TigerLily: Finding drug interactions in silico with the Graph

Benedek Rozemberczki
United Kingdom

1 INTRODUCTION

Adverse drug-drug interactions cause every year thousands of fa-
talities in the United States [8] and lead to the hospitalization of
many more; one can only imagine these numbers for the whole
world. This extreme number of unnecessary death and burden on
the health care system could be avoided if better drug-drug interac-
tion indications would be available to drug discovery researchers,
clinicians, and patients. Moreover, adverse drug interaction events
affect the elderly population and those excluded from private health-
care systems and self-medicating disproportionately [4, 17]. In a
time when the population of many countries is aging [5] and self-
medication is becoming increasingly widespread [3] there is an
urgent need for reliable drug-drug interaction indications that are
available to all.

Figure 1: TigerLily solves the in silico drug interaction pre-
diction problem [31] using a heterogeneous biological graph
[24]. Given information about systematic interactions of
drugs (red and blue pills) and gene targets (green double
helix segments) our goal is to find unexpected potentially
dangerous links between drugs.

However, collecting data about potential drug-drug interaction
indications is an extremely challenging task due to multiple reasons:
(a) the number of potential interactions increases quadratically with
the number of drugs; (b) experimental validation is time-consuming
and costly concerning equipment; (c) experimental results can be
noisy and inconsistent across laboratories and patients; (d) the ob-
served symptoms might be unrelated to the parallel administration
of drugs. The reasons listed above make computational approaches
to the drug-drug interaction predicting problem, particularly ap-
pealing in practical settings [31, 34].

The proposed framework TigerLily offers a computational so-
lution to the drug-drug interaction prediction problem based on

systems biology and graphs [21]. A cartoon-like graphical summary
of the main idea behind TigerLily is depicted in Figure 1. Based
on a biological network where edges are interactions, drugs and
genes are nodes our goal is to predict interactions. We assume that
based on the biological network based neighbourhood context of
drugs one can predict the drug-drug interactions. TigerLily learns
to embed the drug nodes in a feature space using personalized
PageRank scores computed with TigerGraph. Using the drug em-
bedding features drug pair features are defined which serve as input
to supervised drug interaction classifiers which learn from known
interactions and can predict novel adverse events.

1.1 Statement of Significance

Releasing TigerLily is significant for multiple reasons. We aim to
briefly summarize these reasons and how the release of TigerLily
is related to the main goals of the Graph For All Million Dollar
Challenge.

1.1.1 Impactfulness. Drug-drug interactions affect everyone who
has to take multiple medications in parallel, a tool that can indi-
cations of them can benefit drug discovery researchers, clinicians,
patients, and drug safety regulators. A widely applicable and ac-
cessible tool that can indicate adverse interactions can reduce the
number of fatalities and hospitalization rates.

1.1.2 Innovativeness. TigerLily uses a novel node embedding tech-
nique that is based on pruned approximate Personalized PageRank
scores. This node embedding is innovative, because: (i) the tech-
nique was not described explicitly in the literature previously; (ii)
exploits the existing TigerGraph ecosystem (iii) does not require the
computation and network transfer of the whole dense personalized
PageRank matrix.

1.1.3 Ambitiousness. The experimental evaluation of TigerLily
uses a heterogeneous biological graph with two node types: drugs
and genes. This graph has nearly a million edges, more than 1000
drugs, and 20,000 genes — which nearly covers the whole human
genome. The personalized PageRank computation in TigerGraph
Cloud exploits the sparsity and graph heterogeneity offered by
TigerGraph to reduce the memory and computation requirements
of TigerLily.

1.1.4 Applicability. Throughout the development of TigerLily we
followed a pragmatic software engineering approach: the code base
is covered by unit and integration tests, documented, continuous
integration runs on the repository, and the library is pip installable
and we provided tutorials for the users. The solution can be re-
purposed to solve other tasks such as the drug synergy prediction
problem with little effort.

1.2 Summary of Contributions

Introducing TigerLily makes several significant contributions to
the field of graph machine learning-based drug-drug interaction
prediction. The main contributions can be summarized as:

o We release TigerLily an open-source TigerGraph-based sys-
tem designed to predict drug-drug interactions in silico using
heterogeneous biological graphs.

e We evaluate the performance of TigerLily using real-world
biological and chemical data that we integrated from Drug-
Bank [43, 44] and BioSNAP [24].

o We discuss those who would benefit from TigerLily, potential
limitations to the approach, obstacles for the adoption, and
potential future directions for development.

The remainder of this project report is structured as follows. In
Section 2 we overview the relevant literature about drug-drug in-
teractions, proximity preserving node embeddings, and biological
knowledge graphs. Formal definitions of graph mining and the
underlying mathematical model behind TigerLily are discussed
in Section 3. We focus on the practical design of the framework
in Section 4 with code snippets with a real-world running exam-
ple. The system is evaluated in Section 5 with real-world data.
The limitations of Tigerlily are discussed in Section 6 and the re-
port concludes in Section 7 with potential future directions for
research and development. The library is available under https:
//github.com/benedekrozemberczki/tigerlily.

2 RELATED WORK

Our high-level overview of the related work primarily aims to posi-
tion TigerLily in the existing literature about drug-drug interaction
prediction, heterogeneous biological graphs, and node embedding
algorithms.

2.1 Drug-Drug Interaction Prediction

The drug-drug interaction prediction problem is part of the wider
drug pair scoring task [31, 34]. In this one has to assign labels to a
pair of drugs that describes the behaviour of the drugs in a biological
context. This context can be drug-drug interaction [36], polyphar-
macology side effects [47] or the synergy of the drugs when admin-
istered together [33]. According to [31] machine learning-based so-
lutions to this challenge can be categorized into three main groups:
(a) molecular features based models [36] (b) network biology-based
embedding models [47] (c) hierarchical models which use a mixture
of molecular features and systems biology [33]. Our work is closest
to the network biology-based solutions as it exploits a high-level
biological entity graph to solve the problem by creating upstream
drug embeddings and a downstream classifier.

