue = 0.3949

However, the standard normal distribution has a variance of 1, while our sample has a variance of 1.29. If we stan-
dardize our sample and test it against the normal distribution, then the p-value is again large enough that we cannot
reject the hypothesis that the sample came form the normal distribution.

>>> d, pval = stats.kstest((x-x.mean())/x.std(), 'norm')
>>> print 'KS-statistic D = pvalue = "% (d, pval)
KS-statistic D = 0.032 pvalue = 0.2402

Note: The Kolmogorov-Smirnov test assumes that we test against a distribution with given parameters, since in the
last case we estimated mean and variance, this assumption is violated, and the distribution of the test statistic on which
the p-value is based, is not correct.

Tails of the distribution

Finally, we can check the upper tail of the distribution. We can use the percent point function ppf, which is the inverse
of the cdf function, to obtain the critical values, or, more directly, we can use the inverse of the survival function

>>> crit0l, crit05, critl0 = stats.t.ppf([1-0.01, 1-0.05, 1-0.10], 10)

>>> print 'critical values from ppf at 1%%, 5 and 10 '% (crit0l, crito05,

critical values from ppf at 1%, 5% and 10% 2.7638 1.8125 1.3722

critl0

>>> print 'critical values from isf at 1%%, 5 and 10 'S tuple(stats.t.isf ([0.01

critical values from isf at 1%, $ and 10% 2.7638 1.8125 1.3722

>>> freqg0l = np.sum(x>crit0l) / float(n) » 100

>>> freg05 = np.sum(x>crit05) / float(n) = 100

>>> freql0 = np.sum(x>critl0) / float(n) * 100

>>> print 'sample —-frequency at 1%%, 5 and 10 tail '% (freg0l, freq05,
sample %-frequency at 1%, 5% and 10% tail 1.4000 5.8000 10.5000

In all three cases, our sample has more weight in the top tail than the underlying distribution. We can briefly check
a larger sample to see if we get a closer match. In this case the empirical frequency is quite close to the theoretical
probability, but if we repeat this several times the fluctuations are still pretty large.

>>> freq051 = np.sum(stats.t.rvs (10, size=10000) > crit05) / 10000.0 = 100
>>> print 'larger sample —-frequency at 5 tail '$ freq051

)

larger sample %$-frequency at 5% tail 4.8000

We can also compare it with the tail of the normal distribution, which has less weight in the tails:

104 Chapter 1. SciPy Tutorial

freqlO

SciPy Reference Guide, Release 0.16.0

oe
-

>>> print 'tail prob. of normal at 1%%, 5 and 10 !
.. tuple (stats.norm.sf ([crit0l, crit05, critl0])+100)
tail prob. of normal at 1%, 5% and 10% 0.2857 3.4957 8.5003

The chisquare test can be used to test, whether for a finite number of bins, the observed frequencies differ significantly
from the probabilites of the hypothesized distribution.

>>> quantiles = [0.0, 0.01, 0.05, 0.1, 1-0.10, 1-0.05, 1-0.01, 1.0]
>>> crit = stats.t.ppf(quantiles, 10)
>>> print crit

[-Inf -2.76376946 -1.81246112 -1.37218364 1.37218364 1.81246112
2.76376946 Inf]

>>> n_sample = x.size

>>> freqcount = np.histogram(x, bins=crit) [0]

>>> tprob = np.diff (quantiles)
>>> nprob = np.diff (stats.norm.cdf (crit))

>>> tch, tpval = stats.chisquare (freqcount, tprobxn_sample)

>>> nch, npval = stats.chisquare (fregcount, nprobxn_sample)

>>> print 'chisquare for t: chiz = pvalue = ' % (tch, tpval)
chisquare for t: chi2 = 2.300 pvalue = 0.8901

>>> print 'chisquare for normal: chi2 = pvalue = ' % (nch, npval)

chisquare for normal: chi2 = 64.605 pvalue = 0.0000

We see that the standard normal distribution is clearly rejected while the standard t-distribution cannot be rejected.
Since the variance of our sample differs from both standard distribution, we can again redo the test taking the estimate
for scale and location into account.

The fit method of the distributions can be used to estimate the parameters of the distribution, and the test is repeated
using probabilites of the estimated distribution.

>>> tdof, tloc, tscale = stats.t.fit (x)

>>> nloc, nscale = stats.norm.fit (x)

>>> tprob = np.diff (stats.t.cdf(crit, tdof, loc=tloc, scale=tscale))
>>> nprob = np.diff (stats.norm.cdf (crit, loc=nloc, scale=nscale))

>>> tch, tpval = stats.chisquare (freqcount, tprobxn_sample)

>>> nch, npval = stats.chisquare (fregcount, nprobxn_sample)

>>> print 'chisquare for t: chi2 = pvalue = ' % (tch, tpval)
chisquare for t: chi2 = 1.577 pvalue = 0.9542

>>> print 'chisquare for normal: chi2 = pvalue = ' % (nch, npval)

chisquare for normal: chi2 = 11.084 pvalue = 0.0858
Taking account of the estimated parameters, we can still reject the hypothesis that our sample came from a normal

distribution (at the 5% level), but again, with a p-value of 0.95, we cannot reject the t distribution.

Special tests for normal distributions

Since the normal distribution is the most common distribution in statistics, there are several additional functions
available to test whether a sample could have been drawn from a normal distribution

First we can test if skew and kurtosis of our sample differ significantly from those of a normal distribution:

>>> print 'normal skewtest teststat = pvalue = ' % stats.skewtest (x)

normal skewtest teststat = 2.785 pvalue = 0.0054

>>> print 'normal kurtosistest teststat = pvalue = ' % stats.kurtosistest (x)
normal kurtosistest teststat = 4.757 pvalue = 0.0000

These two tests are combined in the normality test

1.13. Statistics (scipy.stats) 105

SciPy Reference Guide, Release 0.16.0

o

>>> print 'normaltest teststat = pvalue = ' % stats.normaltest (x)
normaltest teststat = 30.379 pvalue = 0.0000

In all three tests the p-values are very low and we can reject the hypothesis that the our sample has skew and kurtosis
of the normal distribution.

Since skew and kurtosis of our sample are based on central moments, we get exactly the same results if we test the
standardized sample:

oe

>>> print 'normaltest teststat = pvalue = \
Ce. stats.normaltest ((x—-x.mean())/x.std())
normaltest teststat = 30.379 pvalue = 0.0000

Because normality is rejected so strongly, we can check whether the normaltest gives reasonable results for other
cases:

>>> print 'normaltest teststat = pvalue = ' % stats.normaltest (stats.t.rvs (10, size=100))
normaltest teststat = 4.698 pvalue = 0.0955
>>> print 'normaltest teststat = pvalue = ' % stats.normaltest (stats.norm.rvs (size=1000))
normaltest teststat = 0.613 pvalue = 0.7361

When testing for normality of a small sample of t-distributed observations and a large sample of normal distributed
observation, then in neither case can we reject the null hypothesis that the sample comes from a normal distribution.
In the first case this is because the test is not powerful enough to distinguish a t and a normally distributed random
variable in a small sample.

1.13.5 Comparing two samples

In the following, we are given two samples, which can come either from the same or from different distribution, and
we want to test whether these samples have the same statistical properties.

Comparing means

Test with sample with identical means:

>>> rvsl = stats.norm.rvs(loc=5, scale=10, size=500)
>>> rvs2 = stats.norm.rvs(loc=5, scale=10, size=500)
>>> stats.ttest_ind(rvsl, rvs2)
(-0.54890361750888583, 0.5831943748663857)

Test with sample with different means:

>>> rvs3 = stats.norm.rvs (loc=8, scale=10, size=500)
>>> stats.ttest_ind(rvsl, rvs3)
(-4.5334142901750321, 6.507128186505895e-006)

Kolmogorov-Smirnov test for two samples ks_2samp
For the example where both samples are drawn from the same distribution, we cannot reject the null hypothesis since
the pvalue is high

>>> stats.ks_2samp (rvsl, rvs2)
(0.025999999999999995, 0.99541195173064878)

In the second example, with different location, i.e. means, we can reject the null hypothesis since the pvalue is below
1%

106 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>>

stats.ks_2samp (rvsl, rvs3)

(0.11399999999999999, 0.0027132103661283141)

1.13.6 Kernel Density Estimation

A common task in statistics is to estimate the probability density function (PDF) of a random variable from a set
of data samples. This task is called density estimation. The most well-known tool to do this is the histogram. A
histogram is a useful tool for visualization (mainly because everyone understands it), but doesn’t use the available data
very efficiently. Kernel density estimation (KDE) is a more efficient tool for the same task. The gaussian_kde
estimator can be used to estimate the PDF of univariate as well as multivariate data. It works best if the data is
unimodal.

Univariate estimation

We start with a minimal amount of data in order to see how gaussian_kde works, and what the different options
for bandwidth selection do. The data sampled from the PDF is show as blue dashes at the bottom of the figure (this is

called a rug plot):
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> x1 = np.array([-7, -5, 1, 4, 5], dtype=np.float)
>>> kdel = stats.gaussian_kde (x1)
>>> kde2 = stats.gaussian_kde (x1l, bw_method='silverman')
>>> fig = plt.figure()
>>> ax = fig.add_subplot (111)
>>> ax.plot(x1l, np.zeros(xl.shape), 'b+', ms=20) # rug plot
>>> x_eval = np.linspace(-10, 10, num=200)
>>> ax.plot (x_eval, kdel(x_eval), 'k-', label="Scott's Rule")
>>> ax.plot (x_eval, kdel(x_eval), 'r-', label="Silverman's Rule")
>>> plt.show ()
0.06
0.05
0.04
0.03
0.02
0.01} —
0.00 | | C | |

-10 -5 0 5 10

1.13. Statistics (scipy.stats)

107

SciPy Reference Guide, Release 0.16.0

We see that there is very little difference between Scott’s Rule and Silverman’s Rule, and that the bandwidth selection
with a limited amount of data is probably a bit too wide. We can define our own bandwidth function to get a less
smoothed out result.

>>> def my_kde_bandwidth (obj, fac=1./5):
"""We use Scott's Rule, multiplied by a constant factor."""
return np.power (obj.n, -1./(obj.d+4)) = fac

>>> fig = plt.figure()
>>> ax = fig.add_subplot (111)

>>> ax.plot (xl, np.zeros(xl.shape), 'b+', ms=20) # rug plot
>>> kde3 = stats.gaussian_kde (x1l, bw_method=my_kde_bandwidth)
>>> ax.plot (x_eval, kde3(x_eval), 'g-', label="With smaller BW")

>>> plt.show()

0.18 T T T

0.16 - e
0.14 —
0.12 —
0.10 - —
0.08 - —
0.06 - e
0.04 —
0.02 —

0.00 | | ||
-10 -5 0 5 10

We see that if we set bandwidth to be very narrow, the obtained estimate for the probability density function (PDF) is
simply the sum of Gaussians around each data point.

We now take a more realistic example, and look at the difference between the two available bandwidth selection rules.
Those rules are known to work well for (close to) normal distributions, but even for unimodal distributions that are
quite strongly non-normal they work reasonably well. As a non-normal distribution we take a Student’s T distribution
with 5 degrees of freedom.

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

np.random.seed (12456)

x1 = np.random.normal (size=200) # random data, normal distribution
xs = np.linspace(xl.min()-1, xl.max()+1, 200)

kdel = stats.gaussian_kde (x1)

kde2 = stats.gaussian_kde (x1, bw_method='silverman')

fig = plt.figure(figsize=(8, 6))

108 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

axl = fig.add_subplot (211)

axl.plot (x1, np.zeros(xl.shape), 'b+', ms=12) # rug plot
axl.plot (xs, kdel(xs), 'k-', label="Scott's Rule")
axl.plot (xs, kde2(xs), 'b-', label="Silverman's Rule")
axl.plot (xs, stats.norm.pdf(xs), 'r—--', label="True PDF")

axl.set_xlabel ('x")

axl.set_ylabel ('Density")

axl.set_title("Normal (top) and Student's TS$_{df=5}$ (bottom) distributions")
axl.legend(loc=1)

x2 = stats.t.rvs (5, size=200) # random data, T distribution
Xs = np.linspace(x2.min() - 1, x2.max() + 1, 200)
kde3 = stats.gaussian_kde (x2)

kded4 = stats.gaussian_kde (x2, bw_method='silverman')

ax2 = fig.add_subplot (212)

ax2.plot (x2, np.zeros(x2.shape), 'b+', ms=12) # rug plot
ax2.plot (xs, kde3(xs), 'k-', label="Scott's Rule")
ax2.plot (xs, kded(xs), 'b-', label="Silverman's Rule™)
ax2.plot (xs, stats.t.pdf(xs, 5), 'r——', label="True PDF")

ax2.set_xlabel ('x")
ax2.set_ylabel ('Density")

plt.show ()

1.13. Statistics (scipy.stats) 109

SciPy Reference Guide, Release 0.16.0

Normal (top) and Student's T4—5 (bottom) distributions
T T T < T T T

0.40 , , Z
035} / N — Scott's Rule

— Silverman's Rule | |
True PDF

0.30 -
025}
0.20 -
0.15F
0.10 -
0.05
0.00
-5

Density

0.40
035}
0.30 -
025}
0.20 |-
0.15F
0.10 -
0.05
0.00
-6

Density

We now take a look at a bimodal distribution with one wider and one narrower Gaussian feature. We expect that this
will be a more difficult density to approximate, due to the different bandwidths required to accurately resolve each
feature.

>>> from functools import partial

>>> locl, scalel, sizel = (-2, 1, 175)
>>> loc2, scale2, size2 = (2, 0.2, 50)
>>> x2 = np.concatenate ([np.random.normal (loc=locl, scale=scalel, size=sizel)

’
np.random.normal (loc=loc2, scale=scale2, size=size2)])

>>> x_eval = np.linspace(x2.min() - 1, x2.max() + 1, 500)

>>> kde = stats.gaussian_kde (x2)

>>> kde2 = stats.gaussian_kde (x2, bw_method='silverman')

>>> kde3 = stats.gaussian_kde (x2, bw_method=partial (my_kde_bandwidth, fac=0.2))

>>> kded4d = stats.gaussian_kde (x2, bw_method=partial (my_kde_bandwidth, fac=0.5))

>>> pdf = stats.norm.pdf
>>> bimodal_pdf = pdf (x_eval, loc=locl, scale=scalel) x float(sizel) / x2.size + \
pdf (x_eval, loc=loc2, scale=scale2) »* float(size2) / x2.size

>>> fig = plt.figure(figsize=(8, 6))
>>> ax = fig.add_subplot (111)

110 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> ax.plot (x2, np.zeros(x2.shape), 'b+', ms=12)

>>> ax.plot (x_eval, kde(x_eval), 'k-', label="Scott's Rule'")

>>> ax.plot (x_eval, kde2(x_eval), 'b-', label="Silverman's Rule")
>>> ax.plot (x_eval, kde3(x_eval), 'g-', label="Scott » 0.2")

>>> ax.plot (x_eval, kde4d (x_eval), 'c—-', label="Scott %= 0.5")

>>> ax.plot (x_eval, bimodal_pdf, 'r—--', label="Actual PDEF")

>>> ax.set_xlim([x_eval.min(), x_eval.max()])
>>> ax.legend(loc=2)

>>> ax.set_xlabel ('x")

>>> ax.set_ylabel ('Density")

>>> plt.show()

0.5 T T T T
— Scott's Rule
— Silverman's Rule
— Scott ¥ 0.2
04H — Scott*0.5]
— - Actual PDF

Density

As expected, the KDE is not as close to the true PDF as we would like due to the different characteristic size of the
two features of the bimodal distribution. By halving the default bandwidth (Scott * 0.5) we can do somewhat
better, while using a factor 5 smaller bandwidth than the default doesn’t smooth enough. What we really need though
in this case is a non-uniform (adaptive) bandwidth.

Multivariate estimation
With gaussian_kde we can perform multivariate as well as univariate estimation. We demonstrate the bivariate
case. First we generate some random data with a model in which the two variates are correlated.

>>> def measure (n):
"""Measurement model, return two coupled measurements."""

1.13. Statistics (scipy.stats) 111

SciPy Reference Guide, Release 0.16.0

ml = np.random.normal (size=n)
m2 = np.random.normal (scale=0.5, size=n)
return ml+m2, ml-m2

>>> ml, m2 = measure(2000)

>>> xmin ml.min ()
>>> xmax = ml.max ()
>>> ymin = m2.min ()
>>> ymax = m2.max ()

Then we apply the KDE to the data:

>>> X, Y = np.mgrid[xmin:xmax:1007, ymin:ymax:1007]

>>> positions = np.vstack([X.ravel(), Y.ravel()])

>>> values = np.vstack([ml, m2])

>>> kernel = stats.gaussian_kde (values)

>>> 7 = np.reshape (kernel.evaluate (positions) .T, X.shape)

Finally we plot the estimated bivariate distribution as a colormap, and plot the individual data points on top.

>>> fig = plt.figure(figsize=(8, 6))
>>> ax = fig.add_subplot (111)

>>> ax.imshow (np.rot90(Z), cmap=plt.cm.gist_earth_r,
extent=[xmin, xmax, ymin, ymax])
>>> ax.plot(ml, m2, 'k.', markersize=2)

>>> ax.set_xlim([xmin, xmax])
>>> ax.set_ylim([ymin, ymax])

>>> plt.show ()

112 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

_41 Il L Il L L L L

1.14 Multidimensional image processing (scipy.ndimage)

1.14.1 Introduction

Image processing and analysis are generally seen as operations on two-dimensional arrays of values. There are how-
ever a number of fields where images of higher dimensionality must be analyzed. Good examples of these are medical
imaging and biological imaging. numpy is suited very well for this type of applications due its inherent multidimen-
sional nature. The scipy.ndimage packages provides a number of general image processing and analysis functions
that are designed to operate with arrays of arbitrary dimensionality. The packages currently includes functions for lin-
ear and non-linear filtering, binary morphology, B-spline interpolation, and object measurements.

1.14.2 Properties shared by all functions

All functions share some common properties. Notably, all functions allow the specification of an output array with the
output argument. With this argument you can specify an array that will be changed in-place with the result with the
operation. In this case the result is not returned. Usually, using the output argument is more efficient, since an existing
array is used to store the result.

The type of arrays returned is dependent on the type of operation, but it is in most cases equal to the type of the input.
If, however, the output argument is used, the type of the result is equal to the type of the specified output argument.

1.14. Multidimensional image processing (scipy.ndimage) 113

http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

SciPy Reference Guide, Release 0.16.0

If no output argument is given, it is still possible to specify what the result of the output should be. This is done by
simply assigning the desired numpy type object to the output argument. For example:

>>> correlate (np.arange(10), [1, 2.5])

array ([0, 2, 6, 9, 13, 16, 20, 23, 27, 301)

>>> correlate (np.arange(10), [1, 2.5], output=np.float64d)

array ([0. , 2.5, 6. , 9.5, 13. , 1le6.5, 20. , 23.5, 27. , 30.5])

1.14.3 Filter functions

The functions described in this section all perform some type of spatial filtering of the input array: the elements
in the output are some function of the values in the neighborhood of the corresponding input element. We refer to
this neighborhood of elements as the filter kernel, which is often rectangular in shape but may also have an arbitrary
footprint. Many of the functions described below allow you to define the footprint of the kernel, by passing a mask
through the footprint parameter. For example a cross shaped kernel can be defined as follows:

>>> footprint = array([[0,1,0],[1,1,1]1,([0,1,011)
>>> footprint
array ([[0, 1, 0],

[1, 1, 11,

[0, 1, 0]1)

Usually the origin of the kernel is at the center calculated by dividing the dimensions of the kernel shape by two.
For instance, the origin of a one-dimensional kernel of length three is at the second element. Take for example the
correlation of a one-dimensional array with a filter of length 3 consisting of ones:

>>> a = [0, O, O, 1, 0, 0, 0]
>>> correlateld(a, [1, 1, 1])
array ([0, 0, 1, 1, 1, 0, 0])

Sometimes it is convenient to choose a different origin for the kernel. For this reason most functions support the origin
parameter which gives the origin of the filter relative to its center. For example:

>>> a = [0, O, O, 1, O, 0, O]
>>> correlateld(a, [1, 1, 1], origin = -1)
array ([0 1 1 1 0 0 0])

The effect is a shift of the result towards the left. This feature will not be needed very often, but it may be useful
especially for filters that have an even size. A good example is the calculation of backward and forward differences:

>>> a = [0, O, 1, 1, 1, 0, 0]

>>> correlateld(a, [-1, 11) # backward difference
array([0 0 1 0 0 -1 01])

>>> correlateld(a, [-1, 1], origin = -1) # forward difference

array([0 1 0 0 -1 0 01)

We could also have calculated the forward difference as follows:

>>> correlateld(a, [0, -1, 11)
array([0 1 0 0 -1 0 01])

However, using the origin parameter instead of a larger kernel is more efficient. For multidimensional kernels origin
can be a number, in which case the origin is assumed to be equal along all axes, or a sequence giving the origin along
each axis.

Since the output elements are a function of elements in the neighborhood of the input elements, the borders of the
array need to be dealt with appropriately by providing the values outside the borders. This is done by assuming that
the arrays are extended beyond their boundaries according certain boundary conditions. In the functions described

114 Chapter 1. SciPy Tutorial

http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

SciPy Reference Guide, Release 0.16.0

below, the boundary conditions can be selected using the mode parameter which must be a string with the name of the
boundary condition. Following boundary conditions are currently supported:

“nearest” Use the value at the boundary [123]>[11233]
“wrap” Periodically replicate the array [123]>[31231]
“reflect” Reflect the array at the boundary [123]>[11233]
“constant” | Use a constant value, defaultis 0.0 | [123]->[01230]

The “constant” mode is special since it needs an additional parameter to specify the constant value that should be used.

Note: The easiest way to implement such boundary conditions would be to copy the data to a larger array and extend
the data at the borders according to the boundary conditions. For large arrays and large filter kernels, this would be

very memory consuming, and the functions described below therefore use a different approach that does not require
allocating large temporary buffers.

Correlation and convolution

The correlateld function calculates a one-dimensional correlation along the given axis. The lines of the ar-
ray along the given axis are correlated with the given weights. The weights parameter must be a one-dimensional
sequences of numbers.

The function correlate implements multidimensional correlation of the input array with a given kernel.
The convolveld function calculates a one-dimensional convolution along the given axis. The lines of the
array along the given axis are convoluted with the given weights. The weights parameter must be a one-
dimensional sequences of numbers.

Note: A convolution is essentially a correlation after mirroring the kernel. As a result, the origin parameter
behaves differently than in the case of a correlation: the result is shifted in the opposite directions.

The function convolve implements multidimensional convolution of the input array with a given kernel.

Note: A convolution is essentially a correlation after mirroring the kernel. As a result, the origin parameter
behaves differently than in the case of a correlation: the results is shifted in the opposite direction.

Smoothing filters

The gaussian_filterld function implements a one-dimensional Gaussian filter. The standard-deviation
of the Gaussian filter is passed through the parameter sigma. Setting order = 0 corresponds to convolution with
a Gaussian kernel. An order of 1, 2, or 3 corresponds to convolution with the first, second or third derivatives of
a Gaussian. Higher order derivatives are not implemented.

The gaussian_filter function implements a multidimensional Gaussian filter. The standard-deviations of
the Gaussian filter along each axis are passed through the parameter sigma as a sequence or numbers. If sigma
is not a sequence but a single number, the standard deviation of the filter is equal along all directions. The order
of the filter can be specified separately for each axis. An order of 0 corresponds to convolution with a Gaussian
kernel. An order of 1, 2, or 3 corresponds to convolution with the first, second or third derivatives of a Gaussian.
Higher order derivatives are not implemented. The order parameter must be a number, to specify the same order
for all axes, or a sequence of numbers to specify a different order for each axis.

Note: The multidimensional filter is implemented as a sequence of one-dimensional Gaussian filters. The
intermediate arrays are stored in the same data type as the output. Therefore, for output types with a lower

precision, the results may be imprecise because intermediate results may be stored with insufficient precision.
This can be prevented by specifying a more precise output type.

1.14. Multidimensional image processing (scipy.ndimage) 115

SciPy Reference Guide, Release 0.16.0

The uniform_filterld function calculates a one-dimensional uniform filter of the given size along the
given axis.

The uniform_filter implements a multidimensional uniform filter. The sizes of the uniform filter are given
for each axis as a sequence of integers by the size parameter. If size is not a sequence, but a single number, the
sizes along all axis are assumed to be equal.

Note: The multidimensional filter is implemented as a sequence of one-dimensional uniform filters. The
intermediate arrays are stored in the same data type as the output. Therefore, for output types with a lower

precision, the results may be imprecise because intermediate results may be stored with insufficient precision.
This can be prevented by specifying a more precise output type.

Filters based on order statistics

The minimum_filterld function calculates a one-dimensional minimum filter of given size along the given
axis.

The maximum_filterld function calculates a one-dimensional maximum filter of given size along the given
axis.

The minimum_filter function calculates a multidimensional minimum filter. Either the sizes of a rectangu-
lar kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of
sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint,
if provided, must be an array that defines the shape of the kernel by its non-zero elements.

The maximum_filter function calculates a multidimensional maximum filter. Either the sizes of a rectangu-
lar kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of
sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint,
if provided, must be an array that defines the shape of the kernel by its non-zero elements.

The rank_filter function calculates a multidimensional rank filter. The rank may be less then zero, i.e.,
rank = -1 indicates the largest element. Either the sizes of a rectangular kernel or the footprint of the kernel must
be provided. The size parameter, if provided, must be a sequence of sizes or a single number in which case the
size of the filter is assumed to be equal along each axis. The footprint, if provided, must be an array that defines
the shape of the kernel by its non-zero elements.

The percentile_filter function calculates a multidimensional percentile filter. The percentile may be
less then zero, i.e., percentile = -20 equals percentile = 80. Either the sizes of a rectangular kernel or the
footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of sizes or a single
number in which case the size of the filter is assumed to be equal along each axis. The footprint, if provided,
must be an array that defines the shape of the kernel by its non-zero elements.

The median_filter function calculates a multidimensional median filter. Either the sizes of a rectangular
kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of
sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint
if provided, must be an array that defines the shape of the kernel by its non-zero elements.

Derivatives

Derivative filters can be constructed in several ways. The function gaussian_filter1ld described in Smoothing
filters can be used to calculate derivatives along a given axis using the order parameter. Other derivative filters are the
Prewitt and Sobel filters:

The prewitt function calculates a derivative along the given axis.
The sobel function calculates a derivative along the given axis.

The Laplace filter is calculated by the sum of the second derivatives along all axes. Thus, different Laplace filters
can be constructed using different second derivative functions. Therefore we provide a general function that takes a
function argument to calculate the second derivative along a given direction and to construct the Laplace filter:

116 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

The function generic_laplace calculates a laplace filter using the function passed through derivative?2
to calculate second derivatives. The function derivative?2 should have the following signature:

derivative?2 (input, axis, output, mode, cval, xextra_arguments, +*xextra_keywords)

It should calculate the second derivative along the dimension axis. If output is not None it should use that for
the output and return None, otherwise it should return the result. mode, cval have the usual meaning.

The extra_arguments and extra_keywords arguments can be used to pass a tuple of extra arguments and a dic-
tionary of named arguments that are passed to derivative?2 at each call.

For example:

>>> def d2(input, axis, output, mode, cval):
return correlateld(input, [1, -2, 1], axis, output, mode, cval, 0)

>>> a = zeros ((5, 5))

>>> a2, 2] =1

>>> generic_laplace(a, d2)

array ([[O., 0., 0., 0., 0.7,
[o., 0., 1., 0., 0.1,
[o., 1., -4., 1., 0.1,
[o., 0., 1., 0., 0.1,
[o., 0., 0., 0., 0.11)

To demonstrate the use of the extra_arguments argument we could do:

>>> def d2(input, axis, output, mode, cval, weights):
return correlateld(input, weights, axis, output, mode, cval, 0,)

>>> a = zeros ((5, 5))

>>> a2, 2] =1
>>> generic_laplace(a, d2, extra_arguments = ([1, -2, 11,))
array([([0., ©0., 0., 0., 0.],

r o., 0., 1., 0., 0.1,

[0., 1., -4., 1., 0.],

r o., 0., 1., 0., 0.1,

[o., 0., 0., 0., 0.11)
or:
>>> generic_laplace(a, d2, extra_keywords = {'weights': [1, -2, 11})
array ([[0., 0., 0., 0., 0.7,

r o., 0., 1., 0., 0.1,

[o., 1., -4., 1., 0.7,

[0., 0., 1., 0., 0.1,

r o., 0., 0., O. 0.11)

The following two functions are implemented using generic_laplace by providing appropriate functions for the
second derivative function:

The function 1aplace calculates the Laplace using discrete differentiation for the second derivative (i.e. con-
volution with [1, -2, 11]).

The function gaussian_laplace calculates the Laplace using gaussian_filter tocalculate the second
derivatives. The standard-deviations of the Gaussian filter along each axis are passed through the parameter
sigma as a sequence or numbers. If sigma is not a sequence but a single number, the standard deviation of the
filter is equal along all directions.

The gradient magnitude is defined as the square root of the sum of the squares of the gradients in all directions. Similar
to the generic Laplace function there is a generic_gradient_magnitude function that calculated the gradient
magnitude of an array:

The function generic_gradient_magnitude calculates a gradient magnitude using the function passed
through derivative to calculate first derivatives. The function derivative should have the following

1.14. Multidimensional image processing (scipy.ndimage) 117

SciPy Reference Guide, Release 0.16.0

signature:
derivative (input, axis, output, mode, cval, *extra_arguments, xxextra_keywords)

It should calculate the derivative along the dimension axis. If output is not None it should use that for the output
and return None, otherwise it should return the result. mode, cval have the usual meaning.

The extra_arguments and extra_keywords arguments can be used to pass a tuple of extra arguments and a dic-
tionary of named arguments that are passed to derivative at each call.

For example, the sobel function fits the required signature:

>>> a = zeros ((5, 5))

>>> a2, 2] =1

>>> generic_gradient_magnitude (a, sobel)

array ([[O. , 0. , 0. , 0. , 0. 1,
[0. , 1.41421356, 2. , 1.41421356, 0. 1,
[O. ;2. , 0. , 2. , 0. 1,
[O. , 1.41421356, 2. , 1.41421356, 0. 1,
[O. , 0. , 0. , 0. , 0. 11)

See the documentation of generic_laplace for examples of using the extra_arguments and extra_keywords
arguments.

The sobel and prewitt functions fit the required signature and can therefore directly be used with
generic_gradient_magnitude. The following function implements the gradient magnitude using Gaussian
derivatives:

The function gaussian_gradient_magnitude calculates the gradient magnitude using
gaussian_filter to calculate the first derivatives. The standard-deviations of the Gaussian filter
along each axis are passed through the parameter sigma as a sequence or numbers. If sigma is not a sequence
but a single number, the standard deviation of the filter is equal along all directions.

Generic filter functions

To implement filter functions, generic functions can be used that accept a callable object that implements the filtering
operation. The iteration over the input and output arrays is handled by these generic functions, along with such
details as the implementation of the boundary conditions. Only a callable object implementing a callback function
that does the actual filtering work must be provided. The callback function can also be written in C and passed using
aPyCObject (see Extending ndimage in C for more information).

The generic_filterld function implements a generic one-dimensional filter function, where the actual
filtering operation must be supplied as a python function (or other callable object). The generic_filterld
function iterates over the lines of an array and calls function at each line. The arguments that are passed to
function are one-dimensional arrays of the tFloat 64 type. The first contains the values of the current line.
It is extended at the beginning end the end, according to the filter_size and origin arguments. The second array
should be modified in-place to provide the output values of the line. For example consider a correlation along
one dimension:

>>> a = arange (12) .reshape (3, 4)
>>> correlateld(a, [1, 2, 3])
array ([[3, 8, 14, 171,

[27, 32, 38, 41],

[51, 56, 62, 65]1)

The same operation can be implemented using generic_filterld as follows:
>>> def fnc(iline, oline):

oline[...] = iline[:-2] + 2 % iline[l:-1] + 3 % iline[2:]

>>> generic_filterld(a, fnc, 3)
array ([[3, 8, 14, 171,

118

Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

[27, 32, 38, 4117,
[51, 56, 62, 65]1])

Here the origin of the kernel was (by default) assumed to be in the middle of the filter of length 3. Therefore,
each input line was extended by one value at the beginning and at the end, before the function was called.
Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and ex-
tra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the parameters of our filter as an argument:

>>> def fnc(iline, oline, a, Db):

oline[...] = iline[:-2] + a % iline[l:-1] + b * 1iline[2:]
>>> generic_filterld(a, fnc, 3, extra_arguments = (2, 3))
array ([[3, 8, 14, 171,

(27, 32, 38, 411,
[51, 56, 62, 651])

or:
>>> generic_filterld(a, fnc, 3, extra_keywords = {'a':2, 'b':3})
array ([[3, 8, 14, 17],

[27, 32, 38, 4117,
[51, 56, 62, 65]1)

The generic_filter function implements a generic filter function, where the actual filtering operation must
be supplied as a python function (or other callable object). The generic_filter function iterates over the
array and calls function at each element. The argument of function is a one-dimensional array of the
tFloat 64 type, that contains the values around the current element that are within the footprint of the filter.
The function should return a single value that can be converted to a double precision number. For example
consider a correlation:

>>> a = arange (12) .reshape (3, 4)
>>> correlate(a, [[1, 0], [0, 311)
array ([[O, 3, 7, 111,

[12, 15, 19, 23],
(28, 31, 35, 3911)

The same operation can be implemented using generic_filter as follows:

>>> def fnc(buffer):

return (buffer x array([l, 3])).sum()
>>> generic_filter(a, fnc, footprint = [[1, 0], [0, 111)
array ([[0 3 7 117,

[12 15 19 23],
[28 31 35 39]11)

Here a kernel footprint was specified that contains only two elements. Therefore the filter function receives a
buffer of length equal to two, which was multiplied with the proper weights and the result summed.

When calling generic_filter, either the sizes of a rectangular kernel or the footprint of the kernel must be
provided. The size parameter, if provided, must be a sequence of sizes or a single number in which case the size
of the filter is assumed to be equal along each axis. The footprint, if provided, must be an array that defines the
shape of the kernel by its non-zero elements.

Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and ex-
tra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the parameters of our filter as an argument:

>>> def fnc(buffer, weights):
weights = asarray(weights)
return (buffer x weights) .sum()

1.14. Multidimensional image processing (scipy.ndimage) 119

SciPy Reference Guide, Release 0.16.0

>>> generic_filter(a, fnc, footprint = [[1, 0], [0, 1]], extra_arguments = ([1, 3],))
array([([O, 3, 7, 111,

[12, 15, 19, 23],

[28, 31, 35, 3911])

or:
>>> generic_filter(a, fnc, footprint = [[1, 0], [0, 1]], extra_keywords= {'weights':
array ([[O, 3, 7, 111,

[12, 15, 19, 231,
[28, 31, 35, 3911])

These functions iterate over the lines or elements starting at the last axis, i.e. the last index changes the fastest. This
order of iteration is guaranteed for the case that it is important to adapt the filter depending on spatial location. Here
is an example of using a class that implements the filter and keeps track of the current coordinates while iterating.
It performs the same filter operation as described above for generic_filter, but additionally prints the current
coordinates:

>>> a = arange (12) .reshape (3, 4)
>>>
>>> class fnc class:
def _ init_ (self, shape):
store the shape:
self.shape = shape
initialize the coordinates:
self.coordinates = [0] % len (shape)

def filter(self, buffer):
result = (buffer x array([1l, 31)).sum()
print self.coordinates
calculate the next coordinates:
axes = range (len(self.shape))
axes.reverse ()
for jj in axes:

if self.coordinates[jj] < self.shapel[jj] - 1:
self.coordinates[jj] += 1
break

else:
self.coordinates[Jj] = 0

return result

>>> fnc = fnc_class (shape = (3,4))
>>> generic_filter(a, fnc.filter, footprint = [[1, 0], [0, 111)
[0, 0]
[OI
[OI
[0,
[ll
[ll
[1,
[ll
[2I
[2,
[21
[2I
array ([[0, 3, 7, 117,
[12, 15, 19, 23],
[28, 31, 35, 3911])

=

WNEFEOWNDREOWNDN

120 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

For the generic_filterld function the same approach works, except that this function does not iterate over the
axis that is being filtered. The example for generic_filterld then becomes this:

>>> a = arange (12) .reshape (3, 4)
>>>
>>> class fncld class:
def _ _init__ (self, shape, axis = -1):
store the filter axis:
self.axis = axis

store the shape:

self.shape = shape

initialize the coordinates:
self.coordinates = [0] » len(shape)

def filter(self, iline, oline):
oline[...] = iline[:-2] + 2 % iline[l:-1] + 3 % iline[2:]
print self.coordinates
calculate the next coordinates:
axes = range(len(self.shape))
skip the filter axis:
del axes[self.axis]
axes.reverse ()
for jj in axes:

if self.coordinates[jj] < self.shape[jj] - 1:
self.coordinates[jj] += 1
break

else:
self.coordinates[jj] = 0

>>> fnc = fncld_class (shape = (3,4))
>>> generic_filterld(a, fnc.filter, 3)
[0, 0]

[1, O]

[2, O]

array ([[3, 8, 14, 17],

[27, 32, 38, 417,
[51, 56, 62, 6511)

Fourier domain filters

The functions described in this section perform filtering operations in the Fourier domain. Thus, the input array
of such a function should be compatible with an inverse Fourier transform function, such as the functions from the
numpy . £ £t module. We therefore have to deal with arrays that may be the result of a real or a complex Fourier
transform. In the case of a real Fourier transform only half of the of the symmetric complex transform is stored.
Additionally, it needs to be known what the length of the axis was that was transformed by the real fft. The functions
described here provide a parameter n that in the case of a real transform must be equal to the length of the real
transform axis before transformation. If this parameter is less than zero, it is assumed that the input array was the
result of a complex Fourier transform. The parameter axis can be used to indicate along which axis the real transform
was executed.

The fourier_shift function multiplies the input array with the multidimensional Fourier transform of a
shift operation for the given shift. The shift parameter is a sequences of shifts for each dimension, or a single
value for all dimensions.

The fourier_gaussian function multiplies the input array with the multidimensional Fourier transform of
a Gaussian filter with given standard-deviations sigma. The sigma parameter is a sequences of values for each
dimension, or a single value for all dimensions.

1.14. Multidimensional image processing (scipy.ndimage) 121

http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft

SciPy Reference Guide, Release 0.16.0

The fourier_uniform function multiplies the input array with the multidimensional Fourier transform of a
uniform filter with given sizes size. The size parameter is a sequences of values for each dimension, or a single
value for all dimensions.

The fourier_ellipsoid function multiplies the input array with the multidimensional Fourier transform of
a elliptically shaped filter with given sizes size. The size parameter is a sequences of values for each dimension,
or a single value for all dimensions. This function is only implemented for dimensions 1, 2, and 3.

1.14.4 Interpolation functions

This section describes various interpolation functions that are based on B-spline theory. A good introduction to B-
splines can be found in: M. Unser, “Splines: A Perfect Fit for Signal and Image Processing,” IEEE Signal Processing
Magazine, vol. 16, no. 6, pp. 22-38, November 1999.

Spline pre-filters

Interpolation using splines of an order larger than 1 requires a pre- filtering step. The interpolation functions described
in section Interpolation functions apply pre-filtering by calling spline_filter, but they can be instructed not to
do this by setting the prefilter keyword equal to False. This is useful if more than one interpolation operation is done
on the same array. In this case it is more efficient to do the pre-filtering only once and use a prefiltered array as the
input of the interpolation functions. The following two functions implement the pre-filtering:

The spline_filterld function calculates a one-dimensional spline filter along the given axis. An output
array can optionally be provided. The order of the spline must be larger then 1 and less than 6.
The spline_filter function calculates a multidimensional spline filter.

Note: The multidimensional filter is implemented as a sequence of one-dimensional spline filters. The inter-
mediate arrays are stored in the same data type as the output. Therefore, if an output with a limited precision is

requested, the results may be imprecise because intermediate results may be stored with insufficient precision.
This can be prevented by specifying a output type of high precision.

Interpolation functions

Following functions all employ spline interpolation to effect some type of geometric transformation of the input array.
This requires a mapping of the output coordinates to the input coordinates, and therefore the possibility arises that input
values outside the boundaries are needed. This problem is solved in the same way as described in Filter functions for
the multidimensional filter functions. Therefore these functions all support a mode parameter that determines how the
boundaries are handled, and a cval parameter that gives a constant value in case that the ‘constant’ mode is used.

The geometric_transformfunction applies an arbitrary geometric transform to the input. The given map-
ping function is called at each point in the output to find the corresponding coordinates in the input. mapping
must be a callable object that accepts a tuple of length equal to the output array rank and returns the correspond-
ing input coordinates as a tuple of length equal to the input array rank. The output shape and output type can
optionally be provided. If not given they are equal to the input shape and type.

For example:

>>> a = arange (12) .reshape (4, 3) .astype (np.float64)
>>> def shift_func (output_coordinates):
return (output_coordinates([0] - 0.5, output_coordinates[1l] - 0.5)

>>> geometric_transform(a, shift_func)
array ([[O. , 0. , 0. 1,
[0. , 1.3625, 2.73757],

122 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

[0. , 4.8125, 6.1875]7,
[O. , 8.2625, 9.6375]11])

Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and ex-
tra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the shifts in our example as arguments:

>>> def shift_func (output_coordinates, s0, sl):

return (output_coordinates[0] - s0, output_coordinates[l] - sl)
>>> geometric_transform(a, shift_func, extra_arguments = (0.5, 0.5))
array ([[O. , 0. , 0. 1,

[O. , 1.3625, 2.73757,

[0. , 4.8125, 6.1875],

[O , 8.2625, 9.6375]])
or:
>>> geometric_transform(a, shift_func, extra_keywords = {'s0': 0.5, 'sl': 0.5})
array ([[O. , 0. , 0. 1,

[O. , 1.3625, 2.7375]7,

[0. , 4.8125, 6.1875],

[0 , 8.2625, 9.6375]1])

Note: The mapping function can also be written in C and passed using a PyCOb ject. See Extending ndimage
in C for more information.

The function map_coordinates applies an arbitrary coordinate transformation using the given array of
coordinates. The shape of the output is derived from that of the coordinate array by dropping the first axis. The
parameter coordinates is used to find for each point in the output the corresponding coordinates in the input.
The values of coordinates along the first axis are the coordinates in the input array at which the output value is
found. (See also the numarray coordinates function.) Since the coordinates may be non- integer coordinates,
the value of the input at these coordinates is determined by spline interpolation of the requested order. Here is
an example that interpolates a 2D array at (0.5, 0.5) and (1, 2):

>>> a = arange (12) .reshape (4, 3) .astype (np.float64)

>>> a
array ([[O., 1., 2.1,
[3., 4., 5.7,
[6., 7., 8.1
[9., 10., 11.11)
[

>>> map_coordinates(a, [
array ([1.3625 7. 1)

The affine_transform function applies an affine transformation to the input array. The given transforma-
tion matrix and offset are used to find for each point in the output the corresponding coordinates in the input. The
value of the input at the calculated coordinates is determined by spline interpolation of the requested order. The
transformation matrix must be two-dimensional or can also be given as a one-dimensional sequence or array. In
the latter case, it is assumed that the matrix is diagonal. A more efficient interpolation algorithm is then applied
that exploits the separability of the problem. The output shape and output type can optionally be provided. If
not given they are equal to the input shape and type.

The shift function returns a shifted version of the input, using spline interpolation of the requested order.
The zoom function returns a rescaled version of the input, using spline interpolation of the requested order.
The rotate function returns the input array rotated in the plane defined by the two axes given by the parameter
axes, using spline interpolation of the requested order. The angle must be given in degrees. If reshape is true,
then the size of the output array is adapted to contain the rotated input.

1.14. Multidimensional image processing (scipy.ndimage) 123

SciPy Reference Guide, Release 0.16.0

1.14.5 Morphology

Binary morphology

Binary morphology (need something to put here).

The generate_binary_structure functions generates a binary structuring element for use in binary
morphology operations. The rank of the structure must be provided. The size of the structure that is returned is
equal to three in each direction. The value of each element is equal to one if the square of the Euclidean distance
from the element to the center is less or equal to connectivity. For instance, two dimensional 4-connected and
8-connected structures are generated as follows:

>>> generate_binary_structure (2, 1)
array ([[False, True, False],

[True, True, Truel,

[False, True, False]], dtype=bool)
>>> generate_binary_structure (2, 2)
array ([[True, True, Truel,

[True, True, Truel,

[True, True, True]], dtype=bool)

Most binary morphology functions can be expressed in terms of the basic operations erosion and dilation:

The binary_erosion function implements binary erosion of arrays of arbitrary rank with the given struc-
turing element. The origin parameter controls the placement of the structuring element as described in Filter
Jfunctions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The border_value parameter gives the value of the array outside bound-
aries. The erosion is repeated iterations times. If iterations is less than one, the erosion is repeated until the result
does not change anymore. If a mask array is given, only those elements with a true value at the corresponding
mask element are modified at each iteration.

The binary_dilation function implements binary dilation of arrays of arbitrary rank with the given struc-
turing element. The origin parameter controls the placement of the structuring element as described in Filter
Jfunctions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The border_value parameter gives the value of the array outside bound-
aries. The dilation is repeated iterations times. If iterations is less than one, the dilation is repeated until the
result does not change anymore. If a mask array is given, only those elements with a true value at the corre-
sponding mask element are modified at each iteration.

Here is an example of using binary_dilation to find all elements that touch the border, by repeatedly
dilating an empty array from the border using the data array as the mask:

>>> struct = array([[O, 1, O], [1, 1, 11, [0, 1, 0O11)
>>> a = array([(:,o,0,0,01, (,1,0,1,01, [0,0,1,1,0], [0,0,0,0,011)
>>> a
array([([1, O, O, 0, O],

[, 1, o, 1, o1,

o, o, 1, 1, 01,

[o, o, o, 0, 011)
>>> binary_dilation(zeros (a.shape), struct, -1, a, border_value=1)
array([[True, False, False, False, False],

[True, True, False, False, False]
[False, False, False, False, False]
[False, False, False, False, False]

’
1, dtype=bool)

The binary_erosion and binary_dilation functions both have an iterations parameter which allows the
erosion or dilation to be repeated a number of times. Repeating an erosion or a dilation with a given structure n times
is equivalent to an erosion or a dilation with a structure that is n-/ times dilated with itself. A function is provided that
allows the calculation of a structure that is dilated a number of times with itself:

124 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

The iterate_structure function returns a structure by dilation of the input structure iteration - 1 times
with itself. For instance:

>>> struct = generate_binary_structure (2, 1)
>>> struct
array ([[False, True, False],

[True, True, True],

[False, True, False]], dtype=bool)
>>> iterate_structure (struct, 2)
array ([[False, False, True, False, False],

[False, True, True, True, False],

[True, True, True, True, Truel,

[False, True, True, True, False],

[False, False, True, False, False]], dtype=bool)

If the origin of the original structure is equal to 0, then it is also equal to O for the iterated structure. If not,
the origin must also be adapted if the equivalent of the iterations erosions or dilations must be achieved with
the iterated structure. The adapted origin is simply obtained by multiplying with the number of iterations. For
convenience the iterate_structure also returns the adapted origin if the origin parameter is not None:

>>> iterate_structure (struct, 2, -1)
(array ([[False, False, True, False, False],
False, True, True, True, False],
True, True, True, True, True]
False, True, True, True, False]
False, False, True, False, False]

[
[’
[’

[], dtype=bool), [-2, -2])

Other morphology operations can be defined in terms of erosion and d dilation. Following functions provide a few of
these operations for convenience:

The binary_opening function implements binary opening of arrays of arbitrary rank with the given struc-
turing element. Binary opening is equivalent to a binary erosion followed by a binary dilation with the same
structuring element. The origin parameter controls the placement of the structuring element as described in Fil-
ter functions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The iterations parameter gives the number of erosions that is performed
followed by the same number of dilations.

The binary_closing function implements binary closing of arrays of arbitrary rank with the given struc-
turing element. Binary closing is equivalent to a binary dilation followed by a binary erosion with the same
structuring element. The origin parameter controls the placement of the structuring element as described in Fil-
ter functions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The iterations parameter gives the number of dilations that is performed
followed by the same number of erosions.

The binary_fill holes function is used to close holes in objects in a binary image, where the structure
defines the connectivity of the holes. The origin parameter controls the placement of the structuring element as
described in Filter functions. If no structuring element is provided, an element with connectivity equal to one is
generated using generate_binary_ structure.

The binary_hit_or_miss function implements a binary hit-or-miss transform of arrays of arbitrary rank
with the given structuring elements. The hit-or-miss transform is calculated by erosion of the input with
the first structure, erosion of the logical not of the input with the second structure, followed by the logi-
cal and of these two erosions. The origin parameters control the placement of the structuring elements as
described in Filter functions. If origin2 equals None it is set equal to the originl parameter. If the first
structuring element is not provided, a structuring element with connectivity equal to one is generated using
generate_binary_structure, if structure2 is not provided, it is set equal to the logical not of struc-
turel.

1.14. Multidimensional image processing (scipy.ndimage) 125

SciPy Reference Guide, Release 0.16.0

Grey-scale morphology

Grey-scale morphology operations are the equivalents of binary morphology operations that operate on arrays with
arbitrary values. Below we describe the grey-scale equivalents of erosion, dilation, opening and closing. These
operations are implemented in a similar fashion as the filters described in Filter functions, and we refer to this section
for the description of filter kernels and footprints, and the handling of array borders. The grey-scale morphology
operations optionally take a structure parameter that gives the values of the structuring element. If this parameter
is not given the structuring element is assumed to be flat with a value equal to zero. The shape of the structure
can optionally be defined by the footprint parameter. If this parameter is not given, the structure is assumed to be
rectangular, with sizes equal to the dimensions of the structure array, or by the size parameter if structure is not given.
The size parameter is only used if both structure and footprint are not given, in which case the structuring element
is assumed to be rectangular and flat with the dimensions given by size. The size parameter, if provided, must be a
sequence of sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The
footprint parameter, if provided, must be an array that defines the shape of the kernel by its non-zero elements.

Similar to binary erosion and dilation there are operations for grey-scale erosion and dilation:

The grey_erosion function calculates a multidimensional grey- scale erosion.
The grey_dilation function calculates a multidimensional grey- scale dilation.

Grey-scale opening and closing operations can be defined similar to their binary counterparts:

The grey_opening function implements grey-scale opening of arrays of arbitrary rank. Grey-scale opening
is equivalent to a grey-scale erosion followed by a grey-scale dilation.

The grey_closing function implements grey-scale closing of arrays of arbitrary rank. Grey-scale opening
is equivalent to a grey-scale dilation followed by a grey-scale erosion.

The morphological_gradient function implements a grey-scale morphological gradient of arrays of
arbitrary rank. The grey-scale morphological gradient is equal to the difference of a grey-scale dilation and a
grey-scale erosion.

The morphological_laplace function implements a grey-scale morphological laplace of arrays of arbi-
trary rank. The grey-scale morphological laplace is equal to the sum of a grey-scale dilation and a grey-scale
erosion minus twice the input.

The white_tophat function implements a white top-hat filter of arrays of arbitrary rank. The white top-hat
is equal to the difference of the input and a grey-scale opening.

The black_tophat function implements a black top-hat filter of arrays of arbitrary rank. The black top-hat
is equal to the difference of the a grey-scale closing and the input.

1.14.6 Distance transforms

Distance transforms are used to calculate the minimum distance from each element of an object to the background.
The following functions implement distance transforms for three different distance metrics: Euclidean, City Block,
and Chessboard distances.

The function distance_transform_cdt uses a chamfer type algorithm to calculate the distance trans-
form of the input, by replacing each object element (defined by values larger than zero) with the shortest dis-
tance to the background (all non-object elements). The structure determines the type of chamfering that is
done. If the structure is equal to ‘cityblock’ a structure is generated using generate_binary_structure
with a squared distance equal to 1. If the structure is equal to ‘chessboard’, a structure is generated using
generate_binary_structure with a squared distance equal to the rank of the array. These choices cor-
respond to the common interpretations of the cityblock and the chessboard distancemetrics in two dimensions.
In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result. The return_distances, and return_indices flags
can be used to indicate if the distance transform, the feature transform, or both must be returned.

The distances and indices arguments can be used to give optional output arrays that must be of the correct size
and type (both Int32).

126 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

The basics of the algorithm used to implement this function is described in: G. Borgefors, “Distance transfor-
mations in arbitrary dimensions.”, Computer Vision, Graphics, and Image Processing, 27:321-345, 1984.

The function distance_transform_edt calculates the exact euclidean distance transform of the input, by
replacing each object element (defined by values larger than zero) with the shortest euclidean distance to the
background (all non-object elements).

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result. The return_distances, and return_indices flags
can be used to indicate if the distance transform, the feature transform, or both must be returned.

Optionally the sampling along each axis can be given by the sampling parameter which should be a sequence of
length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes.
The distances and indices arguments can be used to give optional output arrays that must be of the correct size
and type (Float 64 and Int32).

The algorithm used to implement this function is described in: C. R. Maurer, Jr., R. Qi, and V. Raghavan, “A lin-
ear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions.
IEEE Trans. PAMI 25, 265-270, 2003.

The function distance_transform_bf uses a brute-force algorithm to calculate the distance transform of
the input, by replacing each object element (defined by values larger than zero) with the shortest distance to the
background (all non-object elements). The metric must be one of “euclidean”, “cityblock”, or “chessboard”.

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result. The return_distances, and return_indices flags
can be used to indicate if the distance transform, the feature transform, or both must be returned.

Optionally the sampling along each axis can be given by the sampling parameter which should be a sequence of
length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes.
This parameter is only used in the case of the euclidean distance transform.

The distances and indices arguments can be used to give optional output arrays that must be of the correct size
and type (Float 64 and Int32).

Note: This function uses a slow brute-force algorithm, the function distance_transform_cdt
can be used to more efficiently calculate cityblock and chessboard distance transforms. The function

distance_transform_edt can be used to more efficiently calculate the exact euclidean distance trans-
form.

1.14.7 Segmentation and labeling

Segmentation is the process of separating objects of interest from the background. The most simple approach is
probably intensity thresholding, which is easily done with numpy functions:

>>> a = array ([

~
~
~ 0~

= N O O
~ 0~

~
~

‘

=W e e
~

N W N
~

o~

2
3
1
,1,1,1,2,
>>> where(a > 1, 1, 0)
array(([([O, 1, 1, O, O, O],
(o, 1, 1, o, 1, o1,
(o, o, o, 1, 1, 11,
(o, o, o, o, 1, 011)

’ ’

~

The result is a binary image, in which the individual objects still need to be identified and labeled. The function
label generates an array where each object is assigned a unique number:

The 1abel function generates an array where the objects in the input are labeled with an integer index. It returns
a tuple consisting of the array of object labels and the number of objects found, unless the output parameter is
given, in which case only the number of objects is returned. The connectivity of the objects is defined by a
structuring element. For instance, in two dimensions using a four-connected structuring element gives:

1.14. Multidimensional image processing (scipy.ndimage) 127

http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

SciPy Reference Guide, Release 0.16.0

>>> a = array([(o,1,1,0,0,01,1(10,1,1,0,1,03,10,0,0,1,1,11,1(00,0,0,0,1,011)

>>> s = [[0, 1, 0], [1,1,11, [0,1,01]

>>> label (a, s)

(array([([o, 1, 1, 0, O,
o, 1, 1, o, 2, 0
[o, o, 0, 2, 2, 2
o, o, o, 0o, 2, 0

01,
]I
1,
11, 2)

These two objects are not connected because there is no way in which we can place the structuring element such
that it overlaps with both objects. However, an 8-connected structuring element results in only a single object:

>>> a = array([(o,1,1,0,0,01,1(10,1,1,0,1,01,10,0,0,1,1,11,1(00,0,0,0,1,011)
>>> s = [[1,1,11, [1,1,11, [1,1,1]]
>>> label (a, s) [0]
array([[O0, 1, 1, 0, 0, O
, 1, 0, 1, O
, 0, 1, 1, 1
0, 1, 0

[OI
(o,
[OV 4 OI

o O

If no structuring element is provided, one is generated by calling generate_binary_structure (see
Binary morphology) using a connectivity of one (which in 2D is the 4-connected structure of the first example).
The input can be of any type, any value not equal to zero is taken to be part of an object. This is useful if you
need to ‘re-label’ an array of object indices, for instance after removing unwanted objects. Just apply the label
function again to the index array. For instance:

>>> 1, n = label([1, 0, 1, 0, 11)

>>> 1

array([1 0 2 0 31])

>>> 1 = where(l '= 2, 1, 0)
>>> 1

array([1 0 0 0 31])
>>> label (1) [0]
array ([1 0 0 0 21])

Note: The structuring element used by 1abel is assumed to be symmetric.

There is a large number of other approaches for segmentation, for instance from an estimation of the borders of
the objects that can be obtained for instance by derivative filters. One such an approach is watershed segmentation.
The function watershed_ift generates an array where each object is assigned a unique label, from an array that
localizes the object borders, generated for instance by a gradient magnitude filter. It uses an array containing initial
markers for the objects:

The watershed_ift function applies a watershed from markers algorithm, using an Iterative Forest Trans-
form, as described in: P. Felkel, R. Wegenkittl, and M. Bruckschwaiger, “Implementation and Complexity of the
Watershed-from-Markers Algorithm Computed as a Minimal Cost Forest.”, Eurographics 2001, pp. C:26-35.
The inputs of this function are the array to which the transform is applied, and an array of markers that designate
the objects by a unique label, where any non-zero value is a marker. For instance:

>>> input = array(([([0, O, O, O, O, O, 01,

o, 1, 1, 1, 1, 1, 01,

(o, 1, o, o, o, 1, 01,

ro, 1, o, o, o, 1, 01,

o, 1, o, o, o, 1, 01,

(¢, 1, 1, 1, 1, 1, 0]
C (o, o, o, o, 0, 0, 0] np.uint8)
>>> markers = array ([[1, , , , , , ,

4

~
~
~

’

~

~
o O O O
~
O O O O
~
N O O O
~
o O O O
o O O O
~
O O O O — >~
[P EE
~

~
~
~

’

~

128

Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

(o, o, o, o, 0, 0, 01,
(o, o, o, o, 0, 0, 01,
c.. (o, o, o, o, 0, 0, 0]1, np.int8)
>>> watershed_ift (input, markers)
array ([, 1, 1, 1, 1, 1, 17,
(1, 1, 2, 2, 2, 1, 11,
[, 2, 2, 2, 2, 2, 11,
[r, 2, 2, 2, 2, 2, 11,
[, 2, 2, 2, 2, 2, 11,
(1, 1, 2, 2, 2, 1, 11,
(., 1, 1, 1, 1, 1, 111, dtype=int8)

Here two markers were used to designate an object (marker = 2) and the background (marker = 1). The order
in which these are processed is arbitrary: moving the marker for the background to the lower right corner of the
array yields a different result:

>>> markers = array([[O, O, O, O, O, 0, 0],
(o, o, o, o, 0, 0, 01,
(o, o, o, o, 0, 0, 01,
(o, o, o, 2, 0, 0, 01,
(o, o, o, o, 0, 0, 01,
(o, o, o, o, 0, 0, 01,
c.. (o, o, o, 0o, 0, 0, 111, np.int8)
>>> watershed_ift (input, markers)
array ([, 1, 1, 1, 1, 1, 17,
r, », 1, 1, 1, 1, 11,
rr, 1, 2, 2, 2, 1, 11,
(2, 1, 2, 2, 2, 1, 11,
(1, 1, 2, 2, 2, 1, 11,
r, », 1, 1, 1, 1, 11,
(., 1, 1, 1, 1, 1, 111, dtype=int8)

The result is that the object (marker = 2) is smaller because the second marker was processed earlier. This
may not be the desired effect if the first marker was supposed to designate a background object. Therefore
watershed_ift treats markers with a negative value explicitly as background markers and processes them
after the normal markers. For instance, replacing the first marker by a negative marker gives a result similar to
the first example:

>>> markers = array([[0O, O, O, O, O, O, 07,
ro, o, o, o, o, o, 01,
ro, o, o, o, o, o, 01,
(o, o, o, 2, 0, 0, 01,
ro, o, o, o, o, o, 01,
o, o, o, o, o, o, 01,
ce (o, o, o, 0o, 0, 0, =111, np.int8)
>>> watershed_ift (input, markers)
array(([-1, -1, -1, -1, -1, -1, -17,
[-1, -1, 2, 2, 2, -1, -11,
-1, 2, 2, 2, 2, 2, -11,
-, 2, 2, 2, 2, 2, -11,
-1, 2, 2, 2, 2, 2, -11,
[-1, -1, 2, 2, 2, -1, -11,
[-1, -1, -1, -1, -1, -1, -1]], dtype=int38)

The connectivity of the objects is defined by a structuring element. If no structuring element is provided, one
is generated by calling generate_binary_structure (see Binary morphology) using a connectivity of
one (which in 2D is a 4-connected structure.) For example, using an 8-connected structure with the last example
yields a different object:

1.14. Multidimensional image processing (scipy.ndimage) 129

SciPy Reference Guide, Release 0.16.0

>>> watershed_ift (input, markers,

structure = [[1,1,1], [1,1,11, [1,1,111)

array(([-1, -1, -1, -1, -1, -1, -17,

-, 2, 2, 2, 2, 2, -11,

-1, 2, 2, 2, 2, 2, -11,

-, 2, 2, 2, 2, 2, -11,

-, 2, 2, 2, 2, 2, -11,

-1, 2, 2, 2, 2, 2, -11,

[-1, -1, -1, -1, -1, -1, -1]], dtype=int38)

Note: The implementation of watershed_ift limits the data types of the input to UInt 8 and UInt16.

1.14.8 Object measurements

Given an array of labeled objects, the properties of the individual objects can be measured. The find_objects
function can be used to generate a list of slices that for each object, give the smallest sub-array that fully contains the
object:

The £ind_objects function finds all objects in a labeled array and returns a list of slices that correspond to
the smallest regions in the array that contains the object. For instance:

>>> a = array([(o,1,1,0,0,01,1(10,1,1,0,1,01,10,0,0,1,1,11,1(00,0,0,0,1,011)

>>> 1, n = label (a)

>>> f =

>>> al[f
[

find_objects returns slices for all objects, unless the max_label parameter is larger then zero, in which case
only the first max_label objects are returned. If an index is missing in the label array, None is return instead of
a slice. For example:

>>> find_objects([1, 0, 3, 4], max_label = 3)
[(slice (0, 1, None),), None, (slice(2, 3, None),)]

The list of slices generated by find_objects is useful to find the position and dimensions of the objects in the
array, but can also be used to perform measurements on the individual objects. Say we want to find the sum of the
intensities of an object in image:

>>> image = arange (4 * 6).reshape (4, 6)

>>> mask = array(([0,1,1,0,0,0],10,1,1,0,1,0},(0,0,0,1,21,17,10,0,0,0,1,011)
>>> labels = label (mask) [0]

>>> slices = find_objects(labels)

Then we can calculate the sum of the elements in the second object:

>>> where (labels([slices[1]] == 2, image[slices[1]], 0).sum()
80

That is however not particularly efficient, and may also be more complicated for other types of measurements. There-
fore a few measurements functions are defined that accept the array of object labels and the index of the object to be
measured. For instance calculating the sum of the intensities can be done by:

130 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> sum(image, labels, 2)
80

For large arrays and small objects it is more efficient to call the measurement functions after slicing the array:

>>> sum(image([slices[1]], labels[slices[1]], 2)
80

Alternatively, we can do the measurements for a number of labels with a single function call, returning a list of results.
For instance, to measure the sum of the values of the background and the second object in our example we give a list
of labels:

>>> sum(image, labels, [0, 2])
array ([178.0, 80.01])

The measurement functions described below all support the index parameter to indicate which object(s) should be
measured. The default value of index is None. This indicates that all elements where the label is larger than zero
should be treated as a single object and measured. Thus, in this case the labels array is treated as a mask defined by
the elements that are larger than zero. If index is a number or a sequence of numbers it gives the labels of the objects
that are measured. If index is a sequence, a list of the results is returned. Functions that return more than one result,
return their result as a tuple if index is a single number, or as a tuple of lists, if index is a sequence.

The sum function calculates the sum of the elements of the object with label(s) given by index, using the labels
array for the object labels. If index is None, all elements with a non-zero label value are treated as a single
object. If label is None, all elements of input are used in the calculation.

The mean function calculates the mean of the elements of the object with label(s) given by index, using the
labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.

The variance function calculates the variance of the elements of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.

The standard_deviation function calculates the standard deviation of the elements of the object with
label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-
zero label value are treated as a single object. If label is None, all elements of input are used in the calculation.
The minimum function calculates the minimum of the elements of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.

The maximum function calculates the maximum of the elements of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.

The minimum_position function calculates the position of the minimum of the elements of the object with
label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero
label value are treated as a single object. If label is None, all elements of input are used in the calculation.

The maximum_position function calculates the position of the maximum of the elements of the object with
label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero
label value are treated as a single object. If label is None, all elements of input are used in the calculation.

The extrema function calculates the minimum, the maximum, and their positions, of the elements of the
object with label(s) given by index, using the labels array for the object labels. If index is None, all elements
with a non-zero label value are treated as a single object. If label is None, all elements of input are used in
the calculation. The result is a tuple giving the minimum, the maximum, the position of the minimum and the
postition of the maximum. The result is the same as a tuple formed by the results of the functions minimum,
maximum, minimum_position, and maximum_position that are described above.

The center_of_mass function calculates the center of mass of the of the object with label(s) given by index,
using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated
as a single object. If label is None, all elements of input are used in the calculation.

1.14. Multidimensional image processing (scipy.ndimage) 131

SciPy Reference Guide, Release 0.16.0

The histogram function calculates a histogram of the of the object with label(s) given by index, using the
labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation. Histograms are defined by their
minimum (min), maximum (max) and the number of bins (bins). They are returned as one-dimensional arrays
of type Int32.

1.14.9 Extending ndimage in C

A few functions in the scipy.ndimage take a call-back argument. This can be a python function, but also a
PyCObject containing a pointer to a C function. To use this feature, you must write your own C extension that
defines the function, and define a Python function that returns a PyCOb ject containing a pointer to this function.

An example of a function that supports this is geometric_transform (see Interpolation functions). You can pass
it a python callable object that defines a mapping from all output coordinates to corresponding coordinates in the input
array. This mapping function can also be a C function, which generally will be much more efficient, since the overhead
of calling a python function at each element is avoided.

For example to implement a simple shift function we define the following function:

static int
_shift_function (int xoutput_coordinates, doublex input_coordinates,
int output_rank, int input_rank, wvoid xcallback_data)

int ii;
/#+ get the shift from the callback data pointer: */
double shift = * (doublex*)callback_data;
/* calculate the coordinates: */
for(ii = 0; 1i < irank; ii++)
icoor[ii] = ocoor[ii] - shift;
/+ return OK status: =/
return 1;

}

This function is called at every element of the output array, passing the current coordinates in the output_coordinates
array. On return, the input_coordinates array must contain the coordinates at which the input is interpolated. The ranks
of the input and output array are passed through output_rank and input_rank. The value of the shift is passed through
the callback_data argument, which is a pointer to void. The function returns an error status, in this case always 1,
since no error can occur.

A pointer to this function and a pointer to the shift value must be passed to geometric_transform. Both are
passed by a single PyCOb ject which is created by the following python extension function:

static PyObject =
py_shift_function (PyObject +obj, PyObject xargs)
{
double shift = 0.0;
if (!PyArg_ParseTuple(args, "d", &shift)) {
PyErr_SetString (PyExc_RuntimeError, "invalid parameters");
return NULL;

} else {
/#* assign the shift to a dynamically allocated location: =/
double *cdata = (doublex)malloc (sizeof (double));

+cdata = shift;

/* wrap function and callback_data in a CObject: #*/

return PyCObject_FromVoidPtrAndDesc (_shift_function, cdata,
_destructor);

132 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

The value of the shift is obtained and then assigned to a dynamically allocated memory location. Both this data pointer
and the function pointer are then wrapped in a PyCOb ject, which is returned. Additionally, a pointer to a destructor
function is given, that will free the memory we allocated for the shift value when the PyCOb ject is destroyed. This
destructor is very simple:

static void
_destructor (voidx cobject, wvoid xcdata)
{
if (cdata)
free (cdata);

}

To use these functions, an extension module is built:

static PyMethodDef methods[] = {
{"shift_ function", (PyCFunction)py_shift_function, METH_VARARGS, ""},
{NULL, NULL, 0, NULL}

i

void
initexample (void)
{
Py_InitModule ("example", methods);
}

This extension can then be used in Python, for example:

>>> import example

>>> array = arange (l2) .reshape=(4, 3).astype(np.float64)
>>> fnc = example.shift_function(0.5)

>>> geometric_transform(array, fnc)

array ([[O. 0. 0. 1,
[O. 1.3625 2.7375],
[O. 4.8125 6.1875],
[O. 8.2625 9.6375]11])

C callback functions for use with ndimage functions must all be written according to this scheme. The next section
lists the ndimage functions that acccept a C callback function and gives the prototype of the callback function.

1.14.10 Functions that support C callback functions

The ndimage functions that support C callback functions are described here. Obviously, the prototype of the func-
tion that is provided to these functions must match exactly that what they expect. Therefore we give here the pro-
totypes of the callback functions. All these callback functions accept a void callback_data pointer that must be
wrapped in a PyCOb ject using the Python PyCOb ject_FromVoidPtrAndDesc function, which can also ac-
cept a pointer to a destructor function to free any memory allocated for callback_data. If callback_data is not needed,
PyCObject_FromVoidPtr may be used instead. The callback functions must return an integer error status that is
equal to zero if something went wrong, or 1 otherwise. If an error occurs, you should normally set the python error
status with an informative message before returning, otherwise, a default error message is set by the calling function.

The function generic_filter (see Generic filter functions) accepts a callback function with the following proto-
type:

The calling function iterates over the elements of the input and output arrays, calling the callback function at
each element. The elements within the footprint of the filter at the current element are passed through the buffer
parameter, and the number of elements within the footprint through filter_size. The calculated valued should be
returned in the refurn_value argument.

1.14. Multidimensional image processing (scipy.ndimage) 133

SciPy Reference Guide, Release 0.16.0

The function generic_filterld (see Generic filter functions) accepts a callback function with the following
prototype:

The calling function iterates over the lines of the input and output arrays, calling the callback function at each
line. The current line is extended according to the border conditions set by the calling function, and the result is
copied into the array that is passed through the input_line array. The length of the input line (after extension) is
passed through input_length. The callback function should apply the 1D filter and store the result in the array
passed through output_line. The length of the output line is passed through output_length.

The function geometric_transform (see Interpolation functions) expects a function with the following proto-
type:

The calling function iterates over the elements of the output array, calling the callback function at each element.
The coordinates of the current output element are passed through output_coordinates. The callback function
must return the coordinates at which the input must be interpolated in input_coordinates. The rank of the input
and output arrays are given by input_rank and output_rank respectively.

