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PrefaceThis is one of the volumes of the Virgo Physics Book. The aim of thisenterprise (VPB) is to keep track of the various theoretical or numericalstudies carried out during the development of the Virgo conceipt and itsrealization. This is necessary for several reasons.� The �rst reason is to present outside the collaboration, in a comprehen-sive document, the sum of the theoretical researches carried out duringthe R&D period (not fully over, considering future improvements), inorder to show what physical e�ects have been studied.� The second reason is to prevent loss of memory in the collaboration.It is convenient to be able to �nd in one place the state of the art inthe various domains of modeling. Evolution of the technology, of thematerials, etc... makes necessary to re-estimate from time to time theorders of magnitude of di�erent sources of noise, for instance, and checkwether the hierarchy is still valid. For doing this, the principles mustbe available.� The third reason is to provide a reference document for the youngsearchers entering the collaboration allowing them to become e�cientlyacquainted with the principles of the experiment. In this spirit, some"frequently asked questions" are treated, even if the relation with Virgois not direct.The principle of the document is thus to present all theoretical contribu-tions of the Virgo teams in a comprehensive way. This is not a compilationof Virgo notes, although obviously it contains some of them, nor a course ofphysics, although obviously some general principles are recalled.It is signed by "the collaboration", because all theoretical or numericalworks reported in, have been carried out on request and with the help of itas a whole. 9



10 CONTENTSThis Volume II contains some works related to optics and other issuesstrongly related to optics. The principles of interferometry are recalled, thenthe various con�gurations of interferometers. The various principles of opticalmodeling are presented (propagation of light, simulation of cavities, of inter-ferometers), and also the methods of analyzing mirrors. The opto-thermalproblems are studied (thermal lensing, distortions), and the part of thermalnoise studies related to the mirror substrates though a special volume shouldbe dedicated to thermal noise issues. The modulation-demodulation theoryis also described.This is the present status of this document. It is clear that further con-tributions will be added from time to time, and this is the reason why itwill not have a general paper version, but only a virtual presence on the net.Moreover, other volumes are expected,� about General Relativity and gravitational wave theory basic back-ground, theory of the interaction of GW with detectors...,� about thermal noise issues,� about seismic noise suppression and superattenuator physics� and possibly other topics ?and for which future contributors are known. Please report possible errorsor misprints tovinet@obs-nice.frN.B.:From time to time, this document will be improved by correcting mis-prints and errors, or adding some new material.



Chapter 1Theory of GW Interferometers1.1 Shot noise limited interferometry1.1.1 Spectral density of power equivalent to SNShot noise is produced by photodetectors currently used in all domains ofphotonics. Even with very stable lasers and cooled detectors, the photocur-rent appears, at the microscopic level as a random stationnary process havinga mean in agreement with a classical theory, but a variance that can be un-derstood only by reference to quantum theory. In fact the light is producedand received as a 
ux of photons, and it is shown, for instance, that duringa time interval �t, the number photons that a photodiode can detect is arandom variable N whose probability law is Poissonnian (a general law forall processes consisting in random arrivals). This means that the probabilityof detecting exactly n photons is:pn = e�m mnn!where m is the only parameter of the Poisson probability distribution, andin concrete terms, represents the mean photon 
ux. In fact, if the meannumber of photons is larger than about 50, the Poisson law is identical toa gaussian law having the same moments. It is classically shown that theexpectation value of a random variable N obeying a Poisson law of parameterm is E[N ] = m, and it variance is V [N ] = m. On the other hand, duringthe time interval �t, the energy deposited on the diode is�e = �P�t = NhP �11



12 CHAPTER 1. THEORY OF GW INTERFEROMETERSwhere P is the power of the light beam, and � its frequency (hP is the Planckconstant). � is the quantum e�ciency of the detector, a quantity very closeto 1 in present infra-red detectors, so that we shall ignore � in all the sequel.In other words, consider P as the power actually detected. Now, it is clearthat there is an equivalence between saying that N is a random variable, andsaying that P is a random variable. Calling P0 the averaged value of P , wesee that E[N ] = P0�thP�and consequently (Poisson) : V [N ] = P0�thP�It is now possible to consider the variance of P :V [P ] = V [N ] h2P �2�t2= P0hP ��tThe quantity 1=�t may be regarded as the ideal bandwidth of the detector,then the quantity P0h� appears as a white spectral density. We shall considerin the sequel that given an incoming power P0, the two-sided spectral densityof power equivalent to shot noise isS0P (f) = P0hP � (1.1)The fact that the preceding formula gives actually the two-sided SD can beshown as follows. On successive time slices of duration �t, the detectedenergy (and consequently the averaged power) is a random variable of meanP0, so that, calling x the statistical variable P �P0, x(t) de�nes a stationarycentered stochastic process. We can write the function x(t) as :x(t) = xk for k�t < t < (k + 1)�tThe spectral density of any stationary centered process has the general de�-nition : Sx(
) = limT!1 1T E 24�����Z T0 e�i
tx(t) dt �����235



1.1. SHOT NOISE LIMITED INTERFEROMETRY 13If we choose T an integer multiple of �t, we get easily :Z T0 e�i
tx(t) dt = n�1Xk=0 xk e�i(k+ 12 )
�t�t sinc(
�t=2)so that �����Z T0 e�i
tx(t) dt �����2 =Xk;mxkxm e�i(k�m)
�t�t2 sinc(
�t=2)2The variables xk are uncorrelated, so thatE[xkxm] = V [P ] �kmand E 24�����Z T0 e�i
tx(t) dt �����235 = Xk V [P ]�t2 sinc(
�t=2)2= n�tV [P ]�tsinc(
�t=2)2(with the de�nition: sinc(x) � sin(x)=x), and with T = n�t, this is �nallyS0P (
) = P0 hP� sinc(
�t=2)2One easily sees that the total variance is recovered by integrating over neg-ative and positive frequencies (and remembering that R1�1 sinc(x)2 dx = �)The single-sided spectral density is thus :SP (
) = 2P0 hP � sinc(
�t=2)2The integration time �t can be chosen very short, so that the precedingfunction is almost 
at in the audio region, and the one sided spectral densityto be used in practical problems is simply :SP (
) = 2P0 hP�as for a white noise.



14 CHAPTER 1. THEORY OF GW INTERFEROMETERS
A
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A AR T
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BFigure 1.1: Partially re
ecting mirror1.1.2 Partially re
ecting mirrorsIn interferometry, a light source provides a beam that is often splitted intotwo or more waves propagating along di�erent paths. It is mandatory totake into account the phase jumps caused by re
ection or transmission at amirror surface. We consider a mirror as a plane surface of vanishing thickness.There are two complex numbers zR and zT expressing respectively the relativere
ected and transmitted waves. Namely, when a wave of complex amplitudeA reaches the mirror's surface, we have (see Fig.1.1 for notation):AR = zRA ; AT = zTAConservation of the total power requires thatjzRj2 + jzT j2 = 1 � pwhere p expresses possible absorption (dissipation) in the mirror. For ourpresent purposes, it is mandatory to have a very small p (usually a fewppm, i.e. a few 10�6). Requirements on the arguments of zR and zT comefrom the mirror viewed as a 4 ports element. If a second wave of amplitudeB reaches the mirror coming from the opposite direction, the source of Abeing switched o�, it undergoes exactly the same processes with the samecoe�cients (the mirror is invariant in a space re
ection). When the twoamplitudes are present simultaneously, we have thus:AR = zRA+ zTB



1.1. SHOT NOISE LIMITED INTERFEROMETRY 15BR = zTA+ zRBRemark that we call AR the sum of all waves going to the left, and BR thesum of all waves going to the right; we could as well call BT and AT the samewaves. If we consider the power balance, we must havejARj2 + jBRj2 = (1� p) �jAj2 + jBj2�on the other hand, using the preceding equations, we getjARj2 + jBRj2 = �jzRj2 + jzT j2� �jAj2 + jBj2�+ (zRzT + zRzT ) �AB +AB�we therefore must have(zRzT + zRzT ) �AB +AB� = 0for any couple (A;B) of complex numbers, which clearly requireszRzT + zRzT = 0or, in terms of arguments:Arg(zR)�Arg(zT ) = (2n+ 1)�2 (n 2 N)In order to preserve power balance at each interference occuring at the surfaceof a mirror, we must, in the calculation, take into account this phase jumpof �=2 between the re
ected and the transmitted wave. One possible choice,that will be kept throughout this document, iszR = i r ; zT = twhere (r; t) are real numbers verifyingr2 + t2 = 1 � p1.1.3 Elementary MichelsonA simple interferometer design is shown on Fig.1.2. The light coming froma laser is split into two distinct paths ended by mirrors, then re
ected andrecombined on the splitter where the interference occurs. We call rs and tsthe re
ection and transmission coe�cients of the splitter, and k the wave



16 CHAPTER 1. THEORY OF GW INTERFEROMETERS
Laser
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B
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r
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1

2

r tsFigure 1.2: A simple Michelson experimentnumber (k � 2�=�, � being the wavelength. The amplitude of the laser waveis A and the outgoing is B. One hasB = rsts �r1e2ika + r2e2ikb�so that BB = r2st2sAA �r21 + r22 + 2r1r2 cos[2k(a� b)]�Suppose now that the device aims to measure a very small variation of thelength of one arm. For instance, the length of arm 1 is a = a0 + x(t), wherejx(t)j � �. We can consider for brevity that the splitter is well balanced andr2s = t2s = 1=2. The outgoing power is :P (t) = PDC +�P (t)with PDC = 14P0 �r21 + r22 + 2r1r2 cos��where � = 2k(a0 � b) is the static tuning of the interferometer. if x(t) = 0,we see that the outgoing power can be controlled by �. If � = 2n� ,PDC;b = (r1 + r2)24 P0which is almost 1 if both r1; r2 are reasonably near unity, we say that theinterferometer is tuned at a bright fringe, if now � = (2n+ 1)�,PDC;d = (r1 � r2)24 P0



1.1. SHOT NOISE LIMITED INTERFEROMETRY 17which can be made as small as wanted by equalizing r1 and r2. We say thatthe interferometer is tuned at a dark fringe. In practice, it is not so easy tomake r1 = r2, and this determines the contrast of the inteferometer. If x isnot zero, there is a time varying component�P (t) = r1r2P0kx(t) sin�The question is now : What is the minimumvariation x that we could detect,knowing that there is a 
uctuation of the power, even in the absence of signal,due to shot noise. The answer is given by computing the signal to noise ratio� : �(f) = S�P (f)SP (f)The spectral density SP of power equivalent to shot noise is :SP (f) = 12P0hP � �r21 + r22 + 2r1r2 cos��The spectral density of signal is :S�P (f) = r21r22P 20 sin2 � k2Sx(f)where Sx(f) is the SD of x viewed as a stationnary process. We have thus�(f) = 2r21r22 P0hP� f(�) k2Sx(f)where f(�) = sin2 �r21 + r22 + 2r1r2 cos�(see Fig.1.3). It is easily seen that the optimal value �0 is such thatcos�0 = � r<r>where r< is the smallest of r1; r2 ,and r> the largest. One already sees thatif the two coe�cients are close to 1 , the tuning of the interfometer is near adark fringe. When optimally tuned, we havef(�0) = 1r2>
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Figure 1.3: Optimization of the SNRso that the optimal SNR is�(f) = 2r2< P0h� k2 Sx(f)The minimum detectable x can be evaluated by taking � = 1, and this givesSx(f)min = 12r2< hP�k2P0It is more physical to consider the root spectral density :S1=2x (f) = �4� s2hP �P0where we have set r< � 1. If further we assume that the small displacementx(t) is caused by a gravitational wave h(t), we havex(t) = Lh(t)where L is the roughly equal arm lengths of the arms, and we have replacedthe motion of both mirrors of hL=2 by a unique motion of mirror 1 by hL.



1.1. SHOT NOISE LIMITED INTERFEROMETRY 19The root spectral density of h equivalent to shot noise is �nally:S1=2h (f) = �4�L s2hP�P0With the Virgo laser (P0 � 20 W) and the wavelength � � 1:064�m of theNd:YAG ampli�er, we getS1=2x (f) � 1:2 � 10�17mHz�1=2With a 3 km arm length, this givesS1=2h (f) � 3:8 � 10�21Hz�1=2In fact, according to the theoretical litterature, this means that two orders ofmagnitude are missing for having some hope to detect gravitational waves.We shall see that these two orders can be gained by� enhancing the laser power, not by upsizing the laser itself, but by cre-ating a resonance surtension on the Michelson� increase the arm length, not by adding kilometers of tunnels, but bycreating a resonance in the 3 km armsCreation and characterics of resonances are thus a very important item weare going to analyze and discuss in details.1.1.4 Frequency stability requirementsThe shot noise is not the only limitation to laser metrology. The laser sourceis not in practice a purely monochromatic source. The laser frequency isdetermined by the optical length of the laser cavity, which means the distancebetween mirrors, but also the index in the ampli�er medium, and the index ofthe medium in between mirrors and ampli�er medium. All these parametersare in general coupled to external sources of mechanical or thermal noise, sothat the instantaneous frequency of the laser may be viewed as a randomprocess. We shall represent the laser optical amplitude as:Alaser = A0 e�i!0t ei	(t)



20 CHAPTER 1. THEORY OF GW INTERFEROMETERSwhere !0=2� is the nominal frequency of the laser, and 	(t) a random cen-tered process. The power reaching the photodetector is:P (t) = 14 hr21 + r22 + 2r1r2 cos[2k(b� a) + 	(t� 2a=c)�	(t� 2b=c)]iWe have thus a spurious phase:�(t) = 12 [	(t� 2a=c)�	(t� 2b=c)] =12 [	(t� (a+ b)=c+ (b� a)=c)�	(t� (a+ b)=c� (b� a)=c)]' b� ac @	@t (t� (a+ b)=c)assuming the di�erence d � b� a small compared to the coherence length ofthe laser. We have thus �(t) = dc � 2��(t)where �(t) is the instantaneous frequency. This implies that if we want toreduce the corresponding phase noise to a level comparable to the shot noise,which is: �sn = s2hP �Pwe must obtain a spectral density of frequency noise:��(f) < c2�ds2hP �Pwe see the importance of having a good symmetry (a small d) between the twoarms. If we take the parameters already used above, the shot noise inducedphase was about 10�10Rd=Hz1=2, if we admit a 1% relative asymmetry, thisresults in a requirement of��(f) < 2:10�4Hz=Hz1=2The realistic situation is even more demanding, because �rstly we want asafety margin of at least 1 order of magnitude with respect to the shot noise,secondly the shot noise will be reduced by 1 order of magnitude by recycling,and �nally, the arm lengths will be seen to result from resonance e�ects, lesseasy to symmetrize than actual geometrical lengths, so that the requirementis rather in the range of 10�6Hz=Hz1=2.



