
Python Regular Expressions
Regular expressions are a powerful language for matching text patterns. This page gives a basic
introduction to regular expressions themselves sufficient for our Python exercises and shows how
regular expressions work in Python. The Python "re" module provides regular expression support.

In Python a regular expression search is typically written as:

 match = re.search(pat, str)

The re.search() method takes a regular expression pattern and a string and searches for that pattern
within the string. If the search is successful, search() returns a match object or None otherwise.
Therefore, the search is usually immediately followed by an if-statement to test if the search
succeeded, as shown in the following example which searches for the pattern 'word:' followed by a
3 letter word (details below):

str = 'an example word:cat!!'
match = re.search(r'word:\w\w\w', str)
If-statement after search() tests if it succeeded
 if match:
 print 'found', match.group() ## 'found word:cat'
 else:
 print 'did not find'

The code match = re.search(pat, str) stores the search result in a variable named
"match". Then the if-statement tests the match -- if true the search succeeded and match.group() is
the matching text (e.g. 'word:cat'). Otherwise if the match is false (None to be more specific), then
the search did not succeed, and there is no matching text.

The 'r' at the start of the pattern string designates a python "raw" string which passes through
backslashes without change which is very handy for regular expressions (Java needs this feature
badly!). I recommend that you always write pattern strings with the 'r' just as a habit.

Basic Patterns
The power of regular expressions is that they can specify patterns, not just fixed characters. Here
are the most basic patterns which match single chars:

• a, X, 9, < -- ordinary characters just match themselves exactly. The meta-characters which
do not match themselves because they have special meanings are: . ^ $ * + ? { [] \ | ()
(details below)

• . (a period) -- matches any single character except newline '\n'
• \w -- (lowercase w) matches a "word" character: a letter or digit or underbar [a-zA-Z0-9_].

Note that although "word" is the mnemonic for this, it only matches a single word char, not a
whole word. \W (upper case W) matches any non-word character.

• \b -- boundary between word and non-word
• \s -- (lowercase s) matches a single whitespace character -- space, newline, return, tab, form

[\n\r\t\f]. \S (upper case S) matches any non-whitespace character.
• \t, \n, \r -- tab, newline, return
• \d -- decimal digit [0-9] (some older regex utilities do not support but \d, but they all support

\w and \s)
• ^ = start, $ = end -- match the start or end of the string
• \ -- inhibit the "specialness" of a character. So, for example, use \. to match a period or \\ to

match a slash. If you are unsure if a character has special meaning, such as '@', you can put

a slash in front of it, \@, to make sure it is treated just as a character.

Basic Examples
Joke: what do you call a pig with three eyes? piiig!

The basic rules of regular expression search for a pattern within a string are:

• The search proceeds through the string from start to end, stopping at the first match found
• All of the pattern must be matched, but not all of the string
• If match = re.search(pat, str) is successful, match is not None and in particular

match.group() is the matching text

 ## Search for pattern 'iii' in string 'piiig'.
 ## All of the pattern must match, but it may appear anywhere.
 ## On success, match.group() is matched text.
 match = re.search(r'iii', 'piiig') => found, match.group() == "iii"
 match = re.search(r'igs', 'piiig') => not found, match == None
 ## . = any char but \n
 match = re.search(r'..g', 'piiig') => found, match.group() == "iig"
 ## \d = digit char, \w = word char
 match = re.search(r'\d\d\d', 'p123g') => found, match.group() == "123"
 match = re.search(r'\w\w\w', '@@abcd!!') => found, match.group() == "abc"

Repetition
Things get more interesting when you use + and * to specify repetition in the pattern

• + -- 1 or more occurrences of the pattern to its left, e.g. 'i+' = one or more i's
• * -- 0 or more occurrences of the pattern to its left
• ? -- match 0 or 1 occurrences of the pattern to its left

Leftmost & Largest

First the search finds the leftmost match for the pattern, and second it tries to use up as much of the
string as possible -- i.e. + and * go as far as possible (the + and * are said to be "greedy").