1.15 File 10 (scipy.io)

See also:

numpy-reference.routines.io (in numpy)

1.15.1 MATLAB files

loadmat(file_name[, mdict, appendmat]) Load MATLAB file

savemat(file_name, mdict[, appendmat, ...]) Save a dictionary of names and arrays into a MATLAB-style .mat file.

whosmat(file_name[, appendmat]) List variables inside a MATLAB file

The basic functions

We’ll start by importing scipy . io and calling it sio for convenience:

>>> import scipy.io as sio

If you are using [Python, try tab completing on sio. Among the many options, you will find:

sio.loadmat
sio.savemat
sio.whosmat

These are the high-level functions you will most likely use when working with MATLAB files. You’ll also find:

sio.matlab

This is the package from which loadmat, savemat and whosmat are imported. Within sio.matlab, you will
find the mio module This module contains the machinery that 1oadmat and savemat use. From time to time you
may find yourself re-using this machinery.

How do | start?

You may have a .mat file that you want to read into Scipy. Or, you want to pass some variables from Scipy / Numpy
into MATLAB.

134 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

To save us using a MATLAB license, let’s start in Octave. Octave has MATLAB-compatible save and load functions.
Start Octave (octave at the command line for me):

octave:1> a = 1:12

octave:2> a = reshape(a, [1 3 41])

ans(:,:,1) =

ans(:,:,3) =

ans(:,:,4) =

10 11 12

octave:3> save -6 octave_a.mat a % MATLAB 6 compatible
octave:4> 1s octave_a.mat

octave_a.mat

Now, to Python:

>>> mat_contents = sio.loadmat ('octave_a.mat')
>>> mat_contents
{'a': array ([[[1., 4., 7., 10.71,
[2., 5., 8., 11.1,
[3., 6., 9., 12.111),
' version_ ': '1.0'",
' _header__': 'MATLAB 5.0 MAT-file, written by
Octave 3.6.3, 2013-02-17 21:02:11 UTC"',
'__globals__': [1}
>>> oct_a = mat_contents['a']
>>> oct_a
array ([[[1., 4., 7., 10.71,

[2., 5., 8., 11.71,

[3., 6., 9., 12.111)
>>> oct_a.shape
(1, 3, 4)

Now let’s try the other way round:

>>> import numpy as np

>>> vect = np.arange(10)
>>> vect.shape
(10,)

>>> sio.savemat ('np_vector.mat', {'vect':vect})

Then back to Octave:

1.15. File 10 (scipy.io) 135

http://www.gnu.org/software/octave

SciPy Reference Guide, Release 0.16.0

octave:8> load np_vector.mat
octave: 9> vect
vect =

octave:10> size (vect)
ans =

1 10

If you want to inspect the contents of a MATLAB file without reading the data into memory, use the whosmat
command:

>>> sio.whosmat ('octave_a.mat')
[('a', (1, 3, 4), 'double')]

whosmat returns a list of tuples, one for each array (or other object) in the file. Each tuple contains the name, shape
and data type of the array.

MATLAB structs

MATLAB structs are a little bit like Python dicts, except the field names must be strings. Any MATLAB object can be
a value of a field. As for all objects in MATLAB, structs are in fact arrays of structs, where a single struct is an array
of shape (1, 1).

octave:11> my_struct = struct('fieldl', 1, 'field2',6 2)
my_struct =
{
fieldl
field2 =

I
N =

octave:12> save -6 octave_struct.mat my_struct

We can load this in Python:

>>> mat_contents = sio.loadmat ('octave struct.mat')
>>> mat_contents
{'my_struct': array ([[([[1.0]], [[2.0]11)11,
dtype=[('fieldl', '0O'), ('field2', '0")1]), '_version__': '1.0', '__header__': 'MATLAB 5.0 MAT-

>>> oct_struct = mat_contents['my_struct']
>>> oct_struct.shape

(1, 1)

>>> val = oct_struct[0,0]

>>> val

([rx.011, [(12.011)

>>> val['fieldl'"]

array ([[1.11)

>>> val['field2'"]

array ([[2.11)

>>> val.dtype

dtype ([('fieldl', 'O'"), ('field2', '0")1)

In versions of Scipy from 0.12.0, MATLAB structs come back as numpy structured arrays, with fields named for the
struct fields. You can see the field names in the dt ype output above. Note also:

136 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

>>> val = oct_struct[0,0]

and:

octave:13> size (my_struct)
ans =

So, in MATLAB, the struct array must be at least 2D, and we replicate that when we read into Scipy. If you want all

length 1 dimensions squeezed out, try this:

>>> mat_contents = sio.loadmat ('octave_struct.mat', squeeze_me=True)
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct. shape

0

Sometimes, it’s more convenient to load the MATLAB structs as python objects rather than numpy structured ar-
rays - it can make the access syntax in python a bit more similar to that in MATLAB. In order to do this, use the

struct_as_record=False parameter setting to loadmat.

>>> mat_contents = sio.loadmat ('octave_struct.mat', struct_as_record=False)
>>> oct_struct = mat_contents['my_struct']

>>> oct_struct[0,0].fieldl

array ([[1.11)

struct_as_record=False works nicely with squeeze_me:

>>> mat_contents = sio.loadmat ('octave_struct.mat', struct_as_record=False,
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct.shape # but no - it's a scalar

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'mat_struct' object has no attribute 'shape'
>>> type (oct_struct)
<class 'scipy.io.matlab.mio5_params.mat_struct'>
>>> oct_struct.fieldl
1.0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'mat_struct' object has no attribute 'shape'

Saving struct arrays can be done in various ways. One simple method is to use dicts:

>>> a_dict = {'fieldl': 0.5, 'field2': 'a string'}
>>> sio.savemat ('saved_struct.mat', {'a_dict': a_dict})
loaded as:

octave:21> load saved_struct
octave:22> a_dict
a_dict =

scalar structure containing the fields:

field2 = a string
fieldl 0.50000

You can also save structs back again to MATLAB (or Octave in our case) like this:

squeeze_me=True)

1.15. File 10 (scipy.io)

137

SciPy Reference Guide, Release 0.16.0

>>> dt = [('f1', '"£8"), ('f2', 'S10")]
>>> arr = np.zeros((2,), dtype=dt)
>>> arr
array ([(0.0, ""), (0.0, "")1,
dtype=[('f1', '<£f8'"), ('f2', 'S10")1])
>>> arr[0]['"f1'] = 0.5
>>> arr[0]['£f2'] = 'python'
>>> arr[1]['f1'] = 99
>>> arr[1]['f2'] = 'not perl'
>>> sio.savemat ('np_struct_arr.mat', {'arr': arr})

MATLAB cell arrays

Cell arrays in MATLAB are rather like python lists, in the sense that the elements in the arrays can contain any type
of MATLAB object. In fact they are most similar to numpy object arrays, and that is how we load them into numpy.

octave:14> my_cells = {1, [2, 31}
my_cells =
{

[1,1]1 = 1

[1,2]

octave:15> save -6 octave_cells.mat my_cells

Back to Python:

>>> mat_contents = sio.loadmat ('octave cells.mat')
>>> oct_cells = mat_contents['my_cells']
>>> print (oct_cells.dtype)

object

>>> val = oct_cells[0,0]
>>> val

array ([[1.11)

>>> print (val.dtype)
floato64

Saving to a MATLAB cell array just involves making a numpy object array:

>>> obj_arr = np.z
>>> obj_arr[0] = 1
>>> obj_arr[l] = 'a string'

>>> obj_arr

array ([1, 'a string'], dtype=object)

>>> sio.savemat ('np_cells.mat', {'obj arr':obj_arr})

eros((2,), dtype=np.object)

octave:16> load np_cells.mat
octave:17> obj_arr

obj_arr =
{
[1,1] =1
[2,1] = a string

138 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

1.15.2 IDL files

readsav(file_name[, idict, python_dict, ...]) Read an IDL .sav file

1.15.3 Matrix Market files

mminfo(source) Queries the contents of the Matrix Market file ‘filename’ to extract size and storag
mmread(source) Reads the contents of a Matrix Market file ‘filename’ into a matrix.
mmwrite(target, a[, comment, field, precision]) Writes the sparse or dense array a to a Matrix Market formatted file.

1.15.4 Wav sound files (scipy.io.wavfile)

read(filename[, mmap]) Return the sample rate (in samples/sec) and data from a WAV file
write(filename, rate, data) Write a numpy array as a WAV file

1.15.5 Arff files (scipy.io.arff)

Module to read ARFF files, which are the standard data format for WEKA.

ARFF is a text file format which support numerical, string and data values. The format can also represent missing data
and sparse data.

See the WEKA website for more details about arff format and available datasets.

Examples

>>> from scipy.io import arff
>>> from cStringIO import StringIO
>>> content = """
@relation foo
@attribute width numeric
@attribute height numeric
@attribute color ({red,green,blue,yellow,black}
@data
5.0,3.25,blue
4.5,3.75,green
3.0,4.00,red
>>> f = StringIO(content)
>>> data, meta = arff.loadarff (f)
>>> data
array ([(5.0, 3.25, 'blue'), (4.5, 3.75, 'green'), (3.0, 4.0, 'red")l],
dtype=[('width', '<f8'), ('height', '<f8'), ('color', '|S6')])
>>> meta
Dataset: foo
width's type is numeric
height's type 1is numeric
color's type is nominal, range is ('red', 'green', 'blue', 'yellow', 'black')

loadarff(f) Read an arff file.

1.15. File 10 (scipy.io) 139

http://weka.wikispaces.com/ARFF

SciPy Reference Guide, Release 0.16.0

1.15.6 Netcdf (scipy.io.netcdf)

netcdf_file(filename[, mode, mmap, version]) A file object for NetCDF data.

Allows reading of NetCDF files (version of pupynere package)

1.16 Weave (scipy.weave)

1.16.1 Outline

140 Chapter 1. SciPy Tutorial

http://pypi.python.org/pypi/pupynere/

SciPy Reference Guide, Release 0.16.0

Contents

* Weave (scipy.weave)
— Outline
Introduction
Requirements
Installation
Testing
% Testing Notes:
Benchmarks
Inline
* More with printf
* More examples
- Binary search
- Dictionary Sort
- NumPy — cast/copy/transpose
- wxPython
Keyword Option
Inline Arguments
Distutils keywords
- Keyword Option Examples
- Returning Values
- The issue with 1ocals ()
- A quick look at the code
Technical Details
Passing Variables in/out of the C/C++ code
Type Conversions
- NumPy Argument Conversion
- String, List, Tuple, and Dictionary Conversion
- File Conversion
- Callable, Instance, and Module Conversion
- Customizing Conversions
The Catalog
- Function Storage
- Catalog search paths and the PYTHONCOMPILED variable

* ¥ ¥

¥ ¥ ¥

*

- Blitz
* Requirements
* Limitations
* NumPy efficiency issues: What compilation buys you
* The Tools
- Parser
- Blitz and NumPy
Type definitions and coersion
Cataloging Compiled Functions
Checking Array Sizes
* Creating the Extension Module
— Extension Modules
#* A Simple Example
* Fibonacci Example
— Customizing Type Conversions — Type Factories
— Things I wish weave did

* % ¥

1.16. Weave (scipy.weave) 141

SciPy Reference Guide, Release 0.16.0

1.16.2 Introduction

The scipy.weave (below just weave) package provides tools for including C/C++ code within in Python code.
This offers both another level of optimization to those who need it, and an easy way to modify and extend any supported
extension libraries such as wxPython and hopefully VTK soon. Inlining C/C++ code within Python generally results
in speed ups of 1.5x to 30x speed-up over algorithms written in pure Python (However, it is also possible to slow things
down...). Generally algorithms that require a large number of calls to the Python API don’t benefit as much from the
conversion to C/C++ as algorithms that have inner loops completely convertable to C.

There are three basic ways to use weave. The weave.inline () function executes C code directly within Python,
and weave.blitz () translates Python NumPy expressions to C++ for fast execution. blitz () was the original
reason weave was built. For those interested in building extension libraries, the ext_t ools module provides classes
for building extension modules within Python.

Most of weave’ s functionality should work on Windows and Unix, although some of its functionality requires gcc
or a similarly modern C++ compiler that handles templates well. Up to now, most testing has been done on Windows
2000 with Microsoft’s C++ compiler (MSVC) and with gcc (mingw32 2.95.2 and 2.95.3-6). All tests also pass on
Linux (RH 7.1 with gcc 2.96), and I’ve had reports that it works on Debian also (thanks Pearu).

The inline and blitz provide new functionality to Python (although I’ve recently learned about the Pylnline
project which may offer similar functionality to inline). On the other hand, tools for building Python extension
modules already exists (SWIG, SIP, pycpp, CXX, and others). As of yet, I'm not sure where weave fits in this
spectrum. It is closest in flavor to CXX in that it makes creating new C/C++ extension modules pretty easy. However,
if you’re wrapping a gaggle of legacy functions or classes, SWIG and friends are definitely the better choice. weave
is set up so that you can customize how Python types are converted to C types in weave. This is great for inline (),
but, for wrapping legacy code, it is more flexible to specify things the other way around — that is how C types map to
Python types. This weave does not do. I guess it would be possible to build such a tool on top of weave, but with
good tools like SWIG around, I'm not sure the effort produces any new capabilities. Things like function overloading
are probably easily implemented in weave and it might be easier to mix Python/C code in function calls, but nothing
beyond this comes to mind. So, if you're developing new extension modules or optimizing Python functions in C,
weave.ext_tools () might be the tool for you. If you're wrapping legacy code, stick with SWIG.

The next several sections give the basics of how to use weave. We’ll discuss what’s happening under the covers in
more detail later on. Serious users will need to at least look at the type conversion section to understand how Python
variables map to C/C++ types and how to customize this behavior. One other note. If you don’t know C or C++ then
these docs are probably of very little help to you. Further, it’d be helpful if you know something about writing Python
extensions. weave does quite a bit for you, but for anything complex, you’ll need to do some conversions, reference
counting, etc.

Note: weave is actually part of the SciPy package. However, it also works fine as a standalone package (you can
install from scipy/weave with python setup.py install). The examples here are given as if it is used as

a stand alone package. If you are using from within scipy, you can use from scipy import weave and the
examples will work identically.

1.16.3 Requirements

e Python
T'use 2.1.1. Probably 2.0 or higher should work.
e C++ compiler

weave uses distutils to actually build extension modules, so it uses whatever compiler was originally
used to build Python. weave itself requires a C++ compiler. If you used a C++ compiler to build Python, your
probably fine.

142 Chapter 1. SciPy Tutorial

http://pyinline.sourceforge.net/
http://www.scipy.org

SciPy Reference Guide, Release 0.16.0

On Unix gcc is the preferred choice because I've done a little testing with it. All testing has been done with gcc,
but I expect the majority of compilers should work for inline and ext_tools. The one issue I'm not sure
about is that I’ve hard coded things so that compilations are linked with the stdc++ library. Is this standard
across Unix compilers, or is this a gcc-ism?

Forblitz (), you’ll need a reasonably recent version of gcc. 2.95.2 works on windows and 2.96 looks fine on
Linux. Other versions are likely to work. Its likely that KAI’s C++ compiler and maybe some others will work,
but I haven’t tried. My advice is to use gcc for now unless your willing to tinker with the code some.

On Windows, either MSVC or gcc (mingw32) should work. Again, you’ll need gcc forblitz () asthe MSVC
compiler doesn’t handle templates well.

I have not tried Cygwin, so please report success if it works for you.
e NumPy

The python NumPy module is required for b1itz () to work and for numpy.distutils which is used by weave.

1.16.4 Installation

There are currently two ways to get weave. First, weave is part of SciPy and installed automatically (as a sub-
package) whenever SciPy is installed. Second, since weave is useful outside of the scientific community, it has been
setup so that it can be used as a stand-alone module.

The stand-alone version can be downloaded from here. Instructions for installing should be found there as well.
setup.py file to simplify installation.

1.16.5 Testing

Once weave is installed, fire up python and run its unit tests.

>>> import weave
>>> weave.test ()
runs long time... spews tons of output and a few warnings

Ran 184 tests in 158.418s
OK
>>>

This takes a while, usually several minutes. On Unix with remote file systems, I’ve had it take 15 or so minutes. In the
end, it should run about 180 tests and spew some speed results along the way. If you get errors, they’ll be reported at
the end of the output. Please report errors that you find. Some tests are known to fail at this point.

If you only want to test a single module of the package, you can do this by running test() for that specific module.

>>> import weave.scalar_spec
>>> weave.scalar_spec.test ()

Ran 7 tests in 23.284s

1.16. Weave (scipy.weave) 143

http://www.mingw.org%3Ewww.mingw.org
http://numeric.scipy.org/
http://www.scipy.org/Weave

SciPy Reference Guide, Release 0.16.0

Testing Notes:

¢ Windows 1

I’ve had some test fail on windows machines where I have msvc, gec-2.95.2 (in c:gcc-2.95.2), and gec-2.95.3-6
(in c:gcc) all installed. My environment has c:gcc in the path and does not have c:gcc-2.95.2 in the path. The test
process runs very smoothly until the end where several test using gcc fail with cpp0O not found by g++. If I check
os.system(‘gcc -v’) before running tests, I get gcc-2.95.3-6. If I check after running tests (and after failure), I
get gcc-2.95.2. ?77huh??. The os.environ[’PATH’] still has c:gcc first in it and is not corrupted (msvc/distutils
messes with the environment variables, so we have to undo its work in some places). If anyone else sees this, let
me know - - it may just be an quirk on my machine (unlikely). Testing with the gcc- 2.95.2 installation always
works.

¢ Windows 2

If you run the tests from PythonWin or some other GUI tool, you’ll get a ton of DOS windows popping up
periodically as weave spawns the compiler multiple times. Very annoying. Anyone know how to fix this?

e wxPython

wxPython tests are not enabled by default because importing wxPython on a Unix machine without access to a
X-term will cause the program to exit. Anyone know of a safe way to detect whether wxPython can be imported
and whether a display exists on a machine?

1.16.6 Benchmarks

This section has not been updated from old scipy weave and Numeric....

This section has a few benchmarks — thats all people want to see anyway right? These are mostly taken from running
files in the weave /example directory and also from the test scripts. Without more information about what the test
actually do, their value is limited. Still, their here for the curious. Look at the example scripts for more specifics about
what problem was actually solved by each run. These examples are run under windows 2000 using Microsoft Visual
C++ and python2.1 on a 850 MHz PIII laptop with 320 MB of RAM. Speed up is the improvement (degredation)
factor of weave compared to conventional Python functions. The blitz () comparisons are shown compared to
NumPy.

Table 1.7: inline and ext_tools

Algorithm Speed up
binary search 1.50
fibonacci (recursive) | 82.10
fibonacci (loop) 9.17
return None 0.14

map 1.20
dictionary sort 2.54
vector quantization 37.40

Table 1.8: blitz — double precision

Algorithm Speed up
a=b+c512x512 3.05
a=b+c+d512x512 4.59
5 pt avg. filter, 2D Image 512x512 9.01
Electromagnetics (FDTD) 100x100x100 | 8.61

The benchmarks shown b11itz in the best possible light. NumPy (at least on my machine) is significantly worse for
double precision than it is for single precision calculations. If your interested in single precision results, you can pretty
much divide the double precision speed up by 3 and you’ll be close.

144 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

1.16.7 Inline

inline () compiles and executes C/C++ code on the fly. Variables in the local and global Python scope are also
available in the C/C++ code. Values are passed to the C/C++ code by assignment much like variables are passed into
a standard Python function. Values are returned from the C/C++ code through a special argument called return_val.
Also, the contents of mutable objects can be changed within the C/C++ code and the changes remain after the C code
exits and returns to Python. (more on this later)

Here’s a trivial print £ example using inline ():

>>> import weave

>>> a =1

>>> weave.inline ('printf ("2d\\n",a);"',['a"'])
1

In this, its most basic form, inline (c_code, wvar_list) requires two arguments. c_code is a string of valid
C/C++ code. var_list is a list of variable names that are passed from Python into C/C++. Here we have a simple
printf statement that writes the Python variable a to the screen. The first time you run this, there will be a pause
while the code is written to a .cpp file, compiled into an extension module, loaded into Python, cataloged for future
use, and executed. On windows (850 MHz PIII), this takes about 1.5 seconds when using Microsoft’s C++ compiler
(MSVC) and 6-12 seconds using gcc (mingw32 2.95.2). All subsequent executions of the code will happen very
quickly because the code only needs to be compiled once. If you kill and restart the interpreter and then execute the
same code fragment again, there will be a much shorter delay in the fractions of seconds range. This is because weave
stores a catalog of all previously compiled functions in an on disk cache. When it sees a string that has been compiled,
it loads the already compiled module and executes the appropriate function.

Note: If you try the printf example in a GUI shell such as IDLE, PythonWin, PyShell, etc., you’re unlikely to
see the output. This is because the C code is writing to stdout, instead of to the GUI window. This doesn’t mean that

inline doesn’t work in these environments — it only means that standard out in C is not the same as the standard out for
Python in these cases. Non input/output functions will work as expected.

Although effort has been made to reduce the overhead associated with calling inline, it is still less efficient for simple
code snippets than using equivalent Python code. The simple printf example is actually slower by 30% or so
than using Python print statement. And, it is not difficult to create code fragments that are 8-10 times slower
using inline than equivalent Python. However, for more complicated algorithms, the speedup can be worthwhile —
anywhere from 1.5-30 times faster. Algorithms that have to manipulate Python objects (sorting a list) usually only see
a factor of 2 or so improvement. Algorithms that are highly computational or manipulate NumPy arrays can see much
larger improvements. The examples/vq.py file shows a factor of 30 or more improvement on the vector quantization
algorithm that is used heavily in information theory and classification problems.

More with printf

MSVC users will actually see a bit of compiler output that distutils does not suppress the first time the code executes:

>>> weave.inline (r'printf ("2d\n",a); "', ['a"'])
sc_e013937dbc8c647ac62438874e5795131.cpp
Creating library C:\DOCUME~1\eric\LOCALS~I1\Temp\python2l_ compiled\temp
\Release\sc_e013937dbc8c647ac62438874e5795131.1ib and
object C:\DOCUME~1\eric\LOCALS~1\Temp\python2l_compiled\temp\Release\sc_e013937dbc8c647ac62438874c¢
1

Nothing bad is happening, its just a bit annoying. * Anyone know how to turn this off?*

This example also demonstrates using ‘raw strings’. The r preceding the code string in the last example denotes that
this is a ‘raw string’. In raw strings, the backslash character is not interpreted as an escape character, and so it isn’t
necessary to use a double backslash to indicate that the ‘n’ is meant to be interpreted in the C printf statement

1.16. Weave (scipy.weave) 145

SciPy Reference Guide, Release 0.16.0

instead of by Python. If your C code contains a lot of strings and control characters, raw strings might make things
easier. Most of the time, however, standard strings work just as well.

The print £ statement in these examples is formatted to print out integers. What happens if a is a string? inline
will happily, compile a new version of the code to accept strings as input, and execute the code. The result?

>>> a = 'string'
>>> weave.inline (r'printf (" \n",a);',['a']l)
32956972

In this case, the result is non-sensical, but also non-fatal. In other situations, it might produce a compile time error
because a is required to be an integer at some point in the code, or it could produce a segmentation fault. Its possible
to protect against passing inline arguments of the wrong data type by using asserts in Python.

>>> a = 'string'
>>> def protected_printf(a):
assert (type (a) == type(l))

.. weave.inline (r'printf (" \n",a);"',['a']l)
>>> protected_printf (1)

1
>>> protected_printf('string')
AssertError...

For printing strings, the format statement needs to be changed. Also, weave doesn’t convert strings to char*. Instead
it uses CXX Py::String type, so you have to do a little more work. Here we convert it to a C++ std::string and then ask
cor the char* version.

>>> a = 'string'

>>> weave.inline (r'printf ("%s\n",std::string(a).c_str());"',['a'l)
string

XXX

This is a little convoluted. Perhaps strings should convert to std: : string objects instead of CXX objects. Or
maybe to charx.

As in this case, C/C++ code fragments often have to change to accept different types. For the given printing task,
however, C++ streams provide a way of a single statement that works for integers and strings. By default, the stream
objects live in the std (standard) namespace and thus require the use of std: :.

>>> weave.inline ('std::cout << a << std::endl;',['a'l)

1

>>> a = 'string'

>>> weave.inline ('std::cout << a << std::endl;',['a'l)
string

Examples using print f and cout are included in examples/print_example.py.

More examples

This section shows several more advanced uses of inline. It includes a few algorithms from the Python Cookbook
that have been re-written in inline C to improve speed as well as a couple examples using NumPy and wxPython.

Binary search

Lets look at the example of searching a sorted list of integers for a value. For inspiration, we’ll use Kalle Svensson’s
binary_search() algorithm from the Python Cookbook. His recipe follows:

146 Chapter 1. SciPy Tutorial

http://aspn.activestate.com/ASPN/Cookbook/Python
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/81188

SciPy Reference Guide, Release 0.16.0

def binary_search(seq, t):
min = 0; max = len(seq) - 1
while 1:
if max < min:
return -1

m = (min + max) / 2
if segm] < t:

min = m + 1
elif seg[m] > t:

max = m - 1
else:

return m

This Python version works for arbitrary Python data types. The C version below is specialized to handle integer values.
There is a little type checking done in Python to assure that we’re working with the correct data types before heading
into C. The variables seq and t don’t need to be declared because weave handles converting and declaring them in
the C code. All other temporary variables such asmin, max, etc. must be declared — it is C after all. Here’s the new
mixed Python/C function:

def c_int_binary_search(seq,t):
do a little type checking in Python
assert (type (t) == type(l))
assert (type (seq) == type([]))

now the C code

code = """
#line 29 "binary_search.py"
int val, m, min = 0;
int max = seqg.length() - 1;
PyObject xpy_val;
for(;;)

{
if (max < min)

{

return_val = Py::new_reference_to(Py::Int(-1));
break;

}

m = (min + max) /2;

val = py_to_int (PyList_GetItem(seqg.ptr(),m),"val");
if (val < t)
min = m + 1;
else 1if (val > t)
max = m — 1;
else

{
return_val = Py::new_reference_to(Py::Int (m));
break;

}

return inline(code, ['seq','t'])

We have two variables seq and t passed in. t is guaranteed (by the assert) to be an integer. Python integers are
converted to C int types in the transition from Python to C. seq is a Python list. By default, it is translated to a CXX
list object. Full documentation for the CXX library can be found at its website. The basics are that the CXX provides
C++ class equivalents for Python objects that simplify, or at least object orientify, working with Python objects in
C/C++. For example, seq. length () returns the length of the list. A little more about CXX and its class methods,
etc. is in the Type Conversions section.

1.16. Weave (scipy.weave) 147

http://cxx.sourceforge.net/

SciPy Reference Guide, Release 0.16.0

Note: CXX uses templates and therefore may be a little less portable than another alternative by Gordan McMillan
called SCXX which was inspired by CXX. It doesn’t use templates so it should compile faster and be more portable.

SCXX has a few less features, but it appears to me that it would mesh with the needs of weave quite well. Hopefully
xxx_spec files will be written for SCXX in the future, and we’ll be able to compare on a more empirical basis. Both
sets of spec files will probably stick around, it just a question of which becomes the default.

Most of the algorithm above looks similar in C to the original Python code. There are two main differences. The first is
the setting of return_val instead of directly returning from the C code with a return statement. return_val
is an automatically defined variable of type PyObject « that is returned from the C code back to Python. You’ll
have to handle reference counting issues when setting this variable. In this example, CXX classes and functions
handle the dirty work. All CXX functions and classes live in the namespace Py::. The following code con-
verts the integer m to a CXX Int () object and then to a PyObject * with an incremented reference count using
Py::new_reference_to().

return_val = Py::new_reference_to(Py::Int(m));

The second big differences shows up in the retrieval of integer values from the Python list. The simple Python seq[1]
call balloons into a C Python API call to grab the value out of the list and then a separate call to py_to_int () that
converts the PyObject* to an integer. py_to_int () includes both a NULL cheack and a PyInt_Check () call as
well as the conversion call. If either of the checks fail, an exception is raised. The entire C++ code block is executed
with in a try/catch block that handles exceptions much like Python does. This removes the need for most error
checking code.

It is worth note that CXX lists do have indexing operators that result in code that looks much like Python. However,
the overhead in using them appears to be relatively high, so the standard Python API was used on the seq.ptr ()
which is the underlying PyOb ject * of the List object.

The #1ine directive that is the first line of the C code block isn’t necessary, but it’s nice for debugging. If the
compilation fails because of the syntax error in the code, the error will be reported as an error in the Python file
“binary_search.py” with an offset from the given line number (29 here).

So what was all our effort worth in terms of efficiency? Well not a lot in this case. The examples/binary_search.py file
runs both Python and C versions of the functions As well as using the standard bisect module. If we runiton a 1
million element list and run the search 3000 times (for 0- 2999), here are the results we get:

C:\home\ej\wrk\scipy\weave\examples> python binary_search.py
Binary search for 3000 items in 1000000 length list of integers:
speed in python: 0.159999966621

speed of bisect: 0.121000051498

speed up: 1.32

speed in c: 0.110000014305

speed up: 1.45

speed in c(no asserts): 0.0900000333786

speed up: 1.78

So, we get roughly a 50-75% improvement depending on whether we use the Python asserts in our C version. If
we move down to searching a 10000 element list, the advantage evaporates. Even smaller lists might result in the
Python version being faster. I'd like to say that moving to NumPy lists (and getting rid of the Getltem() call) offers a
substantial speed up, but my preliminary efforts didn’t produce one. I think the log(N) algorithm is to blame. Because
the algorithm is nice, there just isn’t much time spent computing things, so moving to C isn’t that big of a win. If
there are ways to reduce conversion overhead of values, this may improve the C/Python speed up. Anyone have other
explanations or faster code, please let me know.

Dictionary Sort

The demo in examples/dict_sort.py is another example from the Python CookBook. This submission, by Alex Martelli,
demonstrates how to return the values from a dictionary sorted by their keys:

148 Chapter 1. SciPy Tutorial

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52306

SciPy Reference Guide, Release 0.16.0

def sortedDictValues3(adict) :
keys = adict.keys /()
keys.sort ()
return map (adict.get, keys)

Alex provides 3 algorithms and this is the 3rd and fastest of the set. The C version of this same algorithm follows:

def c_sort (adict):

assert (type (adict) == type({}))

code = """

#line 21 "dict_sort.py"

Py::List keys = adict.keys();

Py::List items (keys.length()); keys.sort();

PyObject* item = NULL;

for(int i = 0; i < keys.length();i++)

{
item = PyList_GET_ITEM (keys.ptr(),1i);
item = PyDict_GetItem(adict.ptr(),item);
Py_XINCREF (item) ;
PyList_SetItem(items.ptr(),i,item);

}

return_val = Py::new_reference_to (items);

nnn

return inline_tools.inline(code, ['adict'], verbose=1)

Like the original Python function, the C++ version can handle any Python dictionary regardless of the key/value pair
types. It uses CXX objects for the most part to declare python types in C++, but uses Python API calls to manipulate
their contents. Again, this choice is made for speed. The C++ version, while more complicated, is about a factor of 2
faster than Python.

C:\home\ej\wrk\scipy\weave\examples> python dict_sort.py
Dict sort of 1000 items for 300 iterations:
speed in python: 0.319999933243
[o, 1, 2, 3, 4]
speed in c: 0.151000022888
speed up: 2.12
[o, 1, 2, 3, 4]

NumPy — cast/copy/transpose

CastCopyTranspose is a function called quite heavily by Linear Algebra routines in the NumPy library. Its needed
in part because of the row-major memory layout of multi-demensional Python (and C) arrays vs. the col-major order
of the underlying Fortran algorithms. For small matrices (say 100x100 or less), a significant portion of the common
routines such as LU decompisition or singular value decompostion are spent in this setup routine. This shouldn’t
happen. Here is the Python version of the function using standard NumPy operations.

def _castCopyAndTranspose (type, array) :

if a.typecode () == type:
cast_array = copy.copy (NumPy.transpose (a))
else:
cast_array = copy.copy (NumPy.transpose (a) .astype (type))

return cast_array

And the following is a inline C version of the same function:

from weave.blitz tools import blitz_type_factories
from weave import scalar_spec

from weave import inline

def _cast_copy_transpose (type,a_2d):

1.16. Weave (scipy.weave) 149

SciPy Reference Guide, Release 0.16.0

assert (len (shape(a_2d)) == 2)

new_array = zeros (shape(a_2d),type)
NumPy_type = scalar_spec.NumPy_to_blitz_type_mapping[type]
code = \

for(int i = 0;1 < _Na_2d[0]; i++)
for(int 7 = 0; j < _Na_2d[1]; j++)
new_array (i, j) = (%s) a_2d(j,1);
"% NumPy_type
inline (code, ['new_array','a_2d'],
type_factories = blitz_type_factories,compiler="gcc'")
return new_array

This example uses blitz++ arrays instead of the standard representation of NumPy arrays so that indexing is simpler
to write. This is accomplished by passing in the blitz++ “type factories” to override the standard Python to C++ type
conversions. Blitz++ arrays allow you to write clean, fast code, but they also are sloooow to compile (20 seconds
or more for this snippet). This is why they aren’t the default type used for Numeric arrays (and also because most
compilers can’t compile blitz arrays...). inline () is also forced to use ‘gcc’ as the compiler because the default
compiler on Windows (MSVC) will not compile blitz code. (‘gcc’ I think will use the standard compiler on Unix
machine instead of explicitly forcing gcc (check this)) Comparisons of the Python vs inline C++ code show a factor
of 3 speed up. Also shown are the results of an “inplace” transpose routine that can be used if the output of the
linear algebra routine can overwrite the original matrix (this is often appropriate). This provides another factor of 2
improvement.

#C:\home\ej\wrk\scipy\weave\examples> python cast_copy_transpose.py
Cast/Copy/Transposing (150,150)array 1 times

speed in python: 0.870999932289

speed in c: 0.25

speed up: 3.48

1nplace transpose c: 0.129999995232

speed up: 6.70

wxPython

inline knows how to handle wxPython objects. Thats nice in and of itself, but it also demonstrates that the type
conversion mechanism is reasonably flexible. Chances are, it won’t take a ton of effort to support special types you
might have. The examples/wx_example.py borrows the scrolled window example from the wxPython demo, accept
that it mixes inline C code in the middle of the drawing function.

def DoDrawing(self, dc):

red = wxNamedColour ("RED");

blue = wxNamedColour ("BLUE") ;
grey_brush = wxLIGHT_GREY_BRUSH;
code = \

#line 108 "wx_example.py"
dc->BeginDrawing () ;
dc—>SetPen (wxPen (+red, 4, wxSOLID)) ;
dc—->DrawRectangle (5,5,50,50);
dc—>SetBrush (xgrey_brush);
dc—>SetPen (wxPen (*blue, 4, wxSOLID)) ;
dc—>DrawRectangle (15, 15, 50, 50);

mon

inline(code, ['dc', 'red', '"blue', "grey_brush'])

dc.SetFont (wxFont (14, wxSWISS, wxNORMAL, wxNORMAL))
dc.SetTextForeground (wxColour (OxFF, 0x20, OxFF))

150 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

te = dc.GetTextExtent ("Hello World™)
dc.DrawText ("Hello World", 60, 65)

dc.SetPen (wxPen (wxNamedColour ('VIOLET"), 4))
dc.DrawLine (5, 65+te[l1], 60+te[0], 65+te[l])

Here, some of the Python calls to wx objects were just converted to C++ calls. There isn’t any benefit, it just demon-
strates the capabilities. You might want to use this if you have a computationally intensive loop in your drawing code
that you want to speed up. On windows, you’ll have to use the MSVC compiler if you use the standard wxPython
DLLs distributed by Robin Dunn. Thats because MSVC and gcc, while binary compatible in C, are not binary com-
patible for C++. In fact, its probably best, no matter what platform you’re on, to specify that inline use the same
compiler that was used to build wxPython to be on the safe side. There isn’t currently a way to learn this info from the
library — you just have to know. Also, at least on the windows platform, you’ll need to install the wxWindows libraries
and link to them. I think there is a way around this, but I haven’t found it yet — I get some linking errors dealing with
wxString. One final note. You’ll probably have to tweak weave/wx_spec.py or weave/wx_info.py for your machine’s
configuration to point at the correct directories etc. There. That should sufficiently scare people into not even looking
at this... :)

Keyword Option

The basic definition of the inline () function has a slew of optional variables. It also takes keyword arguments that
are passed to distutils as compiler options. The following is a formatted cut/paste of the argument section of
inline’ s doc-string. It explains all of the variables. Some examples using various options will follow.

def inline (code,arg_names,local_dict = None, global_dict = None,
force = 0,
compiler="",
verbose = 0,
support_code = None,
customize=None,
type_factories = None,
auto_downcast=1,
**Kw) :

inline has quite a few options as listed below. Also, the keyword arguments for distutils extension modules are
accepted to specify extra information needed for compiling.

Inline Arguments

code string. A string of valid C++ code. It should not specify a return statement. Instead it should assign results that
need to be returned to Python in the return_val. arg_names list of strings. A list of Python variable names that should
be transferred from Python into the C/C++ code. local_dict optional. dictionary. If specified, it is a dictionary of
values that should be used as the local scope for the C/C++ code. If local_dict is not specified the local dictionary of
the calling function is used. global_dict optional. dictionary. If specified, it is a dictionary of values that should be
used as the global scope for the C/C++ code. If global_dict is not specified the global dictionary of the calling function
is used. force optional. O or 1. default 0. If 1, the C++ code is compiled every time inline is called. This is really only
useful for debugging, and probably only useful if you’re editing support_code a lot. compiler optional. string. The
name of compiler to use when compiling. On windows, it understands ‘msvc’ and ‘gcc’ as well as all the compiler
names understood by distutils. On Unix, it’ll only understand the values understoof by distutils. (I should add ‘gcc’
though to this).

On windows, the compiler defaults to the Microsoft C++ compiler. If this isn’t available, it looks for mingw32 (the
gcc compiler).

1.16. Weave (scipy.weave) 151

SciPy Reference Guide, Release 0.16.0

On Unix, it’ll probably use the same compiler that was used when compiling Python. Cygwin’s behavior should be
similar.

verbose optional. 0,1, or 2. defualt 0. Speficies how much much information is printed during the compile phase
of inlining code. 0 is silent (except on windows with msvc where it still prints some garbage). 1 informs you when
compiling starts, finishes, and how long it took. 2 prints out the command lines for the compilation process and can
be useful if you’re having problems getting code to work. Its handy for finding the name of the .cpp file if you need
to examine it. verbose has no affect if the compilation isn’t necessary. support_code optional. string. A string of
valid C++ code declaring extra code that might be needed by your compiled function. This could be declarations of
functions, classes, or structures. customize optional. base_info.custom_info object. An alternative way to specifiy
support_code, headers, etc. needed by the function see the weave.base_info module for more details. (not sure this’1l
be used much). type_factories optional. list of type specification factories. These guys are what convert Python data
types to C/C++ data types. If you’d like to use a different set of type conversions than the default, specify them here.
Look in the type conversions section of the main documentation for examples. auto_downcast optional. 0 or 1. default
1. This only affects functions that have Numeric arrays as input variables. Setting this to 1 will cause all floating point
values to be cast as float instead of double if all the NumPy arrays are of type float. If even one of the arrays has type
double or double complex, all variables maintain there standard types.

Distutils keywords

inline () also accepts a number of distutils keywords for controlling how the code is compiled. The following
descriptions have been copied from Greg Ward’s distutils.extension.Extension class doc- strings for
convenience: sources [string] list of source filenames, relative to the distribution root (where the setup script lives), in
Unix form (slash- separated) for portability. Source files may be C, C++, SWIG (.i), platform- specific resource files,
or whatever else is recognized by the “build_ext” command as source for a Python extension. Note: The module_path
file is always appended to the front of this list include_dirs [string] list of directories to search for C/C++ header files
(in Unix form for portability) define_macros [(name : string, value : string|None)] list of macros to define; each macro
is defined using a 2-tuple, where ‘value’ is either the string to define it to or None to define it without a particular value
(equivalent of “#define FOO” in source or -DFOO on Unix C compiler command line) undef_macros [string] list of
macros to undefine explicitly library_dirs [string] list of directories to search for C/C++ libraries at link time libraries
[string] list of library names (not filenames or paths) to link against runtime_library_dirs [string] list of directories to
search for C/C++ libraries at run time (for shared extensions, this is when the extension is loaded) extra_objects [string]
list of extra files to link with (eg. object files not implied by ‘sources’, static library that must be explicitly specified,
binary resource files, etc.) extra_compile_args [string] any extra platform- and compiler-specific information to use
when compiling the source files in ‘sources’. For platforms and compilers where “command line” makes sense, this is
typically a list of command-line arguments, but for other platforms it could be anything. extra_link_args [string] any
extra platform- and compiler-specific information to use when linking object files together to create the extension (or
to create a new static Python interpreter). Similar interpretation as for ‘extra_compile_args’. export_symbols [string]
list of symbols to be exported from a shared extension. Not used on all platforms, and not generally necessary for
Python extensions, which typically export exactly one symbol: “init” + extension_name.

Keyword Option Examples

We’ll walk through several examples here to demonstrate the behavior of inline and also how the various arguments
are used. In the simplest (most) cases, code and arg_names are the only arguments that need to be specified. Here’s
a simple example run on Windows machine that has Microsoft VC++ installed.

>>> from weave import inline

>>> a = 'string'

>>> code = """
int 1 = a.length();
return_val = Py::new_reference_to(Py::Int(1l));
nmwn

>>> inline(code, ['a'])

sC_86e98826b65b047f£fd2cd5£479¢c627£12 . cpp

152 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Creating

library C:\DOCUME~1\eric\LOCALS~1\Temp\python2l_compiled\temp\Release\sc_86e98826b65b047ffd2cd5f4"
and object C:\DOCUME~1\eric\LOCALS~1\Temp\python2l_ compiled\temp\Release\sc_86e98826b65b047ff
d2cd5£479c627£f12.exp
6
>>> inline(code, ['a'])
6

When inline is first run, you’ll notice that pause and some trash printed to the screen. The “trash” is actually part of
the compiler’s output that distutils does not supress. The name of the extension file, sc_bighonkingnumber. cpp,
is generated from the SHA-256 check sum of the C/C++ code fragment. On Unix or windows machines with only gcc
installed, the trash will not appear. On the second call, the code fragment is not compiled since it already exists, and
only the answer is returned. Now kill the interpreter and restart, and run the same code with a different string.

>>> from weave import inline
>>> a = 'a longer string'
>>> code = """
int 1 = a.length();
return_val = Py::new_reference_to(Py::Int(1l));
>>> inline(code, ['a'])
15

Notice this time, inline () did not recompile the code because it found the compiled function in the persistent
catalog of functions. There is a short pause as it looks up and loads the function, but it is much shorter than compiling
would require.

You can specify the local and global dictionaries if you’d like (much like exec or eval () in Python), but if they
aren’t specified, the “expected” ones are used — i.e. the ones from the function that called inline (). This is
accomplished through a little call frame trickery. Here is an example where the local_dict is specified using the same
code example from above:

>>> a = 'a longer string'

>>> b = 'an even longer string'
>>> my_dict = {'a':b}

>>> inline(code, ['a'])

15

>>> inline(code, ['a'],my_dict)
21

Every time the code is changed, inline does a recompile. However, changing any of the other options in inline
does not force a recompile. The force option was added so that one could force a recompile when tinkering with
other variables. In practice, it is just as easy to change the code by a single character (like adding a space some place)
to force the recompile.

Note: It also might be nice to add some methods for purging the cache and on disk catalogs.

I use verbose sometimes for debugging. When set to 2, it’ll output all the information (including the name of
the .cpp file) that you’d expect from running a make file. This is nice if you need to examine the generated code to
see where things are going haywire. Note that error messages from failed compiles are printed to the screen even if
verbose is set to 0.

The following example demonstrates using gcc instead of the standard msvc compiler on windows using same code
fragment as above. Because the example has already been compiled, the force=1 flag is needed to make inline ()
ignore the previously compiled version and recompile using gcc. The verbose flag is added to show what is printed
out:

1.16. Weave (scipy.weave) 153

SciPy Reference Guide, Release 0.16.0

>>>inline(code, ['a'],compiler="gcc',verbose=2, force=1)

running build_ext

building 'sc_86e98826b650047ffd2cd5£479¢c627£13"' extension

c:\gcc—-2.95.2\bin\g++.exe -mno-cygwin -mdll -02 -w -Wstrict-prototypes —-IC:

\home\ej\wrk\scipy\weave -IC:\Python21l\Include -c C:\DOCUME~1\eric\LOCAL

S~1\Temp\python21l_ compiled\sc_86e98826b65b047ffd2cd5£479c627£f13.cpp

-0 C:\DOCUME~1\eric\LOCALS~1\Temp\python2l_ compiled\temp\Release\sc_86e98826b65b04ffd2cd5f479c627£13
skipping C:\home\ej\wrk\scipy\weave\CXX\cxxextensions.c
(C:\DOCUME~1\eric\LOCALS~1\Temp\python21l_compiled\temp\Release\cxxextensions.o up-to-date)

skipping C:\home\ej\wrk\scipy\weave\CXX\cxxsupport.cxx

(C:\DOCUME~1\eric\LOCALS~1\Temp\python21l_ compiled\temp\Release\cxxsupport.o up-to-date)

skipping C:\home\ej\wrk\scipy\weave\CXX\IndirectPythonInterface.cxx
(C:\DOCUME~1\eric\LOCALS~1\Temp\python2l_ compiled\temp\Release\indirectpythoninterface.o up-to-date)
skipping C:\home\ej\wrk\scipy\weave\CXX\cxx_extensions.cxx

(C:\DOCUME~1\eric\LOCALS~1\Temp\python2l compiled\temp\Release\cxx_extensions.o

up-to-date)

writing C:\DOCUME~1\eric\LOCALS~1\Temp\python2l_compiled\temp\Release\sc_86e98826b65b047ffd2cd5f479cH
c:\gcc—2.95.2\bin\dllwrap.exe --driver-name g++ -mno-cygwin

-mdll -static --output-1lib
C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\libsc_86e98826b65b047ffd2cd5f479c627f1:
C:\DOCUME~1\eric\LOCALS~1\Temp\python21l_compiled\temp\Release\sc_86e98826b65b047ffd2cd5f479c627£13.d:
-sC:\DOCUME~1\eric\LOCALS~1\Temp\python2l compiled\temp\Release\sc_86e98826b65b047ffd2cd5£479c627£f13
C:\DOCUME~1\eric\LOCALS~1\Temp\python21_ compiled\temp\Release\cxxextensions.o
C:\DOCUME~1\eric\LOCALS~1\Temp\python21l_compiled\temp\Release\cxxsupport.o
C:\DOCUME~1\eric\LOCALS~1\Temp\python21l_compiled\temp\Release\indirectpythoninterface.o
C:\DOCUME~1\eric\LOCALS~1\Temp\python21l_ compiled\temp\Release\cxx_extensions.o —-LC:\Python21\1libs
—-lpython2l -o

C:\DOCUME~1\eric\LOCALS~1\Temp\python2l_ compiled\sc_86e98826b65b047ffd2cd5f479¢c627f13.pyd

15

That’s quite a bit of output. verbose=1 just prints the compile time.

>>>inline(code, ['a'],compiler="gcc',verbose=1, force=1)
Compiling code...

finished compiling (sec): 6.00800001621

15

Note: I’ve only used the compiler option for switching between ‘msvc’ and ‘gec’ on windows. It may have use on
Unix also, but I don’t know yet.

The support_code argument is likely to be used a lot. It allows you to specify extra code fragments such as
function, structure or class definitions that you want to use in the code string. Note that changes to support_code
do not force a recompile. The catalog only relies on code (for performance reasons) to determine whether recompiling
is necessary. So, if you make a change to support_code, you’ll need to alter code in some way or use the force
argument to get the code to recompile. I usually just add some inocuous whitespace to the end of one of the lines in
code somewhere. Here’s an example of defining a separate method for calculating the string length:

>>> from weave import inline
>>> a = 'a longer string'
>>> support_code = """
PyObject* length (Py::String a)
{
int 1 = a.length();
return Py::new_reference_to(Py::Int(1l));

}

nun

>>> inline("return_val = length(a);",['a']l,
support_code = support_code)

154 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

15

customize is aleft over from a previous way of specifying compiler options. Itis a custom_1info object that can
specify quite a bit of information about how a file is compiled. These info objects are the standard way of defining
compile information for type conversion classes. However, I don’t think they are as handy here, especially since we’ve
exposed all the keyword arguments that distutils can handle. Between these keywords, and the support_code
option, I think customize may be obsolete. We’ll see if anyone cares to use it. If not, it’ll get axed in the next
version.

The type_factories variable is important to people who want to customize the way arguments are converted
from Python to C. We’ll talk about this in the next chapter xx of this document when we discuss type conversions.

auto_downcast handles one of the big type conversion issues that is common when using NumPy arrays in con-
junction with Python scalar values. If you have an array of single precision values and multiply that array by a Python
scalar, the result is upcast to a double precision array because the scalar value is double precision. This is not usu-
ally the desired behavior because it can double your memory usage. auto_downcast goes some distance towards
changing the casting precedence of arrays and scalars. If your only using single precision arrays, it will automatically
downcast all scalar values from double to single precision when they are passed into the C++ code. This is the default
behavior. If you want all values to keep there default type, set auto_downcast to 0.

Returning Values

Python variables in the local and global scope transfer seemlessly from Python into the C++ snippets. And, if inline
were to completely live up to its name, any modifications to variables in the C++ code would be reflected in the Python
variables when control was passed back to Python. For example, the desired behavior would be something like:

THIS DOES NOT WORK

>>> a = 1

>>> weave.inline ("a++;", ['a'])
>>> a

2

Instead you get:

>>> a = 1

>>> weave.inline ("a++;",['a'])
>>> a

1

Variables are passed into C++ as if you are calling a Python function. Python’s calling convention is sometimes called
“pass by assignment”. This means its asifa c_a = a assignment is made right before inline call is made and the
c_a variable is used within the C++ code. Thus, any changes made to c_a are not reflected in Python’s a variable.
Things do get a little more confusing, however, when looking at variables with mutable types. Changes made in C++
to the contents of mutable types are reflected in the Python variables.

>>> a= [1,2]
>>> weave.inline ("PyList_SetItem(a.ptr(),0,PyInt_FromLong(3));",['a'])
>>> print a

[3, 2]

So modifications to the contents of mutable types in C++ are seen when control is returned to Python. Modifications
to immutable types such as tuples, strings, and numbers do not alter the Python variables. If you need to make changes
to an immutable variable, you’ll need to assign the new value to the “magic” variable return_val in C++. This
value is returned by the inline () function:

>>> g = 1

>>> a = weave.inline("return_val = Py::new_reference_to(Py::Int(a+tl));",['a'l)
>>> a

2

1.16. Weave (scipy.weave) 155

SciPy Reference Guide, Release 0.16.0

The return_val variable can also be used to return newly created values. This is possible by returning a tuple. The
following trivial example illustrates how this can be done:

python version
def multi_return() :
return 1, '2nd'’

C version.
def c_multi_return():
code = """
py::tuple results(2);

results[0] = 1;
results([1l] = "2nd";
return_val = results;

nun

return inline_tools.inline (code)

The example is available in examples/tuple_return.py. It also has the dubious honor of demonstrating how
much inline () can slow things down. The C version here is about 7-10 times slower than the Python version. Of
course, something so trivial has no reason to be written in C anyway.

The issue with 1locals () inline passes the locals () and globals () dictionaries from Python into the
C++ function from the calling function. It extracts the variables that are used in the C++ code from these dictionaries,
converts then to C++ variables, and then calculates using them. It seems like it would be trivial, then, after the
calculations were finished to then insert the new values back into the 1ocals () and globals () dictionaries so
that the modified values were reflected in Python. Unfortunately, as pointed out by the Python manual, the locals()
dictionary is not writable.

I suspect locals () is not writable because there are some optimizations done to speed lookups of the local names-
pace. I'm guessing local lookups don’t always look at a dictionary to find values. Can someone “in the know” confirm
or correct this? Another thing I’d like to know is whether there is a way to write to the local namespace of another
stack frame from C/C++. If so, it would be possible to have some clean up code in compiled functions that wrote
final values of variables in C++ back to the correct Python stack frame. I think this goes a long way toward making
inline truly live up to its name. I don’t think we’ll get to the point of creating variables in Python for variables
created in C — although I suppose with a C/C++ parser you could do that also.

A quick look at the code

weave generates a C++ file holding an extension function for each inline code snippet. These file names are
generated using from the SHA-256 signature of the code snippet and saved to a location specified by the PYTHON-
COMPILED environment variable (discussed later). The cpp files are generally about 200-400 lines long and include
quite a few functions to support type conversions, etc. However, the actual compiled function is pretty simple. Below
is the familiar print £ example:

>>> import weave

>>> a = 1
>>> weave.inline ('printf ("sd\\n",a); "', ['a'])
1

And here is the extension function generated by inline:

static PyObject* compiled_func(PyObject*self, PyObject* args)
{

py::object return_val;

int exception_occured = 0;

PyObject #*py__locals = NULL;

PyObject xpy__globals = NULL;

PyObject xpy_a;

156 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

py_a

= NULL;

if (!PyArg_ParseTuple (args, "OO:compiled_func", &py__locals, &py__globals))

try
{

printf ("$d\n", a); /+I would like to fill in changed locals and globals here..
}
catch(...)
{

return_val = py::object();

}

return NULL;

PyObject* raw_locals = py_to_raw_dict(py__locals,"_locals");
PyObjectx raw_globals = py_to_raw_dict (py__globals,"_globals");
/* argument conversion code =/

py_a = get_variable("a",raw_locals, raw_globals);

int a = convert_to_int (py_a,"a");

/* inline code =*/

/+ NDARRAY API VERSION 90907 =/

exception_occured = 1;

/+ cleanup code x/

if (! (PyObject*) return_val && !exception_occured)

{

}

return_val = Py_None;

return return_val.disown () ;

Every inline function takes exactly two arguments — the local and global dictionaries for the current scope. All variable
values are looked up out of these dictionaries. The lookups, along with all inline code execution, are done within
a C++ try block. If the variables aren’t found, or there is an error converting a Python variable to the appropriate
type in C++, an exception is raised. The C++ exception is automatically converted to a Python exception by SCXX
and returned to Python. The py_to_int () function illustrates how the conversions and exception handling works.
py_to_int first checks that the given PyObject* pointer is not NULL and is a Python integer. If all is well, it calls the
Python API to convert the value to an int. Otherwise, it calls handle_bad_type () which gathers information
about what went wrong and then raises a SCXX TypeError which returns to Python as a TypeError.

int py_to_int (PyObjectx py_obj,char* name)

{

if

('py_obj || !'PyInt_Check (py_obj))
handle_bad_type (py_obj, "int", name);
return (int) PyInt_AsLong (py_obj);

void handle_bad_type (PyObject* py_obj, charx good_type, charx var_name)

{

char msg[500];
sprintf (msg, "received '%$s' type instead of '$s' for variable '$%s'",
))

find_type (py_obj),good_type, var_name

’

throw Py::TypeError (msg);

charx find_type (PyObject* py_obj)

{

if (py_obj == NULL) return "C NULL value";

if (PyCallable_Check (py_obj)) return "callable";
if (PyString_Check (py_obj)) return "string";

if (PyInt_Check (py_obj)) return "int";

1.16. Weave (scipy.weave) 157

.x/

SciPy Reference Guide, Release 0.16.0

if (PyFloat_Check (py_obj)) return "float";
if (PyDict_Check (py_obj)) return "dict";

if (PyList_Check (py_obj)) return "list";

if (PyTuple_Check (py_obj)) return "tuple";
if (PyFile_Check (py_ob3j)) return "file";

if (PyModule_Check (py_obj)) return "module";

//should probably do more interagation (and thinking) on these.

if (PyCallable_Check (py_obj) && PyInstance_Check (py_obj)) return "callable";
if (PyInstance_Check (py_obj)) return "instance";

if (PyCallable_Check (py_obj)) return "callable";

return "unknown type";

}

Since the inline is also executed within the try/catch block, you can use CXX exceptions within your code. It
is usually a bad idea to directly return from your code, even if an error occurs. This skips the clean up section of
the extension function. In this simple example, there isn’t any clean up code, but in more complicated examples, there
may be some reference counting that needs to be taken care of here on converted variables. To avoid this, either uses
exceptions or set return_val to NULL and use 1f/then’ s to skip code after errors.

Technical Details

There are several main steps to using C/C++ code within Python:
1. Type conversion
2. Generating C/C++ code
3. Compile the code to an extension module
4. Catalog (and cache) the function for future use

Items 1 and 2 above are related, but most easily discussed separately. Type conversions are customizable by the user if
needed. Understanding them is pretty important for anything beyond trivial uses of inline. Generating the C/C++
code is handled by ext _function and ext_module classes and . For the most part, compiling the code is handled
by distutils. Some customizations were needed, but they were relatively minor and do not require changes to distutils
itself. Cataloging is pretty simple in concept, but surprisingly required the most code to implement (and still likely
needs some work). So, this section covers items 1 and 4 from the list. Item 2 is covered later in the chapter covering
the ext_tools module, and distutils is covered by a completely separate document Xxx.

Passing Variables in/out of the C/C++ code

Note: Passing variables into the C code is pretty straight forward, but there are subtlties to how variable modifications
in C are returned to Python. see Returning Values for a more thorough discussion of this issue.

Type Conversions

Note: Maybe xxx_converter instead of xxx_specification is a more descriptive name. Might change in
future version?

By default, inline () makes the following type conversions between Python and C++ types.

158 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Table 1.9: Default Data Type Conver-

sions
Python C++
int int
float double
complex std::complex
string py::string
list py::list
dict py::dict
tuple py::tuple
file FILE*
callable py::object
instance py::object
numpy.ndarray | PyArrayObject*
wxXXX WxXXX*

The Py : : namespace is defined by the SCXX library which has C++ class equivalents for many Python types. std: :
is the namespace of the standard library in C++.

Note:
* T haven’t figured out how to handle 1ong int yet (I think they are currenlty converted to int - - check this).

* Hopefully VTK will be added to the list soon

Python to C++ conversions fill in code in several locations in the generated inline extension function. Below is the
basic template for the function. This is actually the exact code that is generated by calling weave.inline ("").

The /+ inline code =/ section is filled with the code passed to the inline () function call. The
/*argument conversion codex*/ and /* cleanup code =/ sections are filled with code that handles
conversion from Python to C++ types and code that deallocates memory or manipulates reference counts before the
function returns. The following sections demonstrate how these two areas are filled in by the default conversion meth-
ods. * Note: I’m not sure I have reference counting correct on a few of these. The only thing I increase/decrease the
ref count on is NumPy arrays. If you see an issue, please let me know.

NumPy Argument Conversion

Integer, floating point, and complex arguments are handled in a very similar fashion. Consider the following inline
function that has a single integer variable passed in:

>>> a = 1
>>> inline("",['a'])

The argument conversion code inserted for a is:

/* argument conversion code */
int a = py_to_int (get_variable("a",raw_locals,raw_globals),"a");

get_variable () reads the variable a from the local and global namespaces. py_to_int () has the following
form:

static int py_to_int (PyObject py_obj,charx name)
{
if (!py_obj || !PyInt_Check (py_obj))
handle_bad_type (py_obj, "int", name);
return (int) PyInt_AsLong (py_obj);

1.16. Weave (scipy.weave) 159

SciPy Reference Guide, Release 0.16.0

Similarly, the float and complex conversion routines look like:

static double py_to_float (PyObject* py_obj,char* name)
{
if (!py_obj || !PyFloat_Check (py_obj))
handle_bad_type (py_obj,"float", name);
return PyFloat_AsDouble (py_ob3j);

static std::complex py_to_complex (PyObjectx py_obj,charx name)
{
if (!py_obj || !PyComplex_Check (py_obj))
handle_bad_type (py_obj, "complex", name);
return std::complex (PyComplex_RealAsDouble (py_obj),
PyComplex_ImagAsDouble (py_obij));

NumPy conversions do not require any clean up code.

String, List, Tuple, and Dictionary Conversion
Strings, Lists, Tuples and Dictionary conversions are all converted to SCXX types by default. For the following code,

>>> a = [1]
>>> inline("",['a'])

The argument conversion code inserted for a is:

/* argument conversion code */
Py::List a = py_to_list (get_variable("a",raw_locals,raw_globals),"a");

get_variable () reads the variable a from the local and global namespaces. py_to_list () and its friends
have the following form:

static Py::List py_to_list (PyObjectx py_obj,charx name)
{
if (!py_obj || !PyList_Check (py_ob3j))
handle_bad_type (py_obj,"list", name);
return Py::List (py_obj);

static Py::String py_to_string(PyObject* py_obj,char+* name)
{
if (!'PyString_Check (py_obj))
handle_bad_type (py_obj, "string", name);
return Py::String(py_obj);

static Py::Dict py_to_dict (PyObject* py_obj,char* name)
{
if (!py_obj || !'PyDict_Check (py_obj))
handle_bad_type (py_obj,"dict", name);
return Py::Dict (py_obj);

static Py::Tuple py_to_tuple (PyObject* py_obj,char* name)
{
if (!py_obj || !PyTuple_Check (py_obj))
handle_bad_type (py_obj, "tuple", name);

160 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

return Py::Tuple (py_obj);
}

SCXX handles reference counts on for strings, lists, tuples, and dictionaries, so clean up code isn’t necessary.

File Conversion
For the following code,

>>> a = open("bob",'w")
>>> inline("",['a'])

The argument conversion code is:

/* argument conversion code */
PyObject* py_a = get_variable("a",raw_locals, raw_globals);
FILEx a = py_to_file(py_a,"a");

get_variable () reads the variable a from the local and global namespaces. py_to_file () converts PyObject*
to a FILE* and increments the reference count of the PyObject*:

FILE* py_to_file(PyObject* py_obj, charx name)
{
if (!py_obj || !PyFile_Check (py_obj))
handle_bad_type (py_obj,"file", name);

Py_INCREF (py_obij);
return PyFile_AsFile (py_obj);
}

Because the PyObject* was incremented, the clean up code needs to decrement the counter

/+ cleanup code x/
Py_XDECREF (py_a) ;

Its important to understand that file conversion only works on actual files — i.e. ones created using the open ()
command in Python. It does not support converting arbitrary objects that support the file interface into C FILE %
pointers. This can affect many things. For example, in initial print £ () examples, one might be tempted to solve the
problem of C and Python IDE’s (PythonWin, PyCrust, etc.) writing to different stdout and stderr by using fprintf ()
and passing in sys . stdout and sys.stderr. For example, instead of

>>> weave.inline ('printf ("hello\\n");")

You might try:
>>> pbuf = sys.stdout
>>> weave.inline ('fprintf (buf, "hello\\n"); ', ['buf'])

This will work as expected from a standard python interpreter, but in PythonWin, the following occurs:

>>> buf = sys.stdout
>>> weave.inline ('fprintf (buf, "hello\\n"); "', ['buf'])
Traceback (most recent call last):
File "", line 1, in ?
File "C:\Python2l\weavelinline_tools.py", line 315, in inline
auto_downcast = auto_downcast,
File "C:\Python2l\weave\inline_tools.py", line 386, in compile_function
type_factories = type_factories)
File "C:\Python2l\weavelext_tools.py", line 197, in __init_
auto_downcast, type_factories)

1.16. Weave (scipy.weave) 161

SciPy Reference Guide, Release 0.16.0

File "C:\Python2l\weavelext_tools.py", line 390, in assign_variable_types
raise TypeError, format_error_msg(errors)
TypeError: {'buf': "Unable to convert variable 'buf' to a C++ type."}

The traceback tells us that inline () was unable to convert ‘buf’ to a C++ type (If instance conversion was imple-
mented, the error would have occurred at runtime instead). Why is this? Let’s look at what the buf object really
is:

>>> buf
pywin.framework.interact.InteractiveView instance at O00EADO014

PythonWin has reassigned sys.stdout to a special object that implements the Python file interface. This works
great in Python, but since the special object doesn’t have a FILE* pointer underlying it, fprint f doesn’t know what
to do with it (well this will be the problem when instance conversion is implemented...).

Callable, Instance, and Module Conversion

Note: Need to look into how ref counts should be handled. Also, Instance and Module conversion are not currently
implemented.

>>> def a():
pass
>>> inline("",['a'])

Callable and instance variables are converted to PyObject*. Nothing is done to their reference counts.

/* argument conversion code */
PyObjectx a = py_to_callable(get_variable("a",raw_locals,raw_globals),"a");

get_variable () reads the variable a from the local and global namespaces. The py_to_callable () and
py_to_instance () don’t currently increment the ref count.

PyObject* py_to_callable (PyObject* py_obj, charx name)
{
if (!py_obj || !PyCallable_Check (py_obij))
handle_bad_type (py_obj,"callable", name);
return py_obij;

PyObject* py_to_instance (PyObjectx py_obj, charx name)
{
if (!py_obj || !PyFile_Check (py_ob3j))
handle_bad_type (py_obj, "instance", name);
return py_obij;
}

There is no cleanup code for callables, modules, or instances.

Customizing Conversions

Converting from Python to C++ types is handled by xxx_specification classes. A type specification class
actually serve in two related but different roles. The first is in determining whether a Python variable that needs to be
converted should be represented by the given class. The second is as a code generator that generates C++ code needed
to convert from Python to C++ types for a specific variable.

When
>>> a = 1
>>> weave.inline ('printf ("2d",a); "', ['a'])

162 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

is called for the first time, the code snippet has to be compiled. In this process, the variable ‘a’ is tested against a
list of type specifications (the default list is stored in weave/ext_tools.py). The first specification in the list is used to
represent the variable.

Examples of xxx_specification are scattered throughout numerous “xxx_spec.py” files in the weave pack-
age. Closely related to the xxx_specification classes are yyy_info classes. These classes contain compiler,
header, and support code information necessary for including a certain set of capabilities (such as blitz++ or CXX
support) in a compiled module. xxx_specification classes have one or more yyy_info classes associated
with them. If you’d like to define your own set of type specifications, the current best route is to examine some of the
existing spec and info files. Maybe looking over sequence_spec.py and cxx_info.py are a good place to start. After
defining specification classes, you’ll need to pass them into inline using the type_factories argument. A
lot of times you may just want to change how a specific variable type is represented. Say you’d rather have Python
strings converted to std: : st ring or maybe char* instead of using the CXX string object, but would like all other
type conversions to have default behavior. This requires that a new specification class that handles strings is written
and then prepended to a list of the default type specifications. Since it is closer to the front of the list, it effectively
overrides the default string specification. The following code demonstrates how this is done: ...

The Catalog

catalog.py has a class called catalog that helps keep track of previously compiled functions. This prevents
inline () and related functions from having to compile functions every time they are called. Instead, catalog will
check an in memory cache to see if the function has already been loaded into python. If it hasn’t, then it starts searching
through persisent catalogs on disk to see if it finds an entry for the given function. By saving information about
compiled functions to disk, it isn’t necessary to re-compile functions every time you stop and restart the interpreter.
Functions are compiled once and stored for future use.

When inline (cpp_code) is called the following things happen:

1. A fastlocal cache of functions is checked for the last function called for cpp_code. If an entry for cpp_code
doesn’t exist in the cache or the cached function call fails (perhaps because the function doesn’t have compatible
types) then the next step is to check the catalog.

2. The catalog class also keeps an in-memory cache with a list of all the functions compiled for cpp_code. If
cpp_code has ever been called, then this cache will be present (loaded from disk). If the cache isn’t present,
then it is loaded from disk.

If the cache is present, each function in the cache is called until one is found that was compiled for the correct
argument types. If none of the functions work, a new function is compiled with the given argument types. This
function is written to the on-disk catalog as well as into the in-memory cache.

3. When a lookup for cpp_code fails, the catalog looks through the on-disk function catalogs for the en-
tries. The PYTHONCOMPILED variable determines where to search for these catalogs and in what order.
If PYTHONCOMPILED is not present several platform dependent locations are searched. All functions found
for cpp_code in the path are loaded into the in-memory cache with functions found earlier in the search path
closer to the front of the call list.

If the function isn’t found in the on-disk catalog, then the function is compiled, written to the first writable
directory in the PYTHONCOMPILED path, and also loaded into the in-memory cache.

Function Storage

Function caches are stored as dictionaries where the key is the entire C++ code string and the value is either a single
function (as in the “level 1” cache) or a list of functions (as in the main catalog cache). On disk catalogs are stored in
the same manor using standard Python shelves.

Early on, there was a question as to whether md5 checksums of the C++ code strings should be used instead of the
actual code strings. I think this is the route inline Perl took. Some (admittedly quick) tests of the md5 vs. the entire
string showed that using the entire string was at least a factor of 3 or 4 faster for Python. I think this is because it is

1.16. Weave (scipy.weave) 163

SciPy Reference Guide, Release 0.16.0

more time consuming to compute the md5 value than it is to do look-ups of long strings in the dictionary. Look at the
examples/md5_speed.py file for the test run.

Catalog search paths and the PYTHONCOMPILED variable

The default location for catalog files on Unix is ~/.pythonXX_compiled where XX is version of Python being used.
If this directory doesn’t exist, it is created the first time a catalog is used. The directory must be writable. If, for any
reason it isn’t, then the catalog attempts to create a directory based on your user id in the /tmp directory. The directory
permissions are set so that only you have access to the directory. If this fails, I think you’re out of luck. I don’t think
either of these should ever fail though. On Windows, a directory called pythonXX_compiled is created in the user’s
temporary directory.

The actual catalog file that lives in this directory is a Python shelf with a platform specific name such as
“nt21compiled_catalog” so that multiple OSes can share the same file systems without trampling on each other. Along
with the catalog file, the .cpp and .so or .pyd files created by inline will live in this directory. The catalog file simply
contains keys which are the C++ code strings with values that are lists of functions. The function lists point at func-
tions within these compiled modules. Each function in the lists executes the same C++ code string, but compiled for
different input variables.

You can use the PYTHONCOMPILED environment variable to specify alternative locations for compiled functions.
On Unix this is a colon (*:”) separated list of directories. On windows, it is a (‘;) separated list of directories. These
directories will be searched prior to the default directory for a compiled function catalog. Also, the first writable
directory in the list is where all new compiled function catalogs, .cpp and .so or .pyd files are written. Relative
directory paths (*.” and “..") should work fine in the PYTHONCOMPILED variable as should environement variables.

There is a “special” path variable called MODULE that can be placed in the PYTHONCOMPILED variable. It
specifies that the compiled catalog should reside in the same directory as the module that called it. This is useful if an
admin wants to build a lot of compiled functions during the build of a package and then install them in site-packages
along with the package. User’s who specify MODULE in their PYTHONCOMPILED variable will have access to
these compiled functions. Note, however, that if they call the function with a set of argument types that it hasn’t
previously been built for, the new function will be stored in their default directory (or some other writable directory in
the PYTHONCOMPILED path) because the user will not have write access to the site-packages directory.

An example of using the PYTHONCOMPILED path on bash follows:

PYTHONCOMPILED=MODULE:/some/path; export PYTHONCOMPILED;

If you are using python21 on linux, and the module bob.py in site-packages has a compiled function in it, then the
catalog search order when calling that function for the first time in a python session would be:

/usr/lib/python2l/site-packages/linuxpython_compiled
/some/path/linuxpython_compiled
~/.python2l_compiled/linuxpython_compiled

The default location is always included in the search path.

Note: hmmm. see a possible problem here. I should probably make a sub- directory such as /usr/lib/python21/site-
packages/python21_compiled/linuxpython_compiled so that library files compiled with python21 are tried to link with

python22 files in some strange scenarios. Need to check this.