1.2. THE FABRY-PEROT RESONANT CAVITY 211.2 The Fabry-Perot resonant cavity1.2.1 Conventions used throughout this sectionWe assume a monochromatic light source, and we describe in the presentsection the (ideal) light beam circulating inside the interferometer as a planewave, and moreover, we consider a given component of the electric �eld, sothat the optical �eld at any place x of an optical system is of the scalar formA(t; x) = A(x) e�i!tA simple propagation step along a path of length L in a vacuum is thereforerepresented by a phase factor, and the relation between amplitudes will beA(x+ L) = eikL A(x)with k = !=c = 2�=�, c being the velocity of light. As seen above, whena light ray encounters a mirror, it is partially re
ected, transmitted andabsorbed. We keep the convention explicited above: Ain being the incomingamplitude, Aref the re
ected, Atrans the transmitted, we have :Aref = ir Ain ; Atrans = t Ainr; t being respectively the re
ection and transmission coe�cients of the mir-ror (real numbers).. We have the power balance :r2 + t2 = 1 � pwhere p is the loss coe�cient, accounting for absorption in the coating orscattering into a di�erent mode due to mirror geometrical imperfections (pcan be as low as a few ppm (10�6) for supermirrors as Virgo's).A Fabry-Perot cavity is made of two parallel mirrors. When light entersthe cavity through mirror 1, it is partially re
ected and partially transmit-ted. The transmitted wave is re
ected by mirror 2, then returns to mirror1 where it is recombined with the incoming wave and partially transmittedto the exterior. On Fig.1.4, we have spatially separated the left and rightpropagating waves for the sake of clarity. If the phase after a round trip inthe cavity allows it, the interference of the incoming wave and the returningwave is constructive and a strong intracavity wave builds up. light can bestored. We call ri; ti ; pi (i = 1; 2), the parameters of the mirrors, and
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LFigure 1.4: Fabry-Perot cavityAin the incoming wave. The length of the cavity is L. We can write theinterference at M1 for the intracavity wave as :B = t1Ain � r1r2 e2ikLBso that B = t11 + r1r2e2ikL AinClearly a resonance occurs when e2ikL = �1. We �rst discuss the casewhen the length of the cavity is �xed, and the frequency of light variable.The inverse case will be presented later. For a given L, we have a series ofresonant frequencies �n = �n+ 12� c2LThe spacing between two successive resonances is called Free spectral Range(FSR), and noted ��FSR. ��FSR = c2LFor a 3 kilometers cavity (as in VIRGO), the FSR is close to 50 kHz, whereasthe optical frequency (at � = 1:06�m) is about 3 � 1014 Hz, so that theinteger n is close to 6�109. The ratio S = B=Ain is called surtension factor. Its maximum value is Smax = t11 � r1r2Remark that if r2 is �xed, for instance because the end mirror is assumed"Rmax", the maximum surtension is a function of r1, which can take anyvalue between 0 and p1� p1. It is easily seen that the value of r1 for whichSmax is a maximum is: ropt = (1� p1) r2
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Figure 1.5: Surtension vs re
ectivity of M1, assuming 20 ppm losses on eachmirror, and no transmission for M2and the corresponding value of Smax isSopt = 1 � p11 � (1 � p1)(1 � p2) � 1p1 + p2(see Fig.1.5).The width of the resonance line may be evaluated as follows. We assumethat the frequency is close a resonance, so that� = �n + ��with �� � ��FSR. We have2kL = (2n + 1)� + 2� ����FSRThe surtension coe�cient takes on the formS = t11 � r1r2 exp �2i� ����FSR �



24 CHAPTER 1. THEORY OF GW INTERFEROMETERSIts square modulus gives the ratio between the intensities :jSj2 = t21(1� r1r2)2 + 4r1r2 sin �� ����FSR �This is jSj2 = S2max � 11 + h2pr1r21�r1r2 sin �� ����FSR �i2Proximity of the resonance allows to replace the sine by its argument, so thatjSj2 = S2max � 11 + h2F ����FSR i2with the following de�nition F = �pr1r21� r1r2 (1.2)for the �nesse of the cavity. The values of �� such that the surtension is halfits maximum are : �� = � ��FSR2Fand the Full Width at Half Maximum (FWHM) of the resonance is �nally :��FWHM = ��FSRFOne can note that we have described the cavity by an extra set of parame-ters F and ��FSR equivalent to r1r2 and L. F contains only a photometricinformation about mirrors, whereas ��FSR contains a geometrical informa-tion about the cavity. The exact expression for the resonance can be writtenunder the form jSj2=S2max = 11 + h2F� sin �� ����FSR �i2see Fig.1.6. The wave re
ected o� the cavity can be computed byAref = ir1Ain + ir2t1e2ikLB
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Figure 1.6: Resonance line shape for a �nesse of F = 10 (solid line), andF = 100 (dotted line). Frequency unit is ��FSRby substituting the value of B, we getAref = iRAinWhere R is the re
ectance of the cavity, de�ned asR = r1 + (1 � p1)r2 e2ikL1 + r1r2 e2ikL (1.3)For a cavity operated in the re
ection mode, having a �nite re
ectivityof the input mirror (M1), a high re
ectivity end mirror (M2) and reasonablelosses (p1; p2), it can be seen that the global re
ectance is about unity, witha small peak of absorption at resonance. The phase of the re
ected waveundergoes a rapid transition of 2� when crossing the resonance (see Fig.1.7and Fig.1.8). This is classical in all oscillators, and can be better understoodin a simpli�ed model. Note that �� = � 0:5���FWHM correspond to half themaximum absorption and to a dephasing of ��=2 with respect to resonance.If now, the frequency of the light source is �xed and the length of the cavityvariable, which is ideally the case in a GW interferometer, instead of resonantfrequencies, we have resonant lengths given byLn = �n+ 12� �2
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Figure 1.7: Absorption line of a cavity for r1=0.85 and r2=0.99998.(FinesseF ' 19:3). A is the maximum of absorption.
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1.2. THE FABRY-PEROT RESONANT CAVITY 27showing that the displacement separating two successive resonances is :�LFSR = �2It is easy to show that the width of the resonance, in terms of displacement,is �LFWHM = �2FWe develop now an approximate model of a cavity relying on the fact thatthe �nesse is large compared to unity. It will prove useful for our furtherdiscussions of more complex systems involving cavities. A key parameter isindeed the �nesse, de�ned by eq.(1.2) and depending only on the parameterr1r2. Conversely, it is possible to compute r1r2 from F :r1r2 = 1� �Fs1 + �24F2 � �22F2If F is much larger than 1, we can limit the expression at the �rst order in1=F , and take r1r2 = 1� �FConsider now the re
ectance of the cavity Eq.(1.3), and the phase factor 2kL.We assume a frequency � that is slightly detuned with respect ot resonanceby an amount �� so that :2kL = 2k0L + 2� ����FSR = � + 2� 1F fwhere the reduced frequency f is the ratio of the o�set to linewidth :f � ����FWHMwith 2k0L � � mod[2�], we have :r2R = r1r2 � (1� p1)r22 e2i�f=F1 � r1r2 e2i�f=F (1.4)We set (1� p1)r22 = (1� p), where p accounts for all losses in the cavity. Byexpanding r2R at �rst order in 1=F we get :r2R = � 1 � pF=� + 2if1� 2if



28 CHAPTER 1. THEORY OF GW INTERFEROMETERSThe quantity � = pF=� is called coupling rate and it is easily seen that0 < � < 2. We have indeed obviously0 < r21 < 1 � p1! 0 < r21r22 < (1� p1)r22 = 1� pthen, assuming p very small,! 0 < r1r2 < q1� p = 1 � p=2whence 0 < 1� �F < 1 � p=2! 0 < pF� < 2Most of the properties of the FP cavity can be known by only knowing itscoupling rate. The re
ectance of the cavity can thus be written (by puttingr2 ' 1 at this point) : R = �1� � + 2if1� 2ifWe see that the re
ectance at resonance isR(0) = �(1 � �)so that � = 1 corresponds to total absorption of light, or optimal coupling.For � running from 0 to 1 the cavity is overcoupled, this means that, atresonance, the incoming �eld is increasingly absorbed by the cavity untiltotal absorption. then past 1, the �eld is decreasingly absorbed until totalre
ection. The intensity re
ection coe�cient is :jRj2 = 1� �(2� �)1 + 4f2The re
ected phase is :Arg [R] = � + tan�1  2f1 � �!+ tan�1 (2f) (1.5)Increasing values of � progressively decouples the cavity from the incoming�eld, the re
ectivity becomes near unity (because the input mirror becomes
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ected wave)the only part of the FP visible from the exterior) , and the re
ected phasebecomes more and more unsensitive to frequency detuning (see Fig.1.9). Notethat the coupling is strong when the coupling constant is weak, and vice-versa. We should better therefore, call � the undercoupling constant, but wekeep the present de�nition for the sake of brevity. The surtension coe�cientis de�ned by S = t21j1 + r1r2e2ikLj2In the coupling rate notations, it becomesS = �(2� �)p (1 + 4f2)showing that the maximum of intracavity power is reached at optimal cou-pling (� = 1). In general, at resonance we have thereforeS0 = 2F� �1 � �2�and simply S0 = 2F�



30 CHAPTER 1. THEORY OF GW INTERFEROMETERSin the strong overcoupling regime (�� 1). The phase re
ectance (see eq.1.5)is �(f) = � + tan�1  2f1� �!+ tan�1(2f)For f very small, this is at �rst order :�(f) = 2(2 � �)1 � � f = 2(2 � �)1� � F ����FSRIn terms of the coupling rate, and absolute frequency detuning, the slope of�(��) is d�d�� = 2�(2� �)1� � �p��FSRIn terms of the coupling rate and absolute displacement of the mirrors, wehave the slope d�d�L = 2�(2� �)1� � 2�p�It could seem that the optimum detectivity is near the optimal coupling,where the slope is a maximum. The in�nite slope at optimal coupling isvery appealing, but unfortunately corresponds to total absorption, so thatthere is no re
ected wave... This will be discussed later, in the Michelsoninterferometer section, when we shall study the conversion of a phase changeinto an amplitude change, detectable by a diode. If the coupling rate is small(i.e. the losses small and the �nesse moderate), which is the current case inGW interferometers, the slope is simply :d�d�L = 8F�This allows to �nd a relation with an equivalent number n of non interferinground trips in a multipass cell of same length : in such a situation, the slopewould be: d�d�L = 4�n�so that n � 2F=�note that this is exactly the surtension at resonance :n = S0



1.2. THE FABRY-PEROT RESONANT CAVITY 31In the undercoupling regime (1 < � < 2), the phase re
ectance has twoextrema, for f = �12p� � 1these two extrema being� = � tan�1  2� ��p� � 1!showing that the phase re
ectance becomes 
at as �! 2.1.2.2 The Pound-Drever schemeAs a �rst example of application of this simple model of a re
ection operatedcavity, we consider the so-called Pound-Drever servo scheme, in which thegoal is to keep a given light source in resonance with a reference cavity. Inorder to act for correction upon the frequency of the source, an error signal isneeded. It is obtained by a modulation technique : the light source is phasemodulated at frequency �mod, which means that after passing the modulatorcrystal, the amplitude entering the cavity is of the form :A(t) = A0 exp [i� cos(2��modt)]� exp[�2i��Lt]where �L is the frequency of the source, i.e. the variable to be servoed. �is the modulation depth, and if it is small, we can expand at �rst order thepreceding expression, yieldingA(t) = A0 e�2i��Lt + i �2A0 e�2i�(�L+�mod)t + i �2A0 e�2i�(�L��mod)tWe can recognize in this sum, the carrier and two sidebands added by themodulator. Each of these three waves is di�erently re
ected by the cavity.If we call B(t) the re
ected amplitude, we have :B(t) = A0 �R e�2i��Lt + i �2 R+ e�2i�(�L+�mod)t + i �2 R� e�2i�(�L��mod)t�where R represents the re
ectance of the cavity for the carrier, and R� there
ectance for the two sidebands. This amplitude is partially directed to aphotodiode delivering thus a current proportional toB(t)B(t) = A0A0 �RR � i �2 (RR� �RR+)e�2i��modt � i �2 (RR+ �RR�)e2i��modt�



32 CHAPTER 1. THEORY OF GW INTERFEROMETERSThe demodulation consists in mixing the latter current with the modulationcurrent with a variable dephasing �. The demodulation current is :D(t) = ei�e2i��modt + e�i�e�2i��modtFor �=0, the demodulation is said in phase, and in quadrature for � = �=2.The demodulated signal is the product BB �D, and considering that a lowpass �lter retains only the DC terms in the result, we get for the demodulated�ltered current (DFC) :DFC = i �2A0A0 hei�(RR+ �RR�) + e�i�(RR� �RR+)iThe approximate model presented above allows to compute this expression.We have, denoting by f the o�set of the source frequency with respect toresonance in linewidth units :R = � 1� � + 2if1 � 2ifIt is assumed that f does not exceed 1. Now for the sidebands, we assumethe modulation frequency antiresonant, i.e. such that it is shifted by halfa FSR from resonance. At antiresonance, the re
ectance of the cavity, andconsequently R�, is practically 1, so that the DFC becomes explicitly :DFC = i �2A0A0 hX ei� +X e�i�iwith X = R � Ror �nally X = 4i(2 � �) f1 + 4f2This shows that the demodulation must be in quadrature. The error curvehas the following appearance (see Fig.1.10). Note that the frequency intervalbetween the two extrema is nothing but the FWHM of the resonance. We seethat there exists a range of frequency on which the error signal is practicallyproportional to the frequency excursion, and this is the starting point of thePound-Drever-Hall technique for servoing cavities on laser light or conversely.
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Figure 1.10: Pound-Drever error signal for laser stabilization on a referencecavity1.2.3 The double Fabry-Perot cavityIt is interesting to investigate what happens when we install a Fabry-Perotcavity inside a Fabry-Perot cavity, because it is the basis of the so-called"power recycling" setup, used in GW interferometers for enhancing the laserpower, that we shall discuss in details in a foregoing section. The systemwe are considering is described on Fig.1.11: it consists of three mirrors, M1,M2, M3, spaced by distances l and L. We assume L � l. This o�ers us theopportunity to calculate the transmittance of a Fabry-Perot cavity havingmirrors M1, M2. Call r1; r2; t1; t2 the corresponding parameters, and forthe sake of simplicity, let us neglect the losses, and in the same spirit, taker3 = 1. We can write the stored amplitude when M3 is removed:B = A t11 + r1r2 e2iklas already seen. Now the amplitude tranmitted through mirror M2 in absenceof mirror M3 de�nes the transmittance:T = t1t2eikl1 + r1r2 e2ikl
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LFigure 1.11: Double Fabry-Perotwhereas the re
ectance for a wave coming from the right is, according to apreceding study: R = r2 + r1e2ikl1 + r1r2 e2iklFor the compound cavity, we can evaluate the amplitude C just as we woulddo for a cavity having a virtual mirror of parameters R; T , and an endmirror M3: C = T1 +R e2ikL ANow the question is: How to choose the phases 2kl and 2kL in order tomaximize the intracavity power jCj2 ? It is worth to compute explicitly theresult: C = t1t2 eikl1 + r1r2 e2ikl + e2ikL (r2 + r1 e2ikl) Awe see that for 2kl � 0 [mod 2�], and 2kL � � [mod 2�], we getjCj2 = t21t22(1 � r1)2(1� r2)2 jAj2which is clearly the maximum value. It means that the short cavity must beantiresonant, and the long one resonant. We can write the result as a globalsurtension: S0 = " jCj2jAj2#reso = (1 + r1)(1 + r2)(1� r1)(1� r2)We know that a cavity at antiresonance is far more re
ective than any of itstwo simple mirrors: if we assume r1 = 1�"1 and r2 = 1�"2, with "1; "2 � 1,



1.2. THE FABRY-PEROT RESONANT CAVITY 35we have Rantireso = R0 = r1 + r21 + r1r2 � 1� "1"22which shows that the global transmittance is second order with respect to theindividual transmittances. Moreover, we know that both the transmittanceand the re
ectance of an antiresonant cavity are almost independent on thefrequency over a large interval in between two successive resonances. If weassume L� l, the free spectral range �L of the long cavity is much shorterthan that �l of the short cavity. If we therefore take a frequency excursion�� small compared to �L, it will be a fortiori small compared to �L, andowing to the preceding remark, we can consider T and R as constants. Its iseasy to check that the phase of R changes by a negligible amount. We have:2kl = 2� ���lso that R = r2 + r1 + 2i�r1��=�l1 + r1r2 + 2i�r1r2��=�l= R0 1 + 2i� r1r1+r2 ���l1 + 2i� r1r21+r1r2 ���l= R0 (1 + 2i� ���l " r1(1 � r22)(r1 + r2)(1 + r1r2)#)thus, not only ��=�l is much smaller than ��=�L, but it is multiplied by(1� r2). We can consequently de�nitely neglect the phase change in R. Wehave 2kL � � + 2� ���Land the surtension is S = jCj2jAj2 = jT j2j1 �Re2i���=�L j2where R; T have their antiresonant values. This is:S = T 21 +R2 � 2R cos �2� ���L �



36 CHAPTER 1. THEORY OF GW INTERFEROMETERS= S0 11 + 4R sin2(���=�L)(1�R)2If we replace the sine by its argument, this gives:S = S0 11 + �2Fsuper ���L �2where Fsuper is the super�nesse, de�ned byFsuper � �pR1 �RThe linewidth is accordingly: �L = �LFsuperFor instance, assume the length of the long cavity to be L = 3 km. The freespectral range is thus �L � 50 kHz. If we put a simple input mirror withre
ectivity r22 = 0:882, the �nesse is near 50, so that the linewidth of thecavity is near 1 kHz. Now if we add a second mirror, of same re
ectivity r21 =0:882 and if we tune the short cavity at antiresonance, we get a re
ectanceof 0.998 for the short cavity, giving a super�nesse of 1595, and a linewidthof � 31 Hz.1.3 Optics in a wave Space-Time1.3.1 Retarded time in a GW - Simpli�ed pictureWhen studying gravitational waves (GW), some arbitrary in the choice of thecoordinates allows simpli�cations by partially removing this arbitrariness. Inthe so-called TT-gauge, the Space-Time metrics is of the formg�� = ��� + h��where ��� = diag(1;�1;�1;�1) is the Minkowski tensor of Special Relativ-ity, and h�� � 1 the gravitational perturbation propagating as a wave. This



1.3. OPTICS IN A WAVE SPACE-TIME 37tensor reduces to two independent components, called h+ and h�. Assumethat the GW is propagating along the z direction, then we have :h�� = 0BBB@ 0 0 0 00 h+ h� 00 h� �h+ 00 0 0 0 1CCCAWe shall assume in what follows that the z direction is orthogonal to the planeof the optics laboratory (or of the antenna), and consider the propagationof a light ray along the x; y directions. We know that in a vacuum, lightfollows a null geodesic, i.e. if dx� represents the space-time elementary vectorseparating two events encountered by the light ray, we can write :g�� dx�dx� = 0or in detail, taking dx� = (c dt; dx; dy; dz),0 = c2dt2 � dx2 � dy2 � dz2 + 2h�dx dy + h+ �dx2 � dy2�where h+;� are functions of t; z only. It can be shown that there is no changeof direction of the light ray during its interaction with the GW as long as theGW frequency is negligible compared to the EM frequency, which is safelyveri�ed for known GW sources. In this case, the only e�ect is a phase changeduring propagation. Let us see this in detail : For a path lying along the xdirection we have simply :0 = c2dt2 � dx2 + h+dx2or as well, h+ being so small,dx = �cdt �1 + 12h+(t)� (1.6)where the sign depends obviously on the propagation direction. Now, con-sider the round trip experiment, in which a light ray is �rstly emitted fromabscissa 0 at time t0, then received at abscissa L > 0 at time t1 : we haveusing (1.6) with the + sign :L = c(t1 � t0) + 12 c Z t1t0 h+(u) du



38 CHAPTER 1. THEORY OF GW INTERFEROMETERSthen the light ray is re
ected back and returns to the origin at time t2, wehave then, using again (1.6) but with the - sign :�L = c(�t2 + t1)� 12 c Z t2t1 h+(u) duby subtracting the last equation to the preceding, we get2L = t2 � t0 + 12 c Z t2t0 h+(u) duIn the sequel we shall omit the index + in the GW amplitude and writesimply h(t) instead of h+(t). Assume now that t2 = t is the detection time,and t0 = tr the unknown time at which the light ray was emitted (retardedtime). We have the relation :tr = t � 2Lc + 12 Z ttr h(u) duThis is an implicit equation in tr but very easy to solve at �rst order in h :tr = t � 2Lc + 12 Z tt�2L=c h(u) duIf we consider a monochromatic wave of frequency �g = 
=2�, such thath(t) = h cos(
t), the result istr = t � 2Lc + hLc sinc(
L=c) cos (
(t� L=c))Clearly the result is identical for a round trip along the y axis, except thatthe �rst order term must be changed of sign. We have generally :tr = t � 2Lc + �hLc sinc(
L=c) cos (
(t� L=c))where � = 1 along the x axis and � = �1 along the y axis. One wayof detecting gravitational waves could be to measure the excess time delaybetween emission and back detection of light. Some experiments have beenproposed using this principle, for instance by analyzing solar system radarranging data (in the microwave domain, but the principle is the same).



1.3. OPTICS IN A WAVE SPACE-TIME 391.3.2 Retarded time in a GW - General pictureThe preceding analysis assumed a normally incident gravitational wave, hav-ing an optimal polarization state. The results found are useful in order todetermine signal-to-noise ratios, as will be done later. A quite di�erent pur-pose is to analyze the angular response of an antenna. We shall thereforeassume now a gravitational signal propagating along a direction (�; �). Weknow that there exist a coordinate system de�ned by the basis (~w; ~a; ~b)(we assume the basis orthonormal), in which the perturbation to the metrictensor is h�� = 0BBB@0 0 0 00 h+(t) h�(t) 00 h�(t) �h+(t) 00 0 0 01CCCAwe use the vector ~w used above, and vectors ~�, ~�, de�ned as~w = 0B@ sin � cos �sin � sin�cos � 1CA ; ~� = 0B@cos � cos �cos � sin�� sin � 1CA ; ~� = 0B@� sin�cos�0 1CAthese unit vectors build an orthonormal frame. The transverse vectors (~a; ~b)are related to (~�; ~�) by some rotation of angle  :(~a = cos ~� � sin ~�~b = sin ~� + cos ~�In terms of the basis vectors (~w; ~a; ~b), the spatial part of h�� can be expressedas hij = h+(aiaj � bibj) + h�(aibj + ajbi)In terms of vectors (~�; ~�), we get :hij = (h+ cos 2 +h� sin 2 )(�i�j��i�j)+(�h+ sin 2 +h� cos 2 )(�i�j+�j�i)which shows that up to a rotation, we can express the wave amplitude (withnew h+;�) as hij = h+(�i�j � �i�j) + h�(�i�j + �j�i)This being said, consider now a light ray starting from point A (of coordinates~rA), going to point B (of coordinates ~rB) and returning to A. We denote by



40 CHAPTER 1. THEORY OF GW INTERFEROMETERSL the ordinary (i.e. in the unperturbed space) distance from A to B. Thegeneral expression of the space-time element isds2 = c2dt2 � d~r2 � hijdxidxjfor a trip from A to B ~r = ~rA + �~nwhere 0 � � � L and ~n is the unit vector directed along AB. Along the pathof a photon from A to B, we have thus :0 = c2dt2 � d�2 � hijninjd�2from what we obtaind� = �c dt �1 + 12 H(t� ~w:~r=c)�where H � hijninj . If the trip begins at time tr, the position ~r of the photoncan be parametrized by ~r(t) = ~rA + c(t� tr)~nso that d� = �c dt �1 + 12 H [t� ~w: (~rA + c(t� tr)~n)]�If we denote by tm the time of arrival at B, we get, after integration :L = c(tm � tr) � c2 Z tmtr H [(1� ~w:~n)t0 � ~w:~rA=c + ~w:~n tr] dt0 (1.7)during the return trip from B to A, the position of the photon is nowparametrized by ~r(t) = ~rA � c(t� tm)~nand after a similar calculation, we get�L = �c(t� tm) + c2 Z ttmH [(1 + ~w:~n)t0 � ~w:~rB=c� ~w:~n tm] dt0 (1.8)By subtracting (1.8) from (1.7), we get :2L = c(t� tr) � c2 Z tmtr H [(1� ~w:~n)t0 � ~w:~rA=c + ~w:~n tr] dt0 �



1.3. OPTICS IN A WAVE SPACE-TIME 41� c2 Z ttm H [(1 + ~w:~n)t0 � ~w:~rB=c� ~w:~n tm] dt0At zeroth order in h, we havetm = t� L=c ; tr = t� 2L=cSo that the expression of the retarded time is :tr = t� 2Lc � 12 Z t�L=ct�2L=cH [(1� ~w:~n)t0 � ~w:~rA=c + ~w:~n (t� 2L=c)] dt0 �� 12 Z tt�L=cH [(1 + ~w:~n)t0 � ~w:~rB=c � ~w:~n (t� L=c)] dt0 (1.9)Consider now a particular gravitational frequency fg = 
=2�, we haveH(t) = 12 hH e�i
t +H ei
tiWe can write eq.1.9 under the formtt = t� 2Lc � 14 �H�tr +H�tr�where�tr = Z t�L=ct�2L=c expf�i! [(1� ~w:~n)t0 � ~w:~rA=c + ~w:~n (t� 2L=c)]g dt0 ++ Z tt�2L=c expf�i! [(1 + ~w:~n)t0 � ~w:~rB=c � ~w:~n (t� L=c)]gafter some straightforward algebra, we �nd�tr = Lc e�i
(t�L=c)ei
~w:~rM=c nei
L=2csinc [(1� ~w:~n)
L=2c] ++e�i
L=2csinc [(1 + ~w:~n)
L=2c]owhere ~rM = (~rA + ~rB)=2 epresents the coordinates of the middle of the seg-ment AB. Note that in the case where ~w is orthogonal to the plane containingthe optical path, and assuming this plane to contain the origin of the coor-dinates, we have ~w:~n = ~w:~rM = 0, so that�?r = 2Lc e�i
(t�L=c) sinc(
L=c)



42 CHAPTER 1. THEORY OF GW INTERFEROMETERSexactly as in the preceding subsection. Now, returning to eq.1.9, we canwrite it under the compact formtr = t� 2Lc � 12 H Lc �(~rM ; �; �)e�i
(t�L=c) � 12 H Lc �(~rM ; �; �) e�i
(t�L=c)where the function � is de�ned, for the sake of brevity by�(~rM ; �; �) = 12 ei
~w:~rM=c hei
L=2csinc [(1� ~w:~n)
L=2c] ++e�i
L=2csinc [(1 + ~w:~n)
L=2c]iNow, if we assume h+;�(t) = 12 �h+;�e�i
t + h+;�ei
t�we can write H = h+ h(~�:~n)2 � (~�:~n)2i+ 2h� (~�:~n)(~�:~n)Let us now consider a whole interferometer, having arms directed along thex and y directions respectively. Along the north arm (x), for instance, wehave a unit vector ~n1, and along the west arm (y), a unit vector ~n2. If wenote ~r0 the coordinates of the splitter, we have for the middles of the northand west arms respectively :~rM;1 = ~r0 + ~n1L=2 ; ~rM;2 = ~r0 + ~n2L=2so that apart from a common phase factor we can drop out by changing theorigin of the time, we have the north and west functions :�1;2 = 12 ei
~w:~n1;2L=2c hei
L=2csinc [(1� ~w:~n1;2)
L=2c] ++e�i
L=2csinc [(1 + ~w:~n1;2)
L=2c]iThe same way, we have the north and west gravitational amplitudesH1;2 = h+ h(~�:~n1;2)2 � (~�:~n1;2)2i+ 2h� (~�:~n1;2)(~�:~n1;2)And the north and west excesses in round trip dephasing for an optical waveof circular frequency ! is : can be written as :��1;2 = !L2c H1 �1e�i
tei
L=c + c:c:



