
Do You Speak London?

Language Identification Platform

Tarek Amr (@gr33ndata)

1 Introduction

Do You Speak London (dysl)1 is a command line tool and python library for natural language
identification, also known as LangID. Currently pre-packaged with training data for 4 languages;
English, Arabic, Spanish and Portuguese. However, you can simply re-train it on your own
dataset.

2 Software Architecture

The core functionality of the code used in dysl is inherited from IRLib (Information Retrieval
Library). IRLib is written in Python and is available as Free and Open Source Software on-line
(https://github.com/gr33ndata/irlib).

The implementation of the n-gram Language Model is explained here, while the next section is
dedicated to the theoretical background for the n-gram Language Models.

The LM populated (trained) using add doc(), which takes the following parameters:

• doc id

• doc terms

The doc id here stands for the class-label, or language of document being read in our case here.
A separate LM is created for each unique doc id. Therefore, if more than one document are
given the same doc id, they all are used to train the same LM. doc terms is a list of all characters
in a document being read. In other words, documents are split into characters and the resulting
list of characters is passed as doc terms. In case of word-based LM, a list of words should be
given to doc terms rather than characters.

When LM is being instantiated, the following parameters can be set:

• n: The value of n in n-gram LM. Default is 3.

• lpad and rpad: Left and right padding. When empty string is given, then no padding
is carried, otherwise, document are padded with (n-1) characters of the character values
given to lpad and rpad. For example, in a 5-gram character-based LM, if lpad=‘A’ and
rpad=‘Z’. Then the string ‘hello’ will become ‘AAAAhelloZZZZ’ after padding. Default is
empty string.

• smoothing: Default is ‘Laplace’ for add one smoothing as explained earlier. Additional
discounting techniques are under development.

• laplace gama: Sets the value of γ as explained in equation 5. Default is 1.

• corpus mix: If given any value between 0 and 1, then it is used to set the value of λ as
explained in equation 6. Default is 0, i.e. only term probabilities from documents are
used. Additionally, if set tp ’l’, then a log-likelihood odds (LLO) model is used.

For dysl, we set n=3, smoothing=‘Laplace’, laplace gama=0.1 and corpus mix=’l’.

1https://github.com/gr33ndata/dysl

1



2.1 classification

During the classification, the calculate() method of the Language Model is used. It only takes
one parameter, doc terms, which accepts data in the same format for the doc terms parameter
given to add doc(). The calculate() returns a dictionary, with ‘calc id’ key, which holds the
value of the language being detected.

2.2 Social Language Model

To make it easier to identify the language of text being sent on social media, we are having
another class SocialLM which uses LM as base class. For the training, add doc() is kept un-
changed, while SocialLM offers classify() as an alternative to calculate(). The resulting value
for classify() is a tuple containing the id of the language being detected, and another parameter
called ‘karbasa’, which is a Arabic word for crowded. Basically, the low ‘karbasa’ score, the
more close the score of the identified language is to the scored of the closest language. This can
be used as indicator to tell if our model is trying to classify a language it has never seen before
during the training phases. Empirically, a ‘karbasa’ of lower value that 0.05 may mean that our
model is confused.

Two more important methods in SocialLM are tokenize() and normalize(). The tokenize()
method converts text into a string of characters (or words), while normalize() is capable of
removing links and social media @mentions from text, and also applying UTF-8 NFC normal-
ization.

3 Technical Details

We apply a similar approach to that used by Peng et al. (2003). We use here a character-based
n-Gram Language Model (LM).

3.1 n-Gram Language Model

Let us assume we have a set of documents D = {d1, d2, ..., dm}, and a set of classes C =
{c1, c2, ..., ck}, where each document is classified as member of one of these classes. For any
document, di, the probability that it belongs to class cj , can be represented as Pr(cj/di) and
using Bayes rules (Zhai and Lafferty, 2001; Peng et al., 2003), this probability is calculated as
follows:

Pr(cj/di) =
Pr(di/cj) ∗ Pr(cj)

Pr(di)
(1)

The term Pr(di) is constant for all classes. The term Pr(cj) can either represent the relative
frequency of class j in the training set, or a uniform class distribution can be assumed, thus, we
end up with the term, Pr(di/cj) (Grau et al., 2004). For a document di, that is composed of a
sequence of words w1, w2, ..., wL, Pr(di/cj) is expressed as follows; Pr(w1, w2, ...wL/cj). We are
going to write it as Prcj (w1, w2, ...wL) for simplicity.

Prcj (w1, w2, ...wL) is the likelihood that w1, w2, ..., wL occurs in cj . This can be calculated as
shown in equation 2.