The in-module cache (in weave.inline_tools reduces the overhead of calling inline functions by about a factor
of 2. It can be reduced a little more for type loop calls where the same function is called over and over again if the
cache was a single value instead of a dictionary, but the benefit is very small (less than 5%) and the utility is quite a bit
less. So, we’ll stick with a dictionary as the cache.

1.16.8 Blitz

164 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Note: most of this section is lifted from old documentation. It should be pretty accurate, but there may be a few
discrepancies.

weave.blitz () compiles NumPy Python expressions for fast execution. For most applications, compiled expres-
sions should provide a factor of 2-10 speed-up over NumPy arrays. Using compiled expressions is meant to be as
unobtrusive as possible and works much like pythons exec statement. As an example, the following code fragment
takes a 5 point average of the 512x512 2d image, b, and stores it in array, a:

from scipy import * # or from NumPy Iimport x

a = ones((512,512), Float64d)

ones ((512,512), Floato64)

...do some stuff to fill in b...

now average

all:-1,1:-1] = (b[1:-1,1:-1] + b[2:,1:-1] + b[:-2,1:-1]1 \
+ b[l:-1,2:] + b[l:-1,:-2]) / 5.

o
Il

To compile the expression, convert the expression to a string by putting quotes around it and then use weave .blitz:

import weave

expr = "a[l:-1,1:-1] = (b[l:-1,1:-1] + b[2:,1:-1] + b[:-2,1:-1]" \
"+ b[l:-1,2:] + b[l:-1,:-2]) / 5."

weave.blitz (expr)

The first time weave.blitz is run for a given expression and set of arguments, C++ code that accomplishes the
exact same task as the Python expression is generated and compiled to an extension module. This can take up to
a couple of minutes depending on the complexity of the function. Subsequent calls to the function are very fast.
Furthermore, the generated module is saved between program executions so that the compilation is only done once for
a given expression and associated set of array types. If the given expression is executed with a new set of array types,
the code most be compiled again. This does not overwrite the previously compiled function — both of them are saved
and available for exectution.

The following table compares the run times for standard NumPy code and compiled code for the 5 point averaging.

Method Run Time (seconds) Standard NumPy 0.46349 blitz (1st time compiling) 78.95526 blitz (subsequent calls)
0.05843 (factor of 8 speedup)

These numbers are for a 512x512 double precision image run on a 400 MHz Celeron processor under RedHat Linux
6.2.

Because of the slow compile times, its probably most effective to develop algorithms as you usually do using the
capabilities of scipy or the NumPy module. Once the algorithm is perfected, put quotes around it and execute it using
weave.blitz. This provides the standard rapid prototyping strengths of Python and results in algorithms that run
close to that of hand coded C or Fortran.

Requirements

Currently, the weave .blitz has only been tested under Linux with gcc-2.95-3 and on Windows with Mingw32
(2.95.2). Its compiler requirements are pretty heavy duty (see the blitz++ home page), so it won’t work with just any
compiler. Particularly MSVC++ isn’t up to snuff. A number of other compilers such as KAI++ will also work, but my
suspicions are that gcc will get the most use.

Limitations

1. Currently, weave .blitz handles all standard mathematical operators except for the ** power operator. The
built-in trigonmetric, log, floor/ceil, and fabs functions might work (but haven’t been tested). It also handles all

1.16. Weave (scipy.weave) 165

http://www.oonumerics.org/blitz/

SciPy Reference Guide, Release 0.16.0

types of array indexing supported by the NumPy module. numarray’s NumPy compatible array indexing modes
are likewise supported, but numarray’s enhanced (array based) indexing modes are not supported.

weave.blitz does not currently support operations that use array broadcasting, nor have any of the special
purpose functions in NumPy such as take, compress, etc. been implemented. Note that there are no obvious
reasons why most of this functionality cannot be added to scipy.weave, so it will likely trickle into future
versions. Using s1ice () objects directly instead of start :stop:step is also not supported.

2. Currently Python only works on expressions that include assignment such as
>>> result = b + c + d
This means that the result array must exist before calling weave.blitz. Future versions will allow the
following:
>>> result = weave.blitz_eval("b + ¢ + d")

3. weave.blitz works best when algorithms can be expressed in a “vectorized” form. Algorithms that have a
large number of if/thens and other conditions are better hand-written in C or Fortran. Further, the restrictions
imposed by requiring vectorized expressions sometimes preclude the use of more efficient data structures or
algorithms. For maximum speed in these cases, hand-coded C or Fortran code is the only way to go.

4. weave.blitz can produce different results than NumPy in certain situations. It can happen when the array
receiving the results of a calculation is also used during the calculation. The NumPy behavior is to carry out the
entire calculation on the right hand side of an equation and store it in a temporary array. This temprorary array is
assigned to the array on the left hand side of the equation. blitz, on the other hand, does a “running” calculation
of the array elements assigning values from the right hand side to the elements on the left hand side immediately
after they are calculated. Here is an example, provided by Prabhu Ramachandran, where this happens:

4 point average.

>>> expr = "u[l:-1, 1:-1] = (uf[0:-2, 1:-1] + ul[2:, 1:-1]1 + \

Ce. "ull:-1,0:-2] + ufl:-1, 2:]1)*0.25"

>>> u = zeros((5, 5), 'd'"); uf[0,:] = 100

>>> exec (expr)

>>> u

array([[100., 100., 100., 100., 100.7],
[0., 25., 25., 25., 0.1,
[0., 0., 0., 0., 0.1,
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.11)

>>> u = zeros((5, 5), 'd'"); ul[0,:] = 100

>>> weave.blitz (expr)

>>> u

array ([[100. , 100. , 100. , 100. , 100. 1,
[0. , 25. , 31.25 , 32.8125 , 0.1,
[0. , 6.25 , 9.375 , 10.546875 , 0. 1,
[0. , 1.5625 , 2.734375 , 3.3203125, 0. 1,
[0. , 0. , 0. , 0. , 0.11)

You can prevent this behavior by using a temporary array.

>>> u = zeros((5, 5), 'd"); ul0,:] = 100

>>> temp = zeros((4, 4), 'd');

>>> expr = "temp = (u[0:-2, 1:-1] + uf2:, 1:-1] + "\

"ull:-1,0:-2] + ul[l:-1, 2:1)*0.25;"\
. "ul[l:-1,1:-1] = temp"

>>> weave.blitz (expr)

>>> u

array ([[100., 100., 100., 100., 100.17,

166 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

[0., 25., 25., 25., 0.7,
[0., 0., 0., 0., 0.1,
[0., 0., 0., 0., 0.1,
[0., 0., 0., 0., 0.11)

5. One other point deserves mention lest people be confused. weave .blitz is not a general purpose Python->C
compiler. It only works for expressions that contain NumPy arrays and/or Python scalar values. This focused
scope concentrates effort on the compuationally intensive regions of the program and sidesteps the difficult
issues associated with a general purpose Python->C compiler.

NumPy efficiency issues: What compilation buys you

Some might wonder why compiling NumPy expressions to C++ is beneficial since operations on NumPy array op-
erations are already executed within C loops. The problem is that anything other than the simplest expression are
executed in less than optimal fashion. Consider the following NumPy expression:

a=1.2 b+ c *x d

When NumPy calculates the value for the 2d array, a, it does the following steps:

templ = 1.2 x b
temp2 = ¢ * d
a = templ + temp2

Two things to note. Since c is an (perhaps large) array, a large temporary array must be created to store the results of
1.2 b. The same is true for temp2. Allocation is slow. The second thing is that we have 3 loops executing, one
to calculate temp1, one for temp2 and one for adding them up. A C loop for the same problem might look like:

for(int 1 = 0; 1 < M; i++)
for(int j = 0; J < N; J++)
ali,jl = 1.2 » b[i,]J] + cl[i,]J] = d[i,]]

Here, the 3 loops have been fused into a single loop and there is no longer a need for a temporary array. This provides
a significant speed improvement over the above example (write me and tell me what you get).

So, converting NumPy expressions into C/C++ loops that fuse the loops and eliminate temporary arrays can provide big
gains. The goal, then, is to convert NumPy expression to C/C++ loops, compile them in an extension module, and then
call the compiled extension function. The good news is that there is an obvious correspondence between the NumPy
expression above and the C loop. The bad news is that NumPy is generally much more powerful than this simple
example illustrates and handling all possible indexing possibilities results in loops that are less than straightforward to
write. (Take a peek at NumPy for confirmation). Luckily, there are several available tools that simplify the process.

The Tools

weave.blitz relies heavily on several remarkable tools. On the Python side, the main facilitators are Jermey
Hylton’s parser module and Travis Oliphant’s NumPy module. On the compiled language side, Todd Veldhuizen’s
blitz++ array library, written in C++ (shhhh. don’t tell David Beazley), does the heavy lifting. Don’t assume that,
because it’s C++, it’s much slower than C or Fortran. Blitz++ uses a jaw dropping array of template techniques
(metaprogramming, template expression, etc) to convert innocent-looking and readable C++ expressions into to code
that usually executes within a few percentage points of Fortran code for the same problem. This is good. Unfortunately
all the template raz-ma-taz is very expensive to compile, so the 200 line extension modules often take 2 or more
minutes to compile. This isn’t so good. weave .b1litz works to minimize this issue by remembering where compiled
modules live and reusing them instead of re-compiling every time a program is re-run.

1.16. Weave (scipy.weave) 167

SciPy Reference Guide, Release 0.16.0

Parser

Tearing NumPy expressions apart, examining the pieces, and then rebuilding them as C++ (blitz) expressions requires
a parser of some sort. I can imagine someone attacking this problem with regular expressions, but it’d likely be ugly
and fragile. Amazingly, Python solves this problem for us. It actually exposes its parsing engine to the world through
the parser module. The following fragment creates an Abstract Syntax Tree (AST) object for the expression and
then converts to a (rather unpleasant looking) deeply nested list representation of the tree.

>>> import parser
>>> import scipy.weave.misc
>>> ast = parser.suite("a = b *x ¢ + d")
>>> ast_list = ast.tolist ()
>>> sym_list = scipy.weave.misc.translate_symbols (ast_list)
>>> pprint.pprint (sym_list)
["file_input',
['stmt',
["simple_stmt',
['small_stmt',
["expr_stmt',
['"testlist',
['test',
['and_test',
["not_test',
['comparison',
['expr',
['xor_expr',
["and_expr',
["shift_expr',
["arith_expr',

['term',

['factor', ['power', ['atom', ['NAME', 'a'lllll11111111111,
["EQUAL', '='],
["testlist',
['test',

["and_test',
['not_test',
['"comparison',
["expr',
['xor_expr',
['and_expr',
['"shift_expr',
["arith_expr',
['"term',
['factor', ['power', ['atom', ['NAME', 'b']1111],
["STAR', '*'],
['factor', ['power', ['atom', ['NAME', 'c']1111,
['"PLUS', '+'],
['term',
['factor', ['power', ['atom',6 ['NAME', 'd']1111111111111111,
["NEWLINE', ''111,
['ENDMARKER', '']]

Despite its looks, with some tools developed by Jermey H., it’s possible to search these trees for specific patterns
(sub-trees), extract the sub-tree, manipulate them converting python specific code fragments to blitz code fragments,
and then re-insert it in the parse tree. The parser module documentation has some details on how to do this. Traversing
the new blitzified tree, writing out the terminal symbols as you go, creates our new blitz++ expression string.

168 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Blitz and NumPy

The other nice discovery in the project is that the data structure used for NumPy arrays and blitz arrays is nearly
identical. NumPy stores “strides” as byte offsets and blitz stores them as element offsets, but other than that, they are
the same. Further, most of the concept and capabilities of the two libraries are remarkably similar. It is satisfying that
two completely different implementations solved the problem with similar basic architectures. It is also fortuitous.
The work involved in converting NumPy expressions to blitz expressions was greatly diminished. As an example,
consider the code for slicing an array in Python with a stride:

>>> a = b[0:4:2] + ¢
>>> a
[0,2,4]

In Blitz it is as follows:

Array<2,int> b (10);

Array<2,int> c(3);

//

Array<2,int> a = b(Range(0,3,2)) + c;

Here the range object works exactly like Python slice objects with the exception that the top index (3) is inclusive
where as Python’s (4) is exclusive. Other differences include the type declarations in C++ and parentheses instead of
brackets for indexing arrays. Currently, weave .blitz handles the inclusive/exclusive issue by subtracting one from
upper indices during the translation. An alternative that is likely more robust/maintainable in the long run is to write a
PyRange class that behaves like Python’s range. This is likely very easy.

The stock blitz also doesn’t handle negative indices in ranges. The current implementation of the blitz () has a
partial solution to this problem. It calculates and index that starts with a ‘-* sign by subtracting it from the maximum
index in the array so that:

upper index limit
b[:-1] -> b(Range(0,Nb[0]-1-1))

This approach fails, however, when the top index is calculated from other values. In the following scenario, if i+
evaluates to a negative value, the compiled code will produce incorrect results and could even core-dump. Right now,
all calculated indices are assumed to be positive.

b[:i-3] -> b(Range(0,i+7]))
A solution is to calculate all indices up front using if/then to handle the +/- cases. This is a little work and results in
more code, so it hasn’t been done. I'm holding out to see if blitz++ can be modified to handle negative indexing, but

haven’t looked into how much effort is involved yet. While it needs fixin’, I don’t think there is a ton of code where
this is an issue.

The actual translation of the Python expressions to blitz expressions is currently a two part process. First, all x:y:z
slicing expression are removed from the AST, converted to slice(x,y,z) and re-inserted into the tree. Any math needed
on these expressions (subtracting from the maximum index, etc.) are also preformed here. _beg and _end are used as
special variables that are defined as blitz::fromBegin and blitz::toEnd.

afi+j:i+j+1l,:] = b[2:3,:]
becomes a more verbose:

al[slice(i+j,i+j+1),slice(_beg,_end)] = b[slice(2,3),slice(_beg,_end)]

The second part does a simple string search/replace to convert to a blitz expression with the following translations:

slice(_beg,_end) -> _all # not strictly needed, but cuts down on code.
slice -> blitz::Range

1.16. Weave (scipy.weave) 169

SciPy Reference Guide, Release 0.16.0

[->
1 ->)
_stp -> 1

_all is defined in the compiled function as blitz: :Range.all (). These translations could of course happen
directly in the syntax tree. But the string replacement is slightly easier. Note that namespaces are maintained in the
C++ code to lessen the likelihood of name clashes. Currently no effort is made to detect name clashes. A good rule of
thumb is don’t use values that start with ‘_’ or ‘py_’ in compiled expressions and you’ll be fine.

Type definitions and coersion

So far we’ve glossed over the dynamic vs. static typing issue between Python and C++. In Python, the type of value
that a variable holds can change through the course of program execution. C/C++, on the other hand, forces you to
declare the type of value a variables will hold prior at compile time. weave .blit z handles this issue by examining
the types of the variables in the expression being executed, and compiling a function for those explicit types. For
example:

a = ones((5,5),Float32)
b = ones((5,5),Float32)
weave.blitz("a = a + b")

When compiling this expression to C++, weave .blitz sees that the values for a and b in the local scope have type
Float32, or ‘float’ on a 32 bit architecture. As a result, it compiles the function using the float type (no attempt has
been made to deal with 64 bit issues).

What happens if you call a compiled function with array types that are different than the ones for which it was
originally compiled? No biggie, you’ll just have to wait on it to compile a new version for your new types. This
doesn’t overwrite the old functions, as they are still accessible. See the catalog section in the inline() documentation
to see how this is handled. Suffice to say, the mechanism is transparent to the user and behaves like dynamic typing
with the occasional wait for compiling newly typed functions.

When working with combined scalar/array operations, the type of the array is always used. This is similar to the saves-
pace flag that was recently added to NumPy. This prevents issues with the following expression perhaps unexpectedly
being calculated at a higher (more expensive) precision that can occur in Python:

>>> a = array((1,2,3),typecode = Float32)
>>> b = a x 2.1 # results in b being a Float64 array.

In this example,

>>> a = ones((5,5),Float32)
>>> b = ones((5,5),Float32)
>>> weave.blitz ("b = a « 2.1")

the 2.1 is cast down to a £ Loat before carrying out the operation. If you really want to force the calculation to be a
double, define a and b as double arrays.

One other point of note. Currently, you must include both the right hand side and left hand side (assignment side)
of your equation in the compiled expression. Also, the array being assigned to must be created prior to calling
weave.blitz. I'm pretty sure this is easily changed so that a compiled_eval expression can be defined, but no
effort has been made to allocate new arrays (and decern their type) on the fly.

Cataloging Compiled Functions

See The Catalog section in the weave.inline () documentation.

170 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

Checking Array Sizes

Surprisingly, one of the big initial problems with compiled code was making sure all the arrays in an operation were
of compatible type. The following case is trivially easy:

a=>b + c

It only requires that arrays a, b, and c have the same shape. However, expressions like:

alitj:i+i+l,:] = b[2:3,:] + ¢

are not so trivial. Since slicing is involved, the size of the slices, not the input arrays, must be checked. Broadcasting
complicates things further because arrays and slices with different dimensions and shapes may be compatible for math
operations (broadcasting isn’t yet supported by weave .blitz). Reductions have a similar effect as their results are
different shapes than their input operand. The binary operators in NumPy compare the shapes of their two operands just
before they operate on them. This is possible because NumPy treats each operation independently. The intermediate
(temporary) arrays created during sub-operations in an expression are tested for the correct shape before they are
combined by another operation. Because weave .blitz fuses all operations into a single loop, this isn’t possible.
The shape comparisons must be done and guaranteed compatible before evaluating the expression.

The solution chosen converts input arrays to “dummy arrays” that only represent the dimensions of the arrays, not the
data. Binary operations on dummy arrays check that input array sizes are comptible and return a dummy array with
the size correct size. Evaluating an expression of dummy arrays traces the changing array sizes through all operations
and fails if incompatible array sizes are ever found.

The machinery for this is housed in weave . size_check. It basically involves writing a new class (dummy array)
and overloading its math operators to calculate the new sizes correctly. All the code is in Python and there is a fair
amount of logic (mainly to handle indexing and slicing) so the operation does impose some overhead. For large arrays
(ie. 50x50x50), the overhead is negligible compared to evaluating the actual expression. For small arrays (ie. 16x16),
the overhead imposed for checking the shapes with this method can cause the weave.blitz to be slower than
evaluating the expression in Python.

What can be done to reduce the overhead? (1) The size checking code could be moved into C. This would likely
remove most of the overhead penalty compared to NumPy (although there is also some calling overhead), but no effort
has been made to do this. (2) You can also call weave.blitz with check_size=0 and the size checking isn’t
done. However, if the sizes aren’t compatible, it can cause a core-dump. So, foregoing size_checking isn’t advisable
until your code is well debugged.

Creating the Extension Module

weave.blitz uses the same machinery as weave.inline to build the extension module. The only difference is
the code included in the function is automatically generated from the NumPy array expression instead of supplied by
the user.

1.16.9 Extension Modules

weave.inline and weave.blitz are high level tools that generate extension modules automatically. Under
the covers, they use several classes from weave.ext_tools to help generate the extension module. The main two
classes are ext_module and ext_function (I'dlike to add ext_class and ext_method also). These classes
simplify the process of generating extension modules by handling most of the “boiler plate” code automatically.

Note: inline actually sub-classes weave.ext_tools.ext_function to generate slightly different code
than the standard ext_function. The main difference is that the standard class converts function arguments to C

types, while inline always has two arguments, the local and global dicts, and the grabs the variables that need to be
convereted to C from these.

1.16. Weave (scipy.weave) 171

SciPy Reference Guide, Release 0.16.0

A Simple Example

The following simple example demonstrates how to build an extension module within a Python function:

examples/increment_example.py
from weave import ext_tools

def build_increment_ext () :
"rr Build a simple extension with functions that increment numbers.
The extension will be built in the local directory.

mmn

mod = ext_tools.ext_module('increment_ext')

a =1 # effectively a type declaration for 'a' in the
following functions.

ext_code = "return_val = Py::new_reference_to(Py::Int(at+l));"
func = ext_tools.ext_function('increment',ext_code,['a'])
mod.add_function (func)

ext_code = "return_val = Py::new_reference_to(Py::Int (at2));"
func = ext_tools.ext_function('increment_by_2',ext_code,['a'])
mod.add_function (func)

mod.compile ()

The function build_increment_ext () creates an extension module named increment_ext and compiles
it to a shared library (.so or .pyd) that can be loaded into Python.. increment_ext contains two functions,
increment and increment_by_2. The first line of build_increment_ext (),

mod = ext_tools.ext_module(‘increment_ext’)

creates an ext_module instance that is ready to have ext_function instances added to it. ext_function
instances are created much with a calling convention similar to weave.inline (). The most common call includes
a C/C++ code snippet and a list of the arguments for the function. The following:

ext_code = "return_val = Py::new_reference_to(Py::Int (a+l));"
func = ext_tools.ext_function('increment',ext_code, ['a'])

creates a C/C++ extension function that is equivalent to the following Python function:

def increment (a):
return a + 1

A second method is also added to the module and then,

mod.compile ()

is called to build the extension module. By default, the module is created in the current working directory. This exam-
ple is available in the examples/increment_example.py file found in the weave directory. At the bottom of
the file in the module’s “main” program, an attempt to import increment_ext without building it is made. If this
fails (the module doesn’t exist in the PYTHONPATH), the module is built by calling build_increment_ext ().
This approach only takes the time-consuming (a few seconds for this example) process of building the module if it
hasn’t been built before.

if _ name_ == "_ _main_ ":
try:
import increment_ext
except ImportError:
build_increment_ext ()

172 Chapter 1. SciPy Tutorial

SciPy Reference Guide, Release 0.16.0

import increment_ext
a =1
print 'a, a+l:', a, increment_ext.increment (a)
print 'a, a+2:', a, increment_ext.increment_by_2 (a)

Note: If we were willing to always pay the penalty of building the C++ code for a module, we could store
the SHA-256 checksum of the C++ code along with some information about the compiler, platform, etc. Then,

ext_module.compile () could try importing the module before it actually compiles it, check the SHA-256 check-
sum and other meta-data in the imported module with the meta-data of the code it just produced and only compile the
code if the module didn’t exist or the meta-data didn’t match. This would reduce the above code to:

if _ name_ == "__main_ ":
build_increment_ext ()

a =1
print 'a, a+l:', a, increment_ext.increment (a)
print 'a, a+2:', a, increment_ext.increment_by_2 (a)

Note: There would always be the overhead of building the C++ code, but it would only actually compile the code
once. You pay a little in overhead and get cleaner “import” code. Needs some thought.

If yourun increment_example.py from the command line, you get the following:

[eric@n0]$
a, a+l: 1
a, at2: 1

python increment_example.py
2
3
If the module didn’t exist before it was run, the module is created. If it did exist, it is just imported and used.

Fibonacci Example

examples/fibonacci . py provides a little more complex example of how to use ext_tools. Fibonacci num-
bers are a series of numbers where each number in the series is the sum of the previous two: 1, 1, 2, 3, 5, 8, etc. Here,
the first two numbers in the series are taken to be 1. One approach to calculating Fibonacci numbers uses recursive
function calls. In Python, it might be written as:

def fib(a):
if a <= 2:
return 1
else:

return fib(a-2) + fib(a-1)

In C, the same function would look something like this:

int fib(int a)
{
if(a <= 2)
return 1;
else
return fib(a-2) + fib(a-1);
}

Recursion is much faster in C than in Python, so it would be beneficial to use the C version for fibonacci number
calculations instead of the Python version. We need an extension function that calls this C function to do this. This
is possible by including the above code snippet as “support code” and then calling it from the extension function.

1.16. Weave (scipy.weave) 173

SciPy Reference Guide, Release 0.16.0

Support code snippets (usually structure definitions, helper functions and the like) are inserted into the extension
module C/C++ file before the extension function code. Here is how to build the C version of the fibonacci number
generator:

def build_fibonacci():

"mrm Builds an extension module with fibonacci calculators.
mmn

mod = ext_tools.ext_module ('fibonacci_ext'")
a =1 # this is effectively a type declaration

recursive fibonacci in C

fib_code = """
int fibl (int a)
{
if(a <= 2)
return 1;
else
return fibl (a-2) + fibl(a-1);
}
ext_code = """
int val = fibl (a);
return_val = Py::new_reference_to(Py::Int(val));
fib = ext_tools.ext_function('fib',ext_code,['a'])

fib.customize.add_support_code (fib_code)
mod.add_function (fib)

mod.compile ()

XXX More about custom_info, and what xxx_info instances are good for.

Note: recursion is not the fastest way to calculate fibonacci numbers, but this approach serves nicely for this example.

1.16.10 Customizing Type Conversions — Type Factories

not written

1.16.11 Things | wish weave did

It is possible to get name clashes if you uses a variable name that is already defined in a header automatically included
(such as stdio.h) For instance, if you try to pass in a variable named stdout, you’ll get a cryptic error report due
to the fact that stdio.h also defines the name. weave should probably try and handle this in some way. Other
things...

174 Chapter 1. SciPy Tutorial

CHAPTER
TWO

CONTRIBUTING TO SCIPY

This document aims to give an overview of how to contribute to SciPy. It tries to answer commonly asked questions,
and provide some insight into how the community process works in practice. Readers who are familiar with the SciPy
community and are experienced Python coders may want to jump straight to the git workflow documentation.

Note: You may want to check the latest version of this guide, which is available at:
https://github.com/scipy/scipy/blob/master/HACKING.rst.txt

2.1 Contributing new code

If you have been working with the scientific Python toolstack for a while, you probably have some code lying around
of which you think “this could be useful for others too”. Perhaps it’s a good idea then to contribute it to SciPy or
another open source project. The first question to ask is then, where does this code belong? That question is hard
to answer here, so we start with a more specific one: what code is suitable for putting into SciPy? Almost all of
the new code added to scipy has in common that it’s potentially useful in multiple scientific domains and it fits in
the scope of existing scipy submodules. In principle new submodules can be added too, but this is far less common.
For code that is specific to a single application, there may be an existing project that can use the code. Some scikits
(scikit-learn, scikit-image, statsmodels, etc.) are good examples here; they have a narrower focus and because of that
more domain-specific code than SciPy.

Now if you have code that you would like to see included in SciPy, how do you go about it? After checking that your
code can be distributed in SciPy under a compatible license (see FAQ for details), the first step is to discuss on the
scipy-dev mailing list. All new features, as well as changes to existing code, are discussed and decided on there. You
can, and probably should, already start this discussion before your code is finished.

Assuming the outcome of the discussion on the mailing list is positive and you have a function or piece of code that
does what you need it to do, what next? Before code is added to SciPy, it at least has to have good documentation, unit
tests and correct code style.

1. Unit tests In principle you should aim to create unit tests that exercise all the code that you are adding.
This gives some degree of confidence that your code runs correctly, also on Python versions and
hardware or OSes that you don’t have available yourself. An extensive description of how to
write unit tests is given in the NumPy testing guidelines.

2. Documentation

Clear and complete documentation is essential in order for users to be able to find and under-
stand the code. Documentation for individual functions and classes — which includes at least a
basic description, type and meaning of all parameters and returns values, and usage examples in
doctest format — is put in docstrings. Those docstrings can be read within the interpreter, and
are compiled into a reference guide in html and pdf format. Higher-level documentation for key
(areas of) functionality is provided in tutorial format and/or in module docstrings. A guide on
how to write documentation is given in how to document.

175

http://docs.scipy.org/doc/numpy/dev/gitwash/index.html
https://github.com/scipy/scipy/blob/master/HACKING.rst.txt
http://scikit-learn.org
http://scikit-image.org/
http://statsmodels.sourceforge.net/
https://github.com/numpy/numpy/blob/master/doc/TESTS.rst.txt
http://www.doughellmann.com/PyMOTW/doctest/
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

SciPy Reference Guide, Release 0.16.0

3. Code style Uniformity of style in which code is written is important to others trying to understand the code.
SciPy follows the standard Python guidelines for code style, PEPS. In order to check that your
code conforms to PEP8, you can use the pep8 package style checker. Most IDEs and text editors
have settings that can help you follow PEPS, for example by translating tabs by four spaces.
Using pyflakes to check your code is also a good idea.

At the end of this document a checklist is given that may help to check if your code fulfills all requirements for
inclusion in SciPy.

Another question you may have is: where exactly do I put my code? To answer this, it is useful to understand
how the SciPy public API (application programming interface) is defined. For most modules the API is two levels
deep, which means your new function should appear as scipy.submodule.my_new_func. my_new_func
can be put in an existing or new file under /scipy/<submodule>/, its name is added to the __all_
list in that file (which lists all public functions in the file), and those public functions are then imported in
/scipy/<submodule>/__init__.py. Any private functions/classes should have a leading underscore (_) in
their name. A more detailed description of what the public API of SciPy is, is given in SciPy APIL

Once you think your code is ready for inclusion in SciPy, you can send a pull request (PR) on Github. We won’t
go into the details of how to work with git here, this is described well in the git workflow section of the NumPy
documentation and on the Github help pages. When you send the PR for a new feature, be sure to also mention this on
the scipy-dev mailing list. This can prompt interested people to help review your PR. Assuming that you already got
positive feedback before on the general idea of your code/feature, the purpose of the code review is to ensure that the
code is correct, efficient and meets the requirements outlined above. In many cases the code review happens relatively
quickly, but it’s possible that it stalls. If you have addressed all feedback already given, it’s perfectly fine to ask on the
mailing list again for review (after a reasonable amount of time, say a couple of weeks, has passed). Once the review
is completed, the PR is merged into the “master” branch of SciPy.

The above describes the requirements and process for adding code to SciPy. It doesn’t yet answer the question though
how decisions are made exactly. The basic answer is: decisions are made by consensus, by everyone who chooses
to participate in the discussion on the mailing list. This includes developers, other users and yourself. Aiming for
consensus in the discussion is important — SciPy is a project by and for the scientific Python community. In those rare
cases that agreement cannot be reached, the maintainers of the module in question can decide the issue.

2.2 Contributing by helping maintain existing code

The previous section talked specifically about adding new functionality to SciPy. A large part of that discussion also
applies to maintenance of existing code. Maintenance means fixing bugs, improving code quality or style, documenting
existing functionality better, adding missing unit tests, keeping build scripts up-to-date, etc. The SciPy issue list
contains all reported bugs, build/documentation issues, etc. Fixing issues helps improve the overall quality of SciPy,
and is also a good way of getting familiar with the project. You may also want to fix a bug because you ran into it and
need the function in question to work correctly.

The discussion on code style and unit testing above applies equally to bug fixes. It is usually best to start by writing a
unit test that shows the problem, i.e. it should pass but doesn’t. Once you have that, you can fix the code so that the
test does pass. That should be enough to send a PR for this issue. Unlike when adding new code, discussing this on
the mailing list may not be necessary - if the old behavior of the code is clearly incorrect, no one will object to having
it fixed. It may be necessary to add some warning or deprecation message for the changed behavior. This should be
part of the review process.

2.3 Other ways to contribute

There are many ways to contribute other than contributing code. Participating in discussions on the scipy-user and
scipy-dev mailing lists is a contribution in itself. The scipy.org website contains a lot of information on the SciPy

176 Chapter 2. Contributing to SciPy

http://www.python.org/dev/peps/pep-0008/
http://pypi.python.org/pypi/pep8
http://pypi.python.org/pypi/pyflakes
http://docs.scipy.org/doc/scipy/reference/api.html
http://docs.scipy.org/doc/numpy/dev/gitwash/index.html
https://help.github.com/articles/set-up-git/
https://github.com/scipy/scipy/blob/master/doc/MAINTAINERS.rst.txt
https://github.com/scipy/scipy/issues
http://scipy.org/

SciPy Reference Guide, Release 0.16.0

community and can always use a new pair of hands.

2.4 Recommended development setup

Since Scipy contains parts written in C, C++, and Fortran that need to be compiled before use, make sure you have
the necessary compilers and Python development headers installed. Having compiled code also means that importing
Scipy from the development sources needs some additional steps, which are explained below.

First fork a copy of the main Scipy repository in Github onto your own account and then create your local repository
via:

$ git clone git@github.com:YOURUSERNAME/scipy.git scipy
$ cd scipy
$ git remote add upstream git://github.com/scipy/scipy.git

To build the development version of Scipy and run tests, spawn interactive shells with the Python import paths properly
set up etc., do one of:

python runtests.py -v

python runtests.py -v —-s optimize

python runtests.py -v -t scipy/special/tests/test_basic.py:test_xlogy
python runtests.py -—-ipython

python runtests.py —--python somescript.py

python runtests.py —--bench

w r v A

This builds Scipy first, so the first time it may take some time. If you specify —n, the tests are run against the version
of Scipy (if any) found on current PYTHONPATH.

Using runtests.py is the recommended approach to running tests. There are also a number of alternatives to it,
for example in-place build or installing to a virtualenv. See the FAQ below for details.

Some of the tests in Scipy are very slow and need to be separately enabled. See the FAQ below for details.

2.5 SciPy structure

All SciPy modules should follow the following conventions. In the following, a SciPy module is defined as a Python
package, say yyy, that is located in the scipy/ directory.

* Ideally, each SciPy module should be as self-contained as possible. That is, it should have minimal dependencies
on other packages or modules. Even dependencies on other SciPy modules should be kept to a minimum. A
dependency on NumPy is of course assumed.

* Directory yyy/ contains:

— Afile setup.py that defines configuration (parent_package=’"', top_path=None) func-
tion for numpy .distutils.

— A directory tests/ that contains files test_<name>.py corresponding to modules
yyy/<name>{.py, .so,/}.

* Private modules should be prefixed with an underscore _, for instance yyy/_somemodule.py.

¢ User-visible functions should have good documentation following the Numpy documentation style, see how to
document

e The __init__ .py of the module should contain the main reference documentation in its docstring. This is
connected to the Sphinx documentation under doc/ via Sphinx’s automodule directive.

2.4. Recommended development setup 177

http://docs.scipy.org/doc/numpy/reference/distutils.html#module-numpy.distutils
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

SciPy Reference Guide, Release 0.16.0

The reference documentation should first give a categorized list of the contents of the module using
autosummary: : directives, and after that explain points essential for understanding the use of the module.

Tutorial-style documentation with extensive examples should be separate, and put under
doc/source/tutorial/

See the existing Scipy submodules for guidance.
For further details on Numpy distutils, see:

https://github.com/numpy/numpy/blob/master/doc/DISTUTILS.rst.txt

2.6 Useful links, FAQ, checklist

2.6.1 Checklist before submitting a PR

* Are there unit tests with good code coverage?
* Do all public function have docstrings including examples?
* Is the code style correct (PEPS, pyflakes)

* Is the new functionality tagged with .. versionadded:: X.Y.Z (with X.Y.Z the version number of
the next release - can be found in setup.py)?

¢ Is the new functionality mentioned in the release notes of the next release?
¢ Is the new functionality added to the reference guide?
* In case of larger additions, is there a tutorial or more extensive module-level description?

¢ In case compiled code is added, is it integrated correctly via setup.py (and preferably also Bento configuration
files - bento.info and bscript)?

¢ If you are a first-time contributor, did you add yourself to THANKS.txt? Please note that this is perfectly normal
and desirable - the aim is to give every single contributor credit, and if you don’t add yourself it’s simply extra
work for the reviewer (or worse, the reviewer may forget).

* Did you check that the code can be distributed under a BSD license?

2.6.2 Useful SciPy documents

e The how to document guidelines
* NumPy/SciPy testing guidelines
* SciPy API

* SciPy maintainers

* NumPy/SciPy git workflow

2.6.3 FAQ

I based my code on existing Matlab/R/... code I found online, is this OK?

It depends. SciPy is distributed under a BSD license, so if the code that you based your code on is also BSD licensed
or has a BSD-compatible license (MIT, Apache, ...) then it’s OK. Code which is GPL-licensed, has no clear license,

178 Chapter 2. Contributing to SciPy

https://github.com/numpy/numpy/blob/master/doc/DISTUTILS.rst.txt
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://github.com/numpy/numpy/blob/master/doc/TESTS.rst.txt
http://docs.scipy.org/doc/scipy/reference/api.html
https://github.com/scipy/scipy/blob/master/doc/MAINTAINERS.rst.txt
http://docs.scipy.org/doc/numpy/dev/gitwash/index.html

SciPy Reference Guide, Release 0.16.0

requires citation or is free for academic use only can’t be included in SciPy. Therefore if you copied existing code with
such a license or made a direct translation to Python of it, your code can’t be included. See also license compatibility.

Why is SciPy under the BSD license and not, say, the GPL?

Like Python, SciPy uses a “permissive” open source license, which allows proprietary re-use. While this allows
companies to use and modify the software without giving anything back, it is felt that the larger user base results in
more contributions overall, and companies often publish their modifications anyway, without being required to. See
John Hunter’s BSD pitch.

How do I set up a development version of SciPy in parallel to a released version that I use to do my job/research?

One simple way to achieve this is to install the released version in site-packages, by using a binary installer or pip for
example, and set up the development version in a virtualenv. First install virtualenv (optionally use virtualenvwrapper),
then create your virtualenv (named scipy-dev here) with:

$ virtualenv scipy-dev
Now, whenever you want to switch to the virtual environment, you can use the command source

scipy-dev/bin/activate, and deactivate to exit from the virtual environment and back to your previ-
ous shell. With scipy-dev activated, install first Scipy’s dependencies:

$ pip install Numpy Nose Cython

After that, you can install a development version of Scipy, for example via:

$ python setup.py install

The installation goes to the virtual environment.
How do I set up an in-place build for development

For development, you can set up an in-place build so that changes made to . py files have effect without rebuild. First,
run:

$ python setup.py build_ext -i
Then you need to point your PYTHONPATH environment variable to this directory. Some IDEs (Spyder for example)
have utilities to manage PYTHONPATH. On Linux and OSX, you can run the command:

$ export PYTHONPATH=$PWD

and on Windows
$ set PYTHONPATH=/path/to/scipy

Now editing a Python source file in SciPy allows you to immediately test and use your changes (in .py files), by
simply restarting the interpreter.

Can I use a programming language other than Python to speed up my code?

Yes. The languages used in SciPy are Python, Cython, C, C++ and Fortran. All of these have their pros and cons.
If Python really doesn’t offer enough performance, one of those languages can be used. Important concerns when
using compiled languages are maintainability and portability. For maintainability, Cython is clearly preferred over
C/C++/Fortran. Cython and C are more portable than C++/Fortran. A lot of the existing C and Fortran code in SciPy
is older, battle-tested code that was only wrapped in (but not specifically written for) Python/SciPy. Therefore the
basic advice is: use Cython. If there’s specific reasons why C/C++/Fortran should be preferred, please discuss those
reasons first.

How do I debug code written in C/C++/Fortran inside Scipy?

The easiest way to do this is to first write a Python script that invokes the C code whose execution you want to debug.
For instance mytest .py:

2.6. Useful links, FAQ, checklist 179

http://www.scipy.org/License_Compatibility
http://nipy.sourceforge.net/nipy/stable/faq/johns_bsd_pitch.html
http://www.virtualenv.org/
http://www.doughellmann.com/projects/virtualenvwrapper/

SciPy Reference Guide, Release 0.16.0

from scipy.special import hyp2fl
print (hyp2f1(5.0, 1.0, -1.8, 0.95))
Now, you can run:

gdb —--args python runtests.py —-g ——-python mytest.py

If you didn’t compile with debug symbols enabled before, remove the build directory first. While in the debugger:
(gdb) break cephes_hyp2fl
(gdb) run

The execution will now stop at the corresponding C function and you can step through it as usual. Instead of
plain gdb you can of course use your favourite alternative debugger; run it on the python binary with arguments
runtests.py —-g ——python mytest.py.

How do I enable additional tests in Scipy?
Some of the tests in Scipy’s test suite are very slow and not enabled by default. You can run the full suite via:

$ python runtests.py -g -m full

This invokes the test suite import scipy; scipy.test ("full"), enabling also slow tests.

There is an additional level of very slow tests (several minutes), which are disabled also in this case. They can be
enabled by setting the environment variable SCIPY_XSLOW=1 before running the test suite.

How do I write tests with test generators?

The Nose test framework supports so-called test generators, which can come useful if you need to have multiple tests
where just a parameter changes. Using test generators so that they are more useful than harmful is tricky, and we
recommend the following pattern:

def test_something() :
some_array = (...)

def check (some_param) :
c = compute_result (some_array, some_param)
known_result = (...)
assert_allclose(c, known_result)

for some_param in ['a', 'b', 'c']:
yield check, some_param

We require the following:

» All asserts and all computation that is tested must only be reached after a yield. (Rationale: the generator body
is part of no test, and a failure in it will show neither the test name nor for what parameters the test failed.)

* Arrays must not be passed as yield parameters. Either use variables from outer scope (eg. with some index
passed to yield), or capsulate test data to a class with a sensible __repr__. (Rationale: Nose truncates the
printed form of arrays in test output, and this makes it impossible to know for what parameters a test failed.
Arrays are big, and clutter test output unnecessarily.)

* Test generators cannot be used in test classes inheriting from unittest. TestCase; either use object as base class,
or use standalone test functions. (Rationale: Nose does not run test generators in TestCase-inheriting classes.)

If in doubt, do not use test generators. You can track for what parameter things failed also by passing
err_msg=repr ((paraml, param2, ...)) tothe various assert functions.

180 Chapter 2. Contributing to SciPy

http://nose.readthedocs.org/en/latest/

CHAPTER
THREE

API - IMPORTING FROM SCIPY

In Python the distinction between what is the public API of a library and what are private implementation details is
not always clear. Unlike in other languages like Java, it is possible in Python to access “private” function or objects.
Occasionally this may be convenient, but be aware that if you do so your code may break without warning in future
releases. Some widely understood rules for what is and isn’t public in Python are:

* Methods / functions / classes and module attributes whose names begin with a leading underscore are private.

« If a class name begins with a leading underscore none of its members are public, whether or not they begin with
a leading underscore.

* If a module name in a package begins with a leading underscore none of its members are public, whether or not
they begin with a leading underscore.

* If a module or package defines ___all_ that authoritatively defines the public interface.

¢ If a module or package doesn’t define __all__ then all names that don’t start with a leading underscore are
public.

Note: Reading the above guidelines one could draw the conclusion that every private module or object starts with
an underscore. This is not the case; the presence of underscores do mark something as private, but the absence of

underscores do not mark something as public.

In Scipy there are modules whose names don’t start with an underscore, but that should be considered private. To
clarify which modules these are we define below what the public API is for Scipy, and give some recommendations
for how to import modules/functions/objects from Scipy.

3.1 Guidelines for importing functions from Scipy

The scipy namespace itself only contains functions imported from numpy. These functions still exist for backwards
compatibility, but should be imported from numpy directly.

Everything in the namespaces of scipy submodules is public. In general, it is recommended to import functions from
submodule namespaces. For example, the function curve_fit (defined in scipy/optimize/minpack.py) should be
imported like this:

from scipy import optimize
result = optimize.curve_fit(...)

This form of importing submodules is preferred for all submodules except scipy.io (because io is also the name
of a module in the Python stdlib):

181

SciPy Reference Guide, Release 0.16.0

from scipy import interpolate
from scipy import integrate
import scipy.io as spio

In some cases, the public API is one level deeper. For example the scipy.sparse.linalg module is public, and
the functions it contains are not available in the scipy . sparse namespace. Sometimes it may result in more easily
understandable code if functions are imported from one level deeper. For example, in the following it is immediately
clear that 1omax is a distribution if the second form is chosen:

first form
from scipy import stats
stats.lomax (...)

second form
from scipy.stats import distributions
distributions.lomax (...)

In that case the second form can be chosen, if it is documented in the next section that the submodule in question is
public.

3.2 API definition

Every submodule listed below is public. That means that these submodules are unlikely to be renamed or changed
in an incompatible way, and if that is necessary a deprecation warning will be raised for one Scipy release before the
change is made.

* scipy.cluster

- vq

— hierarchy
* scipy.constants
* scipy.fftpack
* scipy.integrate
* scipy.interpolate
* scipy.io

— arff

harwell_boeing
- idl

matlab

netcdf

wavfile

* scipy.linalg
— scipy.linalg.blas
- scipy.linalg.lapack
— scipy.linalg.interpolative

* scipy.misc

182 Chapter 3. API - importing from Scipy

SciPy Reference Guide, Release 0.16.0

* scipy.ndimage
e scipy.odr
* scipy.optimize
* scipy.signal
* scipy.sparse
— linalg
— csgraph
* scipy.spatial
— distance
* scipy.special
* scipy.stats
— distributions
— mstats

* scipy.weave

3.2. API definition 183

SciPy Reference Guide, Release 0.16.0

184 Chapter 3. API - importing from Scipy

CHAPTER
FOUR

RELEASE NOTES

4.1 SciPy 0.16.0 Release Notes

Contents

* SciPy 0.16.0 Release Notes
— New features

+* Benchmark suite
scipy.linalg improvements
scipy.signal improvements
scipy.sparse improvements
scipy.spatial improvements
scipy.stats improvements

¥ ¥ ¥ ¥ ¥

* scipy.optimize improvements
Deprecated features
Backwards incompatible changes
Other changes
Authors
* Issues closed for 0.16.0
* Pull requests for 0.16.0

SciPy 0.16.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes,
improved test coverage and better documentation. There have been a number of deprecations and API changes in
this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large
number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the
0.16.x branch, and on adding new features on the master branch.

This release requires Python 2.6, 2.7 or 3.2-3.4 and NumPy 1.6.2 or greater.
Highlights of this release include:
* A Cython API for BLAS/LAPACK in scipy.linalg

* A new benchmark suite. It’s now straightforward to add new benchmarks, and they’re routinely included with
performance enhancement PRs.

* Support for the second order sections (SOS) formatin scipy.signal.

185

SciPy Reference Guide, Release 0.16.0

4.1.1 New features

Benchmark suite

The benchmark suite has switched to using Airspeed Velocity for benchmarking. You can run the suite locally via
python runtests.py —-bench. For more details, see benchmarks/README. rst.

scipy.linalg improvements

A full set of Cython wrappers for BLAS and LAPACK has been added in the modules
scipy.linalg.cython_blas and scipy.linalg.cython_lapack. In Cython, these wrappers can
now be cimported from their corresponding modules and used without linking directly against BLAS or LAPACK.

The functions scipy.linalg.qr_delete, scipy.linalg.qr_insert and
scipy.linalg.qgr_update for updating QR decompositions were added.

The function scipy.linalg.solve_circulant solves a linear system with a circulant coefficient matrix.
The function scipy.linalg.invpascal computes the inverse of a Pascal matrix.
The function scipy.linalg.solve_toeplitz, aLevinson-Durbin Toeplitz solver, was added.

Added wrapper for potentially useful LAPACK function «1lasd4. It computes the square root of the i-th updated
eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. See its LAPACK documenta-
tion and unit tests for it to get more info.

Added two extra wrappers for LAPACK least-square solvers. Namely, they are xgelsd and xgelsy.
Wrappers for the LAPACK *1ange functions, which calculate various matrix norms, were added.

Wrappers for xgt sv and xpt sv, which solve AxX = B for tri-diagonal matrix A, were added.

scipy.signal improvements

Support for second order sections (SOS) as a format for IIR filters was added. The new functions are:
* scipy.signal.sosfilt
* scipy.signal.sosfilt_zi,
* scipy.signal.sos2tf
* scipy.signal.sos2zpk
* scipy.signal.tf2sos
* scipy.signal.zpk2sos.

Additionally, the filter design functions iirdesign, iirfilter, butter, chebyl, cheby2, ellip, and bessel can return the filter
in the SOS format.

The function scipy.signal.place_poles, which provides two methods to place poles for linear systems, was
added.

The option to use Gustafsson’s method for choosing the initial conditions of the forward and backward passes was
added to scipy.signal.filtfilt.

New classes TransferFunction, StateSpace and ZerosPolesGain were added. These classes are now
returned when instantiating scipy.signal.lti. Conversion between those classes can be done explicitly now.

An exponential (Poisson) window was added as scipy.signal.exponential, and a Tukey window was added
as scipy.signal.tukey.

186 Chapter 4. Release Notes

http://spacetelescope.github.io/asv/

SciPy Reference Guide, Release 0.16.0

The function for computing digital filter group delay was added as scipy.signal.group_delay.

The functionality for spectral analysis and spectral density estimation has been significantly improved:
scipy.signal.welch became ~8x faster and the functions scipy.signal.spectrogram,
scipy.signal.coherence and scipy.signal.csd (cross-spectral density) were added.

scipy.signal.lsim was rewritten - all known issues are fixed, so this function can now be used instead of
1sim2; 1simis orders of magnitude faster than 1sim2 in most cases.

scipy.sparse improvements

The function scipy.sparse.norm, which computes sparse matrix norms, was added.

The function scipy.sparse.random, which allows to draw random variates from an arbitrary distribution, was
added.

scipy.spatial improvements

scipy.spatial.cKDTree has seen a major rewrite, which improved the performance of the query method
significantly, added support for parallel queries, pickling, and options that affect the tree layout. See pull request 4374
for more details.

The function scipy.spatial.procrustes for Procrustes analysis (statistical shape analysis) was added.

scipy.stats improvements

The Wishart distribution and its inverse have been added, as scipy.stats.wishart and
scipy.stats.invwishart.

The Exponentially Modified Normal distribution has been added as scipy.stats.exponnorm.

The Generalized Normal distribution has been added as scipy.stats.gennorm.

All distributions now contain a random_state property and allow specifying a specific
numpy . random.RandomState random number generator when generating random variates.

Many statistical tests and other scipy . stat s functions that have multiple return values now return namedtuples.
See pull request 4709 for details.

scipy.optimize improvements

A new derivative-free method DF-SANE has been added to the nonlinear equation system solving function
scipy.optimize.root.

4.1.2 Deprecated features

scipy.stats.pdf_fromgamma is deprecated. This function was undocumented, untested and rarely used.
Statsmodels provides equivalent functionality with statsmodels.distributions.ExpandedNormal.
scipy.stats. fastsort is deprecated. This function is unnecessary, numpy . argsort can be used instead.

scipy.stats.signaltonoise and scipy.stats.mstats.signaltonoise are deprecated. These
functions did not belong in scipy.stats and are rarely used. See issue #609 for details.

scipy.stats.histogram? is deprecated. This function is unnecessary, numpy.histogram2d can be used
instead.

4.1. SciPy 0.16.0 Release Notes 187

SciPy Reference Guide, Release 0.16.0

4.1.3 Backwards incompatible changes

The deprecated global optimizer scipy.optimize.anneal was removed.

The following deprecated modules have been removed: scipy.lib.blas, scipy.lib.lapack,
scipy.linalg.cblas, scipy.linalg.fblas, scipy.linalg.clapack,
scipy.linalg.flapack. They had been deprecated since Scipy 0.12.0, the functionality should be ac-
cessed as scipy.linalg.blasand scipy.linalg.lapack.

The deprecated function scipy.special.all_mat has been removed.

The deprecated functions fprob, ksprob, zprob, randwcdf and randwppf have been removed from
scipy.stats.

4.1.4 Other changes

The version numbering for development builds has been updated to comply with PEP 440.

Building with python setup.py develop is now supported.

4.1.5 Authors

* @axiru +

* @endolith

* Elliott Sales de Andrade +
e Anne Archibald

* Yoshiki Vazquez Baeza +
* Sylvain Bellemare

¢ Felix Berkenkamp +
* Raoul Bourquin +

* Matthew Brett

* Per Brodtkorb

e Christian Brueffer

e Lars Buitinck

* Evgeni Burovski

» Steven Byrnes

» CJ Carey

* George Castillo +

* Alex Conley +

e Liam Damewood +

e Rupak Das +

* Abraham Escalante +
e Matthias Feurer +

* Eric Firing +

188 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

Clark Fitzgerald
Chad Fulton

André Gaul
Andreea Georgescu +
Christoph Gohlke
Andrey Golovizin +
Ralf Gommers

J.J. Green +

Alex Griffing
Alexander Grigorievskiy +
Hans Moritz Gunther +
Jonas Hahnfeld +
Charles Harris

Ian Henriksen
Andreas Hilboll
Asmund Hjulstad +
Jan Schliiter +
Janko Slavic +
Daniel Jensen +
Johannes Ballé +
Terry Jones +
Amato Kasahara +
Eric Larson

Denis Laxalde
Antony Lee
Gregory R. Lee
Perry Lee +

Loic Esteve

Martin Manns +
Eric Martin +

Matéj Kocidn +
Andreas Mayer +
Nikolay Mayorov +
Robert McGibbon +
Sturla Molden

Nicola Montecchio +

4.1.

SciPy 0.16.0 Release Notes

189

SciPy Reference Guide, Release 0.16.0

Eric Moore

Jamie Morton +
Nikolas Moya +
Maniteja Nandana +
Andrew Nelson

Joel Nothman
Aldrian Obaja
Regina Ongowarsito +
Paul Ortyl +

Pedro Lépez-Adeva Fernandez-Layos +
Stefan Peterson +
Irvin Probst +

Eric Quintero +
John David Reaver +
Juha Remes +
Thomas Robitaille
Clancy Rowley +
Tobias Schmidt +
Skipper Seabold
Aman Singh +

Eric Soroos
Valentine Svensson +
Julian Taylor

Aman Thakral +
Helmut Toplitzer +
Fukumu Tsutsumi +
Anastasiia Tsyplia +
Jacob Vanderplas
Pauli Virtanen
Matteo Visconti +
Warren Weckesser
Florian Wilhelm +
Nathan Woods
Haochen Wu +

Daan Wynen +

190

Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

A total of 93 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 0.16.0

#1063: Implement a whishart distribution (Trac #536)

#1885: Rbf: floating point warnings - possible bug (Trac #1360)
#2020: Rbf default epsilon too large (Trac #1495)

#2325: extending distributions, hypergeom, to degenerate cases (Trac...

#3502: [ENH] linalg.hessenberg should use ORGHR for calc_q=True

#3603: Passing array as window into signal.resample() fails

#3675: Intermittent failures for signal.slepian on Windows

#3742: Pchipinterpolator inconvenient as ppoly
#3786: add procrustes?

#3798: scipy.io.savemat fails for empty dicts

#3975: Use RandomState in scipy.stats

#4022: savemat incorrectly saves logical arrays

#4028: scipy.stats.geom.logpmf(1,1) returns nan. The correct value is...

#4030: simplify scipy.stats.betaprime.cdf

#4031: improve accuracy of scipy.stats.gompertz distribution for small...

#4033: improve accuracy of scipy.stats.lomax distribution for small...

#4034: improve accuracy of scipy.stats.rayleigh distribution for large...

#4035: improve accuracy of scipy.stats.truncexpon distribution for small...

#4081: Error when reading matlab file: buffer is too small for requested...

#4100: Why does qr(a, Iwork=0) not fail?

#4134: scipy.stats: rv_frozen has no expect() method

#4204: Please add docstring to scipy.optimize.RootResults

#4206: Wrap LAPACK tridiagonal solve routine gzsv

#4208: Empty sparse matrices written to MAT file cannot be read by MATLAB

#4217: use a TravisCI configuration with numpy built with NPY_RELAXED_STRIDES_CHECKING=1

#4282: integrate.odeint raises an exception when full_output=1 and the...

#4301: scipy and numpy version names do not follow pep 440

#4355: PPoly.antiderivative() produces incorrect output

#4391: spsolve becomes extremely slow with large b matrix

#4393: Documentation glitsch in sparse.linalg.spilu

#4408: Vector-valued constraints in minimize() et al

#4412: Documentation of scipy.signal.cwt error

4.1. SciPy 0.16.0 Release Notes 191

https://github.com/scipy/scipy/issues/1063
https://github.com/scipy/scipy/issues/1885
https://github.com/scipy/scipy/issues/2020
https://github.com/scipy/scipy/issues/2325
https://github.com/scipy/scipy/issues/3502
https://github.com/scipy/scipy/issues/3603
https://github.com/scipy/scipy/issues/3675
https://github.com/scipy/scipy/issues/3742
https://github.com/scipy/scipy/issues/3786
https://github.com/scipy/scipy/issues/3798
https://github.com/scipy/scipy/issues/3975
https://github.com/scipy/scipy/issues/4022
https://github.com/scipy/scipy/issues/4028
https://github.com/scipy/scipy/issues/4030
https://github.com/scipy/scipy/issues/4031
https://github.com/scipy/scipy/issues/4033
https://github.com/scipy/scipy/issues/4034
https://github.com/scipy/scipy/issues/4035
https://github.com/scipy/scipy/issues/4081
https://github.com/scipy/scipy/issues/4100
https://github.com/scipy/scipy/issues/4134
https://github.com/scipy/scipy/issues/4204
https://github.com/scipy/scipy/issues/4206
https://github.com/scipy/scipy/issues/4208
https://github.com/scipy/scipy/issues/4217
https://github.com/scipy/scipy/issues/4282
https://github.com/scipy/scipy/issues/4301
https://github.com/scipy/scipy/issues/4355
https://github.com/scipy/scipy/issues/4391
https://github.com/scipy/scipy/issues/4393
https://github.com/scipy/scipy/issues/4408
https://github.com/scipy/scipy/issues/4412

SciPy Reference Guide, Release 0.16.0

#4428:
#4434
#4438:
#4445:
#4467
#4492:
#45006:
#4520:
#4521:
#4523:
#4526:
#4527
#4550:
#4554
#4565:
#4569:
#4582:
#4585:
#4590:
#4594
#4596:
#4599:
#4612:
#4613:
#4673:
#4681:
#4705:
#4719:
#4724
#4726:
#4734
#4736:
#4746:
#4757:
#4774
#4779:

dok.__setitem__ problem with negative indices

Incomplete documentation for sparse.linalg.spsolve

linprog() documentation example wrong

Typo in scipy.special.expit doc

Documentation Error in scipy.optimize options for TNC
solve_toeplitz benchmark is bitrotting already

lobpcg/sparse performance regression Jun 20147
g77_abi_wrappers needed on Linux for MKL as well

Broken check in uses_mkl for newer versions of the library

rbf with gaussian kernel seems to produce more noise than original...
error in site documentation for poisson.pmf() method

KDTree example doesn’t work in Python 3
scipy.stats.mode - UnboundLocalError on empty sequence
filter out convergence warnings in optimization tests

odeint messages

remez: “ValueError: Failure to converge after 25 iterations....

DOC: optimize: _minimize_scalar_brent does not have a disp option
DOC: Erroneous latex-related characters in tutorial.
sparse.linalg.svds should throw an exception if which not in...
scipy.optimize.linprog IndexError when a callback is providen
scipy.linalg.block_diag misbehavior with empty array inputs (v0.13.3)
scipy.integrate.nquad should call _OptFunc when called with only...
Crash in signal Ifilter on nd input with wrong shaped zi
scipy.io.readsav error on reading sav file
scipy.interpolate.RectBivariateSpline construction locks PyQt...
Broadcasting in signal.lfilter still not quite right.

kmeans k_or_guess parameter error if guess is not square array
Build failure on 14.04.2

GenGamma _munp function fails due to overflow

FAIL: test_cobyla.test_vector_constraints

Failing tests in stats with numpy master.

gr_update bug or incompatibility with numpy 1.10?

linprog returns solution violating equality constraint
optimize.leastsq docstring mismatch

Update contributor list for v0.16

circmean and others do not appear in the documentation

192

Chapter 4

. Release Notes

https://github.com/scipy/scipy/issues/4428
https://github.com/scipy/scipy/issues/4434
https://github.com/scipy/scipy/issues/4438
https://github.com/scipy/scipy/issues/4445
https://github.com/scipy/scipy/issues/4467
https://github.com/scipy/scipy/issues/4492
https://github.com/scipy/scipy/issues/4506
https://github.com/scipy/scipy/issues/4520
https://github.com/scipy/scipy/issues/4521
https://github.com/scipy/scipy/issues/4523
https://github.com/scipy/scipy/issues/4526
https://github.com/scipy/scipy/issues/4527
https://github.com/scipy/scipy/issues/4550
https://github.com/scipy/scipy/issues/4554
https://github.com/scipy/scipy/issues/4565
https://github.com/scipy/scipy/issues/4569
https://github.com/scipy/scipy/issues/4582
https://github.com/scipy/scipy/issues/4585
https://github.com/scipy/scipy/issues/4590
https://github.com/scipy/scipy/issues/4594
https://github.com/scipy/scipy/issues/4596
https://github.com/scipy/scipy/issues/4599
https://github.com/scipy/scipy/issues/4612
https://github.com/scipy/scipy/issues/4613
https://github.com/scipy/scipy/issues/4673
https://github.com/scipy/scipy/issues/4681
https://github.com/scipy/scipy/issues/4705
https://github.com/scipy/scipy/issues/4719
https://github.com/scipy/scipy/issues/4724
https://github.com/scipy/scipy/issues/4726
https://github.com/scipy/scipy/issues/4734
https://github.com/scipy/scipy/issues/4736
https://github.com/scipy/scipy/issues/4746
https://github.com/scipy/scipy/issues/4757
https://github.com/scipy/scipy/issues/4774
https://github.com/scipy/scipy/issues/4779

SciPy Reference Guide, Release 0.16.0

o #4788:
e #4791:

problems with scipy sparse linalg isolve iterative.py when complex

BUG: scipy.spatial: incremental Voronoi doesn’t increase size...

Pull requests for 0.16.0

e #3116:
o #3157:
o #3442:
o #3679:
* #3680:
o #3717:
o #3741:
* #3956:
* #3980:
» #3996:
o #4001
o #4012:
o #4021:
o #4089:
° #4116:
e #4129:
e #4135:
o #4195:
o #4200:
o #4202:
o #4205
o #4211:
o #4212:
o #4213:
o #4215:
° #4219:
o #4223:
o #4226:
o #4228:
o #4232:
o #4242:
o #4245:

sparse: enhancements for DIA format

ENH: linalg: add the function ‘solve_circulant’ for solving a...
ENH: signal: Add Gustafsson’s method as an option for the filtfilt...
WIP: fix sporadic slepian failures

Some cleanups in stats

ENH: Add second-order sections filtering

Dltisys changes

add note to scipy.signal.resample about prime sample numbers
Add check_finite flag to UnivariateSpline

MAINT: stricter linalg argument checking

: BUG: numerical precision in dirichlet

ENH: linalg: Add a function to compute the inverse of a Pascal...

ENH: Cython api for lapack and blas

Fixes for various PEPS issues.

MAINT: fitpack: trim down compiler warnings (unused labels, variables)
ENH: stats: add a random_state property to distributions

ENH: Add Wishart and inverse Wishart distributions

improve the interpolate docs

ENH: Add t-test from descriptive stats function.

Dendrogram threshold color

: BLD: fix a number of Bento build warnings.

add an ufunc for the inverse Box-Cox transfrom

MRG:fix for gh-4208

ENH: specific warning if matlab file is empty

Issue #4209: splprep documentation updated to reflect dimensional...
DOC: silence several Sphinx warnings when building the docs
MAINT: remove two redundant lines of code

try forcing the numpy rebuild with relaxed strides

BLD: some updates to Bento config files and docs. Closes gh-3978.
wrong references in the docs

DOC: change example sample spacing

Arff fixes

4.1. SciPy 0.16.0 Release Notes

193

https://github.com/scipy/scipy/issues/4788
https://github.com/scipy/scipy/issues/4791
https://github.com/scipy/scipy/pull/3116
https://github.com/scipy/scipy/pull/3157
https://github.com/scipy/scipy/pull/3442
https://github.com/scipy/scipy/pull/3679
https://github.com/scipy/scipy/pull/3680
https://github.com/scipy/scipy/pull/3717
https://github.com/scipy/scipy/pull/3741
https://github.com/scipy/scipy/pull/3956
https://github.com/scipy/scipy/pull/3980
https://github.com/scipy/scipy/pull/3996
https://github.com/scipy/scipy/pull/4001
https://github.com/scipy/scipy/pull/4012
https://github.com/scipy/scipy/pull/4021
https://github.com/scipy/scipy/pull/4089
https://github.com/scipy/scipy/pull/4116
https://github.com/scipy/scipy/pull/4129
https://github.com/scipy/scipy/pull/4135
https://github.com/scipy/scipy/pull/4195
https://github.com/scipy/scipy/pull/4200
https://github.com/scipy/scipy/pull/4202
https://github.com/scipy/scipy/pull/4205
https://github.com/scipy/scipy/pull/4211
https://github.com/scipy/scipy/pull/4212
https://github.com/scipy/scipy/pull/4213
https://github.com/scipy/scipy/pull/4215
https://github.com/scipy/scipy/pull/4219
https://github.com/scipy/scipy/pull/4223
https://github.com/scipy/scipy/pull/4226
https://github.com/scipy/scipy/pull/4228
https://github.com/scipy/scipy/pull/4232
https://github.com/scipy/scipy/pull/4242
https://github.com/scipy/scipy/pull/4245

SciPy Reference Guide, Release 0.16.0

#4246:
#4247:
#4249:
#4250:
#4252:
#4253:
#4254
#4255:
#4256:
#4258:
#4261
#4262:
#4263:
#4266:
#4268:
#4269:
#4272:
#4276:
#4281:
#4284
#4286:
#4287:
#4291:
#4292:
#4293:
#4295:
#4296:
#4302:
#43006:
#4307:
#4310:
#4311
#4313:
#4315:
#4318:
#4319:

MAINT: C fixes

MAINT: remove some unused code

Add routines for updating QR decompositions

MAINT: Some pyflakes-driven cleanup in linalg and sparse

MAINT trim away >10 kLOC of generated C code

TST: stop shadowing ellip* tests vs boost data

MAINT: special: use NPY_PI, not M_PI

DOC: INSTALL: use Py3-compatible print syntax, and don’t mention...
ENH: spatial: reimplement cdist_cosine using np.dot

BUG: io.arff #4429 #2088

: MAINT: signal: PEP8 and related style clean up.

BUG: newton_krylov() was ignoring norm_tol argument, closes #4259
MAINT: clean up test noise and optimize tests for docstrings...
MAINT: io: Give an informative error when attempting to read...
MAINT: fftpack benchmark integer division vs true division

MAINT: avoid shadowing the eigvals function

BUG: sparse: Fix bench_sparse.py

DOC: remove confusing parts of the documentation related to writing...
Sparse matrix multiplication: only convert array if needed (with...
BUG: integrate: odeint crashed when the integration time was...

MRG: fix matlab output type of logical array

DEP: deprecate stats.pdf_fromgamma. Closes gh-699.

DOC: linalg: fix layout in cholesky_banded docstring

BUG: allow empty dict as proxy for empty struct

MAINT: != -> not_equal in hamming distance implementation

Pole placement

MAINT: some cleanups in tests of several modules

ENH: Solve toeplitz linear systems

Add benchmark for conjugate gradient solver.

BLD: PEP 440

BUG: make stats.geom.logpmf(1,1) return 0.0 instead of nan

: TST: restore a test that uses slogdet now that we have dropped...

Some minor fixes for stats.wishart addition.
MAINT: drop numpy 1.5 compatibility code in sparse matrix tests
ENH: Add random_ state to multivariate distributions

MAINT: fix hamming distance regression for exotic arrays, with...

194

Chapter 4

. Release Notes

https://github.com/scipy/scipy/pull/4246
https://github.com/scipy/scipy/pull/4247
https://github.com/scipy/scipy/pull/4249
https://github.com/scipy/scipy/pull/4250
https://github.com/scipy/scipy/pull/4252
https://github.com/scipy/scipy/pull/4253
https://github.com/scipy/scipy/pull/4254
https://github.com/scipy/scipy/pull/4255
https://github.com/scipy/scipy/pull/4256
https://github.com/scipy/scipy/pull/4258
https://github.com/scipy/scipy/pull/4261
https://github.com/scipy/scipy/pull/4262
https://github.com/scipy/scipy/pull/4263
https://github.com/scipy/scipy/pull/4266
https://github.com/scipy/scipy/pull/4268
https://github.com/scipy/scipy/pull/4269
https://github.com/scipy/scipy/pull/4272
https://github.com/scipy/scipy/pull/4276
https://github.com/scipy/scipy/pull/4281
https://github.com/scipy/scipy/pull/4284
https://github.com/scipy/scipy/pull/4286
https://github.com/scipy/scipy/pull/4287
https://github.com/scipy/scipy/pull/4291
https://github.com/scipy/scipy/pull/4292
https://github.com/scipy/scipy/pull/4293
https://github.com/scipy/scipy/pull/4295
https://github.com/scipy/scipy/pull/4296
https://github.com/scipy/scipy/pull/4302
https://github.com/scipy/scipy/pull/4306
https://github.com/scipy/scipy/pull/4307
https://github.com/scipy/scipy/pull/4310
https://github.com/scipy/scipy/pull/4311
https://github.com/scipy/scipy/pull/4313
https://github.com/scipy/scipy/pull/4315
https://github.com/scipy/scipy/pull/4318
https://github.com/scipy/scipy/pull/4319

SciPy Reference Guide, Release 0.16.0

#4320:
#4321:
#4322:
#4323:
#4324
#4326:
#4329:
#4330:
#4333:
#4338:
#4339:
#4340:
#4344
#4345:
#4347
#4349:
#4350:
#4351:
#4352:
#4353:
#4357:
#4358:
#4359:
#4360:
#4362:
#4363:
#4364
#4365:
#4367:
#4373:
#4374
#4376:
#4377:
#4378:
#4380:
#4381:

TST: a few changes like self.assertTrue(x ==y, message) -> assert_equal(Xx,...
TST: more changes like self.assertTrue(x ==y, message) -> assert_equal(Xx,...
TST: in test_signaltools, changes like self.assertTrue(x ==Yy....

MAINT: clean up benchmarks so they can all be run as single files.

Add more detailed committer guidelines, update MAINTAINERS.txt
TST: use numpy.testing in test_hierarchy.py

MAINT: stats: rename check _random_ state test function

Update distance tests

MAINT: import comb, factorial from scipy.special, not scipy.misc

TST: more conversions from nose to numpy.testing

MAINT: remove the deprecated all_mat function from special_matrices.py
add several features to frozen distributions

BUG: Fix/test invalid lwork param in qr

Fix test noise visible with Python 3.x

Remove deprecated blas/lapack imports, rename lib to _lib

DOC: add a nontrivial example to stats.binned_statistic.

MAINT: remove optimize.anneal for 0.16.0 (was deprecated in 0.14.0).
MAINT: fix usage of deprecated Numpy C API in optimize...

MAINT: fix a number of special test failures

implement cdf for betaprime distribution

BUG: piecewise polynomial antiderivative

BUG: integrate: fix handling of banded Jacobians in odeint, plus...
MAINT: remove a code path taken for Python version < 2.5

MAINT: stats.mstats: Remove some unused variables (thanks, pyflakes).
Removed erroneous reference to smoothing parameter #4072

MAINT: interpolate: clean up in fitpack.py

MAINT: lib: don’t export “partial” from decorator

svdvals now returns a length-0 sequence of singular values given...
DOC: slightly improve TeX rendering of wishart/invwishart docstring
ENH: wrap gtsv and ptsv for solve_banded and solveh_banded.

ENH: Enhancements to spatial.cKDTree

BF: fix reading off-spec matlab logical sparse

MAINT: integrate: Clean up some Fortran test code.

MAINT: fix usage of deprecated Numpy C API in signal

MAINT: scipy.optimize, removing further anneal references

ENH: Make DCT and DST accept int and complex types like fft

4.1.