1.3. OPTICS IN A WAVE SPACE-TIME 43The Michelson topology is essentially designed for monitoring ��1 ���2,and consequently, if we are interested in the directivity pattern of a Michel-son, whatever the various enhancements will be, the antenna pattern will begiven by �(�; �) = jH1�1 �H2�2jwe have explicitlyH1 = h+(cos2 � cos2 �� sin2 �)� h� cos � sin 2�H2 = h+(cos2 � sin2 �� cos2 �) + h� cos � sin 2�and also (� � 
L=2c) :�1 = 12ei� sin � cos� nei�sinc [(1� sin � cos�)�] + e�i�sinc [(1 + sin � cos �)�]o�2 = 12ei� sin � sin� nei�sinc [(1 � sin � sin�)�] + e�i�sinc [(1 + sin � sin �)�]oAt high frequencies, when � = 
L=2c is not negligible, we have a frequencydependent antenna pattern. For arms as long as 3 km, we have at 1 kHz,� = �=100, so that the dependence of the �'s in frequency can be neglected,and we can take simply �1 = �2 = 1, so that�(�; �) ' jH1 �H2jor, �(�; �) = j h+(1 + cos2 �) cos 2� � 2h� cos � sin 2� jIn the case of purely h+ sources (binaries in a plane perpendicular to the lineof sight), we have the following pattern (see �g.1.12).1.3.3 The A133 AlgebraLet us now turn to wave optics. Our light ray is in fact a monochromaticplane wave of frequency � = !=2�. Call B(t) the (complex) amplitude atthe end of the round trip, and A(t) its value at the beginning. We haveB(t) = A(tr)If we note A(t) = Ae�i!t
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Figure 1.12: Directivity pattern for h+ sources. Angle � runs from 0 to �,angle � from ��=2 to �=2.



1.3. OPTICS IN A WAVE SPACE-TIME 45we getB(t) = Ae�i!tr = Ae�i!(t�2L=c) exp �ih!Lc sinc(
L=c) cos (
(t� L=c))�Since we are always at �rst order in h, we writeB(t) = Ae�i!te2i!L=c +i2hA !Lc sinc(
L=c) e2i!L=cei
L=ce�i(!+
)t +i2hA !Lc sinc(
L=c) e2i!L=ce�i
L=ce�i(!�
)tIt clearly appears that the action of the GW was to create two sidebands ofvery low amplitude, of frequencies � � �g from one single frequency �. Nowlet us see what happens if the incoming optical wave is already modulatedand exhibits two sidebands. This is necessary because in interferometers,light undergoes several times the action of the GW in order to enhance thesignal production. Let the incoming amplitude be of the formA(t) = �A0 + 12 hA1e�i
t + 12 hA2ei
t� e�i!tThe scaling factor is h because we assume the GW to be the only cause ofgeneration of sidebands in the whole (unknown) optical system. We havethen B(t) = A(tr) = �A0 + 12hA1e�i
te2i� + 12hA2ei
te�2i�� �� e�i!te2i�e�i�h�sinc(�) cos(
t��)For shortening the formula, we have used the abbreviations: � � !L=c and� � 
L=c. After a 1st order expansion of the exponential, we getB(t) = �B0 + 12 hB1e�i
t + 12 hB2ei
t� e�i!twith the following notation : B0 = e2i�A0B1 = e2i(�+�)A1 � i��sinc(�)ei(2�+�)A0



46 CHAPTER 1. THEORY OF GW INTERFEROMETERSB2 = e2i(���)A2 � i��sinc(�)ei(2���)A0We see that if we de�ne \generalized amplitudes" as rank 3 vectors having thecarrier amplitude, the upper sideband and the lower sideband respectivelyas coordinates, by setting A = (A0; A1; A2)and B = (B0; B1; B2)the amplitude after a round trip that we have precedently computed may bewritten in the form : B = XAwhere X is the linear round trip operator de�ned asX = 0B@ e2i� 0 0�i��sinc(�)ei(2�+�) e2i(�+�) 0�i��sinc(�)ei(2���) 0 e2i(���)1CA (1.10)It is easy to check that the set of all operators having the formO = 0B@O00 0 0O10 O11 0O20 0 O221CAis stable for any algebraic operation, and even may be given a structure ofnon-commutative algebra isomorphous to the algebra of �rst order expan-sions. We call it \A133" for brevity. The basic algebraic operations arede�ned by� The sum : (A+B)ij = Aij + Bij� The product : (A B)ii = AiiBii(A B)i0 = Ai0B00 + AiiBi0� The inverse : (A�1)ii = 1Aii(A�1)i0 = � Ai0A00 Aii



1.4. SIGNAL TO NOISE RATIO 47An A133 operator may be associated to any optical element of a complexoptical system. The diagonal elements Oii represent action of that elementon the carrier and the sidebands. Often (mirrors, lenses) there is no fre-quency dependence because the gravitational perturbation causes a negli-gible frequency shift, well inside the tolerances of the mirror coatings, andin this case, the corresponding operator is simply scalar. In fact the onlynon-diagonal operators are those corresponding to propagation of light ina vacuum over long distances. The result is that, after some (A133) alge-bra, the whole optical system has an associated A133 operator describing itsbehaviour.1.4 Signal to Noise RatioWe can start with a pure monochromatic waveAin = (A; 0 ; 0)S being the A133 system operator, we know that the output wave is givenby : Aout = A "S00 + h2S10 e�i
t + h2S20 ei
t# e�i!tThe corresponding detectable power is, up to a normalization factor, andcalling Pin the incoming power :P (t) = AoutAout == Pin "jS00j2 + h2 �S10S00 + S20S00� e�i
t + h2 �S20S00 + S10S00� ei
t#The signal amplitude at frequency �g is thusS(�g) = jS10S00 + S20S00jThe DC component of the output is proportional to jS00j2, so that our mainconcern, the SNR is proportional to :SNR(�g) / jS10 e�i'00 + S20 ei'00j



48 CHAPTER 1. THEORY OF GW INTERFEROMETERSwhere 'ij is the argument of Sij. We have as well, with the correct normali-sation : SNR(�g) = s Pin2hP � jjS10j+ jS20j ei('10+'20�2'00)jh(�g) (1.11)Inversely, the spectral density hSN(�g) equivalent to the quantum noise isobtained by taking a unitary SNR :hSN(�g) = s2hP�Pin jS00jjS10S00 + S20S00jWe see that evaluation of the SNR of any optical GW detector eventuallyreduces to calculation of the Si0 of the whole system.1.5 Resonant cavities in a GWThe �rst element we need, before addressing more complex structures, isthe A133 operator associated to a Fabry-Perot cavity. We take the samenotations as in Fig.1.6. The intracavity (vector) amplitude B obeys:B = t1Ain � r1r2XBwhere X is the round trip operator just de�ned above (Eq.1.10). We havethus B = [1 + r1r2X]�1 t1AinThe re
ected amplitude is :Aref = i r1Ain + i t1r2XB= i [r1 + (1 � p1)r2X] [1 + r1r2X]�1 Ainso that the re
ectance of the cavity is the operatorF = [r1 + (1� p1)r2X] [1 + r1r2X]�1 (1.12)It is possible to compute the components of F :F = 0B@ F 0 0G+ F+ 0G� 0 F�1CA



1.5. RESONANT CAVITIES IN A GW 49F is the ordinary re
ectance of the FP for the carrier, F� the ordinaryre
ectance of the FP for the upper and lower sidebands respectively. For thesake of simplicity, we use again the notation :� = kL� = 
L=c(recall that 
=2� is the GW frequency). We have then, after direct evaluationof F according to Eq.1.12 :F = r1 + (1 � p1)r2e2i�1 + r1r2e2i�F� = r1 + (1� p1)r2e2i(���)1 + r1r2e2i(���) (1.13)G� = �i� t21r2�sinc(�)ei(2���)(1 + r1r2e2i�) (1 + r1r2e2i(���)) (1.14)In the coupling rate (�) formalism, this can be approximated byF = �1� � + 2i�f1 � 2i�f (1.15)F� = �1� � + 2i(�f � fg)1 � 2i(�f � fg) (1.16)G� = i� 2FL� 2 � �(1 � 2i�f) [1 � 2i(�f � fg)] (1.17)where �f = ��=��FWHM is the reduced detuning of the light source fromresonance, and fg = �g=��FWHM the reduced gravitational frequency. Whenwe vary the detuning, we see that the modulus of G+ has a resonance for�f = 0 (resonance of the carrier) and a second resonance when �f = �fg,the upper sideband becoming resonant. The modulus of G� has also a res-onance for �f = 0 and for �f = fg, the lower sideband becoming resonant(see Fig.1.13). A symmetrical �gure can be obtained with jG+j.
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ected amplitude isAref = i �t2se2ikaF1 � r2se2ikbF2� AinNote that we neglect phases of the order of 2��ga=c. The expressions of F1and F2 for perfectly identical but orthogonal cavities lying respectively along
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52 CHAPTER 1. THEORY OF GW INTERFEROMETERSand for the re
ectance :RMic;00 = i(1� ps)eik(a+b) sin[k(a� b)]FRMic;11 = i(1� ps)eik(a+b) sin[k(a� b)]F+RMic;22 = i(1� ps)eik(a+b) sin[k(a� b)]F�RMic;10 = (1 � ps)eik(a+b) cos[k(a� b)]G+RMic;20 = (1 � ps)eik(a+b) cos[k(a� b)]G�It is evident that when the interferometer is tuned at a dark fringe for thecarrier, the sidebands are transmitted, and conversely. The SNR takes theform : SNR(�g) / (1� ps) sin[k(a� b)] �����G+ FjF j �G� FjF j����� (1.18)If we assume the carrier at a dark fringe, we getTMic = (1�ps)eik(a+b)0B@ 0 0 0�iG+ 0 0�iG� 0 01CA ; RMic = (1�ps)eik(a+b)0B@ iF 0 00 iF+ 00 0 iF�1CAThis allows to study the SNR of a simple Michelson having FP cavities asarms. We have in the coupling rate formalism, neglecting ps at this level :SNR(fg) / 4FL� 2� �p1 + 4�f2 12 ������ ei	+q1 + 4(�f + fg)2 + e�i	�q1 + 4(�f � fg)2 ������where 	+ = tan�1 (2(�f + fg))� tan�1  2�f1� �!	� = tan�1 (2(�f � fg))� tan�1  2�f1 � �!After some algebra, we �nd the following result :SNR(fg) / 8(1� �=2)FL� �24 (1� � + 4�f)2 + 4(1 � �)2f2g(1 + 4�f)2 ((1� �)2 + 4�f)2) �1 + 8(�f2 + f2g ) + 16(�f2 � f2g )2�351=2(1.19)
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Figure 1.15: Simple Michelson with FP cavities : Spectral density of h equiv-alent to shot noiseif the cavities are at resonance (�f = 0), we have simplySNR(fg) = 8FL� 1� �=2q1 + 4f2g s PL2hP � h(fg)q we plot hereafter the spectral density of equivalent h for various values of Ffor a 20W light source at � = 1:064�m. (see Fig.1.15). The sensitivity at lowfrequency is a function of F . The optimum value of F occurs theoreticallyfor � = 1, i.e. for the optimal coupling of the cavities. This corresponds toF = �=p. For p = 310�5, this corresponds to a �nesse of 105. On the otherhand, when � = 1, the surtension coe�cient is S = 1=p, and this meanshere a surtension of ' 3 104. For a 10 W laser source, this is is 0.3 MWstored light power. Let us keep however in mind that the improvement dueto increasing the �nesse occurs only at low frequency. But at low frequency,the limitation of the sensitivity is due to thermal noise, and it is worthlessto try higher �nesses as long as a means of reducing thermal noise has'ntbeen found . Better idea is to increase the laser power, because the wholecurve is then globally lowered. But 20W (as assumed in Fig.1.15) is themaximum presently reasonable for a CW monomode, stabilized laser. For



54 CHAPTER 1. THEORY OF GW INTERFEROMETERSgaining 1 order of magnitude, we would have to lock in phase an array of3 such lasers. This is quite feasible, but the result can be achieved with amuch more elegant and convenient solution, as explained hereafter. Let usremark that for given �g, the SNR is of the formSNR = 8�L� 1p �(1� �=2)p1 + q2�2 s PL2hP � h(�g)with q � 2��g=p��FSR and consequently is a maximum for a �nite value of �.The parameter q is very high even for �g = 10Hz, and a good approximationof the optimal coupling rate is :�opt =  2q2!1=3 =  p��FSRp2��g !2=3The optimal �nesse is therefore :Fopt(�g) =  �p!1=3 ��FSR�g !2=3For instance, with p = 310�5, ��FSR = 50kHz, this givesFopt(�g) = 13782 �  10Hz�g !2=3But the maximum is very 
at, and it is not necessary to require the trueoptimum. A value of � such that q� = 2 is quite su�cient, the SNR di�eringfrom its true optimum by only 10%. this corresponds toFopt(�g) = ��FSR�gThe pseudo-optimal �nesse for �g = 1 kHz is for instance F = 50. Thepseudo-optimal �nesse depends of a reference frequency �(0)g which is anequivalent parameter, the length of the cavities being �xed. In terms ofthis reference frequency, we have :SNR(�g) = 4 �opt�(0)gs1 + �2 �g�(0)g �2s PL2hP � h(�g)
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Figure 1.16: Michelson with detuned cavities (F=100)where �opt is the optical frequency. This formula is valid except for too smallvalues of �(0)g . For the interval [10 Hz, 10kHz], it is valid. We see the hugescale factor provided by the cavities. When the two cavities have a commondetuning, the SNR is reduced, as can be red directy on Eq.(1.19). Buta resonance occurs when the upper sideband created by the GW becomesresonant (for fg = �f). At this frequency, the loss due to the frequencyo�set of the carrier is somewhat compensated by the resonance (see Fig1.6)One important point is that, working out of resonance, the re
ectances of thecavities are much higher than in the tuned case. This regime of operation, ofno bene�t in the simple Michelson con�guration, becomes interesting whenrecycling is applied, as will be shown later.1.7 Recycling1.7.1 standard power recyclingIt is clear from conservation laws in general, and namely from the previoussection that when tuned at a dark fringe, the transmittance of the Michelsonbeing a minimum, its re
ectance is a maximum. It has been proposed a longtime ago by R. Drever to build a cavity with one extra mirror (the recyclingmirror) and the Michelson as a second mirror (see Fig.1.17 for notation).
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Figure 1.17: Recycled Michelson with FP cavitiesBy controlling the resonance of this recycling cavity , the surtension coef-�cient enhances the power reaching the splitter, and the SNR is increased.The A133 operator corresponding to this con�guration is easily obtained bycopying the simple Fabry-Perot operators. The Michelson operators for re-
ection and transmission being respectively RMic and TMic, and l the lengthof the recycling cavity, we have for the re
ectance and transmittance of thecomplete interferometer :RItf = hrr + (1 � pr)e2iklRMici h1 + e2iklrrRMici�1 (1.20)TItf = eikltrTMic h1 + e2iklrrRMici�1 (1.21)We are especially interested in the TItf 10;20 components, giving the SNR. Us-ing the preceding results about the Michelson operators, after some algebra,we obtain (� � k(a� b)) :TItf 10;20 = �i tr(1 � ps)eik(l+a+b)G� hsin � + i rr(1 � ps)eik(2l+a+b) F�iDD�TItf 00 = � tr(1 � ps)eik(l+a+b) cos � FD



