
i

Elastic Search

ii

About the Tutorial

Elasticsearch is a real-time distributed and open source full-text search and analytics

engine. It is used in Single Page Application (SPA) projects. Elasticsearch is an open source

developed in Java and used by many big organizations around the world. It is licensed

under the Apache license version 2.0.

In this tutorial, you will learn in detail the basics of Elasticsearch and its important features.

Audience

This tutorial is designed for software professionals who want to learn the basics of

Elasticsearch and its programming concepts in simple and easy steps. It describes the

components of Elasticsearch with suitable examples.

This tutorial is designed to configure the HR module of SAP in an easy and systematic way.

Packed with plenty of screenshots, it will be useful for consultants as well as end-users.

Prerequisites

Before you begin with this tutorial, you should have a basic understanding of Java, JSON,

search engines, and web technologies. The interaction with Elasticsearch is through

RESTful API; therefore, it is always recommended to have knowledge of RESTful API.

If you are new to any of these concepts, we suggest you to take the help of tutorials based

on these topics before you start with Elasticsearch.

Copyright & Disclaimer

@Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Elastic Search

iii

Table of Contents

About the Tutorial ... ii

Audience ... ii

Prerequisites ... ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. ELASTIC SEARCH – BASIC CONCEPTS ... 1

General Features ... 1

Key Concepts ... 1

Advantages ... 2

Disadvantages ... 3

Comparison between Elasticsearch and RDBMS .. 3

2. ELASTIC SEARCH – INSTALLATION .. 4

3. ELASTIC SEARCH – POPULATE .. 8

Create Index .. 8

Add data ... 8

Adding Sample Data in Kibana .. 10

4. ELASTIC SEARCH – MIGRATION BETWEEN VERSIONS .. 12

Steps for Upgrade ... 12

Upgrading from 6.6 or Earlier .. 13

5. ELASTIC SEARCH – API CONVENTIONS ... 14

Multiple Indices .. 14

Comma Separated Notation .. 14

_all Keyword for All Indices ... 14

Wildcards (* , + , –) .. 15

Elastic Search

iv

allow_no_indices .. 17

expand_wildcards ... 18

Date Math Support in Index Names .. 19

Pretty Results .. 19

Human Readable Output ... 20

Response Filtering ... 20

6. ELASTIC SEARCH – DOCUMENT APIS ... 21

Index API ... 21

Automatic Index Creation ... 22

Versioning ... 22

Operation Type ... 23

Automatic ID generation ... 24

Get API .. 24

Delete API ... 27

Update API .. 27

7. ELASTIC SEARCH – SEARCH APIS .. 29

Multi-Index ... 29

URI Search ... 30

Request Body Search ... 31

8. ELASTIC SEARCH – AGGREGATIONS ... 33

Metrics Aggregations .. 33

Avg Aggregation .. 33

Cardinality Aggregation ... 36

Extended Stats Aggregation .. 37

Max Aggregation ... 38

Min Aggregation ... 39

Sum Aggregation ... 40

Elastic Search

v

Stats Aggregations .. 41

Aggregation Metadata .. 42

9. ELASTIC SEARCH – INDEX APIS ... 44

Create Index .. 44

Delete Index .. 45

Get Index .. 45

Index Exist ... 46

Index Settings.. 46

Index Stats .. 47

Flush ... 47

10. ELASTIC SEARCH – CAT APIS .. 48

Verbose ... 48

Headers ... 48

Sort ... 49

Count .. 49

11. ELASTIC SEARCH – CLUSTER APIS ... 50

Cluster Health ... 50

Cluster State .. 51

Cluster Stats .. 52

Cluster Update Settings ... 53

Node Stats ... 53

Nodes hot_threads .. 54

12. ELASTIC SEARCH – QUERY DSL ... 55

Match All Query .. 55

Full Text Queries ... 57

Query String Query ... 60

Elastic Search

vi

Term Level Queries ... 61

Range Query ... 62

Compound Queries ... 64

Geo Queries .. 65

13. ELASTIC SEARCH – MAPPING ... 67

Field Data Types .. 67

Removal of Mapping Types ... 69

14. ELASTIC SEARCH – ANALYSIS ... 70

Configuring the Standard analyzer .. 71

Tokenizers ... 74

15. ELASTIC SEARCH – MODULES .. 77

Cluster-Level Routing and Shard Allocation ... 77

Discovery .. 79

Gateway .. 80

HTTP .. 80

Indices ... 81

Node ... 82

16. ELASTIC SEARCH – INDEX MODULES .. 83

Static Index Settings .. 83

Dynamic Index Settings ... 83

17. ELASTIC SEARCH – INGEST NODE ... 84

Steps Involved ... 84

18. ELASTIC SEARCH – MANAGING INDEX LIFECYCLE .. 87

Policy Management APIs ... 87

Index Management APIs ... 87

Operation Management APIs .. 88

Elastic Search

vii

19. ELASTIC SEARCH – SQL ACCESS .. 89

Advantages of Elasticsearch SQL ... 89

SQL Query ... 91

20. ELASTIC SEARCH – MONITORING .. 92

Collectors .. 92

Exporters ... 92

21. ELASTIC SEARCH – ROLLUP DATA .. 93

Create a Rollup Job ... 94

22. ELASTIC SEARCH – FROZEN INDICES .. 96

Example for Freezing and Unfreezing .. 96

Searching a Frozen Index ... 96

Monitoring Frozen Indices ... 96

23. ELASTIC SEARCH – TESTING ... 97

Prerequisites ... 97

Unit Testing ... 97

Integration Testing .. 97

Test Cluster Methods .. 98

Accessing Clients ... 99

Randomized Testing .. 99

Assertions ... 100

24. ELASTIC SEARCH – KIBANA DASHBOARD ... 101

Dashboard Creation .. 101

Inspecting Elements .. 104

Sharing Dashboard .. 105

25. ELASTIC SEARCH – FILTERING BY FIELD .. 106

Filtering by Time ... 107

Elastic Search

viii

Filtering by Fields .. 107

26. ELASTIC SEARCH – DATA TABLES ... 110

Visualize .. 110

Select Data Table... 111

Select Metrics.. 112

27. ELASTIC SEARCH – REGION MAPS .. 114

Visualize .. 114

Choose the Metrics ... 115

28. ELASTIC SEARCH – PIE CHARTS .. 117

Visualize .. 117

Choose the Metrics ... 118

Pie Chart Options .. 120

29. ELASTIC SEARCH – AREA AND BAR CHARTS ... 121

Area Chart ... 121

Choose the Metrics ... 121

Horizontal Bar Chart .. 123

Vertical Bar Chart .. 125

30. ELASTIC SEARCH – TIME SERIES ... 128

Choose Metrics ... 129

Result .. 130

31. ELASTIC SEARCH – TAG CLOUDS .. 131

Visualize .. 131

Choose the Metrics ... 132

Tag Cloud Options ... 134

32. ELASTIC SEARCH – HEAT MAPS .. 135

Elastic Search

ix

Choose the Metrics ... 136

33. ELASTIC SEARCH – CANVAS ... 139

Opening a Canvas .. 139

Cloning A Workpad ... 140

Modifying the Workpad .. 141

34. ELASTIC SEARCH – LOGS UI .. 142

Logstash Logs .. 142

1

Elasticsearch is an Apache Lucene-based search server. It was developed by Shay Banon

and published in 2010. It is now maintained by Elasticsearch BV. Its latest version is 7.0.0.

Elasticsearch is a real-time distributed and open source full-text search and analytics

engine. It is accessible from RESTful web service interface and uses schema less JSON

(JavaScript Object Notation) documents to store data. It is built on Java programming

language and hence Elasticsearch can run on different platforms. It enables users to

explore very large amount of data at very high speed.

General Features
The general features of Elasticsearch are as follows:

 Elasticsearch is scalable up to petabytes of structured and unstructured data.

 Elasticsearch can be used as a replacement of document stores like MongoDB and

RavenDB.

 Elasticsearch uses denormalization to improve the search performance.

 Elasticsearch is one of the popular enterprise search engines, and is currently being

used by many big organizations like Wikipedia, The Guardian, StackOverflow,

GitHub etc.

 Elasticsearch is an open source and available under the Apache license version 2.0.

Key Concepts
The key concepts of Elasticsearch are as follows:

Node

It refers to a single running instance of Elasticsearch. Single physical and virtual server

accommodates multiple nodes depending upon the capabilities of their physical resources

like RAM, storage and processing power.

Cluster

It is a collection of one or more nodes. Cluster provides collective indexing and search

capabilities across all the nodes for entire data.

1. Elastic Search – Basic Concepts

Elastic Search

 2

Index

It is a collection of different type of documents and their properties. Index also uses the

concept of shards to improve the performance. For example, a set of document contains

data of a social networking application.

Document

It is a collection of fields in a specific manner defined in JSON format. Every document

belongs to a type and resides inside an index. Every document is associated with a unique

identifier called the UID.

Shard

Indexes are horizontally subdivided into shards. This means each shard contains all the

properties of document but contains less number of JSON objects than index. The

horizontal separation makes shard an independent node, which can be store in any node.

Primary shard is the original horizontal part of an index and then these primary shards are

replicated into replica shards.

Replicas

Elasticsearch allows a user to create replicas of their indexes and shards. Replication not

only helps in increasing the availability of data in case of failure, but also improves the

performance of searching by carrying out a parallel search operation in these replicas.

Advantages

 Elasticsearch is developed on Java, which makes it compatible on almost every

platform.

 Elasticsearch is real time, in other words after one second the added document is

searchable in this engine.

 Elasticsearch is distributed, which makes it easy to scale and integrate in any big

organization.

 Creating full backups are easy by using the concept of gateway, which is present

in Elasticsearch.

 Handling multi-tenancy is very easy in Elasticsearch when compared to Apache

Solr.

 Elasticsearch uses JSON objects as responses, which makes it possible to invoke

the Elasticsearch server with a large number of different programming languages.

 Elasticsearch supports almost every document type except those that do not

support text rendering.

Elastic Search

 3

Disadvantages

 Elasticsearch does not have multi-language support in terms of handling request

and response data (only possible in JSON) unlike in Apache Solr, where it is possible

in CSV, XML and JSON formats.

 Occasionally, Elasticsearch has a problem of Split brain situations.

Comparison between Elasticsearch and RDBMS

In Elasticsearch, index is similar to tables in RDBMS (Relation Database Management

System). Every table is a collection of rows just as every index is a collection of documents

in Elasticsearch.

The following table gives a direct comparison between these terms:

Elasticsearch RDBMS

Cluster Database

Shard Shard

Index Table

Field Column

Document Row

Elastic Search

 4

In this chapter, we will understand the installation procedure of Elasticsearch in detail.

To install Elasticsearch on your local computer, you will have to follow the steps given

below:

Step 1: Check the version of java installed on your computer. It should be java 7 or

higher. You can check by doing the following:

In Windows Operating System (OS) (using command prompt):

> java -version

In UNIX OS (Using Terminal):

$ echo $JAVA_HOME

Step 2: Depending on your operating system, download Elasticsearch

from www.elastic.co as mentioned below:

 For windows OS, download ZIP file.

 For UNIX OS, download TAR file.

 For Debian OS, download DEB file.

 For Red Hat and other Linux distributions, download RPN file.

 APT and Yum utilities can also be used to install Elasticsearch in many Linux

distributions.

Step 3: Installation process for Elasticsearch is simple and is described below for different

OS:

 Windows OS: Unzip the zip package and the Elasticsearch is installed.

 UNIX OS: Extract tar file in any location and the Elasticsearch is installed.

$wget

https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-

7.0.0-linux-x86_64.tar.gz

$tar -xzf elasticsearch-7.0.0-linux-x86_64.tar.gz

 Using APT utility for Linux OS: Download and install the Public Signing Key

$ wget -qo - https://artifacts.elastic.co/GPG-KEY-elasticsearch | sudo

apt-key add -

2. Elastic Search – Installation

https://www.elastic.co/downloads/elasticsearch

Elastic Search

 5

Save the repository definition as shown below:

$ echo "deb https://artifacts.elastic.co/packages/7.x/apt stable main" |

sudo tee -a /etc/apt/sources.list.d/elastic-7.x.list

 Run update using the following command:

$ sudo apt-get update

Now you can install by using the following command:

$ sudo apt-get install elasticsearch

 Download and install the Debian package manually using the command

given here:

$wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-

7.0.0-amd64.deb

$sudo dpkg -i elasticsearch-7.0.0-amd64.deb0

 Using YUM utility for Debian Linux OS

Download and install the Public Signing Key:

$ rpm --import https://artifacts.elastic.co/GPG-KEY-elasticsearch

 ADD the following text in the file with .repo suffix in your “/etc/yum.repos.d/”

directory. For example, elasticsearch.repo

elasticsearch-7.x]

name=Elasticsearch repository for 7.x packages

baseurl=https://artifacts.elastic.co/packages/7.x/yum

gpgcheck=1

gpgkey=https://artifacts.elastic.co/GPG-KEY-elasticsearch

enabled=1

autorefresh=1

type=rpm-md

 You can now install Elasticsearch by using the following command:

sudo yum install elasticsearch

Step 4: Go to the Elasticsearch home directory and inside the bin folder. Run the

elasticsearch.bat file in case of Windows or you can do the same using command prompt

and through terminal in case of UNIX rum Elasticsearch file.

In Windows

> cd elasticsearch-2.1.0/bin

Elastic Search

 6

> elasticsearch

In Linux

$ cd elasticsearch-2.1.0/bin

$./elasticsearch

Note: In case of windows, you might get an error stating JAVA_HOME is not set, please

set it in environment variables to “C:\Program Files\Java\jre1.8.0_31” or the location

where you installed java.

