
 1

File Formats

Last update: 17 April 2018 Uview 15.4.0 and up

The following section describes the format of the proprietary file formats used in U-view.

A simple program can be provided to list all the header info and LEEM overlay data in a table.

Still Image File

File Type: binary

File Extension: dat

Open with: U-view

Versions released:

Current FILEHEADER VERSION: 8
version 8: introduced with 3.3.0, 08/30/2010 CameraBitsPerPixel

version 7: introduced with 1.4.3, 03/21/06 recipe seperate: attachedRecipeSize

version 6: introduced with Uview 1.4.0, 11/29/05 image sequence

version 5: introduced with Uview 1.1.m, 2002 LEEMdata[256] added

Current IMAGEHEADER VERSION: 7

version 7: introduced 14.0.6, 2017 spareB2 changed to desired_rotation_fraction

 Inclusion of MACROs in 'markup section'

version 6: introduced with Uview 5.0, 6/22/2012 images are stored now without rotation but

with infos desired_rendering; desired_rotation;

applied_processing

version 5: introduced with Uview 1.5.3, 03/19/2008 block of markeup for image tools

version 4: introduced with Uview 1.1.m, 2002: LEEMdata[256] added

Current LEEMDATAVERSION: 2
version 2: introduced with Uview 1.4.3, 03/21/06:

 exposure time modified, average and seq. cycle added.

 introduced with Uview 5.1, image header version 6:

 when leemdataversion>2 an extra block of LEEM data is added

 2

File Structure overview:

1. FILE HEADER (fixed size=104 Bytes)

 2. optional for file version >=7:

block of ‘SEQUENCER RECIPE’ data (fixed size=128 Bytes)

 presence indicated by fileheader.attachedRecipeSize >0

 3. IMAGEHEADER

 4. optional for image version >=5:

block of IMAGE MARKUP data (multiples of 128 Bytes)
 presence indicated by imageheader.attachedMarkupSize > 0

 5. optional LEEM data if LEEMDataVersion>2 then size is LEEMDataVersion

 6. IMAGEDATA: Width x Height x Pixel in 2 Bytes (if BitsPerPixels=16)

 3

File structure (.dat & .dav) for file header version 7 and up:

Description Size

file header FIXED: 104 Bytes

only 1x per file

+

attached recipe 128 Bytes if attachedRecipeSize >0

 else 0 Bytes (for .dav always =0)

 +

image header FIXED: 288 Bytes

 if image header version >3

+

markup block 0 Bytes if attachedMarkupSiz=0

 X Bytes if attachedMarkupSiz>0

In that case X=128* ((attachedMarkupSize/128)+1)

 (integer division)

 +

LEEM data 0 Bytes if LEEMdataSize <=2

else LEEMdataSize contains number

of bytes in LEEM data block

 +

image data ImageWidth*ImageHeight*2 Bytes

 4

Notes for .dav files:

1. .dav file consists of concatenated .dat files with the exception of the file header (only one)

2. attachedRecipeSize always=0

3. To get from file start to the first byte of the first image skip the following number of bytes:
104+ 288+ attachedMarkupSize+ LEEMdataSize

 Offset from file start: attachedMarkupSize 126,127

 LEEMdataSize 130,131

4. After reading the first image to get to the first byte if the following image skip the following

 number of bytes:
288+ attachedMarkupSize+ LEEMdataSize

 Offset from file start: attachedMarkupSize 22,23

 LEEMdataSize 26,27

byte offset from file start description

0 file start (start of file header)

….

104 start of image header #1

…

104+22 integer to calculate attachedMarkupSize0

…

104+26 integer containing LEEMdataSize0

…

104+288 begin markup block of size calculated from

attachedMarkupSize0

…

104+288+ attachedMarkupSize begin LEEM data block of LEEMdataSize0 length

…

104+288+ attachedMarkupSize0 +LEEMdataSize begin image data of ImageHeight*ImageWith*2 length

…

 5

Flowchart for reading .dav files
Open file as

binary file

Move filepointer

forward 104 Bytes

Move filepointer

forward 22 Bytes

Move filepointer

forward 2 Bytes

Read 2 next Byte as

integer and calc.
attachedMarkupSize

Read next 2 Byte

as integer:
LEEMdataSize

Move filepointer

forward 260 Bytes

Move filepointer

forward by #
attachedMarkupSize

Bytes

Move filepointer

forward by #
LEEMdataSize
Bytes

Read image data:

ImageHeight*Image

Width*2 Bytes

File end reached ?