SciPy 0.16.0 Release Notes

https://github.com/scipy/scipy/pull/4320
https://github.com/scipy/scipy/pull/4321
https://github.com/scipy/scipy/pull/4322
https://github.com/scipy/scipy/pull/4323
https://github.com/scipy/scipy/pull/4324
https://github.com/scipy/scipy/pull/4326
https://github.com/scipy/scipy/pull/4329
https://github.com/scipy/scipy/pull/4330
https://github.com/scipy/scipy/pull/4333
https://github.com/scipy/scipy/pull/4338
https://github.com/scipy/scipy/pull/4339
https://github.com/scipy/scipy/pull/4340
https://github.com/scipy/scipy/pull/4344
https://github.com/scipy/scipy/pull/4345
https://github.com/scipy/scipy/pull/4347
https://github.com/scipy/scipy/pull/4349
https://github.com/scipy/scipy/pull/4350
https://github.com/scipy/scipy/pull/4351
https://github.com/scipy/scipy/pull/4352
https://github.com/scipy/scipy/pull/4353
https://github.com/scipy/scipy/pull/4357
https://github.com/scipy/scipy/pull/4358
https://github.com/scipy/scipy/pull/4359
https://github.com/scipy/scipy/pull/4360
https://github.com/scipy/scipy/pull/4362
https://github.com/scipy/scipy/pull/4363
https://github.com/scipy/scipy/pull/4364
https://github.com/scipy/scipy/pull/4365
https://github.com/scipy/scipy/pull/4367
https://github.com/scipy/scipy/pull/4373
https://github.com/scipy/scipy/pull/4374
https://github.com/scipy/scipy/pull/4376
https://github.com/scipy/scipy/pull/4377
https://github.com/scipy/scipy/pull/4378
https://github.com/scipy/scipy/pull/4380
https://github.com/scipy/scipy/pull/4381

SciPy Reference Guide, Release 0.16.0

#4392:
#4394:
#4396:
#4398:
#4402:
#4404:
#4405:
#4407:
#4414:

#4415

#4423:
#4424:
#4425:
#4426:
#4427
#4429:
#4430:
#4433:
#4435:
#4436:
#4439:
#4440:
#4442:
#4447:
#4448:
#4449:
#4451:
#4456:

#4461

#4475:

ENH: optimize: add DF-SANE nonlinear derivative-free solver

Make reordering algorithms 64-bit clean

BUG: bundle cblas.h in Accelerate ABI wrappers to enable compilation...
FIX pdist bug where wminkowski’s w.dtype != double

BUG: fix stat.hypergeom argcheck

MAINT: Fill in the full symmetric squareform in the C loop

BUG: avoid X += X.T (refs #4401)

improved accuracy of gompertz distribution for small x

DOC:fix error in scipy.signal.cwt documentation.

: ENH: Improve accuracy of lomax for small x.
#4416:
#4419:
#4420:

DOC: correct a parameter name in docstring of SuperLU.solve....
Restore scipy.linalg.calc_lwork also in master

fix a performance issue with a sparse solver

ENH: improve rayleigh accuracy for large x.

BUG: optimize.minimize: fix overflow issue with integer x0 input.
ENH: Improve accuracy of truncexpon for small x

ENH: improve rayleigh accuracy for large x.

MAINT: optimize: cleanup of TNC code

BLD: fix build failure with numpy 1.7.x and 1.8.x.

BUG: fix a sparse.dok_matrix set/get copy-paste bug

Update _minimize.py

ENH: release GIL around batch distance computations

Fixed incomplete documentation for spsolve

MAINT: integrate: Some clean up in the tests.

Fast permutation t-test

DOC: optimize: fix wrong result in docstring

DOC: signal: Some additional documentation to go along with the...
DOC: tweak the docstring of lapack.linalg module

fix a typo in the expit docstring

ENH: vectorize distance loops with gcc

MAINT: don’t fail large data tests on MemoryError

: CI: use travis_retry to deal with network timeouts
#4462:
#4470:
#4473:

DOC: rationalize minimize() et al. documentation
MAINT: sparse: inherit dok_matrix.toarray from spmatrix
BUG: signal: Fix validation of the zi shape in sosfilt.

BLD: setup.py: update min numpy version and support “setup.py...

196

Chapter 4

. Release Notes

https://github.com/scipy/scipy/pull/4392
https://github.com/scipy/scipy/pull/4394
https://github.com/scipy/scipy/pull/4396
https://github.com/scipy/scipy/pull/4398
https://github.com/scipy/scipy/pull/4402
https://github.com/scipy/scipy/pull/4404
https://github.com/scipy/scipy/pull/4405
https://github.com/scipy/scipy/pull/4407
https://github.com/scipy/scipy/pull/4414
https://github.com/scipy/scipy/pull/4415
https://github.com/scipy/scipy/pull/4416
https://github.com/scipy/scipy/pull/4419
https://github.com/scipy/scipy/pull/4420
https://github.com/scipy/scipy/pull/4423
https://github.com/scipy/scipy/pull/4424
https://github.com/scipy/scipy/pull/4425
https://github.com/scipy/scipy/pull/4426
https://github.com/scipy/scipy/pull/4427
https://github.com/scipy/scipy/pull/4429
https://github.com/scipy/scipy/pull/4430
https://github.com/scipy/scipy/pull/4433
https://github.com/scipy/scipy/pull/4435
https://github.com/scipy/scipy/pull/4436
https://github.com/scipy/scipy/pull/4439
https://github.com/scipy/scipy/pull/4440
https://github.com/scipy/scipy/pull/4442
https://github.com/scipy/scipy/pull/4447
https://github.com/scipy/scipy/pull/4448
https://github.com/scipy/scipy/pull/4449
https://github.com/scipy/scipy/pull/4451
https://github.com/scipy/scipy/pull/4456
https://github.com/scipy/scipy/pull/4461
https://github.com/scipy/scipy/pull/4462
https://github.com/scipy/scipy/pull/4470
https://github.com/scipy/scipy/pull/4473
https://github.com/scipy/scipy/pull/4475

SciPy Reference Guide, Release 0.16.0

#4481:
#4485:
#4490:
#4491:
#4493:
#4494
#4496:
#4499:
#4501:
#4502:
#4503:
#4504
#4505:
#4507:
#4509:
#4511:
#4512:
#4525:
#4533:
#4534
#4535
#4536:
#4540:
#4541:
#4542:
#4543:
#4544
#4546:
#4549:
#4553:
#4556:
#4559:
#4563:
#4564
#45606:
#4570:

ENH: add a new linalg special matrix: the Helmert matrix

MRG: some changes to allow reading bad mat files

[ENH] linalg.hessenberg: use orghr - rebase

ENH: linalg: Adding wrapper for potentially useful LAPACK function...
BENCH: the solve_toeplitz benchmark used outdated syntax and...
MAINT: stats: remove duplicated code

References added for watershed_ift algorithm

DOC: reshuffle stats distributions documentation

Replace benchmark suite with airspeed velocity

SLSQP should strictly satisfy bound constraints

DOC: forward port 0.15.x release notes and update author name...

ENH: option to avoid computing possibly unused svd matrix

Rebase of PR 3303 (sparse matrix norms)

MAINT: fix lobpcg performance regression

DOC: sparse: replace dead link

Fixed differential evolution bug

Change to fully PEP440 compliant dev version numbers (always...

made tiny style corrections (pep8)

Add exponentially modified gaussian distribution (scipy.stats.expongauss)

MAINT: benchmarks: make benchmark suite importable on all scipy...

: BUG: Changed zip() to list(zip()) so that it could work in Python...

Follow up to pr 4348 (exponential window)

ENH: spatial: Add procrustes analysis

Bench fixes

TST: Numpy Version dev -> dev0

BUG: Overflow in savgol_coeffs

pep8 fixes for stats

MAINT: use reduction axis arguments in one-norm estimation
ENH : Added group_delay to scipy.signal

ENH: Significantly faster moment function

DOC: document the changes of the sparse.linalg.svds (optional...
DOC: stats: describe loc and scale parameters in the docstring...
ENH: rewrite of stats.ppcc_plot

Be more (or less) forgiving when user passes +-inf instead of...
DEP: remove a bunch of deprecated function from scipy.stats,...

MNT: Suppress LineSearchWarning’s in scipy.optimize tests

4.1.

SciPy 0.16.0 Release Notes

https://github.com/scipy/scipy/pull/4481
https://github.com/scipy/scipy/pull/4485
https://github.com/scipy/scipy/pull/4490
https://github.com/scipy/scipy/pull/4491
https://github.com/scipy/scipy/pull/4493
https://github.com/scipy/scipy/pull/4494
https://github.com/scipy/scipy/pull/4496
https://github.com/scipy/scipy/pull/4499
https://github.com/scipy/scipy/pull/4501
https://github.com/scipy/scipy/pull/4502
https://github.com/scipy/scipy/pull/4503
https://github.com/scipy/scipy/pull/4504
https://github.com/scipy/scipy/pull/4505
https://github.com/scipy/scipy/pull/4507
https://github.com/scipy/scipy/pull/4509
https://github.com/scipy/scipy/pull/4511
https://github.com/scipy/scipy/pull/4512
https://github.com/scipy/scipy/pull/4525
https://github.com/scipy/scipy/pull/4533
https://github.com/scipy/scipy/pull/4534
https://github.com/scipy/scipy/pull/4535
https://github.com/scipy/scipy/pull/4536
https://github.com/scipy/scipy/pull/4540
https://github.com/scipy/scipy/pull/4541
https://github.com/scipy/scipy/pull/4542
https://github.com/scipy/scipy/pull/4543
https://github.com/scipy/scipy/pull/4544
https://github.com/scipy/scipy/pull/4546
https://github.com/scipy/scipy/pull/4549
https://github.com/scipy/scipy/pull/4553
https://github.com/scipy/scipy/pull/4556
https://github.com/scipy/scipy/pull/4559
https://github.com/scipy/scipy/pull/4563
https://github.com/scipy/scipy/pull/4564
https://github.com/scipy/scipy/pull/4566
https://github.com/scipy/scipy/pull/4570

SciPy Reference Guide, Release 0.16.0

#4572:
#4576:
#4578:
#4581:
#4583:
#4584
#4587:
#4593:
#4595:
#4600:
#4603:
#4604
#4609:
#4610:
#4611:
#4614
#4617:
#4618:
#4619:
#4620:
#4621
#4623:
#4628:
#4629:
#4631:
#4633:
#4635:
#4637:
#4639:
#4642:
#4643:
#4646:
#4647:
#4648:
#4649:
#4650:

ENH: Extract inverse hessian information from L-BFGS-B

ENH: Split signal.lti into subclasses, part of #2912

MNT: Reconcile docstrings and function signatures

Fix build with Intel MKL on Linux

DOC: optimize: remove references to unused disp kwarg

ENH: scipy.signal - Tukey window

Hermite asymptotic

DOC - add example to RegularGridInterpolator

DOC: Fix erroneous latex characters in tutorial/optimize.

Add return codes to optimize.tnc docs

ENH: Wrap LAPACK «x1ange functions for matrix norms
scipy.stats: generalized normal distribution

MAINT: interpolate: fix a few inconsistencies between docstrings...
MAINT: make runtest.py —bench-compare use asv continuous and...
DOC: stats: explain rice scaling; add a note to the tutorial...

BUG: Ifilter, the size of zi was not checked correctly for nd...
MAINT: integrate: Clean the C code behind odeint.

FIX: Raise error when window length != data length

Issue #4550: scipy.stats.mode - UnboundLocalError on empty...

Fixed a problem (#4590) with svds accepting wrong eigenvalue...

: Speed up special.ai_zeros/bi_zeros by 10x

MAINT: some tweaks to spatial.procrustes (private file, html...

Speed up signal.Ifilter and add a convolution path for FIR filters

Bug: integrate.nquad; resolve issue #4599

MAINT: integrate: Remove unused variables in a Fortran test function.
MAINT: Fix convergence message for remez

PEPS: indentation (so that pep8 bot does not complain)

MAINT: generalize a sign function to do the right thing for complex...
Amended typo in apple_sgemv_fix.c

MAINT: use lapack for scipy.linalg.norm

RBF default epsilon too large 2020

Added atleast_1d around poly in invres and invresz

fix doc pdf build

BUG: Fixes #4408: Vector-valued constraints in minimize() et...
Vonmisesfix

Signal example clean up in Tukey and place_poles

198

Chapter 4

. Release Notes

https://github.com/scipy/scipy/pull/4572
https://github.com/scipy/scipy/pull/4576
https://github.com/scipy/scipy/pull/4578
https://github.com/scipy/scipy/pull/4581
https://github.com/scipy/scipy/pull/4583
https://github.com/scipy/scipy/pull/4584
https://github.com/scipy/scipy/pull/4587
https://github.com/scipy/scipy/pull/4593
https://github.com/scipy/scipy/pull/4595
https://github.com/scipy/scipy/pull/4600
https://github.com/scipy/scipy/pull/4603
https://github.com/scipy/scipy/pull/4604
https://github.com/scipy/scipy/pull/4609
https://github.com/scipy/scipy/pull/4610
https://github.com/scipy/scipy/pull/4611
https://github.com/scipy/scipy/pull/4614
https://github.com/scipy/scipy/pull/4617
https://github.com/scipy/scipy/pull/4618
https://github.com/scipy/scipy/pull/4619
https://github.com/scipy/scipy/pull/4620
https://github.com/scipy/scipy/pull/4621
https://github.com/scipy/scipy/pull/4623
https://github.com/scipy/scipy/pull/4628
https://github.com/scipy/scipy/pull/4629
https://github.com/scipy/scipy/pull/4631
https://github.com/scipy/scipy/pull/4633
https://github.com/scipy/scipy/pull/4635
https://github.com/scipy/scipy/pull/4637
https://github.com/scipy/scipy/pull/4639
https://github.com/scipy/scipy/pull/4642
https://github.com/scipy/scipy/pull/4643
https://github.com/scipy/scipy/pull/4646
https://github.com/scipy/scipy/pull/4647
https://github.com/scipy/scipy/pull/4648
https://github.com/scipy/scipy/pull/4649
https://github.com/scipy/scipy/pull/4650

SciPy Reference Guide, Release 0.16.0

#4652:
#4653:
#4655:
#4656:
#4660:
#4601:
#4662:
#4664
#4672:
#4675:
#4676:
#4679:
#4682:
#4684
#4685:
#4686:
#4688:
#4692:
#4693:
#4694
#4696:
#4698:
#4701:
#4703:
#4706:
#4707:
#4709:
#4710:
#4711:
#4712:
#4713:
#4714
#4715:
#4716:
#4717:
#4718:

DOC: Fix the error in convolve for same mode

improve erf performance

DEP: deprecate scipy.stats.histogram?2 in favour of np.histogram2d
DEP: deprecate scipy.stats.signaltonoise

Avoid extra copy for sparse compressed [:, seq] and [seq, :]...
Clean, rebase of #4478, adding ?gelsy and ?gelsd wrappers
MAINT: Correct odeint messages

Update _monotone.py

fix behavior of scipy.linalg.block_diag for empty input

Fix Isim

Added missing colon to :math: directive in docstring.

ENH: sparse randn

ENH: scipy.signal - Addition of CSD, coherence; Enhancement of...
BUG: various errors in weight calculations in orthogonal.py
BUG: Fixes #4594: optimize.linprog IndexError when a callback...
MAINT: cluster: Clean up duplicated exception raising code.
Improve is_distance_dm exception message

MAINT: stats: Simplify the calculation in tukeylambda._ppf
ENH: added functionality to handle scalars in stats._chk_asarray
Vectorization of Anderson-Darling computations.

Fix singleton expansion in Ifilter.

MAINT: quiet warnings from cephes.

add Bpoly.antiderivatives / integrals

Add citation of published paper

MAINT: special: avoid out-of-bounds access in specfun
MAINT: fix issues with np.matrix as input to functions related...
ENH: scipy.stats now returns namedtuples.

scipy.io.idl: make reader more robust to missing variables in...
Fix crash for unknown chunks at the end of file

Reduce onenormest memory usage

MAINT: interpolate: no need to pass dtype around if it can be...
BENCH: Add benchmarks for stats module

MAINT: polish signal.place_poles and signal/test_ltisys.py

DEP: deprecate mstats.signaltonoise ...

MAINT: basinhopping: fix error in tests, silence /0 warning,...

ENH: stats: can specify f-shapes to fix in fitting by name

4.1.

SciPy 0.16.0 Release Notes

https://github.com/scipy/scipy/pull/4652
https://github.com/scipy/scipy/pull/4653
https://github.com/scipy/scipy/pull/4655
https://github.com/scipy/scipy/pull/4656
https://github.com/scipy/scipy/pull/4660
https://github.com/scipy/scipy/pull/4661
https://github.com/scipy/scipy/pull/4662
https://github.com/scipy/scipy/pull/4664
https://github.com/scipy/scipy/pull/4672
https://github.com/scipy/scipy/pull/4675
https://github.com/scipy/scipy/pull/4676
https://github.com/scipy/scipy/pull/4679
https://github.com/scipy/scipy/pull/4682
https://github.com/scipy/scipy/pull/4684
https://github.com/scipy/scipy/pull/4685
https://github.com/scipy/scipy/pull/4686
https://github.com/scipy/scipy/pull/4688
https://github.com/scipy/scipy/pull/4692
https://github.com/scipy/scipy/pull/4693
https://github.com/scipy/scipy/pull/4694
https://github.com/scipy/scipy/pull/4696
https://github.com/scipy/scipy/pull/4698
https://github.com/scipy/scipy/pull/4701
https://github.com/scipy/scipy/pull/4703
https://github.com/scipy/scipy/pull/4706
https://github.com/scipy/scipy/pull/4707
https://github.com/scipy/scipy/pull/4709
https://github.com/scipy/scipy/pull/4710
https://github.com/scipy/scipy/pull/4711
https://github.com/scipy/scipy/pull/4712
https://github.com/scipy/scipy/pull/4713
https://github.com/scipy/scipy/pull/4714
https://github.com/scipy/scipy/pull/4715
https://github.com/scipy/scipy/pull/4716
https://github.com/scipy/scipy/pull/4717
https://github.com/scipy/scipy/pull/4718

SciPy Reference Guide, Release 0.16.0

#4721:
#4722:
#4725:
#4728:
#4735:
#4738:
#4739:
#4740:
#4742:
#4750:
#4751:
#4753:
#4756:
#4758:
#4759:
#4760:
#4762:
#4763:
#4766:
#4768:
#4769:
#4770:
#4771:
#4773:
#4775:
#4778:
#4780:
#4783:
#4784
#4785:
#4786:
#4787:
#4792:
#4795:
#4797:
#4799:

Document that imresize converts the input to a PIL image

MAINT: PyArray_BASE is not an Ivalue unless the deprecated API...
Fix gengamma _nump failure

DOC: add poch to the list of scipy special function descriptions
MAINT: stats: avoid (a spurious) division-by-zero in skew

TST: silence runtime warnings for some corner cases in szats...
BLD: try to build numpy instead of using the one on TravisCI
DOC: Update some docstrings with ‘versionadded’.

BLD: make sure that relaxed strides checking is in effect on...
DOC: special: TeX typesetting of rel_entr, kl_div and pseudo_huber
BENCH: add sparse null slice benchmark

BUG: Fixed compilation with recent Cython versions.

BUG: Fixes #4733: optimize.brute finish option is not compatible...
DOC: optimize.leastsq default maxfev clarification

improved stats mle fit

MAINT: count bfgs updates more carefully

BUGS: Fixes #4746 and #4594: linprog returns solution violating...
fix small linprog bugs

BENCH: add signal.lsim benchmark

fix python syntax errors in docstring examples

Fixes #4726: test_cobyla.test_vector_constraints

Mark FITPACK functions as thread safe.

edited scipy/stats/stats.py to fix doctest for fisher_exact

DOC: update 0.16.0 release notes.

DOC: linalg: add funm_psd as a docstring example

Use a dictionary for function name synonyms

Include apparently-forgotten functions in docs

Added many missing special functions to docs

add an axis attribute to PPoly and friends

Brief note about origin of Lena image

DOC: reformat the Methods section of the KDE docstring

Add rice cdf and ppf.

CI: add a kludge for detecting test failures which try to disguise...
Make refguide_check smarter about false positives

BUG/TST: numpoints not updated for incremental Voronoi

BUG: spatial: Fix a couple edge cases for the Mahalanobis metric...

200

Chapter 4

. Release Notes

https://github.com/scipy/scipy/pull/4721
https://github.com/scipy/scipy/pull/4722
https://github.com/scipy/scipy/pull/4725
https://github.com/scipy/scipy/pull/4728
https://github.com/scipy/scipy/pull/4735
https://github.com/scipy/scipy/pull/4738
https://github.com/scipy/scipy/pull/4739
https://github.com/scipy/scipy/pull/4740
https://github.com/scipy/scipy/pull/4742
https://github.com/scipy/scipy/pull/4750
https://github.com/scipy/scipy/pull/4751
https://github.com/scipy/scipy/pull/4753
https://github.com/scipy/scipy/pull/4756
https://github.com/scipy/scipy/pull/4758
https://github.com/scipy/scipy/pull/4759
https://github.com/scipy/scipy/pull/4760
https://github.com/scipy/scipy/pull/4762
https://github.com/scipy/scipy/pull/4763
https://github.com/scipy/scipy/pull/4766
https://github.com/scipy/scipy/pull/4768
https://github.com/scipy/scipy/pull/4769
https://github.com/scipy/scipy/pull/4770
https://github.com/scipy/scipy/pull/4771
https://github.com/scipy/scipy/pull/4773
https://github.com/scipy/scipy/pull/4775
https://github.com/scipy/scipy/pull/4778
https://github.com/scipy/scipy/pull/4780
https://github.com/scipy/scipy/pull/4783
https://github.com/scipy/scipy/pull/4784
https://github.com/scipy/scipy/pull/4785
https://github.com/scipy/scipy/pull/4786
https://github.com/scipy/scipy/pull/4787
https://github.com/scipy/scipy/pull/4792
https://github.com/scipy/scipy/pull/4795
https://github.com/scipy/scipy/pull/4797
https://github.com/scipy/scipy/pull/4799

SciPy Reference Guide, Release 0.16.0

» #4801: BUG: Fix TypeError in scipy.optimize._trust-region.py when disp=True.
o #4803: Issues with relaxed strides in QR updating routines

* #4806: MAINT: use an informed initial guess for cauchy fit

» #4810: PEPSify codata.py

o #4812: BUG: Relaxed strides cleanup in decomp_update.pyx.in

» #4820: BLD: update Bento build for sgemv fix and install cython blas/lapack...
e #4823: ENH: scipy.signal - Addition of spectrogram function

o #4827: DOC: add csd and coherence to __init__.py

e #4833: BLD: fix issue in linalg « 1ange wrappers for g77 builds.

o #4841: TST: fix test failures in scipy.special with mingw32 due to test...

o #4842: DOC: update site.cfg.example. Mostly taken over from Numpy

» #4845: BUG: signal: Make spectrogram’s return values order match the...

o #4849: DOC:Fix error in ode docstring example

o #4856: BUG: fix typo causing memleak

4.2 SciPy 0.15.0 Release Notes

Contents

* SciPy 0.15.0 Release Notes

— New features

* Linear Programming Interface

Differential evolution, a global optimizer
scipy.signal improvements
scipy.integrate improvements
scipy.linalg improvements
scipy.sparse improvements
scipy.special improvements
scipy.sparse.csgraph improvements

* scipy.stats improvements
— Deprecated features
— Backwards incompatible changes

* scipy.ndimage

% scipy.integrate
— Authors

* Issues closed

+ Pull requests

¥ O¥ ¥ KX ¥ ¥ ¥

SciPy 0.15.0 is the culmination of 6 months of hard work. It contains several new features, numerous bug-fixes,
improved test coverage and better documentation. There have been a number of deprecations and API changes in this
release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number
of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.16.x
branch, and on adding new features on the master branch.

This release requires Python 2.6, 2.7 or 3.2-3.4 and NumPy 1.5.1 or greater.

4.2. SciPy 0.15.0 Release Notes 201

https://github.com/scipy/scipy/pull/4801
https://github.com/scipy/scipy/pull/4803
https://github.com/scipy/scipy/pull/4806
https://github.com/scipy/scipy/pull/4810
https://github.com/scipy/scipy/pull/4812
https://github.com/scipy/scipy/pull/4820
https://github.com/scipy/scipy/pull/4823
https://github.com/scipy/scipy/pull/4827
https://github.com/scipy/scipy/pull/4833
https://github.com/scipy/scipy/pull/4841
https://github.com/scipy/scipy/pull/4842
https://github.com/scipy/scipy/pull/4845
https://github.com/scipy/scipy/pull/4849
https://github.com/scipy/scipy/pull/4856

SciPy Reference Guide, Release 0.16.0

4.2.1 New features

Linear Programming Interface
The new function scipy.optimize.linprog provides a generic linear programming similar to the way
scipy.optimize.minimize provides a generic interface to nonlinear programming optimizers. Currently the

only method supported is simplex which provides a two-phase, dense-matrix-based simplex algorithm. Callbacks
functions are supported, allowing the user to monitor the progress of the algorithm.

Differential evolution, a global optimizer
A new scipy.optimize.differential_evolution function has been added to the opt imize module.
Differential Evolution is an algorithm used for finding the global minimum of multivariate functions. It is stochastic

in nature (does not use gradient methods), and can search large areas of candidate space, but often requires larger
numbers of function evaluations than conventional gradient based techniques.

scipy.signal improvements

The function scipy.signal.max_len_seq was added, which computes a Maximum Length Sequence (MLS)
signal.

scipy.integrate improvements

It is now possible to use scipy.integrate routines to integrate multivariate ctypes functions, thus avoiding call-
backs to Python and providing better performance.

scipy.linalg improvements

The function scipy.linalg.orthogonal_procrustes for solving the procrustes linear algebra problem was
added.

BLAS level 2 functions her, syr, her2 and syr2 are now wrapped in scipy.linalg.
scipy.sparse improvements

scipy.sparse.linalg.svds can now take a LinearOperator as its main input.

scipy.special improvements

Values of ellipsoidal harmonic (i.e. Lame) functions and associated normalization constants can be now computed
using ellip_harm,ellip_harm 2,andellip_normal.

New convenience functions entr, rel_entr k1_div, huber, and pseudo_huber were added.
scipy.sparse.csgraph improvements

Routines reverse_cuthill_mckee and maximum_bipartite_matching for computing reorderings of
sparse graphs were added.

202 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

scipy.stats improvements

Added a Dirichlet multivariate distribution, scipy.stats.dirichlet.
The new function scipy.stats.median_test computes Mood’s median test.

The new function scipy.stats.combine_pvalues implements Fisher’s and Stouffer’s methods for combining
p-values.

scipy.stats.describe returns a namedtuple rather than a tuple, allowing users to access results by index or by
name.

4.2.2 Deprecated features

The scipy.weave module is deprecated. It was the only module never ported to Python 3.x, and is not recom-
mended to be used for new code - use Cython instead. In order to support existing code, scipy.weave has been
packaged separately: https://github.com/scipy/weave. It is a pure Python package, and can easily be installed with
pip install weave.

scipy.special.bessel_diff_ formula isdeprecated. It is a private function, and therefore will be removed
from the public API in a following release.

scipy.stats.nanmean, nanmedian and nanstd functions are deprecated in favor of their numpy equivalents.

4.2.3 Backwards incompatible changes
The functions scipy.ndimage.minimum_positions, scipy.ndimage.maximum_positions and
scipy.ndimage.extrema return positions as ints instead of floats.

The format of banded Jacobians in scipy.integrate.ode solvers is changed. Note that the previous documen-
tation of this feature was erroneous.

4.2.4 Authors

* Abject +

* Ankit Agrawal +
 Sylvain Bellemare +
* Matthew Brett

e Christian Brodbeck
¢ Christian Brueffer
* Lars Buitinck

* Evgeni Burovski

* Pierre de Buyl +

* Greg Caporaso +

* CJ Carey

* Jacob Carey +

* Thomas A Caswell

¢ Helder Cesar +

4.2. SciPy 0.15.0 Release Notes 203

https://github.com/scipy/weave

SciPy Reference Guide, Release 0.16.0

Bjorn Dahlgren +
Kevin Davies +
Yotam Doron +
Marcos Duarte +
endolith

Jesse Engel +

Rob Falck +

Corey Farwell +
Jaime Fernandez del Rio +
Clark Fitzgerald +
Tom Flannaghan +
Chad Fulton +
Jochen Garcke +
Francois Garillot +
André Gaul
Christoph Gohlke
Ralf Gommers
Alex Griffing
Blake Griffith
Olivier Grisel
Charles Harris
Trent Hauck +

Ian Henriksen +
Jinhyok Heo +
Matt Hickford +
Andreas Hilboll
Danilo Horta +
David Menéndez Hurtado +
Gert-Ludwig Ingold
Thouis (Ray) Jones
Chris Kerr +

Carl Kleffner +
Andreas Kloeckner
Thomas Kluyver +
Adrian Kretz +

Johannes Kulick +

204

Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

Eric Larson
Brianna Laugher +
Denis Laxalde
Antony Lee +
Gregory R. Lee +
Brandon Liu

Alex Loew +

Loic Esteve +
Jaakko Luttinen +
Benny Malengier
Tobias Megies +
Sturla Molden
Eric Moore

Brett R. Murphy +
Paul Nation +
Andrew Nelson
Brian Newsom +
Joel Nothman

Sergio Oller +

Janani Padmanabhan +

Tiago M.D. Pereira +

Nicolas Del Piano +
Manuel Reinhardt +
Thomas Robitaille
Mike Romberg +
Alex Rothberg +
Sebastian Polsterl +
Maximilian Singh +
Brigitta Sipocz +
Alex Stewart +
Julian Taylor

Collin Tokheim +

James Tomlinson +

Benjamin Trendelkamp-Schroer +

Richard Tsai

Alexey Umnov +

4.2,

SciPy 0.15.0 Release Notes

205

SciPy Reference Guide, Release 0.16.0

Jacob Vanderplas
Joris Vankerschaver
Bastian Venthur +
Pauli Virtanen
Stefan van der Walt
Yuxiang Wang +
James T. Webber
Warren Weckesser
Axl] West +

Nathan Woods
Benda Xu +

Victor Zabalza +

Tiziano Zito +

A total of 99 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

This list of names is automatically generated, and may not be fully complete.

Issues closed

#1431: ellipk(x) extending its domain for x<0 (Trac #904)

#1727: consistency of std interface (Trac #1200)

#1851: Shape parameter negated in genextreme (relative to R, MATLAB,...
#1889: interp2d is weird (Trac #1364)

#2188: splev gives wrong values or crashes outside of support when der...
#2343: scipy.insterpolate’s splrep function fails with certain combinations...
#2669: .signal.ltisys.ss2tf should only apply to MISO systems in current...
#2911: interpolate.splder() failure on Fedora

#3171: future of weave in scipy

#3176: Suggestion to improve error message in scipy.integrate.odeint
#3198: pdf() and logpdf() methods for scipy.stats.gaussian_kde

#3318: Travis CI is breaking on test(“full”)

#3329: scipy.stats.scoreatpercentile backward-incompatible change not...
#3362: Reference cycle in scipy.sparse.linalg.eigs with shift-invert...
#3364: BUG: linalg.hessenberg broken (wrong results)

#3376: stats f_oneway needs floats

#3379: Installation of scipy 0.13.3 via zc.buildout fails

#3403: hierarchy.linkage raises an ugly exception for a compressed 2x2...

#3422: optimize.curve_fit() handles NaN by returning all parameters...

206

Chapter 4. Release Notes

https://github.com/scipy/scipy/issues/1431
https://github.com/scipy/scipy/issues/1727
https://github.com/scipy/scipy/issues/1851
https://github.com/scipy/scipy/issues/1889
https://github.com/scipy/scipy/issues/2188
https://github.com/scipy/scipy/issues/2343
https://github.com/scipy/scipy/issues/2669
https://github.com/scipy/scipy/issues/2911
https://github.com/scipy/scipy/issues/3171
https://github.com/scipy/scipy/issues/3176
https://github.com/scipy/scipy/issues/3198
https://github.com/scipy/scipy/issues/3318
https://github.com/scipy/scipy/issues/3329
https://github.com/scipy/scipy/issues/3362
https://github.com/scipy/scipy/issues/3364
https://github.com/scipy/scipy/issues/3376
https://github.com/scipy/scipy/issues/3379
https://github.com/scipy/scipy/issues/3403
https://github.com/scipy/scipy/issues/3422

SciPy Reference Guide, Release 0.16.0

#3457:
#3469:
#3491:
#3499:
#3503:
#3508:
#3509:
#3550:
#3555:
#3557:
#3569:
#3576:
#3579:
#3580:
#3587:
#3596:
#3623:
#3655:
#3662:
#36068:
#3669:
#3672:
#3682:
#3699:
#3700:
#3703:
#3714
#3720:
#3740:
#3761:
#3784:
#3785:
#3787:
#3800:
#3817:
#3821:

linalg.fractional_matrix_power has no docstring

DOC: ndimage.find_object ignores zero-values

optimize.leastsq() documentation should mention it does not work...
cluster.vq.whiten return nan for all zeros column in observations
minimize attempts to do vector addition when numpy arrays are...
exponweib.logpdf fails for valid parameters

libatlas3-base-dev does not exist

BUG: anomalous values computed by special.ellipkinc
scipy.ndimage positions are float instead of int
UnivariateSpline.__call__ should pass all relevant args through...
No license statement for test data imported from boost?

mstats test failure (too sensitive?)

Errors on scipy 0.14.x branch using MKL, Ubuntu 14.04 x86_64
Operator overloading with sparse matrices

Wrong alphabetical order in continuous statistical distribution...
scipy.signal.fftconvolve no longer threadsafe

BUG: signal.convolve takes longer than it needs to

Integer returned from integer data in scipy.signal.periodogram...
Travis failure on Numpy 1.5.1 (not reproducible?)
dendogram(orientation="foo’)

Kroghlnterpolator doesn’t pass through points

Inserting a knot in a spline

misleading documentation of scipy.optimize.curve_fit

BUG?: minor problem with scipy.signal.lfilter w/initial conditions
Inconsistent exceptions raised by scipy.io.loadmat

TypeError for RegularGridInterpolator with big-endian data
Misleading error message in eigsh: k must be between 1 and rank(A)-1
coo_matrix.setdiag() fails

Scipy.Spatial. KdTree (Query) Return Type?

Invalid result from scipy.special.btdtri

DOC - Special Functions - Drum example fix for higher modes
minimize() should have friendlier args=

BUG: signal: Division by zero in lombscargle

BUG: scipy.sparse.csgraph.shortest_path overwrites input matrix
Warning in calculating moments from Binomial distribution for...

review scipy usage of np.ma.is_masked

4.2,

SciPy 0.15.0 Release Notes

https://github.com/scipy/scipy/issues/3457
https://github.com/scipy/scipy/issues/3469
https://github.com/scipy/scipy/issues/3491
https://github.com/scipy/scipy/issues/3499
https://github.com/scipy/scipy/issues/3503
https://github.com/scipy/scipy/issues/3508
https://github.com/scipy/scipy/issues/3509
https://github.com/scipy/scipy/issues/3550
https://github.com/scipy/scipy/issues/3555
https://github.com/scipy/scipy/issues/3557
https://github.com/scipy/scipy/issues/3569
https://github.com/scipy/scipy/issues/3576
https://github.com/scipy/scipy/issues/3579
https://github.com/scipy/scipy/issues/3580
https://github.com/scipy/scipy/issues/3587
https://github.com/scipy/scipy/issues/3596
https://github.com/scipy/scipy/issues/3623
https://github.com/scipy/scipy/issues/3655
https://github.com/scipy/scipy/issues/3662
https://github.com/scipy/scipy/issues/3668
https://github.com/scipy/scipy/issues/3669
https://github.com/scipy/scipy/issues/3672
https://github.com/scipy/scipy/issues/3682
https://github.com/scipy/scipy/issues/3699
https://github.com/scipy/scipy/issues/3700
https://github.com/scipy/scipy/issues/3703
https://github.com/scipy/scipy/issues/3714
https://github.com/scipy/scipy/issues/3720
https://github.com/scipy/scipy/issues/3740
https://github.com/scipy/scipy/issues/3761
https://github.com/scipy/scipy/issues/3784
https://github.com/scipy/scipy/issues/3785
https://github.com/scipy/scipy/issues/3787
https://github.com/scipy/scipy/issues/3800
https://github.com/scipy/scipy/issues/3817
https://github.com/scipy/scipy/issues/3821

SciPy Reference Guide, Release 0.16.0

#3829:
#3830:
#3844:
#3858:
#3876:
#3884:
#3895:
#3898:
#3901:
#3905:
#3915:
#3935:
#3969:
#4025:
#4029:
#4032:
#4038:
#4171:
#4176:

Linear algebra function documentation doesn’t mention default...

A bug in Docstring of scipy.linalg.eig

Issue with shape parameter returned by genextreme

“ImportError: No module named Cython.Compiler.Main” on install
savgol_filter not in release notes and has no versionadded
scipy.stats.kendalltau empty array error

ValueError: illegal value in 12-th argument of internal gesdd...
skimage test broken by minmax filter change

scipy sparse errors with numpy master

DOC: optimize: linprog docstring has two “Returns” sections

DOC: sphinx warnings because of **kwds in the stats distributions...
Split stats.distributions files in tutorial

gh-3607 breaks backward compatibility in ode solver banded jacobians
DOC: signal: The return value of find_peaks_cwt is not documented.
scipy.stats.nbinom.logpmf(0,1,1) returns nan. Correct value is...
ERROR: test_imresize (test_pilutil. TestPILUtil)

errors do not propagate through scipy.integrate.odeint properly
orthogonal_procrustes always returns scale.

Solving the Discrete Lyapunov Equation does not work with matrix...

Pull requests

#31009:
#3225:
#3262:
#3266:
#3273:
#3342:
#3348:
#3351:
#3382:
#3396:
#3398:
#3405:
#3407:
#3409:
#3416:

ENH Added Fisher’s method and Stouffer’s Z-score method

Add the limiting distributions to generalized Pareto distribution...
Implement back end of faster multivariate integration

ENH: signal: add type=False as parameter for periodogram and...
Add PEPS check to Travis-CI

ENH: linprog function for linear programming

BUG: add proper error handling when using interp2d on regular...
ENH: Add MLS method

ENH: scipy.special information theory functions

ENH: improve stats.nanmedian more by assuming nans are rare
Added two wrappers to the gaussian_kde class.

BUG: cluster.linkage array conversion to double dtype

MAINT: use assert_warns instead of a more complicated mechanism
ENH: change to use array view in signal/_peak_finding.py

Issue 3376 : stats f_oneway needs floats

208

Chapter 4

. Release Notes

https://github.com/scipy/scipy/issues/3829
https://github.com/scipy/scipy/issues/3830
https://github.com/scipy/scipy/issues/3844
https://github.com/scipy/scipy/issues/3858
https://github.com/scipy/scipy/issues/3876
https://github.com/scipy/scipy/issues/3884
https://github.com/scipy/scipy/issues/3895
https://github.com/scipy/scipy/issues/3898
https://github.com/scipy/scipy/issues/3901
https://github.com/scipy/scipy/issues/3905
https://github.com/scipy/scipy/issues/3915
https://github.com/scipy/scipy/issues/3935
https://github.com/scipy/scipy/issues/3969
https://github.com/scipy/scipy/issues/4025
https://github.com/scipy/scipy/issues/4029
https://github.com/scipy/scipy/issues/4032
https://github.com/scipy/scipy/issues/4038
https://github.com/scipy/scipy/issues/4171
https://github.com/scipy/scipy/issues/4176
https://github.com/scipy/scipy/pull/3109
https://github.com/scipy/scipy/pull/3225
https://github.com/scipy/scipy/pull/3262
https://github.com/scipy/scipy/pull/3266
https://github.com/scipy/scipy/pull/3273
https://github.com/scipy/scipy/pull/3342
https://github.com/scipy/scipy/pull/3348
https://github.com/scipy/scipy/pull/3351
https://github.com/scipy/scipy/pull/3382
https://github.com/scipy/scipy/pull/3396
https://github.com/scipy/scipy/pull/3398
https://github.com/scipy/scipy/pull/3405
https://github.com/scipy/scipy/pull/3407
https://github.com/scipy/scipy/pull/3409
https://github.com/scipy/scipy/pull/3416

SciPy Reference Guide, Release 0.16.0

#3419:
#3420:
#3429:
#3430:
#3433:
#3435:
#3446:
#3450:
#3458:
#3462:
#3463:
#3477:
#3480:
#3484
#3498:
#3504:
#3510:
#3512:
#3514
#3516:
#3517:
#3518:
#3526:
#3527:
#3537:
#3540:
#3542:
#3545:
#3547:
#3553:
#3561
#3564:
#3565:
#3566:
#3567:
#3574

BUG: tools: Fix list of FMA instructions in detect_cpu_extensions_wine.py
DOC: stats: Add ‘entropy’ to the stats package-level documentation.
BUG: close intermediate file descriptor right after it is used...

MAINT: Fix some cython variable declarations to avoid warnings...
Correcting the normalization of chebwin window function

Add more precise link to R’s quantile documentation

ENH: scipy.optimize - adding differential_evolution

MAINT: remove unused function scipy.stats.mstats_basic._kolmogl
Reworked version of PR-3084 (mstats-stats comparison)

MAINT : Returning a warning for low attenuation values of chebwin...
DOC: linalg: Add examples to functions in matfuncs.py

ENH: sparse: release GIL in sparsetools routines

DOC: Add more details to deconvolve docstring

BLD: fix Qhull build issue with MinGW-w64. Closes gh-3237.
MAINT: io: remove old warnings from idl.py

BUG: cluster.vq.whiten returns nan or inf when std==0

MAINT: stats: Reimplement the pdf and logpdf methods of exponweib.
Fix PEPS errors showing up on TravisCI after pep8 1.5 release

DOC: libatlas3-base-dev seems to have never been a thing

DOC improve scipy.sparse docstrings

ENH: speed-up ndimage.filters.min(max)imum_filter1d

Issues in scipy.misc.logsumexp

DOC: graphical example for cwt, and use a more interesting signal
ENH: Implement min(max)imum_filter1d using the MINLIST algorithm
STY: reduce number of C compiler warnings

DOC: linalg: add docstring to fractional_matrix_power
kde.py Doc Typo

BUG: stats: stats.levy.cdf with small arguments loses precision.

BUG: special: erfcinv with small arguments loses precision.

DOC: Convolve examples

: FIX: in ndimage.measurements return positions as int instead...

Fix test failures with numpy master. Closes gh-3554

ENH: make interp2d accept unsorted arrays for interpolation.
BLD: add numpy requirement to metadata if it can’t be imported.
DOC: move matfuncs docstrings to user-visible functions

Fixes multiple bugs in mstats.theilslopes

4.2,

SciPy 0.15.0 Release Notes

https://github.com/scipy/scipy/pull/3419
https://github.com/scipy/scipy/pull/3420
https://github.com/scipy/scipy/pull/3429
https://github.com/scipy/scipy/pull/3430
https://github.com/scipy/scipy/pull/3433
https://github.com/scipy/scipy/pull/3435
https://github.com/scipy/scipy/pull/3446
https://github.com/scipy/scipy/pull/3450
https://github.com/scipy/scipy/pull/3458
https://github.com/scipy/scipy/pull/3462
https://github.com/scipy/scipy/pull/3463
https://github.com/scipy/scipy/pull/3477
https://github.com/scipy/scipy/pull/3480
https://github.com/scipy/scipy/pull/3484
https://github.com/scipy/scipy/pull/3498
https://github.com/scipy/scipy/pull/3504
https://github.com/scipy/scipy/pull/3510
https://github.com/scipy/scipy/pull/3512
https://github.com/scipy/scipy/pull/3514
https://github.com/scipy/scipy/pull/3516
https://github.com/scipy/scipy/pull/3517
https://github.com/scipy/scipy/pull/3518
https://github.com/scipy/scipy/pull/3526
https://github.com/scipy/scipy/pull/3527
https://github.com/scipy/scipy/pull/3537
https://github.com/scipy/scipy/pull/3540
https://github.com/scipy/scipy/pull/3542
https://github.com/scipy/scipy/pull/3545
https://github.com/scipy/scipy/pull/3547
https://github.com/scipy/scipy/pull/3553
https://github.com/scipy/scipy/pull/3561
https://github.com/scipy/scipy/pull/3564
https://github.com/scipy/scipy/pull/3565
https://github.com/scipy/scipy/pull/3566
https://github.com/scipy/scipy/pull/3567
https://github.com/scipy/scipy/pull/3574

SciPy Reference Guide, Release 0.16.0

#3577:
#3585:
#3589:
#3594:
#3598:
#3599:
#3602:
#3607:
#3609:
#3616:
#3617:
#3622:
#3625:
#3626:
#3627:
#3628:
#3632:
#3636:
#3638:
#3639:
#3640:
#3641:
#3644
#3646:
#3647:
#3650:
#3652:
#3654:
#3657:
#3660:
#3661
#3663:
#3664:
#3667:
#3670:
#3671:

TST: decrease sensitivity of an mstats test

Cleanup of code in scipy.constants

BUG: sparse: allow operator overloading

BUG: lobpcg returned wrong values for small matrices (n < 10)
MAINT: fix coverage and coveralls

MAINT: symeig — now that’s a name I've not heard in a long time
MAINT: clean up the new optimize.linprog and add a few more tests
BUG: integrate: Fix some bugs and documentation errors in the...
MAINT integrate/odepack: kill dead Fortran code

FIX: Invalid values

Sort netcdf variables in a Python-3 compatible way

DOC: Added 0.15.0 release notes entry for linprog function.

Fix documentation for cKDTree.sparse_distance_matrix

MAINT: linalg.orth memory efficiency

MAINT: stats: A bit of clean up

MAINT: signal: remove a useless function from wavelets.py
ENH: stats: Add Mood’s median test.

MAINT: cluster: some clean up

DOC: docstring of optimize.basinhopping confuses singular and...
BUG: change ddof default to 1 in mstats.sem, consistent with...
Weave: deprecate the module and disable slow tests on TravisCI
ENH: Added support for date attributes to io.arff.arffread
MAINT: stats: remove superfluous alias in mstats_basic.py

ENH: adding sum_duplicates method to COO sparse matrix

Fix for #3596: Make fftconvolve threadsafe

BUG: sparse: smarter random index selection

fix wrong option name in power_divergence dosctring example
Changing EPD to Canopy

BUG: signal.welch: ensure floating point dtype regardless of...

TST: mark a test as known fail

: BLD: ignore pep8 E302 (expected 2 blank lines, found 1)

BUG: fix leaking errstate, and ignore invalid= errors in a test
BUG: correlate was extremely slow when in2.size > inl.size
ENH: Adds default params to pdfs of multivariate_norm
ENH: Small speedup of FFT size check

DOC: adding differential_evolution function to 0.15 release notes

210

Chapter 4

. Release Notes

https://github.com/scipy/scipy/pull/3577
https://github.com/scipy/scipy/pull/3585
https://github.com/scipy/scipy/pull/3589
https://github.com/scipy/scipy/pull/3594
https://github.com/scipy/scipy/pull/3598
https://github.com/scipy/scipy/pull/3599
https://github.com/scipy/scipy/pull/3602
https://github.com/scipy/scipy/pull/3607
https://github.com/scipy/scipy/pull/3609
https://github.com/scipy/scipy/pull/3616
https://github.com/scipy/scipy/pull/3617
https://github.com/scipy/scipy/pull/3622
https://github.com/scipy/scipy/pull/3625
https://github.com/scipy/scipy/pull/3626
https://github.com/scipy/scipy/pull/3627
https://github.com/scipy/scipy/pull/3628
https://github.com/scipy/scipy/pull/3632
https://github.com/scipy/scipy/pull/3636
https://github.com/scipy/scipy/pull/3638
https://github.com/scipy/scipy/pull/3639
https://github.com/scipy/scipy/pull/3640
https://github.com/scipy/scipy/pull/3641
https://github.com/scipy/scipy/pull/3644
https://github.com/scipy/scipy/pull/3646
https://github.com/scipy/scipy/pull/3647
https://github.com/scipy/scipy/pull/3650
https://github.com/scipy/scipy/pull/3652
https://github.com/scipy/scipy/pull/3654
https://github.com/scipy/scipy/pull/3657
https://github.com/scipy/scipy/pull/3660
https://github.com/scipy/scipy/pull/3661
https://github.com/scipy/scipy/pull/3663
https://github.com/scipy/scipy/pull/3664
https://github.com/scipy/scipy/pull/3667
https://github.com/scipy/scipy/pull/3670
https://github.com/scipy/scipy/pull/3671

SciPy Reference Guide, Release 0.16.0

#3673:
#3674:
#3681:
#3683:
#3684:
#3688:
#3692:
#3693:
#3695:
#3696:

#3701

#3707:
#3708:
#3709:
#3712:
#3713:
#3718:
#3719:
#3722:
#3725:
#3727:
#3731:
#3734:
#3735:
#3736:
#3744
#3746:
#3748:
#3750:

#3751

#3759:
#3762:
#3766:
#3767:

BUG: interpolate/fitpack: arguments to fortran routines may not...
Add support for appending to existing netcdf files

Speed up test(‘full’), solve Travis CI timeout issues

ENH: cluster: rewrite and optimize vq in Cython

Update special docs

Spacing in special docstrings

ENH: scipy.special: Improving sph_harm function

Update refguide entries for signal and fftpack

Update continuous.rst

ENH: check for valid ‘orientation” kwarg in dendrogram()

: make ‘a’ and ‘b’ coefficients atleast_1d array in filtfilt
#3702:
#3704:

BUG: cluster: _vq unable to handle large features

BUG: special: ellip(k,e)inc nan and double expected value

BUG: handle fill_value dtype checks correctly in RegularGridInterpolator
Reraise exception on failure to read mat file.

BUG: cast ‘x’ to correct dtype in KroghlInterpolator._evaluate
ENH: cluster: reimplement the update-step of K-means in Cython
FIX: Check type of Ifiltic

Changed INSTALL file extension to rst

address svds returning nans for zero input matrix

MAINT: spatial: static, unused code, sqrt(sqeuclidean)

ENH: use numpys nanmedian if available

TST: add a new fixed_point test and change some test function...
BUG: fix romb in scipy.integrate.quadrature

DOC: simplify examples with semilogx

DOC: Add minimal docstrings to Iti.impulse/step

BUG: cast pchip arguments to floats

stub out inherited methods of AkimalDInterpolator

DOC: Fix formatting for Raises section

ENH: Added discrete Lyapunov transformation solve

Enable automated testing with Python 3.4

: Reverse Cuthill-McKee and Maximum Bipartite Matching reorderings...

MAINT: avoid indexing with a float array
TST: filter out RuntimeWarning in vq tests
TST: cluster: some cleanups in test_hierarchy.py

ENH/BUG: support negative m in elliptic integrals

4.2,

SciPy 0.15.0 Release Notes

https://github.com/scipy/scipy/pull/3673
https://github.com/scipy/scipy/pull/3674
https://github.com/scipy/scipy/pull/3681
https://github.com/scipy/scipy/pull/3683
https://github.com/scipy/scipy/pull/3684
https://github.com/scipy/scipy/pull/3688
https://github.com/scipy/scipy/pull/3692
https://github.com/scipy/scipy/pull/3693
https://github.com/scipy/scipy/pull/3695
https://github.com/scipy/scipy/pull/3696
https://github.com/scipy/scipy/pull/3701
https://github.com/scipy/scipy/pull/3702
https://github.com/scipy/scipy/pull/3704
https://github.com/scipy/scipy/pull/3707
https://github.com/scipy/scipy/pull/3708
https://github.com/scipy/scipy/pull/3709
https://github.com/scipy/scipy/pull/3712
https://github.com/scipy/scipy/pull/3713
https://github.com/scipy/scipy/pull/3718
https://github.com/scipy/scipy/pull/3719
https://github.com/scipy/scipy/pull/3722
https://github.com/scipy/scipy/pull/3725
https://github.com/scipy/scipy/pull/3727
https://github.com/scipy/scipy/pull/3731
https://github.com/scipy/scipy/pull/3734
https://github.com/scipy/scipy/pull/3735
https://github.com/scipy/scipy/pull/3736
https://github.com/scipy/scipy/pull/3744
https://github.com/scipy/scipy/pull/3746
https://github.com/scipy/scipy/pull/3748
https://github.com/scipy/scipy/pull/3750
https://github.com/scipy/scipy/pull/3751
https://github.com/scipy/scipy/pull/3759
https://github.com/scipy/scipy/pull/3762
https://github.com/scipy/scipy/pull/3766
https://github.com/scipy/scipy/pull/3767

SciPy Reference Guide, Release 0.16.0

#3769:
#3770:
#3772:
#3773:
#3774:
#3779:
#3788:
#3791:
#3795:
#3796:
#3801
#3803:
#3809:
#3811:
#3819:
#3820:
#3825:
#3827:
#3832:
#3845:
#3848:
#3850:
#3851:
#3860:
#3861:
#3862:
#3865:
#38606:
#3871:
#3872:
#3873:
#3874:
#3877:
#3878:
#3879:
#3881:

ENH: avoid repeated matrix inverse

BUG: signal: In Ifilter_zi, b was not rescaled correctly when...

STY avoid unnecessary transposes in csr_matrix.getcol/row

ENH: Add ext parameter to UnivariateSpline call

BUG: in integrate/quadpack.h, put all declarations before statements.
Incbet fix

BUG: Fix lombscargle ZeroDivisionError

Some maintenance for doc builds

scipy.special.legendre docstring

TYPO: sheroidal -> spheroidal

: BUG: shortest_path overwrite

TST: lombscargle regression test related to atan vs atan2

ENH: orthogonal procrustes solver

ENH: scipy.special, Implemented Ellipsoidal harmonic function:...
BUG: make a fully connected csgraph from an ndarray with no zeros
MAINT: avoid spurious warnings in binom(n, p=0).mean() etc
Don’t claim scipy.cluster does distance matrix calculations.

get and set diagonal of coo_matrix, and related csgraph laplacian...
DOC: Minor additions to integrate/nquad docstring.

Bug fix for #3842: Bug in scipy.optimize.line_search

BUG: edge case where the covariance matrix is exactly zero

DOC: typo

DOC: document default argument values for some arpack functions
DOC: sparse: add the function ‘find’ to the module-level docstring
BUG: Removed unnecessary storage of args as instance variables...
BUG: signal: fix handling of multi-output systems in ss2tf.

Feature request: ability to read heterogeneous types in FortranFile
MAINT: update pip wheelhouse for installs

MAINT: linalg: get rid of calc_Iwork.f

MAINT: use scipy.linalg instead of np.dual

BLD: show a more informative message if Cython wasn’t installed.
TST: cluster: cleanup the hierarchy test data

DOC: Savitzky-Golay filter version added

DOC: move versionadded to notes

small tweaks to the docs

FIX incorrect sorting during fancy assignment

212

Chapter 4

. Release Notes

https://github.com/scipy/scipy/pull/3769
https://github.com/scipy/scipy/pull/3770
https://github.com/scipy/scipy/pull/3772
https://github.com/scipy/scipy/pull/3773
https://github.com/scipy/scipy/pull/3774
https://github.com/scipy/scipy/pull/3779
https://github.com/scipy/scipy/pull/3788
https://github.com/scipy/scipy/pull/3791
https://github.com/scipy/scipy/pull/3795
https://github.com/scipy/scipy/pull/3796
https://github.com/scipy/scipy/pull/3801
https://github.com/scipy/scipy/pull/3803
https://github.com/scipy/scipy/pull/3809
https://github.com/scipy/scipy/pull/3811
https://github.com/scipy/scipy/pull/3819
https://github.com/scipy/scipy/pull/3820
https://github.com/scipy/scipy/pull/3825
https://github.com/scipy/scipy/pull/3827
https://github.com/scipy/scipy/pull/3832
https://github.com/scipy/scipy/pull/3845
https://github.com/scipy/scipy/pull/3848
https://github.com/scipy/scipy/pull/3850
https://github.com/scipy/scipy/pull/3851
https://github.com/scipy/scipy/pull/3860
https://github.com/scipy/scipy/pull/3861
https://github.com/scipy/scipy/pull/3862
https://github.com/scipy/scipy/pull/3865
https://github.com/scipy/scipy/pull/3866
https://github.com/scipy/scipy/pull/3871
https://github.com/scipy/scipy/pull/3872
https://github.com/scipy/scipy/pull/3873
https://github.com/scipy/scipy/pull/3874
https://github.com/scipy/scipy/pull/3877
https://github.com/scipy/scipy/pull/3878
https://github.com/scipy/scipy/pull/3879
https://github.com/scipy/scipy/pull/3881

SciPy Reference Guide, Release 0.16.0

#3885:
#3886:
#3888:
#3891:
#3892:
#3894
#3896:
#3897:
#3899:
#39006:
#3907:
#3909:
#3910:
#3911:
#3914
#3916:
#3917:
#3918:
#3919:
#3920:
#3922:
#3924
#3926:
#3927:
#3928:
#3929:
#3930:
#3932:
#3933:
#3936:
#3938:
#3939:
#3940:
#3942:
#3943:
#3944

kendalltau function now returns a nan tuple if empty arrays used...
BUG: fixing linprog’s kwarg order to match docs

BUG: optimize: In _linprog_simplex, handle the case where the...
BUG: stats: Fix ValueError message in chi2_contingency.

DOC: sparse.linalg: Fix lobpcg docstring.

DOC: stats: Assorted docstring edits.

Fix 2 mistakes in MatrixMarket format parsing

BUG: associated Legendre function of second kind for 1<x<1.0001
BUG: fix undefined behavior in alngam

MAINT/DOC: Whitespace tweaks in several docstrings.

TST: relax bounds of interpolate test to accomodate rounding...
MAINT: Create a common version of count_nonzero for compatibility...
Fix a couple of test errors in master

Use MathJax for the html docs

Rework the _roots functions and document them.

Remove all linpack_lite code and replace with LAPACK routines
splines, constant extrapolation

DOC: tweak the rv_discrete docstring example

Quadrature speed-up: scipy.special.orthogonal.p_roots with cache
DOC: Clarify docstring for sigma parameter for curve_fit

Fixed Docstring issues in linprog (Fixes #3905).

Coerce args into tuple if necessary.

DOC: Surround stats class methods in docstrings with backticks.
Changed doc for romb’s dx parameter to int.

check FITPACK conditions in LSQUnivariateSpline

Added a warning about leastsq using with NaNs.

ENH: optimize: curve_fit now warns if pcov is undetermined
Clarified the k > n case.

DOC: remove import scipy as sp abbreviation here and there

Add license and copyright holders to test data imported from...
DOC: Corrected documentation for return types.

DOC: fitpack: add a note about Sch-W conditions to splrep docstring
TST: integrate: Remove an invalid test of odeint.

FIX: Corrected error message of eigsh.

ENH: release GIL for filter and interpolation of ndimage

FIX: Raise value error if window data-type is unsupported

4.2,

SciPy 0.15.0 Release Notes

https://github.com/scipy/scipy/pull/3885
https://github.com/scipy/scipy/pull/3886
https://github.com/scipy/scipy/pull/3888
https://github.com/scipy/scipy/pull/3891
https://github.com/scipy/scipy/pull/3892
https://github.com/scipy/scipy/pull/3894
https://github.com/scipy/scipy/pull/3896
https://github.com/scipy/scipy/pull/3897
https://github.com/scipy/scipy/pull/3899
https://github.com/scipy/scipy/pull/3906
https://github.com/scipy/scipy/pull/3907
https://github.com/scipy/scipy/pull/3909
https://github.com/scipy/scipy/pull/3910
https://github.com/scipy/scipy/pull/3911
https://github.com/scipy/scipy/pull/3914
https://github.com/scipy/scipy/pull/3916
https://github.com/scipy/scipy/pull/3917
https://github.com/scipy/scipy/pull/3918
https://github.com/scipy/scipy/pull/3919
https://github.com/scipy/scipy/pull/3920
https://github.com/scipy/scipy/pull/3922
https://github.com/scipy/scipy/pull/3924
https://github.com/scipy/scipy/pull/3926
https://github.com/scipy/scipy/pull/3927
https://github.com/scipy/scipy/pull/3928
https://github.com/scipy/scipy/pull/3929
https://github.com/scipy/scipy/pull/3930
https://github.com/scipy/scipy/pull/3932
https://github.com/scipy/scipy/pull/3933
https://github.com/scipy/scipy/pull/3936
https://github.com/scipy/scipy/pull/3938
https://github.com/scipy/scipy/pull/3939
https://github.com/scipy/scipy/pull/3940
https://github.com/scipy/scipy/pull/3942
https://github.com/scipy/scipy/pull/3943
https://github.com/scipy/scipy/pull/3944

SciPy Reference Guide, Release 0.16.0

#3946:
#3947
#3949:
#3950:
#3951:
#3952:
#3953:
#3955:
#3959:
#3960:
#3965:
#3966:
#3968:
#3971:
#3972:
#3973:
#3981:
#3984:
#3990:
#3991:
#3993:
#3997:
#3998:
#3999:
#4000:
#4003:
#4004:
#4006:
#4007:
#4008:
#4015
#4016:
#4020:
#4023:
#4024
#4041:

Fixed signal.get_window with unicode window name

MAINT: some docstring fixes and style cleanups in stats.mstats
DOC: fix a couple of issues in stats docstrings.

TST: sparse: remove known failure that doesn’t fail

TST: switch from Rackspace wheelhouse to numpy/cython source...
DOC: stats: Small formatting correction to the ‘chi’ distribution...
DOC: stats: Several corrections and small additions to docstrings.
signal.__init__.py: remove duplicated get_window entry

TST: sparse: more “known failures” for DOK that don’t fail

BUG: io.netcdf: do not close mmap if there are references left...
DOC: Fix a few more sphinx warnings that occur when building...
DOC: add guidelines for using test generators in HACKING

BUG: sparse.linalg: make Inv objects in arpack garbage-collectable...
Remove all linpack_lite code and replace with LAPACK routines
fix typo in error message

MAINT: better error message for multivariate normal.

turn the cryptically named scipy.special information theory functions...
Wrap her, syr, her2, syr2 blas routines

improve UnivariateSpline docs

ENH: stats: return namedtuple for describe output

DOC: stats: percentileofscore references np.percentile

BUG: linalg: pascal(35) was incorrect: last element overflowed...
MAINT: use isMaskedArray instead of is_masked to check type
TST: test against all of boost data files.

BUG: stats: Fix edge-case handling in a few distributions.

ENH: using python’s warnings instead of prints in fitpack.

MAINT: optimize: remove a couple unused variables in zeros.c
BUG: Fix C90 compiler warnings in NI_MinOrMaxFilter]1 D
MAINT/DOC: Fix spelling of ‘decomposition’ in several files.

DOC: stats: Split the descriptions of the distributions in the...

: TST: logsumexp regression test

MAINT: remove some inf-related warnings from logsumexp

DOC: stats: fix whitespace in docstrings of several distributions
Exactly one space required before assignments

In dendrogram(): Correct an argument name and a grammar issue...

BUG: misc: Ensure that the ‘size’ argument of PIL’s ‘resize’...

214

Chapter 4

. Release Notes

https://github.com/scipy/scipy/pull/3946
https://github.com/scipy/scipy/pull/3947
https://github.com/scipy/scipy/pull/3949
https://github.com/scipy/scipy/pull/3950
https://github.com/scipy/scipy/pull/3951
https://github.com/scipy/scipy/pull/3952
https://github.com/scipy/scipy/pull/3953
https://github.com/scipy/scipy/pull/3955
https://github.com/scipy/scipy/pull/3959
https://github.com/scipy/scipy/pull/3960
https://github.com/scipy/scipy/pull/3965
https://github.com/scipy/scipy/pull/3966
https://github.com/scipy/scipy/pull/3968
https://github.com/scipy/scipy/pull/3971
https://github.com/scipy/scipy/pull/3972
https://github.com/scipy/scipy/pull/3973
https://github.com/scipy/scipy/pull/3981
https://github.com/scipy/scipy/pull/3984
https://github.com/scipy/scipy/pull/3990
https://github.com/scipy/scipy/pull/3991
https://github.com/scipy/scipy/pull/3993
https://github.com/scipy/scipy/pull/3997
https://github.com/scipy/scipy/pull/3998
https://github.com/scipy/scipy/pull/3999
https://github.com/scipy/scipy/pull/4000
https://github.com/scipy/scipy/pull/4003
https://github.com/scipy/scipy/pull/4004
https://github.com/scipy/scipy/pull/4006
https://github.com/scipy/scipy/pull/4007
https://github.com/scipy/scipy/pull/4008
https://github.com/scipy/scipy/pull/4015
https://github.com/scipy/scipy/pull/4016
https://github.com/scipy/scipy/pull/4020
https://github.com/scipy/scipy/pull/4023
https://github.com/scipy/scipy/pull/4024
https://github.com/scipy/scipy/pull/4041

SciPy Reference Guide, Release 0.16.0

#4049:
#4051:
#4052:
#4053:
#4057:
#4058:
#4059:
#4004
#4074:
#4084
#4091
#4105:
#4107:
#4113:
#4114
#4117:
#4126:
#4131:
#4132:
#4145:
#4150:
#4153:
#4156:
#4159:
#4165:
#4172:
#4175:
#4177:
#4179:
#4181:
#4182:
#4183:
#4184
#4187:
#4190:
#4193:

BUG: Return of _logpmf

BUG: expm of integer matrices

ENH: integrate: odeint: Handle exceptions in the callback functions.
BUG: stats: Refactor argument validation to avoid a unicode issue.
Added newline to scipy.sparse.linalg.svds documentation for correct...
MAINT: stats: Add note about change to scoreatpercentile in release...
ENH: interpolate: Allow splev to accept an n-dimensional array.
Documented the return value for scipy.signal.find_peaks_cwt

ENH: Support LinearOperator as input to svds

BUG: Match exception declarations in scipy/io/matlab/streams.pyx...

: DOC: special: more clear instructions on how to evaluate polynomials

BUG: Workaround for SGEMV segfault in Accelerate

DOC: get rid of ‘import *’ in examples

DOC: fix typos in distance.yule

MAINT C fixes

deprecate nanmean, nanmedian and nanstd in favor of their numpy...
scipy.io.idl: support description records and fix bug with null...
ENH: release GIL in more ndimage functions

MAINT: stats: fix a typo [skip ci]

DOC: Fix documentation error for nc chi-squared dist

Fix _nd_image.geometric_transform endianness bug

MAINT: remove use of deprecated numpy API in lib/lapack/ f2py...
MAINT: optimize: remove dead code

MAINT: optimize: clean up Zeros code

DOC: add missing special functions to __doc__

DOC: remove misleading procrustes docstring line

DOC: sparse: clarify CSC and CSR constructor usage
MAINT: enable np.matrix inputs to solve_discrete_lyapunov
TST: fix an intermittently failing test case for special.legendre
MAINT: remove unnecessary null checks before free
Ellipsoidal harmonics

Skip Cython build in Travis-CI

Pr 4074

Pr/3923

BUG: special: fix up ellip_harm build

BLD: fix msvc compiler errors

4.2,

SciPy 0.15.0 Release Notes

https://github.com/scipy/scipy/pull/4049
https://github.com/scipy/scipy/pull/4051
https://github.com/scipy/scipy/pull/4052
https://github.com/scipy/scipy/pull/4053
https://github.com/scipy/scipy/pull/4057
https://github.com/scipy/scipy/pull/4058
https://github.com/scipy/scipy/pull/4059
https://github.com/scipy/scipy/pull/4064
https://github.com/scipy/scipy/pull/4074
https://github.com/scipy/scipy/pull/4084
https://github.com/scipy/scipy/pull/4091
https://github.com/scipy/scipy/pull/4105
https://github.com/scipy/scipy/pull/4107
https://github.com/scipy/scipy/pull/4113
https://github.com/scipy/scipy/pull/4114
https://github.com/scipy/scipy/pull/4117
https://github.com/scipy/scipy/pull/4126
https://github.com/scipy/scipy/pull/4131
https://github.com/scipy/scipy/pull/4132
https://github.com/scipy/scipy/pull/4145
https://github.com/scipy/scipy/pull/4150
https://github.com/scipy/scipy/pull/4153
https://github.com/scipy/scipy/pull/4156
https://github.com/scipy/scipy/pull/4159
https://github.com/scipy/scipy/pull/4165
https://github.com/scipy/scipy/pull/4172
https://github.com/scipy/scipy/pull/4175
https://github.com/scipy/scipy/pull/4177
https://github.com/scipy/scipy/pull/4179
https://github.com/scipy/scipy/pull/4181
https://github.com/scipy/scipy/pull/4182
https://github.com/scipy/scipy/pull/4183
https://github.com/scipy/scipy/pull/4184
https://github.com/scipy/scipy/pull/4187
https://github.com/scipy/scipy/pull/4190
https://github.com/scipy/scipy/pull/4193

SciPy Reference Guide, Release 0.16.0

#4194: BUG: fix buffer dtype mismatch on win-amd64

#4199: ENH: Changed scipy.stats.describe output from datalen to nobs

#4201: DOC: add blas2 and nan* deprecations to the release notes

#4243: TST: bump test tolerances

4.3 SciPy 0.14.0 Release Notes

Contents

* SciPy 0.14.0 Release Notes
— New features
% scipy.interpolate improvements
scipy.linalg improvements
scipy.optimize improvements
scipy.stats improvements
scipy.signal improvements

¥ ¥ ¥ ¥ ¥

scipy.special improvements
* scipy.sparse improvements
Deprecated features
* anneal
% scipy.stats
% scipy.interpolate
Backwards incompatible changes
* scipy.special.lpmn
* scipy.sparse.linalg
% scipy.stats
% scipy.interpolate
Other changes
Authors
* Issues closed
+ Pull requests

SciPy 0.14.0 is the culmination of 8 months of hard work. It contains many new features, numerous bug-fixes,
improved test coverage and better documentation. There have been a number of deprecations and API changes in
this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large
number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the
0.14.x branch, and on adding new features on the master branch.

This release requires Python 2.6, 2.7 or 3.2-3.4 and NumPy 1.5.1 or greater.

4.3.1 New features

scipy.interpolate improvements

A new wrapper function scipy.interpolate.interpn for interpolation on regular grids has been added. in-
terpn supports linear and nearest-neighbor interpolation in arbitrary dimensions and spline interpolation in two dimen-
sions.

216 Chapter 4. Release Notes

https://github.com/scipy/scipy/pull/4194
https://github.com/scipy/scipy/pull/4199
https://github.com/scipy/scipy/pull/4201
https://github.com/scipy/scipy/pull/4243

SciPy Reference Guide, Release 0.16.0

Faster implementations of piecewise polynomials in power and Bernstein polynomial bases have been added as
scipy.interpolate.PPoly and scipy.interpolate.BPoly. New users should use these in favor of
scipy.interpolate.PiecewisePolynomial.

scipy.interpolate.interpld now accepts non-monotonic inputs and sorts them. If performance is critical,
sorting can be turned off by using the new assume_sorted keyword.

Functionality for evaluation of bivariate spline derivatives in scipy.interpolate has been added.

The new class scipy.interpolate.AkimalDInterpolator implements the piecewise cubic polynomial
interpolation scheme devised by H. Akima.

Functionality for fast interpolation on regular, unevenly spaced grids in arbitrary dimensions has been added as
scipy.interpolate.RegularGridInterpolator.

scipy.linalg improvements

The new function scipy.linalg.dft computes the matrix of the discrete Fourier transform.

A condition number estimation function for matrix exponential, scipy.linalg.expm_cond, has been added.

scipy.optimize improvements

A set of benchmarks for optimize, which can be run with opt imize .bench (), has been added.
scipy.optimize.curve_fit now has more controllable error estimation via the absolute_sigma keyword.