Step 5: The default port for Elasticsearch web interface is 9200 or you can change it by

changing http.port inside the elasticsearch.yml file present in bin directory. You can check

if the server is up and running by browsing http://localhost:9200. It will return a JSON

object, which contains the information about the installed Elasticsearch in the following

manner:

{

 "name" : "Brain-Child",

 "cluster_name" : "elasticsearch", "version" : {

 "number" : "2.1.0",

 "build_hash" : "72cd1f1a3eee09505e036106146dc1949dc5dc87",

 "build_timestamp" : "2015-11-18T22:40:03Z",

 "build_snapshot" : false,

 "lucene_version" : "5.3.1"

 },

 "tagline" : "You Know, for Search"

}

Step 6: In this step, let us install Kibana. Follow the respective code given below for

installing on Linux and Windows:

For Installation on Linux:

wget https://artifacts.elastic.co/downloads/kibana/kibana-7.0.0-linux-

x86_64.tar.gz

tar -xzf kibana-7.0.0-linux-x86_64.tar.gz

cd kibana-7.0.0-linux-x86_64/

./bin/kibana

Elastic Search

 7

For Installation on Windows:

Download Kibana for Windows from https://www.elastic.co/products/kibana. Once

you click the link, you will find the home page as shown below:

Unzip and go to the Kibana home directory and then run it.

CD c:\kibana-7.0.0-windows-x86_64

.\bin\kibana.bat

https://www.elastic.co/products/kibana

Elastic Search

 8

In this chapter, let us learn how to add some index, mapping and data to Elasticsearch.

Note that some of this data will be used in the examples explained in this tutorial.

Create Index
You can use the following command to create an index:

PUT school

Response

If the index is created, you can see the following output:

{"acknowledged": true}

Add data

Elasticsearch will store the documents we add to the index as shown in the following code.

The documents are given some IDs which are used in identifying the document.

Request Body

POST school/_doc/10

{

 "name":"Saint Paul School", "description":"ICSE Afiliation",

"street":"Dawarka", "city":"Delhi", "state":"Delhi", "zip":"110075",

 "location":[28.5733056, 77.0122136], "fees":5000,

 "tags":["Good Faculty", "Great Sports"], "rating":"4.5"

}

Response

{

 "_index" : "school",

 "_type" : "_doc",

 "_id" : "10",

 "_version" : 1,

 "result" : "created",

 "_shards" : {

 "total" : 2,

3. Elastic Search – Populate

Elastic Search

 9

 "successful" : 1,

 "failed" : 0

 },

 "_seq_no" : 2,

 "_primary_term" : 1

}

Here, we are adding another similar document.

POST school/_doc/16

{

 "name":"Crescent School", "description":"State Board Affiliation",

"street":"Tonk Road",

 "city":"Jaipur", "state":"RJ", "zip":"176114","location":[26.8535922,

75.7923988],

 "fees":2500, "tags":["Well equipped labs"], "rating":"4.5"

}

Response

{

 "_index" : "school",

 "_type" : "_doc",

 "_id" : "16",

 "_version" : 1,

 "result" : "created",

 "_shards" : {

 "total" : 2,

 "successful" : 1,

 "failed" : 0

 },

 "_seq_no" : 9,

 "_primary_term" : 7

}

In this way, we will keep adding any example data that we need for our working in the

upcoming chapters.

Elastic Search

 10

Adding Sample Data in Kibana

Kibana is a GUI driven tool for accessing the data and creating the visualization. In this

section, let us understand how we can add sample data to it.

In the Kibana home page, choose the following option to add sample ecommerce data:

The next screen will show some visualization and a button to Add data:

Elastic Search

 11

Clicking on Add Data will show the following screen which confirms the data has been

added to an index named eCommerce.

Elastic Search

 12

In any system or software, when we are upgrading to newer version, we need to follow a

few steps to maintain the application settings, configurations, data and other things. These

steps are required to make the application stable in new system or to maintain the integrity

of data (prevent data from getting corrupt).

You need to follow the following steps to upgrade Elasticsearch:

 Read Upgrade docs from https://www.elastic.co/

 Test the upgraded version in your non production environments like in UAT, E2E,

SIT or DEV environment.

 Note that rollback to previous Elasticsearch version is not possible without data

backup. Hence, a data backup is recommended before upgrading to a higher

version.

 We can upgrade using full cluster restart or rolling upgrade. Rolling upgrade is for

new versions. Note that there is no service outage, when you are using rolling

upgrade method for migration.

Steps for Upgrade

 Test the upgrade in a dev environment before upgrading your production cluster.

 Back up your data. You cannot roll back to an earlier version unless you have a

snapshot of your data.

 Consider closing machine learning jobs before you start the upgrade process. While

machine learning jobs can continue to run during a rolling upgrade, it increases the

overhead on the cluster during the upgrade process.

 Upgrade the components of your Elastic Stack in the following order:

o Elasticsearch

o Kibana

o Logstash

o Beats

o APM Server

4. Elastic Search – Migration between Versions

https://www.elastic.co/guide/en/elastic-stack/current/upgrading-elastic-stack.html

Elastic Search

 13

Upgrading from 6.6 or Earlier

To upgrade directly to Elasticsearch 7.1.0 from versions 6.0-6.6, you must manually re-

index any 5.x indices you need to carry forward, and perform a full cluster restart.

Full Cluster Restart
The process of full cluster restart involves shutting down each node in the cluster,

upgrading each node to 7x and then restarting the cluster.

Following are the high level steps that need to be carried out for full cluster restart:

o Disable shard allocation

o Stop indexing and perform a synced flush

o Shutdown all nodes

o Upgrade all nodes

o Upgrade any plugins

o Start each upgraded node

o Wait for all nodes to join the cluster and report a status of yellow

o Re-enable allocation

Once allocation is re-enabled, the cluster starts allocating the replica shards to the data

nodes. At this point, it is safe to resume indexing and searching, but your cluster will

recover more quickly if you can wait until all primary and replica shards have been

successfully allocated and the status of all nodes is green.

Elastic Search

 14

Application Programming Interface (API) in web is a group of function calls or other

programming instructions to access the software component in that particular web

application. For example, Facebook API helps a developer to create applications by

accessing data or other functionalities from Facebook; it can be date of birth or status

update.

Elasticsearch provides a REST API, which is accessed by JSON over HTTP. Elasticsearch

uses some conventions which we shall discuss now.

Multiple Indices

Most of the operations, mainly searching and other operations, in APIs are for one or more

than one indices. This helps the user to search in multiple places or all the available data

by just executing a query once. Many different notations are used to perform operations

in multiple indices. We will discuss a few of them here in this chapter.

Comma Separated Notation

POST /index1,index2,index3/_search

Request Body

{

 "query":{

 "query_string":{

 "query":"any_string"

 }

 }

}

Response

JSON objects from index1, index2, index3 having any_string in it.

_all Keyword for All Indices

POST /_all/_search

5. Elastic Search – API Conventions

Elastic Search

 15

Request Body

{

 "query":{

 "query_string":{

 "query":"any_string"

 }

 }

}

Response

JSON objects from all indices and having any_string in it.

Wildcards (* , + , –)

POST /school*/_search

Request Body

{

 "query":{

 "query_string":{

 "query":"CBSE"

 }

 }

}

Response

JSON objects from all indices which start with school having CBSE in it.

Alternatively, you can use the following code as well:

POST /school*,-schools_gov /_search

Request Body

{

 "query":{

 "query_string":{

 "query":"CBSE"

 }

Elastic Search

 16

 }

}

Response

JSON objects from all indices which start with “school” but not from schools_gov and

having CBSE in it.

There are also some URL query string parameters:

 ignore_unavailable: No error will occur or no operation will be stopped, if the

one or more index(es) present in the URL does not exist. For example, schools

index exists, but book_shops does not exist.

POST /school*,book_shops/_search

Request Body

{

 "query":{

 "query_string":{

 "query":"CBSE"

 }

 }

}

Response

{

 "error":{

 "root_cause":[{

 "type":"index_not_found_exception", "reason":"no such index",

 "resource.type":"index_or_alias", "resource.id":"book_shops",

 "index":"book_shops"

 }],

 "type":"index_not_found_exception", "reason":"no such index",

 "resource.type":"index_or_alias", "resource.id":"book_shops",

 "index":"book_shops"

 },"status":404

}

Elastic Search

 17

Consider the following code:

POST /school*,book_shops/_search?ignore_unavailable = true

Request Body

{

 "query":{

 "query_string":{

 "query":"CBSE"

 }

 }

}

Response (no error)

JSON objects from all indices which start with school having CBSE in it.

allow_no_indices
true value of this parameter will prevent error, if a URL with wildcard results in no indices.

For example, there is no index that starts with schools_pri :

POST /schools_pri*/_search?allow_no_indices = true

Request Body

{

 "query":{

 "match_all":{}

 }

}

Response (No errors)

{

 "took":1,"timed_out": false, "_shards":{"total":0, "successful":0,

"failed":0},

 "hits":{"total":0, "max_score":0.0, "hits":[]}

}

Elastic Search

 18

expand_wildcards

This parameter decides whether the wildcards need to be expanded to open indices or

closed indices or perform both. The value of this parameter can be open and closed or

none and all.

For example, close index schools:

POST /schools/_close

Response

{"acknowledged":true}

Consider the following code:

POST /school*/_search?expand_wildcards = closed

Request Body

{

 "query":{

 "match_all":{}

 }

}

Response

{

 "error":{

 "root_cause":[{

 "type":"index_closed_exception", "reason":"closed", "index":"schools"

 }],

 "type":"index_closed_exception", "reason":"closed", "index":"schools"

 }, "status":403

}

Elastic Search

 19

Date Math Support in Index Names

Elasticsearch offers a functionality to search indices according to date and time. We need

to specify date and time in a specific format. For example, accountdetail-2015.12.30, index

will store the bank account details of 30th December 2015. Mathematical operations can

be performed to get details for a particular date or a range of date and time.

Format for date math index name:

<static_name{date_math_expr{date_format|time_zone}}>

/<accountdetail-{now-2d{YYYY.MM.dd|utc}}>/_search

static_name is a part of expression which remains the same in every date math index like

account detail. date_math_expr contains the mathematical expression that determines the

date and time dynamically like now-2d. date_format contains the format in which the date

is written in index like YYYY.MM.dd. If today’s date is 30th December 2015, then

<accountdetail-{now-2d{YYYY.MM.dd}}> will return accountdetail-2015.12.28.

We will now see some of the common options available in Elasticsearch that can be used

to get the response in a specified format.

Pretty Results

We can get response in a well-formatted JSON object by just appending a URL query

parameter, i.e., pretty = true.

POST /schools/_search?pretty = true

Request Body

{

 "query":{

 "match_all":{}

 }

}

Expression Resolves to

<accountdetail-{now-d}> accountdetail-2015.12.29

<accountdetail-{now-M}> accountdetail-2015.11.30

<accountdetail-{now{YYYY.MM}}> accountdetail-2015.12

Elastic Search

 20

Response

……………………..

{

 "_index" : "schools", "_type" : "school", "_id" : "1", "_score" : 1.0,

 "_source":{

 "name":"Central School", "description":"CBSE Affiliation",

 "street":"Nagan", "city":"paprola", "state":"HP", "zip":"176115",

 "location": [31.8955385, 76.8380405], "fees":2000,

 "tags":["Senior Secondary", "beautiful campus"], "rating":"3.5"

 }

}

………………….

Human Readable Output

This option can change the statistical responses either into human readable form (If human

= true) or computer readable form (if human = false). For example, if human = true then

distance_kilometer = 20KM and if human = false then distance_meter = 20000, when

response needs to be used by another computer program.

Response Filtering

We can filter the response to less fields by adding them in the field_path parameter. For

example,

POST /schools/_search?filter_path = hits.total

Request Body

{

 "query":{

 "match_all":{}

 }

}

Response

{"hits":{"total":3}}

Elastic Search

 21

Elasticsearch provides single document APIs and multi-document APIs, where the API call

is targeting a single document and multiple documents respectively.

Index API

It helps to add or update the JSON document in an index when a request is made to that

respective index with specific mapping. For example, the following request will add the

JSON object to index schools and under school mapping:

PUT schools/_doc/5

{

 "name":"City School", "description":"ICSE", "street":"West End",

"city":"Meerut",

 "state":"UP", "zip":"250002", "location":[28.9926174, 77.692485],

"fees":3500,

 "tags":["fully computerized"], "rating":"4.5"

}

On running the above code, we get the following result:

{

 "_index" : "schools",

 "_type" : "_doc",

 "_id" : "5",

 "_version" : 1,

 "result" : "created",

 "_shards" : {

 "total" : 2,

 "successful" : 1,

 "failed" : 0

 },

 "_seq_no" : 2,

 "_primary_term" : 1

}

6. Elastic Search – Document APIs

Elastic Search

 22

Automatic Index Creation

When a request is made to add JSON object to a particular index and if that index does

not exist, then this API automatically creates that index and also the underlying mapping

for that particular JSON object. This functionality can be disabled by changing the values

of following parameters to false, which are present in elasticsearch.yml file.

action.auto_create_index:false

index.mapper.dynamic:false

You can also restrict the auto creation of index, where only index name with specific

patterns are allowed by changing the value of the following parameter:

action.auto_create_index:+acc*,-bank*

Note: Here + indicates allowed and – indicates not allowed.

Versioning

Elasticsearch also provides version control facility. We can use a version query parameter

to specify the version of a particular document.