Close file

no

 6

C(++) program fragment to determine total size of (file) header for .dat with
one image:

short s;
FILE *fd;
if((fd=fopen(currentfname,"r"))==NULL)return false;
fseek(fd,46,SEEK_SET);
fread(&s,2,1,fd);
int attachedRecipeSize =(int)s;

fseek(fd,126 + attachedRecipeSize,SEEK_SET);
fread(&s,2,1,fd);
int attachedMarkupSize =(int)s;
attachedMarkupSize = 128*((attachedMarkupSize /128)+1);

fseek(fd,130 + attachedRecipeSize ,SEEK_SET);
fread(&s,2,1,fd);
int LEEMdataSize =(int)s;
int TotalSizeOfHeader=104+288+ attachedRecipeSize + attachedMarkupSize;
if(leemdatasize>2)TotalSizeOfHeader=TotalSizeOfHeader+ LEEMdataSize;
fclose(fd);

ConvertDATto ASCII.exe

This simple program opens .dat as well as .dav files and displays all header information.

It also writes those information and optionally the data section as text into an output file.

 7

Detailed description of data structure used in the still image file:

FILE HEADER

size in Bytes: 104

 latest version bold addressoffset

struct UKFileHeader{

 char id[20]; 20 Bytes: contains “UKSOFT2001” + 0’s 0

 short size; 2 Bytes: sizeof(UKFileHeader) = 104 20

 short version; 2 Bytes : FILEHEADER VERSION 22

 short BitsPerPixel; 2 Bytes, bits per pixel in file =16 24

FILEHEADERVERSION>=8:

short CameraBitsPerPixel; 2 Bytes, bits per pixel of camera 26

FILEHEADERVERSION<8:

 short spare;

FILEHEADERVERSION>=8:

short MCPDiameterInPixels 2 Bytes only !=0 for files taken by Uview 8.5 and up 28

BYTE hBinning,vBinning 1+1 Bytes only !=0 for files taken by Uview 8.5 and up 30

FILEHEADERVERSION<8:

long spare; 4 Bytes (because the following LONGLONG is aligned by the

compiler at an 8-Byte boundary, this variable was not shown in

some earlier versions of the file header description)

LONGLONG spare; 8 Bytes (was redundant ‘starttime’ in early versions) 32

FILEHEADER VERSION>=2:

 short ImageWidth,ImageHeight; 2+2 Bytes 40,42

 short NrImages; 2 Bytes 44

FILEHEADER VERSION<2:

 short spare1,spare2,spare3; 6 Bytes

following 58 Bytes:

FILEHEADER VERSION >=7: >=Uview 1.4., 03/21/06 recipe separate block

 short attachedRecipeSize; 2 Bytes 46

attachedRecipeSize values:

 =0: no attached block

 >0: attached 128Byte block

 attachedRecipeSize contains count of Bytes used for data within that block

 BYTE spare[56]; 56 Bytes 48

FILEHEADER VERSION =6: >=Uview 1.4.0,11/29/05 image sequence ‘recipe’

 (only if more than 1 image in file)

 short spareShort; 2 Bytes

 BYTE SeqRecipe[56]; 56 Bytes

FILEHEADER VERSION <6:

short spare; 2 Bytes

BYTE spare[56]; 56 Bytes

 104

 8

SEQUENCER RECIPE block
Optional for file header version >=7

size in Bytes: 128

overview:

sequencer commands arg1 arg2 arg3

<0 do nothing

 (<0 in first node: list is empty)

0 acquire image

1 wait msec

2 subtract image= image2 - image3

3 calculate shift between image[arg1] & image[arg2] >=Uview 6.1

4 set spin 1=spin up 0=spin down

5 normalize difference/sum

6 set LEEM supply absolute

7 set LEEM supply relative

8 LEEM preset

9 add and accumulate image= image2 + image3

10 accumulate image[arg2] into internal buffer and display that buffer / nr cycles in arg 1

12 shift and accumulate image[arg2] into internal buffer and display that buffer in image[arg 1]

 Shift needs to be calculated prior to ‘12’ >=Uview 6.1

13 apply median filter image filter-window 3x3... >=Uview 6.1

14 divide image= factor*(image2 / image3) >=Uview 6.1

 9

IMAGEHEADER
Image header version 5 & 6 & 7

size in Bytes: 288

struct UKImageHeader{ addressoffset

short size; 2 Bytes: sizeof(UKImageHeader): 288 0

short version; 2 Bytes: IMAGEHEADER VERSION 2

 short ColorScaleLow,ColorScaleHigh; 4 Bytes 4,6

 LONGLONG imagetime; 8 Bytes (see notes) 8

short MaskXShift,MaskYShift; 4 Bytes: shift of overlayed mask in x and y (pixels) 16

 WORD RotateMask; 2 Bytes: bit 7-15: 0-359 degrees image rotation, 20

 bits 0,1 UseMask

 before Uview Version 1.6.5 not used (=0)
short attachedMarkupSize; 2 Bytes 22

attachedMarkupSize values:

 =0: no attached block

>0: IMAGE MARKUP block is attached, value is number of

 bytes used for data within that block.