2.2 Heterogeneous Biological Graphs

A heterogeneous biological graph consists of biological entities
(node types) and heterogeneous interactions between these entities
(edge types). Publicly available graphs [7] are differentiated by
each other based on the types of nodes and edges present in the
graph, various node type hierarchies [7], the size of the biological
graph [9] and the use case that was driving the creation of the
graph [11]. These heterogeneous biological graphs can be used

Benedek Rozemberczki

by drug discovery researchers in the pharmaceutical industry [7]
as an input for off- and on target drug repurposing [10], gene
target identification [12], and compound interaction prediction
[33] systems.

2.3 Node Embeddings

Node embeddings are unsupervised machine learning models which
map the nodes of a graph into an Euclidean space [29] where various
notions of graph-based proximity between nodes (e.g. neighbour-
hood overlap [13], personalized PageRank [26], adjacency [35]) are
preserved. By doing this for each node a feature vector is assigned
which can be used to solve various downstream machine learning
task such as node classification [13], link prediction [13, 35] or node
clustering [35]. The drug-drug interaction problem that is our inter-
est can be formulated as a link prediction task on a heterogeneous
biological graph, because of this we are going to take a customized
node embedding-based approach.

3 PRELIMINARIES

In this section, we focus on the mathematical model that powers
the predictions made by TigerLily and the biological graph dataset
that we created to test the performance of the machine learning
system. 1

3.1 The Embedding Model

TigerLily relies on a custom node embedding model which exploits
the advantageous functionalities of TigerGraph. Our goal is to
give a concise and prompt description of this upstream machine
learning model and how the features of this model are used by the
downstream drug interaction predictor.

3.1.1 Graph Theory Basics. Drugs and genes are noted by the sets
D and P. The union of these two sets V = D U P defines the
node set (biological entities), & is the set of edges between the
entities and G = (V, &) is the heterogeneous biological graph. We
postulate that the edge set does not contain any drug-drug edges
hence (d,d’) ¢ E,VYd,d’ € D. Weuse n = |'V|and m = |D| to
denote the cardinality of the biological entity and drug sets. Finally,
A is the n x n normalized adjacency matrix of the graph G.

3.1.2 Upstream Drug Embeddings. A drug indicator matrix S €
is a binary matrix where each row corresponds to a biological
entity and columns correspond to drugs. Non zero entries of this
matrix correspond to indicators of the drugs in the graph, meaning
that Vo € V,d € D it only holds that S, ; = 1if v = d. The
approximate personalized PageRank scores [15, 22, 26] of drugs are
defined by Equation (1).

t—1
X=Ya (1-a)A'sS+(1-)As 1)
r=0

Here r is a running index, ¢ is the number of approximation iter-
ations, 0 < & < 1 is the return probability, and X € Rf<™ is the
matrix of approximate personalized PageRank scores for the drug

The embedding model described in Subsection 3.1 is involved technically, it gives
reasoning to the reader why the proposed solution interfaces well with the architecture
of TigerGraph. The reader can jump ahead and read the rest of the report if such details
seem less relevant to the scope of the challenge.

https://github.com/benedekrozemberczki/tigerlily
https://github.com/benedekrozemberczki/tigerlily

TigerLily: Finding drug interactions in silico with the Graph

nodes in the graph. An entry in this matrix is large when a source
biological entity (row) is close to a drug (column) based on the
approximate personalized PageRank score.

Let us define X € R the pruned approximate personalized
PageRank matrix between drugs and biological entities by Equation
(2). The pruning operation takes a matrix as an input and returns a
sparse matrix wherein each row the top k largest values are kept,
everything else is zeroed out. An entry in this matrix is large when
a source drug (row) is close to a biological entity (column) based
on the pruned approximate personalized PageRank score. It must
be emphasized that this matrix only takes negligible O(mk) space
compared to the O(n?) space required by personalized PageRank
for all biological entities.

X = PRUNE(X", k))

This sparse matrix can be easily computed by using the personal-
ized PageRank query of TigerGraph on the biological graph. Finally,
we can learn the drug embeddings from this matrix by solving
the non-negative matrix factorization problem [19, 38] defined by
Equation (3).

min [|X - HW]||, subjectto H € Rgﬂrx”l, We Rgf" (3)

In Equation (3) d << m is the number of embedding dimensions,
the non negative matrix H is the drug embedding and W is the
biological entity embedding. Each row of H is a drug and columns
can be interpreted as hidden features of the embedding; we are
going to use the features of this matrix as drug features to define
the drug pair features and to train the interaction predictor.

3.1.3 Downstream Drug Pair Classifier. Given the drug set D and
drug embedding matrix H the feature vector describing the drug
pair d,d’ € D is defined as H(y 4y = g(Hg, Hy) where the func-
tion g(+) is a so called operator function [13]; an example operator
function can be the concatenation of the two drug vectors or the
Hadamard product of the vectors. A downstream classifier takes
such drug pair feature vector for a pair of drugs d,d’ € D as an in-
put and outputs the probability that there is an interaction between
them.

3.2 The Integrated Drug Interaction Dataset

Our experiments use a manually integrated biological network from
BioSNAP [24] and a DrugBank DDI [36] based drug pair dataset.