PUT schools/_doc/5?version=7&version_type=external

{

 "name":"Central School", "description":"CBSE Affiliation", "street":"Nagan",

 "city":"paprola", "state":"HP", "zip":"176115", "location":[31.8955385,

76.8380405],

 "fees":2200, "tags":["Senior Secondary", "beautiful campus"], "rating":"3.3"

}

On running the above code, we get the following result:

{

 "_index" : "schools",

 "_type" : "_doc",

 "_id" : "5",

 "_version" : 7,

 "result" : "updated",

 "_shards" : {

 "total" : 2,

 "successful" : 1,

 "failed" : 0

 },

 "_seq_no" : 3,

 "_primary_term" : 1

Elastic Search

 23

}

Versioning is a real-time process and it is not affected by the real time search operations.

There are two most important types of versioning:

Internal Versioning

Internal versioning is the default version that starts with 1 and increments with each

update, deletes included.

External Versioning

It is used when the versioning of the documents is stored in an external system like third

party versioning systems. To enable this functionality, we need to set version_type to

external. Here Elasticsearch will store version number as designated by the external

system and will not increment them automatically.

Operation Type

The operation type is used to force a create operation. This helps to avoid the overwriting

of existing document.

PUT chapter/_doc/1?op_type=create

{

 "Text":"this is chapter one"

}

On running the above code, we get the following result:

{

 "_index" : "chapter",

 "_type" : "_doc",

 "_id" : "1",

 "_version" : 1,

 "result" : "created",

 "_shards" : {

 "total" : 2,

 "successful" : 1,

 "failed" : 0

 },

 "_seq_no" : 0,

 "_primary_term" : 1

}

Elastic Search

 24

Automatic ID generation

When ID is not specified in index operation, then Elasticsearch automatically generates id

for that document.

POST chapter/_doc/

{

 "user" : "tpoint",

 "post_date" : "2018-12-25T14:12:12",

 "message" : "Elasticsearch Tutorial"

}

On running the above code, we get the following result:

{

 "_index" : "chapter",

 "_type" : "_doc",

 "_id" : "PVghWGoB7LiDTeV6LSGu",

 "_version" : 1,

 "result" : "created",

 "_shards" : {

 "total" : 2,

 "successful" : 1,

 "failed" : 0

 },

 "_seq_no" : 1,

 "_primary_term" : 1

}

Get API

API helps to extract type JSON object by performing a get request for a particular

document.

pre class="prettyprint notranslate" > GET schools/_doc/5

On running the above code, we get the following result:

{

 "_index" : "schools",

 "_type" : "_doc",

 "_id" : "5",

 "_version" : 7,

Elastic Search

 25

 "_seq_no" : 3,

 "_primary_term" : 1,

 "found" : true,

 "_source" : {

 "name" : "Central School",

 "description" : "CBSE Affiliation",

 "street" : "Nagan",

 "city" : "paprola",

 "state" : "HP",

 "zip" : "176115",

 "location" : [

 31.8955385,

 76.8380405

],

 "fees" : 2200,

 "tags" : [

 "Senior Secondary",

 "beautiful campus"

],

 "rating" : "3.3"

 }

}

 This operation is real time and does not get affected by the refresh rate of Index.

 You can also specify the version, then Elasticsearch will fetch that version of

document only.

 You can also specify the _all in the request, so that the Elasticsearch can search

for that document id in every type and it will return the first matched document.

 You can also specify the fields you want in your result from that particular

document.

GET schools/_doc/5?_source_includes=name,fees

On running the above code, we get the following result:

Elastic Search

 26

{

 "_index" : "schools",

 "_type" : "_doc",

 "_id" : "5",

 "_version" : 7,

 "_seq_no" : 3,

 "_primary_term" : 1,

 "found" : true,

 "_source" : {

 "fees" : 2200,

 "name" : "Central School"

 }

}

You can also fetch the source part in your result by just adding _source part in your get

request.

GET schools/_doc/5?_source

On running the above code, we get the following result:

{

 "_index" : "schools",

 "_type" : "_doc",

 "_id" : "5",

 "_version" : 7,

 "_seq_no" : 3,

 "_primary_term" : 1,

 "found" : true,

 "_source" : {

 "name" : "Central School",

 "description" : "CBSE Affiliation",

 "street" : "Nagan",

 "city" : "paprola",

 "state" : "HP",

 "zip" : "176115",

 "location" : [

 31.8955385,

 76.8380405

],

Elastic Search

 27

 "fees" : 2200,

 "tags" : [

 "Senior Secondary",

 "beautiful campus"

],

 "rating" : "3.3"

 }

}

You can also refresh the shard before doing get operation by set refresh parameter to

true.

Delete API

You can delete a particular index, mapping or a document by sending a HTTP DELETE

request to Elasticsearch.

DELETE schools/_doc/4

On running the above code, we get the following result:

{

 "found":true, "_index":"schools", "_type":"school", "_id":"4", "_version":2,

 "_shards":{"total":2, "successful":1, "failed":0}

}

Version of the document can be specified to delete that particular version. Routing

parameter can be specified to delete the document from a particular user and the operation

fails if the document does not belong to that particular user. In this operation, you can

specify refresh and timeout option same like GET API.

Update API

Script is used for performing this operation and versioning is used to make sure that no

updates have happened during the get and re-index. For example, you can update the

fees of school using script:

POST schools/_update/4

{

 "script" : {

 "source": "ctx._source.name = params.sname",

 "lang": "painless",

 "params" : {

 "sname" : "City Wise School"

Elastic Search

 28

 }

 }

}

On running the above code, we get the following result:

{

 "_index" : "schools",

 "_type" : "_doc",

 "_id" : "4",

 "_version" : 3,

 "result" : "updated",

 "_shards" : {

 "total" : 2,

 "successful" : 1,

 "failed" : 0

 },

 "_seq_no" : 4,

 "_primary_term" : 2

}

You can check the update by sending get request to the updated document.

Elastic Search

 29

This API is used to search content in Elasticsearch. A user can search by sending a get

request with query string as a parameter or they can post a query in the message body of

post request. Mainly all the search APIS are multi-index, multi-type.

Multi-Index

Elasticsearch allows us to search for the documents present in all the indices or in some

specific indices. For example, if we need to search all the documents with a name that

contains central, we can do as shown here:

GET /_all/_search?q=city:paprola

On running the above code, we get the following response:

{

 "took" : 33,

 "timed_out" : false,

 "_shards" : {

 "total" : 7,

 "successful" : 7,

 "skipped" : 0,

 "failed" : 0

 },

 "hits" : {

 "total" : {

 "value" : 1,

 "relation" : "eq"

 },

 "max_score" : 0.9808292,

 "hits" : [

 {

 "_index" : "schools",

 "_type" : "school",

 "_id" : "5",

 "_score" : 0.9808292,

 "_source" : {

 "name" : "Central School",

7. Elastic Search – Search APIs

Elastic Search

 30

 "description" : "CBSE Affiliation",

 "street" : "Nagan",

 "city" : "paprola",

 "state" : "HP",

 "zip" : "176115",

 "location" : [

 31.8955385,

 76.8380405

],

 "fees" : 2200,

 "tags" : [

 "Senior Secondary",

 "beautiful campus"

],

 "rating" : "3.3"

 }

 }

]

 }

}

URI Search

Many parameters can be passed in a search operation using Uniform Resource Identifier:

S.No Parameter & Description

1

Q

This parameter is used to specify query string.

2

lenient

Format based errors can be ignored by just setting this parameter to true. It

is false by default.

3

fields

This parameter helps us to get response from selective fields.

4

sort

We can get sorted result by using this parameter, the possible values for this

parameter is fieldName, fieldName:asc/fieldname:desc

Elastic Search

 31

5

timeout

We can restrict the search time by using this parameter and response only

contains the hits in that specified time. By default, there is no timeout.

6

terminate_after

We can restrict the response to a specified number of documents for each

shard, upon reaching which the query will terminate early. By default, there

is no terminate_after.

7

from

The starting from index of the hits to return. Defaults to 0.

8
size

It denotes the number of hits to return. Defaults to 10.

Request Body Search

We can also specify query using query DSL in request body and there are many examples

already given in previous chapters. One such example is given here:

POST /schools/_search

{

 "query":{

 "query_string":{

 "query":"up"

 }

 }

}

On running the above code, we get the following response:

{

 "took" : 11,

 "timed_out" : false,

 "_shards" : {

 "total" : 1,

 "successful" : 1,

 "skipped" : 0,

 "failed" : 0

 },

 "hits" : {

Elastic Search

 32

 "total" : {

 "value" : 1,

 "relation" : "eq"

 },

 "max_score" : 0.47000363,

 "hits" : [

 {

 "_index" : "schools",

 "_type" : "school",

 "_id" : "4",

 "_score" : 0.47000363,

 "_source" : {

 "name" : "City Best School",

 "description" : "ICSE",

 "street" : "West End",

 "city" : "Meerut",

 "state" : "UP",

 "zip" : "250002",

 "location" : [

 28.9926174,

 77.692485

],

 "fees" : 3500,

 "tags" : [

 "fully computerized"

],

 "rating" : "4.5"

 }

 }

]

 }

}

Elastic Search

 33

The aggregations framework collects all the data selected by the search query and consists

of many building blocks, which help in building complex summaries of the data. The basic

structure of an aggregation is shown here:

"aggregations" : {

 "" : {

 "" : {

 }

 [,"meta" : { [] }]?

 [,"aggregations" : { []+ }]?

 }

 [,"" : { ... }]*

}

There are different types of aggregations, each with its own purpose. They are discussed

in detail in this chapter.

Metrics Aggregations

These aggregations help in computing matrices from the field’s values of the aggregated

documents and sometime some values can be generated from scripts.

Numeric matrices are either single-valued like average aggregation or multi-valued like

stats.

Avg Aggregation

This aggregation is used to get the average of any numeric field present in the aggregated

documents. For example,

POST /schools/_search

{

 "aggs":{

 "avg_fees":{"avg":{"field":"fees"}}

 }

}

8. Elastic Search – Aggregations

Elastic Search

 34

On running the above code, we get the following result:

{

 "took" : 41,

 "timed_out" : false,

 "_shards" : {

 "total" : 1,

 "successful" : 1,

 "skipped" : 0,

 "failed" : 0

 },

 "hits" : {

 "total" : {

 "value" : 2,

 "relation" : "eq"

 },

 "max_score" : 1.0,

 "hits" : [

 {

 "_index" : "schools",

 "_type" : "school",

 "_id" : "5",

 "_score" : 1.0,

 "_source" : {

 "name" : "Central School",

 "description" : "CBSE Affiliation",

 "street" : "Nagan",

 "city" : "paprola",

 "state" : "HP",

 "zip" : "176115",

 "location" : [

 31.8955385,

 76.8380405

],

 "fees" : 2200,

 "tags" : [

 "Senior Secondary",

 "beautiful campus"

Elastic Search

 35

],

 "rating" : "3.3"

 }

 },

 {

 "_index" : "schools",

 "_type" : "school",

 "_id" : "4",

 "_score" : 1.0,

 "_source" : {

 "name" : "City Best School",

 "description" : "ICSE",

 "street" : "West End",

 "city" : "Meerut",

 "state" : "UP",

 "zip" : "250002",

 "location" : [

 28.9926174,

 77.692485

],

 "fees" : 3500,

 "tags" : [

 "fully computerized"

],

 "rating" : "4.5"

 }

 }

]

 },

 "aggregations" : {

 "avg_fees" : {

 "value" : 2850.0

 }

 }

}

Elastic Search

 36

Cardinality Aggregation

This aggregation gives the count of distinct values of a particular field.

POST /schools/_search?size=0

{

 "aggs":{

 "distinct_name_count":{"cardinality":{"field":"fees"}}

 }

}

On running the above code, we get the following result:

{

 "took" : 2,

 "timed_out" : false,

 "_shards" : {

 "total" : 1,

 "successful" : 1,

 "skipped" : 0,

 "failed" : 0

 },

 "hits" : {

 "total" : {

 "value" : 2,

 "relation" : "eq"

 },

 "max_score" : null,

 "hits" : []

 },

 "aggregations" : {

 "distinct_name_count" : {

 "value" : 2

 }

 }}

Note: The value of cardinality is 2 because there are two distinct values in fees.

Elastic Search

 37

Extended Stats Aggregation

This aggregation generates all the statistics about a specific numerical field in aggregated

documents.

POST /schools/_search?size=0

{

 "aggs" : {

 "fees_stats" : { "extended_stats" : { "field" : "fees" } }

 }

}

On running the above code, we get the following result:

{

 "took" : 8,

 "timed_out" : false,

 "_shards" : {

 "total" : 1,

 "successful" : 1,

 "skipped" : 0,

 "failed" : 0

 },

 "hits" : {

 "total" : {

 "value" : 2,

 "relation" : "eq"

 },

 "max_score" : null,

 "hits" : []

 },

 "aggregations" : {

 "fees_stats" : {

 "count" : 2,

 "min" : 2200.0,

 "max" : 3500.0,

 "avg" : 2850.0,

 "sum" : 5700.0,

 "sum_of_squares" : 1.709E7,

 "variance" : 422500.0,

Elastic Search

 38

 "std_deviation" : 650.0,

 "std_deviation_bounds" : {

 "upper" : 4150.0,

 "lower" : 1550.0

 }

 }

 }

}

Max Aggregation

This aggregation finds the max value of a specific numeric field in aggregated documents.

POST /schools/_search?size=0

{

 "aggs" : {

 "max_fees" : { "max" : { "field" : "fees" } }

 }

}

On running the above code, we get the following result:

{

 "took" : 16,

 "timed_out" : false,

 "_shards" : {

 "total" : 1,

 "successful" : 1,

 "skipped" : 0,

 "failed" : 0

 },

 "hits" : {

 "total" : {

 "value" : 2,

 "relation" : "eq"

 },

 "max_score" : null,

 "hits" : []

 },

Elastic Search

 39

 "aggregations" : {

 "max_fees" : {

 "value" : 3500.0

 }

 }

}

Min Aggregation

This aggregation finds the min value of a specific numeric field in aggregated documents.