 8.6.0: size of this block on disk is a multiple of 128 bytes instead of just

 128 bytes as in previous versions.

 To determine the actual length of the block calculate:
 Block size in bytes: 128* ((attachedMarkupSize/128)+1)

 (note: integer arithmetic is used here i.e. 90/128=0)

short spin; 2 Bytes 24

short LEEMdataVersion; 2 Bytes: = 1 or 2 or >2 26

if >2 then extra block of LEEM data of the size equals

LEEMDataVersion is attached after the IMAGE

MARKUP block. This is implemented for

IMAGEHEADER VERSION>5.

IMAGEHEADER VERSION>5

unsigned char LEEMdata[239]; 240 Bytes Overlay data 28

 BYTE applied_processing; 1 Byte 267

 bit 5 4 3 2 1 0
 bad pixel replacement background subtracted reverseZ mirrorY mirrorX 90 degree rotation

BYTE gray adjust zone; 1 Byte 8.6.4 0: invalid, 1=center half, 2= custom areas 268

 <0: entire image
 unsigned short backgroundvalue; 2 Bytes 273

 BYTE desired_rendering; 1 Byte
 Values:

 LINEAR_RENDERING 0

 HISTogramEQUALisation_RENDERING 1

 GAMMA_RENDERING 2

 LOG_RENDERING 3

 SQRT_RENDERING 4

 ASinH_RENDERING 5

 GAUSS_RENDERING 6

 CLAHE_RENDERING 7

 BYTE desired_rotation_fraction; fractional part of desired_rotation *100 version 7

short rendering_argShort; 2 Bytes: additional argument for the selected

rendering mode, not all modes use this argument

 float rendering_argFloat; 4 Bytes: additional argument for the selected

rendering mode, not all modes use this argument

 10

 short desired_rotation; 2 Bytes: angle the image was last displayed at

 short rotation_offset; 2 Bytes: for images<6 to avoid rotating them again

 short spare,spare; 4 Bytes

IMAGEHEADER VERSION=5

unsigned char LEEMdata[256]; 256 Bytes Overlay data

DWORD spare; 4 Bytes (to get to a total size divisible by 8
}

notes:

The 'imagetime' member of the image header structure holds the standard Windows

FILETIME which is explained as the following:

"The FILETIME structure holds an unsigned 64-bit date and time value for a file. This

value represents the number of 100-nanosecond units since the beginning of January 1,

1601." MS Visual C++ provides a number of functions to convert this time.

 The LEEMdata array containing overlay data is structured as follows:

 source 1, argument 1 ... source n, argument n

 source tags:

Highest bit of this byte is set when this item is not shown on the image:

example: if 0x26 is tag for Start Voltage then 0xA6 is used as tag when

Start voltage is recorded but not show on image.

 0..99: 1. LEEM2000 module #

 2. followed by name

 3. followed by 1 ASCII digit identifying the unit

 unit codes:

 0=none,1=V,2=mA,3=A,4=C,5=K,6=mV,7=pA,8=nA,9=uA

 4. 0 to terminate the string

 5. data: 1 float (4 Bytes)

 0xff: skip

 100: Mitutoyo micrometer readout: 2 floats (x, y coordinate)

 101: (before 1.3.10) FOV (string max 16 char's + 0)

 102: (before 1.3.10) varian controller #1 gauge #1 value (float)

 103: (before 1.3.10) varian controller #1 gauge #2 value (float)

 104: camera exposure (float) in seconds - mislabeled previously as ms

 LEEMdataVersion >1 :

 2 bytes B1,B2 follow

 If B1>0 average is on , B2= number of averaged images 2 to 127

 if B1=0 average is off

 if B1<0 sliding average (<0 in this case -1: hex: 0xff, decimal :255)

 105: title (string max 16 char's + 0)

 106: varian controller #1 gauge #1 label, units value (string max 16

 char's+0,+string max 4 char's+0, float) 27

 107: varian controller #1 gauge #2 label, units value (string max 16

 char's+0,+string max 4 char's+0, float) 27

 108: varian controller #2 gauge #1 label, units value (string max 16

 char's+0,+string max 4 char's+0, float) 27

 109: varian controller #2 gauge #2 label, units value (string max 16

 char's+0,+string max 4 char's+0, float) 27

 110: FOV , camera to FOV cal. factor (string max 16 char's+0+float)

 111: phi, theta (float,float)

 11

 112: spin

 113: FOV rotation (from LEEM presets) [15.2.0]

 114: Mirror state [11.0.1]

 115: MCP screen voltage in kV [11.0.1]

 116: MCP channelplate voltage in kV [11.0.1]
 120-130 additional gauges (#5,#6....

