8/10/22, 10:28 AM RabbitMQ vs Kafka: What’'s The Difference? - InterviewBit

Any application, service, or software that consists of multiple parts communicating with each
other, after reaching moderate complexity, requires some form of event/message
management. Such event/message management platforms may come in a message
queue(MQ) such as RabbitMQ or a message broker platform like Apache Kafka.

Both RabbitMQ and Apache Kafka use asynchronous messaging to pass information from
producers to consumers. The producer can deliver a message, and if the consumer is at max
capacity, down, or otherwise not ready, then the message is stored. Storing messages can
allow producers and consumers to be active at different times, thus reducing coupling and
increasing the system’s fault tolerance.

Note: Throughout this article, the usage of events and messages are interchangeable and
denote the same things, that is, technical “events”. When talking about abstract concepts,
events are called messages for abstraction, the technically correct term here would be
events.

Table Of Contents
What is RabbitMQ?

Features of RabbitMQ
What is Kafka?
Features of Kafka
Difference Between RabbitMQ and Kafka
Pull vs Push Approach
Effects of Differences on Architecture and Connections
Conclusion
When to use RabitMQ?
When to use Apache Kafka?
FAQs

What is RabbitMQ?

https://www.interviewbit.com/blog/rabbitmg-vs-kafka/ 110



8/10/22, 10:28 AM RabbitMQ vs Kafka: What’'s The Difference? - InterviewBit

BRaboit

RabbitMQ is an open-source general-purpose message-broker software — an intermediary
for messaging, that initially implemented the Advanced Message Queuing Protocol; it allows
for various protocol extensions via a plug-in architecture. RabbitMQ can deal with some high-
throughput use cases, such as online transactions or payment processing. It is generally
used to handle background and cron jobs or as a message broker between microservices.

Features of RabbitMQ

RabbitMQ is lightweight and easy to deploy in-palace or in the cloud. It supports multiple
messaging protocols and supports deployment in distributed and intermixed configurations to
meet high-scale and high-availability requirements. RabbitMQ supports a few protocols in the
form of plug-ins like AMQP 0-9-1 and extensions, STOMP, MQTT, AMQP 1.0, HTTP and
WebSockets. While HTTP is not strictly a messaging protocol, RabbitMQ can transmit
messages over HTTP in a few ways. The mainstream features of RabitMQ are Reliability
and Performance, Flexible Routing, Clustering, Federation, Highly Available Queues, Multi-
protocol, Many Clients, Management Ul, Tracing and its versatile Plugin System.

Reliability and Performance

With RabbitMQ, you have the option to trade off performance with reliability. You can also
trade for performance by sacrificing persistence, delivery acknowledgements, publisher
confirms, and high availability.

Flexible Routing

Messages are routed through exchanges before arriving at queues, thus making complex
routing possible. RabbitMQ features several built-in exchange types for the typical routing
logic. You can even bind exchanges together or write a custom exchange type as a plugin for
even more complex routing.

Clustering
You can form a single broker from multiple RabbitMQ servers on a local network by
clustering them together.

Federation
RabbitMQ offers a federation model for servers that need more loosely connected than

https://www.interviewbit.com/blog/rabbitmg-vs-kafka/ 2/10



8/10/22, 10:28 AM RabbitMQ vs Kafka: What’'s The Difference? - InterviewBit

clustering allows, but such connections are also unreliable.

Highly Available Queues

To increase reliability by ensuring that your messages are safe in the event of hardware
failure, you can mirror Queues across several machines in a cluster; this trades for
performance.

Multi-protocol
RabbitMQ supports messaging over a variety of messaging protocols like STOMP, MQTT
and AMQP.

Many Clients
RabbitMQ has clients for almost any language you may use.

Management Ul
RabbitMQ comes with an easy-to-use management Ul that allows you to monitor and control
every aspect of your message broker.

Tracing
RabbitMQ offers trace support to let you debug and discover what’s happening if your
messaging system misbehaves.

Plugin System
RabbitMQ offers a variety of ready to use plugins that extend it in different ways. You can
also write your custom plugins.

What is Kafka?

https://www.interviewbit.com/blog/rabbitmg-vs-kafka/ 3/10



8/10/22, 10:28 AM RabbitMQ vs Kafka: What’'s The Difference? - InterviewBit

&S kafka

Unlike RabbitMQ, Kafka is a framework implementation of a software bus using a pub-sub
model of stream-processing, which means it is a distributed publish-subscribe messaging
system. However, instead of using data packets, it uses a data stream to deliver the
messages. These data streams are suitable for both offline and online message
consumption.

Kafka is an open-source software platform developed by the Apache Software Foundation
written in Scala and Java. The project aims to provide a unified, high-throughput, low-latency
platform for real-time handling data feeds—many companies for high-performance data
pipelines, streaming analytics, data integration, and mission-critical applications.