POST /schools/_search?size=0

{

 "aggs" : {

 "min_fees" : { "min" : { "field" : "fees" } }

 }

}

On running the above code, we get the following result:

{

 "took" : 2,

 "timed_out" : false,

 "_shards" : {

 "total" : 1,

 "successful" : 1,

 "skipped" : 0,

 "failed" : 0

 },

 "hits" : {

 "total" : {

 "value" : 2,

 "relation" : "eq"

 },

 "max_score" : null,

 "hits" : []

 },

 "aggregations" : {

 "min_fees" : {

Elastic Search

 40

 "value" : 2200.0

 }

 }

}

Sum Aggregation
This aggregation calculates the sum of a specific numeric field in aggregated documents.

POST /schools/_search?size=0

{

 "aggs" : {

 "total_fees" : { "sum" : { "field" : "fees" } }

 }

}

On running the above code, we get the following result:

{

 "took" : 8,

 "timed_out" : false,

 "_shards" : {

 "total" : 1,

 "successful" : 1,

 "skipped" : 0,

 "failed" : 0

 },

 "hits" : {

 "total" : {

 "value" : 2,

 "relation" : "eq"

 },

 "max_score" : null,

 "hits" : []

 },

 "aggregations" : {

 "total_fees" : {

 "value" : 5700.0

 }

Elastic Search

 41

 }

}

There are some other metrics aggregations which are used in special cases like geo bounds

aggregation and geo centroid aggregation for the purpose of geo location.

Stats Aggregations

A multi-value metrics aggregation that computes stats over numeric values extracted from

the aggregated documents.

POST /schools/_search?size=0

{

 "aggs" : {

 "grades_stats" : { "stats" : { "field" : "fees" } }

 }

}

On running the above code, we get the following result:

{

 "took" : 2,

 "timed_out" : false,

 "_shards" : {

 "total" : 1,

 "successful" : 1,

 "skipped" : 0,

 "failed" : 0

 },

 "hits" : {

 "total" : {

 "value" : 2,

 "relation" : "eq"

 },

 "max_score" : null,

 "hits" : []

 },

 "aggregations" : {

 "grades_stats" : {

 "count" : 2,

 "min" : 2200.0,

Elastic Search

 42

 "max" : 3500.0,

 "avg" : 2850.0,

 "sum" : 5700.0

 }

 }

}

Aggregation Metadata

You can add some data about the aggregation at the time of request by using meta tag

and can get that in response.

POST /schools/_search?size=0

{

 "aggs" : {

 "min_fees" : { "avg" : { "field" : "fees" } ,

 "meta" :{

 "dsc" :"Lowest Fees This Year"

 }

 }

 }

}

On running the above code, we get the following result:

{

 "took" : 0,

 "timed_out" : false,

 "_shards" : {

 "total" : 1,

 "successful" : 1,

 "skipped" : 0,

 "failed" : 0

 },

 "hits" : {

 "total" : {

 "value" : 2,

 "relation" : "eq"

 },

 "max_score" : null,

Elastic Search

 43

 "hits" : []

 },

 "aggregations" : {

 "min_fees" : {

 "meta" : {

 "dsc" : "Lowest Fees This Year"

 },

 "value" : 2850.0

 }

 }

}

Elastic Search

 44

These APIs are responsible for managing all the aspects of the index like settings, aliases,

mappings, index templates.

Create Index

This API helps you to create an index. An index can be created automatically when a user

is passing JSON objects to any index or it can be created before that. To create an index,

you just need to send a PUT request with settings, mappings and aliases or just a simple

request without body.

PUT colleges

On running the above code, we get the output as shown below:

{

 "acknowledged" : true,

 "shards_acknowledged" : true,

 "index" : "colleges"

}

We can also add some settings to the above command:

PUT colleges

{

 "settings" : {

 "index" : {

 "number_of_shards" : 3,

 "number_of_replicas" : 2

 }

 }

}

On running the above code, we get the output as shown below:

{

 "acknowledged" : true,

 "shards_acknowledged" : true,

 "index" : "colleges"

}

9. Elastic Search – Index APIs

Elastic Search

 45

Delete Index

This API helps you to delete any index. You just need to pass a delete request with the

name of that particular Index.

DELETE /colleges

You can delete all indices by just using _all or *.

Get Index

This API can be called by just sending get request to one or more than one indices. This

returns the information about index.

GET colleges

On running the above code, we get the output as shown below:

{

 "colleges" : {

 "aliases" : {

 "alias_1" : { },

 "alias_2" : {

 "filter" : {

 "term" : {

 "user" : "pkay"

 }

 },

 "index_routing" : "pkay",

 "search_routing" : "pkay"

 }

 },

 "mappings" : { },

 "settings" : {

 "index" : {

 "creation_date" : "1556245406616",

 "number_of_shards" : "1",

 "number_of_replicas" : "1",

 "uuid" : "3ExJbdl2R1qDLssIkwDAug",

 "version" : {

 "created" : "7000099"

 },

Elastic Search

 46

 "provided_name" : "colleges"

 }

 }

 }

}

You can get the information of all the indices by using _all or *.

Index Exist

Existence of an index can be determined by just sending a get request to that index. If

the HTTP response is 200, it exists; if it is 404, it does not exist.

HEAD colleges

On running the above code, we get the output as shown below:

200-OK

Index Settings

You can get the index settings by just appending _settings keyword at the end of URL.

GET /colleges/_settings

On running the above code, we get the output as shown below:

{

 "colleges" : {

 "settings" : {

 "index" : {

 "creation_date" : "1556245406616",

 "number_of_shards" : "1",

 "number_of_replicas" : "1",

 "uuid" : "3ExJbdl2R1qDLssIkwDAug",

 "version" : {

 "created" : "7000099"

 },

 "provided_name" : "colleges"

 }

 }

 }

}

Elastic Search

 47

Index Stats

This API helps you to extract statistics about a particular index. You just need to send a

get request with the index URL and _stats keyword at the end.

GET /_stats

On running the above code, we get the output as shown below:

………………………………………………

 },

 "request_cache" : {

 "memory_size_in_bytes" : 849,

 "evictions" : 0,

 "hit_count" : 1171,

 "miss_count" : 4

 },

 "recovery" : {

 "current_as_source" : 0,

 "current_as_target" : 0,

 "throttle_time_in_millis" : 0

 }

 }

 }………………………………………………

Flush

The flush process of an index makes sure that any data that is currently only persisted in

the transaction log is also permanently persisted in Lucene. This reduces recovery times

as that data does not need to be reindexed from the transaction logs after the Lucene

indexed is opened.

POST colleges/_flush

On running the above code, we get the output as shown below:

{

 "_shards" : {

 "total" : 2,

 "successful" : 1,

 "failed" : 0

 } }

Elastic Search

 48

Usually the results from various Elasticsearch APIs are displayed in JSON format. But JSON

is not easy to read always. So cat APIs feature is available in Elasticsearch helps in taking

care of giving an easier to read and comprehend printing format of the results. There are

various parameters used in cat API which server different purpose, for example - the term

V makes the output verbose.

Let us learn about cat APIs more in detail in this chapter.

Verbose

The verbose output gives a nice display of results of a cat command. In the example given

below, we get the details of various indices present in the cluster.

GET /_cat/indices?v

On running the above code, we get the response as shown below:

health status index uuid pri rep

docs.count docs.deleted store.size pri.store.size

yellow open schools RkMyEn2SQ4yUgzT6EQYuAA 1 1

2 1 21.6kb 21.6kb

yellow open index_4_analysis zVmZdM1sTV61YJYrNXf1gg 1 1

0 0 283b 283b

yellow open sensor-2018-01-01 KIrrHwABRB-ilGqTu3OaVQ 1 1

1 0 4.2kb 4.2kb

yellow open colleges 3ExJbdl2R1qDLssIkwDAug 1 1

0 0 283b 283b

Headers

The h parameter, also called header, is used to display only those columns mentioned in

the command.

GET /_cat/nodes?h=ip,port

On running the above code, we get the response as shown below:

127.0.0.1 9300

10. Elastic Search – Cat APIs

Elastic Search

 49

Sort

The sort command accepts query string which can sort the table by specified column in

the query. The default sort is ascending but this can be changed by adding :desc to a

column.

The below example, gives a result of templates arranged in descending order of the filed

index patterns.

GET _cat/templates?v&s=order:desc,index_patterns

On running the above code, we get the response as shown below:

name index_patterns order version

.triggered_watches [.triggered_watches*] 2147483647

.watch-history-9 [.watcher-history-9*] 2147483647

.watches [.watches*] 2147483647

.kibana_task_manager [.kibana_task_manager] 0 7000099

Count

The count parameter provides the count of total number of documents in the entire cluster.

GET /_cat/count?v

On running the above code, we get the response as shown below:

epoch timestamp count

1557633536 03:58:56 17809

Elastic Search

 50

The cluster API is used for getting information about cluster and its nodes and to make

changes in them. To call this API, we need to specify the node name, address or _local.

GET /_nodes/_local

On running the above code, we get the response as shown below:

………………………………………………

cluster_name" : "elasticsearch",

 "nodes" : {

 "FKH-5blYTJmff2rJ_lQOCg" : {

 "name" : "ubuntu",

 "transport_address" : "127.0.0.1:9300",

 "host" : "127.0.0.1",

 "ip" : "127.0.0.1",

 "version" : "7.0.0",

 "build_flavor" : "default",

 "build_type" : "tar",

 "build_hash" : "b7e28a7",

 "total_indexing_buffer" : 106502553,

 "roles" : [

 "master",

 "data",

 "ingest"

],

 "attributes" : {

………………………………………………

Cluster Health

This API is used to get the status on the health of the cluster by appending the ‘health’

keyword.

GET /_cluster/health

11. Elastic Search – Cluster APIs

Elastic Search

 51

On running the above code, we get the response as shown below:

{

 "cluster_name" : "elasticsearch",

 "status" : "yellow",

 "timed_out" : false,

 "number_of_nodes" : 1,

 "number_of_data_nodes" : 1,

 "active_primary_shards" : 7,

 "active_shards" : 7,

 "relocating_shards" : 0,

 "initializing_shards" : 0,

 "unassigned_shards" : 4,

 "delayed_unassigned_shards" : 0,

 "number_of_pending_tasks" : 0,

 "number_of_in_flight_fetch" : 0,

 "task_max_waiting_in_queue_millis" : 0,

 "active_shards_percent_as_number" : 63.63636363636363

}

Cluster State

This API is used to get state information about a cluster by appending the ‘state’ keyword

URL. The state information contains version, master node, other nodes, routing table,

metadata and blocks.

GET /_cluster/state

On running the above code, we get the response as shown below:

………………………………………………

{

 "cluster_name" : "elasticsearch",

 "cluster_uuid" : "IzKu0OoVTQ6LxqONJnN2eQ",

 "version" : 89,

 "state_uuid" : "y3BlwvspR1eUQBTo0aBjig",

 "master_node" : "FKH-5blYTJmff2rJ_lQOCg",

 "blocks" : { },

 "nodes" : {

 "FKH-5blYTJmff2rJ_lQOCg" : {

Elastic Search

 52

 "name" : "ubuntu",

 "ephemeral_id" : "426kTGpITGixhEzaM-5Qyg",

 "transport

}

………………………………………………

Cluster Stats

This API helps to retrieve statistics about cluster by using the ‘stats’ keyword. This API

returns shard number, store size, memory usage, number of nodes, roles, OS, and file

system.

GET /_cluster/stats

On running the above code, we get the response as shown below:

………………………………………….

"cluster_name" : "elasticsearch",

 "cluster_uuid" : "IzKu0OoVTQ6LxqONJnN2eQ",

 "timestamp" : 1556435464704,

 "status" : "yellow",

 "indices" : {

 "count" : 7,

 "shards" : {

 "total" : 7,

 "primaries" : 7,

 "replication" : 0.0,

 "index" : {

 "shards" : {

 "min" : 1,

 "max" : 1,

 "avg" : 1.0

 },

 "primaries" : {

 "min" : 1,

 "max" : 1,

 "avg" : 1.0

Elastic Search

 53

 },

 "replication" : {

 "min" : 0.0,

 "max" : 0.0,

 "avg" : 0.0

 }

………………………………………….

Cluster Update Settings

This API allows you to update the settings of a cluster by using the ‘settings’ keyword.

There are two types of settings — persistent (applied across restarts) and transient (do

not survive a full cluster restart).

Node Stats

This API is used to retrieve the statistics of one more nodes of the cluster. Node stats are

almost the same as cluster.

GET /_nodes/stats

On running the above code, we get the response as shown below:

{

 "_nodes" : {

 "total" : 1,

 "successful" : 1,

 "failed" : 0

 },

 "cluster_name" : "elasticsearch",

 "nodes" : {

 "FKH-5blYTJmff2rJ_lQOCg" : {

 "timestamp" : 1556437348653,

 "name" : "ubuntu",

 "transport_address" : "127.0.0.1:9300",

 "host" : "127.0.0.1",

 "ip" : "127.0.0.1:9300",

 "roles" : [

 "master",

 "data",

 "ingest"

Elastic Search

 54

],

 "attributes" : {

 "ml.machine_memory" : "4112797696",

 "xpack.installed" : "true",

 "ml.max_open_jobs" : "20"

 },

………………………………………………………….

Nodes hot_threads

This API helps you to retrieve information about the current hot threads on each node in

cluster.