1.7. RECYCLING 57with the following de�nition (a = �1; 0; 1) :Da = 1 + i rr(1� ps)eik(2l+a+b) sin � FaIt is always possible to tune the path di�erence between the two arms at adark fringe (� � �=2[mod2�]), and the length l of the recycling cavity inorder to obtain resonance, i.e. :D = 1� rr(1� ps) jF jwhere F refers to the (assumed common) re
ectance of the cavities. Atthis point, the SNR is simply the SNR of a Michelson, multiplied by thesurtension factor :SNR(fg) = SNRMic(fg)� tr1� rr(1� ps) jF j (1.22)In the so called standard recycling sheme, we assume the FP cavities atresonance (�f = 0). The SNR takes on the simple formSNR = 4FL� (2� �)q1 + 4f2g tr(1 � ps)1� rr(1� ps)j1� �j s PL2hP � h(�g)Where we see directly how increasing the coupling factor increases theMichel-son SNR, but decreases the recycling factor. Anyway, we are free to choosethe best recycling re
ectance rr, i.e. that maximizing the recycling surtensionfactor. This happens whenrr opt = (1� pr)(1� ps)j1� �jgivingSr opt = (1� ps)s 1� pr1� (1 � pr)(1� ps)2(1� �)2 4FL� (2 � �)q1 + 4f2g s PL2hP� h(�g)The mirror losses will be taken very small (of the order of 10 ppm), and wehave seen that the coupling rate in a simple Michelson must be relativelysmall. It will be even smaller here, because the recycling factor would be



58 CHAPTER 1. THEORY OF GW INTERFEROMETERSdestroyed by a large cavity absorption. It is therefore not unrealistic to con-sider that the total losses are dominated by the cavity resonant absorption,and however, small (pr + 2ps � 2�� 1). The optimal SNR is thenSNR(�g) = 4�Lp2� 1p �1=2(2� �)r1 + �2� �gp��FSR ��2 s PL2hP� h(�g)When searching for the optimal value of �, we get the following equation,with q = 2��g=p��FSR :12q2�3 + q2�2 + 32�2 � 1 = 0for avoiding an exact but useless and cumbersome resolution of this equation,we rather solve it in q: q2 = 1� 3�2=2�2(1 + �=2)Now we remark that, even for low GW frequencies (10 Hz), q2 is very large:Consequently, � must be very small, and we can take the approximation�opt = 1qor, in terms of �nesse, Fopt = ��FSR2�(0)gWhere �(0)g is the GW frequency for which the SNR is optimized. But here,the maximum is sharp (see Fig.1.18). Remark that this value is half thepseudo-optimum for the simple Michelson. This sharp maximum makes theSNR very sensitive to the GW frequency at which the SNR is optimized.With physically signi�cant parameters (frequencies in the detection range[10 Hz,10 kHz], and small losses), the SNR can be approximated by a simpleformula. Call pITF the losses encountered in the recycling mirror and thesplitter, i.e. the losses external to FP's : we have1 � pITF = (1� pr)(1 � ps)2 ) pITF ' pr + 2ps
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Figure 1.18: SNR vs � for three GW frequencies. The small diamonds showthe approximate optima theoretically derived
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Figure 1.19: SNR vs frequency for four �nesses. The small stars point theGW frequency at which the SNR was optimized.



60 CHAPTER 1. THEORY OF GW INTERFEROMETERSThe losses internal to FP's are still p = 1�(1�p1)r22. Neglecting non essentialsmall terms leads to :SNR(�g) = 1rpITF + p��FSR��(0)g 2�opt�(0)gs1 + � �g�(0)g �2 s PL2hP� h(�g) (1.23)the parameter p��FSR=2� has the dimension of a frequency, and is of order1 Hz. The �rst term represents the gain due to optimal recycling, the secondis the SNR of a simple Michelson. We can conclude that a power recycledMichelson, having an optimal recycling rate, and an optimal �nesse for agiven GW frequency is not signi�cantly better that a simple Michelson whenthat frequency is very low. In this subsection and in the next one, we seehow the re
ectivity of the Fabry-Perot cavities play a central role. Thee�ciency of recycling crucially depends on the quality of the re
ectivity.This is the reason why at low frequency, a high �nesse being needed, thecoupling rate increases, the re
ectivity decreases, and the e�ect of recyclingbecomes negligible. This strong requirement of very re
ecting cavities wasthe cause of a number of numerical optics studies that in turn, motivatedsection 3.The amplitude in the recycling cavity has a peak at the recycling reso-nance. It is interesting to evaluate the width of the resonance line when thefrequency of the source varies. The surtension factor reads :Sr = ����� tr1 + irr(1 � ps) eik(2l+a+b) sin �F �����2in this expression, the dominating phase is obviously given by the re
ectanceF . Since the phase re
ected by cavities has already a sharp slope, we canexpect this slope to be reinforced by the recycling �nesse. We can take forthe modulus of the re
ectance its value jF j = 1 � � at resonance, assume� = �=2 and �=2+k(2l+a+b) � �. The only frequency dependent quantity(in this approximation) is the phase � of the re
ectance, given by� � 2 tan�1(2�f)where we have assumed a small �. If the frequency excursion is small com-pared to the cavity linewidth, then �f is small, so that we can write :Sr = S(0)r ����� 11 + (4FR�f=�)2 �����2
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Figure 1.20: Variable �nesse by detuning the dark fringewhere S(0)r is the peak height for a given detuning of the dark fringe �, �fthe reduced frequency excursion, andFR = �qrr(1� ps)(1 � �) sin �1� rr(1 � ps)(1 � �) sin �the recycling �nesse. This �nesse depends obviously of the tuning of theMichelson. Detuning reduces the re
ectance of the Michelson, as can be seenon Fig.1.20.The full width at half maximum of the surtension peak can be thereforeestimated by ��rec = �2FR ��FWHM(recall that ��FWHM i the linewidth of the cavity). For standard values,say ps = 2 10�5, S(0)r = 50, (hence rr = 0:962, � = 6:366 10�4,(corresponding to a cavity �nesse of 50 ), we �nd FR � 78. For a 3 km long,50 �nesse cavity, the linewidth is 1 kHz, so that��rec � 20Hzvery near the exact value, numerically obtained, of 19.64 Hz (on Fig. 1.21,we show the exact line shape for such parameters). It is also clear that
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Figure 1.21: Linewidth of the recycling cavity / linewidth of the long cavities.A detuning wrt darkfringe increases the recycling widtha detuning with respect to the dark fringe (� 6= �=2) not only decreasesthe maximum recycling gain, but also increases the recycling linewidth. OnFig.1.22 the full width at half maximum of the recycling width is plotted.This helps tuning the interferometer.1.7.2 detuned power recyclingWe consider the case of a power recycled Michelson with detuned cavities.The basic idea is to exploit at the same time the resonance (frequency �0)of a cavity for one sideband (such that �L � �g = �0) and the fact that thecarrier being out of resonance, the re
ectivity of the cavities is enhanced,and consequently the recycling e�ciency also. We restrict our attentionto two special cases giving the same result for the SNR : The symmetricaldetuning, in which the two cavities have the same detuning �f , and theantisymmetrical detuning, in which one cavity is detuned by �f , and theother one by ��f . In the �rst case, the upper sideband is resonant in the twoarms, and never the lower sideband, in the second case, the upper sidebandis resonant in the �rst arm, and the lower sideband in the second arm, sothat �nally, the e�ect is identical. We develop the symmetrical case. Owing
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 =  20 HzFigure 1.22: Linewidth of the recycling cavity vs dark fringe detuning � �2�(a� b)=�to the general Eq.1.19, the SNR for a detuned, power recycled Michelson is :SNR(fg) = 8FL(1 � �=2)� tr1 � rr(1 � ps)� pS s PL2hP � h(�g)where �(�f) is the FP's modulus re
ectance, andS = (1 � � + 4�f2)2 + 4(1 � �)2f2g(1 + 4�f2)((1� �)2 + 4�f2)(1 + 8(�f2 + f2g ) + 16(�f2 + f2g )2)recall that �(�f) = s1 � �(2� �)1 + 4�f2The optimal recycling is obtained whenrr = (1� pr)(1� ps)2�2The e�ciency of recycling essentially depends on the re
ectivity of the cavi-ties. When the detuning is not zero, it simultaneously happens, for fg = �fthat one of the sidebands is resonant, and the re
ectivity of the cavities,
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Figure 1.23: Detuned recycled Michelson (F=100)higher than when the carrier is resonant. This is the reason why it is possi-ble to have a better SNR for fg in the neighborhood of �f . (see Fig.1.23).The maximum SNR isSNRmax = 8FL(1 � �=2)� 1q1 � (1� pr)(1 � ps)�2 �� vuut (1 � �)2 + 4(1 � �)(3� �)�f2 + 16�f4(1 + 4�f2)((1 � �)2 + 4�f2)(1 + 16�f2) s PL2hP � h(�g)1.7.3 Synchronous RecyclingThe title of the present section could have been \how to make a narrow bandoptical detector by 6 orders of magnitude better than bar detectors". Thebasic idea of synchronous recycling is to have two identical cavities, and acoupling. In such a system a system of supermodes exists, correspondingto combinations of the individual eigenmodes of one cavity. For instance,to a given TEM00 mode of frequency �0, corresponds two supermodes, asymmetrical (S) and an antisymmetrical (A). The eigenfrequencies �S; �Adi�er from �0 by an amount depending of the coupling. When the couplingtends to zero, the frequencies �S; �A tend to the same limit �0, and todegeneracy. If the coupling is very weak, the di�erence �S � �A may fall in
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rFigure 1.24: System of coupled cavitiesthe audio range, and a gravitational perturbation is able to pump energyfrom one mode in the other. The principle of operation is thus to tune thecoupling at a minimum, the light source on the A mode, and waiting thesignal on the S frequency (or vice-versa). Another way of understandingwhat happens in coupled cavities is to consider the beat note between theseA and S modes. The result is that the stored energy is periodically exchangedbetween the two cavities, at a frequency which is the gap �S � �A (Thinkto coupled pendulums). We feel that if the GW frequency is exactly thisbeat note, the light will accumulate positive phase shifts during the �rst halfGW period, then will be transferred to the second cavity at the momentwhen the phase becomes negative in the �rst, and positive in the second, sothat, roughly speaking, it sees always a long arm, (or a short one) and wecan expect the phase modulation to increase inde�nitely. It has been �rstproposed by Ph. Bernard and E. Picasso [4] to use this e�ect in high Qsuperconducting microwave cavities.It is worth studying the e�ect on a simpli�ed model involving only twocoupled optical cavities (see Fig.1.24). The two cavities (of length L) arefacing each other. The light can be transmitted through the central regionof length l. In fact, this region is itself a cavity and we call it the centralcavity. Without changing the two FP's, it is possible to tune the centralcavity by changing the distance l. When the central cavity is at resonance,its tranmittance is a maximum, and the coupling is strong. When the centralcavity is at antiresonance, its transmittance is a minimum, and the couplingis weak. We assume in the following simple model no losses, a re
ectivity of1 for the two end mirrors, and of r for the two inner mirrors. Let us considerthe resonance condition for a wave to remain stored in the system. If we callF the re
ectances of the (identical) cavities, we have for a round trip in thecentral cavity : (iF eikl)2 = 1