Prcj (w1, w2, ...wL) = ΠL
i=1Prcj (wi/wi−1, wi−2, ..., w1) (2)

2



Nevertheless, in practice, the above dependency is relaxed and it is assumed that each word
wi is only dependant on the previous n − 1 words (Peng et al., 2003). Hence, equation 2 is
transformed to the following equation:

Prcj (w1, w2, ...wL) = ΠL
i=1Prcj (wi/wi−1, wi−2, ..., wi−n+1) (3)

The n-gram model is the probability distribution of sequences of length n, given the training
data (Manning and Schütze, 1999). Therefore, Prcj (w1, w2, ...wL) is referred to as the n-gram
language model approximation for class cj . Now, from the training set and for each class, the
n-gram probabilities are calculated using the maximum likelihood estimation (MLE) shown in
equation 4 (Chen and Goodman, 1996):

Prcj (wi/w
i−1
i−n+1) =

Pr(wii−n+1)

Pr(wi−1
i−n+1)

(4)

=
count(wii−n+1)/Nw

count(wi−1
i−n+1)/Nw

=
count(wii−n+1)

count(wi−1
i−n+1)

Where Nw is the total number of words.

We are proposing to use the n-Gram Language model for URL-based classification. However, in
our case here, we use characters instead of words as a basis of the language model. We construct
a separate LM for each class of URLs as follows. The above probabilities are calculated for each
class in the training set by counting the number of times all sub-strings of lengths n and n− 1
occur in the member URLs of that class. For example, we have the following strings as members
of class cj , {‘ABCDE’,‘ABC’,‘CDE’ }. In a 3-gram LM, we will store all sub-strings of length 3
and those of length 2, along with their counts, as shown in table 1.

Table 1: Sample data-structure for a 3-gram LM counts

3-grams (‘ABC’: 2), (‘BCD’: 1), (‘CDE’: 2)

2-grams (‘AB’: 2), (‘BC’: 2), (‘CD’: 2), (‘DE’: 2)

Counts in table 1 are acquired during the training phase. Then in the testing phase, URLs are
converted into n-gram, and for each n-gram, its probability is calculated using equation 4. For
a new URL, URLi, it is classified as member of class cj , if the language model of cj maximizes
equation 1, i.e. maximizes Pr(cj/URLi).

3.1.1 Language Model Smoothing

The maximum likelihood in equation 4 can be zero for n-grams not seen in the training set.
Therefore, smoothing is used to deal with the problem by assigning non-zero counts to unseen
n-grams. Laplace smoothing is one of the simplest approaches (Jeffreys, 1998). Chen and
Goodman (1996) explained that it is calculated as shown in equation 5.

Prcj (wi/w
i−1
i−n+1) =

count(wii−n+1) + 1

count(wi−1
i−n+1) + V

(5)

3



The count is increased by 1 in the numerator, and by V in the denominator, where V represents
the number of unique sequences of length n − 1 found in the training set. Since the overall
probabilities sum to 1, by using such smoothing, we are effectively taking a portion of the
probability mass assigned the encountered sequences and reassigning the discounted value to
the unseen sequences (Jurafsky and Martin, 2000). Laplace smoothing is also known as add
one smoothing, since 1 is added to count(wi−1

i−n+1). Rather than adding 1, both 1 and V can
be multiplied by a coefficient γ in order to control the amount of the probability mass to be
re-assigned to the unseen sequences.

Gale and Church (1994) highlighted that the equation 5 can be seen as follows: The value
of count(wii−n+1) in equation 4 is being replaced by (1 + count(wii−n+1)) ∗ N

N+V , where N is

equal to count(wi−1
i−n+1) here. Similarly, for unseen sequences, the value will be estimated as

follows: N
N+V . Then, they added that the assumption of having such geometric sequence doesn’t

usually hold for real data. Thus, more sophisticated smoothing techniques, such as Good-Turing
discounting (Good, 1953), is sometimes preferred for estimating the probabilities of unseen
sequences.

One problem with the smoothing techniques discussed earlier is that they give equal probabilities
to all unseen n-grams. Chen and Goodman (1996) explained that the two bi-grams “burnish
the” and “burnish thou” will be given the same probabilities provided the fact that neither of
them appear in the training data. Whereas, the former seems to be more likely since ‘the’ is a
more common word that ‘thou’. In order to overcome this, Ponte and Croft (1998) suggested
using the whole collection in order to estimate the likelihood of missing terms in documents -
the missing n-grams in classes in our case. For a term t, its collection MLE can be calculated
as follows: Prcollection(t) = cft/cs, where cft is the raw count of t in the collection and cs is the
total number of tokens in the collection. Song and Croft (1999) listed two formulae for combining
terms probabilities in both documents and collection: the weighted sum (also known as linear
interpolation, shown in equation 6) and the weighted product approach (shown in equation 7).