Repetition Examples
 ## i+ = one or more i's, as many as possible.
 match = re.search(r'pi+', 'piiig') => found, match.group() == "piii"
 ## Finds the first/leftmost solution, and within it drives the +
 ## as far as possible (aka 'leftmost and largest').
 ## In this example, note that it does not get to the second set of i's.
 match = re.search(r'i+', 'piigiiii') => found, match.group() == "ii"
 ## \s* = zero or more whitespace chars
 ## Here look for 3 digits, possibly separated by whitespace.
 match = re.search(r'\d\s*\d\s*\d', 'xx1 2 3xx') => found, match.group() ==
"1 2 3"
 match = re.search(r'\d\s*\d\s*\d', 'xx12 3xx') => found, match.group() ==
"12 3"
 match = re.search(r'\d\s*\d\s*\d', 'xx123xx') => found, match.group() ==
"123"
 ## ^ = matches the start of string, so this fails:
 match = re.search(r'^b\w+', 'foobar') => not found, match == None
 ## but without the ^ it succeeds:
 match = re.search(r'b\w+', 'foobar') => found, match.group() == "bar"

Emails Example
Suppose you want to find the email address inside the string 'xyz alice-b@google.com purple
monkey'. We'll use this as a running example to demonstrate more regular expression features.
Here's an attempt using the pattern r'\w+@\w+':

 str = 'purple alice-b@google.com monkey dishwasher'
 match = re.search(r'\w+@\w+', str)
 if match:
 print match.group() ## 'b@google'

The search does not get the whole email address in this case because the \w does not match the '-' or
'.' in the address. We'll fix this using the regular expression features below.

Square Brackets

Square brackets can be used to indicate a set of chars, so [abc] matches 'a' or 'b' or 'c'. The codes
\w, \s etc. work inside square brackets too with the one exception that dot (.) just means a literal dot.
For the emails problem, the square brackets are an easy way to add '.' and '-' to the set of chars
which can appear around the @ with the pattern r'[\w.-]+@[\w.-]+' to get the whole email address:

 match = re.search(r'[\w.-]+@[\w.-]+', str)
 if match:
 print match.group() ## 'alice-b@google.com'

(More square-bracket features) You can also use a dash to indicate a range, so [a-z] matches all
lowercase letters. To use a dash without indicating a range, put the dash last, e.g. [abc-]. An up-hat
(^) at the start of a square-bracket set inverts it, so [^ab] means any char except 'a' or 'b'.

Group Extraction
The "group" feature of a regular expression allows you to pick out parts of the matching text.
Suppose for the emails problem that we want to extract the username and host separately. To do
this, add parenthesis () around the username and host in the pattern, like this: r'([\w.-]+)@([\w.-]+)'.
In this case, the parenthesis do not change what the pattern will match, instead they establish logical
"groups" inside of the match text. On a successful search, match.group(1) is the match text
corresponding to the 1st left parenthesis, and match.group(2) is the text corresponding to the 2nd
left parenthesis. The plain match.group() is still the whole match text as usual.

 str = 'purple alice-b@google.com monkey dishwasher'
 match = re.search('([\w.-]+)@([\w.-]+)', str)
 if match:
 print match.group() ## 'alice-b@google.com' (the whole match)
 print match.group(1) ## 'alice-b' (the username, group 1)
 print match.group(2) ## 'google.com' (the host, group 2)

A common workflow with regular expressions is that you write a pattern for the thing you are
looking for, adding parenthesis groups to extract the parts you want.

findall
findall() is probably the single most powerful function in the re module. Above we used re.search()
to find the first match for a pattern. findall() finds *all* the matches and returns them as a list of
strings, with each string representing one match.