66 CHAPTER 1. THEORY OF GW INTERFEROMETERSTwo series of solutions can be obtained by takingiF eikl = 1 symmetrical modeiF eikl = �1 antisymmetrical modein case of zero losses, the re
ectance of one cavity is of modulus 1 :F = r + e2ikL1 + r e2ikL = e2ikL 1 + r e�2ikL1 + r e2ikLIf we take the resonance as a reference frequency, we can write2kL = 4��0Lc + 4�L��cwhere �0 is the resonance frequency of the (isolated) cavity, and �� the un-known detuning giving a resonance in the coupled system. We have thus4��0=� � � [mod2�], and we can work with the reduced detuning alreadyused above, �f = ��=��FWHM which is simply the ratio of the detuning tothe linewidth of the cavity. The round trip phase becomes simply2kL = � + 2�F �fso that the re
ectance reduces to the pure phase factorArg(F ) = � + 2�F �f + 2 tan�1 " r cos(2��f=F)1 � r sin(2��f=F)#For the phase factor corresponding to the central cavity, we havekl = 2��0lc + �lF L �fThe constant phase ' = 2��0l=c can be considered as the tuning of thecentral cavity. The resonance conditions become2 tan�1 " r cos(2��f=F)1� r sin(2��f=F)# = (2n + 1)� � �2 � '� 2�F �f � �lF L �fleading to the S-modes equation :r cos(2��f=F)1� r sin(2��f=F) = tan "'2 + �4 +  1 + l2L!�f#�1 (1.24)
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Figure 1.25: Relative detuning of the A and S supermodes vs tuning of thecentral cavityThe A-modes equation can be obtained a similar way :r cos(2��f=F)1� r sin(2��f=F) = � tan "'2 + �4 +  1 + l2L!�f# (1.25)These are implicit equations in the unknown detuning �f . The numericalsolutions are plotted on Fig.1.25. The round trip phase in the central cavityis equal to 2'. The value ' = 0 corresponds thus to antiresonance, thento a minimum of coupling, and a weak splitting of the resonance lines. Thetuning has period �, so that we retrieve a similar situation at ' = � wherethe S-frequency is near the preceding A-frequency. The value ' = �=2 cor-responds to resonance of the central cavity, thus to a maximum of coupling,and a maximum of line splitting This maximum is half the FSR (the intervalbetween the two white spots on the �gure). In order to study the minimumofcoupling, and the frequency gap between the A and S modes at this tuning,we turn to our simpli�ed model, which will be of some use anyway in thesequel. For zero losses, the parameter � is zero, and we have for the phases :�2 + 2 tan�1(2�f) + 2�lc (�0 + ��) � 0 (S�modes)



68 CHAPTER 1. THEORY OF GW INTERFEROMETERS�2 + 2 tan�1(2�f) + 2�lc (�0 + ��) � � (A�modes)We can write as well�fS = 12 tan "'2 + �4 + �l2FL�fS#�1The term �l=2FL is very small for kilometric cavities of �nesse ' 100 and ametric central cavity. If we neglect it, we have the very simple results :�fS = 12 tan �'2 + �4 ��1�fA = �12 tan �'2 + �4 �The following plot (Fig.1.26) is to be compared with the preceding. Theapproximation used is valid only for detunings much smaller than the FSR.For ' = �=2, we have seen that the detuning of the A-mode is half the FSR,the model consequently fails, this is the reason of the divergence of the A-mode at this point. The same reason causes the divergence of the S-modeat ��=2. If we restrict our attention to the neighbourhood of ' = 0, i.e.the validity range of the present model, we can see a good agreement withthe exact calculation. It is in particular easy to compute the minimum linesplitting : [�fS ��fA]min = 12 " 1tan(�=4) + tan(�=4)# = 1corresponding, in terms of frequency, to[��S � ��A]min = ��FWHM = c2FLIn other words, the minimum splitting is nothing but the linewidth of thecavity. If we intend to use this device to detect GW by coupling the A and Smodes with the gravitational perturbation, we see that we have to use high�nesse and long cavities. For the current situation (L=3 km and F=100),the frequency gap is �g=500 Hz. Higher values can be obtained by a di�erenttuning of the central cavity : The general result is�g = ��S � ��A = 1cos' c2FL
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Figure 1.26: Approximate model of degeneracy removing by couplingWe have now to study the response of a real system involving a lightsource and a detector. The scheme of Fig.1.27 was suggested years agoby R. Drever [3] after a very di�erent approach than Ph. Bernard & E.Picasso. The coupled cavities are in what we call ring cavity on the �gure.The optical path has been split for clarity, and it could seem strange toseparate between the incident and the re
ected wave o� a cavity. It is howeverpossible by using polarization rotators and polarization sensitive re
ectors,so that the situation is almost that of the �gure. If (as likely) these switchingelements induce losses, these losses can be localized in the mirror rt. Thesplitter and the square path allow to launch two rotating waves in the ringcavity, one clockwise and one counterclockwise, these waves are recombinedon the splitter. We �rst consider the counterclockwise wave (see Fig.1.28)and evaluate the A133 re
ection operator. We have �rstly for the intracavitywave : B = trAin + rrrte2iklF2F1Bor : B = tr h1� rrrte2iklF2F1i�1then Aout = i rrAin � i trrte2iklF2F1B
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1.7. RECYCLING 71so that the re
ectance is :R+ = rr � t2rrte2iklF2F1 h1� rrrte2iklF2F1i�1= hrr � (1� pr)rte2iklF2F1i h1 � rrrte2iklF2F1i�1Obviously, for the clockwise optical path, we have the re
ectance :R� = hrr � (1 � pr)rte2iklF1F2i h1 � rrrte2iklF1F2i�1Now, if we return to the splitter, we can compute the transmittance of thewhole system : T = �i t2sr2f ei�R� + ir2sr2f ei�R+Where the two transfer mirrors of the square cavity have been assumed iden-tical. � is the optical path inside the square cavity. If further we assume aperfectly symmetrical splitter, we can writeT = �i 12(1� ps)r2fei� (R� �R+)A direct calculation gives[R� �R+]10 = �t2rrt e2ikl 2G+(F�F+)DD+Where the de�nitions of G�, F� are the same as in section 7 , andDa = 1 � rrrt e2iklF 2a (a = �1; 0; 1)The [10] component of T is thus :T10 = FL� 4i(2 � �)2(1� ps)r2frtei�t2rfg(1� 2i�f)2[1� 2i(�f + fg)]2 [1� rrrte2iklF 2] [1� rrrte2iklF 2+]One would obtain a similar expression for T20 by changing the sign of fg. Thepreceding expression exhibits a sharp resonance peak when the resonancecondition 2kl + 2Arg(F ) � 0 [mod2�]is met. The di�erence of � with respect to the preceding subsection (twoisolated cavities) is due to the fact that we have now two extra mirrors, for



72 CHAPTER 1. THEORY OF GW INTERFEROMETERSrecycling (Mr) and transfer (Mt) each adding a phase of �=2. This shouldbe kept in mind in any comparison. In particular, the resonance conditionfor the central cavity is now 2kl � 0, and the antiresonance is 2kl � �. Weassume the laser frequency given, so that kl is a constant, representing thetuning of the central cavity. The long cavities are detuned by a microscopicchange in length making their new resonance shifted by an amount �f . For�f corresponding to a resonance of the ring cavity, we have thus to solvetan�1  2�f1� �!+ tan�1(2�f) = �klor, 2(2 � �)�f1 � � � 4�f2 = � tan(kl)this gives two solutions :�fS = 12 2641� �=2tan(kl) +vuut 1� �=2tan(kl) !2 + 1 � �375and �fA = 12 2641� �=2tan(kl) �vuut 1� �=2tan(kl) !2 + 1 � �375Note that �fA ��fS = �1� �4 (1.26)and �fS ��fA = vuut 1� �=2tan(kl) !2 + 1� � (1.27)We remark that the minimum frequency gap, is[�fS ��fA]min = p1 � �For having a large SNR at the normalized GW frequency f (0)g > p1� �,we follow the following scheme :� Tune the central cavity in such a way that �fS � �fA = f (0)g , whichhappens for kl = tan�1 24 1 � �=2qf (0)2g � (1� �)35
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74 CHAPTER 1. THEORY OF GW INTERFEROMETERSIf we use the de�nitions of �A and �S, it is possible to show that�A � �S = 1� �which is particularly remarkable, being independent on the tuning of thecental cavity. After that, the sum �2A + �2S will obviously depend on thetuning : �2A + �2S = 1 + (1 � �)2 � �2(2� �)2�2 + 4f (0)2gIt is however reasonable to optimize the SNR for the lowest possible GWfrequency, i.e when f (0)g = fm = p1� �, situation in which we have �A =�S = p1� �. The optimumvalue of the recycling mirror re
ection coe�cientis simply [rr]opt = (1 � pr)rt(1� �)And the optimal peak value of jT10j isjT10jpeak = 2�L�p K(�)with the form factor K(�) = 2�p1 � �1 � (1� pRC)(1� �)2and 1 � pRC = (1 � pr)r2t . The form factor K has the maximum value 1,obtained for the approximate value � = (2pRC)1=3. But the shape of thecurve is so 
at, that this value is misleading, a value of K very close to 1 isobtained already for the pseudo- optinum � ' 20psr (see �g.1.30). The peakSNR at resonance is thereforeSNRpeak;Max = 2�L�p s PL2hP � h(�g)for a wide range of reference GW frequencies. For f (0) too small, however,the SNR falls to zero. Remark that this peak value scales as 1=p, whereasthe zero frequency limit of the (wideband) power recycling scales as 1=pp.The spectral density of h equivalent to shot noise is :h(f0) = s2hP�PL 1SNRpeak;Max
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Figure 1.30: Form factor K for the SNR vs �nesse � = pF=�. The whitedots are the strict optima, the black dots mark the pseudo-optimaFor cavity losses p = 310�5, l=3 km, � = 1:064 10�6 m, PL=20W, we haveh(f0) ' 2:3 10�25Hz�1=2It is now necessary to study the width of the resonance. For this purpose,we assume the laser being locked on the antisymmetric resonance, and thegravitational frequency in the neighbourhood of the gap f (0)g , i.e. fg = f (0)g +�f , so that �fA + fg = �fS + �f . Consider the SNR :SNR(�f) / 16FL� (1� �=2)2t2rfg(1 + 4�f2A)(1 + 4(�fA + fg)2)(1� rrrt�2A) (1� rrrt�2+e2i�)In this expression, the varying terms are :� The fast varying phase� = tan�1 "2(�fS + �f)1 � � #+tan�1 [2(�fS + �f)]�tan�1 "2�fS1� �#�tan�1 [2�fS]expanded at �rst order in �f this gives� = A�f with A = 4(2 � �)(1� � + 4�f2S)[(1 � �)2 + 4�f2S] [1 + 4�f2S ]



76 CHAPTER 1. THEORY OF GW INTERFEROMETERS� The re
ectivity of the cavities for the upper sideband :�2+ = 1� �(2� �)1 + 4(�fS + �f)2This di�ers from unity by a small amount, whose variation is like secondorder. More speci�cally, the second order expansion gives�2+ = �2S + 8�(2 � �)�fS(1 + 4�f2S) �f + 4�(2� �)(1� 12�f2S)(1 + 4�f2S)3We have already seen that the best value of � is very small, in order tohave a good re
ectivity of the cavities. It can be thus understood, andnumerically checked that the variations of �2+ around the S resonancecan be neglected.� The term, f (0)g + �f1 + 4(�fS + �f)2which varies very little.The study of the shape of the resonance line can thus be carried out on theonly term :j1� rrrt�2+e2i�j ' h(1� rrrt�2S)2 + 4rrrt sin2(A�f)i1=2= (1� rrrt�2S)2641 + 0@2qrrrt�2S sin(A�f)1� rrrt�2S 1A23751=2expression very similar to a cavity resonance, with the super�nesseSF = �qrrrt�2S1 � rrrt�2SThe linewidth (FWHM) od the SNR is thus :�fg = p3(1� rrrt�2s)Aqrrrt�2S
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z={@sp}/2z=π/2 z=3{@sp}/8z=3π/8 z={@sp}/4z=π/4Figure 1.31: E�ect of the detuning of the central cavity on the response ofsynchronous recycling interferometerA simpli�ed model will help to get simple estimates of the peak value andthe linewidth of the SNR. We have seen that small values of � are pseudo-optimal. We can then try a �rst order approximation in � and a fortiori inthe various losses. The SNR (with optimized recycling rate) becomes :SNR(fg) = 16FL�(1� �)fg(pRC + 2�)(1 + 4�f2A)(1 + 4�f2S)(1 � (1� pRC)(1� �)�2A)j1� (1 � pRC)(1 � �)�2S e2i�j �� s PL2hP� h(�g)It is easy to see that the 1st order expressions for the S and A detunings arerespectively : �fS = 1 � �=22 tan(z=4)�fA = � (1 � �=2) tan(z=4)2



78 CHAPTER 1. THEORY OF GW INTERFEROMETERSwhere z = 2kl is the tuning of the central cavity. we �nd then1 + 4�f2S = 1� � cos2(z=4)sin2(z=4)1 + 4�f2A = 1� � sin2(z=4)cos2(z=4)whence (1 + 4�f2S)(1 + 4�f2A) = 4(1 � �)sin2(z=2)and also �2S = 1� 2� sin2(z=4)�2A = 1� 2� cos2(z=4)The gravitational resonance frequency isf (0)g = �fS ��fA = 1� �=2sin(z=2)If we can neglect the ring cavity losses pRC (a few 10�5) with respect to �(up to 1%), we have simply1� (1� pRC)(1� �)�2S ' �[1 + 2 sin2(z=4)]1 � (1� pRC)(1� �)�2A ' �[1 + 2 cos2(z=4)]For the varying phase factor, we have� = 4(1 � �=2) sin2(z=4) �fThe SNR is :SNR = 8�L�p (1 � �=2)f (0)g sin(z=2)(1� �)[1 + 2 cos2(z=4)][1 + 2 sin2(z=4)]� 241 +  8 sin2(z=4)�[1 + 2 sin2(z=4)] �f!235�1=2 s PL2hP� h(�g)and �nally : SNR = 2�L� 1p (1� �=2) 4 sin(z=2)3 + sin2(z=2)



1.7. RECYCLING 79� 241 +  8 sin2(z=4)�[1 + 2 sin2(z=4)] �f!235�1=2 s PL2hP � h(�g)from where we conclude that the overall peak value, corresponding to z = �=2is SNRpeak;max = 2�L� 1p (1.28)This peak corresponds to the resonance frequencyf (0)g = 1� �=2in other words, the minimum resonance frequency is given by the linewidthof the cavity, and the minimum gravitational linewidth (FWHM) :�fFWHM;min = �p3In terms of gravitational frequencies, we �nd the relation with the cavitylinewidth : ��g;FWHM;min = p3 � ��FWHMLet us summarize the results for small � and z not far �=2 :� By varying the tuning of the central cavity, it is possible to adjust theresonance for a GW frequency equal to or larger than the linewidth ofthe cavities. The general formula is :�(0)g = 1� �=2sin(z=2) � ��FWHM (1.29)� The best response of the interferometer is obtained for the lowest GWfrequency, when the central cavity is exactly antiresonant (z = �=2),the value of the SNR resonance peak is:SNRpeak = SNRpeak;max � P (z) (1.30)where the maximum peak value has been expressed above (Eq. 1.28),and P (z) is a form factor, taking the value 1 for z = �=2 :P (z) = 4 sin(z=2)3 + sin2(z=2) (1.31)