GET /_nodes/hot_threads

On running the above code, we get the response as shown below:

::: {ubuntu}{FKH-5blYTJmff2rJ_lQOCg}{426kTGpITGixhEzaM-

5Qyg}{127.0.0.1}{127.0.0.1:9300}{ml.machine_memory=4112797696,

xpack.installed=true, ml.max_open_jobs=20}

 Hot threads at 2019-04-28T07:43:58.265Z, interval=500ms, busiestThreads=3,

ignoreIdleThreads=true:

Elastic Search

 55

In Elasticsearch, searching is carried out by using query based on JSON. A query is made

up of two clauses:

 Leaf Query Clauses: These clauses are match, term or range, which look for a

specific value in specific field.

 Compound Query Clauses: These queries are a combination of leaf query clauses

and other compound queries to extract the desired information.

Elasticsearch supports a large number of queries. A query starts with a query key word

and then has conditions and filters inside in the form of JSON object. The different types

of queries have been described below.

Match All Query

This is the most basic query; it returns all the content and with the score of 1.0 for every

object.

POST /schools/_search

{

 "query":{

 "match_all":{}

 }

}

On running the above code, we get the following result:

{

 "took" : 7,

 "timed_out" : false,

 "_shards" : {

 "total" : 1,

 "successful" : 1,

 "skipped" : 0,

 "failed" : 0

 },

 "hits" : {

 "total" : {

 "value" : 2,

 "relation" : "eq"

12. Elastic Search – Query DSL

Elastic Search

 56

 },

 "max_score" : 1.0,

 "hits" : [

 {

 "_index" : "schools",

 "_type" : "school",

 "_id" : "5",

 "_score" : 1.0,

 "_source" : {

 "name" : "Central School",

 "description" : "CBSE Affiliation",

 "street" : "Nagan",

 "city" : "paprola",

 "state" : "HP",

 "zip" : "176115",

 "location" : [

 31.8955385,

 76.8380405

],

 "fees" : 2200,

 "tags" : [

 "Senior Secondary",

 "beautiful campus"

],

 "rating" : "3.3"

 }

 },

 {

 "_index" : "schools",

 "_type" : "school",

 "_id" : "4",

 "_score" : 1.0,

 "_source" : {

 "name" : "City Best School",

 "description" : "ICSE",

 "street" : "West End",

 "city" : "Meerut",

Elastic Search

 57

 "state" : "UP",

 "zip" : "250002",

 "location" : [

 28.9926174,

 77.692485

],

 "fees" : 3500,

 "tags" : [

 "fully computerized"

],

 "rating" : "4.5"

 }

 }

]

 }

}

Full Text Queries

These queries are used to search a full body of text like a chapter or a news article. This

query works according to the analyser associated with that particular index or document.

In this section, we will discuss the different types of full text queries.

Match query
This query matches a text or phrase with the values of one or more fields.

POST /schools*/_search

{

 "query":{

 "match" : {

 "rating":"4.5"

 }

 }

}

On running the above code, we get the response as shown below:

{

 "took" : 44,

 "timed_out" : false,

Elastic Search

 58

 "_shards" : {

 "total" : 1,

 "successful" : 1,

 "skipped" : 0,

 "failed" : 0

 },

 "hits" : {

 "total" : {

 "value" : 1,

 "relation" : "eq"

 },

 "max_score" : 0.47000363,

 "hits" : [

 {

 "_index" : "schools",

 "_type" : "school",

 "_id" : "4",

 "_score" : 0.47000363,

 "_source" : {

 "name" : "City Best School",

 "description" : "ICSE",

 "street" : "West End",

 "city" : "Meerut",

 "state" : "UP",

 "zip" : "250002",

 "location" : [

 28.9926174,

 77.692485

],

 "fees" : 3500,

 "tags" : [

 "fully computerized"

],

 "rating" : "4.5"

 }

 }

]

Elastic Search

 59

 }

}

Multi Match Query
This query matches a text or phrase with more than one field.

POST /schools*/_search

{

 "query":{

 "multi_match" : {

 "query": "paprola",

 "fields": ["city", "state"]

 }

 }

}

On running the above code, we get the response as shown below:

{

 "took" : 12,

 "timed_out" : false,

 "_shards" : {

 "total" : 1,

 "successful" : 1,

 "skipped" : 0,

 "failed" : 0

 },

 "hits" : {

 "total" : {

 "value" : 1,

 "relation" : "eq"

 },

 "max_score" : 0.9808292,

 "hits" : [

 {

 "_index" : "schools",

 "_type" : "school",

 "_id" : "5",

 "_score" : 0.9808292,

Elastic Search

 60

 "_source" : {

 "name" : "Central School",

 "description" : "CBSE Affiliation",

 "street" : "Nagan",

 "city" : "paprola",

 "state" : "HP",

 "zip" : "176115",

 "location" : [

 31.8955385,

 76.8380405

],

 "fees" : 2200,

 "tags" : [

 "Senior Secondary",

 "beautiful campus"

],

 "rating" : "3.3"

 }

 }

]

 }

}

Query String Query

This query uses query parser and query_string keyword.

POST /schools*/_search

{

 "query":{

 "query_string":{

 "query":"beautiful"

 }

 }

}

On running the above code, we get the response as shown below:

Elastic Search

 61

{

 "took" : 60,

 "timed_out" : false,

 "_shards" : {

 "total" : 1,

 "successful" : 1,

 "skipped" : 0,

 "failed" : 0

 },

 "hits" : {

 "total" : {

 "value" : 1,

 "relation" : "eq"

 },

………………………………….

Term Level Queries
These queries mainly deal with structured data like numbers, dates and enums.

POST /schools*/_search

{

 "query":{

 "term":{"zip":"176115"}

 }

}

On running the above code, we get the response as shown below:

……………………………..

hits" : [

 {

 "_index" : "schools",

 "_type" : "school",

 "_id" : "5",

 "_score" : 0.9808292,

 "_source" : {

Elastic Search

 62

 "name" : "Central School",

 "description" : "CBSE Affiliation",

 "street" : "Nagan",

 "city" : "paprola",

 "state" : "HP",

 "zip" : "176115",

 "location" : [

 31.8955385,

 76.8380405

],

…………………………………………..

Range Query

This query is used to find the objects having values between the ranges of values given.

For this, we need to use operators such as:

 gte − greater than equal to

 gt − greater-than

 lte − less-than equal to

 lt − less-than

For example, observe the code given below:

POST /schools*/_search

{

 "query":{

 "range":{

 "rating":{

 "gte":3.5

 }

 }

 }

}

On running the above code, we get the response as shown below:

{

 "took" : 24,

 "timed_out" : false,

 "_shards" : {

Elastic Search

 63

 "total" : 1,

 "successful" : 1,

 "skipped" : 0,

 "failed" : 0

 },

 "hits" : {

 "total" : {

 "value" : 1,

 "relation" : "eq"

 },

 "max_score" : 1.0,

 "hits" : [

 {

 "_index" : "schools",

 "_type" : "school",

 "_id" : "4",

 "_score" : 1.0,

 "_source" : {

 "name" : "City Best School",

 "description" : "ICSE",

 "street" : "West End",

 "city" : "Meerut",

 "state" : "UP",

 "zip" : "250002",

 "location" : [

 28.9926174,

 77.692485

],

 "fees" : 3500,

 "tags" : [

 "fully computerized"

],

 "rating" : "4.5"

 }

 }

]

 }

Elastic Search

 64

}

There exist other types of term level queries also such as:

 Exists query: If a certain field has non null value.

 Missing query: This is completely opposite to exists query, this query searches

for objects without specific fields or fields having null value.

 Wildcard or regexp query: This query uses regular expressions to find patterns

in the objects.

Compound Queries

These queries are a collection of different queries merged with each other by using Boolean

operators like and, or, not or for different indices or having function calls etc.

POST /schools/_search

{

 "query": {

 "bool" : {

 "must" : {

 "term" : { "state" : "UP" }

 },

 "filter": {

 "term" : { "fees" : "2200" }

 },

 "minimum_should_match" : 1,

 "boost" : 1.0

 }

 }

}

On running the above code, we get the response as shown below:

{

 "took" : 6,

 "timed_out" : false,

 "_shards" : {

 "total" : 1,

 "successful" : 1,

 "skipped" : 0,

 "failed" : 0

Elastic Search

 65

 },

 "hits" : {

 "total" : {

 "value" : 0,

 "relation" : "eq"

 },

 "max_score" : null,

 "hits" : []

 }

}

Geo Queries

These queries deal with geo locations and geo points. These queries help to find out schools

or any other geographical object near to any location. You need to use geo point data

type.

PUT /geo_example

{

 "mappings": {

 "properties": {

 "location": {

 "type": "geo_shape"

 }

 }

 }

}

On running the above code, we get the response as shown below:

 { "acknowledged" : true,

 "shards_acknowledged" : true,

 "index" : "geo_example"

}

Now we post the data in the index created above.

POST /geo_example/_doc?refresh

{

 "name": "Chapter One, London, UK",

Elastic Search

 66

 "location": {

 "type": "point",

 "coordinates": [11.660544, 57.800286]

 }

}

On running the above code, we get the response as shown below:

{

 "took" : 1,

 "timed_out" : false,

 "_shards" : {

 "total" : 1,

 "successful" : 1,

 "skipped" : 0,

 "failed" : 0

 },

 "hits" : {

 "total" : {

 "value" : 2,

 "relation" : "eq"

 },

 "max_score" : 1.0,

 "hits" : [

"_index" : "geo_example",

 "_type" : "_doc",

 "_id" : "hASWZ2oBbkdGzVfiXHKD",

 "_score" : 1.0,

 "_source" : {

 "name" : "Chapter One, London, UK",

 "location" : {

 "type" : "point",

 "coordinates" : [

 11.660544,

 57.800286

]

 }

 }

Elastic Search

 67

Mapping is the outline of the documents stored in an index. It defines the data type like

geo_point or string and format of the fields present in the documents and rules to control

the mapping of dynamically added fields.

PUT bankaccountdetails

{

 "mappings":{

 "properties":{

 "name": { "type":"text"}, "date":{ "type":"date"},

 "balance":{ "type":"double"}, "liability":{ "type":"double"}

 }

 }

 }

When we run the above code, we get the response as shown below:

{

 "acknowledged" : true,

 "shards_acknowledged" : true,

 "index" : "bankaccountdetails"

}

Field Data Types

Elasticsearch supports a number of different datatypes for the fields in a document. The

data types used to store fields in Elasticsearch are discussed in detail here.

Core Data Types

These are the basic data types such as text, keyword, date, long, double, boolean or ip,

which are supported by almost all the systems.

Complex Data Types

These data types are a combination of core data types. These include array, JSON object

and nested data type. An example of nested data type is shown below:

POST /tabletennis/_doc/1

{

 "group" : "players",

13. Elastic Search – Mapping

Elastic Search

 68

 "user" : [

 {

 "first" : "dave", "last" : "jones"

 },

 {

 "first" : "kevin", "last" : "morris"

 }

]

}

When we run the above code, we get the response as shown below:

{

 "_index" : "tabletennis",

 "_type" : "_doc",

 "_id" : "1",

 "_version" : 2,

 "result" : "updated",

 "_shards" : {

 "total" : 2,

 "successful" : 1,

 "failed" : 0

 },

 "_seq_no" : 1,

 "_primary_term" : 1

}

Another sample code is shown below:

POST /accountdetails/_doc/1

{

"from_acc":"7056443341", "to_acc":"7032460534",

 "date":"11/1/2016", "amount":10000

}

When we run the above code, we get the response as shown below:

Elastic Search

 69

 { "_index" : "accountdetails",

 "_type" : "_doc",

 "_id" : "1",

 "_version" : 1,

 "result" : "created",

 "_shards" : {

 "total" : 2,

 "successful" : 1,

 "failed" : 0

 },

 "_seq_no" : 1,

 "_primary_term" : 1

}

We can check the above document by using the following command:

GET /accountdetails/_mappings?include_type_name=false

Removal of Mapping Types

Indices created in Elasticsearch 7.0.0 or later no longer accept a _default_ mapping.

Indices created in 6.x will continue to function as before in Elasticsearch 6.x. Types are

deprecated in APIs in 7.0.

Elastic Search

 70

When a query is processed during a search operation, the content in any index is analyzed

by the analysis module. This module consists of analyzer, tokenizer, tokenfilters and

charfilters. If no analyzer is defined, then by default the built in analyzers, token, filters

and tokenizers get registered with analysis module.

In the following example, we use a standard analyzer which is used when no other analyzer

is specified. It will analyze the sentence based on the grammar and produce words used

in the sentence.

POST _analyze

{

 "analyzer": "standard",

 "text": "Today's weather is beautiful"

}

On running the above code, we get the response as shown below:

{

 "tokens" : [

 {

 "token" : "today's",

 "start_offset" : 0,

 "end_offset" : 7,

 "type" : "",

 "position" : 0

 },

 {

 "token" : "weather",

 "start_offset" : 8,

 "end_offset" : 15,

 "type" : "",

 "position" : 1

 },

 {

 "token" : "is",

 "start_offset" : 16,

 "end_offset" : 18,

14. Elastic Search – Analysis

Elastic Search

 71

 "type" : "",

 "position" : 2

 },

 {

 "token" : "beautiful",

 "start_offset" : 19,

 "end_offset" : 28,

 "type" : "",

 "position" : 3

 }

]

}

Configuring the Standard analyzer

We can configure the standard analyser with various parameters to get our custom

requirements.

In the following example, we configure the standard analyzer to have a max_token_length

of 5.

For this, we first create an index with the analyser having max_length_token parameter.

PUT index_4_analysis

{

 "settings": {

 "analysis": {

 "analyzer": {

 "my_english_analyzer": {

 "type": "standard",

 "max_token_length": 5,

 "stopwords": "_english_"

 }

 }

 }

 }

}

Next we apply the analyser with a text as shown below. Please note how the token is does

not appear as it has two spaces in the beginning and two spaces at the end. For the word

“is”, there is a space at the beginning of it and a space at the end of it. Taking all of them,

Elastic Search

 72

it becomes 4 letters with spaces and that does not make it a word. There should be a non-

space character at least at the beginning or at the end, to make it a word to be counted.