3.2.1 The Biological Graph. We took all of the available non-cell-
specific gene-gene and drug-gene interaction networks [39, 47]
from BioSNAP and integrated them into a single heterogeneous
biological graph. Genes have been mapped to the Entrez identifier
system [23] and drugs have been mapped to DrugBank identifiers
[44] in the data cleaning process. The result is an undirected hetero-
geneous graph with two node types; 1,106 drug nodes and 20,754
gene nodes, 38,393 drug-gene target interactions, and 778,290 gene-
gene regulatory interactions.

3.2.2 The Drug-Drug Interactions. The target drug-drug interac-
tions were taken from the DrugBank DDI dataset [36]; we filtered
for those drug pairs where both drugs are present in the biological
network we created. After this filtration we have 187,850 labeled

drug pairs; 106,362 of these pairs have an adverse interaction (posi-
tive label) and 81,488 of these have no known interaction (negative
label). This dataset was made available via the GitHub repository
of TigerLily and the library also has a built-in data loader class to
access this integrated dataset.

4 THE TIGERLILY FRAMEWORK DESIGN

Our discussion about the Tigerlily design focuses on two things: (a)
a real-world drug-drug interaction prediction use case that show-
cases the API step-by-step and interfacing with other machine
learning libraries; (b) the software engineering principles that en-
sure that the TigerGraph based solution is maintainable and robust.

4.1 A Real World Use Case

In this section, we solve a real-world drug-drug interaction prob-
lem that uses data from DrugBank and BioSNAP. The details of
these datasets and the performance TigerLily on this problem are
discussed in Section 5 in great detail. A high-level step-by-step
overview of the TigerLily based solution to this problem is described
in Figure 2 and our demonstration will follow this workflow.

4.1.1 Heterogeneous Graph Definition and Upload. Our goal is to
create a heterogeneous biological graph and store it as a drug-gene
interaction network with TigerGraph. The way we achieve this is
described by the code snippet in Listings 1.

1 from tigerlily.dataset import ExampleDataset

2 from tigerlily.embedding import EmbeddingMachine

3 from tigerlily.operator import hadamard_operator

4+ from tigerlily.pagerank import PersonalizedPageRankMachine
5

¢ dataset = ExampleDataset()

7

s edges = dataset.read_edges()

9 target = dataset.read_target()

10

11 machine = PersonalizedPageRankMachine(host="host",

12 graphname="graph",

13 username="user",

14 secret="secret",

15 password="password")

17 machine. connect()

18 machine.install_query()

19

20 machine.upload_graph(new_graph=True, edges=edges)

Listings 1: Loading the example drug-drug interaction
dataset, creating a TigerLily PersonalizedPageRankMachine
instance and populating the Graph with a heterogeneous
biological graph.

We start by importing classes and functions from TigerLily
that we will use later (lines 1-4). We create a ExampleDataset
instance, load the edges and the target drug pairs with the respec-
tive class methods. Both of these parts of the dataset are returned
as pandas dataframe objects by the class methods (lines 6-9). We
must note, that the edges dataframe must have columns named
node_1, node_2, drug_1 and drug_2 columns which respectively

Benedek Rozemberczki

|

O

Q9

.
/’\// VN "=

Q9
3

v X

(a) Heterogeneous Graph
Definition and Upload

(b) Personalized PageRank
Computation and Pruning

(c) Node Embedding (d) Inference

Figure 2: TigerLily provides a workflow for biological graph-based drug interaction prediction that consists of multiple main
steps. (a) Using TigerGraph a heterogeneous systems biology graph is defined with drug and gene nodes. This graph does not
contain the drug-drug interactions. (b) The Personalized PageRank vector for each drug node is computed using TigerGraph
and this vector is pruned to contain the top-k most similar nodes based on proximity. (c) Based on the Personalized PageRank
matrix we learn drug embeddings which serve as Systems Biology based features of drugs. (d) Using the drug features we define
drug pair features and train a classifier to predict the interactions of pair combinations.

contain the node identifiers and the node types. The edge dataframe
must not contain edges where both of the nodes have a drug node
type as our goal is to predict the existence of drug-drug interactions.
In a similar fashion the target dataframe must have the columns
drug_1, drug_2 and label which contain the drug identifiers and
the indicator for the existence or non-existence of an interaction.

We create a PersonalizedPageRankMachine instance (lines 11-
14) that is parametrized by the hostname and graph names with the
appropriate credentials. This step requires that there is a running
and existing TigerGraph Cloud instance with a graph that has
the appropriate Graph schema - in our case, it means drug and
gene nodes with interaction edges. The instance is connected, the
personalized PageRank query is installed and the edges of the graph
are uploaded (lines 16-19). By setting the new_graph flag to be true
we make sure that the graph is empty before the upload starts. After
the graph is populated it is time to compute some approximate
personalized PageRank scores.

4.1.2 Personalized PageRank Computation and Pruning. Our focus
is on the drug nodes and we want to query those to get an un-
derstanding of which are those biological entities that are in close
proximity to the drugs. We do this with the piece of code described
in Listings 2. First, we query the PersonalizedPageRankMachine
to get a list of the drug nodes (line 1). Based on this list using the
get_personalized_pagerank class method we query those nodes
for each drug that have a large approximate personalized PageRank
score. For each drug we return the top-k highest scoring entry (line
3); this ensures that the returned dataset is small even when the
number of biological entities is large compared to the number of
drugs. The returned pagerank_scores data frame has the node_1,
node_2 and score columns; it describes a sparse matrix where rows
are drugs, columns are biological entities (including drugs) and the
values are pruned personalized PageRank scores. Let us move on to
the learning drug embeddings from this matrix and creating drug
pair features from the learned embeddings.

1 drugs = machine.connection.getVertices("drug")
2
3 pagerank_scores = machine.get_personalized_pagerank(drugs)

Listings 2: Querying the previously created TigerLily
PersonalizedPageRankMachine instance for the list of drug
nodes in the Graph and computing the personalized PageR-
ank of nodes in the proximity of drugs.