80 CHAPTER 1. THEORY OF GW INTERFEROMETERS� When the central cavity is progressively detuned from antiresonance,the GW resonance frequency increases, the sensitivity decreases, andthe GW linewidth increases. The general formula for the GW linewidthis : ��g;FWHM = �p3 � 1 + 2 sin2(z=4)4 sin2(z=4) � ��FWHM (1.32)These approximations remain true as long as � does'nt exceed a few %.For very low gravitational frequencies, the linewidth has to be very thin, andthe �nesse very high, � cannot more be kept small and the approximationfails. In fact we already know from the preceding study that the SNR tendsto zero when the resonance peak tends to zero. The ratio �g=��g;FWHM givesan idea of the equivalent Q of the resonator. For the optimal operation point(z = �=2), we have Q ' 1�p3 = �p3pF1.7.4 Signal recyclingSignal recycling was proposed some years ago by B. Meers [2]. The idea isto add one more mirror after the output port of the interferometer in orderto store the sidebands generated by the GW. The dark fringe port plus thesignal recycling mirror form a resonant cavity whose re
ectivity can be tuned.The gravitational frequencies creating a sideband for which the signal cavityis antiresonant are enhanced. This allows to modify the sensitivity curve andhave a gain factor at a given frequency range of special interest. We haveseen other methods giving a comparable result. Here, one more bene�t is toenhance the constrast of the interferometer by the spatial �ltering e�ect ofthe extra Fabry-Perot installed at the output (But this is out of the scopeof the present chapter). The sketch of the setup and the notation are shownon Fig.1.32. The lengths of the short arms are a and b, the length of thepower recycling cavity is l, and the length of the dual recycling cavity isz. The parameters of the mirrors are labeled by r,s,d. The A133 operatorcorresponding to the whole setup may be constructed by successive shells.We �rst consider the Michelson (mic) as a black box having two inputs,West (as in the preceding sections) and South (because the dual recyclingreinjects from the South). It has therefore an A133 re
ectance RWmic anda transmittance TWm ic (see Fig.1.33). It has also a re
ectance RSmic and a
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DFigure 1.37: West input on a power and dual recycled MichelsonRpritf = �Rmic + rre2iklTmic h1 + rre2iklRmici�1 TmicFinally, the dual recycling setup (see Fig.1.37) has a transmittance for a westinput TD. TD = tdeikz h1 + rde2ikzRpritfi�1 TpritfAfter some elementary algebra, we �nd :TD;10 = �i trtd(1� ps)eik(l+2m+z)G+[1� i(1� ps)rde2ik(m+z)F+] [1 + i(1� ps)rre2ik(l+m)F ] (1.33)TD;20 = �i trtd(1� ps)eik(l+2m+z)G�[1� i(1� ps)rde2ik(m+z)F�] [1 + i(1� ps)rre2ik(l+m)F ] (1.34)It is easy ro recognize in these formulas the SNR for a power recycled Michel-son, as already derived in a previous section, multiplied by an extra surtensionfactor : SD = td1� i(1� ps)rde2ik(m+z)F+Remark the opposite signs in the two factors of the denominators : The beste�ciency is obtained for resonance in the recycling cavity, and antiresonancein the signal cavity. Obviously, the two sidebands cannot be both antireso-nant (except at zero gravitational frequency). if we choose for instance, tomake the (10)-component resonant. It is possible� to tune the long Fabry-Perot's at resonance, so that Arg(F ) = �,



1.7. RECYCLING 85� to tune the power recycling cavity so as to obtain resonance, by taking2k(l +m) + �2 � �the signal surtension factor may be written asSD = td1� rd(1� ps) �+ ei[�=2+2k(m+z)+Arg(F+)]where, f being the gravitational reduced frequency,�+ = 1� �(2� �)1 + 4f2Arg(F+) = � + tan�1 " 2f1 � �#+ tan�1[2f ]clearly, it is always possible to tune the dual recycling cavity to meet reso-nance, with the condition :2k(m+ z) + tan�1 " 2f1� �#+ tan�1[2f ] � �2The sharpness of the dual resonance is a function of rd (see Fig.1.38) If � issmall, we conclude that the detuning giving the sensitivity peak at given f0is � � �2 � 2tan�1(2f0)where we have set � � 4�(m+ z)=�. (see Fig.1.39)1.7.5 The signal extraction regimeWe remark that for � = ��=2, which corresponds to f0 =1, the sensitivityis almost 
at (there is a knee at a higher frequency). This regime, exhibiting abroadband response (broader than the standard recycling, and thus losing inmaximumsensitivity, for the same �nesse) was called 'Signal extraction' by J.Mizuno [5], [6]. The explanation is that the 
at curve is the result of a con
ictbetween the low-pass response of the Michelson (1=(1 + 4f2) and the signal-recycling gain factor which starting from a low value at f = 0 (the SNR is outof resonance though the FP's are resonant), increases sharply to a high and
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Figure 1.38: SNR of dual recycling con�guration for various recycling rates(values of rd)



1.7. RECYCLING 87

10 1 10 2 10 3 10 4
10-1

10 0

10 1

10 2

Gravitational frequency [Hz]

Sp
ec

tr
al

 s
en

si
tiv

ity
 (

ar
b.

 u
ni

ts
)

Standard power re
cycling

xxxxxxxxδ =  1.57

xxxxxxxxδ =  1.18

xxxxxxxxδ =  0.81

xxxxxxxxδ = -0.00
xxxxxxxxδ = -1.37 xxxxxxxxδ = -1.57

Figure 1.39: Spectral sensitivity of dual recycling con�guration for variousdetunings of the signal recycling cavity � � 4�(m+ z)=� [mod 2�]



88 CHAPTER 1. THEORY OF GW INTERFEROMETERSconstant value when the FP's arrive to anti-resonance. (recall that there is aphase 
ip when a FP transits from resonance to anti, that the antiresonancefrequency range is much larger than the resonance, especially at high �nesses,and that the re
ectance modulus is much higher at antiresonance than atresonance ). This result can be understood by looking at the expression ofthe SNR (1.33). Recall that, when the cavities are at resonance, the uppersideband generated by the GW in one cavity isG+ = i2FL(2� �)� 11� 2ifgand the re
ectance of the cavity for that upper sideband is�+ = � 1� � + 2ifg1� 2ifgwhere fg is the normalized gravitational frequency, i.e. the ratio of the grav-itational frequency to the linewidth of the cavity (fg = �g=��), and � thecoupling coe�cient. The SNR takes thus the form (up to a phase factor andneglecting the length of the SR cavity), when power recycling is resonant andsignal recycling antiresonant :TD;10 = 2FL(2 � �)� 11 � 2ifg Gr td1 + (1 � ps)rd 1��+2ifg1�2ifgwhere Gr is the resonant power recycling gain (unsensitive to GW frequency): Gr = tr1 � (1 � ps)rr(1 � �)This yieldsjTD;10j = 2FL(2 � �)� Gr ����� td1� 2ifg + (1 � ps)rd [1� � + 2ifg] ����� =2FL(2 � �)� Gr ����� td1 + (1 � ps)(1� �)rd � 2ifg [1� (1� ps)rd] �����Which makes clear that the bandwidth is now��g = ��1� (1 � ps)rd
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Figure 1.40: SNR in the regime of "signal extraction", i.e. � ���=2 [mod 2�], for several ratios s=L of the signal cavity. L is the lengthof the armsso that, even if the �nesse is very high, by increasing the recycling rate rd,it is possible to keep constant the product F [1 � (1 � ps)rd] and thus thebandwidth of the detector.It is even possible to play with the length of the signal cavity, assuminglengths much longer than the recycling cavity (see Fig.1.40). This createslocal resonance e�ects.It is interesting to note that it is possible, due to the e�ect mentionnedabove, to have almost exactly the same SNR spectral pro�le with standardpower recycling, and with power recycling + signal extraction. The followingextreme example will help to understand it.� Assume a power recycling interferometer having �nesse 100 long FPcavities. The optimumpower recycling rate corresponds to a surtension� 800. Starting from a 20 W laser, this gives � 18 kW on the splitter,and �nally about 500 kW in the FP cavities.
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Figure 1.41: Solid curve : Standard power recyling, with F = 100 and optimalrecycling. Short dashed curve : Dual recycling-Signal extraction, F = 1000,optimal recycling, r2d = 0.69. Long dashed curve : r2d = 0.4. Dotted line : r2d= 0.9.� Assume now a dual recycling interferometer in the signal extractionregime. The �nesses of the long FP cavities are 1000, and under optimalpower recycling, the power surtension is only � 80, which is � 1.6 kWon the splitter. The re
ection coe�cient of the signal recycling mirroris r2d = 0.69. The power stored in the FP's is still about 500 kW.� we can compare the SNR in the two situations (see Fig.1.41).� the coincidence is caused by the particular choice of rd. A smaller valuewould give a standard power recyling type response peaked at f = 0,a higher value would give a 
at response but with a loss of sensitivity.We see that the drawbacks caused by high powers (thermal lensing, thermaldistortions, radiation pressure, ...) are identical in the FP cavities in both



1.7. RECYCLING 91cases, but very di�erent in the power recycling cavity. This is of some im-portance when power dissipation is taken into account (see further chapters).The ultimate logics of the signal extraction regime is reached when the cav-ities are optimally coupled (all the light power is absorbed in the FP's), thepower recycling rate being zero, and nevertheless, the bandwidth large.
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Chapter 2Beam optics andInterferometers2.1 introductionIn interferometric GW detectors, we need to store light in long cavities inwhich light propagates back and forth. We have seen that a good re
ectivityof these cavities is a key condition for e�ciency in recycling. This re
ectiv-ity, combined with the ability to achieve a dark fringe have been an actualworry at the beginning of interferometer projects, and have triggered a lotof optical simulations of FP cavities and interferometers. It was essential tohave theoretical models for light propagation. The theory used up to nowfor this purpose is the Scalar Di�raction Theory (SDT) (this seemed su�-cient, owing to the very weak departure of the optical elements from an idealshape). The basis of the SDT is the Kirchho� equation, it seemed thereforeuseful to recall it and its derivation, in order to see clearly what means theparaxial approximation which is in fact more widely used.2.2 A short theory of di�raction2.2.1 The Helmholtz equationA component of the the real Electric �eld, say E(x; y; z) in a homogeneous di-electricmediumof refractive index n, obeys the wave equation (c = 2:997925�93



94 CHAPTER 2. BEAM OPTICS AND INTERFEROMETERS108km:s�1 being the speed of light in a vacuum)"�� n2c2 @2@t2# E(t; x; y; z) = 0 (2.1)The light coming from a laser can be viewed, in a naive representation asa pure monochromatic wave. In fact, real lasers have a �nite linewidth,and a �nite coherence range. So far as the dimensions of an optical systemare small compared to the coherence range, the monochromatic approxima-tion remains valid. The lasers used in gravitational wave interferometers arehighly stabilised in frequency and have huge coherence ranges. Even kilomet-ric optical systems may be treated assuming purely monochromatic waves.For a monochromatic wave of frequency � = !=2�, we can setE(x; y; z) = 12 �E(x; y; z) e�i!t + E(x; y; z) ei!t� (2.2)and for the amplitude E of the electric �eld, we obtain the Helmholtz equa-tion h� + k2iE(x; y; z) = 0 (2.3)where k � n!=c.2.2.2 The Kirchho� integralThis is usually the most delicate part in optics books, and often skipped bystressed readers. The role and the status of the Kirchho� theory is thereforeseldom known: Is it \exact" or \approximate", then with respect to what ?We try to address these issues and give answers at the end of the presentsection. Recall that for two arbitrary �elds A and B, we have a relationbetween a volume integral and an integral on the surface bounding the samevolume, known as Green's theorem:ZV (A�B �B�A)d~r = � IS "A @B@n �B @A@n # ds (2.4)~n represents the inward normal to the surface S surrounding the volumeV (see Fig.2.1). The following notation has been used:@@n � ~n � ~r
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Figure 2.1:Consider now a solution E(x; y; z) = E(~r) of the Helmholtz equation (2.3),and G(~r) a Green function, i.e. satisfyingh� + k2iG(~r) = � �(~r) (2.5)We have as well, �0 involving 2d order derivatives with respect to the primedcoordinates, h�0 + k2iG(~r � ~r0) = � �(~r � ~r0) (2.6)by multiplying both sides by E(~r0) , we can writeE(~r0) h�0 + k2iG(~r � ~r0) = � �(~r � ~r0) E(~r0)and obviously, with (2.3):G(~r � ~r0) h�0 + k2i E(~r0) = 0by subtracting these two equations, we get:E(~r0) �0 G(~r � ~r0) � G(~r � ~r0) �0 E(~r0) = � �(~r � ~r0) E(~r0)



96 CHAPTER 2. BEAM OPTICS AND INTERFEROMETERSConsider now a volume V in which Eq.(2.3) holds, bounded by a closedsurface S. By integrating the preceding equation over the volume, we get:E(~r) = � ZV hE(~r0) �0 G(~r � ~r0) � G(~r � ~r0) �0 E(~r0)i d~r0by using Green's theorem, this becomes:E(~r) = IS hE(~r0) ~n0 � ~r0G(~r � ~r0)�G(~r � ~r0)~n0 � ~r0E(~r0)i ds0provided the point ~r is inside the closed surface S. If the point is outside,the integral vanishes, and this property will be exploited below. Assume nowthat the surface S extends to in�nity. There are thus two half spaces that werefer to as the left half space, and the right half space respectively. On thesurface at in�nity, it can be shown that the surface integral vanishes, due tothe radiation condition on the �eld (outgoing waves, no source at in�nity).The result is that at any point ~r in the right half space we have:E(~r) = IS hE(~r0) ~n0 � ~r0G(~r � ~r0)�G(~r � ~r0)~n0 � ~r0E(~r0)i ds0 (2.7)whereas for ~r in the left half space, we have:IS hE(~r0) ~n0 � ~r0G(~r � ~r0)�G(~r � ~r0)~n0 � ~r0E(~r0)i ds0 = 0 (2.8)Now it is well known that a solution of Eq.(2.5) is the simple sphericalwave: G(~r) = eikr4�r (2.9)so that by taking G1(~r � ~r0) = eik�04��0with �0 = j~r � ~r0j, we have a Green function. Let us de�ne ~r0 =[x0; y0; z0]. Now, if we consider