Features of Kafka

Kafka aims to provide solutions for large scale event-driven systems. The top features of
Kafka are Scalability, High-Volume, Data Transformations, Fault Tolerance, Reliability,
Durability, Performance, Zero Downtime, Extensibility and Replication. In other words,
everything a large scale event management platform would require. For each feature, Kafka
implements them in the following way:

High-Volume
Kafka works with a considerable volume of data in the data streams.

Scalability
Kafka scales easily without downtime by handling scalability in all four dimensions, i.e. event
producers, event connectors, event processors and event consumers.

https://www.interviewbit.com/blog/rabbitmg-vs-kafka/ 4/10



8/10/22, 10:28 AM RabbitMQ vs Kafka: What’'s The Difference? - InterviewBit

Fault Tolerance
Kafka connector can handle failures with three strategies summarised as fast-fail, ignore and
re-queue(sends to another topic).

Durability

Kafka uses a distributed commit log, which means no cascade failure and messages are
persisted on a disk as fast as possible. These features make it very durable, as there can not
be a single point of failure.

Performance
Kafka has high throughput for both publishing and subscribing to messages. It maintains
stable performance even if many Terabytes of messages are stored.

Zero Downtime
Using replication-factor > 1 for brokers, we can have zero downtime and data loss.

Data Transformations
Kafka allows for deriving new data streams using the existing data streams from producers.

Extensibility
Allows multiple ways for applications to plugin and make use of Kafka. Also, it has
provisions for new connectors that you can write as needed.

Replication
It can replicate the events in a broker by using ingest pipelines.

Reliability
The distributed, partitioned, replicated, and fault-tolerant nature of Kaftka makes it very
Reliable.

Difference Between RabbitMQ and Kafka

https://www.interviewbit.com/blog/rabbitmg-vs-kafka/ 5/10



8/10/22, 10:28 AM RabbitMQ vs Kafka: What’'s The Difference? - InterviewBit

RabbitMQ Apache Kafka

VS

£88%» InterviewBit

Both RabbitMQ and Kafka serve the same purpose, and they are event handling systems
that are open-source and commercially-supported pub/sub systems, readily adopted by
enterprises. But these both serve similar roles but in different capacities. As will be apparent
from the differences, both serve separate use cases with only minor overlaps.

Pull vs Push Approach

Apache Kafka: Pull-based approach

Kafka uses a pull-based model with a smart consumer, which means that the consumer has

to request batches of messages from a specific offset. Kafka permits long-pooling (the ability
to configure the time interval a Kafka producer sends you another batch of events), allowing

different consumers to consume events at a different pace. It also prevents tight loops when

there is no message past the offset.

When there are no contending consumers, the Kafka log preserves the order of messages in
a single partition, making it necessary to use a pull model. Long-pooling also allows users to
leverage the batching of messages for effective message delivery and higher throughput.

RabbitMQ: Push-based approach

https://www.interviewbit.com/blog/rabbitmg-vs-kafka/ 6/10



8/10/22, 10:28 AM RabbitMQ vs Kafka: What’'s The Difference? - InterviewBit

RabbitMQ uses a push-based model with a smart producer, which means the producer
decides when to push data. A prefetch limit is defined on the consumer to stop the producer
from overwhelming consumers. Such a push-based approach is suited for low latency
messaging.

The push model aims to parallelize the workload evenly between different consumers by
distributing messages individually and quickly. Because of this, messages are processed
only approximately in the order in which they arrived in the queue. The order is approximate
and not exact since some messages may be processed faster than others.

The other significant differences are architecture and how messages are processed, which
are listed below.

Differences between RabbitMQ and Apache Kakka in a tabular form:

Parameter RabbitMQ Kafka

Performance Up to 10K messages per Up to 1 million messages per second
second

Data Type Transactional Operational

Synchronicity of Can be Durable message store that can replay

messages synchronous/asynchronous messages

Exchange type: Direct, Fan

Topology out, Topic, Header-based Publish/subscribe based

Payload Size No constraints Default 1MB limit

Usage Cases Simple use cases Massive data/high throughput cases
Distinct bounded data packets Unbounded continuous data in the form

Data Flow . .
in the form of messages of key-value pairs.

Data Unit Message Continuous stream
Broker/Publisher keeps track Broker/Publisher keeps only unread

Data Tracking of message status messages; it doesn’t retain sent
(read/unread) messages.