4.1.3 Drug Node Embedding. Using the previously computed per-
sonalized PageRank matrix we learn node embeddings for each drug
with the Python script in Listings 3. We create an EmbeddingMachine
instance and learn drug node embeddings (lines 1-5); the returned
embedding is a a pandas dataframe where the firs column named
node_id contains the drug identifiers and the remaining columns
contain the embedding dimensions. Using the target and the drug
pair feature computation hadamard_operator the create_features
class method of the EmbeddingMachine instance allows the creation
of drug pair features (lines 7-8). Using these drug pair features we
are ready to solve the drug-drug interaction task!

embedding_machine = EmbeddingMachine(seed=42,
dimensions=32,
max_iter=100)

features = embedding_machine.create_features(target,

1
2
3
4
s embedding = embedding_machine.fit(pagerank_scores)
6
7
8 hadamard_operator)

Listings 3: Creating a EmbeddingMachine instance, learning
drug embeddings from the personalized PageRank scores
and creating drug pair features with the hadamard_operator
for the drug pairs.

TigerLily: Finding drug interactions in silico with the Graph

4.1.4 Drug Pair Interaction Prediction and Inference. Our final step
to learning a drug pair classifier and producing predictions for the
drug pairs is summarized with code in Listings 4. This step is a
pretty generic supervised machine learning workflow based on
LightGBM [18] and scikit-learn [27].

We start by importing the gradient boosted classifier, the AUROC
evaluation metric, and the function for creating train-test splits
(lines 1-3). We split the drug pair features and the labels with the
train_test_split function into training and testing parts (line
5). We create a LightGBMClassifier instance, learn the model
from the training set drug pairs, score on the test set, compute
the AUROC score and print the score by taking the first few digits
(lines 7-17). This snippet demonstrated that TigerLily interfaces
with existing machine learning libraries smoothly.

1 from lightgbm import LGBMClassifier
2 from sklearn.metrics import roc_auc_score
3 from sklearn.model_selection import train_test_split

4

s X_train, X_test, y_train, y_test = train_test_split(features,

6 target)
7

s model = LGBMClassifier(learning_rate=0.01,

9 n_estimators=100)

10

11 model.fit(X_train, y_train["label"])

12

13 y_hat = model.predict_proba(X_test)

14

15 auroc_score_value = roc_auc_score(y_test["label"],
16 y_hat[:,11)

17

18 print(f'AUROC score: {auroc_score_value :.4f}")

Listings 4: Splitting the target and the TigerLily generated
drug pair features to train and evaluate a gradient boosting
based drug pair scoring model.

4.2 Maintaining and Supporting TigerLily

As we have seen in the previous section TigerLily was engineered
with an end-user-friendly API in mind and this design is supported
by continuous integration, documentation, tutorials, package in-
dexing, and unit- and integration tests.

4.2.1 Documentation and Example Notebook. The complete code-
base of TigerLily is documented with docstrings and type anno-
tations. Using these and restructured text files we automatically
release new documentation that reflects the current state of the
TigerLily Github repository. This documentation is available un-
der https://tigerlily.readthedocs.io/en/latest/ and it covers the API
reference and includes a tutorial for the new potential users. The
same tutorial is available in the form of a Jupyter Notebook in the
repository that explains line by line a typical Tigerlily-based graph
analytics workflow.

4.2.2 Inclusion in the Python Package Index. The submission 0.1.0
release of Tigerlily is publicly available on the Python Package
Index. This means that different versions of the library (including
the submission release) can be accessed via the https://tigerlily.

readthedocs.io/ webpage and that it can be installed via the com-
mand line using the pip install tigerlily command. This
allows the end-users to install TigerLily in the Python environment
that they use efficiently and also the same users can install different
versions of the library based on their needs.

4.2.3 Test Suite and Code Coverage Reports. The continuous in-
tegration of Tigerlily with Github Actions allows the automated
testing of the codebase. The Tigerlily namespaces are covered by
unit and integration tests which ensure that software components
behave as expected. Each automated test suite run generates a cover-
age report hosted on Codecov. These reports are publicly available
under https://app.codecov.io/gh/benedekrozemberczki/tigerlily and
allow inspecting the coverage rate of the TigerLily namespaces.

5 EXPERIMENTAL EVALUATION

The main goal of this section is to demonstrate that TigerLily can
solve a real-world problem. Using the biological network and drug-
drug interaction data discussed in Section 3 we will test the pre-
dictive performance of classifiers that use TigerLily-based drug
embedding features.

5.1 Predictive Performance

The predictive efficacy of TigerLily is a primary driver of the po-
tential impact that the solution can have in the real world. Because
of this we investigate this and compare the performance under var-
ious drug pair feature computation operators with multiple binary
classification metrics.

5.1.1 Experimental Design. We compute approximate personalized
PageRank scores with the PersonalizedPageRankMachine for the
drugs and their closest 50 neighbors, from 25 PageRank approxima-
tion iterations with a return probability of 0.7. Drug embeddings
are learned with the EmbeddingMachine in 32 dimensions by do-
ing 100 iterations. From the drug embeddings, drug pair features
are computed with the operators listed in Table 1. We use 80% of
the pairs to train a gradient boosted tree machine (LightGBM im-
plementation [18]) and compute AUROC, AUPR, F; scores on the
remaining 20% of pairs. The average performance computed from
10 random seeded experimental runs is in Table 1 with standard
errors around the mean performance.

Table 1: The mean predictive performance (standard devia-
tions below) of a TigerLily based gradient boosted machine
computed from 10 seeded train-test splits. Rows represent
drug-drug feature computation routines described by [13].