Prsum(t/cj) = λ ∗ Prcollection(t) + (1− λ) ∗ Prdoc(t/cj) (6)

Prsum(t/cj) = Prcollection(t)λ ∗ Prdoc(t/cj)(1−λ) (7)

where λ is a weighting parameter and it takes values between 0 and 1. Prdoc(t/cj) is calcu-
lated the same way as in equation 4. As for the collection probabilities, Prcollection(t), there
are 2 variations for calculating them, depending on which model is being used. In the model
proposed by Miller et al. (1999), it is the raw count of t in the collection divided by the to-
tal number of tokens in that collection. The same as in the previous paragraph. Whereas in
the model proposed by Hiemstra (1998), they treated query terms as a binary vector over the
entire vocabulary (Lavrenko and Croft, 2001), hence, the collection probabilities were seen as
the number of documents containing t divided by the total number of documents. This enabled
them to justify how their model incorporates the classical term frequency and inverse document
frequency weights of vector space model (Kraaij, 2004, p. 51). We use the model proposed by
Miller et al. (1999) here.

Additionally, we use the weighted sum presented in equation 6 in the experiments presented here.
However, Ponte and Croft (1998) warned that attention should be taken when mixing collection
probabilities with those of the documents, as in some cases, common terms in a homogeneous
collection might be given higher probabilities in documents they do not occur in compared to
those they do occur in. Thus, Hiemstra (1998) elaborated that λ should not exceed 0.5, where
Zhai and Lafferty (2001) added that smaller values of λ (≈ 0.1) are better for short documents.

4



In a similar fashion, there exists additional smoothing approaches, e.g. Jelinek-Mercer smooth-
ing (Bahl et al., 1983), where the probabilities of n-grams of higher order of n are being inter-
polated with the probabilities of lower order n-grams.

3.1.2 Linked Dependence Assumption

In the n-gram LM, in order to move from equation 2 to equation 3, we need to assume that the
probability of wi depends only on that of the previous n − 1 terms. Similarly, in the uni-gram
LM, all terms are assumed to be totally independent, i.e. it is equivalent to a bag of words.
Although, increasing the value of n relaxes the independence assumption, it is still a strong
assumption to be made. Cooper (1995), pointed out the linked dependence assumption (LDA)
as a weaker alternative assumption. Lavrenko (2009) explained the linked dependence as follows.
Consider the case of a two words vocabulary, V = {a, b}. In the case of two classes, c1 and c2,
and under the independence assumption, Prc1(a, b) = Prc1(a) ∗ Prc1(b). Similarly Prc2(a, b)
is the product of Prc2(a) and Prc2(b). Otherwise, when terms are assumed to be dependant,
Prc1(a, b) and Prc1(a, b) can be expressed as follows:

Prcj (a, b) = Kcj ∗ Prcj (a) ∗ Prci(b) (8)

where Kcj measures the dependence of the terms in class cj . Terms are positively correlated
if Kcj > 1, and they are negatively correlated if Kcj < 1. As mentioned earlier, with the
independence assumption, Kcj is equal to 1. Now, in Cooper’s LDA, Kcj is not assumed to be
equal to 1, however it is assumed to be the same for all classes, i.e. Kc1 = Kc2 = Kcj = K

Accordingly, the value of K might not be needed if we try to maximize the log-likelihood ratio
of relevance of Pr(cj/di)/Pr(c̄j/di), rather than Pr(cj/di) as in equation 1, where Pr(c̄j/di) is
the posterior probability of all the other classes except cj .

Hence, the equation of the new log-likelihood odds classifier is as follows:

logLLcj = log(
Pr(cj/di)

Pr(c̄j/di)
) = log(

Pr(di/cj) ∗ Pr(cj)
Pr(di/c̄j) ∗ Pr(c̄j

) (9)

= ΣL
i=1log(

Prcj (w
i
i−n+1)

Prc̄j (w
i
i−n+1)

) + log(
Pr(cj)

Pr(c̄j)
)

For a new URL, URLi, it is classified as member of class cj , if the language model of cj maximizes
equation 9, i.e. maximizes the logLLcj .