IMAGEHEADER (obsolete)
Image header version 4

Used in file header version 5 and 6 into file header version 7

size in Bytes: 288
struct UKImageHeader{

short size; 2 Bytes

short version; 2 Bytes

 4 Bytes filler

LONGLONG imagetime; 8 Bytes

BYTE spare[8]; 8 Bytes

short spin; 2 Bytes

short spareShort; 2 Bytes

BYTE LEEMdata[256]; 256 Bytes

 4 Bytes filler

};

IMAGEHEADER (obsolete)
Image header version 3 and below

Used in file header version <5

size in Bytes: 48
struct UKImageHeader{

short size; 2 Bytes

short version; 2 Bytes

 4 Bytes filler

LONGLONG imagetime; 8 Bytes

long LEEMdata1_source; 4 Bytes

float LEEMdata1_data; 4 Bytes

short spin; 2 Bytes

short spareShort; 2 Bytes

float LEEMdata2_data; 4 Bytes

BYTE spare[16]; 16 Bytes

};

 12

IMAGE MARKUP block
Optional for file header version >=7

size in Bytes: 128, 256 etc. (multiples of 128)

 size depends on actual space needed by the markers

The image header may be followed by 128 bytes or multiples of 128 bytes of an image markup

block. This block contains info about lines and markers (letters & numbers) which the user has

placed on the image.

The markup block consists of an array of 2-byte words:

[] description

0 block size

1 reserved

2 type of marker:

 1 horizontal cross section

 2 vertical cross section

 3 arbitrary cross section

 4 reserved

 6 markers

 7 inclusion or exclusion areas on image for histogram calculation (8.6.4)

 8 marker label (11.0.0) follows #6 immediately

 9 macro (from 14.0.0)

3… followed by:

 in case of the cross sections:

First index x and y into image data array

Last index x and y into image data array

Cursor Data index x and y into cross section data

 in case of the markers:

First index x and y into image data array

Last index x and y into image data array, y index ORed with type of markers

Color

Size and line weight

Followed in case of a marker containing text by the characters making up the text

 in case of inclusion or exclusion areas:

 index of rectangle (0,1,2,3)

 type: 1: inclusion, 2 exclusion

 rectangle coordinates (left, top, right, bottom)

in case of marco:

followed by macro operation tag and arguments

note: the word ‘markup’ does not imply a similarity to html.

 13

Data File containing multiple images

File Type: binary

File Extension: dat

Open with: U-view

File Contents:

 Fileheader

 Optional sequencer recipe block

 Imageheader1

Optional markup block1

 Optional LEEM data block1

 ImageData1:

 Width x Height x Pixel in 2 Bytes (if Bits PerPixels=16)

 …

 Imageheadern

Optional markup data blockn

Optional LEEM data blockn

 ImageData1n

 Width x Height x Pixel in 2 Bytes (if Bits PerPixels=16)

 14

Video File (.dav)

File Type: binary

File Extension: dav

Open with: U-view

File Contents: Concatenated still images (except that the file header appears only once)

 Fileheader

 Optional sequencer recipe block

 Imageheader1

Optional markup block1

 Optional LEEM data block1

 ImageData1:

 Width x Height x Pixel in 2 Bytes (if Bits PerPixels=16)

 …

 Imageheadern

Optional markup data blockn

Optional LEEM data blockn

 ImageData1n

 Width x Height x Pixel in 2 Bytes (if Bits PerPixels=16)

 15

Intensity data File

File Type: text

File Extension: ivs

Open with: U-view or simple text editor : Microsoft Word-Pad

 Notepad does not display the text correctly, Word does not save

 correctly unless you follow the note below:

Note: don’t re-save the file with a formatting editor like MS Word. If this is

 done, the file can not be read back into U-view. You could use MS

 Word but must save as plain text file.

File Contents:

UK SOFT
software FileVersion
IRectangle left top right bottom
StartChannel StartChannel
DataSection #Channels n number of data pairs to follow
Time1 intensity1 data pairs: time, intensity

…. Exponential format
Timen intensityn
last_entry

example:
UK SOFT
software 1
IRectangle 254 174 274 194
StartChannel 0
DataSection 4
5.050000e+003 1.251472e+006
5.220000e+003 1.252496e+006
5.270000e+003 1.253216e+006
5.380000e+003 1.254112e+006

last_entry

	File Formats
	Still Image File
	File Structure overview:
	File structure (.dat & .dav) for file header version 7 and up:
	Notes for .dav files:
	Flowchart for reading .dav files
	C(++) program fragment to determine total size of (file) header for .dat with one image:
	ConvertDATto ASCII.exe
	Detailed description of data structure used in the still image file:
	Data File containing multiple images
	Video File (.dav)
	Intensity data File