Binary Definition
Operator of component H’(dd) AUROC AUPR F
Absolute |H:1 -H,| .905032 .906012 .807613
+. +. +.
Squared (H) - Hi,)? 793011 963 870
+. +. +.
Difference H!, - H', .948 961 .860
d d £.003 £002 +.004
Hadamard H;. . Hfi, 951 .955 871
+.003 +.002 +.003

https://tigerlily.readthedocs.io/en/latest/
https://tigerlily.readthedocs.io/
https://tigerlily.readthedocs.io/
https://app.codecov.io/gh/benedekrozemberczki/tigerlily

5.1.2 Experimental Results. Most importantly the results in Table 1
are a strong signal that TigerLily-based embedding features can be
used to predict the drug-drug interactions. We can also observe that
there is no clearly superior operator and that there is a negligible
difference in performance between the various feature computation
operators across the performance metrics. A further error analysis
could show which drugs participate in drug pairs that are being
consistently misclassified by TigerLily.

5.2 Training Data Ratio

Getting ground truth about known drug-drug interactions is a costly
process. Because of this, data-efficient solutions which require a
limited amount of labeled drug pairs to solve the drug-drug inter-
action problem are extremely valuable. We are going to investigate
the predictive performance of TigerLily under various training data
ratio regimes with a range of downstream classifiers.

5.2.1 Experimental Design. We train LightGBM [18] based gra-
dient boosting and scikit-learn [27] based random forest, logistic
regression, and neural networks to predict the interactions using
drug pair features computed with the Hadamard operator. The per-
sonalized PageRank calculation and embedding hyperparameter
settings were taken from Subsection 5.1. We modulate the amount
of training data and plot the test set average predictive perfor-
mance computed from 10 random seeded experimental runs on the
subplots of Figure 3 as a function of the training data amount.

1 1
° T \Eéaé T ‘Eé’aé
§ 0.9+ 5 O | g 0.9 Bz o009
L m__eo® 1 2 [o .
908 e » 08 J
Q ™ ~ - d
Q 0.7*'1'z 1 5 07pF# N
Z 5 oe| Geaiiiill
= 0.6 ¢ 1 << 06|« N
0.5 1 | | | 0.5 | | | | |
1 35 7 9 1 3 5 7 9

Training data %. Training data %.

’ o GBM —&— RF —— LR NN‘

Figure 3: The mean drug interaction prediction performance
of TigerLily based classifiers conditioned on the ratio of train-
ing data (in permille) calculated from 10 train-test splits.

5.2.2 Experimental Results. The line charts of Figure 3 clearly
demonstrate that the non-parametric methods (gradient boosting
and random forest) are extremely data-efficient compared to the
parametric ones. Given less than 1% of data, these methods achieve
similar results to the number in Table 1. This showcases that the
two-stage machine learning system of TigerLily is able to solve the
drug interaction problem with high predictive efficacy even when
the amount of training data is extremely limited.

5.3 Embedding Dimension Sensitivity
TigerLily is a highly modular framework with the upstream drug

embeddings and downstream drug pair classifier-based design.

However, the number of dimensions used for the drug embeddings
is a highly important hyperparameter of the upstream model; in a
certain sense, it is a key hyperparameter to tune and optimize.

Benedek Rozemberczki

5.3.1 Experimental Design. Using the personalized PageRank, up-
stream embedding and downstream model settings from the previ-
ous section we train gradient boosted tree, logistic regression, and
neural network classifiers while the number of embedding dimen-
sions is modulated in {22, . .,27}. We compute average AUROC
and AUPR scores from 10 random seeded experimental runs and
plotted the average predictive performance as a function of the
embedding dimensions in Figure 4.

0.9
0.8
0.7
0.6

AUROC Score
AUPR Score

0.5 0.5

2 3 1 5 6 7 2 3 1 5 6 7
log, Embedding dimensions log, Embedding dimensions

I cam 1 1R NN

Figure 4: The mean drug interaction prediction performance
of TigerLily feature based classifiers conditioned on the num-
ber of embedding features calculated from 10 train-test splits.

5.3.2 Experimental Results. Our results in Figure 4 demonstrate
that increasing the embedding dimensions beyond 2° the default is
beneficial for predicting novel drug-drug interactions. We can also
observe that the non-parametric gradient boosted trees gain less
with the increased number of embedding dimensions compared to
the parametric models.

6 TARGET USERS AND LIMITATIONS
6.1 Potential Target Users

When TigerLily was designed we had specific user stories in mind
about how it could be deployed. All of these stories showcase the
potential of TigerLily to affect the life of millions of patients around
the world.

6.1.1 Early Drug Discovery Researchers. Using TigerLily in the
early discovery phase could allow drug discovery researchers to
flag potentially adverse drug interactions early on. Indications could
be followed up by experiments later in the clinical phase of the
drug discovery process. This could reduce the attrition rate of drugs
being developed as drugs with a lot of adverse interactions would
not proceed to the late phases of the development process.

6.1.2 Clinical Practitioners. Using TigerLily could give clinical
practitioners early warnings about potential interactions of drugs
that are prescribed to patients. Based on these warnings the doctors
can make informed decisions about the drug combinations. For
example, the patients could be asked to look for specific polyphar-
macy side effects and monitored more closely when there is a risk
of adverse drug interactions.

6.1.3 Pharmaceutical Industry Regulators. During the drug discov-
ery process the potential drug-drug interactions are not a primary
target for the researchers. Because of this potential drug safety
concerns can be flagged during the drug approval. A TigerLily-like
system that can create indications for potential interactions could

TigerLily: Finding drug interactions in silico with the Graph

serve the pharmaceutical industry regulators who could get early
warnings about potential safety issues and rare adverse events.

