
http://www.tutorialspoint.com/python/python_multithreading.htm Copyright © tutorialspoint.com

PYTHON MULTITHREADED PROGRAMMINGPYTHON MULTITHREADED PROGRAMMING

Running several threads is similar to running several different programs concurrently, but with the
following benefits −

Multiple threads within a process share the same data space with the main thread and can
therefore share information or communicate with each other more easily than if they were
separate processes.

Threads sometimes called light-weight processes and they do not require much memory
overhead; they care cheaper than processes.

A thread has a beginning, an execution sequence, and a conclusion. It has an instruction pointer
that keeps track of where within its context it is currently running.

It can be pre-empted interrupted

It can temporarily be put on hold alsoknownassleeping while other threads are running - this is
called yielding.

Starting a New Thread
To spawn another thread, you need to call following method available in thread module:

thread.start_new_thread (function, args[, kwargs])

This method call enables a fast and efficient way to create new threads in both Linux and Windows.

The method call returns immediately and the child thread starts and calls function with the passed
list of agrs. When function returns, the thread terminates.

Here, args is a tuple of arguments; use an empty tuple to call function without passing any
arguments. kwargs is an optional dictionary of keyword arguments.

Example

#!/usr/bin/python

import thread
import time

Define a function for the thread
def print_time(threadName, delay):
 count = 0
 while count < 5:
 time.sleep(delay)
 count += 1
 print "%s: %s" % (threadName, time.ctime(time.time()))

Create two threads as follows
try:
 thread.start_new_thread(print_time, ("Thread-1", 2,))
 thread.start_new_thread(print_time, ("Thread-2", 4,))
except:
 print "Error: unable to start thread"

while 1:
 pass

When the above code is executed, it produces the following result −

Thread-1: Thu Jan 22 15:42:17 2009

http://www.tutorialspoint.com/python/python_multithreading.htm

Thread-1: Thu Jan 22 15:42:19 2009
Thread-2: Thu Jan 22 15:42:19 2009
Thread-1: Thu Jan 22 15:42:21 2009
Thread-2: Thu Jan 22 15:42:23 2009
Thread-1: Thu Jan 22 15:42:23 2009
Thread-1: Thu Jan 22 15:42:25 2009
Thread-2: Thu Jan 22 15:42:27 2009
Thread-2: Thu Jan 22 15:42:31 2009
Thread-2: Thu Jan 22 15:42:35 2009

Although it is very effective for low-level threading, but the thread module is very limited
compared to the newer threading module.

The Threading Module:
The newer threading module included with Python 2.4 provides much more powerful, high-level
support for threads than the thread module discussed in the previous section.

The threading module exposes all the methods of the thread module and provides some
additional methods:

threading.activeCount: Returns the number of thread objects that are active.

threading.currentThread: Returns the number of thread objects in the caller's thread
control.

threading.enumerate: Returns a list of all thread objects that are currently active.

In addition to the methods, the threading module has the Thread class that implements threading.
The methods provided by the Thread class are as follows:

run: The run method is the entry point for a thread.

start: The start method starts a thread by calling the run method.

join[time]: The join waits for threads to terminate.

isAlive: The isAlive method checks whether a thread is still executing.

getName: The getName method returns the name of a thread.

setName: The setName method sets the name of a thread.

Creating Thread Using Threading Module
To implement a new thread using the threading module, you have to do the following −

Define a new subclass of the Thread class.

Override the __init__self[, args] method to add additional arguments.

Then, override the runself[, args] method to implement what the thread should do when
started.

Once you have created the new Thread subclass, you can create an instance of it and then start a
new thread by invoking the start, which in turn calls run method.

Example

#!/usr/bin/python

import threading
import time

exitFlag = 0

class myThread (threading.Thread):

 def __init__(self, threadID, name, counter):
 threading.Thread.__init__(self)
 self.threadID = threadID
 self.name = name
 self.counter = counter
 def run(self):
 print "Starting " + self.name
 print_time(self.name, self.counter, 5)
 print "Exiting " + self.name

def print_time(threadName, delay, counter):
 while counter:
 if exitFlag:
 thread.exit()
 time.sleep(delay)
 print "%s: %s" % (threadName, time.ctime(time.time()))
 counter -= 1

Create new threads
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

Start new Threads
thread1.start()
thread2.start()

print "Exiting Main Thread"