Support for passing custom minimization methods to optimize.minimize () and
optimize.minimize_scalar () has been added, currently wuseful especially for combining
optimize.basinhopping () with custom local optimizer routines.

scipy.stats improvements

A new class scipy.stats.multivariate_normal with functionality for multivariate normal random vari-
ables has been added.

A lot of work on the scipy . stats distribution framework has been done. Moment calculations (skew and kurtosis
mainly) are fixed and verified, all examples are now runnable, and many small accuracy and performance improve-
ments for individual distributions were merged.

The new function scipy.stats.anderson_ksamp computes the k-sample Anderson-Darling test for the null
hypothesis that k samples come from the same parent population.

scipy.signal improvements

scipy.signal.iirfilter and related functions to design Butterworth, Chebyshev, elliptical and Bessel IIR
filters now all use pole-zero (“zpk”) format internally instead of using transformations to numerator/denominator
format. The accuracy of the produced filters, especially high-order ones, is improved significantly as a result.

The Savitzky-Golay filter was added with the new functions scipy.signal.savgol_ filter and
scipy.signal.savgol_coeffs.

The new function scipy.signal.vectorstrength computes the vector strength, a measure of phase syn-
chrony, of a set of events.

4.3. SciPy 0.14.0 Release Notes 217

SciPy Reference Guide, Release 0.16.0

scipy.special improvements

The functions scipy.special .boxcoxand scipy.special .boxcoxlp, which compute the Box-Cox trans-
formation, have been added.

scipy.sparse improvements

» Significant performance improvement in CSR, CSC, and DOK indexing speed.

* When using Numpy >= 1.9 (to be released in MM 2014), sparse matrices function correctly when given to
arguments of np.dot, np.multiply and other ufuncs. With earlier Numpy and Scipy versions, the results
of such operations are undefined and usually unexpected.

» Sparse matrices are no longer limited to 2~ 31 nonzero elements. They automatically switch to using 64-bit
index data type for matrices containing more elements. User code written assuming the sparse matrices use
int32 as the index data type will continue to work, except for such large matrices. Code dealing with larger
matrices needs to accept either int32 or int64 indices.

4.3.2 Deprecated features

anneal

The global minimization function scipy.optimize.anneal is deprecated. All wusers should wuse the
scipy.optimize.basinhopping function instead.

scipy.stats

randwcdf and randwppf functions are deprecated. All users should use distribution-specific rvs methods instead.

Probability calculation aliases zprob, fprob and ksprob are deprecated. Use instead the sf methods of the
corresponding distributions or the special functions directly.

scipy.interpolate

PiecewisePolynomial class is deprecated.

4.3.3 Backwards incompatible changes
1lpmn no longer accepts complex-valued arguments. A new function c1pmn with uniform complex analytic behavior
has been added, and it should be used instead.

Eigenvectors in the case of generalized eigenvalue problem are normalized to unit vectors in 2-norm, rather than
following the LAPACK normalization convention.

The deprecated UMFPACK wrapper in scipy.sparse.linalg has been removed due to license and install is-
sues. If available, scikits.umfpack is still used transparently in the spsolve and factorized functions.
Otherwise, SuperLU is used instead in these functions.

The deprecated functions glm, oneway and cmedian have been removed from scipy.stats.

stats.scoreatpercentile now returns an array instead of a list of percentiles.

218 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

The API for computing derivatives of a monotone piecewise interpolation has changed: if p is a
PchipInterpolator object, p.derivative(der) returns a callable object representing the derivative of p. For in-
place derivatives use the second argument of the __call__ method: p(0.1, der=2) evaluates the second derivative of p
at x=0.1.

The method p.derivatives has been removed.

4.3.4 Other changes

4.3.5 Authors

Marc Abramowitz +

Anders Bech Borchersen +

Vincent Arel-Bundock +

Petr Baudis +

Max Bolingbroke

Frangois Boulogne

Matthew Brett

Lars Buitinck

Evgeni Burovski

CJ Carey +

Thomas A Caswell +

Pawel Chojnacki +

Phillip Cloud +

Stefano Costa +

David Cournapeau

David Menendez Hurtado +

Matthieu Dartiailh +

Christoph Deil +

Jorg Dietrich +

endolith

Francisco de la Pefia +

Ben FrantzDale +

Jim Garrison +
André Gaul
Christoph Gohlke

Ralf Gommers
Robert David Grant
Alex Griffing

4.3. SciPy 0.14.0 Release Notes 219

SciPy Reference Guide, Release 0.16.0

Blake Griffith
Yaroslav Halchenko
Andreas Hilboll

Kat Huang
Gert-Ludwig Ingold
James T. Webber +
Dorota Jarecka +
Todd Jennings +
Thouis (Ray) Jones
Juan Luis Cano Rodriguez
ktritz +

Jacques Kvam +

Eric Larson +

Justin Lavoie +
Denis Laxalde

Jussi Leinonen +
lemonlaug +

Tim Leslie

Alain Leufroy +
George Lewis +
Max Linke +
Brandon Liu +
Benny Malengier +
Matthias Kiimmerer +
Cimarron Mittelsteadt +
Eric Moore

Andrew Nelson +
Niklas Hambiichen +
Joel Nothman +
Clemens Novak
Emanuele Olivetti +
Stefan Otte +

peb +

Josef Perktold
pjwerneck

poolio

220

Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

Jérdbme Roy +

Carl Sandrock +

Andrew Sczesnak +

Shauna +

Fabrice Silva

Daniel B. Smith

Patrick Snape +

Thomas Spura +

Jacob Stevenson

Julian Taylor

Tomas Tomecek

Richard Tsai

Jacob Vanderplas

Joris Vankerschaver +

Pauli Virtanen

Warren Weckesser

A total of 80 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed

#1325
#1437:
#1555:
#1569:
#1833:
#1834:
#1866:
#1886:
#1887:
#1897:
#1918:
#1949:
#2092:
#2106:
#2123:
#2152:

: add custom axis keyword to dendrogram function in scipy.cluster.hierarchy...

Wrong pochhammer symbol for negative integers (Trac #910)
scipy.io.netcdf leaks file descriptors (Trac #1028)

sparse matrix failed with element-wise multiplication using numpy.multiply()...
Sparse matrices are limited to 2732 non-zero elements (Trac #1307)
scipy.linalg.eig does not normalize eigenvector if B is given...

stats for invgamma (Trac #1340)

stats.zipf floating point warnings (Trac #1361)

Stats continuous distributions - floating point warnings (Trac...
scoreatpercentile() does not handle empty list inputs (Trac #1372)
splint returns incorrect results (Trac #1393)

kurtosistest fails in mstats with type error (Trac #1424)

scipy.test leaves darwin27compiled_catalog, cpp and so files...

stats ENH: shape parameters in distribution docstrings (Trac...

Bad behavior of sparse matrices in a binary ufunc (Trac #1598)

Fix mmio/fromfile on gzip on Python 3 (Trac #1627)

4.3.

SciPy 0.14.0 Release Notes 221

https://github.com/scipy/scipy/issues/1325
https://github.com/scipy/scipy/issues/1437
https://github.com/scipy/scipy/issues/1555
https://github.com/scipy/scipy/issues/1569
https://github.com/scipy/scipy/issues/1833
https://github.com/scipy/scipy/issues/1834
https://github.com/scipy/scipy/issues/1866
https://github.com/scipy/scipy/issues/1886
https://github.com/scipy/scipy/issues/1887
https://github.com/scipy/scipy/issues/1897
https://github.com/scipy/scipy/issues/1918
https://github.com/scipy/scipy/issues/1949
https://github.com/scipy/scipy/issues/2092
https://github.com/scipy/scipy/issues/2106
https://github.com/scipy/scipy/issues/2123
https://github.com/scipy/scipy/issues/2152

SciPy Reference Guide, Release 0.16.0

o #2164: stats.rice.pdf(x, 0) returns nan (Trac #1639)

* #2169: scipy.optimize.fmin_bfgs not handling functions with boundaries...

e #2177: scipy.cluster.hierarchy.ClusterNode.pre_order returns IndexError...

e #2179: coo.todense() segfaults (Trac #1654)

 #2185: Precision of scipy.ndimage.gaussian_filter*() limited (Trac #1660)

* #2186: scipy.stats.mstats.kurtosistest crashes on 1d input (Trac #1661)
 #2238: Negative p-value on hypergeom.cdf (Trac #1719)

 #2283: ascending order in interpolation routines (Trac #1764)

o #2288: mstats.kurtosistest is incorrectly converting to float, and fails...

e #2396: lpmn wrong results for | z| > 1 (Trac #1877)

o #2398: ss2tf returns num as 2D array instead of 1D (Trac #1879)

* #2406: linkage does not take Unicode strings as method names (Trac #1887)
o #2443: TIR filter design should not transform to tf representation internally

e #2572: class method solve of splu return object corrupted or falsely...

* #26067: stats endless loop ?

* #2671: .stats.hypergeom documentation error in the note about pmf

» #2691: BUG scipy.linalg.lapack: potrf/ptroi interpret their ‘lower’...

o #2721: Allow use of ellipsis in scipy.sparse slicing

e #2741: stats: deprecate and remove alias for special functions

o #2742: stats add rvs to rice distribution

* #2765: bugs stats entropy

* #2832: argrelextrema returns tuple of 2 empty arrays when no peaks found...
* #2861: scipy.stats.scoreatpercentile broken for vector per

» #2891: COBYLA successful termination when constraints violated

e #29109: test failure with the current master

» #2922: ndimage.percentile_filter ignores origin argument for multidimensional...
» #2938: Sparse/dense matrix inplace operations fail due to __numpy_ufunc__
e #2944: MacPorts builds yield 40Mb worth of build warnings

o #2945: FAIL: test_random_complex (test_basic.TestDet)

o #2947: FAIL: Test some trivial edge cases for savgol_filter()

» #2953: Scipy Delaunay triangulation is not oriented

e #2971: scipy.stats.mstats.winsorize documentation error

 #2980: Problems running what seems a perfectly valid example

* #2996: entropy for rv_discrete is incorrect?!

* #2998: Fix numpy version comparisons

» #3002: python setup.py install fails

222 Chapter 4. Release Notes

https://github.com/scipy/scipy/issues/2164
https://github.com/scipy/scipy/issues/2169
https://github.com/scipy/scipy/issues/2177
https://github.com/scipy/scipy/issues/2179
https://github.com/scipy/scipy/issues/2185
https://github.com/scipy/scipy/issues/2186
https://github.com/scipy/scipy/issues/2238
https://github.com/scipy/scipy/issues/2283
https://github.com/scipy/scipy/issues/2288
https://github.com/scipy/scipy/issues/2396
https://github.com/scipy/scipy/issues/2398
https://github.com/scipy/scipy/issues/2406
https://github.com/scipy/scipy/issues/2443
https://github.com/scipy/scipy/issues/2572
https://github.com/scipy/scipy/issues/2667
https://github.com/scipy/scipy/issues/2671
https://github.com/scipy/scipy/issues/2691
https://github.com/scipy/scipy/issues/2721
https://github.com/scipy/scipy/issues/2741
https://github.com/scipy/scipy/issues/2742
https://github.com/scipy/scipy/issues/2765
https://github.com/scipy/scipy/issues/2832
https://github.com/scipy/scipy/issues/2861
https://github.com/scipy/scipy/issues/2891
https://github.com/scipy/scipy/issues/2919
https://github.com/scipy/scipy/issues/2922
https://github.com/scipy/scipy/issues/2938
https://github.com/scipy/scipy/issues/2944
https://github.com/scipy/scipy/issues/2945
https://github.com/scipy/scipy/issues/2947
https://github.com/scipy/scipy/issues/2953
https://github.com/scipy/scipy/issues/2971
https://github.com/scipy/scipy/issues/2980
https://github.com/scipy/scipy/issues/2996
https://github.com/scipy/scipy/issues/2998
https://github.com/scipy/scipy/issues/3002

SciPy Reference Guide, Release 0.16.0

e #3014:
* #3030:
* #3037:
o #3047:
* #3059:
* #3063:
* #30067:
* #3069:
* #3086:
e #3094:

e #3111

o #3227:
* #3238:
o #3249:
o #3251:
o #3279:
o #3285:
e #3299:
* #3330:
o #3345:
o #3363:
o #3385:
o #3395:
o #3399:
o #3404:
* #3412:
o #34606:

Bug in stats.fisher_exact

relative entropy using scipy.stats.distribution.entropy when...
scipy.optimize.curve_fit leads to unexpected behavior when input...
mstats.ttest_rel axis=None, requires masked array

BUG: Slices of sparse matrices return incorrect dtype

range keyword in binned_statistics incorrect

cumtrapz not working as expected

sinc

standard error calculation inconsistent between ‘stats’ and ‘mstats’

Add a perm function into scipy.misc and an enhancement of...

: scipy.sparse.[hv]stack don’t respect anymore the dtype parameter
* #3172:
* #3196:
o #3212:

optimize.curve_fit uses different nomenclature from optimize.leastsq
scipy.stats.mstats.gmean does not actually take dtype

Dot product of csr_matrix causes segmentation fault
ZeroDivisionError in broydenl when initial guess is the right...
Ibfgsb output not suppressed by disp=0

Sparse matrix min/max/etc don’t support axis=-1

cdist performance issue with ‘sqeuclidean’ metric

logm fails for singular matrix

signal.chirp(method="hyp’) disallows hyperbolic upsweep
MEMORY LEAK: fmin_tnc

test failures with the current master

scipy and/or numpy change is causing tests to fail in another...
splu does not work for non-vector inputs

expit does not handle large arguments well

specfun.f doesn’t compile with MinGW

Error message bug in scipy.cluster.hierarchy.linkage
interpolate._ppoly doesn’t build with MinGW

Test failures in signal

‘scipy.sparse.csgraph.shortest_path® does

‘scipy.sparse.csr_matrix‘or ‘1il_matrix’

Pull requests

 #442: ENH: sparse: enable 64-bit index arrays & nnz > 2**31

e #2766:
o #2772:

DOC: remove doc/seps/technology-preview.rst

TST: stats: Added a regression test for stats.wilcoxon. Closes...

not

work

on

4.3. SciPy 0.14.0 Release Notes

223

https://github.com/scipy/scipy/issues/3014
https://github.com/scipy/scipy/issues/3030
https://github.com/scipy/scipy/issues/3037
https://github.com/scipy/scipy/issues/3047
https://github.com/scipy/scipy/issues/3059
https://github.com/scipy/scipy/issues/3063
https://github.com/scipy/scipy/issues/3067
https://github.com/scipy/scipy/issues/3069
https://github.com/scipy/scipy/issues/3086
https://github.com/scipy/scipy/issues/3094
https://github.com/scipy/scipy/issues/3111
https://github.com/scipy/scipy/issues/3172
https://github.com/scipy/scipy/issues/3196
https://github.com/scipy/scipy/issues/3212
https://github.com/scipy/scipy/issues/3227
https://github.com/scipy/scipy/issues/3238
https://github.com/scipy/scipy/issues/3249
https://github.com/scipy/scipy/issues/3251
https://github.com/scipy/scipy/issues/3279
https://github.com/scipy/scipy/issues/3285
https://github.com/scipy/scipy/issues/3299
https://github.com/scipy/scipy/issues/3330
https://github.com/scipy/scipy/issues/3345
https://github.com/scipy/scipy/issues/3363
https://github.com/scipy/scipy/issues/3385
https://github.com/scipy/scipy/issues/3395
https://github.com/scipy/scipy/issues/3399
https://github.com/scipy/scipy/issues/3404
https://github.com/scipy/scipy/issues/3412
https://github.com/scipy/scipy/issues/3466
https://github.com/scipy/scipy/pull/442
https://github.com/scipy/scipy/pull/2766
https://github.com/scipy/scipy/pull/2772

SciPy Reference Guide, Release 0.16.0

#2778:
#2792:
#2847:
#2878:
#2904
#2907:
#2932:
#2942:
#2946:
#2986:
#2987:
#2992:
#2995:
#30006:
#3007:
#3008:
#3009:
#3010:
#3012:
#3052:
#3064:
#3068:
#3073:
#3074
#3080:
#3083:
#3085:
#3101:
#3112:
#3123:
#3124:
#3126:
#3134
#3138:
#3155:
#3156:

Clean up stats._support, close statistics review issues

BUG io: fix file descriptor closing for netcdf variables

Rice distribution: extend to b=0, add an explicit rvs method.
[stats] fix formulas for higher moments of dweibull distribution
ENH: moments for the zipf distribution

ENH: add coverage info with coveralls.io for Travis runs.
BUG+TST: setdiag implementation for dia_matrix (Close #2931)...
Misc fixes pointed out by Eclipse PyDev static code analysis
ENH: allow non-monotonic input in interp1d

BUG: runtests: chdir away from root when running tests

DOC: linalg: don’t recommend np.linalg.norm

ENH: Add “limit” parameter to dijkstra calculation

ENH: Use int shape

DOC: stats: add a log base note to the docstring

DEP: stats: Deprecate randwppf and randwcdf

Fix mstats.kurtosistest, and test coverage for skewtest/normaltest
Minor reST typo

Add scipy.optimize.Result to API docs

Corrects documentation error

PEP-8 conformance improvements

Binned statistic

Fix Issue #3067 fix cumptrapz that was raising an exception when...
Arff reader with nominal value of 1 character

Some maintenance work

Review and clean up all Box-Cox functions

Bug: should return O if no regions found

BUG: Use zpk in IIR filter design to improve accuracy

refactor stats tests a bit

ENH: implement Akima interpolation in 1D

MAINT: an easier way to make ranges from slices

File object support for imread and imsave

pep8ify stats/distributions.py

MAINT: split distributions.py into three files

clean up tests for discrete distributions

special: handle the edge case lambda=0 in pdtr, pdtrc and pdtrik

Rename optimize.Result to OptimizeResult

224

Chapter 4

. Release Notes

https://github.com/scipy/scipy/pull/2778
https://github.com/scipy/scipy/pull/2792
https://github.com/scipy/scipy/pull/2847
https://github.com/scipy/scipy/pull/2878
https://github.com/scipy/scipy/pull/2904
https://github.com/scipy/scipy/pull/2907
https://github.com/scipy/scipy/pull/2932
https://github.com/scipy/scipy/pull/2942
https://github.com/scipy/scipy/pull/2946
https://github.com/scipy/scipy/pull/2986
https://github.com/scipy/scipy/pull/2987
https://github.com/scipy/scipy/pull/2992
https://github.com/scipy/scipy/pull/2995
https://github.com/scipy/scipy/pull/3006
https://github.com/scipy/scipy/pull/3007
https://github.com/scipy/scipy/pull/3008
https://github.com/scipy/scipy/pull/3009
https://github.com/scipy/scipy/pull/3010
https://github.com/scipy/scipy/pull/3012
https://github.com/scipy/scipy/pull/3052
https://github.com/scipy/scipy/pull/3064
https://github.com/scipy/scipy/pull/3068
https://github.com/scipy/scipy/pull/3073
https://github.com/scipy/scipy/pull/3074
https://github.com/scipy/scipy/pull/3080
https://github.com/scipy/scipy/pull/3083
https://github.com/scipy/scipy/pull/3085
https://github.com/scipy/scipy/pull/3101
https://github.com/scipy/scipy/pull/3112
https://github.com/scipy/scipy/pull/3123
https://github.com/scipy/scipy/pull/3124
https://github.com/scipy/scipy/pull/3126
https://github.com/scipy/scipy/pull/3134
https://github.com/scipy/scipy/pull/3138
https://github.com/scipy/scipy/pull/3155
https://github.com/scipy/scipy/pull/3156

SciPy Reference Guide, Release 0.16.0

#3166:
#3170:
#3175:
#3177:
#3178:
#3179:
#3180:
#3181:
#3182:
#3183:
#3186:
#3187:
#3201:
#3207:
#3218:
#3222:
#3223:
#3224
#3228:
#3234
#3235
#3239:
#3240:
#3241:
#3243:
#3245:
#3247:
#3248:
#3252:
#3253:
#3254
#3272:
#3278:
#3286:
#3289:
#3292:

BUG: make curve_fit() work with array_like input. Closes gh-3037.
Fix numpy version checks

use numpy sinc

Update numpy version warning, remove oldnumeric import

DEP: remove deprecated umfpack wrapper. Closes gh-3002.
DOC: add BPoly to the docs

Suppress warnings when running stats.test()

altered sem func in mstats to match stats

Make weave tests behave

ENH: Add k-sample Anderson-Darling test to stats module

Fix stats.scoreatpercentile

DOC: make curve_fit nomenclature same as leastsq

Added axis keyword to dendrogram function

Make docstring examples in stats.distributions docstrings runnable
BUG: integrate: Fix banded jacobian handling in the “vode” and...
BUG: limit input ranges in special.nctdtr

Fix test errors with numpy master

Fix int32 overflows in sparsetools

DOC: tf2ss zpk2ss note controller canonical form

Add See Also links and Example graphs to filter design «ord functions

: Updated the buttord function to be consistent with the other...

correct doc for pchip interpolation

DOC: fix ReST errors in the BPoly docstring

RF: check write attr of fileobject without writing

a bit of maintanence work in stats

BUG/ENH: stats: make frozen distributions hold separate instances
ENH function to return nnz per row/column in some sparse matrices
ENH much more efficient sparse min/max with axis

Fast sqeuclidean

FIX support axis=-1 and -2 for sparse reduce methods

TST tests for non-canonical input to sparse matrix operations
BUG: sparse: fix bugs in dia_matrix.setdiag

Also generate a tar.xz when running paver sdist

DOC: update 0.14.0 release notes.

TST: remove insecure mktemp use in tests

MAINT: fix a backwards incompatible change to stats.distributions.__all__

4.3.

SciPy 0.14.0 Release Notes

https://github.com/scipy/scipy/pull/3166
https://github.com/scipy/scipy/pull/3170
https://github.com/scipy/scipy/pull/3175
https://github.com/scipy/scipy/pull/3177
https://github.com/scipy/scipy/pull/3178
https://github.com/scipy/scipy/pull/3179
https://github.com/scipy/scipy/pull/3180
https://github.com/scipy/scipy/pull/3181
https://github.com/scipy/scipy/pull/3182
https://github.com/scipy/scipy/pull/3183
https://github.com/scipy/scipy/pull/3186
https://github.com/scipy/scipy/pull/3187
https://github.com/scipy/scipy/pull/3201
https://github.com/scipy/scipy/pull/3207
https://github.com/scipy/scipy/pull/3218
https://github.com/scipy/scipy/pull/3222
https://github.com/scipy/scipy/pull/3223
https://github.com/scipy/scipy/pull/3224
https://github.com/scipy/scipy/pull/3228
https://github.com/scipy/scipy/pull/3234
https://github.com/scipy/scipy/pull/3235
https://github.com/scipy/scipy/pull/3239
https://github.com/scipy/scipy/pull/3240
https://github.com/scipy/scipy/pull/3241
https://github.com/scipy/scipy/pull/3243
https://github.com/scipy/scipy/pull/3245
https://github.com/scipy/scipy/pull/3247
https://github.com/scipy/scipy/pull/3248
https://github.com/scipy/scipy/pull/3252
https://github.com/scipy/scipy/pull/3253
https://github.com/scipy/scipy/pull/3254
https://github.com/scipy/scipy/pull/3272
https://github.com/scipy/scipy/pull/3278
https://github.com/scipy/scipy/pull/3286
https://github.com/scipy/scipy/pull/3289
https://github.com/scipy/scipy/pull/3292

SciPy Reference Guide, Release 0.16.0

#3293:
#3302:
#3307:
#3309:
#3310:
#3314:
#3323:
#3332:
#3335:
#3347:
#3356:
#3357:
#3358:
#3366:
#3367:
#3369:
#3371:
#3373:
#3375:
#3377:
#3378:
#3381:
#3383:
#3384:
#3386:
#3388:
#3389:
#3390:
#3391:
#3392:
#3393:
#3394
#3400:
#3402:
#3408:
#3410:

ENH: signal: Allow upsweeps of frequency in the ‘hyperbolic’...
ENH: add dtype arg to stats.mstats.gmean and stats.mstats.hmean
DOC: add note about different ba forms in tf2zpk

doc enhancements to scipy.stats.mstats.winsorize

DOC: clarify matrix vs array in mmio docstrings

BUG: fix scipy.io.mmread() of gzipped files under Python3

ENH: Efficient interpolation on regular grids in arbitrary dimensions
DOC: clean up scipy.special docs

ENH: improve nanmedian performance

BUG: fix use of np.max in stats.fisher_exact

ENH: sparse: speed up LIL indexing + assignment via Cython

Fix “imresize does not work with size = int”

MAINT: rename Akimalnterpolator to AkimalDInterpolator

WHT: sparse: reindent dsolve/*.c x.h

BUG: sparse/dsolve: fix dense matrix fortran order bugs in superlu...
ENH minimize, minimize_scalar: Add support for user-provided...
scipy.stats.sigmaclip doesn’t appear in the html docs.

BUG: sparse/dsolve: detect invalid LAPACK parameters in superlu...
ENH: sparse/dsolve: make the L and U factors of splu and spilu...
MAINT: make travis build one target against Numpy 1.5

MAINT: fftpack: Remove the use of * import =’ ina couple test...
MAINT: replace np.isinf(x) & (x>0) -> np.isposinf(x) to avoid...
MAINT: skip float96 tests on platforms without float96

MAINT: add pyflakes to Travis-CI

BUG: stable evaluation of expit

BUG: SuperLU: fix missing declaration of dlamch

BUG: sparse: downcast 64-bit indices safely to intp when required
BUG: nonlinear solvers are not confused by lucky guess

TST: fix sparse test errors due to axis=-1,-2 usage in np.matrix.sum().
BUG: sparse/lil: fix up Cython bugs in fused type lookup

BUG: sparse/compressed: work around bug in np.unique in earlier...
BUG: allow ClusterNode.pre_order() for non-root nodes

BUG: cluster.linkage ValueError typo bug

BUG: special: In specfun.f, replace the use of CMPLX with DCMPLX....
MAINT: sparse: Numpy 1.5 compatibility fixes

MAINT: interpolate: fix blas defs in _ppoly

226

Chapter 4

. Release Notes

https://github.com/scipy/scipy/pull/3293
https://github.com/scipy/scipy/pull/3302
https://github.com/scipy/scipy/pull/3307
https://github.com/scipy/scipy/pull/3309
https://github.com/scipy/scipy/pull/3310
https://github.com/scipy/scipy/pull/3314
https://github.com/scipy/scipy/pull/3323
https://github.com/scipy/scipy/pull/3332
https://github.com/scipy/scipy/pull/3335
https://github.com/scipy/scipy/pull/3347
https://github.com/scipy/scipy/pull/3356
https://github.com/scipy/scipy/pull/3357
https://github.com/scipy/scipy/pull/3358
https://github.com/scipy/scipy/pull/3366
https://github.com/scipy/scipy/pull/3367
https://github.com/scipy/scipy/pull/3369
https://github.com/scipy/scipy/pull/3371
https://github.com/scipy/scipy/pull/3373
https://github.com/scipy/scipy/pull/3375
https://github.com/scipy/scipy/pull/3377
https://github.com/scipy/scipy/pull/3378
https://github.com/scipy/scipy/pull/3381
https://github.com/scipy/scipy/pull/3383
https://github.com/scipy/scipy/pull/3384
https://github.com/scipy/scipy/pull/3386
https://github.com/scipy/scipy/pull/3388
https://github.com/scipy/scipy/pull/3389
https://github.com/scipy/scipy/pull/3390
https://github.com/scipy/scipy/pull/3391
https://github.com/scipy/scipy/pull/3392
https://github.com/scipy/scipy/pull/3393
https://github.com/scipy/scipy/pull/3394
https://github.com/scipy/scipy/pull/3400
https://github.com/scipy/scipy/pull/3402
https://github.com/scipy/scipy/pull/3408
https://github.com/scipy/scipy/pull/3410

SciPy Reference Guide, Release 0.16.0

e #3411: MAINT: Numpy 1.5 fixes in interpolate
e #3413: Fix more test issues with older numpy versions
e #3414: TST: signal: loosen some error tolerances in the filter tests....

e #3415: MAINT: tools: automated close issue + pr listings for release...

#3440: MAINT: wrap sparsetools manually instead via SWIG

#3460: TST: open image file in binary mode
» #3467: BUG: fix validation in csgraph.shortest_path

4.4 SciPy 0.13.2 Release Notes

SciPy 0.13.2 is a bug-fix release with no new features compared to 0.13.1.

4.4.1 Issues fixed

* 3096: require Cython 0.19, earlier versions have memory leaks in fused types
* 3079: ndimage. label fix swapped 64-bitness test

¢ 3108: optimize.fmin_slsqgp constraint violation

4.5 SciPy 0.13.1 Release Notes

SciPy 0.13.1 is a bug-fix release with no new features compared to 0.13.0. The only changes are several fixes in
ndimage, one of which was a serious regression in ndimage . label (Github issue 3025), which gave incorrect
results in 0.13.0.

4.5.1 Issues fixed

* 3025: ndimage . label returns incorrect results in scipy 0.13.0
* 1992: ndimage. label return type changed from int32 to uint32

* 1992: ndimage.find_objects doesn’t work with int32 input in some cases

4.6 SciPy 0.13.0 Release Notes

4.4. SciPy 0.13.2 Release Notes 227

https://github.com/scipy/scipy/pull/3411
https://github.com/scipy/scipy/pull/3413
https://github.com/scipy/scipy/pull/3414
https://github.com/scipy/scipy/pull/3415
https://github.com/scipy/scipy/pull/3440
https://github.com/scipy/scipy/pull/3460
https://github.com/scipy/scipy/pull/3467

SciPy Reference Guide, Release 0.16.0

Contents

* SciPy 0.13.0 Release Notes
— New features
* scipy.integrate improvements
- N-dimensional numerical integration
- doprix improvements
* scipy.linalg improvements
- Interpolative decompositions
- Polar decomposition
- BLAS level 3 functions
- Matrix functions
* scipy.optimize improvements
- Trust-region unconstrained minimization algorithms
* scipy.sparse improvements
- Boolean comparisons and sparse matrices
- CSR and CSC fancy indexing
scipy.sparse.linalg improvements
scipy.spatial improvements
scipy.signal improvements
scipy.special improvements
scipy.io improvements
- Unformatted Fortran file reader
- scipy.io.wavfile enhancements

EE

% scipy.interpolate improvements
- B-spline derivatives and antiderivatives
* scipy.stats improvements
Deprecated features
* expm?2 and expm3
* scipy.stats functions
Backwards incompatible changes
* LIL matrix assignment
* Deprecated radon function removed
+ Removed deprecated keywords xa and xb from stats.distributions
% Changes to MATLAB file readers / writers
Other changes
— Authors

SciPy 0.13.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes,
improved test coverage and better documentation. There have been a number of deprecations and API changes in
this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large
number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the
0.13.x branch, and on adding new features on the master branch.

This release requires Python 2.6, 2.7 or 3.1-3.3 and NumPy 1.5.1 or greater. Highlights of this release are:
* support for fancy indexing and boolean comparisons with sparse matrices
* interpolative decompositions and matrix functions in the linalg module

* two new trust-region solvers for unconstrained minimization

228 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

4.6.1 New features

scipy.integrate improvements

N-dimensional numerical integration

A new function scipy.integrate.nquad, which provides N-dimensional integration functionality with a more
flexible interface than db1quad and tplguad, has been added.

dopri * improvements

The intermediate results from the dopri family of ODE solvers can now be accessed by a solout callback function.

scipy.linalg improvements

Interpolative decompositions

Scipy now includes a new module scipy.linalg.interpolative containing routines for computing interpola-
tive matrix decompositions (ID). This feature is based on the ID software package by P.G. Martinsson, V. Rokhlin, Y.
Shkolnisky, and M. Tygert, previously adapted for Python in the PymatrixId package by K.L. Ho.

Polar decomposition

A new function scipy.linalg.polar, to compute the polar decomposition of a matrix, was added.

BLAS level 3 functions

The BLAS functions symm, syrk, syr2k, hemm, herk and her2k are now wrapped in scipy.linalg.

Matrix functions

Several matrix function algorithms have been implemented or updated following detailed descriptions in recent pa-
pers of Nick Higham and his co-authors. These include the matrix square root (sgqrtm), the matrix logarithm
(Logm), the matrix exponential (expm) and its Frechet derivative (expm_frechet), and fractional matrix powers
(fractional_matrix_power).

scipy.optimize improvements

Trust-region unconstrained minimization algorithms

The minimize function gained two trust-region solvers for unconstrained minimization: dogleg and t rust-ncg.

scipy . sparse improvements

Boolean comparisons and sparse matrices

All sparse matrix types now support boolean data, and boolean operations. Two sparse matrices A and B can be com-
pared in all the expected ways A < B, A >= B, A /= B, producing similar results as dense Numpy arrays. Comparisons
with dense matrices and scalars are also supported.

CSR and CSC fancy indexing

Compressed sparse row and column sparse matrix types now support fancy indexing with boolean matrices, slices,
and lists. So where A is a (CSC or CSR) sparse matrix, you can do things like:

4.6. SciPy 0.13.0 Release Notes 229

SciPy Reference Guide, Release 0.16.0

>>> A[A > 0.5] = 1 # since Boolean sparse matrices work
>>> A[:2, :3] = 2
>>> A[[1,2], 2] = 3

scipy.sparse.linalg improvements

The new function onenormest provides a lower bound of the 1-norm of a linear operator and has been implemented
according to Higham and Tisseur (2000). This function is not only useful for sparse matrices, but can also be used to
estimate the norm of products or powers of dense matrices without explicitly building the intermediate matrix.

The multiplicative action of the matrix exponential of a linear operator (expm_multiply) has been implemented
following the description in Al-Mohy and Higham (2011).

Abstract linear operators (scipy.sparse.linalg.LinearOperator) can now be multiplied, added to each
other, and exponentiated, producing new linear operators. This enables easier construction of composite linear opera-
tions.

scipy.spatial improvements

The vertices of a ConvexHull can now be accessed via the vertices attribute, which gives proper orientation in 2-D.

scipy.signal improvements

The cosine window function scipy.signal.cosine was added.

scipy.special improvements

New functions scipy.special.xlogy and scipy.special.xloglpy were added. These functions can
simplify and speed up code that has to calculate x = log(y) and give O when x == 0.

scipy.io improvements

Unformatted Fortran file reader

The new class scipy.io.FortranFile facilitates reading unformatted sequential files written by Fortran code.

scipy.io.wavfile enhancements
scipy.io.wavfile.write now accepts a file buffer. Previously it only accepted a filename.

scipy.io.wavfile.readand scipy.io.wavfile.write can now handle floating point WAV files.

scipy.interpolate improvements

B-spline derivatives and antiderivatives

scipy.interpolate.splder and scipy.interpolate.splantider functions for comput-
ing B-splines that represent derivatives and antiderivatives of B-splines were added. These functions
are also available in the class-based FITPACK interface as UnivariateSpline.derivative and
UnivariateSpline.antiderivative.

230 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

scipy.stats improvements

Distributions now allow using keyword parameters in addition to positional parameters in all methods.

The function scipy.stats.power_divergence hasbeen added for the Cressie-Read power divergence statistic
and goodness of fit test. Included in this family of statistics is the “G-test” (http://en.wikipedia.org/wiki/G-test).

scipy.stats.mood now accepts multidimensional input.
An option was added to scipy.stats.wilcoxon for continuity correction.
scipy.stats.chisqguare now has an axis argument.

scipy.stats.mstats.chisquare now has axis and ddof arguments.

4.6.2 Deprecated features

expm2 and expm3

The matrix exponential functions scipy.linalg.expm?2 and scipy.linalg.expm3 are deprecated. All users
should use the numerically more robust scipy.linalg.expm function instead.

scipy.stats functions

scipy.stats.oneway is deprecated; scipy.stats.f_oneway should be used instead.

scipy.stats.glm is deprecated. scipy.stats.ttest_ind is an equivalent function; more full-featured general
(and generalized) linear model implementations can be found in statsmodels.

scipy.stats.cmedian is deprecated; numpy . median should be used instead.

4.6.3 Backwards incompatible changes

LIL matrix assignment

Assigning values to LIL matrices with two index arrays now works similarly as assigning into ndarrays:

>>> x = 1lil_matrix((3, 3))
>>> x[[0,1,2]1,10,1,211=[0,1,2]
>>> x.todense ()
matrix ([[O., 0., 0.1,
[0., 1., 0.1,
[0., 0., 2.101)

rather than giving the result:

>>> x.todense ()

matrix ([[O., 1., 2.1,
[o., 1., 2.1,
[0., 1., 2.11)

Users relying on the previous behavior will need to revisit their code. The previous behavior is obtained by
x[numpy.ix_([0,1,2]1,[0,1,2])] =

4.6. SciPy 0.13.0 Release Notes 231

http://en.wikipedia.org/wiki/G-test

SciPy Reference Guide, Release 0.16.0

Deprecated radon function removed

The misc.radon function, which was deprecated in scipy 0.11.0, has been removed. Users can find a more full-
featured radon function in scikit-image.

Removed deprecated keywords xa and xb from stats.distributions

The keywords xa and xb, which were deprecated since 0.11.0, have been removed from the distributions in
scipy.stats.

Changes to MATLAB file readers / writers

The major change is that 1D arrays in numpy now become row vectors (shape 1, N) when saved to a MATLAB 5 format
file. Previously 1D arrays saved as column vectors (N, 1). This is to harmonize the behavior of writing MATLAB 4
and 5 formats, and adapt to the defaults of numpy and MATLAB - for example np.atleast_2d returns 1D arrays
as row vectors.

Trying to save arrays of greater than 2 dimensions in MATLAB 4 format now raises an error instead of silently
reshaping the array as 2D.

scipy.io.loadmat (“afile’) used to look for afile on the Python system path (sys.path); now loadmat
only looks in the current directory for a relative path filename.

4.6.4 Other changes

Security fix: scipy.weave previously used temporary directories in an insecure manner under certain circum-
stances.

Cython is now required to build unreleased versions of scipy. The C files generated from Cython sources are not
included in the git repo anymore. They are however still shipped in source releases.

The code base received a fairly large PEP8 cleanup. A tox pep8 command has been added; new code should pass
this test command.

Scipy cannot be compiled with gfortran 4.1 anymore (at least on RHS), likely due to that compiler version not sup-
porting entry constructs well.

4.6.5 Authors

This release contains work by the following people (contributed at least one patch to this release, names in alphabetical
order):

* Jorge Canardo Alastuey +
¢ Tom Aldcroft +

* Max Bolingbroke +

* Joseph Jon Booker +

¢ Francois Boulogne

* Matthew Brett

e Christian Brodbeck +
 Per Brodtkorb +

232 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

Christian Brueffer +
Lars Buitinck

Evgeni Burovski +
Tim Cera

Lawrence Chan +
David Cournapeau
Drazen Lucanin +
Alexander J. Dunlap +
endolith

André Gaul +
Christoph Gohlke
Ralf Gommers

Alex Griffing +

Blake Griffith +
Charles Harris

Bob Helmbold +
Andreas Hilboll

Kat Huang +
Oleksandr (Sasha) Huziy +
Gert-Ludwig Ingold +
Thouis (Ray) Jones
Juan Luis Cano Rodriguez +
Robert Kern

Andreas Kloeckner +
Sytse Knypstra +
Gustav Larsson +
Denis Laxalde
Christopher Lee

Tim Leslie

Wendy Liu +
Clemens Novak +
Takuya Oshima +
Josef Perktold

Illia Polosukhin +
Przemek Porebski +

Steve Richardson +

4.6.

SciPy 0.13.0 Release Notes

233

SciPy Reference Guide, Release 0.16.0

Branden Rolston +
Skipper Seabold
Fazlul Shahriar
Leo Singer +
Rohit Sivaprasad +
Daniel B. Smith +
Julian Taylor
Louis Thibault +
Tomas Tomecek +
John Travers
Richard Tsai +
Jacob Vanderplas
Patrick Varilly
Pauli Virtanen
Stefan van der Walt
Warren Weckesser
Pedro Werneck +
Nils Werner +
Michael Wimmer +
Nathan Woods +
Tony S. Yu +

A total of 65 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

4.7 SciPy 0.12.1 Release Notes

SciPy 0.12.1 is a bug-fix release with no new features compared to 0.12.0. The single issue fixed by this release is
a security issue in scipy.weave, which was previously using temporary directories in an insecure manner under
certain circumstances.

4.8 SciPy 0.12.0 Release Notes

234

Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

Contents

* SciPy 0.12.0 Release Notes
— New features
* scipy.spatial improvements
- cKDTree feature-complete
- Voronoi diagrams and convex hulls
- Delaunay improvements
% Spectral estimators (scipy.signal)
% scipy.optimize improvements
- Callback functions in L-BFGS-B and TNC
- Basin hopping global optimization (scipy.optimize.basinhopping)
* scipy.special improvements
- Revised complex error functions
- Faster orthogonal polynomials
scipy.sparse.linalg features
Listing Matlab(R) file contents in scipy.io
Documented BLAS and LAPACK low-level interfaces (scipy.linalgq)
+ Polynomial interpolation improvements (scipy.interpolate)
— Deprecated features
% scipy.lib.lapack
* fblas and cblas
— Backwards incompatible changes
#+ Removal of scipy.io.save_as_module
* axis argument added to scipy.stats.scoreatpercentile
— Authors

* ¥ ¥

SciPy 0.12.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes,
improved test coverage and better documentation. There have been a number of deprecations and API changes in
this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large
number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the
0.12.x branch, and on adding new features on the master branch.

Some of the highlights of this release are:
* Completed QHull wrappers in scipy.spatial.
e cKDTree now a drop-in replacement for KDTree.
* A new global optimizer, basinhopping.
* Support for Python 2 and Python 3 from the same code base (no more 2to3).

This release requires Python 2.6, 2.7 or 3.1-3.3 and NumPy 1.5.1 or greater. Support for Python 2.4 and 2.5 has been
dropped as of this release.

4.8.1 New features

scipy.spatial improvements

cKDTree feature-complete

Cython version of KDTree, cKDTree, is now feature-complete. = Most operations (construction, query,
query_ball_point, query_pairs, count_neighbors and sparse_distance_matrix) are between 200 and 1000 times faster

4.8. SciPy 0.12.0 Release Notes 235

SciPy Reference Guide, Release 0.16.0

in cKDTree than in KDTree. With very minor caveats, cKDTree has exactly the same interface as KDTree, and can be
used as a drop-in replacement.

Voronoi diagrams and convex hulls

scipy.spatial now contains functionality for computing Voronoi diagrams and convex hulls using the Qhull
library. (Delaunay triangulation was available since Scipy 0.9.0.)

Delaunay improvements

It’s now possible to pass in custom Qhull options in Delaunay triangulation. Coplanar points are now also recorded, if
present. Incremental construction of Delaunay triangulations is now also possible.

Spectral estimators (scipy.signal)

The functions scipy.signal.periodogramand scipy.signal.welch were added, providing DFT-based
spectral estimators.

scipy.optimize improvements

Callback functions in L-BFGS-B and TNC

A callback mechanism was added to L-BFGS-B and TNC minimization solvers.

Basin hopping global optimization (scipy.optimize.basinhopping)

A new global optimization algorithm. Basinhopping is designed to efficiently find the global minimum of a smooth
function.

scipy.special improvements

Revised complex error functions

The computation of special functions related to the error function now uses a new Faddeeva library from MIT which
increases their numerical precision. The scaled and imaginary error functions erfcx and erfi were also added, and
the Dawson integral dawsn can now be evaluated for a complex argument.

Faster orthogonal polynomials

Evaluation of orthogonal polynomials (the eval_* routines) in now faster in scipy.special, and their out=
argument functions properly.

scipy.sparse.linalg features

* In scipy.sparse.linalg.spsolve, the b argument can now be either a vector or a matrix.
* scipy.sparse.linalg.inv was added. This uses spsolve to compute a sparse matrix inverse.

* scipy.sparse.linalg.expmwas added. This computes the exponential of a sparse matrix using a similar
algorithm to the existing dense array implementation in scipy.linalg.expm.

Listing Matlab(R) file contents in scipy.io

A new function whosmat is available in scipy.io for inspecting contents of MAT files without reading them to
memory.

236 Chapter 4. Release Notes

http://ab-initio.mit.edu/Faddeeva

SciPy Reference Guide, Release 0.16.0

Documented BLAS and LAPACK low-level interfaces (scipy.linalg)

The modules scipy.linalg.blas and scipy.linalg.lapack can be used to access low-level BLAS and
LAPACK functions.

Polynomial interpolation improvements (scipy.interpolate)

The barycentric, Krogh, piecewise and pchip polynomial interpolators in scipy.interpolate accept now an
axis argument.

4.8.2 Deprecated features

scipy.lib.lapack

The module scipy.lib.lapack is deprecated. You can use scipy.linalg.lapack instead. The module
scipy.lib.blas was deprecated earlier in Scipy 0.10.0.

fblas and cblas

Accessing the modules scipy.linalg. fblas, cblas, flapack, clapack is deprecated. Instead, use the modules
scipy.linalg.lapackand scipy.linalg.blas.

4.8.3 Backwards incompatible changes

Removal of scipy.io.save_as_module

The function scipy.io.save_as_module was deprecated in Scipy 0.11.0, and is now removed.

Its private support modules scipy.io.dumbdbm_patchedand scipy.io.dumb_shelve are also removed.

axis argument added to scipy.stats.scoreatpercentile

The function scipy.stats.scoreatpercentile has been given an axis argument. The default argument is
axis=None, which means the calculation is done on the flattened array. Before this change, scoreatpercentile would
act as if axis=0 had been given. Code using scoreatpercentile with a multidimensional array will need to add axis=0 to
the function call to preserve the old behavior. (This API change was not noticed until long after the release of 0.12.0.)

4.8.4 Authors

e Anton Akhmerov +

* Alexander Eberspicher +
* Anne Archibald

* Jisk Attema +

» K.-Michael Aye +

* bemasc +

» Sebastian Berg +

4.8. SciPy 0.12.0 Release Notes 237

SciPy Reference Guide, Release 0.16.0

Frangois Boulogne +
Matthew Brett

Lars Buitinck

Steven Byrnes +

Tim Cera +

Christian +

Keith Clawson +
David Cournapeau
Nathan Crock +
endolith

Bradley M. Froehle +
Matthew R Goodman
Christoph Gohlke
Ralf Gommers
Robert David Grant +
Yaroslav Halchenko
Charles Harris
Jonathan Helmus
Andreas Hilboll
Hugo +

Oleksandr Huziy

Jeroen Demeyer +

Johannes Schonberger +

Steven G. Johnson +
Chris Jordan-Squire
Jonathan Taylor +
Niklas Kroeger +
Jerome Kieffer +
kingson +

Josh Lawrence
Denis Laxalde
Alex Leach +

Tim Leslie

Richard Lindsley +
Lorenzo Luengo +

Stephen McQuay +

238

Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

MinRK

Sturla Molden +
Eric Moore +
mszep +

Matt Newville +
Vlad Niculae
Travis Oliphant
David Parker +
Fabian Pedregosa
Josef Perktold
Zach Ploskey +
Alex Reinhart +
Gilles Rochefort +
Ciro Duran Santillli +
Jan Schlueter +
Jonathan Scholz +
Anthony Scopatz
Skipper Seabold
Fabrice Silva +
Scott Sinclair
Jacob Stevenson +
Sturla Molden +
Julian Taylor +
thorstenkranz +
John Travers +
True Price +
Nicky van Foreest
Jacob Vanderplas
Patrick Varilly
Daniel Velkov +
Pauli Virtanen
Stefan van der Walt

Warren Weckesser

A total of 75 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

4.8. SciPy 0.12.0 Release Notes

239

SciPy Reference Guide, Release 0.16.0

4.9 SciPy 0.11.0 Release Notes

Contents

* SciPy 0.11.0 Release Notes
— New features
Sparse Graph Submodule
* scipy.optimize improvements
- Unified interfaces to minimizers
- Unified interface to root finding algorithms
* scipy.linalg improvements
- New matrix equation solvers
- QZ and QR Decomposition
- Pascal matrices
Sparse matrix construction and operations
LSMR iterative solver
Discrete Sine Transform
scipy.interpolate improvements
+ Binned statistics (scipy.stats)
Deprecated features
Backwards incompatible changes
* Removal of scipy.maxentropy
* Minor change in behavior of splev
+ Behavior of scipy.integrate.complex_ode
% Minor change in behavior of T-tests
Other changes
— Authors

* ¥ X %

SciPy 0.11.0 is the culmination of 8 months of hard work. It contains many new features, numerous bug-fixes,
improved test coverage and better documentation. Highlights of this release are:

* A new module has been added which provides a number of common sparse graph algorithms.
» New unified interfaces to the existing optimization and root finding functions have been added.

All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Our
development attention will now shift to bug-fix releases on the 0.11.x branch, and on adding new features on the master
branch.

This release requires Python 2.4-2.7 or 3.1-3.2 and NumPy 1.5.1 or greater.

4.9.1 New features

Sparse Graph Submodule
The new submodule scipy.sparse.csgraph implements a number of efficient graph algorithms for graphs
stored as sparse adjacency matrices. Available routines are:

e connected_components - determine connected components of a graph

* laplacian - compute the laplacian of a graph

* shortest_path - compute the shortest path between points on a positive graph

e dijkstra - use Dijkstra’s algorithm for shortest path

240 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

e floyd_warshall - use the Floyd-Warshall algorithm for shortest path

* breadth_first_order - compute a breadth-first order of nodes

* depth_first_order - compute a depth-first order of nodes

* breadth_first_tree - construct the breadth-first tree from a given node
e depth_first_tree - construct a depth-first tree from a given node

* minimum_spanning_tree - construct the minimum spanning tree of a graph

scipy.optimize improvements
The optimize module has received a lot of attention this release. In addition to added tests, documentation improve-
ments, bug fixes and code clean-up, the following improvements were made:

¢ A unified interface to minimizers of univariate and multivariate functions has been added.

* A unified interface to root finding algorithms for multivariate functions has been added.

* The L-BFGS-B algorithm has been updated to version 3.0.

Unified interfaces to minimizers

Two new functions scipy.optimize.minimize and scipy.optimize.minimize_scalar were added
to provide a common interface to minimizers of multivariate and univariate functions respectively. For multivari-
ate functions, scipy.optimize.minimize provides an interface to methods for unconstrained optimization
(fmin, fmin_powell, fmin_cg, fmin_ncg, fmin_bfgs and anneal) or constrained optimization (fmin_I_bfgs_b, fmin_tnc,
Jfmin_cobyla and fmin_slsqp). For univariate functions, scipy.optimize.minimize_scalar provides an in-
terface to methods for unconstrained and bounded optimization (brent, golden, fminbound). This allows for easier
comparing and switching between solvers.

Unified interface to root finding algorithms

The new function scipy.optimize.root provides acommon interface to root finding algorithms for multivariate
functions, embeding fsolve, leastsq and nonlin solvers.

scipy.linalg improvements

New matrix equation solvers

Solvers for the Sylvester equation (scipy.linalg.solve_sylvester, discrete and continuous Lya-
punov equations (scipy.linalg.solve_lyapunov, scipy.linalg.solve_discrete_lyapunov)
and discrete and continuous algebraic Riccati equations (scipy.linalg.solve_continuous_are,
scipy.linalg.solve_discrete_are)have been added to scipy.linalg. These solvers are often used in
the field of linear control theory.

0Z and QR Decomposition

It is now possible to calculate the QZ, or Generalized Schur, decomposition using scipy.linalg.qgz. This func-
tion wraps the LAPACK routines sgges, dgges, cgges, and zgges.

The function scipy.linalg.qgr_multiply, which allows efficient computation of the matrix product of Q (from
a QR decomposition) and a vector, has been added.
Pascal matrices

A function for creating Pascal matrices, scipy.linalg.pascal, was added.

4.9. SciPy 0.11.0 Release Notes 241

SciPy Reference Guide, Release 0.16.0

Sparse matrix construction and operations
Two new functions, scipy.sparse.diags and scipy.sparse.block_diag, were added to easily construct
diagonal and block-diagonal sparse matrices respectively.

scipy.sparse.csc_matrix and csr_matrix now support the operations sin, tan, arcsin, arctan,
sinh, tanh, arcsinh, arctanh, rint, sign, expml, loglp, deg2rad, rad2deqg, floor, ceil and
trunc. Previously, these operations had to be performed by operating on the matrices’ data attribute.

LSMR iterative solver

LSMR, an iterative method for solving (sparse) linear and linear least-squares systems, was added as
scipy.sparse.linalg.lsmr.

Discrete Sine Transform

Bindings for the discrete sine transform functions have been added to scipy . fftpack.

scipy.interpolate improvements

For interpolation in spherical coordinates, the three classes scipy.interpolate.SmoothSphereBivariateSpline,
scipy.interpolate.LSQSphereBivariateSpline,and scipy.interpolate.RectSphereBivariateSpline
have been added.

Binned statistics (scipy.stats)

The stats module has gained functions to do binned statistics, which are a generalization of histograms, in 1-D, 2-D
and multiple dimensions: scipy.stats.binned_statistic, scipy.stats.binned_statistic_2d
and scipy.stats.binned_statistic_dd.

4.9.2 Deprecated features

scipy.sparse.cs_graph_components has been made a part of the sparse graph submodule, and renamed to
scipy.sparse.csgraph.connected_components. Calling the former routine will result in a deprecation
warning.

scipy.misc.radon has been deprecated. A more full-featured radon transform can be found in scikits-image.

scipy.io.save_as_module has been deprecated. A better way to save multiple Numpy arrays is the
numpy . savez function.

The xa and xb parameters for all distributions in scipy.stats.distributions already weren’t used; they have
now been deprecated.

4.9.3 Backwards incompatible changes

Removal of scipy.maxentropy

The scipy.maxentropy module, which was deprecated in the 0.10.0 release, has been removed. Logistic regres-
sion in scikits.learn is a good and modern alternative for this functionality.

242 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

Minor change in behavior of splev

The spline evaluation function now behaves similarly to interpld for size-1 arrays. Previous behavior:

>>> from scipy.interpolate import splev, splrep, interpld

>> x = [1,2,3,4,5]
>>>vy = [4,5,6,7,8]
>>> tck = splrep(x, V)
>>> splev([1l], tck)

4.

>>> splev(l, tck)

4.

Corrected behavior:

>>> splev([1l], tck)
array ([4.])

>>> splev(l, tck)
array (4.)

This affects also the UnivariateSpline classes.

Behavior of scipy.integrate.complex_ode

The behavior of the y attribute of complex_ode is changed. Previously, it expressed the complex-valued solution
in the form:

z = ode.y[::2] + 13 % ode.y[l::2]

Now, it is directly the complex-valued solution:

z = ode.y

Minor change in behavior of T-tests

The T-tests scipy.stats.ttest_ind, scipy.stats.ttest_rel and scipy.stats.ttest_lsamp
have been changed so that 0 / 0 now returns NaN instead of 1.

4.9.4 Other changes

The SuperLLU sources in scipy.sparse.linalg have been updated to version 4.3 from upstream.

The function scipy.signal.bode, which calculates magnitude and phase data for a continuous-time system, has
been added.

The two-sample T-test scipy.stats.ttest_ind gained an option to compare samples with unequal variances,
i.e. Welch’s T-test.

scipy.misc.logsumexp now takes an optional axis keyword argument.

4.9.5 Authors

This release contains work by the following people (contributed at least one patch to this release, names in alphabetical
order):

* Jeff Armstrong

4.9. SciPy 0.11.0 Release Notes 243

SciPy Reference Guide, Release 0.16.0

Chad Baker
Brandon Beacher +
behrisch +
borishim +
Matthew Brett
Lars Buitinck

Luis Pedro Coelho +

Johann Cohen-Tanugi

David Cournapeau
dougal +

Ali Ebrahim +
endolith +

Bjgrn Forsman +
Robert Gantner +
Sebastian Gassner +
Christoph Gohlke
Ralf Gommers
Yaroslav Halchenko
Charles Harris
Jonathan Helmus +
Andreas Hilboll +
Marc Honnorat +
Jonathan Hunt +
Maxim Ivanov +
Thouis (Ray) Jones
Christopher Kuster +
Josh Lawrence +
Denis Laxalde +
Travis Oliphant
Joonas Paalasmaa +
Fabian Pedregosa
Josef Perktold
Gavin Price +

Jim Radford +
Andrew Schein +

Skipper Seabold

244

Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

* Jacob Silterra +

* Scott Sinclair

* Alexis Tabary +

¢ Martin Teichmann
* Matt Terry +

* Nicky van Foreest +
* Jacob Vanderplas

e Patrick Varilly +

e Pauli Virtanen

* Nils Wagner +

e Darryl Wally +

* Stefan van der Walt
* Liming Wang +

* David Warde-Farley +
* Warren Weckesser
 Sebastian Werk +

* Mike Wimmer +

e Tony S Yu +

A total of 55 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

4.10 SciPy 0.10.1 Release Notes

Contents

* SciPy 0.10.1 Release Notes
— Main changes
— Other issues fixed

SciPy 0.10.1 is a bug-fix release with no new features compared to 0.10.0.

4.10.1 Main changes

The most important changes are:

1. The single precision routines of eigs and eigsh in scipy.sparse.linalg have been disabled (they
internally use double precision now).

2. A compatibility issue related to changes in NumPy macros has been fixed, in order to make scipy 0.10.1 compile
with the upcoming numpy 1.7.0 release.

4.10. SciPy 0.10.1 Release Notes 245

SciPy Reference Guide, Release 0.16.0

4.10.2 Other issues fixed

» #835: stats: nan propagation in stats.distributions

e #1202: io: netcdf segfault

* #1531: optimize: make curve_fit work with method as callable.

* #1560: linalg: fixed mistake in eig_banded documentation.

* #1565: ndimage: bug in ndimage.variance

* #1457: ndimage: standard_deviation does not work with sequence of indexes
* #1562: cluster: segfault in linkage function

* #1568: stats: One-sided fisher_exact() returns p < 1 for 0 successful attempts

e #1575: stats: zscore and zmap handle the axis keyword incorrectly

4.11 SciPy 0.10.0 Release Notes

Contents

* SciPy 0.10.0 Release Notes
— New features
* Bento: new optional build system

Generalized and shift-invert eigenvalue problems in scipy.sparse.linalg
Discrete-Time Linear Systems (scipy.signal)
Enhancements to scipy.signal
Additional decomposition options (scipy.linalg)
Additional special matrices (scipy.linalg)
Enhancements to scipy.stats
Enhancements to scipy.special

* Basic support for Harwell-Boeing file format for sparse matrices
Deprecated features

* scipy.maxentropy

¥ scipy.lib.blas

+* Numscons build system
Backwards-incompatible changes
Other changes
Authors

|
LR B

SciPy 0.10.0 is the culmination of 8 months of hard work. It contains many new features, numerous bug-fixes,
improved test coverage and better documentation. There have been a limited number of deprecations and backwards-
incompatible changes in this release, which are documented below. All users are encouraged to upgrade to this release,
as there are a large number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-
fix releases on the 0.10.x branch, and on adding new features on the development master branch.

Release highlights:
* Support for Bento as optional build system.
* Support for generalized eigenvalue problems, and all shift-invert modes available in ARPACK.

This release requires Python 2.4-2.7 or 3.1- and NumPy 1.5 or greater.

246 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

4.11.1 New features

Bento: new optional build system

Scipy can now be built with Bento. Bento has some nice features like parallel builds and partial rebuilds, that are not
possible with the default build system (distutils). For usage instructions see BENTO_BUILD.txt in the scipy top-level
directory.

Currently Scipy has three build systems, distutils, numscons and bento. Numscons is deprecated and is planned and
will likely be removed in the next release.

Generalized and shift-invert eigenvalue problems in scipy.sparse.linalg

The sparse eigenvalue problem solver functions scipy.sparse.eigs/eigh now support generalized eigenvalue
problems, and all shift-invert modes available in ARPACK.

Discrete-Time Linear Systems (scipy.signal)

Support ~ for simulating discrete-time linear systems, including scipy.signal.dlsim,
scipy.signal.dimpulse, and scipy.signal.dstep, has been added to SciPy. Conver-
sion of linear systems from continuous-time to discrete-time representations is also present via the
scipy.signal.cont2discrete function.

Enhancements to scipy.signal

A Lomb-Scargle periodogram can now be computed with the new function scipy.signal.lombscargle.

The forward-backward filter function scipy.signal.filtfilt can now filter the data in a given axis of an n-
dimensional numpy array. (Previously it only handled a 1-dimensional array.) Options have been added to allow more
control over how the data is extended before filtering.

FIR filter design with scipy.signal.firwin2 now has options to create filters of type III (zero at zero and
Nyquist frequencies) and IV (zero at zero frequency).

Additional decomposition options (scipy.linalg)

A sort keyword has been added to the Schur decomposition routine (scipy.linalg.schur) to allow the sorting
of eigenvalues in the resultant Schur form.

Additional special matrices (scipy.linalg)

The functions hilbert and invhilbert were added to scipy.linalg.

Enhancements to scipy.stats

* The one-sided form of Fisher’s exact test is now also implemented in stats.fisher_exact.

e The function stats.chi2_contingency for computing the chi-square test of independence of factors in a
contingency table has been added, along with the related utility functions stats.contingency.margins
and stats.contingency.expected_freq.

4.11. SciPy 0.10.0 Release Notes 247

http://cournape.github.com/Bento/

SciPy Reference Guide, Release 0.16.0

Enhancements to scipy.special

The functions logit (p) = log(p/ (l1-p)) and expit (x) = 1/ (l+exp (-x)) have been implemented as
scipy.special.logit and scipy.special.expit respectively.

Basic support for Harwell-Boeing file format for sparse matrices
Both read and write are support through a simple function-based API, as well as a more complete API to control
number format. The functions may be found in scipy.sparse.io.
The following features are supported:
* Read and write sparse matrices in the CSC format

* Only real, symmetric, assembled matrix are supported (RUA format)

4.11.2 Deprecated features
scipy.maxentropy

The maxentropy module is unmaintained, rarely used and has not been functioning well for several releases. There-
fore it has been deprecated for this release, and will be removed for scipy 0.11. Logistic regression in scikits.learn
is a good alternative for this functionality. The scipy.maxentropy.logsumexp function has been moved to
scipy.misc.

scipy.lib.blas

There are similar BLAS wrappers in scipy.linalg and scipy.lib. These have now been consolidated as
scipy.linalg.blas,and scipy.lib.blas is deprecated.

Numscons build system

The numscons build system is being replaced by Bento, and will be removed in one of the next scipy releases.

4.11.3 Backwards-incompatible changes

The deprecated name invnorm was removed from scipy.stats.distributions, this distribution is available
as invgauss.

The following deprecated nonlinear solvers from scipy.optimize have been removed:

- " “broyden_modified' "~ (bad performance)

- " “broydenl_modified' " (bad performance)

- " “broyden_generalized'® (equivalent to "~ “anderson”)

- " “anderson2’ " (equivalent to " “anderson’)

- " “broyden3' " (obsoleted by new limited-memory broyden methods)
- ““vackar' " (renamed to "~ “diagbroyden)

248 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

4.11.4 Other changes

scipy.constants has been updated with the CODATA 2010 constants.

__all__ dicts have been added to all modules, which has cleaned up the namespaces (particularly useful for inter-
active work).

An API section has been added to the documentation, giving recommended import guidelines and specifying which
submodules are public and which aren’t.

4.11.5 Authors

This release contains work by the following people (contributed at least one patch to this release, names in alphabetical
order):

e Jeff Armstrong +

* Matthew Brett

e Lars Buitinck +

* David Cournapeau

* FI$H 2000 +

* Michael McNeil Forbes +
e Matty G +

e Christoph Gohlke

* Ralf Gommers

* Yaroslav Halchenko
e Charles Harris

* Thouis (Ray) Jones +
e Chris Jordan-Squire +
* Robert Kern

 Chris Lasher +

* Wes McKinney +

e Travis Oliphant

* Fabian Pedregosa

* Josef Perktold

* Thomas Robitaille +
* Pim Schellart +

* Anthony Scopatz +
 Skipper Seabold +

* Fazlul Shahriar +

* David Simcha +

e Scott Sinclair +

4.11. SciPy 0.10.0 Release Notes 249

SciPy Reference Guide, Release 0.16.0

* Andrey Smirnov +

* Collin RM Stocks +
* Martin Teichmann +
* Jake Vanderplas +

¢ Gaél Varoquaux +

* Pauli Virtanen
 Stefan van der Walt
* Warren Weckesser

* Mark Wiebe +

A total of 35 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

4.12 SciPy 0.9.0 Release Notes

Contents

* SciPy 0.9.0 Release Notes
— Python 3
— Scipy source code location to be changed
New features
Delaunay tesselations (scipy.spatial)
* N-dimensional interpolation (scipy.interpolate)
* Nonlinear equation solvers (scipy.optimize)
+ New linear algebra routines (scipy.linalg)
+ Improved FIR filter design functions (scipy.signal)
* Improved statistical tests (scipy.stats)
Deprecated features
x (Obsolete nonlinear solvers (in scipy.optimize)
Removed features
% Old correlate/convolve behavior (in scipy.signal)
% scipy.stats
% scipy.sparse
* scipy.sparse.linalg.arpack.speigs
Other changes
+ ARPACK interface changes

*

SciPy 0.9.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release,
which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-
fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.9.x branch,
and on adding new features on the development trunk.

This release requires Python 2.4 - 2.7 or 3.1 - and NumPy 1.5 or greater.

Please note that SciPy is still considered to have “Beta” status, as we work toward a SciPy 1.0.0 release. The 1.0.0
release will mark a major milestone in the development of SciPy, after which changing the package structure or API
will be much more difficult. Whilst these pre-1.0 releases are considered to have “Beta” status, we are committed to
making them as bug-free as possible.

250 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface.
This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we
need help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything
- from which algorithms we implement, to details about our function’s call signatures.

4.12.1 Python 3

Scipy 0.9.0 is the first SciPy release to support Python 3. The only module that is not yet ported is scipy.weave.

4.12.2 Scipy source code location to be changed
Soon after this release, Scipy will stop using SVN as the version control system, and move to Git. The development
source code for Scipy can from then on be found at

http://github.com/scipy/scipy

4.12.3 New features
Delaunay tesselations (scipy.spatial)

Scipy now includes routines for computing Delaunay tesselations in N dimensions, powered by the Qhull computa-
tional geometry library. Such calculations can now make use of the new scipy.spatial.Delaunay interface.

N-dimensional interpolation (scipy. interpolate)

Support for scattered data interpolation is now significantly improved. This version includes a
scipy.interpolate.griddata function that can perform linear and nearest-neighbour interpolation for
N-dimensional scattered data, in addition to cubic spline (C1-smooth) interpolation in 2D and 1D. An object-oriented
interface to each interpolator type is also available.

Nonlinear equation solvers (scipy.optimize)
Scipy includes new routines for large-scale nonlinear equation solving in scipy.optimize. The following methods
are implemented:

* Newton-Krylov (scipy.optimize.newton_krylov)

¢ (Generalized) secant methods:

— Limited-memory Broyden methods (scipy.optimize.broydenl,
scipy.optimize.broyden?2)

— Anderson method (scipy.optimize.anderson)

e Simple iterations (scipy.optimize.diagbroyden, scipy.optimize.excitingmixing,
scipy.optimize.linearmixing)

The scipy.optimize.nonlin module was completely rewritten, and some of the functions were deprecated (see
above).

4.12. SciPy 0.9.0 Release Notes 251

http://github.com/scipy/scipy
http://www.qhull.org/

SciPy Reference Guide, Release 0.16.0

New linear algebra routines (scipy.linalg)

Scipy now contains routines for effectively solving triangular equation systems
(scipy.linalg.solve_triangular).

Improved FIR filter design functions (scipy.signal)
The function scipy.signal.firwin was enhanced to allow the design of highpass, bandpass, bandstop and
multi-band FIR filters.

The function scipy.signal.firwin2 was added. This function uses the window method to create a linear phase
FIR filter with an arbitrary frequency response.

The functions scipy.signal.kaiser_attenand scipy.signal.kaiser_beta were added.

Improved statistical tests (scipy.stats)
A new function scipy.stats.fisher_exact was added, that provides Fisher’s exact test for 2x2 contingency
tables.

The function scipy.stats.kendalltau was rewritten to make it much faster (O(n log(n)) vs O(n"2)).

4.12.4 Deprecated features

Obsolete nonlinear solvers (in scipy.optimize)

The following nonlinear solvers from scipy.optimize are deprecated:
* broyden_modified (bad performance)
* broydenl_modified (bad performance)
* broyden_generalized (equivalent to anderson)
* anderson? (equivalent to anderson)
* broyden3 (obsoleted by new limited-memory broyden methods)

e vackar (renamed to diagbroyden)

4.12.5 Removed features

The deprecated modules he lpmod, pexec and ppimport were removed from scipy.misc.
The output_type keyword in many scipy.ndimage interpolation functions has been removed.

The econ keyword in scipy.linalg.gr has been removed. The same functionality is still available by specifying
mode='economic’.

Old correlate/convolve behavior (in scipy.signal)

The old behavior for scipy.signal.convolve, scipy.signal.convolve?2d,
scipy.signal.correlate and scipy.signal.correlate2d was deprecated in 0.8.0 and has now
been removed. Convolve and correlate used to swap their arguments if the second argument has dimensions larger
than the first one, and the mode was relative to the input with the largest dimension. The current behavior is to never
swap the inputs, which is what most people expect, and is how correlation is usually defined.

252 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

scipy.stats

Many functions in scipy.stats that are either available from numpy or have been superseded, and have been
deprecated since version 0.7, have been removed: std, var, mean, median, cov, corrcoef, z, zs, stderr, samplestd,
samplevar, pdfapprox, pdf_moments and erfc. These changes are mirrored in scipy.stats.mstats.

scipy.sparse
Several methods of the sparse matrix classes in scipy . sparse which had been deprecated since version 0.7 were
removed: save, rowcol, getdata, listprint, ensure_sorted_indices, matvec, matmat and rmatvec.

The functions spkron, speye, spidentity,1il_eyeand 1i1_diags were removed from scipy.sparse.
The first three functions are still available as scipy.sparse.kron, scipy.sparse.eye and
scipy.sparse.identity.

The dims and nzmax keywords were removed from the sparse matrix constructor. The colind and rowind attributes
were removed from CSR and CSC matrices respectively.

scipy.sparse.linalg.arpack.speigs

A duplicated interface to the ARPACK library was removed.

4.12.6 Other changes

ARPACK interface changes

The interface to the ARPACK eigenvalue routines in scipy.sparse.linalg was changed for more robustness.

The eigenvalue and SVD routines now raise ArpackNoConvergence if the eigenvalue iteration fails to converge.
If partially converged results are desired, they can be accessed as follows:

import numpy as np
from scipy.sparse.linalg import eigs, ArpackNoConvergence

m = np.random.randn (30, 30)

try:
w, v = eigs(m, 6)

except ArpackNoConvergence, err:
partially_converged_w = err.eigenvalues
partially_converged_v = err.eigenvectors

Several bugs were also fixed.