6.1.4 Self-medicating Patients. A large number of adverse drug
interaction events happen when patients decide to use multiple
drugs simultaneously on their own [1]. By extending TigerLily with
a convenient and friendly user interface patients could make better
self-medication decisions after consulting TigerLily. This could
be extremely beneficial for those communities that are critically
neglected and under-served by the healthcare system.

6.2 Limitations and Obstacles for Deployment

Our system TigerLily is a proof of concept for TigerGraph based in
silico drug-drug interaction prediction. This means that the project
and the presented approach have some limitations which we would
like to highlight shortly.

6.2.1 Systems Biology Data of New Drugs is Lacking. The node
embedding functionality of TigerLily implicitly assumes that the
drugs of interest are connected to the gene-gene network so drugs
can be contextualized by their location in the biological graph. This
particular issue is a manifestation of the transductive node represen-
tation learning setting [14] of our embedding approach. However,
this is not true for newly developed drugs, where the nature of
the exact interactions with other genes is not understood beyond
a primary gene target. This means that predicting interactions for
compounds that are not known for long can be a challenging task
and potentially the performance of TigerLily could be affected. This
challenge could be overcome by using inductive graph neural net-
works [6, 14, 20, 22, 32, 41] which would require extrinsic drug and
gene features.

6.2.2 Limited Number of Biological Entity Types. The graph which
we integrated to demonstrate the predictive performance of our
solution has two types of biological entities: drugs and gene targets.
Existing heterogeneous biological graphs [11, 16, 42] used in the
pharmaceutical industry have a larger variety of node types such
as cell lines, protein variants, biological processes, and pathways.
It is possible that the inclusion of more node and edge types would
enrich the graph and result in better quality drug embeddings and
interaction predictions.

6.2.3 Skewed Drug Interaction Data. Drug interaction and synergy
databases are known to be skewed [31, 36, 47]. Practically this
means that combinations that involve specific commonly used drugs
are tested, but combinations of rarely used drugs are not present.
Given that the primary goal of in silico drug interaction predictions
is to give indications for combinations of rarely used pairs this can
be problematic.

6.2.4 Homogeneous Proximity Preserving Node Embedding. Our
approach creates homogeneous proximity preserving node embed-
dings based on the approximate Personalized PageRank scores; this
is a considerable limitation given our graph. A number of current
approaches are able to incorporate information about the hetero-
geneity of the graph with respect to node types and edges [2, 25, 40].
Moreover, certain embedding approaches are able to describe the
structural roles of nodes [30] which could be important when it
comes to the systems biology of compounds and genes.

6.2.5 Poor Interpretability of Predictions. TigerLily is a framework
that consists of an upstream and downstream module; by the end of
the upstream phase, the graph information is distilled into feature
vectors. Downstream models trained on these features are not in-
terpretable and because of this, we cannot answer questions about
why the classifier flagged a drug pair to be a potential adverse one.
However, given extrinsic drug and gene features and a graph neural
network trained on these modern explanation techniques could
allow the creation of such post-hoc explanations of the drug-drug
interaction predictions [28, 37, 45, 46].

6.2.6 Hesitance of Potential Users. Our proposed drug interaction
prediction framework TigerLily serves as an intelligent system that
can accelerate the work of clinicians, early discovery researchers,
and drug safety experts. However, the black-box nature of this
system might be something that cannot be overlooked by the end-
users. Moreover, the system might have a potential bias that could
affect specific groups of people. One such group could be a set of
people who share genetic markers which make them more prone
to experience a certain type of adverse events due to drug combi-
nations. Issues like this could make the potential users of TigerLily
use the system.

7 FUTURE DIRECTIONS AND CONCLUSIONS

7.1 New Research Directions

The open-source codebase, modularity, and extensible nature of
TigerLily open up opportunities for future research and engineer-
ing solutions. We will highlight potential avenues for the further
development of the framework which we see to be high impact and
low effort.

7.1.1 User Interface Development. TigerLily is a Python library
that requires that the users are familiar with the language and feel
comfortable with reading the documentation. Allowing users to
run simple queries on the TigerLily-based predicted scores could
open up opportunities for a large number of people. Because of this,
the development of a user interface where drug pairs associated
with adverse events can be queried seems to be a promising and
high-impact future research direction.

7.1.2 Large Biological Graphs. Our demonstration uses a graph
that covers most of the human genome but ignores node types
such as pathways or cell lines. We postulate that modeling the
underlying biology systems biology better with data and encoding
biology better can only be achieved via this. Hence, the integration
of large publicly available biological graphs in TigerLily seems to
be an extremely promising direction for future research.

7.1.3 Drug Synergy Predictions. The focus of our discussion about
TigerLily is on adverse drug-drug interactions, but the system is
sufficiently flexible to allow for solving other tasks. One interesting
task defined on drug pairs is synergy prediction a central question
of computational oncology research [33, 34].

7.2 Concluding Remarks and Summary

In this project report we discussed TigerLily a TigerGraph-powered
open-source machine learning system for in silico drug interaction

prediction. We discussed existing artificial intelligence-based ap-
proaches to solving this interesting problem and how biological
graphs can be used to tackle this challenge. We gave an overview
of how we integrated data from public resources to solve this prob-
lem and formalized a mathematical model that can exploit biolog-
ical graphs to solve the task; TigerLily is a conceptualization of
this mathematical model. We demonstrated the main features of
TigerLily with Python code examples and highlighted the software
engineering principles that make the tool robust, reliable, and acces-
sible. By doing extensive experiments we had shown that TigerLily
can help to predict drug interactions in the real world. We reviewed
potential users of the system, and its limitations and emphasized
the most important future research directions.