 ## Suppose we have a text with many email addresses
 str = 'purple alice@google.com, blah monkey bob@abc.com blah dishwasher'
 ## Here re.findall() returns a list of all the found email strings

 emails = re.findall(r'[\w\.-]+@[\w\.-]+', str) ## ['alice@google.com',
'bob@abc.com']
 for email in emails:
 # do something with each found email string
 print email

findall With Files
For files, you may be in the habit of writing a loop to iterate over the lines of the file, and you could
then call findall() on each line. Instead, let findall() do the iteration for you -- much better! Just feed
the whole file text into findall() and let it return a list of all the matches in a single step (recall that
f.read() returns the whole text of a file in a single string):

 # Open file
 f = open('test.txt', 'r')
 # Feed the file text into findall(); it returns a list of all the found
strings
 strings = re.findall(r'some pattern', f.read())

findall and Groups
The parenthesis () group mechanism can be combined with findall(). If the pattern includes 2 or
more parenthesis groups, then instead of returning a list of strings, findall() returns a list of
tuples. Each tuple represents one match of the pattern, and inside the tuple is the group(1),
group(2) .. data. So if 2 parenthesis groups are added to the email pattern, then findall() returns a list
of tuples, each length 2 containing the username and host, e.g. ('alice', 'google.com').

 str = 'purple alice@google.com, blah monkey bob@abc.com blah dishwasher'
 tuples = re.findall(r'([\w\.-]+)@([\w\.-]+)', str)
 print tuples ## [('alice', 'google.com'), ('bob', 'abc.com')]
 for tuple in tuples:
 print tuple[0] ## username
 print tuple[1] ## host

Once you have the list of tuples, you can loop over it to do some computation for each tuple. If the
pattern includes no parenthesis, then findall() returns a list of found strings as in earlier examples. If
the pattern includes a single set of parenthesis, then findall() returns a list of strings corresponding
to that single group. (Obscure optional feature: Sometimes you have paren () groupings in the
pattern, but which you do not want to extract. In that case, write the parens with a ?: at the start, e.g.
(?:) and that left paren will not count as a group result.)

RE Workflow and Debug
Regular expression patterns pack a lot of meaning into just a few characters , but they are so dense,
you can spend a lot of time debugging your patterns. Set up your runtime so you can run a pattern
and print what it matches easily, for example by running it on a small test text and printing the result
of findall(). If the pattern matches nothing, try weakening the pattern, removing parts of it so you
get too many matches. When it's matching nothing, you can't make any progress since there's
nothing concrete to look at. Once it's matching too much, then you can work on tightening it up
incrementally to hit just what you want.

Options
The re functions take options to modify the behavior of the pattern match. The option flag is added
as an extra argument to the search() or findall() etc., e.g. re.search(pat, str, re.IGNORECASE).

• IGNORECASE -- ignore upper/lowercase differences for matching, so 'a' matches both 'a'

and 'A'.
• DOTALL -- allow dot (.) to match newline -- normally it matches anything but newline. This

can trip you up -- you think .* matches everything, but by default it does not go past the end
of a line. Note that \s (whitespace) includes newlines, so if you want to match a run of
whitespace that may include a newline, you can just use \s*

• MULTILINE -- Within a string made of many lines, allow ^ and $ to match the start and end
of each line. Normally ^/$ would just match the start and end of the whole string.

Greedy vs. Non-Greedy (optional)
This is optional section which shows a more advanced regular expression technique not needed for
the exercises.

Suppose you have text with tags in it: foo and <i>so on</i>

Suppose you are trying to match each tag with the pattern '(<.*>)' -- what does it match first?

The result is a little surprising, but the greedy aspect of the .* causes it to match the whole
'foo and <i>so on</i>' as one big match. The problem is that the .* goes as far as is it can,
instead of stopping at the first > (aka it is "greedy").

There is an extension to regular expression where you add a ? at the end, such as .*? or .+?,
changing them to be non-greedy. Now they stop as soon as they can. So the pattern '(<.*?>)' will get
just '' as the first match, and '' as the second match, and so on getting each <..> pair in turn.
The style is typically that you use a .*?, and then immediately its right look for some concrete
marker (> in this case) that forces the end of the .*? run.

The *? extension originated in Perl, and regular expressions that include Perl's extensions are
known as Perl Compatible Regular Expressions -- pcre. Python includes pcre support. Many
command line utils etc. have a flag where they accept pcre patterns.