The routines were moreover renamed as follows:
e eigen —> eigs
* eigen_symmetric —> eigsh

e svd —> svds

4.13 SciPy 0.8.0 Release Notes

4.13. SciPy 0.8.0 Release Notes 253

SciPy Reference Guide, Release 0.16.0

Contents

* SciPy 0.8.0 Release Notes
— Python 3
— Major documentation improvements
— Deprecated features
% Swapping inputs for correlation functions (scipy.signal)
+ Obsolete code deprecated (scipy.misc)
* Additional deprecations
— New features
* DCT support (scipy.fftpack)
Single precision support for fft functions (scipy.fftpack)
Correlation functions now implement the usual definition (scipy.signal)
Additions and modification to LTT functions (scipy.signal)
Improved waveform generators (scipy.signal)
New functions and other changes in scipy.linalg
New function and changes in scipy.optimize
New sparse least squares solver
ARPACK-based sparse SVD
Alternative behavior available for scipy.constants.find
Incomplete sparse LU decompositions
Faster matlab file reader and default behavior change
Faster evaluation of orthogonal polynomials
Lambert W function
Improved hypergeometric 2F1 function
More flexible interface for Radial basis function interpolation
— Removed features
* ScCipy.io

¥O¥ K K K K K K XK K K K X X ¥

SciPy 0.8.0 is the culmination of 17 months of hard work. It contains many new features, numerous bug-fixes,
improved test coverage and better documentation. There have been a number of deprecations and API changes in
this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large
number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the
0.8.x branch, and on adding new features on the development trunk. This release requires Python 2.4 - 2.6 and NumPy
1.4.1 or greater.

Please note that SciPy is still considered to have “Beta” status, as we work toward a SciPy 1.0.0 release. The 1.0.0
release will mark a major milestone in the development of SciPy, after which changing the package structure or API
will be much more difficult. Whilst these pre-1.0 releases are considered to have “Beta” status, we are committed to
making them as bug-free as possible.

However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface.
This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we
need help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything
- from which algorithms we implement, to details about our function’s call signatures.

4.13.1 Python 3

Python 3 compatibility is planned and is currently technically feasible, since Numpy has been ported. However, since
the Python 3 compatible Numpy 1.5 has not been released yet, support for Python 3 in Scipy is not yet included in
Scipy 0.8. SciPy 0.9, planned for fall 2010, will very likely include experimental support for Python 3.

254 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

4.13.2 Major documentation improvements

SciPy documentation is greatly improved.

4.13.3 Deprecated features

Swapping inputs for correlation functions (scipy.signal)

Concern correlate, correlate2d, convolve and convolve2d. If the second input is larger than the first input, the inputs
are swapped before calling the underlying computation routine. This behavior is deprecated, and will be removed in
scipy 0.9.0.

Obsolete code deprecated (scipy.misc)

The modules helpmod, ppimport and pexec from scipy.misc are deprecated. They will be removed from SciPy in
version 0.9.

Additional deprecations
* linalg: The function solveh_banded currently returns a tuple containing the Cholesky factorization and the
solution to the linear system. In SciPy 0.9, the return value will be just the solution.

* The function constants.codata.find will generate a DeprecationWarning. In Scipy version 0.8.0, the keyword
argument ‘disp’ was added to the function, with the default value “True’. In 0.9.0, the default will be ‘False’.

* The gshape keyword argument of signal.chirp is deprecated. Use the argument vertex_zero instead.

* Passing the coefficients of a polynomial as the argument f0 to signal.chirp is deprecated. Use the function
signal.sweep_poly instead.

* The io.recaster module has been deprecated and will be removed in 0.9.0.

4.13.4 New features

DCT support (scipy.fftpack)

New realtransforms have been added, namely dct and idct for Discrete Cosine Transform; type I, IT and III are available.

Single precision support for fft functions (scipy.fftpack)
fft functions can now handle single precision inputs as well: fft(x) will return a single precision array if x is single
precision.

At the moment, for FFT sizes that are not composites of 2, 3, and 5, the transform is computed internally in double
precision to avoid rounding error in FFTPACK.

Correlation functions now implement the usual definition (scipy.signal)

The outputs should now correspond to their matlab and R counterparts, and do what most people expect if the
old_behavior=False argument is passed:

* correlate, convolve and their 2d counterparts do not swap their inputs depending on their relative shape anymore;

4.13. SciPy 0.8.0 Release Notes 255

SciPy Reference Guide, Release 0.16.0

* correlation functions now conjugate their second argument while computing the slided sum-products, which
correspond to the usual definition of correlation.

Additions and modification to LTI functions (scipy.signal)
e The functions impulse2 and step2 were added to scipy.signal. They use the function
scipy.signal.lsim?2 to compute the impulse and step response of a system, respectively.

e The function scipy.signal.lsim2 was changed to pass any additional keyword arguments to the ODE
solver.

Improved waveform generators (scipy.signal)

Several improvements to the chirp function in scipy.signal were made:

* The waveform generated when method="logarithmic” was corrected; it now generates a waveform that is also
known as an “exponential” or “geometric” chirp. (See http://en.wikipedia.org/wiki/Chirp.)

* A new chirp method, “hyperbolic”, was added.
¢ Instead of the keyword gshape, chirp now uses the keyword vertex_zero, a boolean.

* chirp no longer handles an arbitrary polynomial. This functionality has been moved to a new function,
sweep_poly.

A new function, sweep_poly, was added.

New functions and other changes in scipy.linalg

The functions cho_solve_banded, circulant, companion, hadamard and leslie were added to scipy.linalg.
The function block_diag was enhanced to accept scalar and 1D arguments, along with the usual 2D arguments.
New function and changes in scipy.optimize

The curve_fit function has been added; it takes a function and uses non-linear least squares to fit that to the provided
data.

The leastsq and fsolve functions now return an array of size one instead of a scalar when solving for a single parameter.
New sparse least squares solver

The Isqr function was added to scipy.sparse. This routine finds a least-squares solution to a large, sparse, linear
system of equations.

ARPACK-based sparse SVD

A naive implementation of SVD for sparse matrices is available in scipy.sparse.linalg.eigen.arpack. It is based on
using an symmetric solver on <A, A>, and as such may not be very precise.

256 Chapter 4. Release Notes

http://en.wikipedia.org/wiki/Chirp
http://www.stanford.edu/group/SOL/software/lsqr.html

SciPy Reference Guide, Release 0.16.0

Alternative behavior available for scipy.constants. find

The keyword argument disp was added to the function scipy.constants. find, with the default value True.
When disp is True, the behavior is the same as in Scipy version 0.7. When False, the function returns the list of keys
instead of printing them. (In SciPy version 0.9, the default will be reversed.)

Incomplete sparse LU decompositions

Scipy now wraps SuperLU version 4.0, which supports incomplete sparse LU decompositions. These can be accessed
via scipy.sparse.linalg.spilu. Upgrade to SuperLU 4.0 also fixes some known bugs.

Faster matlab file reader and default behavior change

We’ve rewritten the matlab file reader in Cython and it should now read matlab files at around the same speed that
Matlab does.

The reader reads matlab named and anonymous functions, but it can’t write them.

Until scipy 0.8.0 we have returned arrays of matlab structs as numpy object arrays, where the objects have attributes
named for the struct fields. As of 0.8.0, we return matlab structs as numpy structured arrays. You can get the older
behavior by using the optional struct_as_record=False keyword argument to scipy.io.loadmat and
friends.

There is an inconsistency in the matlab file writer, in that it writes numpy 1D arrays as column vectors in matlab 5
files, and row vectors in matlab 4 files. We will change this in the next version, so both write row vectors. There is
a FutureWarning when calling the writer to warn of this change; for now we suggest using the oned_as='"row’
keyword argument to scipy.io.savemat and friends.

Faster evaluation of orthogonal polynomials

Values of orthogonal polynomials can be evaluated with new vectorized functions in scipy.special:
eval_legendre, eval_chebyt, eval_chebyu, eval_chebyc, eval_chebys, eval_jacobi, eval_laguerre, eval_genlaguerre,
eval_hermite, eval_hermitenorm, eval_gegenbauer, eval_sh_legendre, eval_sh_chebyt, eval_sh_chebyu,

eval_sh_jacobi. This is faster than constructing the full coefficient representation of the polynomials, which
was previously the only available way.

Note that the previous orthogonal polynomial routines will now also invoke this feature, when possible.
Lambert W function

scipy.special.lambertw can now be used for evaluating the Lambert W function.

Improved hypergeometric 2F1 function

Implementation of scipy.special.hyp2fl for real parameters was revised. The new version should produce
accurate values for all real parameters.

More flexible interface for Radial basis function interpolation

The scipy.interpolate.Rbf class now accepts a callable as input for the “function” argument, in addition to
the built-in radial basis functions which can be selected with a string argument.

4.13. SciPy 0.8.0 Release Notes 257

SciPy Reference Guide, Release 0.16.0

4.13.5 Removed features

scipy.stsci: the package was removed
The module scipy.misc.limits was removed.

The IO code in both NumPy and SciPy is being extensively reworked. NumPy will be where basic code for reading
and writing NumPy arrays is located, while SciPy will house file readers and writers for various data formats (data,
audio, video, images, matlab, etc.).

Several functions in scipy.io are removed in the 0.8.0 release including: npfile, save, load, create_module, cre-
ate_shelf, objload, objsave, fopen, read_array, write_array, fread, fwrite, bswap, packbits, unpackbits, and con-
vert_objectarray. Some of these functions have been replaced by NumPy’s raw reading and writing capabilities,
memory-mapping capabilities, or array methods. Others have been moved from SciPy to NumPy, since basic array
reading and writing capability is now handled by NumPy.

4.14 SciPy 0.7.2 Release Notes

Contents

* SciPy 0.7.2 Release Notes

SciPy 0.7.2 is a bug-fix release with no new features compared to 0.7.1. The only change is that all C sources from
Cython code have been regenerated with Cython 0.12.1. This fixes the incompatibility between binaries of SciPy 0.7.1
and NumPy 1.4.

4.15 SciPy 0.7.1 Release Notes

Contents

* SciPy 0.7.1 Release Notes
— scipy.io
— scipy.odr
— scipy.signal
— scipy.sparse
— scipy.special
— scipy.stats
— Windows binaries for python 2.6
— Universal build for scipy

SciPy 0.7.1 is a bug-fix release with no new features compared to 0.7.0.
Bugs fixed:
* Several fixes in Matlab file IO
Bugs fixed:
* Work around a failure with Python 2.6
Memory leak in Ifilter have been fixed, as well as support for array object

Bugs fixed:

258 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

o #880, #925: Ifilter fixes

» #871: bicgstab fails on Win32
Bugs fixed:

» #883: scipy.io.mmread with scipy.sparse.lil_matrix broken

* lil_matrix and csc_matrix reject now unexpected sequences, cf. http://thread.gmane.org/gmane.comp.python.scientific.user/19996
Several bugs of varying severity were fixed in the special functions:

o #503, #640: iv: problems at large arguments fixed by new implementation

e #623: jv: fix errors at large arguments

* #679: struve: fix wrong output for v < 0

» #803: pbdv produces invalid output

e #804: Igmn: fix crashes on some input

* #823: betainc: fix documentation

» #834: expl strange behavior near negative integer values

e #852: jn_zeros: more accurate results for large s, also in jnp/yn/ynp_zeros

e #853: jv, yv, iv: invalid results for non-integer v < 0, complex x

e #854: jv, yv, iv, kv: return nan more consistently when out-of-domain

» #927: ellipj: fix segfault on Windows

* #946: ellpj: fix segfault on Mac OS X/python 2.6 combination.

* ive, jve, yve, kv, kve: with real-valued input, return nan for out-of-domain instead of returning only the real part
of the result.

Also, when scipy.special.errprint (1) hasbeen enabled, warning messages are now issued as Python warn-
ings instead of printing them to stderr.

* linregress, mannwhitneyu, describe: errors fixed

 kstwobign, norm, expon, exponweib, exponpow, frechet, genexpon, rdist, truncexpon, planck: improvements to
numerical accuracy in distributions

4.15.1 Windows binaries for python 2.6

python 2.6 binaries for windows are now included. The binary for python 2.5 requires numpy 1.2.0 or above, and the
one for python 2.6 requires numpy 1.3.0 or above.

4.15.2 Universal build for scipy

Mac OS X binary installer is now a proper universal build, and does not depend on gfortran anymore (libgfortran is
statically linked). The python 2.5 version of scipy requires numpy 1.2.0 or above, the python 2.6 version requires
numpy 1.3.0 or above.

4.15. SciPy 0.7.1 Release Notes 259

http://thread.gmane.org/gmane.comp.python.scientific.user/19996

SciPy Reference Guide, Release 0.16.0

4.16 SciPy 0.7.0 Release Notes

Contents

* SciPy 0.7.0 Release Notes
— Python 2.6 and 3.0
— Major documentation improvements
— Running Tests
— Building SciPy
— Sandbox Removed
— Sparse Matrices
— Statistics package
— Reworking of 10 package
— New Hierarchical Clustering module
— New Spatial package
— Reworked fftpack package
— New Constants package
— New Radial Basis Function module
— New complex ODE integrator
— New generalized symmetric and hermitian eigenvalue problem solver
— Bug fixes in the interpolation package
— Weave clean up
— Known problems

SciPy 0.7.0 is the culmination of 16 months of hard work. It contains many new features, numerous bug-fixes,
improved test coverage and better documentation. There have been a number of deprecations and API changes in
this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large
number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on
the 0.7.x branch, and on adding new features on the development trunk. This release requires Python 2.4 or 2.5 and
NumPy 1.2 or greater.

Please note that SciPy is still considered to have “Beta” status, as we work toward a SciPy 1.0.0 release. The 1.0.0
release will mark a major milestone in the development of SciPy, after which changing the package structure or API
will be much more difficult. Whilst these pre-1.0 releases are considered to have “Beta” status, we are committed to
making them as bug-free as possible. For example, in addition to fixing numerous bugs in this release, we have also
doubled the number of unit tests since the last release.

However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface.
This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we
need help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything
- from which algorithms we implement, to details about our function’s call signatures.

Over the last year, we have seen a rapid increase in community involvement, and numerous infrastructure improve-
ments to lower the barrier to contributions (e.g., more explicit coding standards, improved testing infrastructure, better
documentation tools). Over the next year, we hope to see this trend continue and invite everyone to become more
involved.

4.16.1 Python 2.6 and 3.0

A significant amount of work has gone into making SciPy compatible with Python 2.6; however, there are still some
issues in this regard. The main issue with 2.6 support is NumPy. On UNIX (including Mac OS X), NumPy 1.2.1
mostly works, with a few caveats. On Windows, there are problems related to the compilation process. The upcoming

260 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

NumPy 1.3 release will fix these problems. Any remaining issues with 2.6 support for SciPy 0.7 will be addressed in
a bug-fix release.

Python 3.0 is not supported at all; it requires NumPy to be ported to Python 3.0. This requires immense effort, since a
lot of C code has to be ported. The transition to 3.0 is still under consideration; currently, we don’t have any timeline
or roadmap for this transition.

4.16.2 Major documentation improvements

SciPy documentation is greatly improved; you can view a HTML reference manual online or download it as a PDF
file. The new reference guide was built using the popular Sphinx tool.

This release also includes an updated tutorial, which hadn’t been available since SciPy was ported to NumPy in
2005. Though not comprehensive, the tutorial shows how to use several essential parts of Scipy. It also includes the
ndimage documentation from the numarray manual.

Nevertheless, more effort is needed on the documentation front. Luckily, contributing to Scipy documentation is now
easier than before: if you find that a part of it requires improvements, and want to help us out, please register a user
name in our web-based documentation editor at http://docs.scipy.org/ and correct the issues.

4.16.3 Running Tests

NumPy 1.2 introduced a new testing framework based on nose. Starting with this release, SciPy now uses the new
NumPy test framework as well. Taking advantage of the new testing framework requires nose version 0.10, or later.
One major advantage of the new framework is that it greatly simplifies writing unit tests - which has all ready paid off,
given the rapid increase in tests. To run the full test suite:

>>> import scipy
>>> scipy.test ('full'")

For more information, please see The NumPy/SciPy Testing Guide.

We have also greatly improved our test coverage. There were just over 2,000 unit tests in the 0.6.0 release; this release
nearly doubles that number, with just over 4,000 unit tests.

4.16.4 Building SciPy

Support for NumScons has been added. NumScons is a tentative new build system for NumPy/SciPy, using SCons at
its core.

SCons is a next-generation build system, intended to replace the venerable Make with the integrated functionality
of autoconf/automake and ccache. Scons is written in Python and its configuration files are Python scripts.
NumScons is meant to replace NumPy’s custom version of distutils providing more advanced functionality, such
as autoconft, improved fortran support, more tools, and support for numpy . distutils/scons cooperation.

4.16.5 Sandbox Removed

While porting SciPy to NumPy in 2005, several packages and modules were moved into scipy.sandbox. The
sandbox was a staging ground for packages that were undergoing rapid development and whose APIs were in flux. It
was also a place where broken code could live. The sandbox has served its purpose well, but was starting to create
confusion. Thus scipy.sandbox was removed. Most of the code was moved into scipy, some code was made
into a scikit, and the remaining code was just deleted, as the functionality had been replaced by other code.

4.16. SciPy 0.7.0 Release Notes 261

http://docs.scipy.org/
http://sphinx.pocoo.org/
http://docs.scipy.org/
http://somethingaboutorange.com/mrl/projects/nose/
http://projects.scipy.org/scipy/numpy/wiki/TestingGuidelines
http://www.scons.org/

SciPy Reference Guide, Release 0.16.0

4.16.6 Sparse Matrices
Sparse matrices have seen extensive improvements. There is now support for integer dtypes such int 8, uint 32, etc.
Two new sparse formats were added:

* new class dia_matrix : the sparse DIAgonal format

e new class bsr_matrix : the Block CSR format
Several new sparse matrix construction functions were added:

* sparse.kron : sparse Kronecker product

* sparse.bmat : sparse version of numpy . bmat

* sparse.vstack : sparse version of numpy .vstack

e sparse.hstack : sparse version of numpy.hstack
Extraction of submatrices and nonzero values have been added:

* sparse.tril : extract lower triangle

* sparse.triu: extract upper triangle

¢ sparse.find: nonzero values and their indices

csr_matrix and csc_matrix now support slicing and fancy indexing (e.g., A[1:3, 4:7] and
A[[3,2,6,8], :]1). Conversions among all sparse formats are now possible:

* using member functions such as .tocsr () and .tolil ()
* using the . asformat () member function, e.g. A.asformat (' csr’)
* using constructors A = 1il_matrix([[1,2]]); B = csr_matrix(A)
All sparse constructors now accept dense matrices and lists of lists. For example:
e A = csr_matrix(rand(3,3))andB = 1il matrix([[1,2]1,([3,4]1])

The handling of diagonals in the spdiags function has been changed. It now agrees with the MATLAB(TM) function
of the same name.

Numerous efficiency improvements to format conversions and sparse matrix arithmetic have been made. Finally, this
release contains numerous bugfixes.

4.16.7 Statistics package

Statistical functions for masked arrays have been added, and are accessible through scipy.stats.mstats. The
functions are similar to their counterparts in scipy . stats but they have not yet been verified for identical interfaces
and algorithms.

Several bugs were fixed for statistical functions, of those, kstest and percentileofscore gained new keyword
arguments.

Added deprecation warning for mean, median, var, std, cov, and corrcoef. These functions should
be replaced by their numpy counterparts. Note, however, that some of the default options differ between the
scipy.stats and numpy versions of these functions.

Numerous bug fixes to stats.distributions: all generic methods now work correctly, several methods in
individual distributions were corrected. However, a few issues remain with higher moments (skew, kurtosis)
and entropy. The maximum likelihood estimator, £it, does not work out-of-the-box for some distributions - in
some cases, starting values have to be carefully chosen, in other cases, the generic implementation of the maximum
likelihood method might not be the numerically appropriate estimation method.

262 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

We expect more bugfixes, increases in numerical precision and enhancements in the next release of scipy.

4.16.8 Reworking of 10 package

The IO code in both NumPy and SciPy is being extensively reworked. NumPy will be where basic code for reading
and writing NumPy arrays is located, while SciPy will house file readers and writers for various data formats (data,
audio, video, images, matlab, etc.).

Several functions in scipy.io have been deprecated and will be removed in the 0.8.0 release including
npfile, save, load, create_module, create_shelf, objload, objsave, fopen, read_array,
write_array, fread, fwrite, bswap, packbits, unpackbits, and convert_objectarray. Some
of these functions have been replaced by NumPy’s raw reading and writing capabilities, memory-mapping capabili-
ties, or array methods. Others have been moved from SciPy to NumPy, since basic array reading and writing capability
is now handled by NumPy.

The Matlab (TM) file readers/writers have a number of improvements:
e default version 5
* v5 writers for structures, cell arrays, and objects
* v5 readers/writers for function handles and 64-bit integers

* new struct_as_record keyword argument to 1oadmat, which loads struct arrays in matlab as record arrays in
numpy

* string arrays have dtype='U. ..’ instead of dtype=object

* loadmat no longer squeezes singleton dimensions, i.e. squeeze_me=False by default

4.16.9 New Hierarchical Clustering module

This module adds new hierarchical clustering functionality to the scipy.cluster package. The function inter-
faces are similar to the functions provided MATLAB(TM)’s Statistics Toolbox to help facilitate easier migration to
the NumPy/SciPy framework. Linkage methods implemented include single, complete, average, weighted, centroid,
median, and ward.

In addition, several functions are provided for computing inconsistency statistics, cophenetic distance, and maximum
distance between descendants. The fcluster and fclusterdata functions transform a hierarchical clustering
into a set of flat clusters. Since these flat clusters are generated by cutting the tree into a forest of trees, the leaders
function takes a linkage and a flat clustering, and finds the root of each tree in the forest. The ClusterNode class
represents a hierarchical clusterings as a field-navigable tree object. t o_t ree converts a matrix-encoded hierarchical
clustering to a ClusterNode object. Routines for converting between MATLAB and SciPy linkage encodings are
provided. Finally, a dendrogram function plots hierarchical clusterings as a dendrogram, using matplotlib.

4.16.10 New Spatial package

The new spatial package contains a collection of spatial algorithms and data structures, useful for spatial statistics and
clustering applications. It includes rapidly compiled code for computing exact and approximate nearest neighbors, as
well as a pure-python kd-tree with the same interface, but that supports annotation and a variety of other algorithms.
The API for both modules may change somewhat, as user requirements become clearer.

It also includes a distance module, containing a collection of distance and dissimilarity functions for computing
distances between vectors, which is useful for spatial statistics, clustering, and kd-trees. Distance and dissimilar-
ity functions provided include Bray-Curtis, Canberra, Chebyshev, City Block, Cosine, Dice, Euclidean, Hamming,

4.16. SciPy 0.7.0 Release Notes 263

SciPy Reference Guide, Release 0.16.0

Jaccard, Kulsinski, Mahalanobis, Matching, Minkowski, Rogers-Tanimoto, Russell-Rao, Squared Euclidean, Stan-
dardized Euclidean, Sokal-Michener, Sokal-Sneath, and Yule.

The pdist function computes pairwise distance between all unordered pairs of vectors in a set of vectors. The cdist
computes the distance on all pairs of vectors in the Cartesian product of two sets of vectors. Pairwise distance matrices
are stored in condensed form; only the upper triangular is stored. squareform converts distance matrices between
square and condensed forms.

4.16.11 Reworked fftpack package

FFTW2, FFTW3, MKL and DIBFFT wrappers have been removed. Only (NETLIB) fftpack remains. By focusing on
one backend, we hope to add new features - like float32 support - more easily.

4.16.12 New Constants package

scipy.constants provides a collection of physical constants and conversion factors. These constants are
taken from CODATA Recommended Values of the Fundamental Physical Constants: 2002. They may be found at
physics.nist.gov/constants. The values are stored in the dictionary physical_constants as a tuple containing the value,
the units, and the relative precision - in that order. All constants are in SI units, unless otherwise stated. Several helper
functions are provided.

4.16.13 New Radial Basis Function module
scipy.interpolate now contains a Radial Basis Function module. Radial basis functions can be used for

smoothing/interpolating scattered data in n-dimensions, but should be used with caution for extrapolation outside
of the observed data range.

4.16.14 New complex ODE integrator

scipy.integrate.ode now contains a wrapper for the ZVODE complex-valued ordinary differential equation
solver (by Peter N. Brown, Alan C. Hindmarsh, and George D. Byrne).

4.16.15 New generalized symmetric and hermitian eigenvalue problem solver

scipy.linalg.eigh now contains wrappers for more LAPACK symmetric and hermitian eigenvalue problem
solvers. Users can now solve generalized problems, select a range of eigenvalues only, and choose to use a faster algo-
rithm at the expense of increased memory usage. The signature of the scipy.linalg.eigh changed accordingly.

4.16.16 Bug fixes in the interpolation package

The shape of return values from scipy.interpolate.interpld used to be incorrect, if interpolated data
had more than 2 dimensions and the axis keyword was set to a non-default value. This has been fixed. Moreover,
interpld returns now a scalar (OD-array) if the input is a scalar. Users of scipy.interpolate.interpld
may need to revise their code if it relies on the previous behavior.

4.16.17 Weave clean up

There were numerous improvements to scipy.weave. blitz++ was relicensed by the author to be compatible
with the SciPy license. wx_spec.py was removed.

264 Chapter 4. Release Notes

SciPy Reference Guide, Release 0.16.0

4.16.18 Known problems

Here are known problems with scipy 0.7.0:
* weave test failures on windows: those are known, and are being revised.

* weave test failure with gcc 4.3 (std::labs): this is a gcc 4.3 bug. A workaround is to add #include <cstdlib> in
scipy/weave/blitz/blitz/funcs.h (line 27). You can make the change in the installed scipy (in site-packages).

4.16. SciPy 0.7.0 Release Notes 265

SciPy Reference Guide, Release 0.16.0

266 Chapter 4. Release Notes

CHAPTER
FIVE

REFERENCE

5.1 Clustering package (scipy.cluster)

scipy.cluster.vqg

Clustering algorithms are useful in information theory, target detection, communications, compression, and other
areas. The vg module only supports vector quantization and the k-means algorithms.

scipy.cluster.hierarchy

The hierarchy module provides functions for hierarchical and agglomerative clustering. Its features include gen-
erating hierarchical clusters from distance matrices, calculating statistics on clusters, cutting linkages to generate flat
clusters, and visualizing clusters with dendrograms.

5.2 K-means clustering and vector quantization
(scipy.cluster.vq)

Provides routines for k-means clustering, generating code books from k-means models, and quantizing vectors by
comparing them with centroids in a code book.

whiten(obs[, check_finite]) Normalize a group of observations on a per feature basis.

vg(obs, code_book[, check_finite]) Assign codes from a code book to observations.

kmeans(obs, k_or_guess[, iter, thresh, ...]) Performs k-means on a set of observation vectors forming k clusters.

kmeans2(data, k[, iter, thresh, minit, ...]) Classify a set of observations into k clusters using the k-means algorithm.

scipy.cluster.vqg.whiten (obs, check_finite=True)
Normalize a group of observations on a per feature basis.

Before running k-means, it is beneficial to rescale each feature dimension of the observation set with whitening.
Each feature is divided by its standard deviation across all observations to give it unit variance.

Parameters obs : ndarray
Each row of the array is an observation. The columns are the features seen during each

observation.

>>> # o f1 2

>>> obs = [[1., 1., 1.1, #00
[2., 2., 2.1, #ol
[3., 3., 3.7, #02
[4., 4., 4.71] #03

check_finite : bool, optional

267

SciPy Reference Guide, Release 0.16.0

Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs. Default: True

result : ndarray
Contains the values in obs scaled by the standard deviation of each column.

Returns

Examples

>>> from scipy.cluster.vq import whiten

>>> features = np.array([[1.9, 2.3, 1.7],
[1.5, 2.5, 2.2],
[0.8, 0.6, 1.7,11)

>>> whiten (features)
array ([[4.17944278,
[3.299560009,
[1.75976538,

2.69811351,
2.93273208,
0.7038557 ,

7.212489177,
9.333809517,
7.21248917]11)

scipy.cluster.vqg.vq (obs, code_book, check_finite=True)

Assign codes from a code book to observations.

Assigns a code from a code book to each observation. Each observation vector in the ‘M’ by ‘N’ obs array is
compared with the centroids in the code book and assigned the code of the closest centroid.

The features in obs should have unit variance, which can be achieved by passing them through the whiten
function. The code book can be created with the k-means algorithm or a different encoding algorithm.

Parameters obs : ndarray
Each row of the ‘M’ x ‘N’ array is an observation. The columns are the “features” seen
during each observation. The features must be whitened first using the whiten function
or something equivalent.
code_book : ndarray
The code book is usually generated using the k-means algorithm. Each row of the array
holds a different code, and the columns are the features of the code.
>>> # 0 £l £2 £3
>>> code_book = [
[1., 2., 3., 4.1, #cO
[1., 2., 3., 4.1, #cil
[1., 2., 3., 4.11 #c2
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs. Default: True
Returns code : ndarray
A length M array holding the code book index for each observation.
dist : ndarray
The distortion (distance) between the observation and its nearest code.
Examples
>>> from numpy import array
>>> from scipy.cluster.vqg import vg
>>> code_book = array([[1l.,1.,1.],
. [2.,2.,2.11)
>>> features = array([[1.9,2.3,1.7],
[1.5,2.5,2.2],
[0.8,0.6,1.711)

’

268

Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

>>> vq(features, code_book)
(array ([1, 1, 0],'i"), array ([0.43588989, 0.73484692, 0.83066239]))

scipy.cluster.vqg.kmeans (obs, k_or_guess, iter=20, thresh=1e-05, check_finite=True)
Performs k-means on a set of observation vectors forming k clusters.

The k-means algorithm adjusts the centroids until sufficient progress cannot be made, i.e. the change in distor-
tion since the last iteration is less than some threshold. This yields a code book mapping centroids to codes and
vice versa.

Distortion is defined as the sum of the squared differences between the observations and the corresponding
centroid.

Parameters obs : ndarray

Each row of the M by N array is an observation vector. The columns are the features
seen during each observation. The features must be whitened first with the whiten
function.

k_or_guess : int or ndarray
The number of centroids to generate. A code is assigned to each centroid, which is also
the row index of the centroid in the code_book matrix generated.
The initial k centroids are chosen by randomly selecting observations from the obser-
vation matrix. Alternatively, passing a k by N array specifies the initial k centroids.

iter : int, optional
The number of times to run k-means, returning the codebook with the lowest distor-
tion. This argument is ignored if initial centroids are specified with an array for the
k_or_guess parameter. This parameter does not represent the number of iterations
of the k-means algorithm.

thresh : float, optional
Terminates the k-means algorithm if the change in distortion since the last k-means
iteration is less than or equal to thresh.

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs. Default: True

Returns codebook : ndarray

A k by N array of k centroids. The i’th centroid codebook[i] is represented with the
code i. The centroids and codes generated represent the lowest distortion seen, not
necessarily the globally minimal distortion.

distortion : float
The distortion between the observations passed and the centroids generated.

See also:

kmeans2 a different implementation of k-means clustering with more methods for generating initial cen-
troids but without using a distortion change threshold as a stopping criterion.

whiten must be called prior to passing an observation matrix to kmeans.

Examples

>>> from numpy import array

>>> from scipy.cluster.vq import vg, kmeans, whiten
>>> features = array([[.9,2.31,
] 4
] 4
]
]

’

1
[1.
[0.
[O
[O

= 0 o U

’

5.2. K-means clustering and vector quantization (scipy.cluster.vq) 269

SciPy Reference Guide, Release 0.16.0

’

~

4

1
0
1
1
S

~

o N O

[
[
[

O W o N

[@RNCRNC e
o~
-

c.. [1.
>>> whitened = whiten (feature
>>> book = array ((whitened[0
>>> kmeans (whitened, book)
(array ([[2.3110306 , 2.86287398],

[0.93218041, 1.24398691]1]), 0.85684700941625547)

l4

)
,whitened[2]))

>>> from numpy import random
>>> random.seed((1000,2000))
>>> codes = 3
>>> kmeans (whitened, codes)
(array ([[2.3110306 , 2.86287398],
[1.32544402, 0.65607529],
[0.40782893, 2.02786907]1]1), 0.5196582527686241)

scipy.cluster.vqg.kmeans2 (data, k, iter=10, thresh=1e-05, minit="random’, missing="warn’,

check_finite=True)
Classify a set of observations into k clusters using the k-means algorithm.

The algorithm attempts to minimize the Euclidian distance between observations and centroids. Several initial-
ization methods are included.

Parameters data : ndarray

A ‘M’ by ‘N’ array of ‘M’ observations in ‘N’ dimensions or a length ‘M’ array of ‘M’
one-dimensional observations.

k : int or ndarray
The number of clusters to form as well as the number of centroids to generate. If minit
initialization string is ‘matrix’, or if a ndarray is given instead, it is interpreted as initial
cluster to use instead.

iter : int, optional
Number of iterations of the k-means algrithm to run. Note that this differs in meaning
from the iters parameter to the kmeans function.

thresh : float, optional
(not used yet)

minit : str, optional
Method for initialization. Available methods are ‘random’, ‘points’, ‘uniform’, and
‘matrix’:
‘random’: generate k centroids from a Gaussian with mean and variance estimated
from the data.
‘points’: choose k observations (rows) at random from data for the initial centroids.
‘uniform’: generate k observations from the data from a uniform distribution defined
by the data set (unsupported).
‘matrix’: interpret the k parameter as a k by M (or length k array for one-dimensional
data) array of initial centroids.

missing : str, optional
Method to deal with empty clusters. Available methods are ‘warn’ and ‘raise’:
‘warn’: give a warning and continue.
‘raise’: raise an ClusterError and terminate the algorithm.

check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may
give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs. Default: True

Returns centroid : ndarray

270 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

A ‘k’ by ‘N’ array of centroids found at the last iteration of k-means.
label : ndarray
label[i] is the code or index of the centroid the i’th observation is closest to.

5.2.1 Background information

The k-means algorithm takes as input the number of clusters to generate, k, and a set of observation vectors to cluster.
It returns a set of centroids, one for each of the k clusters. An observation vector is classified with the cluster number
or centroid index of the centroid closest to it.

A vector v belongs to cluster i if it is closer to centroid i than any other centroids. If v belongs to i, we say centroid i is
the dominating centroid of v. The k-means algorithm tries to minimize distortion, which is defined as the sum of the
squared distances between each observation vector and its dominating centroid. Each step of the k-means algorithm
refines the choices of centroids to reduce distortion. The change in distortion is used as a stopping criterion: when
the change is lower than a threshold, the k-means algorithm is not making sufficient progress and terminates. One can
also define a maximum number of iterations.

Since vector quantization is a natural application for k-means, information theory terminology is often used. The
centroid index or cluster index is also referred to as a “code” and the table mapping codes to centroids and vice
versa is often referred as a “code book”. The result of k-means, a set of centroids, can be used to quantize vectors.
Quantization aims to find an encoding of vectors that reduces the expected distortion.

All routines expect obs to be a M by N array where the rows are the observation vectors. The codebook is a k by N
array where the i’th row is the centroid of code word i. The observation vectors and centroids have the same feature
dimension.

As an example, suppose we wish to compress a 24-bit color image (each pixel is represented by one byte for red, one
for blue, and one for green) before sending it over the web. By using a smaller 8-bit encoding, we can reduce the
amount of data by two thirds. Ideally, the colors for each of the 256 possible 8-bit encoding values should be chosen
to minimize distortion of the color. Running k-means with k=256 generates a code book of 256 codes, which fills up
all possible 8-bit sequences. Instead of sending a 3-byte value for each pixel, the 8-bit centroid index (or code word)
of the dominating centroid is transmitted. The code book is also sent over the wire so each 8-bit code can be translated
back to a 24-bit pixel value representation. If the image of interest was of an ocean, we would expect many 24-bit
blues to be represented by 8-bit codes. If it was an image of a human face, more flesh tone colors would be represented
in the code book.

5.3 Hierarchical clustering (scipy.cluster.hierarchy)

These functions cut hierarchical clusterings into flat clusterings or find the roots of the forest formed by a cut by
providing the flat cluster ids of each observation.

fcluster(Z, [, criterion, depth, R, monocrit]) Forms flat clusters from the hierarchical clustering defined by the linkage matrix z
fclusterdata(X, t[, criterion, metric, ...]) Cluster observation data using a given metric.
leaders(Z,T) Returns the root nodes in a hierarchical clustering.

scipy.cluster.hierarchy.fcluster (Z, t, criterion="inconsistent’, depth=2, R=None, mon-
ocrit=None)
Forms flat clusters from the hierarchical clustering defined by the linkage matrix Z.
Parameters 7 : ndarray
The hierarchical clustering encoded with the matrix returned by the 1inkage func-
tion.
t : float

5.3. Hierarchical clustering (scipy.cluster.hierarchy) 271

SciPy Reference Guide, Release 0.16.0

The threshold to apply when forming flat clusters.
criterion : str, optional
The criterion to use in forming flat clusters. This can be any of the following values:
inconsistent
[If a cluster node and all its] descendants have an inconsistent value
less than or equal to 7 then all its leaf descendants belong to the same
flat cluster. When no non-singleton cluster meets this criterion, every
node is assigned to its own cluster. (Default)
distance [Forms flat clusters so that the original] observations in each flat clus-
ter have no greater a cophenetic distance than ¢.
maxclust [Finds a minimum threshold r so that] the cophenetic distance be-
tween any two original observations in the same flat cluster is no more
than r and no more than ¢ flat clusters are formed.
monocrit [Forms a flat cluster from a cluster node c] with index i when
monocrit[j] <= t.
For example, to threshold on the maximum mean distance as com-
puted in the inconsistency matrix R with a threshold of 0.8 do:
MR = maxRstat(Z, R, 3)
cluster(Z, t=0.8, criterion="monocrit’, monocrit=MR)
maxclust_monocrit
[Forms a flat cluster from a] non-singleton cluster node ¢ when
monocrit[i] <= r for all cluster indices i below and including
c. r is minimized such that no more than t flat clusters are formed.
monocrit must be monotonic. For example, to minimize the thresh-
old t on maximum inconsistency values so that no more than 3 flat
clusters are formed, do:
MI = maxinconsts(Z, R)
cluster(Z, t=3, criterion="maxclust_monocrit’, monocrit=MI)
depth : int, optional
The maximum depth to perform the inconsistency calculation. It has no meaning for
the other criteria. Default is 2.
R : ndarray, optional
The inconsistency matrix to use for the ‘inconsistent’ criterion. This matrix is com-
puted if not provided.
monocrit : ndarray, optional
An array of length n-1. monocrit[i] is the statistics upon which non-singleton 1i is
thresholded. The monocrit vector must be monotonic, i.e. given a node ¢ with index i,
for all node indices j corresponding to nodes below ¢, monocrit[i] >= monocrit[j].
Returns fcluster : ndarray
An array of length n. TI[i] is the flat cluster number to which original observation i
belongs.

scipy.cluster.hierarchy.fclusterdata (X, t, criterion="inconsistent’, metric="euclidean’,
depth=2, method="single’, R=None)
Cluster observation data using a given metric.

Clusters the original observations in the n-by-m data matrix X (n observations in m dimensions), using the
euclidean distance metric to calculate distances between original observations, performs hierarchical clustering
using the single linkage algorithm, and forms flat clusters using the inconsistency method with ¢ as the cut-off
threshold.

A one-dimensional array T of length n is returned. TI[i] is the index of the flat cluster to which the original
observation i belongs.

Parameters X : (N, M) ndarray
N by M data matrix with N observations in M dimensions.

272 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

t : float
The threshold to apply when forming flat clusters.

criterion : str, optional
Specifies the criterion for forming flat clusters. Valid values are ‘inconsistent’ (de-
fault), ‘distance’, or ‘maxclust’ cluster formation algorithms. See fcluster for
descriptions.

metric : str, optional
The distance metric for calculating pairwise distances. See distance.pdist for
descriptions and linkage to verify compatibility with the linkage method.

depth : int, optional
The maximum depth for the inconsistency calculation. See inconsistent for
more information.

method : str, optional
The linkage method to use (single, complete, average, weighted, median centroid,
ward). See 1 inkage for more information. Default is “single”.

R : ndarray, optional
The inconsistency matrix. It will be computed if necessary if it is not passed.

Returns fclusterdata : ndarray

A vector of length n. T[i] is the flat cluster number to which original observation i
belongs.

Notes
This function is similar to the MATLAB function clusterdata.

scipy.cluster.hierarchy.leaders (Z,T)
Returns the root nodes in a hierarchical clustering.

Returns the root nodes in a hierarchical clustering corresponding to a cut defined by a flat cluster assignment
vector T. See the fcluster function for more information on the format of T.

For each flat cluster j of the k flat clusters represented in the n-sized flat cluster assignment vector T, this
function finds the lowest cluster node ¢ in the linkage tree Z such that:

sleaf descendents belong only to flat cluster j (i.e. T [p]==7 for all p in S(7) where S(i) is the set of leaf
ids of leaf nodes descendent with cluster node 7)

sthere does not exist a leaf that is not descendent with ¢ that also belongs to cluster j (i.e. T[qg] !=7 for
all ¢ not in S(4)). If this condition is violated, T is not a valid cluster assignment vector, and an exception
will be thrown.

Parameters 7 : ndarray
The hierarchical clustering encoded as a matrix. See 1 inkage for more information.
T : ndarray
The flat cluster assignment vector.
Returns L : ndarray
The leader linkage node id’s stored as a k-element 1-D array where k is the number
of flat clusters found in T.
L[j1=1i is the linkage cluster node id that is the leader of flat cluster with id M[j].
If i < n, i corresponds to an original observation, otherwise it corresponds to a
non-singleton cluster.
For example: if L.[3]=2 and M[3]=8, the flat cluster with id 8’s leader is linkage
node 2.
M : ndarray
The leader linkage node id’s stored as a k-element 1-D array where k is the number
of flat clusters found in T. This allows the set of flat cluster ids to be any arbitrary set
of k integers.

5.3. Hierarchical clustering (scipy.cluster.hierarchy) 273

SciPy Reference Guide, Release 0.16.0

These are routines for agglomerative clustering.

linkage(y[, method, metric]) Performs hierarchical/agglomerative clustering on the condensed distance matrix y.

single(y) Performs single/min/nearest linkage on the condensed distance matrix y
complete(y) Performs complete/max/farthest point linkage on a condensed distance matrix
average(y) Performs average/UPGMA linkage on a condensed distance matrix
weighted(y) Performs weighted/ WPGMA linkage on the condensed distance matrix.
centroid(y) Performs centroid/UPGMC linkage.

median(y) Performs median/WPGMC linkage.

ward(y) Performs Ward’s linkage on a condensed or redundant distance matrix.

scipy.cluster.hierarchy.linkage (y, method="single’, metric="euclidean’)

Performs hierarchical/agglomerative clustering on the condensed distance matrix y.

y must be a (g) sized vector where n is the number of original observations paired in the distance matrix. The

behavior of this function is very similar to the MATLAB linkage function.

A 4 by (n — 1) matrix Z is returned. At the i-th iteration, clusters with indices Z[i, 0] and Z[i, 1]
are combined to form cluster n + ¢. A cluster with an index less than n corresponds to one of the n original
observations. The distance between clusters Z [1, O] and Z[i, 1] isgivenby Z[i, 2]. The fourth value
Z[1, 3] represents the number of original observations in the newly formed cluster.

The following linkage methods are used to compute the distance d(s,t) between two clusters s and ¢. The
algorithm begins with a forest of clusters that have yet to be used in the hierarchy being formed. When two
clusters s and ¢ from this forest are combined into a single cluster u, s and ¢ are removed from the forest, and u
is added to the forest. When only one cluster remains in the forest, the algorithm stops, and this cluster becomes
the root.

A distance matrix is maintained at each iteration. The d[1i, j] entry corresponds to the distance between cluster
¢ and j in the original forest.

At each iteration, the algorithm must update the distance matrix to reflect the distance of the newly formed
cluster u with the remaining clusters in the forest.

Suppose there are |u| original observations u[0],...,u[|u| — 1] in cluster v and |v| original objects
v[0],...,v[|v] — 1] in cluster v. Recall s and ¢ are combined to form cluster u. Let v be any remaining cluster
in the forest that is not u.

The following are methods for calculating the distance between the newly formed cluster u and each v.
*method="single’ assigns
d(u,v) = min(dist(uli], v[j]))
for all points ¢ in cluster u and j in cluster v. This is also known as the Nearest Point Algorithm.

*method="complete’ assigns
d(u,v) = max(dist(uli],v[j]))

for all points ¢ in cluster u and j in cluster v. This is also known by the Farthest Point Algorithm or Voor
Hees Algorithm.

*method="average’ assigns

R
A0) = 2 o)

)

for all points ¢ and j where |u| and |v| are the cardinalities of clusters « and v, respectively. This is also
called the UPGMA algorithm.

274

Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

*method="weighted’ assigns
d(u,v) = (dist(s,v) + dist(t,v))/2

where cluster u was formed with cluster s and t and v is a remaining cluster in the forest. (also called
WPGMA)

*method="centroid’ assigns
dist(s,t) =|lcs — ctl]2

where c; and c; are the centroids of clusters s and ¢, respectively. When two clusters s and ¢ are combined
into a new cluster u, the new centroid is computed over all the original objects in clusters s and ¢. The
distance then becomes the Euclidean distance between the centroid of u and the centroid of a remaining
cluster v in the forest. This is also known as the UPGMC algorithm.

smethod="median’ assigns d(s, t) like the centroid method. When two clusters s and ¢ are combined
into a new cluster u, the average of centroids s and t give the new centroid . This is also known as the
WPGMC algorithm.

smethod="ward’ uses the Ward variance minimization algorithm. The new entry d(u,v) is computed as
follows,

ol + [l

|v]
2 2
d(v,t) d(s,t)

v+ |s
d(u’v) e \/|||d(1}, 8)2 +
T
where u is the newly joined cluster consisting of clusters s and ¢, v is an unused cluster in the forest,
T = |v| + |s| + |t|, and | * | is the cardinality of its argument. This is also known as the incremental
algorithm.

Warning: When the minimum distance pair in the forest is chosen, there may be two or more pairs with the same
minimum distance. This implementation may chose a different minimum than the MATLAB version.

Parameters 'y : ndarray
A condensed or redundant distance matrix. A condensed distance matrix is a flat array
containing the upper triangular of the distance matrix. This is the form that pdist
returns. Alternatively, a collection of m observation vectors in n dimensions may be
passed as an m by n array.
method : str, optional
The linkage algorithm to use. See the Linkage Methods section below for full
descriptions.
metric : str or function, optional
The distance metric to use. See the distance.pdist function for a list of valid dis-
tance metrics. The customized distance can also be used. See the distance.pdist
function for details.
Returns Z : ndarray
The hierarchical clustering encoded as a linkage matrix.

scipy.cluster.hierarchy.single (y)
Performs single/min/nearest linkage on the condensed distance matrix y

Parameters 'y : ndarray
The upper triangular of the distance matrix. The result of pdist is returned in this
form.

Returns Z : ndarray
The linkage matrix.

See also:

linkage for advanced creation of hierarchical clusterings.

5.3. Hierarchical clustering (scipy.cluster.hierarchy) 275

SciPy Reference Guide, Release 0.16.0

scipy.cluster.hierarchy.complete (y)
Performs complete/max/farthest point linkage on a condensed distance matrix

Parameters 'y : ndarray
The upper triangular of the distance matrix. The result of pdist is returned in this
form.

Returns Z : ndarray
A linkage matrix containing the hierarchical clustering. See the 1inkage function
documentation for more information on its structure.

See also:
linkage

scipy.cluster.hierarchy.average (y)
Performs average/UPGMA linkage on a condensed distance matrix

Parameters 'y : ndarray
The upper triangular of the distance matrix. The result of pdist is returned in this
form.

Returns Z : ndarray
A linkage matrix containing the hierarchical clustering. See the 1inkage function
documentation for more information on its structure.

See also:

linkage for advanced creation of hierarchical clusterings.
scipy.cluster.hierarchy.weighted (y)

Performs weighted/ WPGMA linkage on the condensed distance matrix.

See 1inkage for more information on the return structure and algorithm.

Parameters 'y : ndarray
The upper triangular of the distance matrix. The result of pdist is returned in this
form.

Returns Z : ndarray
A linkage matrix containing the hierarchical clustering. See the 1inkage function
documentation for more information on its structure.

See also:
linkage for advanced creation of hierarchical clusterings.
scipy.cluster.hierarchy.centroid(y)
Performs centroid/UPGMC linkage.
See 1inkage for more information on the return structure and algorithm.
The following are common calling conventions:
1.Z = centroid(y)

Performs centroid/UPGMC linkage on the condensed distance matrix y. See 1inkage for more infor-
mation on the return structure and algorithm.

2.Z2 = centroid (X)

Performs centroid/UPGMC linkage on the observation matrix X using Euclidean distance as the distance
metric. See 1inkage for more information on the return structure and algorithm.

276 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters 'y : ndarray
A condensed or redundant distance matrix. A condensed distance matrix is a flat array
containing the upper triangular of the distance matrix. This is the form that pdist
returns. Alternatively, a collection of m observation vectors in n dimensions may be
passed as a m by n array.

Returns Z : ndarray
A linkage matrix containing the hierarchical clustering. See the 1inkage function
documentation for more information on its structure.

See also:
linkage for advanced creation of hierarchical clusterings.

scipy.cluster.hierarchy.median (y)
Performs median/WPGMC linkage.

See 1inkage for more information on the return structure and algorithm.

The following are common calling conventions:
1.Z = median (y)
Performs median/WPGMC linkage on the condensed distance matrix y. See 1inkage for more
information on the return structure and algorithm.
2.Z = median (X)
Performs median/WPGMC linkage on the observation matrix X using Euclidean distance as the
distance metric. See linkage for more information on the return structure and algorithm.

Parameters 'y : ndarray
A condensed or redundant distance matrix. A condensed distance matrix is a flat array
containing the upper triangular of the distance matrix. This is the form that pdist
returns. Alternatively, a collection of m observation vectors in n dimensions may be
passed as a m by n array.

Returns Z : ndarray
The hierarchical clustering encoded as a linkage matrix.

See also:

linkage for advanced creation of hierarchical clusterings.
scipy.cluster.hierarchy.ward(y)

Performs Ward’s linkage on a condensed or redundant distance matrix.

See linkage for more information on the return structure and algorithm.

The following are common calling conventions:

1.Z = ward (y) Performs Ward’s linkage on the condensed distance matrix Z. See linkage for more
information on the return structure and algorithm.

2.2z = ward (X) Performs Ward’s linkage on the observation matrix X using Euclidean distance as the
distance metric. See linkage for more information on the return structure and algorithm.

Parameters 'y : ndarray
A condensed or redundant distance matrix. A condensed distance matrix is a flat array
containing the upper triangular of the distance matrix. This is the form that pdist
returns. Alternatively, a collection of m observation vectors in n dimensions may be
passed as a m by n array.

Returns Z : ndarray

5.3. Hierarchical clustering (scipy.cluster.hierarchy) 277

SciPy Reference Guide, Release 0.16.0

The hierarchical clustering encoded as a linkage matrix.
See also:
linkage for advanced creation of hierarchical clusterings.

These routines compute statistics on hierarchies.

cophenet(Z[, Y]) Calculates the cophenetic distances between each observation in the hierarchical clustering defined by
from_mlab_linkage(Z) Converts alinkage matrix generated by MATLAB(TM) to a new linkage matrix compatible with this r
inconsistent(Z[, d]) Calculates inconsistency statistics on a linkage.

maxinconsts(Z, R) Returns the maximum inconsistency coefficient for each non-singleton cluster and its descendents.
maxdists(Z) Returns the maximum distance between any non-singleton cluster.

maxRstat(Z, R, 1) Returns the maximum statistic for each non-singleton cluster and its descendents.
to_mlab_linkage(Z) Converts a linkage matrix to a MATLAB(TM) compatible one.

scipy.cluster.hierarchy.cophenet (Z, Y=None)
Calculates the cophenetic distances between each observation in the hierarchical clustering defined by the
linkage 7.

Suppose p and g are original observations in disjoint clusters s and t, respectively and s and t are joined by
a direct parent cluster u. The cophenetic distance between observations i and j is simply the distance between
clusters s and t.

Parameters 7 : ndarray
The hierarchical clustering encoded as an array (see 1inkage function).
Y : ndarray (optional)
Calculates the cophenetic correlation coefficient c of a hierarchical clustering defined
by the linkage matrix Z of a set of n observations in m dimensions. Y is the condensed
distance matrix from which Z was generated.
Returns ¢ : ndarray
The cophentic correlation distance (if y is passed).
d : ndarray
The cophenetic distance matrix in condensed form. The ¢; th entry is the cophenetic
distance between original observations ¢ and j.

scipy.cluster.hierarchy.from_mlab_linkage (Z)
Converts a linkage matrix generated by MATLAB(TM) to a new linkage matrix compatible with this module.

The conversion does two things:
ethe indices are converted from 1. .Nto 0. . (N-1) form, and

ea fourth column Z[:,3] is added where Z[i,3] is represents the number of original observations (leaves) in
the non-singleton cluster i.

This function is useful when loading in linkages from legacy data files generated by MATLAB.

Parameters 7 : ndarray

A linkage matrix generated by MATLAB(TM).
Returns 7S : ndarray

A linkage matrix compatible with this library.

scipy.cluster.hierarchy.inconsistent (Z, d=2)
Calculates inconsistency statistics on a linkage.

Note: This function behaves similarly to the MATLAB(TM) inconsistent function.

278 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Parameters 7 : ndarray
The (n — 1) by 4 matrix encoding the linkage (hierarchical clustering). See 1inkage
documentation for more information on its form.

d : int, optional

The number of links up to d levels below each non-singleton cluster.

Returns R : ndarray
A (n — 1) by 5 matrix where the i‘th row contains the link statistics for the non-
singleton cluster i. The link statistics are computed over the link heights for links d
levels below the cluster 1. R[1, 0] and R[1, 1] are the mean and standard devia-
tion of the link heights, respectively; R[1, 2] is the number of links included in the
calculation; and R [1, 3] is the inconsistency coefficient,

Z[i,2] — R[i, O]
RJ[i, 1]

scipy.cluster.hierarchy.maxinconsts (Z, R)
Returns the maximum inconsistency coefficient for each non-singleton cluster and its descendents.

Parameters 7 : ndarray
The hierarchical clustering encoded as a matrix. See 1 inkage for more information.

R : ndarray
The inconsistency matrix.
Returns MI : ndarray

A monotonic (n-1) -sized numpy array of doubles.

scipy.cluster.hierarchy.maxdists (Z)
Returns the maximum distance between any non-singleton cluster.

Parameters 7 : ndarray
The hierarchical clustering encoded as a matrix. See 1 inkage for more information.
Returns maxdists : ndarray
A (n-1) sized numpy array of doubles; MD [1] represents the maximum distance
between any cluster (including singletons) below and including the node with index
i. More specifically, MD[1] = Z[Q(1)-n, 2].max () whereQ (1) is the set of
all node indices below and including node i.

scipy.cluster.hierarchy.maxRstat (Z R, i)
Returns the maximum statistic for each non-singleton cluster and its descendents.

Parameters 7 : array_like
The hierarchical clustering encoded as a matrix. See 1 inkage for more information.
R : array_like
The inconsistency matrix.
i:int
The column of R to use as the statistic.
Returns MR : ndarray
Calculates the maximum statistic for the i’th column of the inconsistency matrix R
for each non-singleton cluster node. MR [j] is the maximum over R[Q (j)-n, 1]
where Q (j) the set of all node ids corresponding to nodes below and including j.

scipy.cluster.hierarchy.to_mlab_linkage (Z)
Converts a linkage matrix to a MATLAB(TM) compatible one.

Converts a linkage matrix Z generated by the linkage function of this module to a MATLAB(TM) compatible
one. The return linkage matrix has the last column removed and the cluster indices are converted to 1. .N
indexing.

Parameters 7 : ndarray
A linkage matrix generated by this library.

5.3. Hierarchical clustering (scipy.cluster.hierarchy) 279

SciPy Reference Guide, Release 0.16.0

Returns

to_mlab_linkage : ndarray

A linkage matrix compatible with MATLAB(TM)’s hierarchical clustering functions.
The return linkage matrix has the last column removed and the cluster indices are
converted to 1. . N indexing.

Routines for visualizing flat clusters.

dendrogram(Z[, p, truncate_mode, ...]) Plots the hierarchical clustering as a dendrogram.

scipy.cluster.hierarchy.dendrogram (Z, p=30, truncate_mode=None, color_threshold=None,

orientation="top’, la-
count_sort=False, dis-
tance_sort=Fualse, show_leaf counts=True,
no_plot=False, no_labels=False, color_list=None,
leaf font_size=None, leaf _rotation=None,
leaf label_func=None, no_leaves=False,
show_contracted=False, link_color_func=None,
ax=None, above_threshold_color="b")

get_leaves=True,
bels=None,

Plots the hierarchical clustering as a dendrogram.

The dendrogram illustrates how each cluster is composed by drawing a U-shaped link between a non-singleton
cluster and its children. The height of the top of the U-link is the distance between its children clusters. It is
also the cophenetic distance between original observations in the two children clusters. It is expected that the
distances in Z[:,2] be monotonic, otherwise crossings appear in the dendrogram.

Parameters

Z : ndarray

The linkage matrix encoding the hierarchical clustering to render as a dendrogram.
See the 1inkage function for more information on the format of 7.

p : int, optional

The p parameter for t runcate_mode.

truncate_mode : str, optional

The dendrogram can be hard to read when the original observation matrix from which
the linkage is derived is large. Truncation is used to condense the dendrogram. There
are several modes:
None/’none’

No truncation is performed (Default).

’lastp’ The last p non-singleton formed in the linkage are the only non-leaf
nodes in the linkage; they correspond to rows Z [n-p—2:end] in Z.
All other non-singleton clusters are contracted into leaf nodes.

‘mlab’ This corresponds to MATLAB(TM) behavior. (not implemented yet)

’level’/’mtica’
No more than p levels of the dendrogram tree are displayed. This
corresponds to Mathematica(TM) behavior.

color_threshold : double, optional

For brevity, let ¢ be the color_threshold. Colors all the descendent links below
a cluster node & the same color if k is the first node below the cut threshold ¢. All links
connecting nodes with distances greater than or equal to the threshold are colored blue.
If ¢ is less than or equal to zero, all nodes are colored blue. If color_threshold
is None or ‘default’, corresponding with MATLAB(TM) behavior, the threshold is set
to0.7xmax (Z2[:,2]).

get_leaves : bool, optional

Includes a list R[’ 1leaves’]=H in the result dictionary. For each ¢, H[1] == 7,
cluster node 7 appears in position i in the left-to-right traversal of the leaves, where
j<2n-—1land? <n.

orientation : str, optional

280

Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The direction to plot the dendrogram, which can be any of the following strings:

‘"top’ Plots the root at the top, and plot descendent links going downwards.
(default).

"bottom”’ Plots the root at the bottom, and plot descendent links going upwards.

’left’ Plots the root at the left, and plot descendent links going right.

’right’ Plots the root at the right, and plot descendent links going left.
labels : ndarray, optional
By default 1abels is None so the index of the original observation is used to label
the leaf nodes. Otherwise, this is an n -sized list (or tuple). The labels [i] valueis
the text to put under the ¢ th leaf node only if it corresponds to an original observation
and not a non-singleton cluster.
count_sort : str or bool, optional
For each node n, the order (visually, from left-to-right) n’s two descendent links are
plotted is determined by this parameter, which can be any of the following values:
False Nothing is done.
’ascending’ or True
The child with the minimum number of original objects in its cluster is
plotted first.
’descendent’
The child with the maximum number of original objects in its cluster
is plotted first.
Note distance_sort and count_sort cannot both be True.
distance_sort : str or bool, optional
For each node n, the order (visually, from left-to-right) n’s two descendent links are
plotted is determined by this parameter, which can be any of the following values:
False Nothing is done.
’ascending’ or True
The child with the minimum distance between its direct descendents is
plotted first.
’descending’
The child with the maximum distance between its direct descendents
is plotted first.
Note distance_sort and count_sort cannot both be True.
show_leaf_counts : bool, optional
When True, leaf nodes representing k£ > 1 original observation are labeled with the
number of observations they contain in parentheses.
no_plot : bool, optional
When True, the final rendering is not performed. This is useful if only the data struc-
tures computed for the rendering are needed or if matplotlib is not available.
no_labels : bool, optional
When True, no labels appear next to the leaf nodes in the rendering of the dendrogram.
leaf_rotation : double, optional
Specifies the angle (in degrees) to rotate the leaf labels. When unspecified, the rotation
is based on the number of nodes in the dendrogram (default is 0).
leaf_font_size : int, optional
Specifies the font size (in points) of the leaf labels. When unspecified, the size based
on the number of nodes in the dendrogram.
leaf_label_func : lambda or function, optional
When leaf label_func is a callable function, for each leaf with cluster index k <
2n — 1. The function is expected to return a string with the label for the leaf.
Indices £ < n correspond to original observations while indices £ > n correspond to
non-singleton clusters.
For example, to label singletons with their node id and non-singletons with their id,
count, and inconsistency coefficient, simply do:

5.3.

Hierarchical clustering (scipy.cluster.hierarchy) 281

SciPy Reference Guide, Release 0.16.0

>>> # First define the leaf label function.
>>> def 11f (id):

if id < n:

return str (id)

else:
>>> return '| 1" % (id, count, R[n-id,3])
>>>
>>> # The text for the leaf nodes is going to be big so force
>>> # a rotation of 90 degrees.
>>> dendrogram(Z, leaf_label_func=11f, leaf_rotation=90)

show_contracted : bool, optional
When True the heights of non-singleton nodes contracted into a leaf node are plotted
as crosses along the link connecting that leaf node. This really is only useful when
truncation is used (see t runcate_mode parameter).

link_color_func : callable, optional
If given, link_color_function is called with each non-singleton id corresponding to
each U-shaped link it will paint. The function is expected to return the color to paint
the link, encoded as a matplotlib color string code. For example:

>>> dendrogram(Z, link_color_func=lambda k: colors[k])

colors the direct links below each untruncated non-singleton node k using
colors[k].

ax : matplotlib Axes instance, optional
If None and no_plot is not True, the dendrogram will be plotted on the current axes.
Otherwise if no_plot is not True the dendrogram will be plotted on the given Axes
instance. This can be useful if the dendrogram is part of a more complex figure.

above_threshold_color : str, optional
This matplotlib color string sets the color of the links above the color_threshold. The
default is ‘b’.

Returns R : dict
A dictionary of data structures computed to render the dendrogram. Its has the fol-
lowing keys:
"color list’
A list of color names. The k’th element represents the color of the k’th

link.

’icoord’ and 'dcoord’
Each of them is a list of lists. Let icoord = [I1,
I2, ..., Ipl where Tk = [xkl, xk2, xk3, xk4] and
dcoord = [D1, D2, ..., Dp] where Dk = [ykl, yk2,
vk3, yk4], then the k’th link painted is (xk1, vkl1l) - (xk2,
yk2) - (xk3, yk3) - (xk4, yk4).

7ivl’ A list of labels corresponding to the leaf nodes.

’leaves’ Foreachi, H[1] == 7, cluster node j appears in position i in the

left-to-right traversal of the leaves, where j < 2n—1andi < n. If jis
less than n, the i-th leaf node corresponds to an original observation.
Otherwise, it corresponds to a non-singleton cluster.

These are data structures and routines for representing hierarchies as tree objects.

ClusterNode(id[, left, right, dist, count]) A tree node class for representing a cluster.
leaves_list(Z) Returns a list of leaf node ids
to_tree(Z[, rd]) Converts a hierarchical clustering encoded in the matrix Z (by linkage) into an easy-to-

class scipy.cluster.hierarchy.ClusterNode (id, left=None, right=None, dist=0, count=1)

282 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

A tree node class for representing a cluster.
Leaf nodes correspond to original observations, while non-leaf nodes correspond to non-singleton clusters.
The to_tree function converts a matrix returned by the linkage function into an easy-to-use tree representation.

See also:

to_tree for converting a linkage matrix Z into a tree object.

Methods

get_count() The number of leaf nodes (original observations) belonging to the cluster node nd.
get_1id() The identifier of the target node.

get_left() Return a reference to the left child tree object.

get_right() Returns a reference to the right child tree object.

is_leaf() Returns True if the target node is a leaf.

pre_order([func]) Performs pre-order traversal without recursive function calls.

ClusterNode.get_count ()
The number of leaf nodes (original observations) belonging to the cluster node nd. If the target node is a
leaf, 1 is returned.

Returns get_count : int
The number of leaf nodes below the target node.

ClusterNode.get_id()
The identifier of the target node.

For 0 <= 1 < n, i corresponds to original observation i. For n <= i < 2n-1, i corresponds to
non-singleton cluster formed at iteration i—n.

Returns id : int
The identifier of the target node.

ClusterNode.get_left ()
Return a reference to the left child tree object.

Returns left : ClusterNode
The left child of the target node. If the node is a leaf, None is returned.

ClusterNode.get_right ()
Returns a reference to the right child tree object.

Returns right : ClusterNode
The left child of the target node. If the node is a leaf, None is returned.

ClusterNode.is_leaf ()
Returns True if the target node is a leaf.

Returns leafness : bool
True if the target node is a leaf node.

ClusterNode.pre_order (func=<function <lambda> at Ox7fa4127d22a8>)
Performs pre-order traversal without recursive function calls.

When a leaf node is first encountered, func is called with the leaf node as its argument, and its result is
appended to the list.

For example, the statement:

5.3. Hierarchical clustering (scipy.cluster.hierarchy) 283

SciPy Reference Guide, Release 0.16.0

ids = root.pre_order (lambda x: x.id)

returns a list of the node ids corresponding to the leaf nodes of the tree as they appear from left to right.

Parameters func : function
Applied to each leaf ClusterNode object in the pre-order traversal. Given the
i’th leaf node in the pre-ordeR traversal n [i], the result of func(n[i]) is stored
in L[i]. If not provided, the index of the original observation to which the node
corresponds is used.

Returns L : list
The pre-order traversal.

scipy.cluster.hierarchy.leaves_list (Z)
Returns a list of leaf node ids

The return corresponds to the observation vector index as it appears in the tree from left to right. Z is a linkage
matrix.

Parameters 7 : ndarray
The hierarchical clustering encoded as a matrix. Z is a linkage matrix. See 1inkage
for more information.

Returns leaves_list : ndarray
The list of leaf node ids.

scipy.cluster.hierarchy.to_tree (Z, rd=Fualse)
Converts a hierarchical clustering encoded in the matrix Z (by linkage) into an easy-to-use tree object.

The reference r to the root ClusterNode object is returned.

Each ClusterNode object has a left, right, dist, id, and count attribute. The left and right attributes point to
ClusterNode objects that were combined to generate the cluster. If both are None then the ClusterNode object
is a leaf node, its count must be 1, and its distance is meaningless but set to 0.

Note: This function is provided for the convenience of the library user. ClusterNodes are not used as input to
any of the functions in this library.

Parameters 7 : ndarray

The linkage matrix in proper form (see the 1inkage function documentation).
rd : bool, optional

When False, a reference to the root ClusterNode object is returned. Otherwise, a tuple
(r,d) is returned. r is a reference to the root node while d is a dictionary mapping clus-
ter ids to ClusterNode references. If a cluster id is less than n, then it corresponds to a
singleton cluster (leaf node). See 1inkage for more information on the assignment
of cluster ids to clusters.

Returns L : List
The pre-order traversal.

These are predicates for checking the validity of linkage and inconsistency matrices as well as for checking isomor-
phism of two flat cluster assignments.

is_valid_im(R[, warning, throw, name]) Returns True if the inconsistency matrix passed is valid.
is_valid_linkage(Z[, warning, throw, name]) Checks the validity of a linkage matrix.

is_isomorphic(Tl, T2) Determines if two different cluster assignments are equivalent.
is_monotonic(Z) Returns True if the linkage passed is monotonic.

correspond(Z, Y) Checks for correspondence between linkage and condensed distance matrices
num_obs_linkage(Z) Returns the number of original observations of the linkage matrix passed.

scipy.cluster.hierarchy.is_valid_im (R, warning=False, throw=False, name=None)

284 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Returns True if the inconsistency matrix passed is valid.

It must be a n by 4 numpy array of doubles. The standard deviations R[:, 1] must be nonnegative. The link
counts R [:, 2] must be positive and no greater than n — 1.

Parameters R : ndarray
The inconsistency matrix to check for validity.
warning : bool, optional
When True, issues a Python warning if the linkage matrix passed is invalid.
throw : bool, optional
When True, throws a Python exception if the linkage matrix passed is invalid.
name : str, optional
This string refers to the variable name of the invalid linkage matrix.
Returns b : bool
True if the inconsistency matrix is valid.

scipy.cluster.hierarchy.is_valid_linkage (Z, warning=False, throw=False, name=None)
Checks the validity of a linkage matrix.

A linkage matrix is valid if it is a two dimensional ndarray (type double) with n rows and 4 columns. The first
two columns must contain indices between 0 and 2n — 1. For a given row i, 0 < Z[i,0] < i+ n — 1 and
0 < Z[i,1] < i+ mn —1 (ie. a cluster cannot join another cluster unless the cluster being joined has been
generated.)

Parameters 7 : array_like
Linkage matrix.
warning : bool, optional
When True, issues a Python warning if the linkage matrix passed is invalid.
throw : bool, optional
When True, throws a Python exception if the linkage matrix passed is invalid.
name : str, optional
This string refers to the variable name of the invalid linkage matrix.
Returns b : bool
True iff the inconsistency matrix is valid.

scipy.cluster.hierarchy.is_isomorphic (TI, 72)
Determines if two different cluster assignments are equivalent.

Parameters T1 : array_like
An assignment of singleton cluster ids to flat cluster ids.
T2 : array_like
An assignment of singleton cluster ids to flat cluster ids.
Returns b : bool
Whether the flat cluster assignments 7'/ and 72 are equivalent.

scipy.cluster.hierarchy.is_monotonic (Z)
Returns True if the linkage passed is monotonic.

The linkage is monotonic if for every cluster s and ¢ joined, the distance between them is no less than the
distance between any previously joined clusters.

Parameters Z : ndarray
The linkage matrix to check for monotonicity.
Returns b : bool
A boolean indicating whether the linkage is monotonic.

scipy.cluster.hierarchy.correspond(Z,Y)
Checks for correspondence between linkage and condensed distance matrices

They must have the same number of original observations for the check to succeed.

5.3. Hierarchical clustering (scipy.cluster.hierarchy) 285

SciPy Reference Guide, Release 0.16.0

This function is useful as a sanity check in algorithms that make extensive use of linkage and distance matrices
that must correspond to the same set of original observations.

Parameters 7 : array_like
The linkage matrix to check for correspondence.
Y : array_like
The condensed distance matrix to check for correspondence.
Returns b : bool
A boolean indicating whether the linkage matrix and distance matrix could possibly
correspond to one another.

scipy.cluster.hierarchy.num_obs_linkage (Z)
Returns the number of original observations of the linkage matrix passed.

Parameters 7 : ndarray

The linkage matrix on which to perform the operation.
Returns n: int

The number of original observations in the linkage.

Utility routines for plotting:

set_link_color_palette(palette) Set list of matplotlib color codes for dendrogram color_threshold.

scipy.cluster.hierarchy.set_link_color_palette (palette)
Set list of matplotlib color codes for dendrogram color_threshold.

Parameters palette : list
A list of matplotlib color codes. The order of the color codes is the order in which the
colors are cycled through when color thresholding in the dendrogram.

5.3.1 References

* MATLAB and MathWorks are registered trademarks of The MathWorks, Inc.

* Mathematica is a registered trademark of The Wolfram Research, Inc.