REFERENCES

(1]

™
=

=

[10

[11]

[12]

[13]

[14

[15

Nathalie Asseray, Francoise Ballereau, Béatrice Trombert-Paviot, Jacques Bouget,
Nadine Foucher, Bertrand Renaud, Lucien Roulet, Gerald Kierzek, Aurore Armand-
Perroux, Gilles Potel, et al. 2013. Frequency and severity of adverse drug reactions
due to self-medication: a cross-sectional multicentre survey in emergency de-
partments. Drug safety 36, 12 (2013), 1159-1168.

Ivana Balazevic, Carl Allen, and Timothy Hospedales. 2019. TuckER: Tensor Fac-
torization for Knowledge Graph Completion. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 5188-5197.
Darshana Bennadi. 2013. Self-medication: A current challenge. Journal of basic
and clinical pharmacy 5, 1 (2013), 19.

Aurélia Berreni, Fran¢ois Montastruc, Emmanuelle Bondon-Guitton, Vanessa
Rousseau, Delphine Abadie, Geneviéve Durrieu, Leila Chebane, Jean-Paul Giroud,
Haleh Bagheri, and Jean-Louis Montastruc. 2015. Adverse drug reactions to
self-medication: a study in a pharmacovigilance database. Fundamental & clinical
pharmacology 29, 5 (2015), 517-520.

Ingeborg K Bjorkman, Johan Fastbom, Ingrid K Schmidt, Cecilia B Bernsten,
and Pharmaceutical Care of the Elderly in Europe Research (PEER) Group. 2002.
Drug—drug interactions in the elderly. Annals of Pharmacotherapy 36, 11 (2002),
1675-1681.

Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin
Blais, Benedek Rozemberczki, Michal Lukasik, and Stephan Giinnemann. 2020.
Scaling Graph Neural Networks with Approximate Pagerank. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2464-2473.

Stephen Bonner, Jan P Barrett, Cheng Ye, Rowan Swiers, Ola Engkvist, Andreas
Bender, Charles Tapley Hoyt, and William Hamilton. 2021. A review of biomedical
datasets relating to drug discovery: A knowledge graph perspective. arXiv
preprint arXiv:2102.10062 (2021).

Valeri Craigle. 2007. MedWatch: The FDA safety information and adverse event
reporting program. Journal of the Medical Library Association 95, 2 (2007), 224.
Gavin Edwards, Sebastian Nilsson, Benedek Rozemberczki, and Eliseo Papa.
2021. Explainable Biomedical Recommendations via Reinforcement Learning
Reasoning on Knowledge Graphs. arXiv preprint arXiv:2111.10625 (2021).
Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep,
Gertrude Liu, Jeremy BR Hayter, Richard Vickers, Charles Roberts, Jian Tang, et al.
2021. Utilizing graph machine learning within drug discovery and development.
Briefings in bioinformatics 22, 6 (2021), bbab159.

David Geleta, Andriy Nikolov, Gavin Edwards, Anna Gogleva, Richard Jackson,
Erik Jansson, Andrej Lamov, Sebastian Nilsson, Marina Pettersson, Vladimir
Poroshin, et al. 2021. Biological Insights Knowledge Graph: an integrated knowl-
edge graph to support drug development. bioRxiv (2021).

Anna Gogleva, Dimitris Polychronopoulos, Matthias Pfeifer, Vladimir Poroshin,
Michaél Ughetto, Matthew J Martin, Hannah Thorpe, Aurelie Bornot, Paul D
Smith, Ben Sidders, et al. 2022. Knowledge graph-based recommendation frame-
work identifies drivers of resistance in EGFR mutant non-small cell lung cancer.
Nature Communications 13, 1 (2022), 1-14.

Aditya Grover and Jure Leskovec. 2016. Node2Vec: Scalable Feature Learning for
Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 855-864.

William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems. 1025-1035.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgen: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639-648.

[16

(17]

[18

[20

[21

[22

[23

™
=)

[25

[26

[27

&
&

[29

(30]

[31

[32

[33

[34

[35

[36

[37

[38

Benedek Rozemberczki

Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo Brueggeman,
Sabrina L Chen, Dexter Hadley, Ari Green, Pouya Khankhanian, and Sergio E
Baranzini. 2017. Systematic integration of biomedical knowledge prioritizes
drugs for repurposing. Elife 6 (2017), e26726.

Lisa E Hines and John E Murphy. 2011. Potentially harmful drug-drug interac-
tions in the elderly: a review. The American journal of geriatric pharmacotherapy
9, 6 (2011), 364-377.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting
decision tree. Advances in neural information processing systems 30 (2017).
Hyunsoo Kim and Haesun Park. 2008. Nonnegative matrix factorization based
on alternating nonnegativity constrained least squares and active set method.
SIAM journal on matrix analysis and applications 30, 2 (2008), 713-730.

Thomas N. Kipf and Max Welling. [n.d.]. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings.

Hiroaki Kitano. 2002. Systems biology: a brief overview. science 295, 5560 (2002),
1662-1664.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Ginnemann. [n.d.].
Predict then Propagate: Graph Neural Networks meet Personalized PageRank. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019.

Donna Maglott, Jim Ostell, Kim D Pruitt, and Tatiana Tatusova. 2005. Entrez
Gene: gene-centered information at NCBL. Nucleic acids research 33, suppl_1
(2005), D54-D58.

Zitnik Marinka, Sosic Rok, Maheshwari Sagar, and Leskovec Jure. 2018. BioSNAP
Datasets: Stanford Biomedical Network Dataset Collection. http://snap.stanford.
edu/biodata.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A Three-Way
Model for Collective Learning on Multi-Relational Data. In International Confer-
ence on Machine Learning. PMLR.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825-2830.

Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko
Hoffmann. 2019. Explainability Methods for Graph Convolutional Neural Net-
works. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 10772-10781.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network Embedding as Matrix Factorization: Unifying Deepwalk, LINE, PTE,
and Node2Vec. In Proceedings of the 11th ACM International Conference on Web
Search and Data Mining. 459-467.

Ryan A Rossi, Di Jin, Sungchul Kim, Nesreen K Ahmed, Danai Koutra, and
John Boaz Lee. 2020. On Proximity and Structural Role-Based Embeddings in
Networks: Misconceptions, Techniques, and Applications. ACM Transactions on
Knowledge Discovery from Data (TKDD) 14, 5 (2020), 1-37.

Benedek Rozemberczki, Stephen Bonner, Andriy Nikolov, Michael Ughetto, Sebas-
tian Nilsson, and Eliseo Papa. 2021. A Unified View of Relational Deep Learning
for Polypharmacy Side Effect, Combination Synergy, and Drug-Drug Interaction
Prediction. arXiv preprint arXiv:2111.02916 (2021).

Benedek Rozemberczki, Peter Englert, Amol Kapoor, Martin Blais, and Bryan
Perozzi. 2021. Pathfinder Discovery Networks for Neural Message Passing. In
Proceedings of The Web Conference 2021. ACM.

Benedek Rozemberczki, Anna Gogleva, Sebastian Nilsson, Gavin Edwards, Andriy
Nikolov, and Eliseo Papa. 2021. MOOMIN: Deep Molecular Omics Network for
Anti-Cancer Drug Combination Therapy. arXiv preprint arXiv:2110.15087 (2021).
Benedek Rozemberczki, Charles Tapley Hoyt, Anna Gogleva, Piotr Grabowski,
Klas Karis, Andrej Lamov, Andriy Nikolov, Sebastian Nilsson, Michael Ughetto,
Yu Wang, et al. 2022. ChemicalX: A Deep Learning Library for Drug Pair Scoring.
arXiv preprint arXiv:2202.05240 (2022).

Benedek Rozemberczki and Rik Sarkar. 2018. Fast Sequence-Based Embedding
with Diffusion Graphs. In International Workshop on Complex Networks. Springer,
99-107.

Jae Yong Ryu, Hyun Uk Kim, and Sang Yup Lee. 2018. Deep learning improves
prediction of drug-drug and drug—food interactions. Proceedings of the National
Academy of Sciences 115, 18 (2018), E4304-E4311.

Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. 2021. Interpreting
Graph Neural Networks for {NLP} With Differentiable Edge Masking. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=
WznmQa42ZAx

Suvrit Sra and Inderjit Dhillon. 2005. Generalized nonnegative matrix approxi-
mations with Bregman divergences. Advances in neural information processing
systems 18 (2005).

http://snap.stanford.edu/biodata
http://snap.stanford.edu/biodata
https://openreview.net/forum?id=WznmQa42ZAx
https://openreview.net/forum?id=WznmQa42ZAx

TigerLily: Finding drug interactions in silico with the Graph

[39] Damian Szklarczyk, Alberto Santos, Christian Von Mering, Lars Juhl Jensen,

[40

[41

[42

[43

[44

[45

]

[46]

[47

Peer Bork, and Michael Kuhn. 2016. STITCH 5: augmenting protein—chemical
interaction networks with tissue and affinity data. Nucleic acids research 44, D1
(2016), D380-D384.

T Trouillon, CR Dance, E Gaussier,] Welbl, S Riedel, and G Bouchard. 2017.
Knowledge Graph Completion via Complex Tensor Factorization. Journal of
Machine Learning Research 18, 130 (2017), 1-38.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. [n.d.]. Graph Attention Networks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings.

Brian Walsh, Sameh K Mohamed, and Vit Novacek. 2020. Biokg: A knowledge
graph for relational learning on biological data. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management. 3173-3180.
David S Wishart, Craig Knox, An Chi Guo, Dean Cheng, Savita Shrivastava, Dan
Tzur, Bijaya Gautam, and Murtaza Hassanali. 2008. DrugBank: a knowledgebase
for drugs, drug actions and drug targets. Nucleic acids research 36, suppl_1 (2008),
D901-D906.

David S Wishart, Craig Knox, An Chi Guo, Savita Shrivastava, Murtaza Has-
sanali, Paul Stothard, Zhan Chang, and Jennifer Woolsey. 2006. DrugBank: a
comprehensive resource for in silico drug discovery and exploration. Nucleic
acids research 34, suppl_1 (2006), D668-D672.

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. 2019.
GNNExplainer: Generating Explanations for Graph Neural Networks. Advances
in neural information processing systems 32 (2019), 9240.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. 2021. On Explain-
ability of Graph Neural Networks via Subgraph Explorations. (18-24 Jul 2021).
Marinka Zitnik, Monica Agrawal, and Jure Leskovec. 2018. Modeling polyphar-
macy side effects with graph convolutional networks. Bioinformatics 34, 13 (2018),
1457-i466.

	1 Introduction
	1.1 Statement of Significance
	1.2 Summary of Contributions

	2 Related work
	2.1 Drug-Drug Interaction Prediction
	2.2 Heterogeneous Biological Graphs
	2.3 Node Embeddings

	3 Preliminaries
	3.1 The Embedding Model
	3.2 The Integrated Drug Interaction Dataset

	4 The TigerLily Framework Design
	4.1 A Real World Use Case
	4.2 Maintaining and Supporting TigerLily

	5 Experimental Evaluation
	5.1 Predictive Performance
	5.2 Training Data Ratio
	5.3 Embedding Dimension Sensitivity

	6 Target Users and Limitations
	6.1 Potential Target Users
	6.2 Limitations and Obstacles for Deployment

	7 Future Directions and Conclusions
	7.1 New Research Directions
	7.2 Concluding Remarks and Summary

	References