An older but widely used technique to code this idea of "all of these chars except stopping at X"
uses the square-bracket style. For the above you could write the pattern, but instead of .* to get all
the chars, use [^>]* which skips over all characters which are not > (the leading ^ "inverts" the
square bracket set, so it matches any char not in the brackets).

Substitution (optional)
The re.sub(pat, replacement, str) function searches for all the instances of pattern in the given string,
and replaces them. The replacement string can include '\1', '\2' which refer to the text from group(1),
group(2), and so on from the original matching text.

Here's an example which searches for all the email addresses, and changes them to keep the user
(\1) but have yo-yo-dyne.com as the host.

 str = 'purple alice@google.com, blah monkey bob@abc.com blah dishwasher'
 ## re.sub(pat, replacement, str) -- returns new string with all replacements,
 ## \1 is group(1), \2 group(2) in the replacement
 print re.sub(r'([\w\.-]+)@([\w\.-]+)', r'\1@yo-yo-dyne.com', str)
 ## purple alice@yo-yo-dyne.com, blah monkey bob@yo-yo-dyne.com blah dishwasher

Python Dict and File

Dict Hash Table
Python's efficient key/value hash table structure is called a "dict". The contents of a dict can be
written as a series of key:value pairs within braces { }, e.g. dict = {key1:value1, key2:value2, ... }.
The "empty dict" is just an empty pair of curly braces {}.

Looking up or setting a value in a dict uses square brackets, e.g. dict['foo'] looks up the value under
the key 'foo'. Strings, numbers, and tuples work as keys, and any type can be a value. Other types
may or may not work correctly as keys (strings and tuples work cleanly since they are immutable).
Looking up a value which is not in the dict throws a KeyError -- use "in" to check if the key is in
the dict, or use dict.get(key) which returns the value or None if the key is not present (or get(key,
not-found) allows you to specify what value to return in the not-found case).

 ## Can build up a dict by starting with the the empty dict {}
 ## and storing key/value pairs into the dict like this:
 ## dict[key] = value-for-that-key
 dict = {}
 dict['a'] = 'alpha'
 dict['g'] = 'gamma'
 dict['o'] = 'omega'
 print dict ## {'a': 'alpha', 'o': 'omega', 'g': 'gamma'}
 print dict['a'] ## Simple lookup, returns 'alpha'
 dict['a'] = 6 ## Put new key/value into dict
 'a' in dict ## True
 ## print dict['z'] ## Throws KeyError
 if 'z' in dict: print dict['z'] ## Avoid KeyError
 print dict.get('z') ## None (instead of KeyError)

A for loop on a dictionary iterates over its keys by default. The keys will appear in an arbitrary
order. The methods dict.keys() and dict.values() return lists of the keys or values explicitly. There's
also an items() which returns a list of (key, value) tuples, which is the most efficient way to examine
all the key value data in the dictionary. All of these lists can be passed to the sorted() function.

 ## By default, iterating over a dict iterates over its keys.
 ## Note that the keys are in a random order.
 for key in dict: print key
 ## prints a g o

 ## Exactly the same as above
 for key in dict.keys(): print key
 ## Get the .keys() list:
 print dict.keys() ## ['a', 'o', 'g']
 ## Likewise, there's a .values() list of values
 print dict.values() ## ['alpha', 'omega', 'gamma']
 ## Common case -- loop over the keys in sorted order,
 ## accessing each key/value
 for key in sorted(dict.keys()):
 print key, dict[key]

 ## .items() is the dict expressed as (key, value) tuples
 print dict.items() ## [('a', 'alpha'), ('o', 'omega'), ('g', 'gamma')]
 ## This loop syntax accesses the whole dict by looping
 ## over the .items() tuple list, accessing one (key, value)
 ## pair on each iteration.

 for k, v in dict.items(): print k, '>', v
 ## a > alpha o > omega g > gamma

There are "iter" variants of these methods called iterkeys(), itervalues() and iteritems() which avoid
the cost of constructing the whole list -- a performance win if the data is huge. However, I generally
prefer the plain keys() and values() methods with their sensible names. In Python 3000 revision, the
need for the iterkeys() variants is going away.