5.4 Constants (scipy.constants)

Physical and mathematical constants and units.

5.4.1 Mathematical constants

pi Pi
golden | Golden ratio

286 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

5.4.2 Physical constants

C

speed of light in vacuum

mu_0

the magnetic constant i

epsilon_0

the electric constant (vacuum permittivity), €

h

the Planck constant A

hbar h=h/(2m)

G Newtonian constant of gravitation
g standard acceleration of gravity
e elementary charge

R molar gas constant

alpha fine-structure constant

N_A Avogadro constant

k Boltzmann constant

sigma Stefan-Boltzmann constant o
Wien Wien displacement law constant
Rydberg Rydberg constant

m_e electron mass

m_p proton mass

m_n neutron mass

Constants database

In addition to the above variables, scipy.constants also contains the 2010 CODATA recommended values [CO-
DATA2010] database containing more physical constants.

value(key) Value in physical_constants indexed by key
unit(key) Unit in physical_constants indexed by key
precision(key) Relative precision in physical_constants indexed by key

£ind([sub, disp])

Return list of codata.physical_constant keys containing a given string.

ConstantWarning Accessing a constant no longer in current CODATA data set

scipy.constants.value (key)
Value in physical_constants indexed by key

Parameters

Returns

See also:

codata

key : Python string or unicode
Key in dictionary physical constants
value : float
Value in physical_constants corresponding to key

not itself possess a docstring.

Examples

>>> from scipy.constants import codata
>>> codata.value('elementary charge')
1.602176487e-019

scipy.constants.unit (key)
Unit in physical_constants indexed by key

Contains the description of physical constants, which, as a dictionary literal object, does

5.4. Constants (scipy.constants)

287

SciPy Reference Guide, Release 0.16.0

Parameters key : Python string or unicode
Key in dictionary physical_ constants
Returns unit : Python string

Unitin physical_constants corresponding to key

See also:

codata Contains the description of physical_constants, which, as a dictionary literal object, does
not itself possess a docstring.

Examples

>>> from scipy.constants import codata
>>> codata.unit (u'proton mass')
lkgl

scipy.constants.precision (key)
Relative precision in physical_constants indexed by key

Parameters key : Python string or unicode

Key in dictionary physical_ constants
Returns prec : float

Relative precision in physical_constants corresponding to key

See also:

codata Contains the description of physical_constants, which, as a dictionary literal object, does
not itself possess a docstring.

Examples

>>> from scipy.constants import codata
>>> codata.precision(u'proton mass')
4.96226989798e-08

scipy.constants. find (sub=None, disp=False)
Return list of codata.physical_constant keys containing a given string.

Parameters sub : str, unicode
Sub-string to search keys for. By default, return all keys.
disp : bool
If True, print the keys that are found, and return None. Otherwise, return the list of
keys without printing anything.
Returns keys : list or None
If disp is False, the list of keys is returned. Otherwise, None is returned.

See also:

codata Contains the description of physical_constants, which, as a dictionary literal object, does
not itself possess a docstring.

exception scipy.constants.ConstantWarning
Accessing a constant no longer in current CODATA data set

scipy.constants.physical_constants

Dictionary of physical constants, of the format physical_constants[name] = (value, unit,
uncertainty).

288 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Available constants:

5.4. Constants (scipy.constants) 289

SciPy Reference Guide, Release 0.16.0

alpha particle mass 6.64465675e-27 kg

alpha particle mass energy equivalent 5.97191967e-101]

alpha particle mass energy equivalent in MeV 3727.37924 MeV

alpha particle mass in u 4.00150617913 u

alpha particle molar mass 0.00400150617912 kg mol~-1
alpha particle-electron mass ratio 7294.2995361

alpha particle-proton mass ratio 3.97259968933

Angstrom star

1.00001495e-10 m

atomic mass constant 1.660538921e-27 kg
atomic mass constant energy equivalent 1.492417954e-101]
atomic mass constant energy equivalent in MeV 931.494061 MeV
atomic mass unit—-electron volt relationship 931494061.0 eV

atomic mass unit-hartree relationship 34231776.845 E_h
atomic mass unit-hertz relationship 2.2523427168e+23 Hz
atomic mass unit-inverse meter relationship 7.5130066042e+14 m"-1
atomic mass unit-joule relationship 1.492417954e-10]
atomic mass unit-kelvin relationship 1.08095408e+13 K
atomic mass unit-kilogram relationship 1.660538921e-27 kg
atomic unit of 1st hyperpolarizability 3.206361449¢-53 CA3 m”3 JA-2
atomic unit of 2nd hyperpolarizability 6.23538054e-65 C"4 m™4 JA-3
atomic unit of action 1.054571726e-34J s
atomic unit of charge 1.602176565¢e-19 C
atomic unit of charge density 1.081202338e+12 C m"-3
atomic unit of current 0.00662361795 A
atomic unit of electric dipole mom. 8.47835326e-30 C m
atomic unit of electric field 5.14220652e+11 V m~-1
atomic unit of electric field gradient 9.717362e+21 V m"-2
atomic unit of electric polarizability 1.6487772754e-41 CN2 m"2 JA-1
atomic unit of electric potential 27.21138505 V

atomic unit of electric quadrupole mom. 4.486551331e-40 C m™2
atomic unit of energy 4.35974434e-18]
atomic unit of force 8.23872278e-08 N
atomic unit of length 5.2917721092e-11 m
atomic unit of mag. dipole mom. 1.854801936e-23 J TA-1
atomic unit of mag. flux density 235051.7464 T

atomic unit of magnetizability 7.891036607e-29 J TA-2
atomic unit of mass 9.10938291e-31 kg
atomic unit of mom.um 1.99285174e-24 kg m s™-1
atomic unit of permittivity 1.11265005605¢-10 F m”-1
atomic unit of time 2.4188843265¢e-17 s
atomic unit of velocity 2187691.26379 m s”-1

Avogadro constant

6.02214129¢+23 mol”-1

Bohr magneton 9.27400968¢e-24 J TA-1
Bohr magneton in eV/T 5.7883818066e-05 eV TA-1
Bohr magneton in Hz/T 13996245550.0 Hz TA-1
Bohr magneton in inverse meters per tesla 46.6864498 m"-1 TA-1
Bohr magneton in K/T 0.67171388 K TA-1

Bohr radius 5.2917721092¢-11 m

Boltzmann constant

1.3806488e-23 J K*-1

Boltzmann constant in eV/K

8.6173324e-05 eV K~-1

Continued on next page

290

Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.11 — continued from previous page

Boltzmann constant in Hz/K

20836618000.0 Hz K"-1

Boltzmann constant in inverse meters per kelvin

69.503476 m”-1 K-1

characteristic impedance of vacuum

376.730313462 ohm

classical electron radius

2.8179403267e-15 m

Compton wavelength

2.4263102389%¢-12 m

Compton wavelength over 2 pi

3.86159268e-13 m

conductance quantum

7.7480917346e-05 S

conventional value of Josephson constant

4.835979e+14 Hz V/-1

conventional value of von Klitzing constant 25812.807 ohm

Cu x unit 1.00207697e-13 m
deuteron g factor 0.8574382308
deuteron mag. mom. 4.33073489e-27] TA-1
deuteron mag. mom. to Bohr magneton ratio 0.0004669754556
deuteron mag. mom. to nuclear magneton ratio 0.8574382308

deuteron mass

3.34358348¢-27 kg

deuteron mass energy equivalent

3.00506297e-10J

deuteron mass energy equivalent in MeV

1875.612859 MeV

deuteron mass in u

2.01355321271 u

deuteron molar mass

0.00201355321271 kg mol”-1

deuteron rms charge radius

2.1424e-15m

deuteron-electron mag. mom. ratio -0.0004664345537
deuteron-electron mass ratio 3670.4829652
deuteron—-neutron mag. mom. ratio -0.44820652
deuteron-proton mag. mom. ratio 0.307012207

deuteron-proton mass ratio

1.99900750097

electric constant

8.85418781762e-12 F m*-1

electron charge to mass quotient

-1.758820088e+11 C kg"-1

electron g factor

-2.00231930436

electron gyromag. ratio 1.760859708e+11 s*-1 TA-1
electron gyromag. ratio over 2 pi 28024.95266 MHz T"-1
electron mag. mom. -9.2847643e-24 J TA-1
electron mag. mom. anomaly 0.00115965218076
electron mag. mom. to Bohr magneton ratio -1.00115965218
electron mag. mom. to nuclear magneton ratio -1838.2819709

electron mass

9.10938291e-31 kg

electron mass energy equivalent

8.18710506e-14]

electron mass energy equivalent in MeV 0.510998928 MeV
electron mass in u 0.00054857990946 u
electron molar mass 5.4857990946e-07 kg mol”-1
electron to alpha particle mass ratio 0.000137093355578
electron to shielded helion mag. mom. ratio 864.058257

electron to shielded proton mag. mom. ratio -658.2275971

electron volt

1.602176565e-19 J

electron volt—-atomic mass unit relationship

1.07354415e-09 u

electron volt-hartree relationship

0.03674932379 E_h

electron volt-hertz relationship

2.417989348e+14 Hz

electron volt-inverse meter relationship

806554.429 m"-1

electron volt-joule relationship

1.602176565e-19 J

electron volt-kelvin relationship

11604.519 K

electron volt-kilogram relationship

1.782661845e-36 kg

Continued on next page

5.4. Constants (scipy.constants)

291

SciPy Reference Guide, Release 0.16.0

Table 5.11 — continued from previous page

electron-deuteron mag. mom. ratio -2143.923498
electron-deuteron mass ratio 0.00027244371095
electron-helion mass ratio 0.00018195430761
electron-muon mag. mom. ratio 206.7669896
electron—-muon mass ratio 0.00483633166
electron—-neutron mag. mom. ratio 960.9205
electron—-neutron mass ratio 0.00054386734461
electron-proton mag. mom. ratio -658.2106848
electron-proton mass ratio 0.00054461702178
electron-tau mass ratio 0.000287592
electron-triton mass ratio 0.00018192000653

elementary charge

1.602176565e-19 C

elementary charge over h

2.417989348e+14 A JA-1

Faraday constant

96485.3365 C mol~-1

Faraday constant for conventional electric current

96485.3321 C_90 mol*-1

Fermi coupling constant

1.166364e-05 GeV~-2

fine-structure constant

0.0072973525698

first radiation constant

3.74177153e-16 W m”2

first radiation constant for spectral radiance

1.191042869e-16 W m”2 sr”-1

Hartree energy

4.35974434e-18]

Hartree energy in eV

27.21138505 eV

hartree-atomic mass unit relationship

2.9212623246e-08 u

hartree-electron volt relationship

27.21138505 eV

hartree-hertz relationship

6.57968392073e+15 Hz

hartree-inverse meter relationship

21947463.1371 m”-1

hartree-joule relationship

4.35974434e-18]

hartree-kelvin relationship 315775.04 K
hartree-kilogram relationship 4.85086979¢-35 kg
helion g factor -4.255250613

helion mag. mom. -1.074617486e-26 J T/-1
helion mag. mom. to Bohr magneton ratio -0.001158740958
helion mag. mom. to nuclear magneton ratio -2.127625306

helion mass 5.00641234e-27 kg
helion mass energy equivalent 4.49953902e-10J
helion mass energy equivalent in MeV 2808.391482 MeV
helion mass in u 3.0149322468 u
helion molar mass 0.0030149322468 kg mol*-1

helion-electron mass ratio

5495.8852754

helion-proton mass ratio

2.9931526707

hertz-atomic mass unit relationship

4.4398216689¢-24 u

hertz-electron volt relationship

4.135667516e-15 eV

hertz-hartree relationship

1.519829846e-16 E_h

hertz-inverse meter relationship

3.33564095198e-09 m*-1

hertz-joule relationship

6.62606957e-34J

hertz-kelvin relationship

4.7992434e-11 K

hertz-kilogram relationship

7.37249668e-51 kg

inverse fine—-structure constant 137.035999074
inverse meter—atomic mass unit relationship 1.3310250512e-15u
inverse meter—-electron volt relationship 1.23984193e-06 eV
inverse meter—-hartree relationship 4.55633525276e-08 E_h
Continued on next page
292 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.11 — continued from previous page

inverse meter-hertz relationship 299792458.0 Hz
inverse meter-joule relationship 1.986445684¢-25J
inverse meter-kelvin relationship 0.01438777 K
inverse meter-kilogram relationship 2.210218902e-42 kg
inverse of conductance quantum 12906.4037217 ohm
Josephson constant 4.8359787e+14 Hz VA-1
joule—atomic mass unit relationship 6700535850.0 u

joule—-electron volt relationship

6.24150934e+18 eV

joule-hartree relationship

2.29371248e+17 E_h

joule-hertz relationship

1.509190311e+33 Hz

joule-inverse meter relationship

5.03411701e+24 m"-1

joule-kelvin relationship

7.2429716e+22 K

joule-kilogram relationship

1.11265005605¢e-17 kg

kelvin—-atomic mass unit relationship

9.2510868e-14 u

kelvin-electron volt relationship

8.6173324e-05 eV

kelvin-hartree relationship

3.1668114e-06 E_h

kelvin-hertz relationship

20836618000.0 Hz

kelvin-inverse meter relationship

69.503476 m”-1

kelvin—-joule relationship

1.3806488e-23 J

kelvin-kilogram relationship

1.536179e-40 kg

kilogram—atomic mass unit relationship

6.02214129e+26 u

kilogram-electron volt relationship

5.60958885e+35 eV

kilogram-hartree relationship

2.061485968e+34 E_h

kilogram-hertz relationship

1.356392608e+50 Hz

kilogram—-inverse meter relationship

4.52443873e+41 m”-1

kilogram-joule relationship

8.98755178737e+16J

kilogram-kelvin relationship

6.5096582e+39 K

lattice parameter of silicon

5.431020504e-10 m

Loschmidt constant (273.15 K, 100 kPa)

2.6516462e+25 m"-3

Loschmidt constant (273.15 K, 101.325 kPa)

2.6867805e+25 m"-3

mag. constant

1.25663706144e-06 N A*-2

mag. flux quantum

2.067833758e-15 Wb

Mo x unit

1.00209952e-13 m

molar gas constant

8.3144621 J mol”-1 KA-1

molar mass constant

0.001 kg mol~-1

molar mass of carbon-12

0.012 kg mol~-1

molar Planck constant

3.9903127176e-10 J s mol~-1

molar Planck constant times c

0.119626565779 J m mol*-1

molar volume of ideal gas (273.15 K, 100 kPa)

0.022710953 m"3 mol”-1

molar volume of ideal gas (273.15 K, 101.325 kPa)

0.022413968 m”3 mol”-1

molar volume of silicon

1.205883301e-05 m"3 mol”-1

muon Compton wavelength

1.173444103e-14 m

muon Compton wavelength over 2 pi

1.867594294e-15 m

muon g factor -2.0023318418

muon mag. mom. -4.49044807e-26 J TA-1
muon mag. mom. anomaly 0.00116592091

muon mag. mom. to Bohr magneton ratio -0.00484197044
muon mag. mom. to nuclear magneton ratio -8.89059697

muon mass

1.883531475e-28 kg

muon mass energy equivalent

1.692833667e-111]

Continued on next page

5.4. Constants (scipy.constants)

293

SciPy Reference Guide, Release 0.16.0

Table 5.11 — continued from previous page

muon mass energy equivalent in MeV 105.6583715 MeV

muon mass in u 0.1134289267 u

muon molar mass 0.0001134289267 kg mol”-1
muon—-electron mass ratio 206.7682843
muon—-neutron mass ratio 0.1124545177
muon—-proton mag. mom. ratio -3.183345107
muon-proton mass ratio 0.1126095272
muon—-tau mass ratio 0.0594649

natural unit of action 1.054571726e-34J s
natural unit of action in eV s 6.58211928e-16 eV s
natural unit of energy 8.18710506e-14J
natural unit of energy in MeV 0.510998928 MeV
natural unit of length 3.86159268e-13 m
natural unit of mass 9.10938291e-31 kg
natural unit of mom.um 2.73092429e-22 kg m s”-1
natural unit of mom.um in MeV/c 0.510998928 MeV/c
natural unit of time 1.28808866833e-21 s
natural unit of velocity 299792458.0 m s”-1
neutron Compton wavelength 1.3195909068e-15 m
neutron Compton wavelength over 2 pi 2.1001941568e-16 m
neutron g factor -3.82608545

neutron gyromag. ratio 183247179.0 s”-1 TA-1
neutron gyromag. ratio over 2 pi 29.1646943 MHz T*-1
neutron mag. mom. -9.6623647e-27 J TA-1
neutron mag. mom. to Bohr magneton ratio -0.00104187563
neutron mag. mom. to nuclear magneton ratio -1.91304272

neutron mass 1.674927351e-27 kg
neutron mass energy equivalent 1.505349631e-1017J
neutron mass energy equivalent in MeV 939.565379 MeV
neutron mass in u 1.008664916 u

neutron molar mass 0.001008664916 kg mol~-1
neutron to shielded proton mag. mom. ratio -0.68499694
neutron-electron mag. mom. ratio 0.00104066882
neutron-electron mass ratio 1838.6836605
neutron—-muon mass ratio 8.892484
neutron-proton mag. mom. ratio -0.68497934
neutron-proton mass difference 2.30557392e-30
neutron-proton mass difference energy equivalent 2.0721465e-13
neutron-proton mass difference energy equivalent in MeV | 1.29333217
neutron-proton mass difference in u 0.00138844919
neutron-proton mass ratio 1.00137841917
neutron-tau mass ratio 0.52879

Newtonian constant of gravitation 6.67384e-11 m”3 kgn-1 sM-2
Newtonian constant of gravitation over h-bar c 6.70837e-39 (GeV/c"2)N-2
nuclear magneton 5.05078353e-27 J TA-1
nuclear magneton in eV/T 3.1524512605e-08 eV TA-1
nuclear magneton in inverse meters per tesla 0.02542623527 m”-1 TA-1
nuclear magneton in K/T 0.00036582682 K TA-1
nuclear magneton in MHz/T 7.62259357 MHz TA-1
Planck constant 6.62606957e-34J s

Continued on next page

294 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.11 — continued from previous page

Planck constant in eV s 4.135667516e-15 eV s
Planck constant over 2 pi 1.054571726e-34J s
Planck constant over 2 pi in eV s 6.58211928e-16 eV s
Planck constant over 2 pi times c¢ in MeV fm 197.3269718 MeV fm
Planck length 1.616199e-35 m
Planck mass 2.17651e-08 kg
Planck mass energy equivalent in GeV 1.220932e+19 GeV
Planck temperature 1.416833e+32 K
Planck time 5.39106e-44 s
proton charge to mass quotient 95788335.8 C kg”-1
proton Compton wavelength 1.32140985623e-15 m
proton Compton wavelength over 2 pi 2.1030891047e-16 m
proton g factor 5.585694713
proton gyromag. ratio 267522200.5 sM-1 TA-1
proton gyromag. ratio over 2 pi 42.5774806 MHz T"-1
proton mag. mom. 1.410606743e-26 J T-1
proton mag. mom. to Bohr magneton ratio 0.00152103221
proton mag. mom. to nuclear magneton ratio 2.792847356
proton mag. shielding correction 2.5694¢-05

proton mass 1.672621777e-27 kg
proton mass energy equivalent 1.503277484e-10]
proton mass energy equivalent in MeV 938.272046 MeV
proton mass in u 1.00727646681 u
proton molar mass 0.00100727646681 kg mol”-1
proton rms charge radius 8.775e-16 m
proton-electron mass ratio 1836.15267245
proton—-muon mass ratio 8.88024331
proton-neutron mag. mom. ratio -1.45989806
proton—-neutron mass ratio 0.99862347826
proton-tau mass ratio 0.528063

quantum of circulation

0.0003636947552 m”2 s*-1

quantum of circulation times 2

0.0007273895104 m”2 s-1

Rydberg constant 10973731.5685 m”-1
Rydberg constant times c in Hz 3.28984196036e+15 Hz
Rydberg constant times hc in eV 13.60569253 eV
Rydberg constant times hc in J 2.179872171e-18]
Sackur—-Tetrode constant (1 K, 100 kPa) -1.1517078
Sackur—-Tetrode constant (1 K, 101.325 kPa) -1.1648708

second radiation constant 0.01438777 m K
shielded helion gyromag. ratio 203789465.9 sh-1 TA-1
shielded helion gyromag. ratio over 2 pi 32.43410084 MHz T"-1
shielded helion mag. mom. -1.074553044¢-26 J TA-1
shielded helion mag. mom. to Bohr magneton ratio -0.001158671471
shielded helion mag. mom. to nuclear magneton ratio -2.127497718
shielded helion to proton mag. mom. ratio -0.761766558
shielded helion to shielded proton mag. mom. ratio -0.7617861313
shielded proton gyromag. ratio 267515326.8 sN-1 TA-1
shielded proton gyromag. ratio over 2 pi 42.5763866 MHz T"-1
shielded proton mag. mom. 1.410570499¢-26 J TA-1
shielded proton mag. mom. to Bohr magneton ratio 0.001520993128

Continued on next page

5.4. Constants (scipy.constants)

295

SciPy Reference Guide, Release 0.16.0

Table 5.11 — continued from previous page

shielded proton mag. mom. to nuclear magneton ratio 2.792775598

speed of light in vacuum

299792458.0 m s*-1

standard acceleration of gravity

9.80665 m s"-2

standard atmosphere

101325.0 Pa

standard-state pressure

100000.0 Pa

Stefan-Boltzmann constant

5.670373e-08 W m~"-2 K4

tau Compton wavelength

6.97787e-16 m

tau Compton wavelength over 2 pi

1.11056e-16 m

tau mass

3.16747¢-27 kg

tau mass energy equivalent

2.84678e-1017

tau mass energy equivalent in MeV

1776.82 MeV

tau mass in u

1.90749 u

tau molar mass

0.00190749 kg mol*-1

tau-electron mass ratio

3477.15

tau-muon mass ratio 16.8167
tau-neutron mass ratio 1.89111

tau-proton mass ratio 1.89372

Thomson cross section 6.652458734¢-29 m"2
triton g factor 5.957924896

triton mag. mom. 1.504609447e-26 J T-1
triton mag. mom. to Bohr magneton ratio 0.001622393657
triton mag. mom. to nuclear magneton ratio 2.978962448

triton mass

5.0073563e-27 kg

triton mass energy equivalent

4.50038741e-101J

triton mass energy equivalent in MeV

2808.921005 MeV

triton mass in u

3.0155007134 u

triton molar mass

0.0030155007134 kg mol~-1

triton—-electron mass ratio

5496.9215267

triton-proton mass ratio 2.9937170308
unified atomic mass unit 1.660538921e-27 kg
von Klitzing constant 25812.8074434 ohm
weak mixing angle 0.2223

Wien frequency displacement law constant

58789254000.0 Hz K*-1

Wien wavelength displacement law constant

0.0028977721 m K

{220} lattice spacing of silicon

1.920155714e-10 m

296

Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

5.4.3 Units

Sl prefixes
yotta | 10%*
zetta | 107!
exa 1018
peta 101°
tera 1072
giga 10°
mega 10°
kilo | 10°
hecto | 102
deka 10!

deci 1071

centi | 1072

milli | 1073

micro | 107

nano 1079

pico 10~ 12

femto | 10°1°

atto 10~ 18

zepto | 10721

Binary prefixes

kibi | 210
mebi | 2%0
gibi | 230
tebi | 270
pebi | 2°0
exbi | 250
zebi | 270
yobi | 280

Weight
gram 103 kg
metric_ton | 10° kg
grain one grain in kg
1b one pound (avoirdupous) in kg
oz one ounce in kg
stone one stone in kg
grain one grain in kg
long_ton one long ton in kg
short_ton one short ton in kg
troy_ounce | one Troy ounce in kg
troy_pound | one Troy pound in kg
carat one carat in kg
m_u atomic mass constant (in kg)

5.4. Constants (scipy.constants)

297

SciPy Reference Guide, Release 0.16.0

Angle

degree | degree in radians

arcmin | arc minute in radians

arcsec | arc second in radians

Time
minute one minute in seconds
hour one hour in seconds
day one day in seconds
week one week in seconds
year one year (365 days) in seconds
Julian_year | one Julian year (365.25 days) in seconds

Length
inch one inch in meters
foot one foot in meters
yard one yard in meters
mile one mile in meters
mil one mil in meters
pt one point in meters

survey_foot

one survey foot in meters

survey_mile

one survey mile in meters

nautical_mile

one nautical mile in meters

fermi

one Fermi in meters

angstrom one Angstrom in meters

micron one micron in meters

au one astronomical unit in meters

light_year one light year in meters

parsec one parsec in meters
Pressure

atm standard atmosphere in pascals

bar one bar in pascals
torr | one torr (mmHg) in pascals
psi one psi in pascals

Area

hectare | one hectare in square meters

acre one acre in square meters

298

Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Volume
liter one liter in cubic meters
gallon one gallon (US) in cubic meters
gallon_imp one gallon (UK) in cubic meters
fluid_ounce one fluid ounce (US) in cubic meters
fluid_ounce_imp | one fluid ounce (UK) in cubic meters
bbl one barrel in cubic meters

Speed

kmh kilometers per hour in meters per second

mph miles per hour in meters per second

mach | one Mach (approx., at 15 C, 1 atm) in meters per second
knot | one knot in meters per second

Temperature

zero_Celsius zero of Celsius scale in Kelvin
degree_Fahrenheit | one Fahrenheit (only differences) in Kelvins

C2K(C) Convert Celsius to Kelvin
K2C(K) Convert Kelvin to Celsius
F2C(F) Convert Fahrenheit to Celsius
C2F(C) Convert Celsius to Fahrenheit
F2K(F) Convert Fahrenheit to Kelvin
K2F(K) Convert Kelvin to Fahrenheit

scipy.constants.C2K (C)
Convert Celsius to Kelvin

Parameters C : array_like

Celsius temperature(s) to be converted.
Returns K : float or array of floats

Equivalent Kelvin temperature(s).

Notes

ComputesK = C + zero_Celsius where zero_Celsius =273.15, i.e., (the absolute value of) temper-
ature “absolute zero” as measured in Celsius.

Examples

>>> from scipy.constants.constants import C2K
>>> C2K(_np.array ([—-40, 40.01))
array ([233.15, 313.15])

scipy.constants.K2C (K)
Convert Kelvin to Celsius

Parameters K : array_like
Kelvin temperature(s) to be converted.
Returns C : float or array of floats

5.4. Constants (scipy.constants) 299

SciPy Reference Guide, Release 0.16.0

Equivalent Celsius temperature(s).
Notes

Computes C = K - zero_Celsius where zero_Celsius =273.15, i.e., (the absolute value of) temper-
ature “absolute zero” as measured in Celsius.

Examples

>>> from scipy.constants.constants import K2C
>>> K2C(_np.array ([233.15, 313.15]))
array ([-40., 40.7)

scipy.constants.F2C (F)
Convert Fahrenheit to Celsius

Parameters F : array_like

Fahrenheit temperature(s) to be converted.
Returns C : float or array of floats

Equivalent Celsius temperature(s).

Notes

ComputesC = (F - 32) / 1.8.

Examples

>>> from scipy.constants.constants import F2C
>>> F2C(_np.array ([—-40, 40.01))
array ([-40. , 4.444444447)

scipy.constants.C2F (C)
Convert Celsius to Fahrenheit

Parameters C : array_like

Celsius temperature(s) to be converted.
Returns F : float or array of floats
Equivalent Fahrenheit temperature(s).

Notes

ComputesF = 1.8 » C + 32.

Examples

>>> from scipy.constants.constants import C2F
>>> C2F (_np.array ([—-40, 40.01))
array ([-40., 104.1])

scipy.constants.F2K (F)
Convert Fahrenheit to Kelvin

Parameters F : array_like

Fahrenheit temperature(s) to be converted.
Returns K : float or array of floats
Equivalent Kelvin temperature(s).

Notes

Computes K = (F - 32)/1.8 + zero_Celsius where zero_Celsius =273.15, i.e., (the absolute
value of) temperature “absolute zero” as measured in Celsius.

300 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.constants.constants import F2K
>>> F2K(_np.array ([-40, 1041))

array ([

233.15, 313.15])

scipy.constants.K2F (K)
Convert Kelvin to Fahrenheit

Parameters K : array_like

Kelvin temperature(s) to be converted.

Returns F : float or array of floats

Notes

Computes

Equivalent Fahrenheit temperature(s).

F =1.8 » (K - zero_Celsius) + 32 where zero_Celsius =273.15, i.e., (the abso-

lute value of) temperature “absolute zero” as measured in Celsius.

Examples

>>> from scipy.constants.constants import K2F
>>> K2F (_np.array ([233.15, 313.151))

array ([—40., 104.7)
Energy
eVv one electron volt in Joules
calorie one calorie (thermochemical) in Joules

calorie_IT

one calorie (International Steam Table calorie, 1956) in Joules

erg one erg in Joules
Btu one British thermal unit (International Steam Table) in Joules
Btu_th one British thermal unit (thermochemical) in Joules
ton_TNT one ton of TNT in Joules

Power

| hp [one horsepower in waits

Force

dyn | one dyne in newtons

1bf | one pound force in newtons

kgf | one kilogram force in newtons

Optics

lambda2nu(lambda_) Convert wavelength to optical frequency
nu2lambda(nu) Convert optical frequency to wavelength.

5.4. Constants (scipy.constants) 301

SciPy Reference Guide, Release 0.16.0

scipy.constants.lambda2nu (lambda_

Convert wavelength to optical frequency

)

Parameters lambda_ : array_like
Wavelength(s) to be converted.

Returns nu : float or array of floats
Equivalent optical frequency.

Notes

Computes nu = ¢ / lambda where ¢ =299792458.0, i.e., the (vacuum) speed of light in meters/second.

Examples

>>> from scipy.constants.constants import lambdaZnu
>>> lambdaznu(_np.array((l, speed_of_light)))
array ([2.99792458e+08, 1.00000000e+007)

scipy.constants.nu2lambda (nu)

Convert optical frequency to wavelength.

Parameters nu : array_like

Optical frequency to be converted.
Returns lambda : float or array of floats
Equivalent wavelength(s).

Notes

Computes lambda = ¢ / nu where ¢ =299792458.0, i.e., the (vacuum) speed of light in meters/second.

Examples

>>> from scipy.constants.constants import nu2lambda
>>> nu2lambda (_np.array((l, speed_of_light)))
array ([2.99792458e+08, 1.00000000e+007)

5.4.4 References

5.5 Discrete Fourier transforms (scipy. £ftpack)

5.5.1 Fast Fourier Transforms (FFTs)

fft(x[, n, axis, overwrite_x])

Return discrete Fourier transform of real or complex sequence.

ifft(x[, n, axis, overwrite_x])

Return discrete inverse Fourier transform of real or complex sequence.

£ £t 2(x[, shape, axes, overwrite_x])

2-D discrete Fourier transform.

ifft2(x[, shape, axes, overwrite_x])

2-D discrete inverse Fourier transform of real or complex sequence.

fftn(x[, shape, axes, overwrite_x])

Return multidimensional discrete Fourier transform.

ifftn(x[, shape, axes, overwrite_x])

Return inverse multi-dimensional discrete Fourier transform of arbitrary type sequence

r £ ft(x[, n, axis, overwrite_x])

Discrete Fourier transform of a real sequence.

irfft(x[, n, axis, overwrite_x])

Return inverse discrete Fourier transform of real sequence x.

dct(x[, type, n, axis, norm, overwrite_x])

Return the Discrete Cosine Transform of arbitrary type sequence x.

idct(x[, type, n, axis, norm, overwrite_x])

Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.

dst(x[, type, n, axis, norm, overwrite_x])

Return the Discrete Sine Transform of arbitrary type sequence X.

Continued on next pag

302

Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.14 — continued from previous page

idst(x[, type, n, axis, norm, overwrite_x]) Return the Inverse Discrete Sine Transform of an arbitrary type sequence.

scipy.fftpack.££ft (x, n=None, axis=-1, overwrite_x=False)
Return discrete Fourier transform of real or complex sequence.

The returned complex array contains y (0) , v (1), ..., y(n-1) where
v(j) = (x *» exp(-2+pi*sqgrt (-1)*j*np.arange (n)/n)).sum().

Parameters x : array_like
Array to Fourier transform.
n : int, optional
Length of the Fourier transform. If n < x.shape[axis], x is truncated.
If n > x.shape[axis], x is zero-padded. The default results in n =
x.shape[axis].
axis : int, optional
Axis along which the fft’s are computed; the default is over the last axis (i.e.,
axis=-1).
overwrite_x : bool, optional
If True, the contents of x can be destroyed; the default is False.
Returns z : complex ndarray
with the elements:

(y(0),y(1),..,y(n/2),y(1-n/2), ...,y (-1)] if n is even
ly(0),y(1),..,y((n-1)/2),y(=(n-1)/2),...,y(-1)] 1if n is odd
where:

y(3) = sum[k=0..n-1] x[k] % exp(-sqgrt(-1)=*Jjxkx 2xpi/n), j = 0..n-1

Note that v (-j) = y(n—3j) .conjugate ().

See also:

ifft Inverse FFT

rfft FFT of a real sequence
Notes

The packing of the result is “standard”: If A = fft (a, n), then A[0O] contains the zero-frequency term,
A[1l:n/2] contains the positive-frequency terms, and A[n/2:] contains the negative-frequency terms, in
order of decreasingly negative frequency. So for an 8-point transform, the frequencies of the result are [0, 1, 2,
3, -4, -3, -2, -1]. To rearrange the fft output so that the zero-frequency component is centered, like [-4, -3, -2, -1,
0,1,2,3],use fftshift.

For n even, A[n/2] contains the sum of the positive and negative-frequency terms. For n even and x real,
A[n/2] will always be real.

This function is most efficient when rn is a power of two, and least efficient when 7 is prime.

If the data type of x is real, a “real FFT” algorithm is automatically used, which roughly halves the computation
time. To increase efficiency a little further, use r £ £t, which does the same calculation, but only outputs half of
the symmetrical spectrum. If the data is both real and symmetrical, the dct can again double the efficiency, by
generating half of the spectrum from half of the signal.

5.5. Discrete Fourier transforms (scipy . fftpack) 303

SciPy Reference Guide, Release 0.16.0

Examples

>>> from scipy.fftpack import fft, ifft

>>> x = np.arange(5)
>>> np.allclose (fft (ifft(x)), x, atol=le-15) # within numerical accuracy.
True

scipy.fftpack.ifft (x, n=None, axis=-1, overwrite_x=False)
Return discrete inverse Fourier transform of real or complex sequence.

The returned complex array contains v (0) , v (1), ..., y(n-1) where
v(J) = (x * exp(2+pirsqgrt (-1)*j*np.arange(n)/n)) .mean ().

Parameters X : array_like
Transformed data to invert.
n : int, optional
Length of the inverse Fourier transform. If n < x.shape[axis], x is trun-
cated. If n > x.shape[axis], x is zero-padded. The default results in n =
x.shape[axis].
axis : int, optional
Axis along which the ifft’s are computed; the default is over the last axis (i.e.,
axis=-1).
overwrite_x : bool, optional
If True, the contents of x can be destroyed; the default is False.
Returns ifft : ndarray of floats
The inverse discrete Fourier transform.

See also:
frt Forward FFT

Notes
This function is most efficient when r is a power of two, and least efficient when 7 is prime.

If the data type of x is real, a “real IFFT” algorithm is automatically used, which roughly halves the computation
time.

scipy.fftpack.f£t2 (x, shape=None, axes=(-2, -1), overwrite_x=False)
2-D discrete Fourier transform.

Return the two-dimensional discrete Fourier transform of the 2-D argument x.

See also:
fftn for detailed information.
scipy.fftpack.if£ft2 (x, shape=None, axes=(-2, -1), overwrite_x=False)
2-D discrete inverse Fourier transform of real or complex sequence.
Return inverse two-dimensional discrete Fourier transform of arbitrary type sequence X.
See if ft for more information.
See also:

fft2,ifft

304 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.fftpack.£fftn (x, shape=None, axes=None, overwrite_x=False)

Return multidimensional discrete Fourier transform.
The returned array contains:

v[ij_1,..,3_d] = sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
x[k_1,..,k_d] x prod[i=1..d] exp(-sqgrt(-1)*2+pi/n_i * Jj_1i » k_1i)

where d = len(x.shape) and n = x.shape. Note that y[..., -j_i, ...] = y[..., n_i-j_1,
.].conjugate ().

Parameters X : array_like
The (n-dimensional) array to transform.
shape : tuple of ints, optional
The shape of the result. If both shape and axes (see below) are None,
shape is x.shape; if shape is None but axes is not None, then shape is
scipy.take (x.shape, axes, axis=0).Ifshape[i] > x.shape[il],
the i-th dimension is padded with zeros. If shape[i] < x.shapel[i], the i-th
dimension is truncated to length shape [i].
axes : array_like of ints, optional
The axes of x (y if shape is not None) along which the transform is applied.
overwrite_x : bool, optional
If True, the contents of x can be destroyed. Default is False.
Returns y : complex-valued n-dimensional numpy array
The (n-dimensional) DFT of the input array.

See also:

ifftn

Examples

>>> from scipy.fftpack import fftn, ifftn

>>> y = (-np.arange(l6), 8 — np.arange(l6), np.arange(16))
>>> np.allclose(y, fftn(ifftn(y)))
True

scipy.fftpack.ifftn (x, shape=None, axes=None, overwrite_x=False)

Return inverse multi-dimensional discrete Fourier transform of arbitrary type sequence x.
The returned array contains:

v[j_1,..,3.d] = 1/p * sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
x[k_1,..,k_d] » prod[i=1l..d] exp(sqgrt(-1)*2xpi/n_1i *» Jj_1i = k_1i)

where d = len(x.shape),n = x.shape,andp = prod[i=1..d] n_i.
For description of parameters see £ ftn.

See also:

fftn for detailed information.

scipy.fftpack.rfft (x, n=None, axis=-1, overwrite_x=False)

Discrete Fourier transform of a real sequence.

Parameters x : array_like, real-valued
The data to transform.
n : int, optional

5.5. Discrete Fourier transforms (scipy . fftpack) 305

SciPy Reference Guide, Release 0.16.0

Defines the length of the Fourier transform. If n is not specified (the default)
then n = x.shape[axis]. If n < x.shape[axis], x is truncated, if n >
x.shape [axis], x is zero-padded.

axis : int, optional
The axis along which the transform is applied. The default is the last axis.

overwrite_x : bool, optional
If set to true, the contents of x can be overwritten. Default is False.

Returns z : real ndarray

The returned real array contains:

[y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2))] if n is even
[y(0),Re(y (1)), Im(y(1)),...,Re(y(n/2)),Im(y(n/2))] if n is odd
where:

v (j) = sum[k=0..n-1] x[k] » exp(-sqrt(-1)*Jj*xk*2xpi/n)

3 =0..n"1

Note that y (-j) == y(n-J) .conjugate ().

See also:

fft,irfft, scipy.fftpack.basic

Notes

Within numerical accuracy, y == rfft (irfft(y)).

Examples

>>> from scipy.fftpack import fft, rfft

>>> a = [9, -9, 1, 3]

>>> fft (a)

array ([4. +0.7, 8.+12.7, 16. +0.7, 8.-12.731)
>>> rfft (a)

array ([4., 8., 12., 16.])

scipy.fftpack.irfft (x, n=None, axis=-1, overwrite_x=False)
Return inverse discrete Fourier transform of real sequence x.

The contents of x are interpreted as the output of the r £ £t function.

Parameters x : array_like
Transformed data to invert.
n : int, optional
Length of the inverse Fourier transform. If n < x.shape[axis], x is truncated. If n >
x.shape[axis], x is zero-padded. The default results in n = x.shape[axis].
axis : int, optional
Axis along which the ifft’s are computed; the default is over the last axis (i.e., axis=-1).
overwrite_x : bool, optional
If True, the contents of x can be destroyed; the default is False.
Returns irfft : ndarray of floats
The inverse discrete Fourier transform.

See also:

rfft,ifft

Notes

The returned real array contains:

306 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

[y(0),y(1),...,y(n-1)]

where for n is even:

v(3j) = 1/n (sum[k=1..n/2-1] (x[2xk-1]+sqgrt (-1)*x[2*k])
* exp(sqgrt (-1) *jxk* 2*pi/n)
+ c.c. + x[0] + (-1)*x(3J) x[n-11)

and for n is odd:

yv(3j) = 1/n (sum[k=1l..(n-1)/2] (x[2+*k—-1]+sqgrt (-1)*x[2xk])
* exp(sqgrt (=1) «jxkx 2%pi/n)
+ c.c. + x[0])

c.c. denotes complex conjugate of preceding expression.
For details on input parameters, see rf ft.

scipy.fftpack.det (x, type=2, n=None, axis=-1, norm=None, overwrite_x="False)
Return the Discrete Cosine Transform of arbitrary type sequence X.

Parameters X : array_like
The input array.
type : {1, 2, 3}, optional
Type of the DCT (see Notes). Default type is 2.
n : int, optional
Length of the transform. If n < x.shape[axis], x is truncated. If
n > x.shapelaxis], x is zero-padded. The default results in n =
x.shapelaxis].
axis : int, optional
Axis along which the dct is computed; the default is over the last axis (i.e., axis=-1).
norm : {None, ‘ortho’}, optional
Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
If True, the contents of x can be destroyed; the default is False.
Returns y : ndarray of real
The transformed input array.

See also:
idct Inverse DCT

Notes
For a single dimension array x, dct (x, norm=’ortho’) isequal to MATLAB dct (x).

There are theoretically 8 types of the DCT, only the first 3 types are implemented in scipy. ‘The’ DCT generally
refers to DCT type 2, and ‘the’ Inverse DCT generally refers to DCT type 3.

Typel
There are several definitions of the DCT-I; we use the following (for norm=None):

N-2
v k] = x[0] + (-1)x*k x[N-1] + 2 *x sum x[n]xcos(pixk*n/ (N-1))
n=1

Only None is supported as normalization mode for DCT-1. Note also that the DCT-I is only supported for input
size > 1

Type II

5.5. Discrete Fourier transforms (scipy . fftpack) 307

SciPy Reference Guide, Release 0.16.0

There are several definitions of the DCT-II; we use the following (for norm=None):

N-1
y[k] = 2% sum x[n]xcos (pixkx(2n+1)/(2%«N)), 0 <= k < N.
n=0

If norm='ortho’, y [k] is multiplied by a scaling factor f:

f = sqrt(1/(4*N)) if k = 0,

f = sqrt(1/(2+«N)) otherwise.
Which makes the corresponding matrix of coefficients orthonormal (00’ = Id).
Type 111

There are several definitions, we use the following (for norm=None):

N-1
yv[k] = x[0] + 2 % sum x[n]*cos(pix (k+0.5)*n/N), 0 <= k < N.
n=1

or, for norm=’ortho’ and 0 <=k <N:

N-1
y[k] = x[0] / sqrt(N) + sgrt(2/N) * sum x[n]*cos (pi* (k+0.5)*n/N)
n=1

The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up to a factor 2N. The orthonormalized
DCT-III is exactly the inverse of the orthonormalized DCT-II.

References

[R36], [R37]

Examples

The Type 1 DCT is equivalent to the FFT (though faster) for real, even-symmetrical inputs. The output is also
real and even-symmetrical. Half of the FFT input is used to generate half of the FFT output:

>>> from scipy.fftpack import fft, dct

>>> fft(np.array([4., 3., 5., 10., 5., 3.]1)).real
array ([30., -8., 6., —-2., 6., -8.1])

>>> dct (np.array ([4., 3., 5., 10.]1), 1)

array ([30., -8., 6., -2.1)

scipy.fftpack.idet (x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)

Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.

Parameters x : array_like

The input array.

type : {1, 2, 3}, optional
Type of the DCT (see Notes). Default type is 2.

n : int, optional
Length of the transform. If n < x.shapel[axis], x is truncated. If
n > x.shapelaxis], x is zero-padded. The default results in n =
x.shape[axis].

axis : int, optional
Axis along which the idct is computed; the default is over the last axis (i.e.,
axis=-1).

norm : {None, ‘ortho’}, optional
Normalization mode (see Notes). Default is None.

308

Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

overwrite_x : bool, optional
If True, the contents of x can be destroyed; the default is False.
Returns idct : ndarray of real
The transformed input array.

See also:
dct Forward DCT

Notes
For a single dimension array x, idct (x, norm=’ortho’) isequal to MATLAB idct (x).
‘The’ IDCT is the IDCT of type 2, which is the same as DCT of type 3.

IDCT of type 1 is the DCT of type 1, IDCT of type 2 is the DCT of type 3, and IDCT of type 3 is the DCT of
type 2. For the definition of these types, see dct.

Examples

The Type 1 DCT is equivalent to the DFT for real, even-symmetrical inputs. The output is also real and even-
symmetrical. Half of the IFFT input is used to generate half of the IFFT output:

>>> from scipy.fftpack import ifft, idct

>>> ifft(np.array ([30., -8., 6., 2., 6., -8.1)) .real
array ([4., 3., 5., 10., 5., 3.1)

>>> idct (np.array ([30., -8., 6., -2.1), 1) / 6

array ([4., 3., 5., 10.17)

scipy.fftpack.dst (x, type=2, n=None, axis=-1, norm=None, overwrite_x="False)
Return the Discrete Sine Transform of arbitrary type sequence x.

Parameters x : array_like
The input array.
type : {1, 2, 3}, optional
Type of the DST (see Notes). Default type is 2.
n : int, optional
Length of the transform. If n < x.shape[axis], x is truncated. If
n > x.shapel[axis], x is zero-padded. The default results in n =
x.shape[axis].
axis : int, optional
Axis along which the dst is computed; the default is over the last axis (i.e., axis=-1).
norm : {None, ‘ortho’}, optional
Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
If True, the contents of x can be destroyed; the default is False.
Returns dst : ndarray of reals
The transformed input array.

See also:
idst Inverse DST

Notes
For a single dimension array x.

There are theoretically 8 types of the DST for different combinations of even/odd boundary conditions and
boundary off sets [R38], only the first 3 types are implemented in scipy.

5.5. Discrete Fourier transforms (scipy . fftpack) 309

SciPy Reference Guide, Release 0.16.0

Type I

There are several definitions of the DST-I; we use the following for norm=None. DST-I assumes the input is
odd around n=-1 and n=N.

N-1
y[k] = 2 % sum x[n]*sin(pi* (k+1)* (n+l)/ (N+1))
n=0

Only None is supported as normalization mode for DCT-I. Note also that the DCT-I is only supported for input
size > 1 The (unnormalized) DCT-I is its own inverse, up to a factor 2(N+1).

Type 11

There are several definitions of the DST-II; we use the following for norm=None. DST-II assumes the input is
odd around n=-1/2 and n=N-1/2; the output is odd around k=-1 and even around k=N-1

N-1
y[k] = 2% sum x[n]*sin(pix (k+1)*(n+0.5)/N), 0 <= k < N.
n=0

if norm='"ortho’, y [k] is multiplied by a scaling factor f
f = sqrt(1/(4*N)) if k ==

f = sqrt(1/(2+«N)) otherwise.

Type 111

There are several definitions of the DST-III, we use the following (for norm=None). DST-III assumes the input
is odd around n=-1 and even around n=N-1

N-2
yv[k] = x[N-1]*(-1)**xk + 2% sum x[n]*sin(pi* (k+0.5)*(n+1)/N), 0 <= k < N.
n=0

The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up to a factor 2N. The orthonormalized
DST-III is exactly the inverse of the orthonormalized DST-II.

New in version 0.11.0.

References

[R38]

scipy.fftpack.idst (x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)

Return the Inverse Discrete Sine Transform of an arbitrary type sequence.

Parameters x : array_like

The input array.

type : {1, 2, 3}, optional
Type of the DST (see Notes). Default type is 2.

n : int, optional
Length of the transform. If n < x.shape[axis], x is truncated. If
n > x.shapel[axis], x is zero-padded. The default results in n =
x.shapef[axis].

axis : int, optional
Axis along which the idst is computed; the default is over the last axis (i.e.,
axis=-1).

norm : {None, ‘ortho’}, optional
Normalization mode (see Notes). Default is None.

overwrite_x : bool, optional

310

Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

If True, the contents of x can be destroyed; the default is False.
Returns idst : ndarray of real
The transformed input array.

See also:
dst Forward DST

Notes
‘The’ IDST is the IDST of type 2, which is the same as DST of type 3.

IDST of type 1 is the DST of type 1, IDST of type 2 is the DST of type 3, and IDST of type 3 is the DST of type
2. For the definition of these types, see dst.

New in version 0.11.0.

5.5.2 Differential and pseudo-differential operators

dif £(x[, order, period, _cache]) Return k-th derivative (or integral) of a periodic sequence X.
tilbert(x, h[, period, _cache]) Return h-Tilbert transform of a periodic sequence X.
itilbert(x, h[, period, _cache]) Return inverse h-Tilbert transform of a periodic sequence x.
hilbert(x[, _cache]) Return Hilbert transform of a periodic sequence x.
ihilbert(x) Return inverse Hilbert transform of a periodic sequence x.

cs_diff(x,a,b[, period, _cache]) Return (a,b)-cosh/sinh pseudo-derivative of a periodic sequence.
sc_diff(x, a, b[, period, _cache]) Return (a,b)-sinh/cosh pseudo-derivative of a periodic sequence x.
ss_diff(x, a, b[, period, _cache]) Return (a,b)-sinh/sinh pseudo-derivative of a periodic sequence x.
cc_diff(x, a, b[, period, _cache]) Return (a,b)-cosh/cosh pseudo-derivative of a periodic sequence.
shift(x, a[, period, _cache]) Shift periodic sequence x by a: y(u) = x(u+a).

scipy.fftpack.diff (x, order=1, period=None, _cache={})
Return k-th derivative (or integral) of a periodic sequence X.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_J = pow(sgrt (-1)*jx2«pi/period, order) * x_7
y_0 = 0 if order is not 0.
Parameters X : array_like
Input array.
order : int, optional
The order of differentiation. Default order is 1. If order is negative, then integration is
carried out under the assumption that x_0 ==
period : float, optional
The assumed period of the sequence. Default is 2 xpi.
Notes
If sum(x, axis=0) = Othendiff (diff (x, k), -k) == x (within numerical accuracy).

For odd order and even len (x), the Nyquist mode is taken zero.

scipy.fftpack.tilbert (x, h, period=None, _cache={})
Return h-Tilbert transform of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

5.5. Discrete Fourier transforms (scipy . fftpack) 311

SciPy Reference Guide, Release 0.16.0

y_J = sqgrt(-1)+coth(j*~h+2+pi/period) =+ x_j
y_0 =0
Parameters x : array_like
The input array to transform.
h : float
Defines the parameter of the Tilbert transform.
period : float, optional
The assumed period of the sequence. Default period is 2 xpi.
Returns tilbert : ndarray
The result of the transform.
Notes
If sum(x, axis=0) == Oandn = len(x) isoddthentilbert (itilbert (x)) == x.
If2 « pi » h / periodisapproximately 10 or larger, then numerically ti1bert == hilbert (the-

oretically oo-Tilbert == Hilbert).
For even len (x), the Nyquist mode of x is taken zero.

scipy.fftpack.itilbert (x, h, period=None, _cache={})
Return inverse h-Tilbert transform of a periodic sequence x.

If x_j and y__7 are Fourier coefficients of periodic functions x and y, respectively, then:

yv_j = —sqrt(-1)+tanh (j+h+«2+pi/period) * x_j
y_0 =0
For more details, see tilbert.

scipy.fftpack.hilbert (x, _cache={})
Return Hilbert transform of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_J = sqgrt(-1)xsign(j) * x_Jj
y_0 =0
Parameters x : array_like
The input array, should be periodic.
_cache : dict, optional
Dictionary that contains the kernel used to do a convolution with.
Returns y : ndarray
The transformed input.
Notes
If sum(x, axis=0) == 0Othenhilbert (ihilbert (x)) == x.

For even len(x), the Nyquist mode of x is taken zero.

The sign of the returned transform does not have a factor -1 that is more often than not found in the definition
of the Hilbert transform. Note also that scipy.signal.hilbert does have an extra -1 factor compared to
this function.

scipy.fftpack.ihilbert (x)
Return inverse Hilbert transform of a periodic sequence x.

If x__j and y__7 are Fourier coefficients of periodic functions x and y, respectively, then:

312 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

= —sqgrt(-1)*sign(j) » x_j
0

v_J
y_0

scipy.fftpack.es_diff (x, a, b, period=None, _cache={})
Return (a,b)-cosh/sinh pseudo-derivative of a periodic sequence.

If x__j and y__7 are Fourier coefficients of periodic functions x and y, respectively, then:

y_J = —sqgrt(-1) xcosh(j*a*2+pi/period)/sinh (j*«b*2+pi/period) * x_j
y_0 =0
Parameters x : array_like
The array to take the pseudo-derivative from.
a, b : float
Defines the parameters of the cosh/sinh pseudo-differential operator.
period : float, optional
The period of the sequence. Default period is 2+p1i.
Returns cs_diff : ndarray
Pseudo-derivative of periodic sequence x.
Notes

For even len(x), the Nyquist mode of x is taken as zero.

scipy.fftpack.sc_diff (x, a, b, period=None, _cache={})
Return (a,b)-sinh/cosh pseudo-derivative of a periodic sequence X.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_3 = sqgrt(-1)=*sinh(j*a+2+pi/period)/cosh(j*b*2xpi/period) * x_Jj
y_0 =0
Parameters x : array_like
Input array.
a,b : float
Defines the parameters of the sinh/cosh pseudo-differential operator.
period : float, optional
The period of the sequence x. Default is 2*pi.
Notes
sc_diff(cs_diff(x,a,b),b,a) == xForeven len (x), the Nyquist mode of x is taken as zero.

scipy.fftpack.ss_diff (x, a, b, period=None, _cache={})
Return (a,b)-sinh/sinh pseudo-derivative of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_J = sinh(j*ax2xpi/period)/sinh (Jj+b*2xpi/period) *» x_j
y_0 a/b » x_0

Parameters x : array_like
The array to take the pseudo-derivative from.
a,b
Defines the parameters of the sinh/sinh pseudo-differential operator.
period : float, optional
The period of the sequence x. Default is 2 xp1i.

5.5. Discrete Fourier transforms (scipy . fftpack) 313

SciPy Reference Guide, Release 0.16.0

Notes
ss_diff(ss_diff(x,a,b),b,a) == x

scipy.fftpack.cec_diff (x, a, b, period=None, _cache={})
Return (a,b)-cosh/cosh pseudo-derivative of a periodic sequence.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_J = cosh(j*ax2xpi/period)/cosh(Jjxb*2xpi/period) *» x_j

Parameters x : array_like
The array to take the pseudo-derivative from.
a,b : float
Defines the parameters of the sinh/sinh pseudo-differential operator.
period : float, optional
The period of the sequence x. Default is 2 +pi.
Returns cc_diff : ndarray
Pseudo-derivative of periodic sequence x.

Notes

cc_diff (cc_diff(x,a,b),b,a) == x

scipy.fftpack.shift (x, a, period=None, _cache={})
Shift periodic sequence x by a: y(u) = x(u+a).

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

v_J = exp(jrax2+pi/period+rsqrt(-1)) » x_f

Parameters x : array_like
The array to take the pseudo-derivative from.
a: float
Defines the parameters of the sinh/sinh pseudo-differential
period : float, optional
The period of the sequences x and y. Default period is 2 «p1i.

5.5.3 Helper functions

fftshift(x[, axes]) Shift the zero-frequency component to the center of the spectrum.
ifftshift(x[, axes]) The inverse of fftshift.

fftfreqg(n],d]) Return the Discrete Fourier Transform sample frequencies.
rfftfreq(n|, d]) DFT sample frequencies (for usage with rfft, irfft).

scipy.fftpack.fftshift (x, axes=None)
Shift the zero-frequency component to the center of the spectrum.

This function swaps half-spaces for all axes listed (defaults to all). Note that v [0] is the Nyquist component
only if 1en (x) is even.

Parameters x : array_like
Input array.
axes : int or shape tuple, optional
Axes over which to shift. Default is None, which shifts all axes.
Returns y : ndarray

314 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

The shifted array.

See also:
ifftshift The inverse of fftshift.

Examples

>>> freqgs = np.fft.fftfreq(10, 0.1)

>>> freqgs

array ([O., 1., 2., 3., 4., -5., -4., -3., -2., -1.1)
>>> np.fft.fftshift (freqgs)

array([(-5., -4., -3., -2., -1., O., 1., 2., 3., 4.1)

Shift the zero-frequency component only along the second axis:

>>> freqgs = np.fft.fftfreq(9, d=1./9) .reshape (3, 3)
>>> fregs

array ([[0., 1., 2.1,

[3., 4., -4.1,

[-3., -2., -1.11)
>>> np.fft.fftshift (freqgs, axes=(1,))
array ([[2., 0., 1.1,

[-4., 3., 4.1,

[-1., =-3., =-2.11)

scipy.fftpack.ifftshift (x, axes=None)
The inverse of fftshift.

Parameters X : array_like
Input array.
axes : int or shape tuple, optional
Axes over which to calculate. Defaults to None, which shifts all axes.
Returns y : ndarray
The shifted array.

See also:
fftshift Shift zero-frequency component to the center of the spectrum.

Examples

>>> freqgs = np.fft.fftfreq(9, d=1./9) .reshape (3, 3)
>>> fregs

array ([[0., 1., 2.1,

[3., 4., -4.7,

[-3., -2., =-1.11)
>>> np.fft.ifftshift (np.fft.fftshift (freqgs))
array ([[O., 1., 2.1,

[3., 4., -4.71,

[-3., -2., =-1.11)

scipy.fftpack.fftfreq(n,d=1.0)
Return the Discrete Fourier Transform sample frequencies.

The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero
at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length n and a sample spacing d:

5.5. Discrete Fourier transforms (scipy . fftpack) 315

SciPy Reference Guide, Release 0.16.0

f = 1[0, 1, ..., n/2-1, -n/2, ..., =11 / (dxn) if n is even
£f =10, 1, ..., (n-1)/2, -(n-1)/2, ..., =11 / (d*n) if n is odd

Parameters n: int
Window length.
d : scalar, optional
Sample spacing (inverse of the sampling rate). Defaults to 1.
Returns f : ndarray
Array of length n containing the sample frequencies.

Examples

>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft(signal)

>>> n = signal.size

>>> timestep = 0.1

>>> freq = np.fft.fftfreq(n, d=timestep)

>>> freq

array ([0. , 1.25, 2.5, 3.75, -5. , -3.75, -2.5 , -1.25])

scipy.fftpack.rfftfreq(n,d=1.0)
DFT sample frequencies (for usage with rfft, irfft).

The returned float array contains the frequency bins in cycles/unit (with zero at the start) given a window length
n and a sample spacing d:

.,n/2-1,n/2-1,n/2]1/ (d*n) if n is even

f = 10,1,1,2,2,
0,1 2,2 .,n/2-1,n/2-1,n/2,n/21/ (d*n) if n is odd

f=10,1,1,2,2,.
Parameters n: int
Window length.
d : scalar, optional
Sample spacing. Default is 1.
Returns out : ndarray
The array of length n, containing the sample frequencies.

Examples

>>> from scipy import fftpack

>>> sig = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)

>>> sig_fft = fftpack.rfft (siqg)

>>> n = sig_fft.size

>>> timestep = 0.1

>>> freq = fftpack.rfftfreq(n, d=timestep)

>>> freq

array ([0. , 1.25, 1.25, 2.5, 2.5, 3.75, 3.75, 5. 1)

Note that fftshift, ifftshift and fftfreq are numpy functions exposed by f ft pack; importing them from
numpy should be preferred.

5.5.4 Convolutions (scipy. fftpack.convolve)

convolve(x,omega,[swap_real_imag,overwrite_x]) Wrapper for convolve.
convolve_z(x,omega_real,omega_imag,[overwrite_x]) Wrapper for convolve_z.
\ Continued on next page |

316 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Table 5.17 — continued from previous page

init_convolution_kernel(...) Wrapper for init_convolution_kernel.
destroy_convolve_cache() Wrapper for destroy_convolve_cache.
scipy.fftpack.convolve.convolve (x, omega[, swap_real_imag, overwrite_x]) = <fortran ob-
ject>

Wrapper for convolve.

Parameters X : input rank-1 array(‘d”) with bounds (n)
omega : input rank-1 array(‘d’) with bounds (n)

Returns y : rank-1 array(‘d’) with bounds (n) and x storage
Other Parameters
overwrite_x : input int, optional
Default: 0
swap_real_imag : input int, optional
Default: 0
scipy.fftpack.convolve.convolve_z (x, omega_real, omega_imag[, overwrite_x])y = <fortran
object>

Wrapper for convolve_z.

Parameters X : input rank-1 array(‘d”) with bounds (n)
omega_real : input rank-1 array(‘d’) with bounds (n)
omega_imag : input rank-1 array(‘d’) with bounds (n)

Returns y : rank-1 array(‘d’) with bounds (n) and x storage
Other Parameters
overwrite_x : input int, optional
Default: 0

scipy.fftpack.convolve.init_convolution_kernel (n, kernel_func[, d, zero_nyquist, ker-
nel junc_extra_args]) = <fortran ob-

ject>
Wrapper for init_convolution_kernel.
Parameters n : input int
kernel_func : call-back function
Returns omega : rank-1 array(‘d’) with bounds (n)
Other Parameters
d : input int, optional
Default: 0
kernel_func_extra_args : input tuple, optional
Default: ()

zero_nyquist : input int, optional
Default: d%?2

Notes
Call-back functions:

def kernel_func(k): return kernel_func
Required arguments:

k : input int
Return objects:

kernel_func : float

scipy.fftpack.convolve.destroy convolve_cache = <fortran object>
Wrapper for destroy_convolve_cache.

5.5. Discrete Fourier transforms (scipy . fftpack) 317

SciPy Reference Guide, Release 0.16.0

5.6 Integration and ODEs (scipy.integrate)

5.6.1 Integrating functions, given function object

quad(func, a, b[, args, full_output, ...]) Compute a definite integral.

dblguad(func, a, b, gfun, hfun[, args, ...]) Compute a double integral.

tplquad(func, a, b, gfun, hfun, gfun, rfun) Compute a triple (definite) integral.

nquad(func, ranges][, args, opts]) Integration over multiple variables.

fixed_quad(func, a, b[, args, n]) Compute a definite integral using fixed-order Gaussian quadrature.

quadrature(func, a, b[, args, tol, rtol, ...]) Compute a definite integral using fixed-tolerance Gaussian quadrature.

romberg(function, a, b[, args, tol, rtol, ...]) Romberg integration of a callable function or method.

scipy.integrate.quad (func, a, b, args=(), full_output=0, epsabs=1.49¢-08, epsrel=1.49¢-08, limit=50,
points=None, weight=None, wvar=None, wopts=None, maxp1=50, limlst=50)
Compute a definite integral.

Integrate func from a to b (possibly infinite interval) using a technique from the Fortran library QUADPACK.

Parameters func : function
A Python function or method to integrate. If func takes many arguments, it is inte-
grated along the axis corresponding to the first argument. If the user desires improved
integration performance, then f may instead be a ct ypes function of the form:
f(int n, double args[n]),
where args is an array of function arguments and n is the length of args.
f.argtypes should be set to (c_int, c_double), and f.restype should
be (c_double,).
a: float
Lower limit of integration (use -numpy.inf for -infinity).
b : float
Upper limit of integration (use numpy.inf for +infinity).
args : tuple, optional
Extra arguments to pass to func.
full_output : int, optional
Non-zero to return a dictionary of integration information. If non-zero, warning mes-
sages are also suppressed and the message is appended to the output tuple.
Returns y : float
The integral of func from a to b.
abserr : float
An estimate of the absolute error in the result.
infodict : dict
A dictionary containing additional information. Run scipy.integrate.quad_explain()
for more information.
message :
A convergence message.
explain :
Appended only with ‘cos’ or ‘sin” weighting and infinite integration limits, it contains
an explanation of the codes in infodict[’ierlst’]
Other Parameters
epsabs : float or int, optional
Absolute error tolerance.
epsrel : float or int, optional
Relative error tolerance.

318 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

limit : float or int, optional
An upper bound on the number of subintervals used in the adaptive algorithm.
points : (sequence of floats,ints), optional
A sequence of break points in the bounded integration interval where local difficulties
of the integrand may occur (e.g., singularities, discontinuities). The sequence does
not have to be sorted.
weight : float or int, optional
String indicating weighting function. Full explanation for this and the remaining ar-
guments can be found below.
wvar : optional
Variables for use with weighting functions.
wopts : optional
Optional input for reusing Chebyshev moments.
maxpl : float or int, optional
An upper bound on the number of Chebyshev moments.
limlst : int, optional
Upper bound on the number of cycles (>=3) for use with a sinusoidal weighting and
an infinite end-point.

See also:

dblquad double integral

tplquad triple integral

nquad n-dimensional integrals (uses quad recursively)
fixed quadfixed-order Gaussian quadrature

quadratureadaptive Gaussian quadrature

odeint ODE integrator
ode ODE integrator
simps integrator for sampled data
romb integrator for sampled data

scipy.special

for coefficients and roots of orthogonal polynomials
Notes
Extra information for quad() inputs and outputs

If full_output is non-zero, then the third output argument (infodict) is a dictionary with entries as tabulated
below. For infinite limits, the range is transformed to (0,1) and the optional outputs are given with respect to this
transformed range. Let M be the input argument limit and let K be infodict[’last’]. The entries are:

‘neval’ The number of function evaluations.

‘last’ The number, K, of subintervals produced in the subdivision process.

‘alist’ A rank-1 array of length M, the first K elements of which are the left end points of the subintervals
in the partition of the integration range.

‘blist’ A rank-1 array of length M, the first K elements of which are the right end points of the subinter-
vals.

‘rlist’ A rank-1 array of length M, the first K elements of which are the integral approximations on the
subintervals.

5.6. Integration and ODESs (scipy.integrate) 319

SciPy Reference Guide, Release 0.16.0

‘elist’ A rank-1 array of length M, the first K elements of which are the moduli of the absolute error
estimates on the subintervals.

‘Glord’ A rank-1 integer array of length M, the first L elements of which are pointers to the error estimates
over the subintervals with L=K if K<=M/2+2 or L=M+1-K otherwise. Let I be the sequence
infodict [’ iord’] and let E be the sequence infodict[’elist’]. ThenE[I[1]],

., E[I[L]] forms a decreasing sequence.

If the input argument points is provided (i.e. it is not None), the following additional outputs are placed in the
output dictionary. Assume the points sequence is of length P.

(3

‘pts

’ A rank-1 array of length P+2 containing the integration limits and the break points of the intervals

in ascending order. This is an array giving the subintervals over which integration will occur.

‘level’ A rank-1 integer array of length M (=limit), containing the subdivision levels of the subinter-
vals, i.e., if (aa,bb) is a subinterval of (pts[1], pts[2]) where pts[0] and pts[2]
are adjacent elements of infodict[’pts’], then (aa,bb) has level 1 if |bb-aal| =
[pts[2]-pts[l]]| %= 2x%(-1).

‘ndin’ A rank-1 integer array of length P+2. After the first integration over the intervals (pts[1], pts[2]),
the error estimates over some of the intervals may have been increased artificially in order to
put their subdivision forward. This array has ones in slots corresponding to the subintervals for
which this happens.

Weighting the integrand

The input variables, weight and wvar, are used to weight the integrand by a select list of functions. Different
integration methods are used to compute the integral with these weighting functions. The possible values of
weight and the corresponding weighting functions are.

weight | Weight function used wvar

‘cos’ cos(W*X) wvar = w

‘sin’ sin(w*x) wvar = w

‘alg’ g(x) = ((x-a)**alpha)*((b-x)**beta) | wvar = (alpha, beta)
‘alg-loga’ | g(x)*log(x-a) wvar = (alpha, beta)
‘alg-logb’ | g(x)*log(b-x) wvar = (alpha, beta)
‘alg-log’ g(x)*log(x-a)*log(b-x) wvar = (alpha, beta)
‘cauchy’ 1/(x-c) wvar = ¢

wvar holds the parameter w, (alpha, beta), or ¢ depending on the weight selected. In these expressions, a and b
are the integration limits.

For the ‘cos’ and ‘sin’ weighting, additional inputs and outputs are available.

For finite integration limits, the integration is performed using a Clenshaw-Curtis method which uses Chebyshev
moments. For repeated calculations, these moments are saved in the output dictionary:

‘momcom’ The maximum level of Chebyshev moments that have been computed, i.e., if M_c is
infodict [“momcom’] then the moments have been computed for intervals of length |b—a |
* 2%%(-1),1=0,1,...,M_c.

‘nnlog’ A rank-1 integer array of length M(=limit), containing the subdivision levels of the subintervals,
i.e., an element of this array is equal to 1 if the corresponding subinterval is |[b—a |+ 2x* (-1).

‘chebmo’ A rank-2 array of shape (25, maxpl) containing the computed Chebyshev moments. These can
be passed on to an integration over the same interval by passing this array as the second element
of the sequence wopts and passing infodict[’momcom’] as the first element.

If one of the integration limits is infinite, then a Fourier integral is computed (assuming w neq 0). If full_output
is 1 and a numerical error is encountered, besides the error message attached to the output tuple, a dictionary is
also appended to the output tuple which translates the error codes in the array info [’ ierlst’] to English

320 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

messages. The output information dictionary contains the following entries instead of ‘last’, ‘alist’, ‘blist’,
‘rlist’, and ‘elist’:

‘Ist’ The number of subintervals needed for the integration (call it K_f).
‘rsist’ A rank-1 array of length M_f=limlst, whose first K_f elements contain the integral contribu-
tion over the interval (a+ (k-1)c, a+kc) wherec = (2+«floor(|wl|) + 1) » pi /

|w| and k=1,2, ...,K_£f.

‘erlst’ A rank-1 array of length M_ f containing the error estimate corresponding to the interval in the
same position in infodict ["rslist’].

‘Gerlst’ A rank-1 integer array of length M_f containing an error flag corresponding to the interval in
the same position in infodict ["rslist’]. See the explanation dictionary (last entry in the
output tuple) for the meaning of the codes.

Examples

4 . .
Calculate fo 22dx and compare with an analytic result

>>> from scipy import integrate

>>> x2 = lambda x: x**2

>>> integrate.quad(x2, 0, 4)
(21.333333333333332, 2.3684757858670003e-13)
>>> print (4x+3 / 3.) # analytical result
21.3333333333

Calculate fooo e dx

>>> invexp = lambda x: np.exp(-x)
>>> integrate.quad (invexp, 0, np.inf)
(1.0, 5.842605999138044e-11)

>>> f = lambda x,a : a*x

>>> y, err = integrate.quad(f, 0, 1, args=(1l,))
>>> y

0.5

>>> y, err = integrate.quad(f, 0, 1, args=(3,))
>>> y

1.5

Calculate fol 2% 4 y2dz with ctypes, holding y parameter as 1:

testlib.c =>
double func(int n, double args([n]) {
return args[0]xargs[0] + args[l]*args[l];}
compile to library testlib.x

>>> from scipy import integrate

>>> import ctypes

>>> 1lib = ctypes.CDLL('/home/.../testlib.*") #use absolute path

>>> lib.func.restype = ctypes.c_double

>>> lib.func.argtypes = (ctypes.c_int,ctypes.c_double)

>>> integrate.quad(lib.func,0,1, (1))

(1.3333333333333333, 1.4802973661668752e-14)

>>> print ((1.0%x%3/3.0 + 1.0) - (0.0%%x3/3.0 + 0.0)) #Analytic result
1.3333333333333333

scipy.integrate.dblquad (func, a, b, gfun, hfun, args=(), epsabs=1.49e-08, epsrel=1.49¢-08)
Compute a double integral.