POST index_4_analysis/_analyze

{

 "analyzer": "my_english_analyzer",

 "text": "Today's weather is beautiful"

}

On running the above code, we get the response as shown below:

{

 "tokens" : [

 {

 "token" : "today",

 "start_offset" : 0,

 "end_offset" : 5,

 "type" : "",

 "position" : 0

 },

 {

 "token" : "s",

 "start_offset" : 6,

 "end_offset" : 7,

 "type" : "",

 "position" : 1

 },

 {

 "token" : "weath",

 "start_offset" : 8,

 "end_offset" : 13,

 "type" : "",

 "position" : 2

 },

 {

 "token" : "er",

 "start_offset" : 13,

 "end_offset" : 15,

 "type" : "",

Elastic Search

 73

 "position" : 3

 },

 {

 "token" : "beaut",

 "start_offset" : 19,

 "end_offset" : 24,

 "type" : "",

 "position" : 5

 },

 {

 "token" : "iful",

 "start_offset" : 24,

 "end_offset" : 28,

 "type" : "",

 "position" : 6

 }

]

}

The list of various analyzers and their description are given in the table shown below:

S.No Analyzer & Description

1

Standard analyzer (standard)

stopwords and max_token_length setting can be set for this analyzer. By

default, stopwords list is empty and max_token_length is 255.

2
Simple analyzer (simple)

This analyzer is composed of lowercase tokenizer.

3
Whitespace analyzer (whitespace)

This analyzer is composed of whitespace tokenizer.

4

Stop analyzer (stop)

stopwords and stopwords_path can be configured. By default stopwords

initialized to English stop words and stopwords_path contains path to a text

file with stop words.

Elastic Search

 74

Tokenizers

Tokenizers are used for generating tokens from a text in Elasticsearch. Text can be broken

down into tokens by taking whitespace or other punctuations into account. Elasticsearch

has plenty of built-in tokenizers, which can be used in custom analyzer.

An example of tokenizer that breaks text into terms whenever it encounters a character

which is not a letter, but it also lowercases all terms, is shown below:

POST _analyze

{

 "tokenizer": "lowercase",

 "text": "It Was a Beautiful Weather 5 Days ago."

}

On running the above code, we get the response as shown below:

{

 "tokens" : [

 {

 "token" : "it",

 "start_offset" : 0,

 "end_offset" : 2,

 "type" : "word",

 "position" : 0

 },

 {

 "token" : "was",

 "start_offset" : 3,

 "end_offset" : 6,

 "type" : "word",

 "position" : 1

 },

 {

 "token" : "a",

 "start_offset" : 7,

 "end_offset" : 8,

 "type" : "word",

 "position" : 2

 },

 {

Elastic Search

 75

 "token" : "beautiful",

 "start_offset" : 9,

 "end_offset" : 18,

 "type" : "word",

 "position" : 3

 },

 {

 "token" : "weather",

 "start_offset" : 19,

 "end_offset" : 26,

 "type" : "word",

 "position" : 4

 },

 {

 "token" : "days",

 "start_offset" : 29,

 "end_offset" : 33,

 "type" : "word",

 "position" : 5

 },

 {

 "token" : "ago",

 "start_offset" : 34,

 "end_offset" : 37,

 "type" : "word",

 "position" : 6

 }

]

}

Elastic Search

 76

A list of Tokenizers and their descriptions are shown here in the table given below:

S.No Tokenizer & Description

1

Standard tokenizer (standard)

This is built on grammar based tokenizer and max_token_length can be

configured for this tokenizer.

2

Edge NGram tokenizer (edgeNGram)

Settings like min_gram, max_gram, token_chars can be set for this

tokenizer.

3
Keyword tokenizer (keyword)

This generates entire input as an output and buffer_size can be set for this.

4
Letter tokenizer (letter)

This captures the whole word until a non-letter is encountered.

Elastic Search

 77

Elasticsearch is composed of a number of modules, which are responsible for its

functionality. These modules have two types of settings as follows:

 Static Settings: These settings need to be configured in config (elasticsearch.yml)

file before starting Elasticsearch. You need to update all the concern nodes in the

cluster to reflect the changes by these settings.

 Dynamic Settings: These settings can be set on live Elasticsearch.

We will discuss the different modules of Elasticsearch in the following sections of this

chapter.

Cluster-Level Routing and Shard Allocation

Cluster level settings decide the allocation of shards to different nodes and reallocation of

shards to rebalance cluster. These are the following settings to control shard allocation.

Cluster-Level Shard Allocation

Setting Possible value Description

cluster.routing.allocation.enable

all This default value allows

shard allocation for all

kinds of shards.

primaries This allows shard

allocation only for

primary shards.

new_primaries This allows shard

allocation only for

primary shards for new

indices.

none This does not allow any

shard allocations.

cluster.routing.allocation

.node_concurrent_recoveries

Numeric value (by

default 2)

This restricts the number

of concurrent shard

recovery.

cluster.routing.allocation

.node_initial_primaries_recoveries

Numeric value (by

default 4)

This restricts the number

of parallel initial primary

recoveries.

cluster.routing.allocation

.same_shard.host

Boolean value (by

default false)

This restricts the

allocation of more than

one replica of the same

15. Elastic Search – Modules

Elastic Search

 78

shard in the same

physical node.

indices.recovery.concurrent

_streams

Numeric value (by

default 3)

This controls the number

of open network streams

per node at the time of

shard recovery from peer

shards.

indices.recovery.concurrent

_small_file_streams

Numeric value (by

default 2)

This controls the number

of open streams per node

for small files having size

less than 5mb at the time

of shard recovery.

cluster.routing.rebalance.enable

all This default value allows

balancing for all kinds of

shards.

primaries This allows shard

balancing only for

primary shards.

replicas This allows shard

balancing only for replica

shards.

none This does not allow any

kind of shard balancing.

cluster.routing.allocation

.allow_rebalance

always This default value always

allows rebalancing.

indices_primaries

_active

This allows rebalancing

when all primary shards

in cluster are allocated.

Indices_all_active This allows rebalancing

when all the primary and

replica shards are

allocated.

cluster.routing.allocation.cluster

_concurrent_rebalance

Numeric value (by

default 2)

This restricts the number

of concurrent shard

balancing in cluster.

cluster.routing.allocation

.balance.shard

Float value (by

default 0.45f)

This defines the weight

factor for shards

allocated on every node.

cluster.routing.allocation

.balance.index

Float value (by

default 0.55f)

This defines the ratio of

the number of shards per

Elastic Search

 79

index allocated on a

specific node.

cluster.routing.allocation

.balance.threshold

Non negative float

value (by default

1.0f)

This is the minimum

optimization value of

operations that should be

performed.

Disk-based Shard Allocation

Setting Possible

Value

Description

cluster.routing.allocation

.disk.threshold_enabled

Boolean

value (by

default true)

This enables and disables disk

allocation decider.

cluster.routing.allocation

.disk.watermark.low

String value

(by default

85%)

This denotes maximum usage of disk;

after this point, no other shard can be

allocated to that disk.

cluster.routing.allocation

.disk.watermark.high

String value

(by default

90%)

This denotes the maximum usage at

the time of allocation; if this point is

reached at the time of allocation, then

Elasticsearch will allocate that shard to

another disk.

cluster.info.update.interval String value

(by default

30s)

This is the interval between disk usages

checkups.

cluster.routing.allocation

.disk.include_relocations

Boolean

value (by

default true)

This decides whether to consider the

shards currently being allocated, while

calculating disk usage.

Discovery

This module helps a cluster to discover and maintain the state of all the nodes in it. The

state of cluster changes when a node is added or deleted from it. The cluster name setting

is used to create logical difference between different clusters. There are some modules

which help you to use the APIs provided by cloud vendors and those are as given below:

 Azure discovery

 EC2 discovery

 Google compute engine discovery

 Zen discovery

Elastic Search

 80

Gateway

This module maintains the cluster state and the shard data across full cluster restarts. The

following are the static settings of this module:

Setting Possible value Description

gateway.expected_

nodes

numeric value (by default 0) The number of nodes that are

expected to be in the cluster for

the recovery of local shards.

gateway.expected_

master_nodes

numeric value (by default 0) The number of master nodes

that are expected to be in the

cluster before start recovery.

gateway.expected_

data_nodes

numeric value (by default 0) The number of data nodes

expected in the cluster before

start recovery.

gateway.recover_

after_time

String value (by default 5m) This specifies the time for which

the recovery process will wait to

start regardless of the number

of nodes joined in the cluster.

gateway.recover_ after_nodes

gateway.recover_after_

master_nodes

gateway.recover_after_

data_nodes

HTTP

This module manages the communication between HTTP client and Elasticsearch APIs. This

module can be disabled by changing the value of http.enabled to false.

The following are the settings (configured in elasticsearch.yml) to control this module:

S.No Setting & Description

1 http.port

This is a port to access Elasticsearch and it ranges from 9200-9300.

2 http.publish_port

This port is for http clients and is also useful in case of firewall.

3 http.bind_host

This is a host address for http service.

4 http.publish_host

This is a host address for http client.

5 http.max_content_length

This is the maximum size of content in an http request. Its default value

is 100mb.

Elastic Search

 81

6 http.max_initial_line_length

This is the maximum size of URL and its default value is 4kb.

7 http.max_header_size

This is the maximum http header size and its default value is 8kb.

8 http.compression

This enables or disables support for compression and its default value is

false.

9 http.pipelinig

This enables or disables HTTP pipelining.

10 http.pipelining.max_events

This restricts the number of events to be queued before closing an HTTP

request.

Indices

This module maintains the settings, which are set globally for every index. The following

settings are mainly related to memory usage:

Circuit Breaker

This is used for preventing operation from causing an OutOfMemroyError. The setting

mainly restricts the JVM heap size. For example, indices.breaker.total.limit setting, which

defaults to 70% of JVM heap.

Fielddata Cache

This is used mainly when aggregating on a field. It is recommended to have enough

memory to allocate it. The amount of memory used for the field data cache can be

controlled using indices.fielddata.cache.size setting.

Node Query Cache

This memory is used for caching the query results. This cache uses Least Recently Used

(LRU) eviction policy. Indices.queries.cahce.size setting controls the memory size of this

cache.

Indexing Buffer

This buffer stores the newly created documents in the index and flushes them when the

buffer is full. Setting like indices.memory.index_buffer_size control the amount of heap

allocated for this buffer.

Shard Request Cache

This cache is used to store the local search data for every shard. Cache can be enabled

during the creation of index or can be disabled by sending URL parameter.

Disable cache - ?request_cache = true

Enable cache "index.requests.cache.enable": true

Elastic Search

 82

Indices Recovery

It controls the resources during recovery process. The following are the settings:

Setting Default

value

indices.recovery.concurrent_streams 3

indices.recovery.concurrent_small_file_streams 2

indices.recovery.file_chunk_size 512kb

indices.recovery.translog_ops 1000

indices.recovery.translog_size 512kb

indices.recovery.compress true

indices.recovery.max_bytes_per_sec 40mb

TTL Interval

Time to Live (TTL) interval defines the time of a document, after which the document gets

deleted. The following are the dynamic settings for controlling this process:

Setting Default value

indices.ttl.interval 60s

indices.ttl.bulk_size 1000

Node

Each node has an option to be data node or not. You can change this property by

changing node.data setting. Setting the value as false defines that the node is not a data

node.

Elastic Search

 83

These are the modules which are created for every index and control the settings and

behaviour of the indices. For example, how many shards an index can use or the number

of replicas a primary shard can have for that index etc. There are two types of index

settings:

 Static: These can be set only at index creation time or on a closed index.

 Dynamic: These can be changed on a live index.

Static Index Settings
The following table shows the list of static index settings:

Setting Possible

value

Description

index.number_of_shards Defaults to

5, Maximum

1024

The number of primary

shards that an index should

have.

index.shard.check_on_startup Defaults to

false. Can be

True

Whether or not shards

should be checked for

corruption before opening.

index.codec LZ4

compression.

Type of compression used to

store data.

index.routing_partition_size 1 The number of shards a

custom routing value can go

to.

index.load_fixed_bitset_filters_eagerly false Indicates whether cached

filters are pre-loaded for

nested queries

Dynamic Index Settings

The following table shows the list of dynamic index settings:

Setting Possible

value

Description

index.number_of_replicas Defaults to 1 The number of replicas each primary

shard has.

index.auto_expand_replicas A dash

delimited lower

and upper

bound (0-5)

Auto-expand the number of replicas

based on the number of data nodes

in the cluster.

index.search.idle.after 30seconds How long a shard cannot receive a

search or get request until it’s

considered search idle.

index.refresh_interval 1 second How often to perform a refresh

operation, which makes recent

changes to the index visible to

search.

16. Elastic Search – Index Modules

Elastic Search

 84

index.blocks.read_only 1 true/false Set to true to make the index and

index metadata read only, false to

allow writes and metadata changes.

Sometimes we need to transform a document before we index it. For instance, we want

to remove a field from the document or rename a field and then index it. This is handled

by Ingest node.

Every node in the cluster has the ability to ingest but it can also be customized to be

processed only by specific nodes.

Steps Involved

There are two steps involved in the working of the ingest node:

 Creating a pipeline

 Creating a doc

Create a Pipeline

First creating a pipeline which contains the processors and then executing the pipeline, as

shown below:

PUT _ingest/pipeline/int-converter

{

 "description": "converts the content of the seq field to an integer",

 "processors" : [

 {

 "convert" : {

 "field" : "seq",

 "type": "integer"

 }

 }

]

}

On running the above code, we get the following result:

{

 "acknowledged" : true

17. Elastic Search – Ingest Node

Elastic Search

 85

}

Create a Doc

Next we create a document using the pipeline converter.