Strategy note: from a performance point of view, the dictionary is one of your greatest tools, and
you should use where you can as an easy way to organize data. For example, you might read a log
file where each line begins with an ip address, and store the data into a dict using the ip address as
the key, and the list of lines where it appears as the value. Once you've read in the whole file, you
can look up any ip address and instantly see its list of lines. The dictionary takes in scattered data
and make it into something coherent.

Dict Formatting
The % operator works conveniently to substitute values from a dict into a string by name:

 hash = {}
 hash['word'] = 'garfield'
 hash['count'] = 42
 s = 'I want %(count)d copies of %(word)s' % hash # %d for int, %s for string
 # 'I want 42 copies of garfield'

Del
The "del" operator does deletions. In the simplest case, it can remove the definition of a variable, as
if that variable had not been defined. Del can also be used on list elements or slices to delete that
part of the list and to delete entries from a dictionary.

 var = 6
 del var # var no more!

 list = ['a', 'b', 'c', 'd']
 del list[0] ## Delete first element
 del list[-2:] ## Delete last two elements
 print list ## ['b']
 dict = {'a':1, 'b':2, 'c':3}
 del dict['b'] ## Delete 'b' entry
 print dict ## {'a':1, 'c':3}

Files
The open() function opens and returns a file handle that can be used to read or write a file in the
usual way. The code f = open('name', 'r') opens the file into the variable f, ready for reading
operations, and use f.close() when finished. Instead of 'r', use 'w' for writing, and 'a' for append. The
special mode 'rU' is the "Universal" option for text files where it's smart about converting different
line-endings so they always come through as a simple '\n'. The standard for-loop works for text
files, iterating through the lines of the file (this works only for text files, not binary files). The
for-loop technique is a simple and efficient way to look at all the lines in a text file:

 # Echo the contents of a file
 f = open('foo.txt', 'rU')
 for line in f: ## iterates over the lines of the file
 print line, ## trailing , so print does not add an end-of-line char
 ## since 'line' already includes the end-of line.
 f.close()

Reading one line at a time has the nice quality that not all the file needs to fit in memory at one time
-- handy if you want to look at every line in a 10 gigabyte file without using 10 gigabytes of
memory. The f.readlines() method reads the whole file into memory and returns its contents as a list
of its lines. The f.read() method reads the whole file into a single string, which can be a handy way
to deal with the text all at once, such as with regular expressions we'll see later.

For writing, f.write(string) method is the easiest way to write data to an open output file. Or you can
use "print" with an open file, but the syntax is nasty: "print >> f, string". In python 3000, the print
syntax will be fixed to be a regular function call with a file= optional argument: "print(string,
file=f)".

Files Unicode
The "codecs" module provides support for reading a unicode file.

import codecs
f = codecs.open('foo.txt', 'rU', 'utf-8')
for line in f:
 # here line is a *unicode* string

For writing, use f.write() since print does not fully support unicode.

Exercise Incremental Development
Building a Python program, don't write the whole thing in one step. Instead identify just a first
milestone, e.g. "well the first step is to extract the list of words." Write the code to get to that
milestone, and just print your data structures at that point, and then you can do a sys.exit(0) so the
program does not run ahead into its not-done parts. Once the milestone code is working, you can
work on code for the next milestone. Being able to look at the printout of your variables at one state
can help you think about how you need to transform those variables to get to the next state. Python
is very quick with this pattern, allowing you to make a little change and run the program to see how
it works. Take advantage of that quick turnaround to build your program in little steps.

	Python Regular Expressions
	Basic Patterns
	Basic Examples
	Repetition
	Leftmost & Largest

	Repetition Examples
	Emails Example
	Square Brackets

	Group Extraction
	findall
	findall With Files
	findall and Groups
	RE Workflow and Debug
	Options
	Greedy vs. Non-Greedy (optional)
	Substitution (optional)

	Python Dict and File
	Dict Hash Table
	Dict Formatting
	Del
	Files
	Files Unicode
	Exercise Incremental Development