Additionally, the motivation for using the log-likelihood odds comes form (Lafferty and Zhai,
2003). In the field of information retrieval, a user enters a query Q, and each document D is to be
ranked and retrieved according to that ranking. In the LM approach, such as the one proposed
by (Ponte and Croft, 1998), a document D is ranked base on the probability assigned to Q
according to the model calculated from D. On the other hand, in the binary independence model
(BIM) (Robertson and Jones, 1976; Sparck Jones et al., 2000), the documents are subdivided
into relevant R and non-relevant R̄ documents, and the retrieval problem is dealt with in a
way similar to a binary classification problem. A document D is ranked according to the log-
likelihood odds of it relevance, log(Pr(R/D)/Pr(R̄/D)). Thus, one reproach that has been laid
upon the LM is that it does not incorporate the notion of relevance (Nallapati, 2004). In the
LM discussed in section ??, di and cj are equivalent to Q and D respectively, however, since it
is a classification problem that is being dealt with here, rather an information retrieval problem,
for a document to be a member of cj , this is also equivalent to it being relevant. Therefore,
the log-likelihood odds in equation 9, is equivalent log-likelihood odds of relevance presented by

5



Lafferty and Zhai (2003), which shows that this new variation of LM can implicitly incorporate
the notion of relevance. Additionally, the log-likelihood odds is commonly in classification tasks,
e.g. Terra (2005); ?.

Hereafter, we refer to this variation of the n-gram LM as Log-likelihood Odds (LLO) model.
It is worth mentioning that the use of logarithmic scale also helps in preventing decimal point
overflow during the implementation.

References

Bahl, L. R., Jelinek, F., and Mercer, R. L. (1983). A maximum likelihood approach to contin-
uous speech recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
(2):179–190.

Chen, S. F. and Goodman, J. (1996). An empirical study of smoothing techniques for lan-
guage modeling. In Proceedings of the 34th annual meeting on Association for Computational
Linguistics, pages 310–318. Association for Computational Linguistics.

Cooper, W. S. (1995). Some inconsistencies and misidentified modeling assumptions in proba-
bilistic information retrieval. ACM Transactions on Information Systems (TOIS), 13(1):100–
111.

Gale, W. and Church, K. (1994). What is wrong with adding one. Corpus-based research into
language, pages 189–198.

Good, I. J. (1953). The population frequencies of species and the estimation of population
parameters. Biometrika, 40(3-4):237–264.

Grau, S., Sanchis, E., Castro, M. J., and Vilar, D. (2004). Dialogue act classification using a
bayesian approach. In 9th Conference Speech and Computer.

Hiemstra, D. (1998). A linguistically motivated probabilistic model of information retrieval. In
Research and advanced technology for digital libraries, pages 569–584. Springer.

Jeffreys, H. (1998). The theory of probability. Oxford University Press.

Jurafsky, D. and Martin, J. (2000). Speech & Language Processing. Pearson Education India.

Kraaij, W. (2004). Variations on language modeling for information retrieval. PhD thesis,
University of Twente, Enschede.

Lafferty, J. and Zhai, C. (2003). Probabilistic relevance models based on document and query
generation. In Language modeling for information retrieval, pages 1–10. Springer.

Lavrenko, V. (2009). A generative theory of relevance, volume 26. Springer.

Lavrenko, V. and Croft, W. B. (2001). Relevance based language models. In Proceedings
of the 24th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 120–127. ACM.

Manning, C. D. and Schütze, H. (1999). Foundations of statistical natural language processing,
volume 999. MIT Press.

Miller, D. R., Leek, T., and Schwartz, R. M. (1999). A hidden markov model information
retrieval system. In Proceedings of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval, pages 214–221. ACM.

6



Nallapati, R. (2004). Discriminative models for information retrieval. In Proceedings of the 27th
annual international ACM SIGIR conference on Research and development in information
retrieval, pages 64–71. ACM.

Peng, F., Huang, X., Schuurmans, D., and Wang, S. (2003). Text classification in asian languages
without word segmentation. In Proceedings of the sixth international workshop on Informa-
tion retrieval with Asian languages-Volume 11, pages 41–48. Association for Computational
Linguistics.

Ponte, J. M. and Croft, W. B. (1998). A language modeling approach to information retrieval.
In Proceedings of the 21st annual international ACM SIGIR conference on Research and
development in information retrieval, pages 275–281. ACM.

Robertson, S. E. and Jones, K. S. (1976). Relevance weighting of search terms. Journal of the
American Society for Information science, 27(3):129–146.

Song, F. and Croft, W. B. (1999). A general language model for information retrieval. In
Proceedings of the eighth international conference on Information and knowledge management,
pages 316–321. ACM.

Sparck Jones, K., Walker, S., and Robertson, S. E. (2000). A probabilistic model of information
retrieval: development and comparative experiments: Part 1. Information Processing &
Management, 36(6):779–808.

Terra, E. (2005). Simple language models for spam detection. In TREC.

Zhai, C. and Lafferty, J. (2001). A study of smoothing methods for language models applied
to ad hoc information retrieval. In Proceedings of the 24th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 334–342. ACM.

7