5.6. Integration and ODESs (scipy.integrate) 321

SciPy Reference Guide, Release 0.16.0

Return the double (definite) integral of func (y, x) fromx = a..bandy = gfun(x)..hfun (x).

Parameters

Returns

See also:

func : callable
A Python function or method of at least two variables: y must be the first argument
and x the second argument.
a, b : float
The limits of integration in x: a < b
gfun : callable
The lower boundary curve in y which is a function taking a single floating point argu-
ment (x) and returning a floating point result: a lambda function can be useful here.
hfun : callable
The upper boundary curve in y (same requirements as gfun).
args : sequence, optional
Extra arguments to pass to func.
epsabs : float, optional
Absolute tolerance passed directly to the inner 1-D quadrature integration. Default is
1.49¢-8.
epsrel : float, optional
Relative tolerance of the inner 1-D integrals. Default is 1.49e-8.
y : float
The resultant integral.
abserr : float
An estimate of the error.

quad single integral

tplquad triple integral

ngquad N-dimensional integrals

fixed quadfixed-order Gaussian quadrature

quadratureadaptive Gaussian quadrature

odeint ODE integrator
ode ODE integrator
simps integrator for sampled data
romb integrator for sampled data

scipy.special

for coefficients and roots of orthogonal polynomials

scipy.integrate.tplquad (func, a, b, gfun, hfun, gfun, rfun, args=(), epsabs=1.49¢-08, epsrel=1.49¢-

08)
Compute a triple (definite) integral.

Return the triple integral of func(z, y, x) from x = a..b, y = gfun(x)..hfun(x), and z =
gfun(x,y)..rfun(x,y).

Parameters

func : function

A Python function or method of at least three variables in the order (z, y, X).
a, b : float
The limits of integration in x: a < b
gfun : function
The lower boundary curve in y which is a function taking a single floating point argu-
ment (x) and returning a floating point result: a lambda function can be useful here.

322

Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

hfun : function
The upper boundary curve in y (same requirements as gfun).

gfun : function
The lower boundary surface in z. It must be a function that takes two floats in the
order (X, y) and returns a float.

rfun : function
The upper boundary surface in z. (Same requirements as gfun.)

args : tuple, optional
Extra arguments to pass to func.

epsabs : float, optional
Absolute tolerance passed directly to the innermost 1-D quadrature integration. De-
fault is 1.49e-8.

epsrel : float, optional
Relative tolerance of the innermost 1-D integrals. Default is 1.49¢-8.

Returns y : float

The resultant integral.

abserr : float
An estimate of the error.

See also:

quad Adaptive quadrature using QUADPACK
quadratureAdaptive Gaussian quadrature
fixed quadFixed-order Gaussian quadrature

dblquad Double integrals

ngquad N-dimensional integrals
romb Integrators for sampled data
simps Integrators for sampled data
ode ODE integrators

odeint ODE integrators

scipy.special
For coefficients and roots of orthogonal polynomials

scipy.integrate.nquad (func, ranges, args=None, opts=None)
Integration over multiple variables.

Wraps quad to enable integration over multiple variables. Various options allow improved integration of dis-
continuous functions, as well as the use of weighted integration, and generally finer control of the integration
process.

Parameters func : callable

The function to be integrated. Has arguments of x0, ... xn, t0, tm, where
integration is carried out over x0, ... xn, which must be floats. Function signa-
ture should be func (x0, x1, ..., xn, t0, tl, ..., tm). Integration

is carried out in order. That is, integration over x0 is the innermost integral, and xn
is the outermost. If performance is a concern, this function may be a ctypes function
of the form:

f(int n, double args[n])

5.6. Integration and ODESs (scipy.integrate) 323

SciPy Reference Guide, Release 0.16.0

Returns

See also:

quad

dblgquad, tplgquad

where n is the number of extra parameters and args is an array of doubles of the
additional parameters. This function may then be compiled to a dynamic/shared li-
brary then imported through ctypes, setting the function’s argtypes to (c_int,
c_double), and the function’s restype to (c_double). Its pointer may then be
passed into nquad normally. This allows the underlying Fortran library to evaluate
the function in the innermost integration calls without callbacks to Python, and also
speeds up the evaluation of the function itself.

ranges : iterable object

Each element of ranges may be either a sequence of 2 numbers, or else a callable that
returns such a sequence. ranges [0] corresponds to integration over x0, and so on.
If an element of ranges is a callable, then it will be called with all of the integration
arguments available. e.g. if func = f (x0, x1, x2),thenranges[0] may be
defined as either (a, b) orelseas (a, b) = range0 (x1l, x2).

args : iterable object, optional

Additional arguments t0, ..., tn,required by func.

opts : iterable object or dict, optional

Options to be passed to quad. May be empty, a dict, or a sequence of dicts or func-
tions that return a dict. If empty, the default options from scipy.integrate.quadare
used. If a dict, the same options are used for all levels of integraion. If a sequence,
then each element of the sequence corresponds to a particular integration. e.g. opts[0]
corresponds to integration over X0, and so on. The available options together with
their default values are:

eepsabs = 1.49e-08

eepsrel = 1.49¢e-08

elimit = 50

epoints = None

*weight = None

ewvar = None

*wopts = None
The full_output option from quad is unavailable, due to the complexity of han-
dling the large amount of data such an option would return for this kind of nested
integration. For more information on these options, see quad and quad_explain.

result : float

The result of the integration.

abserr : float

The maximum of the estimates of the absolute error in the various integration results.

1-dimensional numerical integration

fixed_quadfixed-order Gaussian quadrature

quadratureadaptive Gaussian quadrature

Examples

>>>
>>>

>>>

from scipy import integrate
lambda x0,x1,x2,x3 : x0%%2 + x1+x2 — x3**3 + np.sin(x0) + (

func =

points

1 if (x0-.2+x3-.5-.25%xx1>0) else 0)

[[lambda (x1,x2,x3) : 0.2%x3 + 0.5 + 0.25+x1], [1, [1, I[]]

>>> def optsO(rxargs, *»xkwargs):
return {'points':[0.2xargs[2] + 0.5 + 0.25%xargs[0]1]}
integrate.nquad(func, [([(0,11, [-1,11, [.13,.81, [-.15,111,

>>>

324

Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

opts=[optsO, {},{},{}])
(1.5267454070738633, 2.9437360001402324e-14)

>>> scale = .1
>>> def func2(x0, x1, x2, x3, t0, tl):
. return x0*x1+x3%+2 + np.sin(x2) + 1 + (1 if x0+tlxx1-t0>0 else 0)
>>> def 1im0 (x1, x2, x3, t0, tl):
return [scale * (x1lxx2 + x2 + np.cos(x3)*tO0xtl + 1) - 1,
c scale x (x1%%2 + x2 + np.cos(x3)*t0xtl + 1) + 1]
>>> def 1liml (x2, x3, t0, tl):
return [scale » (t0*x2 + tl*x3) - 1,
. scale * (t0+x2 + tlxx3) + 1]
>>> def 1im2 (x3, t0, tl):
return [scale » (x3 + tOx»2+tl1lx%3) - 1,
C scale * (x3 + tOx#2xtl*x3) + 1]
>>> def 1im3(t0, tl):

L. return [scale » (tO+tl) - 1, scale * (tO0+tl) + 1]
>>> def optsO(x1l, x2, x3, t0, tl):
return {'points' : [t0 — tlxx1]}

>>> def optsl (x2, x3, t0, tl):

C return {}

>>> def opts2(x3, t0, tl):

e return {}

>>> def opts3(t0, tl):

.. return {}

>>> integrate.nquad(func2, [1im0O, liml, 1im2, 1im3], args=(0,0),
ce opts=[opts0, optsl, opts2, opts3])
(25.066666666666666, 2.7829590483937256e~-13)

scipy.integrate. fixed_quad (func, a, b, args=(), n=5)
Compute a definite integral using fixed-order Gaussian quadrature.

Integrate func from a to b using Gaussian quadrature of order n.

Parameters func : callable
A Python function or method to integrate (must accept vector inputs).
a: float
Lower limit of integration.
b : float
Upper limit of integration.
args : tuple, optional
Extra arguments to pass to function, if any.
n : int, optional
Order of quadrature integration. Default is 5.
Returns val : float
Gaussian quadrature approximation to the integral

See also:

quad adaptive quadrature using QUADPACK
dblguad double integrals

tplquad triple integrals

romberg adaptive Romberg quadrature
quadratureadaptive Gaussian quadrature

romb integrators for sampled data

5.6. Integration and ODESs (scipy.integrate) 325

SciPy Reference Guide, Release 0.16.0

simps integrators for sampled data
cumtrapz cumulative integration for sampled data
ode ODE integrator

odeint ODE integrator

scipy.integrate.quadrature (func, a, b, args=(), tol=1.49e-08, rtol=1.49e-08, maxiter=>50,
vec_func=True, miniter=1)
Compute a definite integral using fixed-tolerance Gaussian quadrature.

Integrate func from a to b using Gaussian quadrature with absolute tolerance tol.

Parameters func : function
A Python function or method to integrate.
a: float
Lower limit of integration.
b : float
Upper limit of integration.
args : tuple, optional
Extra arguments to pass to function.
tol, rtol : float, optional
Iteration stops when error between last two iterates is less than fol OR the relative
change is less than rtol.
maxiter : int, optional
Maximum order of Gaussian quadrature.
vec_func : bool, optional
True or False if func handles arrays as arguments (is a “vector” function). Default is
True.
miniter : int, optional
Minimum order of Gaussian quadrature.
Returns val : float
Gaussian quadrature approximation (within tolerance) to integral.
err : float
Difference between last two estimates of the integral.

See also:

romberg adaptive Romberg quadrature

fixed_ quadfixed-order Gaussian quadrature

quad adaptive quadrature using QUADPACK
dblguad double integrals

tplgquad triple integrals

romb integrator for sampled data

simps integrator for sampled data

cumtrapz cumulative integration for sampled data
ode ODE integrator

odeint ODE integrator

326 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.integrate.romberg (function, a, b, args=(), tol=1.48¢-08, rtol=1.48¢-08, show=False, div-

max=10, vec_func=False)
Romberg integration of a callable function or method.

Returns the integral of function (a function of one variable) over the interval (a, b).

If show is 1, the triangular array of the intermediate results will be printed. If vec_func is True (default is False),
then function is assumed to support vector arguments.

Parameters function : callable
Function to be integrated.
a: float
Lower limit of integration.
b : float
Upper limit of integration.
Returns results : float
Result of the integration.
Other Parameters
args : tuple, optional
Extra arguments to pass to function. Each element of args will be passed as a single
argument to func. Default is to pass no extra arguments.
tol, rtol : float, optional
The desired absolute and relative tolerances. Defaults are 1.48e-8.
show : bool, optional
Whether to print the results. Default is False.
divmax : int, optional
Maximum order of extrapolation. Default is 10.
vec_func : bool, optional
Whether func handles arrays as arguments (i.e whether it is a “vector” function). De-
fault is False.

See also:

fixed_quadFixed-order Gaussian quadrature.

quad Adaptive quadrature using QUADPACK.
dblguad Double integrals.

tplquad Triple integrals.

romb Integrators for sampled data.

simps Integrators for sampled data.

cumtrapz Cumulative integration for sampled data.

ode ODE integrator.
odeint ODE integrator.
References

[R39]

Examples

Integrate a gaussian from O to 1 and compare to the error function.

5.6. Integration and ODESs (scipy.integrate) 327

SciPy Reference Guide, Release 0.16.0

>>> from scipy import integrate

>>> from scipy.special import erf

>>> gaussian = lambda x: 1/np.sqgrt(np.pi) * np.exp(-—x*x2)
>>> result = integrate.romberg(gaussian, 0, 1, show=True)
Romberg integration of <function vfunc at ...> from [0, 1]

Steps StepSize Results

1 1.000000 0.385872

2 0.500000 0.412631 0.421551

4 0.250000 0.419184 0.421368 0.421356

8 0.125000 0.420810 0.421352 0.421350 0.421350
16 0.062500 0.421215 0.421350 0.421350 0.421350 0.421350
32 0.031250 0.421317 0.421350 0.421350 0.421350 0.421350 0.421350

The final result is 0.421350396475 after 33 function evaluations.

>>> print (" " % (2xresult, erf(l)))
0.842701 0.842701

5.6.2 Integrating functions, given fixed samples

cumt rapz(yl[, X, dx, axis, initial]) Cumulatively integrate y(x) using the composite trapezoidal rule.

simps(y[, X, dx, axis, even]) Integrate y(x) using samples along the given axis and the composite Simpson’s rule.

romb(y[, dx, axis, show]) Romberg integration using samples of a function.

scipy.integrate.cumtrapz (y, x=None, dx=1.0, axis=-1, initial=None)
Cumulatively integrate y(x) using the composite trapezoidal rule.

Parameters 'y : array_like
Values to integrate.
x : array_like, optional
The coordinate to integrate along. If None (default), use spacing dx between consec-
utive elements in y.
dx : int, optional
Spacing between elements of y. Only used if x is None.
axis : int, optional
Specifies the axis to cumulate. Default is -1 (last axis).
initial : scalar, optional
If given, uses this value as the first value in the returned result. Typically this value
should be 0. Default is None, which means no value at x [0] is returned and res has
one element less than y along the axis of integration.
Returns res : ndarray
The result of cumulative integration of y along axis. If initial is None, the shape is
such that the axis of integration has one less value than y. If initial is given, the shape
is equal to that of y.

See also:

numpy . cumsum, numpy . cumprod

quad adaptive quadrature using QUADPACK
romberg adaptive Romberg quadrature

quadratureadaptive Gaussian quadrature

328 Chapter 5. Reference

http://docs.scipy.org/doc/numpy/reference/generated/numpy.cumsum.html#numpy.cumsum
http://docs.scipy.org/doc/numpy/reference/generated/numpy.cumprod.html#numpy.cumprod

SciPy Reference Guide, Release 0.16.0

fixed_ quadfixed-order Gaussian quadrature

dblquad
tplquad
romb
ode

odeint

Examples

double integrals

triple integrals

integrators for sampled data
ODE integrators

ODE integrators

>>> from scipy import integrate
>>> import matplotlib.pyplot as plt

>>> x = np.linspace (-2, 2, num=20)

>>> y =
>>> y_in

x
t =

integrate.cumtrapz(y, x, initial=0)

>>> plt.plot(x, y_int, 'ro', x, y[0] + 0.5 % x*x%x2, 'b-")
>>> plt.show()

0.

-1

-1

-2.0

0 T T T T T T T

OF —

Sk —

=20 -15 -10 =05 00 0.5 1.0 1.5 2.0

scipy.integrate.simps (y, x=None, dx=1, axis=-1, even="avg’)
Integrate y(x) using samples along the given axis and the composite Simpson’s rule. If x is None, spacing of dx
is assumed.

If there are an even number of samples, N, then there are an odd number of intervals (N-1), but Simpson’s rule
requires an even number of intervals. The parameter ‘even’ controls how this is handled.

Parameters 'y : array_like

Array to be integrated.
x : array_like, optional
If given, the points at which y is sampled.
dx : int, optional
Spacing of integration points along axis of y. Only used when x is None. Default is 1.
axis : int, optional
Axis along which to integrate. Default is the last axis.
even : {‘avg’, ‘first’, ‘str’ }, optional

5.6.

Integration and ODEs (scipy.integrate) 329

SciPy Reference Guide, Release 0.16.0

avg [Average two results:1) use the first N-2 intervals with] a trapezoidal
rule on the last interval and 2) use the last N-2 intervals with a trape-
zoidal rule on the first interval.
‘first’ [Use Simpson’s rule for the first N-2 intervals with] a trapezoidal rule
on the last interval.
‘last’ [Use Simpson’s rule for the last N-2 intervals with a] trapezoidal rule
on the first interval.
See also:
quad adaptive quadrature using QUADPACK

romberg adaptive Romberg quadrature
quadratureadaptive Gaussian quadrature
fixed quadfixed-order Gaussian quadrature
dblquad double integrals

tplquad triple integrals

romb integrators for sampled data

cumtrapz cumulative integration for sampled data

ode ODE integrators
odeint ODE integrators
Notes

For an odd number of samples that are equally spaced the result is exact if the function is a polynomial of order
3 or less. If the samples are not equally spaced, then the result is exact only if the function is a polynomial of
order 2 or less.

scipy.integrate.romb (y, dx=1.0, axis=-1, show=False)

Romberg integration using samples of a function.

Parameters 'y : array_like
A vector of 2x+xk + 1 equally-spaced samples of a function.
dx : float, optional
The sample spacing. Default is 1.
axis : int, optional
The axis along which to integrate. Default is -1 (last axis).
show : bool, optional
When y is a single 1-D array, then if this argument is True print the table showing
Richardson extrapolation from the samples. Default is False.
Returns romb : ndarray
The integrated result for axis.

See also:

quad adaptive quadrature using QUADPACK
romberg adaptive Romberg quadrature
quadratureadaptive Gaussian quadrature

fixed quadfixed-order Gaussian quadrature

dblquad double integrals

330

Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

tplquad triple integrals
simps integrators for sampled data

cumtrapz cumulative integration for sampled data

ode ODE integrators
odeint ODE integrators
See also:

scipy.special for orthogonal polynomials (special) for Gaussian quadrature roots and weights for other weight-
ing factors and regions.

5.6.3 Integrators of ODE systems

odeint(func, y0, t[, args, Dfun, col_deriv, ...]) Integrate a system of ordinary differential equations.
ode(], jac]) A generic interface class to numeric integrators.
complex_ode(f], jac]) A wrapper of ode for complex systems.

scipy.integrate.odeint (func, Y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None,
mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0,
hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, print-
messg=0)
Integrate a system of ordinary differential equations.

Solve a system of ordinary differential equations using Isoda from the FORTRAN library odepack.
Solves the initial value problem for stiff or non-stiff systems of first order ode-s:

dy/dt = func(y,t0,...)

where y can be a vector.

Parameters func : callable(y, t0, ...)
Computes the derivative of y at t0.

yO0 : array
Initial condition on y (can be a vector).
t : array

A sequence of time points for which to solve for y. The initial value point should be
the first element of this sequence.

args : tuple, optional
Extra arguments to pass to function.

Dfun : callable(y, t0, ...)
Gradient (Jacobian) of func.

col_deriv : bool, optional
True if Dfun defines derivatives down columns (faster), otherwise Dfun should define
derivatives across rows.

full_output : bool, optional
True if to return a dictionary of optional outputs as the second output

printmessg : bool, optional
Whether to print the convergence message

Returns y : array, shape (Ien(t), len(y0))

Array containing the value of y for each desired time in t, with the initial value y0 in
the first row.

5.6. Integration and ODESs (scipy.integrate) 331

SciPy Reference Guide, Release 0.16.0

infodict : dict, only returned if full_output == True
Dictionary containing additional output information
key | meaning
‘hu” | vector of step sizes successfully used for each time step.
‘tcur’ | vector with the value of t reached for each time step. (will always be at
least as large as the input times).
‘tolsf’| vector of tolerance scale factors, greater than 1.0, computed when a
request for too much accuracy was detected.
‘tsw’ | value of t at the time of the last method switch (given for each time step)
‘nst’ | cumulative number of time steps
nfe’ | cumulative number of function evaluations for each time step
nje’ | cumulative number of jacobian evaluations for each time step
‘nqu’ | a vector of method orders for each successful step.
‘imxer] index of the component of largest magnitude in the weighted local error
vector (e / ewt) on an error return, -1 otherwise.
‘lenrw| the length of the double work array required.
‘leniw| the length of integer work array required.
‘mused’a vector of method indicators for each successful time step: 1: adams
(nonstiff), 2: bdf (stiff)

s

3

3

Other Parameters

ml, mu : int, optional
If either of these are not None or non-negative, then the Jacobian is assumed to be
banded. These give the number of lower and upper non-zero diagonals in this banded
matrix. For the banded case, Dfun should return a matrix whose rows contain the non-
zero bands (starting with the lowest diagonal). Thus, the return matrix jac from Dfun
should have shape (m1 + mu + 1, len(y0O)) whenml >=0ormu >=0. The
data in jac must be stored such that jac[i - j + mu, 3J] holds the derivative
of the i‘th equation with respect to the ‘j‘th state variable. If ‘col_deriv is True, the
transpose of this jac must be returned.
rtol, atol : float, optional
The input parameters rfol and atol determine the error control performed by the solver.
The solver will control the vector, e, of estimated local errors in y, according to an
inequality of the form max-norm of (e / ewt) <= 1, where ewt is a vector
of positive error weights computed as ewt = rtol % abs(y) + atol. rtol
and atol can be either vectors the same length as y or scalars. Defaults to 1.49012e-8.
terit : ndarray, optional
Vector of critical points (e.g. singularities) where integration care should be taken.
ho0 : float, (0: solver-determined), optional
The step size to be attempted on the first step.
hmax : float, (0: solver-determined), optional
The maximum absolute step size allowed.
hmin : float, (0: solver-determined), optional
The minimum absolute step size allowed.
ixpr : bool, optional
Whether to generate extra printing at method switches.
mxstep : int, (0: solver-determined), optional
Maximum number of (internally defined) steps allowed for each integration point in t.
mxhnil : int, (0: solver-determined), optional
Maximum number of messages printed.
mxordn : int, (0: solver-determined), optional
Maximum order to be allowed for the non-stiff (Adams) method.
mxords : int, (0: solver-determined), optional
Maximum order to be allowed for the stiff (BDF) method.

332

Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

See also:
ode a more object-oriented integrator based on VODE.
quad for finding the area under a curve.

class scipy.integrate.ode (f, jac=None)
A generic interface class to numeric integrators.

Solve an equation system y'(¢) = f(t,y) with (optional) jac = df/dy.

Parameters f: callable £ (t, y, =*f_args)
Rhs of the equation. tis a scalar, y.shape == (n,). f_args is set by calling
set_f_params (xargs). f should return a scalar, array or list (not a tuple).
jac: callable jac (t, y, =xjac_args), optional
Jacobian of therhs, jac[i,j] = d £[1] / d yI[]jl. jac_argsissetby call-
ing set_f_params (xargs).

See also:

odeint an integrator with a simpler interface based on Isoda from ODEPACK
quad for finding the area under a curve

Notes

Available integrators are listed below. They can be selected using the set__integrator method.

“VOde”

Real-valued Variable-coefficient Ordinary Differential Equation solver, with fixed-leading-coefficient im-
plementation. It provides implicit Adams method (for non-stiff problems) and a method based on back-
ward differentiation formulas (BDF) (for stiff problems).

Source: http://www.netlib.org/ode/vode.f

Warning: This integrator is not re-entrant. You cannot have two ode instances using the “vode”
integrator at the same time.

This integrator accepts the following parameters in set_integrator method of the ode class:

eatol : float or sequence absolute tolerance for solution

ertol : float or sequence relative tolerance for solution

e]lband : None or int

euband : None or int Jacobian band width, jac[i,j] != O for i-lband <= j <= i+uband. Setting these
requires your jac routine to return the jacobian in packed format, jac_packed[i-j+uband, j] = jac[i,j].
The dimension of the matrix must be (Iband+uband+1, len(y)).

emethod: ‘adams’ or ‘bdf’ Which solver to use, Adams (non-stiff) or BDF (stiff)

ewith_jacobian : bool This option is only considered when the user has not supplied a Jacobian
function and has not indicated (by setting either band) that the Jacobian is banded. In this case,
with_jacobian specifies whether the iteration method of the ODE solver’s correction step is chord
iteration with an internally generated full Jacobian or functional iteration with no Jacobian.

ensteps : int Maximum number of (internally defined) steps allowed during one call to the solver.

ofirst_step : float

*min_step : float

emax_step : float Limits for the step sizes used by the integrator.

eorder : int Maximum order used by the integrator, order <= 12 for Adams, <=5 for BDF.

“zvode”

5.6. Integration and ODESs (scipy.integrate) 333

http://www.netlib.org/ode/vode.f

SciPy Reference Guide, Release 0.16.0

Complex-valued Variable-coefficient Ordinary Differential Equation solver, with fixed-leading-coefficient
implementation. It provides implicit Adams method (for non-stiff problems) and a method based on
backward differentiation formulas (BDF) (for stiff problems).

Source: http://www.netlib.org/ode/zvode.f

Warning: This integrator is not re-entrant. You cannot have two ode instances using the “zvode”
integrator at the same time.

This integrator accepts the same parameters in set_integrator as the “vode” solver.

Note: When using ZVODE for a stiff system, it should only be used for the case in which the function
f is analytic, that is, when each f(i) is an analytic function of each y(j). Analyticity means that the partial

derivative df(i)/dy(j) is a unique complex number, and this fact is critical in the way ZVODE solves the
dense or banded linear systems that arise in the stiff case. For a complex stiff ODE system in which f is
not analytic, ZVODE is likely to have convergence failures, and for this problem one should instead use
DVODE on the equivalent real system (in the real and imaginary parts of y).

“Isoda”

Real-valued Variable-coefficient Ordinary Differential Equation solver, with fixed-leading-coefficient im-
plementation. It provides automatic method switching between implicit Adams method (for non-stiff
problems) and a method based on backward differentiation formulas (BDF) (for stiff problems).

Source: http://www.netlib.org/odepack

Warning: This integrator is not re-entrant. You cannot have two ode instances using the “lsoda”
integrator at the same time.

This integrator accepts the following parameters in set__integrator method of the ode class:

eatol : float or sequence absolute tolerance for solution

ertol : float or sequence relative tolerance for solution

e]lband : None or int

euband : None or int Jacobian band width, jac[i,j] != 0 for i-lband <= j <= i+uband. Setting these
requires your jac routine to return the jacobian in packed format, jac_packed[i-j+uband, j] = jac[i,j].

ewith_jacobian : bool Not used.

ensteps : int Maximum number of (internally defined) steps allowed during one call to the solver.

ofirst_step : float

emin_step : float

emax_step : float Limits for the step sizes used by the integrator.

emax_order_ns : int Maximum order used in the nonstiff case (default 12).

emax_order_s : int Maximum order used in the stiff case (default 5).

emax_hnil : int Maximum number of messages reporting too small step size (t + h = t) (default 0)

eixpr : int Whether to generate extra printing at method switches (default False).

“dopri5”

This is an explicit runge-kutta method of order (4)5 due to Dormand & Prince (with stepsize control and
dense output).
Authors:
E. Hairer and G. Wanner Universite de Geneve, Dept. de Mathematiques CH-1211 Geneve 24,
Switzerland e-mail: ernst.hairer @math.unige.ch, gerhard. wanner @math.unige.ch
This code is described in [HNWO3].
This integrator accepts the following parameters in set_integrator() method of the ode class:
eatol : float or sequence absolute tolerance for solution
ertol : float or sequence relative tolerance for solution
ensteps : int Maximum number of (internally defined) steps allowed during one call to the solver.
ofirst_step : float
emax_step : float

334

Chapter 5. Reference

http://www.netlib.org/ode/zvode.f
http://www.netlib.org/odepack
mailto:ernst.hairer@math.unige.ch
mailto:gerhard.wanner@math.unige.ch

SciPy Reference Guide, Release 0.16.0

esafety : float Safety factor on new step selection (default 0.9)

eifactor : float

edfactor : float Maximum factor to increase/decrease step size by in one step
*beta : float Beta parameter for stabilised step size control.

everbosity : int Switch for printing messages (< 0 for no messages).

“dop853”

This is an explicit runge-kutta method of order 8(5,3) due to Dormand & Prince (with stepsize control and
dense output).
Options and references the same as “dopri5”.

References

[HNW93]

Examples
A problem to integrate and the corresponding jacobian:

>>> from scipy.integrate import ode
>>>
>>> y0, t0O = [1.07, 2.0], O
>>>
>>> def f(t, y, argl):
.. return [ljxarglxy[0] + y[1], —arglxy[l]lxx2]
>>> def jac(t, y, argl):
return [[1ljxargl, 1], [0, —argl*2xy[1]]]

The integration:

>>> r = ode(f, jac).set_integrator('zvode', method='bdf")
>>> r.set_initial_value(y0, t0).set_f_params(2.0).set_jac_params (2.0)
>>> tl = 10
>>> dt = 1
>>> while r.successful() and r.t < tl:
print (r.t, r.integrate(r.t+dt))

Attributes

t | (float) Current time.
y | (ndarray) Current variable values.

Methods
integrate(t], step, relax]) Find y=y(t), set y as an initial condition, and return y.
set_f_params(*args) Set extra parameters for user-supplied function f.
set_initial_value(y[,t]) Set initial conditions y(t) =y.
set_integrator(name, **integrator_params) Set integrator by name.
set_Jjac_params(*args) Set extra parameters for user-supplied function jac.
set_solout(solout) Set callable to be called at every successful integration step.
successful() Check if integration was successful.

ode.integrate (1, step=0, relax=0)
Find y=y(t), set y as an initial condition, and return y.

ode.set_f_params (*args)
Set extra parameters for user-supplied function f.

5.6. Integration and ODESs (scipy.integrate) 335

SciPy Reference Guide, Release 0.16.0

ode.set_initial_value (y, t=0.0)
Set initial conditions y(t) =y.

ode.set_integrator (name, **integrator_params)
Set integrator by name.

Parameters name : str
Name of the integrator.
integrator_params :
Additional parameters for the integrator.

ode.set_jac_params (*args)
Set extra parameters for user-supplied function jac.

ode.set_solout (solout)
Set callable to be called at every successful integration step.

Parameters solout : callable
solout (t, y) iscalled at each internal integrator step, t is a scalar providing
the current independent position y is the current soloution y . shape == (n,)
solout should return -1 to stop integration otherwise it should return None or 0

ode.successful ()
Check if integration was successful.

class scipy.integrate.complex_ode (f, jac=None)
A wrapper of ode for complex systems.

This functions similarly as ode, but re-maps a complex-valued equation system to a real-valued one before
using the integrators.

Parameters f: callable £ (t, y, *f_args)
Rhs of the equation. tis a scalar, y.shape == (n,). f_args is set by calling
set_f_ params (*args).
jac: callable jac (t, y, =*jac_args)
Jacobian of the rhs, jac[i,j] = d £[i] / d y[Jl. jac_argsissetby call-
ing set_f_params (xargs).

Examples

For usage examples, see ode.

Attributes

t | (float) Current time.
y | (ndarray) Current variable values.

Methods
integrate(t[, step, relax]) Find y=y(t), set y as an initial condition, and return y.
set_f params(*args) Set extra parameters for user-supplied function f.
set_initial_value(yl,t]) Set initial conditions y(t) =y.
set_integrator(name, **integrator_params) Set integrator by name.
set_Jjac_params(¥args) Set extra parameters for user-supplied function jac.
set_solout(solout) Set callable to be called at every successful integration step.
successful() Check if integration was successful.

complex_ode.integrate (1, step=0, relax=0)
Find y=y(t), set y as an initial condition, and return y.

336 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

complex_ode.set_f params (*args)
Set extra parameters for user-supplied function f.

complex_ode.set_initial wvalue (y, t=0.0)
Set initial conditions y(t) =y.

complex_ode.set_integrator (name, **integrator_params)
Set integrator by name.

Parameters name : str
Name of the integrator
integrator_params :
Additional parameters for the integrator.

complex_ode.set_jac_params (*args)
Set extra parameters for user-supplied function jac.

complex_ode.set_solout (solout)
Set callable to be called at every successful integration step.

Parameters solout : callable
solout (t, y) iscalled at each internal integrator step, t is a scalar providing
the current independent position y is the current soloution y . shape == (n,)
solout should return -1 to stop integration otherwise it should return None or 0

complex_ode.successful ()
Check if integration was successful.

5.7 Interpolation (scipy.interpolate)

Sub-package for objects used in interpolation.

As listed below, this sub-package contains spline functions and classes, one-dimensional and multi-dimensional (uni-
variate and multivariate) interpolation classes, Lagrange and Taylor polynomial interpolators, and wrappers for FIT-
PACK and DFITPACK functions.

5.7.1 Univariate interpolation

interpld(x, y[, kind, axis, copy, ...]) Interpolate a 1-D function.
BarycentricInterpolator(xi], yi, axis]) The interpolating polynomial for a set of points
KroghInterpolator(xi, yi[, axis]) Interpolating polynomial for a set of points.
PiecewisePolynomial(xi, yi[, orders, ...]) Piecewise polynomial curve specified by points and derivatives
PchipInterpolator(x, y[, axis, extrapolate]) PCHIP 1-d monotonic cubic interpolation
barycentric_interpolate(xi,yi, X[, axis]) Convenience function for polynomial interpolation.
krogh_interpolate(xi, yi, x[, der, axis]) Convenience function for polynomial interpolation.
piecewise_polynomial_interpolate(xi,yi, x) Convenience function for piecewise polynomial interpolation.
pchip_interpolate(xi, yi, X[, der, axis]) Convenience function for pchip interpolation.
AkimalDInterpolator(x, y[, axis]) Akima interpolator

PPoly(c, X[, extrapolate, axis]) Piecewise polynomial in terms of coefficients and breakpoints
BPoly(c, x[, extrapolate, axis]) Piecewise polynomial in terms of coefficients and breakpoints

class scipy.interpolate.interpld (x, y, kind='linear’, axis=-1, copy=True, bounds_error=True,

fill_value=nan, assume_sorted=False)
Interpolate a 1-D function.

5.7. Interpolation (scipy. interpolate) 337

http://www.netlib.org/dierckx/
http://www.netlib.org/dierckx/

SciPy Reference Guide, Release 0.16.0

x and y are arrays of values used to approximate some function f: v = £ (x). This class returns a function
whose call method uses interpolation to find the value of new points.

Parameters

See also:

splrep, splev

x : (N,) array_like
A 1-D array of real values.

y: (...,.N,...) array_like
A N-D array of real values. The length of y along the interpolation axis must be equal
to the length of x.

kind : str or int, optional
Specifies the kind of interpolation as a string (‘linear’, ‘nearest’, ‘zero’, ‘slinear’,
‘quadratic, ‘cubic’ where ‘slinear’, ‘quadratic’ and ‘cubic’ refer to a spline interpola-
tion of first, second or third order) or as an integer specifying the order of the spline
interpolator to use. Default is ‘linear’.

axis : int, optional
Specifies the axis of y along which to interpolate. Interpolation defaults to the last axis
of y.

copy : bool, optional
If True, the class makes internal copies of x and y. If False, references to x and y are
used. The default is to copy.

bounds_error : bool, optional
If True, a ValueError is raised any time interpolation is attempted on a value outside
of the range of x (where extrapolation is necessary). If False, out of bounds values are
assigned fill_value. By default, an error is raised.

fill_value : float, optional
If provided, then this value will be used to fill in for requested points outside of the
data range. If not provided, then the default is NaN.

assume_sorted : bool, optional
If False, values of x can be in any order and they are sorted first. If True, x has to be
an array of monotonically increasing values.

UnivariateSpline
An object-oriented wrapper of the FITPACK routines.

interp2d 2-D interpolation

Examples

>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>

import matplotlib.pyplot as plt
from scipy import interpolate

x = np.arange (0, 10)

y = np.exp(-x/3.0)

f = interpolate.interpld(x, V)

xnew = np.arange(0, 9, 0.1)
ynew = f (xnew) # use interpolation function returned by " interpld’

plt.plot (x,
plt.show ()

y, 'o', xnew, ynew, '—-'")

338

Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

10 T T T T T 1 I I

0.8} .

04} -

02} .

Methods

__call__ (x) Evaluate the interpolant

interpld._ _call__ (x)
Evaluate the interpolant

Parameters X : array_like
Points to evaluate the interpolant at.

Returns y : array_like
Interpolated values. Shape is determined by replacing the interpolation axis in
the original array with the shape of x.

class scipy.interpolate.BarycentricInterpolator (xi, yi=None, axis=0)
The interpolating polynomial for a set of points

Constructs a polynomial that passes through a given set of points. Allows evaluation of the polynomial, efficient
changing of the y values to be interpolated, and updating by adding more x values. For reasons of numerical
stability, this function does not compute the coefficients of the polynomial.

The values yi need to be provided before the function is evaluated, but none of the preprocessing depends on
them, so rapid updates are possible.

Parameters xi : array_like
1-d array of x coordinates of the points the polynomial should pass through
yi : array_like, optional
The y coordinates of the points the polynomial should pass through. If None, the y
values will be supplied later via the set_y method.
axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.

Notes

This class uses a “barycentric interpolation” method that treats the problem as a special case of rational function
interpolation. This algorithm is quite stable, numerically, but even in a world of exact computation, unless the
x coordinates are chosen very carefully - Chebyshev zeros (e.g. cos(i*pi/n)) are a good choice - polynomial
interpolation itself is a very ill-conditioned process due to the Runge phenomenon.

5.7. Interpolation (scipy. interpolate) 339

SciPy Reference Guide, Release 0.16.0

Based on Berrut and Trefethen 2004, “Barycentric Lagrange Interpolation”.

Methods

_call__(x) Evaluate the interpolating polynomial at the points x
add_xi(xi[, yi]) Add more x values to the set to be interpolated
set_yi(yi[, axis]) Update the y values to be interpolated

BarycentricInterpolator.__call__ (x)
Evaluate the interpolating polynomial at the points x

Parameters X : array_like
Points to evaluate the interpolant at.

Returns y : array_like
Interpolated values. Shape is determined by replacing the interpolation axis in
the original array with the shape of x.

Notes

Currently the code computes an outer product between x and the weights, that is, it constructs an interme-
diate array of size N by len(x), where N is the degree of the polynomial.

BarycentricInterpolator.add_xi (xi, yi=None)
Add more x values to the set to be interpolated

The barycentric interpolation algorithm allows easy updating by adding more points for the polynomial
to pass through.

Parameters xi : array_like
The x coordinates of the points that the polynomial should pass through.
yi : array_like, optional
The y coordinates of the points the polynomial should pass through. Should have
shape (xi.size, R);if R > 1 then the polynomial is vector-valued. If yi is
not given, the y values will be supplied later. yi should be given if and only if the
interpolator has y values specified.

BarycentricInterpolator.set_yi (yi, axis=None)
Update the y values to be interpolated

The barycentric interpolation algorithm requires the calculation of weights, but these depend only on the
xi. The yi can be changed at any time.

Parameters yi: array_like
The y coordinates of the points the polynomial should pass through. If None, the
y values will be supplied later.
axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.

class scipy.interpolate.KroghInterpolator (xi, yi, axis=0)
Interpolating polynomial for a set of points.

The polynomial passes through all the pairs (xi,yi). One may additionally specify a number of derivatives at
each point xi; this is done by repeating the value xi and specifying the derivatives as successive yi values.

Allows evaluation of the polynomial and all its derivatives. For reasons of numerical stability, this function does
not compute the coefficients of the polynomial, although they can be obtained by evaluating all the derivatives.

Parameters xi: array_like, length N
Known x-coordinates. Must be sorted in increasing order.

340 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

yi : array_like
Known y-coordinates. When an xi occurs two or more times in a row, the correspond-
ing yi’s represent derivative values.
axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.
Notes

Be aware that the algorithms implemented here are not necessarily the most numerically stable known. More-
over, even in a world of exact computation, unless the x coordinates are chosen very carefully - Chebyshev
zeros (e.g. cos(i*pi/n)) are a good choice - polynomial interpolation itself is a very ill-conditioned process due
to the Runge phenomenon. In general, even with well-chosen x values, degrees higher than about thirty cause
problems with numerical instability in this code.

Based on [R44].

References

[R44]

Examples
To produce a polynomial that is zero at 0 and 1 and has derivative 2 at 0, call

>>> KroghInterpolator([0,0,1],[0,2,0])

This constructs the quadratic 2*X**2-2*X. The derivative condition is indicated by the repeated zero in the xi
array; the corresponding yi values are 0, the function value, and 2, the derivative value.

For another example, given xi, yi, and a derivative ypi for each point, appropriate arrays can be constructed as:

>>> xi_k, yi_k = np.repeat(xi, 2), np.ravel (np.dstack ((yi,ypi)))
>>> KroghInterpolator (xi_k, yi_k)

To produce a vector-valued polynomial, supply a higher-dimensional array for yi:

>>> KroghInterpolator ([0,1],[[2,3],[4,5]1])
This constructs a linear polynomial giving (2,3) at 0 and (4,5) at 1.

Methods

call (x) Evaluate the interpolant
derivative(x[, der]) Evaluate one derivative of the polynomial at the point x
derivatives(x[,der]) Evaluate many derivatives of the polynomial at the point x

KroghInterpolator.__call__ (x)
Evaluate the interpolant

Parameters x : array_like
Points to evaluate the interpolant at.

Returns y : array_like
Interpolated values. Shape is determined by replacing the interpolation axis in
the original array with the shape of x.

KroghInterpolator.derivative (x, der=1)
Evaluate one derivative of the polynomial at the point x

Parameters x : array_like

5.7. Interpolation (scipy. interpolate) 341

SciPy Reference Guide, Release 0.16.0

Point or points at which to evaluate the derivatives
der : integer, optional
Which derivative to extract. This number includes the function value as Oth
derivative.
Returns d : ndarray

Derivative interpolated at the x-points. Shape of d is determined by replacing the
interpolation axis in the original array with the shape of x.

Notes

This is computed by evaluating all derivatives up to the desired one (using self.derivatives()) and then
discarding the rest.

KroghInterpolator.derivatives (x, der=None)
Evaluate many derivatives of the polynomial at the point x

Produce an array of all derivative values at the point x.

Parameters X : array_like

Point or points at which to evaluate the derivatives
der : int or None, optional
How many derivatives to extract; None for all potentially nonzero derivatives

(that is a number equal to the number of points). This number includes the func-
tion value as Oth derivative.
Returns d : ndarray

Array with derivatives; d[j] contains the j-th derivative. Shape of d[j] is deter-

mined by replacing the interpolation axis in the original array with the shape of
X.

Examples

>>> KroghInterpolator ([0,0,0],[1,2,3]).derivatives(0)
array([1.0,2.0,3.0])

>>> KroghInterpolator([0,0,0],[1,2,3]).derivatives([0,0])
array ([[1.0,1.0],

[2.0,2.01,
[3.0,3.0]1)

class scipy.interpolate.PiecewisePolynomial (xi, yi, orders=None, direction=None, axis=0)
Piecewise polynomial curve specified by points and derivatives

This class represents a curve that is a piecewise polynomial. It passes through a list of points and has specified

derivatives at each point. The degree of the polynomial may vary from segment to segment, as may the number
of derivatives available. The degree should not exceed about thirty.

Appending points to the end of the curve is efficient.

Parameters Xi : array_like
A sorted 1-d array of x-coordinates.
yi : array_like or list of array_likes
yi[1i] [J] is the j-th derivative known at xi [1] (for axis=0).
orders : list of int, or int, optional
A list of polynomial orders, or a single universal order.
direction : {None, 1, -1}, optional
Indicates whether the xi are increasing or decreasing:
+1 : increasing values
-1 : decreasing values

None : direction will be deduced from the first two elements of xi
axis : int, optional

342 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Axis in the yi array corresponding to the x-coordinate values.

Notes

If orders is None, or orders [i] is None, then the degree of the polynomial segment is exactly the degree
required to match all i available derivatives at both endpoints. If orders [i] is not None, then some deriva-
tives will be ignored. The code will try to use an equal number of derivatives from each end; if the total number
of derivatives needed is odd, it will prefer the rightmost endpoint. If not enough derivatives are available, an
exception is raised.

Methods

call (x) Evaluate the interpolant

append(xi, yi[, order]) Append a single point with derivatives to the PiecewisePolynomial
derivative(x[, der]) Evaluate one derivative of the polynomial at the point x
derivatives(x[, der]) Evaluate many derivatives of the polynomial at the point x
extend(xi, yi[, orders]) Extend the PiecewisePolynomial by a list of points

PiecewisePolynomial._ _call__ (x)
Evaluate the interpolant

Parameters X : array_like
Points to evaluate the interpolant at.

Returns y : array_like
Interpolated values. Shape is determined by replacing the interpolation axis in
the original array with the shape of x.

PiecewisePolynomial.append (xi, yi, order=None)
Append a single point with derivatives to the PiecewisePolynomial

Parameters xi : float
Point to add.
yi : array_like
yi is the list of derivatives known at xi.
order : int or None, optional
A polynomial order, or instructions to use the highest possible order.

PiecewisePolynomial .derivative (x, der=1)
Evaluate one derivative of the polynomial at the point x

Parameters x : array_like
Point or points at which to evaluate the derivatives
der : integer, optional
Which derivative to extract. This number includes the function value as Oth
derivative.
Returns d : ndarray
Derivative interpolated at the x-points. Shape of d is determined by replacing the
interpolation axis in the original array with the shape of x.

Notes

This is computed by evaluating all derivatives up to the desired one (using self.derivatives()) and then
discarding the rest.

PiecewisePolynomial .derivatives (x, der=None)
Evaluate many derivatives of the polynomial at the point x

Produce an array of all derivative values at the point x.

5.7. Interpolation (scipy. interpolate) 343

SciPy Reference Guide, Release 0.16.0

Parameters X : array_like
Point or points at which to evaluate the derivatives
der : int or None, optional
How many derivatives to extract; None for all potentially nonzero derivatives
(that is a number equal to the number of points). This number includes the func-
tion value as Oth derivative.
Returns d : ndarray
Array with derivatives; d[j] contains the j-th derivative. Shape of d[j] is deter-

mined by replacing the interpolation axis in the original array with the shape of
X.

Examples

>>> KroghInterpolator([0,0,0],[1,2,3]).derivatives (0)
array([1.0,2.0,3.0])

>>> KroghInterpolator ([0,0,0],[1,2,3]).derivatives([0,0])
array ([[1.0,1.07,

[2.0,2.07,

[3.0,3.011)

PiecewisePolynomial .extend (xi, yi, orders=None)
Extend the PiecewisePolynomial by a list of points

Parameters xi : array_like
A sorted list of x-coordinates.
yi : list of lists of length N1
yi[i] (ifaxis == 0)is the list of derivatives known at xi [1].
orders : int or list of ints, optional
A list of polynomial orders, or a single universal order.

class scipy.interpolate.PchipInterpolator (x, Yy, axis=0, extrapolate=None)
PCHIP 1-d monotonic cubic interpolation

x and y are arrays of values used to approximate some function f, with y = £ (x). The interpolant uses mono-
tonic cubic splines to find the value of new points. (PCHIP stands for Piecewise Cubic Hermite Interpolating
Polynomial).

Parameters X : ndarray

A 1-D array of monotonically increasing real values. x cannot include duplicate val-
ues (otherwise f is overspecified)
y : ndarray

A 1-D array of real values. y‘s length along the interpolation axis must be equal to the
length of x. If N-D array, use axis parameter to select correct axis.

axis : int, optional
Axis in the y array corresponding to the x-coordinate values.

extrapolate : bool, optional

Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to
return NaNs.

See also:

AkimalDInterpolator

Notes

The first derivatives are guaranteed to be continuous, but the second derivatives may jump at x_k.
Preserves monotonicity in the interpolation data and does not overshoot if the data is not smooth.

Determines the derivatives at the points x_k, d_k, by using PCHIP algorithm:

344 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Let m_k be the slope of the kth segment (between k and k+1) If m_k=0 or m_{k-1}=0 or sgn(m_k) !=sgn(m_{k-
1}) then d_k == 0 else use weighted harmonic mean:

w_1=2h k+h {k-1},w 2=h k+2h_{k-1} I/d k=1/(w_1+w_2)*(w_1/m_ k+w_2/m_{k-1})

where h_k is the spacing between x_k and x_{k+1}.

Methods

__call__ (x[, nu, extrapolate]) Evaluate the piecewise polynomial or its derivative
derivative([nu]) Construct a new piecewise polynomial representing the derivative.
antiderivative([nu]) Construct a new piecewise polynomial representing the antiderivative.

PchipInterpolator.__call__ (x, nu=0, extrapolate=None)
Evaluate the piecewise polynomial or its derivative

Parameters x : array_like
Points to evaluate the interpolant at.
nu : int, optional
Order of derivative to evaluate. Must be non-negative.
extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals,
or to return NaNss.
Returns y : array_like
Interpolated values. Shape is determined by replacing the interpolation axis in
the original array with the shape of x.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

PchipInterpolator.derivative (nu=1)
Construct a new piecewise polynomial representing the derivative.

Parameters nu : int, optional
Order of derivative to evaluate. (Default: 1) If negative, the antiderivative is
returned.

Returns bp : BPoly
Piecewise polynomial of order k2 = k - nu representing the derivative of this
polynomial.

PchipInterpolator.antiderivative (nu=1)
Construct a new piecewise polynomial representing the antiderivative.

Parameters nu : int, optional
Order of derivative to evaluate. (Default: 1) If negative, the derivative is returned.
Returns bp : BPoly
Piecewise polynomial of order k2 = k + nu representing the antiderivative of this
polynomial.

scipy.interpolate.barycentric_interpolate (xi, yi, x, axis=0)
Convenience function for polynomial interpolation.

Constructs a polynomial that passes through a given set of points, then evaluates the polynomial. For reasons of
numerical stability, this function does not compute the coefficients of the polynomial.

5.7. Interpolation (scipy. interpolate) 345

SciPy Reference Guide, Release 0.16.0

This function uses a “barycentric interpolation” method that treats the problem as a special case of rational
function interpolation. This algorithm is quite stable, numerically, but even in a world of exact computation,
unless the x coordinates are chosen very carefully - Chebyshev zeros (e.g. cos(i*pi/n)) are a good choice -
polynomial interpolation itself is a very ill-conditioned process due to the Runge phenomenon.

Parameters xi : array_like
1-d array of x coordinates of the points the polynomial should pass through
yi : array_like
The y coordinates of the points the polynomial should pass through.
x : scalar or array_like
Points to evaluate the interpolator at.
axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.
Returns y : scalar or array_like
Interpolated values. Shape is determined by replacing the interpolation axis in the
original array with the shape of x.

See also:

BarycentricInterpolator

Notes

Construction of the interpolation weights is a relatively slow process. If you want to call this many times with
the same xi (but possibly varying yi or x) you should use the class BarycentricInterpolator. This is
what this function uses internally.

scipy.interpolate.krogh_interpolate (xi, yi, x, der=0, axis=0)

Convenience function for polynomial interpolation.
See KroghInterpolator for more details.

Parameters xi : array_like
Known x-coordinates.
yi : array_like
Known y-coordinates, of shape (xi.size, R).Interpreted as vectors of length R,
or scalars if R=1.
x : array_like
Point or points at which to evaluate the derivatives.
der : int or list, optional
How many derivatives to extract; None for all potentially nonzero derivatives (that is a
number equal to the number of points), or a list of derivatives to extract. This number
includes the function value as Oth derivative.
axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.
Returns d : ndarray
If the interpolator’s values are R-dimensional then the returned array will be the num-
ber of derivatives by N by R. If x is a scalar, the middle dimension will be dropped; if
the yi are scalars then the last dimension will be dropped.

See also:

KroghInterpolator

Notes

Construction of the interpolating polynomial is a relatively expensive process. If you want to evaluate it repeat-
edly consider using the class KroghInterpolator (which is what this function uses).

346

Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

scipy.interpolate.piecewise_polynomial_interpolate (xi, yi, x, orders=None, der=0,
axis=0)
Convenience function for piecewise polynomial interpolation.
Parameters xi : array_like

A sorted list of x-coordinates.

yi : list of lists
yi[i] is the list of derivatives known at xi [i].

X : scalar or array_like
Coordinates at which to evalualte the polynomial.

orders : int or list of ints, optional
A list of polynomial orders, or a single universal order.

der : int or list, optional
How many derivatives to extract; None for all potentially nonzero derivatives (that is a
number equal to the number of points), or a list of derivatives to extract. This number
includes the function value as Oth derivative.

axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.

Returns y : ndarray

Interpolated values or derivatives. If multiple derivatives were requested, these are
given along the first axis.

See also:

PiecewisePolynomial

Notes

If orders is None, or orders[1i] is None, then the degree of the polynomial segment is exactly the degree
required to match all i available derivatives at both endpoints. If orders [1] is not None, then some derivatives
will be ignored. The code will try to use an equal number of derivatives from each end; if the total number of
derivatives needed is odd, it will prefer the rightmost endpoint. If not enough derivatives are available, an
exception is raised.

Construction of these piecewise polynomials can be an expensive process; if you repeatedly evaluate the same
polynomial, consider using the class PiecewisePolynomial (which is what this function does).

scipy.interpolate.pchip_interpolate (xi, yi, x, der=0, axis=0)
Convenience function for pchip interpolation. xi and yi are arrays of values used to approximate some function
f, with yi = £ (x1i). The interpolant uses monotonic cubic splines to find the value of new points x and the
derivatives there.

See PchipInterpolator for details.

Parameters xi : array_like
A sorted list of x-coordinates, of length N.
yi : array_like
A 1-D array of real values. yi‘s length along the interpolation axis must be equal to
the length of xi. If N-D array, use axis parameter to select correct axis.
x : scalar or array_like
Of length M.
der : int or list, optional
How many derivatives to extract; None for all potentially nonzero derivatives (that is a
number equal to the number of points), or a list of derivatives to extract. This number
includes the function value as Oth derivative.
axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.
Returns y : scalar or array_like

5.7. Interpolation (scipy. interpolate) 347

SciPy Reference Guide, Release 0.16.0

The result, of length R or length M or M by R,
See also:
PchipInterpolator

class scipy.interpolate.AkimalDInterpolator (x,y, axis=0)
Akima interpolator

Fit piecewise cubic polynomials, given vectors x and y. The interpolation method by Akima uses a continuously
differentiable sub-spline built from piecewise cubic polynomials. The resultant curve passes through the given
data points and will appear smooth and natural.

Parameters x : ndarray, shape (m,)

1-D array of monotonically increasing real values.

y : ndarray, shape (m, ...)
N-D array of real values. The length of y along the first axis must be equal to the
length of x.

axis : int, optional
Specifies the axis of y along which to interpolate. Interpolation defaults to the first
axis of y.

See also:

PchipInterpolator

Notes

New in version 0.14.

Use only for precise data, as the fitted curve passes through the given points exactly. This routine is useful for
plotting a pleasingly smooth curve through a few given points for purposes of plotting.

References

[1] A new method of interpolation and smooth curve fitting based
on local procedures. Hiroshi Akima, J. ACM, October 1970, 17(4), 589-602.

Methods
__call__(x[, nu, extrapolate]) Evaluate the piecewise polynomial or its derivative
derivative([nu]) Construct a new piecewise polynomial representing the derivative.
antiderivative([nu]) Construct a new piecewise polynomial representing the antiderivative.

root s([discontinuity, extrapolate]) Find real roots of the piecewise polynomial.

AkimalDInterpolator._ call__ (x, nu=0, extrapolate=None)
Evaluate the piecewise polynomial or its derivative

Parameters X : array_like
Points to evaluate the interpolant at.
nu : int, optional
Order of derivative to evaluate. Must be non-negative.
extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals,
or to return NaNs.
Returns y : array_like
Interpolated values. Shape is determined by replacing the interpolation axis in
the original array with the shape of x.

348 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

AkimalDInterpolator.derivative (nu=1)
Construct a new piecewise polynomial representing the derivative.

Parameters nu : int, optional
Order of derivative to evaluate. (Default: 1) If negative, the antiderivative is
returned.

Returns pp : PPoly
Piecewise polynomial of order k2 = k - n representing the derivative of this poly-
nomial.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

AkimalDInterpolator.antiderivative (nu=1)
Construct a new piecewise polynomial representing the antiderivative.

Antiderivativative is also the indefinite integral of the function, and derivative is its inverse operation.

Parameters nu : int, optional
Order of antiderivative to evaluate. (Default: 1) If negative, the derivative is
returned.

Returns pp : PPoly
Piecewise polynomial of order k2 = k + n representing the antiderivative of this
polynomial.

Notes

The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up
to floating point rounding error.

AkimalDInterpolator.roots (discontinuity=True, extrapolate=None)
Find real roots of the piecewise polynomial.

Parameters discontinuity : bool, optional

Whether to report sign changes across discontinuities at breakpoints as roots.
extrapolate : bool, optional

Whether to return roots from the polynomial extrapolated based on first and last
intervals.

Returns roots : ndarray
Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the return value is an object
array whose each element is an ndarray containing the roots.

Notes
This routine works only on real-valued polynomials.

If the piecewise polynomial contains sections that are identically zero, the root list will contain the start
point of the corresponding interval, followed by a nan value.

If the polynomial is discontinuous across a breakpoint, and there is a sign change across the breakpoint,
this is reported if the discont parameter is True.

5.7.

Interpolation (scipy.interpolate) 349

SciPy Reference Guide, Release 0.16.0

Examples
Finding roots of [x*%2 — 1, (x - 1)=x*2] definedonintervals [-2, 11, [1, 2]:

>>> from scipy.interpolate import PPoly

>>> pp = PPoly(np.array([[1, O, -1], [1, O, 0]1).T, [-2, 1, 2])
>>> pp.roots ()

array ([-1., 1.1)

class scipy.interpolate.PPoly (c, x, extrapolate=None, axis=0)

Piecewise polynomial in terms of coefficients and breakpoints
The polynomial in the ith interval is x [1] <= xp < x[i+1]:

S = sum(c[m, 1] * (xp - x[1i])**(k-m) for m in range(k+1l))

where k is the degree of the polynomial. This representation is the local power basis.

Parameters ¢ : ndarray, shape (k, m, ...)
Polynomial coefficients, order k£ and m intervals
x : ndarray, shape (m+1,)
Polynomial breakpoints. These must be sorted in increasing order.
extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to
return NaNs. Default: True.
axis : int, optional
Interpolation axis. Default is zero.
See also:
BPoly piecewise polynomials in the Bernstein basis

Notes

High-order polynomials in the power basis can be numerically unstable. Precision problems can start to appear
for orders larger than 20-30.

Attributes

(ndarray) Breakpoints.

(ndarray) Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last
dimension representing the trailing dimensions of the original coefficient array.

axis| (int) Interpolation axis.

Methods

__call__ (x[, nu, extrapolate]) Evaluate the piecewise polynomial or its derivative
derivative([nu]) Construct a new piecewise polynomial representing the derivative.
antiderivative([nu]) Construct a new piecewise polynomial representing the antiderivative.
integrate(a, b[, extrapolate]) Compute a definite integral over a piecewise polynomial.
root s([discontinuity, extrapolate]) Find real roots of the piecewise polynomial.
extend(c, X[, right]) Add additional breakpoints and coefficients to the polynomial.
from_spline(tck[, extrapolate]) Construct a piecewise polynomial from a spline
from _bernstein_basis(bpl, extrapolate]) Construct a piecewise polynomial in the power basis from a polynomial in Bernste
construct_fast(c, x[, extrapolate, axis]) Construct the piecewise polynomial without making checks.

350 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

PPoly.__call__ (x, nu=0, extrapolate=None)
Evaluate the piecewise polynomial or its derivative

Parameters x : array_like
Points to evaluate the interpolant at.
nu : int, optional
Order of derivative to evaluate. Must be non-negative.
extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals,
or to return NaNss.
Returns y : array_like
Interpolated values. Shape is determined by replacing the interpolation axis in
the original array with the shape of x.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

PPoly.derivative (nu=1)
Construct a new piecewise polynomial representing the derivative.

Parameters nu : int, optional
Order of derivative to evaluate. (Default: 1) If negative, the antiderivative is
returned.

Returns pp : PPoly
Piecewise polynomial of order k2 = k - n representing the derivative of this poly-
nomial.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

PPoly.antiderivative (nu=1)
Construct a new piecewise polynomial representing the antiderivative.

Antiderivativative is also the indefinite integral of the function, and derivative is its inverse operation.

Parameters nu : int, optional
Order of antiderivative to evaluate. (Default: 1) If negative, the derivative is
returned.

Returns pp : PPoly
Piecewise polynomial of order k2 = k + n representing the antiderivative of this
polynomial.

Notes

The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up
to floating point rounding error.

PPoly.integrate (a, b, extrapolate=None)
Compute a definite integral over a piecewise polynomial.

Parameters a: float
Lower integration bound

b : float
Upper integration bound

5.7. Interpolation (scipy. interpolate) 351

SciPy Reference Guide, Release 0.16.0

extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals,
or to return NaNs.
Returns ig : array_like
Definite integral of the piecewise polynomial over [a, b]

PPoly.roots (discontinuity=True, extrapolate=None)
Find real roots of the piecewise polynomial.

Parameters discontinuity : bool, optional
Whether to report sign changes across discontinuities at breakpoints as roots.
extrapolate : bool, optional

Whether to return roots from the polynomial extrapolated based on first and last
intervals.

Returns roots : ndarray
Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the return value is an object
array whose each element is an ndarray containing the roots.

Notes
This routine works only on real-valued polynomials.

If the piecewise polynomial contains sections that are identically zero, the root list will contain the start
point of the corresponding interval, followed by a nan value.

If the polynomial is discontinuous across a breakpoint, and there is a sign change across the breakpoint,
this is reported if the discont parameter is True.

Examples
Finding roots of [x**2 — 1, (x - 1)*x2] definedonintervals [-2, 11, [1, 2]:

>>> from scipy.interpolate import PPoly

>>> pp = PPoly(np.array(([1, O, -11, [1, O, O11).T, [-2, 1, 2])
>>> pp.roots ()
array ([-1., 1.1)

PPoly.extend (c, x, right=True)
Add additional breakpoints and coefficients to the polynomial.

Parameters ¢ : ndarray, size (k, m, ...)

Additional coefficients for polynomials in intervals self.x[-1]
<= x < x_right[O0], x_right[0] <= x < x_right[1],
x_right [m-2] <= x < x_right[m-1]

x : ndarray, size (m,)
Additional breakpoints. Must be sorted and either to the right or to the left of the
current breakpoints.

right : bool, optional
Whether the new intervals are to the right or to the left of the current intervals.

“eey

classmethod PPoly. from_spline (tck, extrapolate=None)
Construct a piecewise polynomial from a spline

Parameters tck
A spline, as returned by splrep
extrapolate : bool, optional

Whether to extrapolate to ouf-of-bounds points based on first and last intervals,
or to return NaNs. Default: True.

352 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

classmethod PPoly . from bernstein_basis (bp, extrapolate=None)
Construct a piecewise polynomial in the power basis from a polynomial in Bernstein basis.

Parameters bp : BPoly
A Bernstein basis polynomial, as created by BPoly
extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals,
or to return NaNs. Default: True.

classmethod PPoly.construct_fast (c, x, extrapolate=None, axis=0)
Construct the piecewise polynomial without making checks.

Takes the same parameters as the constructor. Input arguments ¢ and x must be arrays of the correct shape
and type. The c array can only be of dtypes float and complex, and x array must have dtype float.

class scipy.interpolate.BPoly (c, x, extrapolate=None, axis=0)
Piecewise polynomial in terms of coefficients and breakpoints

The polynomial in the i-th interval x [1] <= xp < x[1+1] is written in the Bernstein polynomial basis:

S = sum(cla, 1] = b(a, k; x) for a in range(k+1))

where k is the degree of the polynomial, and:

b(a, k; x) = comb(k, a) » t*xk * (1 - t)*x(k - a)

witht = (x - x[1]) / (x[i+1] - x[i]).

Parameters c : ndarray, shape (k, m, ...)

Polynomial coefficients, order k£ and m intervals

x : ndarray, shape (m+1,)
Polynomial breakpoints. These must be sorted in increasing order.

extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to
return NaNs. Default: True.

axis : int, optional
Interpolation axis. Default is zero.

See also:
PPoly piecewise polynomials in the power basis

Notes

Properties of Bernstein polynomials are well documented in the literature. Here’s a non-exhaustive list:

Examples
>>> x = [0, 1]
>>> c = [[1], [2], [31]

>>> bp = BPoly(c, x)
This creates a 2nd order polynomial

B(x) =1x bog(I) + 2 X b172(1') + 3 X 6272(1‘)
=1x(1-2)*+2x22(1)+ 3 x 22

5.7. Interpolation (scipy. interpolate) 353

SciPy Reference Guide, Release 0.16.0

Attributes

(ndarray) Breakpoints.

c (ndarray) Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last
dimension representing the trailing dimensions of the original coefficient array.

axis| (int) Interpolation axis.

Methods
__call__(x[, nu, extrapolate]) Evaluate the piecewise polynomial or its derivative
extend(c, x[, right]) Add additional breakpoints and coefficients to the polynomial.
derivative([nu]) Construct a new piecewise polynomial representing the derivative.
antiderivative([nu]) Construct a new piecewise polynomial representing the antiderivative.
integrate(a, b[, extrapolate]) Compute a definite integral over a piecewise polynomial.
construct_fast(c, x[, extrapolate, axis]) Construct the piecewise polynomial without making checks.
from_power_basis(pp[, extrapolate]) Construct a piecewise polynomial in Bernstein basis from a power basis polyne

from_derivatives(xi, yi[, orders, extrapolate]) Construct a piecewise polynomial in the Bernstein basis, compatible with the s

BPoly.__call__ (x, nu=0, extrapolate=None)
Evaluate the piecewise polynomial or its derivative

Parameters X : array_like
Points to evaluate the interpolant at.
nu : int, optional
Order of derivative to evaluate. Must be non-negative.
extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals,
or to return NaNs.
Returns y : array_like
Interpolated values. Shape is determined by replacing the interpolation axis in
the original array with the shape of x.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

BPoly.extend (c, x, right=True)
Add additional breakpoints and coefficients to the polynomial.

Parameters c : ndarray, size (k, m, ...)

Additional coefficients for polynomials in intervals self.x[-1]
<= x < x_right[0], x_right[0] <= x < x_right[1],
x_right [m-2] <= x < x_right[m-1]

x : ndarray, size (m,)
Additional breakpoints. Must be sorted and either to the right or to the left of the
current breakpoints.

right : bool, optional
Whether the new intervals are to the right or to the left of the current intervals.

ceey

BPoly.derivative (nu=1)
Construct a new piecewise polynomial representing the derivative.

Parameters nu : int, optional

354

Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

Order of derivative to evaluate. (Default: 1) If negative, the antiderivative is
returned.

Returns bp : BPoly
Piecewise polynomial of order k2 = k - nu representing the derivative of this
polynomial.

BPoly.antiderivative (nu=1)
Construct a new piecewise polynomial representing the antiderivative.

Parameters nu : int, optional
Order of derivative to evaluate. (Default: 1) If negative, the derivative is returned.
Returns bp : BPoly
Piecewise polynomial of order k2 = k + nu representing the antiderivative of this
polynomial.

BPoly.integrate (a, b, extrapolate=None)
Compute a definite integral over a piecewise polynomial.

Parameters a: float
Lower integration bound
b : float
Upper integration bound
extrapolate : bool, optional
Whether to extrapolate to out-of-bounds points based on first and last intervals,
or to return NaNs. Defaults to self.extrapolate.
Returns array_like
Definite integral of the piecewise polynomial over [a, b]

classmethod BPoly.construct_fast (c, x, extrapolate=None, axis=0)
Construct the piecewise polynomial without making checks.

Takes the same parameters as the constructor. Input arguments ¢ and x must be arrays of the correct shape
and type. The c array can only be of dtypes float and complex, and x array must have dtype float.

classmethod BPoly. from power_basis (pp, extrapolate=None)
Construct a piecewise polynomial in Bernstein basis from a power basis polynomial.

Parameters pp : PPoly
A piecewise polynomial in the power basis
extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals,
or to return NaNs. Default: True.

classmethod BPoly . from derivatives (xi, yi, orders=None, extrapolate=None)
Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and deriva-
tives at breakpoints.

Parameters xi : array_like

sorted 1D array of x-coordinates

yi : array_like or list of array_likes
yi[i] [J] isthe j-th derivative known at x1i [1i]

orders : None or int or array_like of ints. Default: None.
Specifies the degree of local polynomials. If not None, some derivatives are
ignored.

extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last intervals,
or to return NaNs. Default: True.

5.7.

Interpolation (scipy.interpolate) 355

SciPy Reference Guide, Release 0.16.0

Notes

If k derivatives are specified at a breakpoint x, the constructed polynomial is exactly k times continuously
differentiable at x, unless the order is provided explicitly. In the latter case, the smoothness of the
polynomial at the breakpoint is controlled by the order.

Deduces the number of derivatives to match at each end from order and the number of derivatives
available. If possible it uses the same number of derivatives from each end; if the number is odd it tries
to take the extra one from y2. In any case if not enough derivatives are available at one end or another it
draws enough to make up the total from the other end.

If the order is too high and not enough derivatives are available, an exception is raised.

Examples

>>> BPoly.from_derivatives ([0, 11, [[1, 21, [3, 411)

Creates a polynomial f{x) of degree 3, defined on [0, 1] such that f(0) = 1, df/dx(0) = 2, f(l1) = 3, df/dx(1)
=4

>>> BPoly.from _derivatives ([0, 1, 2], [[0, 11, [O0], [211)

Creates a piecewise polynomial f{x), such that f{0) = f(1) = 0, f(2) = 2, and df/dx(0) = 1. Based on the
number of derivatives provided, the order of the local polynomials is 2 on [0, /] and 1 on [I, 2]. Notice
that no restriction is imposed on the derivatives at x = / and x = 2.

Indeed, the explicit form of the polynomial is:

f(x) = |

x * (1 - x), 0<=1x<1
| 2 *

(x = 1), 1 <= x <=2

So that f’(1-0) =-1 and £’ (14+0) =2

5.7.2 Multivariate interpolation

Unstructured data:

griddata(points, values, xi[, method, ...]) Interpolate unstructured D-dimensional data.
LinearNDInterpolator(points, values|, ...]) Piecewise linear interpolant in N dimensions.
NearestNDInterpolator(points, values) Nearest-neighbour interpolation in N dimensions.
CloughTocher2DInterpolator(points, values[, tol]) Piecewise cubic, C1 smooth, curvature-minimizing interpolant in 2D.
Rbf(*args) A class for radial basis function approximation/interpolation of n-dime
interp2d(x,y, z[, kind, copy, ...]) Interpolate over a 2-D grid.

scipy.interpolate.griddata (points, values, xi, method="linear’, fill_value=nan, rescale=False)
Interpolate unstructured D-dimensional data.

Parameters points : ndarray of floats, shape (n, D)

Data point coordinates. Can either be an array of shape (n, D), or a tuple of ndim
arrays.

values : ndarray of float or complex, shape (n,)
Data values.

xi : ndarray of float, shape (M, D)
Points at which to interpolate data.

method : {‘linear’, ‘nearest’, ‘cubic’}, optional
Method of interpolation. One of

356 Chapter 5. Reference

SciPy Reference Guide, Release 0.16.0

nearest return the value at the data point closest to the point of interpolation.
See NearestNDInterpolator for more details.
linear tesselate the input point set to n-dimensional simplices, and interpolate
linearly on each simplex. See LinearNDInterpolator for more
details.
cubic (1-D) return the value determined from a cubic spline.
cubic (2-D) return the value determined from a piecewise cubic, continuously dif-
ferentiable (C1), and approximately curvature-minimizing polynomial
surface. See CloughTocher2DInterpolator for more details.
fill_value : float, optional
Value used to fill in for requested points outside of the convex hull of the input points.
If not provided, then the default is nan. This option has no effect for the ‘nearest’
method.
rescale : bool, optional
Rescale points to unit cube before performing interpolation. This is useful if some
of the input dimensions have incommensurable units and differ by many orders of
magnit