PUT /logs/_doc/1?pipeline=int-converter

{

 "seq":"21",

 "name":"Tutorialspoint",

 "Addrs":"Hyderabad"

}

On running the above code, we get the response as shown below:

{

 "_index" : "logs",

 "_type" : "_doc",

 "_id" : "1",

 "_version" : 1,

 "result" : "created",

 "_shards" : {

 "total" : 2,

 "successful" : 1,

 "failed" : 0

 },

 "_seq_no" : 0,

 "_primary_term" : 1

}

Next we search for the doc created above by using the GET command as shown below:

GET /logs/_doc/1

On running the above code, we get the following result:

{

 "_index" : "logs",

 "_type" : "_doc",

 "_id" : "1",

 "_version" : 1,

Elastic Search

 86

 "_seq_no" : 0,

 "_primary_term" : 1,

 "found" : true,

 "_source" : {

 "Addrs" : "Hyderabad",

 "name" : "Tutorialspoint",

 "seq" : 21

 } }

You can see above that 21 has become an integer.

Without Pipeline

Now we create a document without using the pipeline.

PUT /logs/_doc/2

{

 "seq":"11",

 "name":"Tutorix",

 "Addrs":"Secunderabad"

}

GET /logs/_doc/2

On running the above code, we get the following result:

{

 "_index" : "logs",

 "_type" : "_doc",

 "_id" : "2",

 "_version" : 1,

 "_seq_no" : 1,

 "_primary_term" : 1,

 "found" : true,

 "_source" : {

 "seq" : "11",

 "name" : "Tutorix",

 "Addrs" : "Secunderabad"

 }

}

You can see above that 11 is a string without the pipeline being used.

Elastic Search

 87

Managing the index lifecycle involves performing management actions based on factors

like shard size and performance requirements. The index lifecycle management (ILM) APIs

enable you to automate how you want to manage your indices over time.

This chapter gives a list of ILM APIs and their usage.

Policy Management APIs

API

Name

Purpose Example

Create

lifecycle

policy.

Creates a lifecycle policy. If the specified policy

exists, the policy is replaced and the policy

version is incremented.

PUT

_ilm/policy/policy_id

Get

lifecycle

policy.

Returns the specified policy definition. Includes

the policy version and last modified date. If no

policy is specified, returns all defined policies.

GET

_ilm/policy/policy_id

Delete

lifecycle

policy.

Deletes the specified lifecycle policy definition.

You cannot delete policies that are currently in

use. If the policy is being used to manage any

indices, the request fails and returns an error.

DELETE

_ilm/policy/policy_id

Index Management APIs

API

Name

Purpose Example

Move to

lifecycle

step API.

Manually moves an index into the specified step

and executes that step.

POST

_ilm/move/index

Retry

policy.

Sets the policy back to the step where the error

occurred and executes the step.

POST

index/_ilm/retry

Remove

policy

from index

API edit.

Removes the assigned lifecycle policy and stops

managing the specified index. If an index

pattern is specified, removes the assigned

policies from all matching indices.

POST

index/_ilm/remove

18. Elastic Search – Managing Index Lifecycle

Elastic Search

 88

Operation Management APIs

API Name Purpose Example

Get index

lifecycle

management

status API.

Returns the status of the ILM plugin. The

operation_mode field in the response shows

one of three states: STARTED, STOPPING,

or STOPPED.

GET /_ilm/status

Start index

lifecycle

management

API.

Starts the ILM plugin if it is currently

stopped. ILM is started automatically when

the cluster is formed.

POST /_ilm/start

Stop index

lifecycle

management

API.

Halts all lifecycle management operations

and stops the ILM plugin. This is useful

when you are performing maintenance on

the cluster and need to prevent ILM from

performing any actions on your indices.

POST /_ilm/stop

Explain lifecycle

API.

Retrieves information about the index’s

current lifecycle state, such as the currently

executing phase, action, and step. Shows

when the index entered each one, the

definition of the running phase, and

information about any failures.

GET

index/_ilm/explain

Elastic Search

 89

It is a component that allows SQL-like queries to be executed in real-time against

Elasticsearch. You can think of Elasticsearch SQL as a translator, one that understands

both SQL and Elasticsearch and makes it easy to read and process data in real-time, at

scale by leveraging Elasticsearch capabilities.

Advantages of Elasticsearch SQL

 It has native integration: Each and every query is efficiently executed against

the relevant nodes according to the underlying storage.

 No external parts: No need for additional hardware, processes, runtimes or

libraries to query Elasticsearch.

 Lightweight and efficient: it embraces and exposes SQL to allow proper full-text

search, in real-time.

Example

PUT /schoollist/_bulk?refresh

{"index":{"_id": "CBSE"}}

{"name": "GleanDale", "Address": "JR. Court Lane", "start_date": "2011-06-02",

"student_count": 561}

{"index":{"_id": "ICSE"}}

{"name": "Top-Notch", "Address": "Gachibowli Main Road", "start_date": "1989-

05-26", "student_count": 482}

{"index":{"_id": "State Board"}}

{"name": "Sunshine", "Address": "Main Street", "start_date": "1965-06-01",

"student_count": 604}

On running the above code, we get the response as shown below:

{

 "took" : 277,

 "errors" : false,

 "items" : [

 {

 "index" : {

 "_index" : "schoollist",

 "_type" : "_doc",

 "_id" : "CBSE",

19. Elastic Search – SQL Access

Elastic Search

 90

 "_version" : 1,

 "result" : "created",

 "forced_refresh" : true,

 "_shards" : {

 "total" : 2,

 "successful" : 1,

 "failed" : 0

 },

 "_seq_no" : 0,

 "_primary_term" : 1,

 "status" : 201

 }

 },

 {

 "index" : {

 "_index" : "schoollist",

 "_type" : "_doc",

 "_id" : "ICSE",

 "_version" : 1,

 "result" : "created",

 "forced_refresh" : true,

 "_shards" : {

 "total" : 2,

 "successful" : 1,

 "failed" : 0

 },

 "_seq_no" : 1,

 "_primary_term" : 1,

 "status" : 201

 }

 },

 {

 "index" : {

 "_index" : "schoollist",

 "_type" : "_doc",

 "_id" : "State Board",

 "_version" : 1,

Elastic Search

 91

 "result" : "created",

 "forced_refresh" : true,

 "_shards" : {

 "total" : 2,

 "successful" : 1,

 "failed" : 0

 },

 "_seq_no" : 2,

 "_primary_term" : 1,

 "status" : 201

 }

 }

]

}

SQL Query
The following example shows how we frame the SQL query:

POST /_sql?format=txt

{

 "query": "SELECT * FROM schoollist WHERE start_date < '2000-01-01'"

}

On running the above code, we get the response as shown below:

 Address | name | start_date | student_count

--------------------+---------------+------------------------+---------------

Gachibowli Main Road|Top-Notch |1989-05-26T00:00:00.000Z|482

Main Street |Sunshine |1965-06-01T00:00:00.000Z|604

Note: By changing the SQL query above, you can get different result sets.

Elastic Search

 92

To monitor the health of the cluster, the monitoring feature collects metrics from each

node and stores them in Elasticsearch Indices. All settings associated with monitoring in

Elasticsearch must be set in either the elasticsearch.yml file for each node or, where

possible, in the dynamic cluster settings.

In order to start monitoring, we need to check the cluster settings, which can be done in

the following way:

GET _cluster/settings

{

 "persistent" : { },

 "transient" : { }

}

Each component in the stack is responsible for monitoring itself and then forwarding those

documents to the Elasticsearch production cluster for both routing and indexing (storage).

The routing and indexing processes in Elasticsearch are handled by what are called

collectors and exporters.

Collectors

Collector runs once per each collection interval to obtain data from the public APIs in

Elasticsearch that it chooses to monitor. When the data collection is finished, the data is

handed in bulk to the exporters to be sent to the monitoring cluster.

There is only one collector per data type gathered. Each collector can create zero or more

monitoring documents.

Exporters

Exporters take data collected from any Elastic Stack source and route it to the monitoring

cluster. It is possible to configure more than one exporter, but the general and default

setup is to use a single exporter. Exporters are configurable at both the node and cluster

level.

There are two types of exporters in Elasticsearch:

 local -This exporter routes data back into the same cluster.

 http -The preferred exporter, which you can use to route data into any supported

Elasticsearch cluster accessible via HTTP.

Before exporters can route monitoring data, they must set up certain Elasticsearch

resources. These resources include templates and ingest pipelines.

20. Elastic Search – Monitoring

Elastic Search

 93

A rollup job is a periodic task that summarizes data from indices specified by an index

pattern and rolls it into a new index. In the following example, we create an index named

sensor with different date time stamps. Then we create a rollup job to rollup the data from

these indices periodically using cron job.

PUT /sensor/_doc/1

{

 "timestamp": 1516729294000,

 "temperature": 200,

 "voltage": 5.2,

 "node": "a"

}

On running the above code, we get the following result:

{

 "_index" : "sensor",

 "_type" : "_doc",

 "_id" : "1",

 "_version" : 1,

 "result" : "created",

 "_shards" : {

 "total" : 2,

 "successful" : 1,

 "failed" : 0

 },

 "_seq_no" : 0,

 "_primary_term" : 1

}

Now, add a second document and so on for other documents as well.

PUT /sensor-2018-01-01/_doc/2

{

 "timestamp": 1413729294000,

 "temperature": 201,

 "voltage": 5.9,

21. Elastic Search – Rollup Data

Elastic Search

 94

 "node": "a"

}

Create a Rollup Job

PUT _rollup/job/sensor

{

 "index_pattern": "sensor-*",

 "rollup_index": "sensor_rollup",

 "cron": "*/30 * * * * ?",

 "page_size" :1000,

 "groups" : {

 "date_histogram": {

 "field": "timestamp",

 "interval": "60m"

 },

 "terms": {

 "fields": ["node"]

 }

 },

 "metrics": [

 {

 "field": "temperature",

 "metrics": ["min", "max", "sum"]

 },

 {

 "field": "voltage",

 "metrics": ["avg"]

 }

]

}

The cron parameter controls when and how often the job activates. When a rollup job’s

cron schedule triggers, it will begin rolling up from where it left off after the last activation.

After the job has run and processed some data, we can use the DSL Query to do some

searching.

Elastic Search

 95

GET /sensor_rollup/_rollup_search

{

 "size": 0,

 "aggregations": {

 "max_temperature": {

 "max": {

 "field": "temperature"

 }

 }

 }

}

Elastic Search

 96

The indices that are searched frequently are held in memory because it takes time to

rebuild them and help in an efficient search. On the other hand, there may be indices

which we rarely access. Those indices need not occupy the memory and can be re-build

when they are needed. Such indices are known as frozen indices.

Elasticsearch builds the transient data structures of each shard of a frozen index each time

that shard is searched and discards these data structures as soon as the search is

complete. Because Elasticsearch does not maintain these transient data structures in

memory, frozen indices consume much less heap than the normal indices. This allows for

a much higher disk-to-heap ratio than would otherwise be possible.

Example for Freezing and Unfreezing

The following example freezes and unfreezes an index:

POST /index_name/_freeze

POST /index_name/_unfreeze

Searches on frozen indices are expected to execute slowly. Frozen indices are not intended

for high search load. It is possible that a search of a frozen index may take seconds or

minutes to complete, even if the same searches completed in milliseconds when the indices

were not frozen.

Searching a Frozen Index

The number of concurrently loaded frozen indices per node is limited by the number of

threads in the search_throttled threadpool, which is 1 by default. To include frozen indices,

a search request must be executed with the query parameter: ignore_throttled=false.

GET /index_name/_search?q=user:tpoint&ignore_throttled=false

Monitoring Frozen Indices

Frozen indices are ordinary indices that use search throttling and a memory efficient shard

implementation.

GET /_cat/indices/index_name?v&h=i,sth

22. Elastic Search – Frozen Indices

Elastic Search

 97

Elasticsearch provides a jar file, which can be added to any java IDE and can be used to

test the code which is related to Elasticsearch. A range of tests can be performed by using

the framework provided by Elasticsearch. In this chapter, we will discuss these tests in

detail:

 Unit testing

 Integration testing

 Randomized testing

Prerequisites

To start with testing, you need to add the Elasticsearch testing dependency to your

program. You can use maven for this purpose and can add the following in pom.xml.

<dependency>

 <groupId>org.elasticsearch</groupId>

 <artifactId>elasticsearch</artifactId>

 <version>2.1.0</version>

</dependency>

EsSetup has been initialized to start and stop Elasticsearch node and also to create indices.

EsSetup esSetup = new EsSetup();

esSetup.execute() function with createIndex will create the indices, you need to specify

the settings, type and data.

Unit Testing

Unit test is carried out by using JUnit and Elasticsearch test framework. Node and indices

can be created using Elasticsearch classes and in test method can be used to perform the

testing. ESTestCase and ESTokenStreamTestCase classes are used for this testing.

Integration Testing

Integration testing uses multiple nodes in a cluster. ESIntegTestCase class is used for this

testing. There are various methods which make the job of preparing a test case easier.

23. Elastic Search – Testing

Elastic Search

 98

S.No Method & Description

1 refresh()

All the indices in a cluster are refreshed

2 ensureGreen()

Ensures a green health cluster state

3 ensureYellow()

Ensures a yellow health cluster state

4 createIndex(name)

Create index with the name passed to this method

5 flush()

All indices in cluster are flushed

6 flushAndRefresh()

flush() and refresh()

7 indexExists(name)

Verifies the existence of specified index

8 clusterService()

Returns the cluster service java class

9 cluster()

Returns the test cluster class

Test Cluster Methods

S.No Method & Description

1 ensureAtLeastNumNodes(n)

Ensures minimum number of nodes up in a cluster is more than or equal

to specified number.