When the above code is executed, it produces the following result −

Starting Thread-1
Starting Thread-2
Exiting Main Thread
Thread-1: Thu Mar 21 09:10:03 2013
Thread-1: Thu Mar 21 09:10:04 2013
Thread-2: Thu Mar 21 09:10:04 2013
Thread-1: Thu Mar 21 09:10:05 2013
Thread-1: Thu Mar 21 09:10:06 2013
Thread-2: Thu Mar 21 09:10:06 2013
Thread-1: Thu Mar 21 09:10:07 2013
Exiting Thread-1
Thread-2: Thu Mar 21 09:10:08 2013
Thread-2: Thu Mar 21 09:10:10 2013
Thread-2: Thu Mar 21 09:10:12 2013
Exiting Thread-2

Synchronizing Threads
The threading module provided with Python includes a simple-to-implement locking mechanism
that allows you to synchronize threads. A new lock is created by calling the Lock method, which
returns the new lock.

The acquireblocking method of the new lock object is used to force threads to run synchronously.
The optional blocking parameter enables you to control whether the thread waits to acquire the
lock.

If blocking is set to 0, the thread returns immediately with a 0 value if the lock cannot be acquired
and with a 1 if the lock was acquired. If blocking is set to 1, the thread blocks and wait for the lock
to be released.

The release method of the new lock object is used to release the lock when it is no longer required.

Example

#!/usr/bin/python

import threading

import time

class myThread (threading.Thread):
 def __init__(self, threadID, name, counter):
 threading.Thread.__init__(self)
 self.threadID = threadID
 self.name = name
 self.counter = counter
 def run(self):
 print "Starting " + self.name
 # Get lock to synchronize threads
 threadLock.acquire()
 print_time(self.name, self.counter, 3)
 # Free lock to release next thread
 threadLock.release()

def print_time(threadName, delay, counter):
 while counter:
 time.sleep(delay)
 print "%s: %s" % (threadName, time.ctime(time.time()))
 counter -= 1

threadLock = threading.Lock()
threads = []

Create new threads
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

Start new Threads
thread1.start()
thread2.start()

Add threads to thread list
threads.append(thread1)
threads.append(thread2)

Wait for all threads to complete
for t in threads:
 t.join()
print "Exiting Main Thread"

When the above code is executed, it produces the following result −

Starting Thread-1
Starting Thread-2
Thread-1: Thu Mar 21 09:11:28 2013
Thread-1: Thu Mar 21 09:11:29 2013
Thread-1: Thu Mar 21 09:11:30 2013
Thread-2: Thu Mar 21 09:11:32 2013
Thread-2: Thu Mar 21 09:11:34 2013
Thread-2: Thu Mar 21 09:11:36 2013
Exiting Main Thread

Multithreaded Priority Queue
The Queue module allows you to create a new queue object that can hold a specific number of
items. There are following methods to control the Queue −

get: The get removes and returns an item from the queue.

put: The put adds item to a queue.

qsize : The qsize returns the number of items that are currently in the queue.

empty: The empty returns True if queue is empty; otherwise, False.

full: the full returns True if queue is full; otherwise, False.

Example

#!/usr/bin/python

import Queue
import threading
import time

exitFlag = 0

class myThread (threading.Thread):
 def __init__(self, threadID, name, q):
 threading.Thread.__init__(self)
 self.threadID = threadID
 self.name = name
 self.q = q
 def run(self):
 print "Starting " + self.name
 process_data(self.name, self.q)
 print "Exiting " + self.name

def process_data(threadName, q):
 while not exitFlag:
 queueLock.acquire()
 if not workQueue.empty():
 data = q.get()
 queueLock.release()
 print "%s processing %s" % (threadName, data)
 else:
 queueLock.release()
 time.sleep(1)

threadList = ["Thread-1", "Thread-2", "Thread-3"]
nameList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = Queue.Queue(10)
threads = []
threadID = 1

Create new threads
for tName in threadList:
 thread = myThread(threadID, tName, workQueue)
 thread.start()
 threads.append(thread)
 threadID += 1

Fill the queue
queueLock.acquire()
for word in nameList:
 workQueue.put(word)
queueLock.release()

Wait for queue to empty
while not workQueue.empty():
 pass

Notify threads it's time to exit
exitFlag = 1

Wait for all threads to complete
for t in threads:
 t.join()
print "Exiting Main Thread"

When the above code is executed, it produces the following result −

Starting Thread-1

Starting Thread-2
Starting Thread-3
Thread-1 processing One
Thread-2 processing Two
Thread-3 processing Three
Thread-1 processing Four
Thread-2 processing Five
Exiting Thread-3
Exiting Thread-1
Exiting Thread-2
Exiting Main Thread

Loading [MathJax]/jax/output/HTML-CSS/jax.js