Broker/Publisher Smart Dumb

Type

https://www.interviewbit.com/blog/rabbitmg-vs-kafka/ 7110



8/10/22, 10:28 AM RabbitMQ vs Kafka: What’'s The Difference? - InterviewBit

Parameter RabbitMQ Kafka
Consumer Type Dumb Smart

Complex routing is not possible;

Routing Complex routing is possible however, we can subscribe to individual
messages based on event types toDi

opics.
Topology Exchange queue topology publish/subscribe topology
Message Message pushed to specific Pull based model; consumer pulls
delivery system queues messages as required
Message Prioritize messages Order/Retain/Guarantee messages
management
Message .
Retention Acknowledgement based Policy-based (e.g., ten days)
Event storage
structure Queue Logs
glojre]fjl;rsner Decoupled Consumer queues Coupled consumer partition/groups

Effects of Differences on Architecture and Connections

Let’s elaborate on the final listed difference of consumer queues. Suppose we have:

Application 1 is a Producer, and it produces: Event 1, Event 2
Application 2 is a Consumer, and it consumes: Event 1, Event 2
Application 3 is a Consumer, and it consumes: Event 1 only

When solving this through RabbitMQ, we will create two consumer queues, one for each
consuming app. This way, we decouple our routing logic from our consumer logic as we don'’t
need to specify this to the consumers.

Solving the same use case with Kafka, we will have one partition each for Event 1 and 2.
App 2 will subscribe to both partitions, and App 3 has to subscribe only to the second
partition. Kafka requires us to plan partitions ahead of time, requiring a certain amount of
foresight into the use case/situation.

https://www.interviewbit.com/blog/rabbitmg-vs-kafka/ 8/10



8/10/22, 10:28 AM RabbitMQ vs Kafka: What’'s The Difference? - InterviewBit

In case both events 1 and 2 are placed into a single partition, both apps subscribe to the
partition, but app 3 needs to filter out/ignore the events of type event 1, which mixes routing
logic into the consumer logic of app 3. Furthermore, Kafka gets complicated when you
consume events from different topics in the same application; the same is much simpler in
RabbitMQ.

Conclusion

RabbitMQ is better for applications where the architecture of the application is unknown, and
it develops and evolves with the problem statement and the solution. RabbitMQ is much
more flexible and easy to use in these circumstances as compared to Kafka. But once the
application matures and there is a requirement for scaling, large throughput, reliability,
robustness and replayability of messages, then RabbitMQ become a bottleneck, and it's
better to switch to Kafka.

When to use RabitMQ?

Use RabbitMQ when:

« RabbitMQ can come in handy when you don’t need the feature to replay messages on
a topic. RabbitMQ cannot replay events, but sent messages are still stored; therefore,
you can leverage the producer to replay the message.

« There is no clear picture of the end to end architecture. RabbitMQ is more flexible than
Kafka, and it can cope with any changes in structure using its flexible routing
capabilities.

« When adding consumers dynamically, RabbitMQ does not require you to change the
publisher.

« RabbitMQ is language-agnostic, which means that you can create microservice in
different languages, and RabbitMQ will still support such an architecture. RabbitMQ
provides more language integrations than Kafka.

« Use RabbitMQ when your application needs to support legacy protocols such as AMQP
1.0, AMQP 0-9-1, STOMP, MQTT.

« Use RabbitMQ when you need some guaranteed handling of every message or some
consistent behaviour against every message.

« Use RabbitMQ when there are complex point-to-point interactions(requests and
responses) between many microservices that publish/subscribe.

https://www.interviewbit.com/blog/rabbitmg-vs-kafka/ 9/10



8/10/22, 10:28 AM RabbitMQ vs Kafka: What’'s The Difference? - InterviewBit

When to use Apache Kafka?

« When there is a need to replay messages, the consumer can directly replay them.
Replay makes it so that you don’t lose any events if there is a bug in the consumer or
the consumer is overloaded or otherwise not ready. You can simply fix the issue, bring
the consumer to a ready state, and replay the messages.

« When you need to consume messages very quickly, Kafka should be your go-to event
handling platform.

« When your application has a High throughput(100K/sec events or more), i.e. application
has to process a large volume of messages.

« When the event stream needs to process data in multi-stage pipelines, the pipelines
can generate graphs of the real-time data flows, thus providing real-time monitoring of
traffic in the pipelines.

FAQS

Which is better, RabbitMQ or Kafka?
Objectively, in terms of performance and reliability, Kafka is better than RabbitMQ, but
RabbitMQ is more flexible and easier to use. Both are suitable for specific use cases.

Does Kafka use RabbitMQ?

No, Kafka does not use RabbitMQ within its implementation or otherwise in plugin form. It is
possible to stream the messages from RabbitMQ into Kafka. Such a use case often appears
because RabbitMQ is already in use, and it's much easier to stream the messages from it
into Kafka than to re-do all the connections for the existing applications.

Is RabbitMQ push or pull?

RabbitMQ pushes the messages into queues based on a smart publisher — dumb consumer
model as given in the difference table above. Having a smart publisher allows for better
control and ease in routing messages.

Is RabbitMQ fast?

Yes, RabbitMQ is fast, but in terms of handling large amounts of events, it is not as fast as
Kafka. As mentioned earlier in this article, there is a trade-off between performance with
reliability, including persistence, delivery acknowledgements, publisher confirms, and high
availability. Meaning you can have speed, but you will sacrifice reliability and robustness for
it; this is also true for Kafka but to a much lesser degree.

https://www.interviewbit.com/blog/rabbitmg-vs-kafka/ 10/10