2 ensureAtMostNumNodes(n)

Ensures maximum number of nodes up in a cluster is less than or equal

to specified number.

3 stopRandomNode()

To stop a random node in a cluster

4 stopCurrentMasterNode()

To stop the master node

5 stopRandomNonMaster()

To stop a random node in a cluster, which is not a master node

Elastic Search

 99

6 buildNode()

Create a new node

7 startNode(settings)

Start a new node

8 nodeSettings()

Override this method for changing node settings

Accessing Clients

A client is used to access different nodes in a cluster and carry out some action.

ESIntegTestCase.client() method is used for getting a random client. Elasticsearch offers

other methods also to access client and those methods can be accessed using

ESIntegTestCase.internalCluster() method.

S.No Method & Description

1 iterator()

This helps you to access all the available clients.

2 masterClient()

This returns a client, which is communicating with master node.

3 nonMasterClient()

This returns a client, which is not communicating with master node.

4 clientNodeClient()

This returns a client currently up on client node.

Randomized Testing

This testing is used to test the user’s code with every possible data, so that there will be

no failure in future with any type of data. Random data is the best option to carry out this

testing.

Generating Random Data

In this testing, the Random class is instantiated by the instance provided by

RandomizedTest and offers many methods for getting different types of data.

Method Return value

getRandom() Instance of random class

randomBoolean() Random boolean

randomByte() Random byte

randomShort() Random short

Elastic Search

 100

randomInt() Random integer

randomLong() Random long

randomFloat() Random float

randomDouble() Random double

randomLocale() Random locale

randomTimeZone() Random time zone

randomFrom() Random element from array

Assertions

ElasticsearchAssertions and ElasticsearchGeoAssertions classes contain assertions, which

are used for performing some common checks at the time of testing. For example, observe

the code given here:

SearchResponse seearchResponse = client().prepareSearch();

assertHitCount(searchResponse, 6);

assertFirstHit(searchResponse, hasId("6"));

assertSearchHits(searchResponse, "1", "2", "3", "4",”5”,”6”);

Elastic Search

 101

A Kibana dashboard is a collection of visualizations and searches. You can arrange, resize,

and edit the dashboard content and then save the dashboard so you can share it. In this

chapter, we will see how to create and edit a dashboard.

Dashboard Creation

From the Kibana Homepage, select the dashboard option from the left control bars as

shown below. This will prompt you to create a new dashboard.

24. Elastic Search – Kibana Dashboard

Elastic Search

 102

To Add visualizations to the dashboard, we choose the menu Add and the select from the

pre-built visualizations available. We chose the following visualization options from the list.

Elastic Search

 103

On selecting the above visualizations, we get the dashboard as shown here. We can later

add and edit the dashboard for changing the elements and adding the new elements.

Elastic Search

 104

Inspecting Elements

We can inspect the Dashboard elements by choosing the visualizations panel menu and

selecting Inspect. This will bring out the data behind the element which also can be

downloaded.

Elastic Search

 105

Sharing Dashboard

We can share the dashboard by choosing the share menu and selecting the option to get

a hyperlink as shown below:

Elastic Search

 106

The discover functionality available in Kibana home page allows us to explore the data sets

from various angles. You can search and filter data for the selected index patterns. The

data is usually available in form of distribution of values over a period of time.

To explore the ecommerce data sample, we click on the Discover icon as shown in the

picture below. This will bring up the data along with the chart.

25. Elastic Search – Filtering by Field

Elastic Search

 107

Filtering by Time

To filter out data by specific time interval we use the time filter option as shown below. By

default, the filter is set at 15 minutes.

Filtering by Fields

The data set can also be filtered by fields using the Add Filter option as shown below.

Here we add one or more fields and get the corresponding result after the filters are

applied. In our example we choose the field day_of_week and then the operator for that

field as is and value as Sunday.

Elastic Search

 108

Elastic Search

 109

Next, we click Save with above filter conditions. The result set containing the filter

conditions applied is shown below.

Elastic Search

 110

The data table is type of visualization that is used to display the raw data of a composed

aggregation. There are various types of aggregations that are presented by using Data

tables. In order to create a Data Table, we should go through the steps that are discussed

here in detail.

Visualize

In Kibana Home screen we find the option name Visualize which allows us to create

visualization and aggregations from the indices stored in Elasticsearch. The following

image shows the option.

26. Elastic Search – Data Tables

Elastic Search

 111

Select Data Table

Next, we select the Data Table option from among the various visualization options

available. The option is shown in the following image:

Elastic Search

 112

Select Metrics

We then select the metrics needed for creating the data table visualization. This choice

decides the type of aggregation we are going to use. We select the specific fields shown

below from the ecommerce data set for this.

Elastic Search

 113

On running the above configuration for Data Table, we get the result as shown in the

image here:

Elastic Search

 114

Region Maps show metrics on a geographic Map. It is useful in looking at the data anchored

to different geographic regions with varying intensity. The darker shades usually indicate

higher values and the lighter shades indicate lower values.

The steps to create this visualization are as explained in detail as follows:

Visualize

In this step we go to the visualize button available in the left bar of the Kibana Home

screen and then choosing the option to add a new Visualization.

The following screen shows how we choose the region Map option.

27. Elastic Search – Region Maps

Elastic Search

 115

Choose the Metrics

The next screen prompts us for choosing the metrics which will be used in creating the

Region Map. Here we choose the Average price as the metric and country_iso_code as the

field in the bucket which will be used in creating the visualization.

Elastic Search

 116

The final result below shows the Region Map once we apply the selection. Please note the

shades of the colour and their values mentioned in the label.

Elastic Search

 117

Pie charts are one of the simplest and famous visualization tools. It represents the data

as slices of a circle each coloured differently. The labels along with the percentage data

values can be presented along with the circle. The circle can also take the shape of a

donut.

Visualize

In Kibana Home screen, we find the option name Visualize which allows us to create

visualization and aggregations from the indices stored in Elasticsearch. We choose to add

a new visualization and select pie chart as the option shown below.

28. Elastic Search – Pie Charts

Elastic Search

 118

Choose the Metrics

The next screen prompts us for choosing the metrics which will be used in creating the Pie

Chart. Here we choose the count of base unit price as the metric and Bucket Aggregation

as histogram. Also, the minimum interval is chosen as 20. So, the prices will be displayed

as blocks of values with 20 as a range.

Elastic Search

 119

The result below shows the pie chart after we apply the selection. Please note the shades

of the colour and their values mentioned in the label.

Elastic Search

 120

Pie Chart Options

On moving to the options tab under pie chart we can see various configuration options to

change the look as well as the arrangement of data display in the pie chart. In the following

example, the pie chart appears as donut and the labels appear at the top.

Elastic Search

 121

An area chart is an extension of line chart where the area between the line chart and the

axes is highlighted with some colours. A bar chart represents data organized into a range

of values and then plotted against the axes. It can consist of either horizontal bars or

vertical bars.

In this chapter we will see all these three types of graphs that is created using Kibana. As

discussed in earlier chapters we will continue to use the data in the ecommerce index.

Area Chart

In Kibana Home screen, we find the option name Visualize which allows us to create

visualization and aggregations from the indices stored in Elasticsearch. We choose to add

a new visualization and select Area Chart as the option shown in the image given below.

Choose the Metrics

The next screen prompts us for choosing the metrics which will be used in creating the

Area Chart. Here we choose the sum as the type of aggregation metric. Then we choose

total_quantity field as the field to be used as metric. On the X-axis, we chose the

order_date field and split the series with the given metric in a size of 5.

29. Elastic Search – Area and Bar Charts

Elastic Search

 122

Elastic Search

 123

On running the above configuration, we get the following area chart as the output:

Horizontal Bar Chart

Similarly, for the Horizontal bar chart we choose new visualization from Kibana Home

screen and choose the option for Horizontal Bar. Then we choose the metrics as shown in

the image below. Here we choose Sum as the aggregation for the filed named product

quantity. Then we choose buckets with date histogram for the field order date.

Elastic Search

 124

Elastic Search

 125

On running the above configuration, we can see a horizontal bar chart as shown below:

Vertical Bar Chart

For the vertical bar chart, we choose new visualization from Kibana Home screen and

choose the option for Vertical Bar. Then we choose the metrics as shown in the image

below.

Here we choose Sum as the aggregation for the field named product quantity. Then we

choose buckets with date histogram for the field order date with a weekly interval.

Elastic Search

 126

Elastic Search

 127

On running the above configuration, a chart will be generated as shown below:

Elastic Search

 128

Time series is a representation of sequence of data in a specific time sequence. For

example, the data for each day starting from first day of the month to the last day. The

interval between the data points remains constant. Any data set which has a time

component in it can be represented as a time series.

In this chapter, we will use the sample e-commerce data set and plot the count of the

number of orders for each day to create a time series.

30. Elastic Search – Time Series

Elastic Search

 129

Choose Metrics

First, we choose the index pattern, data field and interval which will be used for creating

the time series. From the sample ecommerce data set we choose order_date as the field

and 1d as the interval. We use the Panel Options tab to make these choices. Also we

leave the other values in this tab as default to get a default colour and format for the time

series.

Elastic Search

 130

In the Data tab, we choose count as the aggregation option, group by option as everything

and put a label for the time series chart.

Result

The final result of this configuration appears as follows. Please note that we are using a

time period of Month to Date for this graph. Different time periods will give different

results.

Elastic Search

 131

A tag cloud represents text which are mostly keywords and metadata in a visually

appealing form. They are aligned in different angles and represented in different colours

and font sizes. It helps in finding out the most prominent terms in the data. The

prominence can be decided by one or more factors like frequency of the term, uniquness

of the tag or based on some weightage attached to specific terms etc. Below we see the

steps to create a Tag Cloud.

Visualize

In Kibana Home screen, we find the option name Visualize which allows us to create

visualization and aggregations from the indices stored in Elasticsearch. We choose to add

a new visualization and select Tag Cloud as the option shown below:

31. Elastic Search – Tag Clouds

Elastic Search

 132

Choose the Metrics

The next screen prompts us for choosing the metrics which will be used in creating the

Tag Cloud. Here we choose the count as the type of aggregation metric. Then we choose

productname field as the keyword to be used as tags.

Elastic Search

 133

The result shown here shows the pie chart after we apply the selection. Please note the

shades of the colour and their values mentioned in the label.

Elastic Search

 134

Tag Cloud Options

On moving to the options tab under Tag Cloud we can see various configuration options

to change the look as well as the arrangement of data display in the Tag Cloud. In the

below example the Tag Cloud appears with tags spread across both horizontal and vertical

directions.

Elastic Search

 135

Heat map is a type of visualization in which different shades of colour represent different

areas in the graph. The values may be continuously varying and hence the colour r shades

of a colour vary along with the values. They are very useful to represent both the

continuously varying data as well as discrete data.

In this chapter we will use the data set named sample_data_flights to build a heatmap

chart. In it we consider the variables named origin country and destination country of

flights and take a count.

In Kibana Home screen, we find the option name Visualize which allows us to create

visualization and aggregations from the indices stored in Elasticsearch. We choose to add

a new visualization and select Heat Map as the option shown below:

32. Elastic Search – Heat Maps

Elastic Search

 136

Choose the Metrics

The next screen prompts us for choosing the metrics which will be used in creating the

Heat Map Chart. Here we choose the count as the type of aggregation metric. Then for the

buckets in Y-Axis, we choose Terms as the aggregation for the field OriginCountry. For the

X-Axis, we choose the same aggregation but DestCountry as the field to be used. In both

the cases, we choose the size of the bucket as 5.

Elastic Search

 137

Elastic Search

 138

On running the above shown configuration, we get the heat map chart generated as

follows.

Note: You have to allow the date range as This Year so that the graph gathers data for a

year to produce an effective heat map chart.

Elastic Search

 139

Canvas application is a part of Kibana which allows us to create dynamic, multi-page and

pixel perfect data displays. Its ability to create infographics and not just charts and

metrices is what makes it unique and appealing. In this chapter we will see various features

of canvas and how to use the canvas work pads.

Opening a Canvas

Go to the Kibana homepage and select the option as shown in the below diagram. It opens

up the list of canvas work pads you have. We choose the ecommerce Revenue tracking

for our study.

33. Elastic Search – Canvas

Elastic Search

 140

Cloning A Workpad

We clone the [eCommerce] Revenue Tracking workpad to be used in our study. To

clone it, we highlight the row with the name of this workpad and then use the clone button

as shown in the diagram below:

As a result of the above clone, we will get a new work pad named as [eCommerce]

Revenue Tracking – Copy which on opening will show the below infographics.

Elastic Search

 141

It describes the total sales and Revenue by category along with nice pictures and charts.

Modifying the Workpad

We can change the style and figures in the workpad by using the options available in the

right hand side tab. Here we aim to change the background colour of the workpad by

choosing a different colour as shown in the diagram below. The colour selection comes

into effect immediately and we get the result as shown below:

Elastic Search

 142

Kibana can also help in visualizing log data from various sources. Logs are important

sources of analysis for infrastructure health, performance needs and security breach

analysis etc. Kibana can connect to various logs like web server logs, elasticsearch logs

and cloudwatch logs etc.

Logstash Logs

In Kibana, we can connect to logstash logs for visualization. First we choose the Logs

button from the Kibana home screen as shown below:

34. Elastic Search – Logs UI

Elastic Search

 143

Then we choose the option Change Source Configuration which brings us the option to

choose Logstash as a source. The below screen also shows other types of options we have

as a log source.

You can stream data for live log tailing or pause streaming to focus on historical log data.

When you are streaming logs, the most recent log appears at the bottom on the console.

For further reference, you can refer to our Logstash tutorial.