2.2. A SHORT THEORY OF DIFFRACTION 97G2(~r � ~r00) = eik�004��00 (2.10)with �00 = j~r� ~r00j and ~r00 = [x0; y0;�z0], we note that it is the symmetricalof the preceding with respect to the plane z = 0. If the surface S is thisplane, any point in the right half space, will give a non-zero contribution bythe G1 integral, and a zero contribution by the G2 integral, the equations(2.7,2.8) being exchanged. We may thus add any multiple ofG2 toG1 withoutchanging the result:E(~r) = Z Zz=0 hE(~r0) ~n0 � ~r0G(~r; ~r0)�G(~r; ~r0)~n0 � ~r0E(~r0)i dx0 dy0 (2.11)where G = G1 + � G2 with � arbitrary. The special choiceG(~r; ~r0) = G1(~r � ~r0) � G2(~r � ~r00) (2.12)is especially interesting, because it gives a Green function that is zero onthe surface z = 0, which greatly simpli�es the equation. We obtain simplyE(~r) = Z Zz=0 E(~r0) ~n0 � ~rG(~r; ~r0) dx0 dy0 (2.13)this is the Kirchho� equation2.2.3 Application of the Kirchho� equationThe preceding equation, establishing a relation between the �eld inside avolume and the �eld at the boundary is exact, but taken in the strict sense,of almost no practical interest: It could seem that in order to compute E, we�rst need to know E, because the correct way to impose boundary values isout of this theory. It can however be widely exploited, by slightly changing itsmeaning, in the following situation. Assume that the surface z = 0 containsa hole, and that a primary electromagnetic wave is coming from the left (seeFig.2.2). We can assume that at the immediate right of the surface z = 0, the�eld is simply the �eld at the left, transmitted through the hole. This meansthat on the right side of the plane, the �eld is zero outside the hole, andidentical to the �eld coming from the left, within the hole. We can changethe sense of the Kirchho� equation (2.13) by introducing two �elds, one isthe coming one E1(~r), which is assumed to be given throughout the aperture
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Figure 2.2:D, and the second one E2(~r), which is to be computed from the precedingone by using a Kirchho�-like formula:E2(~r) = Z ZD E1(~r0) ~n0 � ~rG(~r; ~r0) dx0 dy0 (2.14)The function K(~r; ~r0) � ~n0 � ~rG(~r; ~r0) is called the Di�raction Kernel. Itcan be explicitly computed:K(~r; ~r0) = � i� eik��  1 + ik�! z�where � � q(x� x0)2 + (y � y0)2 + z2.With this explicit formula, we obtain:E2(~r) = � i� Z ZD E1(~r0) eik��  1 + ik�! z� dx0 dy0 (2.15)For a numerical implementation of Eq.(2.15), it is necessary to extract therapidly oscillating term in exp(ik�) by writing, with �2 � (x�x0)2+(y�y0)2,� = z + q�2 + z2 � z = z + �2pz2 + �2 + zso that eik� = eikz � exp " ik�2z +pz2 + �2# (2.16)



2.2. A SHORT THEORY OF DIFFRACTION 99The �rst exponential, rapidly oscillating represents pure propagation, andgoes out of the integral, whereas the second exponential is slowly oscillating,which is much more convenient, numerically. As a �rst example, we computethe di�raction pattern of a rectangular aperture illuminated by a constantamplitude. The aperture has its length [-b=-1cm,b=1cm] directed along y,and its width [-a=-0.5cm,a=0.5cm] along x. The distance of the observationplane is z=1 km, the wavelength is � = 1 �m. The computational windowcontaining the source was [-1 cm, 1 cm]� [-1 cm, 1 cm],and the discretizationgrid was 200 � 200 points. The well known far �eld theory [7] gives a centralspot of rectangular shape, with its longer dimension along x, and its shorteralong y. The dark lines correspond to solutions ofsin "kaxz # = 0i.e. xn = n�z2a = n � 10:6 cmand sin "kbyz # = 0i.e ym = m�z2b = m� 5:3 cmThe plot is logarithmic with respect of the light intensity (Fig.2.3)As a second example we compute using Eq.(2.15) the di�raction patternof a circular aperture illuminated by a constant amplitude. The radius ofthe aperture is a = 1 cm, the distance of the observator is z = 1 km, thewavelength is � = 1 �m. The window containing the source was [-1 cm, 1 cm]� [-1 cm, 1 cm], and the discretization grid used for numerical integrationwas 200 � 200 points. The far �eld theory foresees a central spot surroundedby rings, the dark rings correspond to solutions rdark ofJ1 �2�a�z r� = 0the �rst zeros of the Bessel functions J1 are�1 = 3:83171 ) rdark;1 � 6:5 cm
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Figure 2.3: Di�raction pattern of a uniform rectangular aperture a =1 cm,b=0.5cm, at z=1 km for the Nd:YAG wavelength: Distribution of log(I)
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Figure 2.4: Di�raction pattern of a uniform circular aperture a =1 cm atz=1 km for the Nd:YAG wavelength: Distribution of log(I), longitudinal cut�2 = 7:01559 ) rdark;2 � 11:9 cm�3 = 10:17347 ) rdark;3 � 17:2 cmThe plot (Fig.2.4) is logarithmic with respect to the light intensity. itcan be seen that the dark rings coming out of the numerical calculation arein agreement with the far �eld theory. The near �eld theory of this caseis analytically di�cult. Numerical exploitation of the Kirchho� formula,give access to the near �eld. See for instance a longitudinal (i.e. alongthe propagation direction z) cut of the intensity distribution (Fig.2.5). Inthis case, the circular aperture had 0.1mm radius. The transmitted �eldis computed starting from z = 0.01 mm. The two precedent di�raction
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Figure 2.5: Di�raction pattern of a uniform circular aperture a = 0.1 mmfor the Nd:YAG wavelength: Distribution of log(I)



2.2. A SHORT THEORY OF DIFFRACTION 103patterns are roughly known after their far-�eld approximation (see below).But let us consider a rather exotic window shape, as for instance a regular 5folded star (seee. �g.2.6). Even the far �eld is rather intricate to estimate.Use of the Kirchho� integral gives however the result at any distance: (seeFig.2.7). We give this example, because it cannot be treated analytically dueto the complexity of the aperture, nor even by the numerical (to be presentedfarther) Fourier transforms methods because of its sharp edges, this is a casewhere use of the Kirchho� formula is necessary. Finally let we consider thegaussian beam (this will be studied later in detail), of amplitudeE(x; y; 0) / exp "� x2 + y2w20 #in the plane z = 0. For w0=2 cm, this is the amplitude of the light takenat the input mirrors of the Virgo cavities. It seems to di�ract without anylobe, as can be seen on Fig.2.8. In fact, the amplitude extends to in�nity,even if it becomes negligible for radial distances larger than w0, whereas thecomputing window is �nite. It is necessary to take a window much largerthan the gaussian radius of the beam. Too narrow windows are understoodlike a diaphragm, and spurious rings are generated. In the preceding case,even with a computing window as wide as 30 cm, faint lobes can be observedon a logarithmic plot (see Fig.2.9).2.2.4 Consistency of the Kirchho� equationIt is not obvious by only looking at the Kirchho� formula (2.15), that thesecondary �eld E2 will reduce to the input �eld E1 when z ! 0, i.e. thatthe di�raction kernel tends to a delta function for z ! 0. Because we havechanged the meaning of the surface integral, the question of the agreementof the approximation done in the preceding subsection with reality could beraisen: Let us try to discuss this issue. The Kirchho� equation can be writtenunder the form:E2(x; y; z) = Z 1�1 dx0 Z 1�1 dy0 "@z0  eik�04��0 � eik�004��00!#z0=0E1(x0; y0; 0)(2.17)with
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Figure 2.7: di�raction pattern at 1 m from the starred source. The thincircle indicates the size of the initial starred window.
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Figure 2.8: Di�raction of a gaussian wave from 100 m to 3 km
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Figure 2.9: Di�raction of a gaussian wave from 100 m to 3 km,logarithmicplot



108 CHAPTER 2. BEAM OPTICS AND INTERFEROMETERS�0 = q(x� x0)2 + (y � y0)2 + (z � z0)2�00 = q(x� x0)2 + (y � y0)2 + (z + z0)2It is clear that the integral may be viewed as a 2D convolution prod-uct, and therefore may be transformed into a simple algebraic product bya 2D Fourier tranform in the variables (x0; y0). Recall that the 2D FourierTransform of any function f(x; y) of integrable square modulus is de�ned by:~f (p; q) = ZR dx ZR dy eipxeiqy f(x; y) (2.18)and the reciprocal transform byf(x; y) = 14�2 ZR dp ZR dq e�ipxe�iqy ~f(p; q) (2.19)A useful result can be found in [9]. The functiong(x; y; z) = eikpx2+y2+z22�px2 + y2 + z2has the following FT: ~g(p; q; z) = i eizpk2�p2�q2pk2 � p2 � q2After a Fourier transform, the Kirchho� equation becomes, using thisresult:fE2(p; q; z) = 24@z0 0@ i ei(z�z0)pk2�p2�q22pk2 � p2 � q2 � i ei(z+z0)pk2�p2�q22pk2 � p2 � q2 1A35z0=0 �� fE1(p; q; 0)and eventually reduces tofE2(p; q; z) = eizpk2�p2�q2 � fE1(p; q; 0) (2.20)



2.2. A SHORT THEORY OF DIFFRACTION 109which shows that the propagator, de�ned as the Fourier Transform ofthe di�raction kernel has the very simple form~G(p; q; z) = eizpk2�p2�q2 (2.21)We see that this is perfectly consistent with the Helmholtz equation,which becomes, after a FT:�@2z + k2 � p2 � q2 � ~E(p; q; z) = 0Anyway, for z! 0, the propagator reduces to 1, showing that the di�rac-tion kernel reduces to �(~r � ~r0), and the di�raction tofE2(p; q; 0) = fE1(p; q; 0) ) E2(x; y; 0) = E1(x; y; 0)as could be expected. We can conclude that, despite a serious change ofmeaning with respect to the Green theorem, the Kirchho� formula is strictlyequivalent to the wave equation, at least in the case where initial data aregiven on a plane screen. It follows that if convenient, it is possible to splitspace into successive slices along the propagation direction, the �nal data ofslice #n being the initial data for slice #(n+1), provided that re
ections ateach cut do not exist or are ignored. This scheme can be used in compoundsystems with interfaces, and as will be seen later on, in resonant cavities.We can add the following remark: If we interpret the 2D Fourier transformin the transverse plane as a continuous expansion on plane waves of variousdirections, by identifyingp = k sin � cos � ; q = k sin � sin �where (�; �) denote that direction, we see that the propagator is nothing butthe phase change along the z axis of this special plane wave:~G(p; q; z) = ~G(�; �; z) = eikz cos �2.2.5 The Fresnel approximation and the paraxial di�rac-tion equation (PDE)The Fresnel approximationAs soon as the distance z separating the input aperture from the observationplane is much larger than the wavelength, the 1=k� term in Eq.(2.15) becomesnegligible, and we can write:



110 CHAPTER 2. BEAM OPTICS AND INTERFEROMETERSE2(~r) = � i� ID E1(~r0) eik�� cos(�) ds0 (2.22)where � is the angle under which the element of aperture centered at(x0; y0) is seen from the observation point (x; y). Eq.2.22 is often referred toas the \Huyghens-Fresnel" equation. It can be (and was) derived heuristicallyby considering all points of the aperture as elementary sources of sphericalwaves: At any point of the right hand side half space, the amplitude is thesum of all these wavelets, and we can for instance say that the elementaryamplitude created at ~r by the small elementary sourceds(x0; y0) = E1(x0; y0)dx0 dy0is: dE2(x; y) = � Z ZD eik�� E1(x0; y0) dx0 dy0where � is some coe�cient to be determined. For this purpose, we can requirethat the propagation of an inde�nite plane wave is the same plane wave, upto a phase factor. This means thateikz = � Z ZR2 eik�� dx0 dy0The integral is easy to compute, being the value at p = q = 0 of the Fouriertransform of eik�=� that is known, as said above, we have thuseikz = � 242i� eizpk2�p2�q2pk2 � p2 � q235p=q=0 = 2i�eikzk �It is therefore necessary that � = �i=�. This was known long beforeKirchho�'s theory, which is the mathematical justi�cation to the Huyghensprinciple and to the Fresnel formula. If � in Eq.2.22 is small, we are in theparaxial regime. If the observation point is near the optical axis, and thedistance Z long enough, we can neglect the quantityq(x� x0)2 + (y � y0)2with respect to z, except in the phase factor. This leads to the paraxialdi�raction integral:



2.2. A SHORT THEORY OF DIFFRACTION 111E2(x; y; z) = � i�z exp(ikz) � (2.23)� Z ZD E1(x0; y0; 0) exp "ik (x� x0)2 + (y � y0)22z # dx0 dy0All consequences of this formula are said having been obtained withinthe Fresnel approximation. Remark that this equation is the convolutionproduct of the �eld E(z = 0) with the simpli�ed (paraxial) di�raction kernelKP(x; y; z) = � i�z exp "ikx2 + y22z #Use of the Fourier transform is especially convenient here, because theFourier transform of KP is easy to compute. For a function of the formG(x; y) = e�Z(x2+y2)where Z is any complex number of positive real part, it can be shownthat eG(p; q) = �Z e� p2+q24Z (2.24)in particular the propagator isgKP(p; q; z) = exp"�iz(p2 + q2)2k # (2.25)Obviously, we could have deduced it from the "exact" propagator~Gexact(p; q; z) = eizpk2�p2�q2by assuming that the values of p; q are restricted to small values due tothe behavior of the function to be propagated ("small" means p; q � k).This is one more version of the paraxial approximation, the di�raction is"adiabatic" along z (if z is regarded as an evolution parameter), so thatthe angles of the rays with respect to the axis are small. p; q;pk2 � p2 � q2may be thought of as the coordinates of the wave vector of an elementaryplane wave. Then , � being the direction of that elementary wave, we have� ' sin � = pp2 + q2=pk2 � p2 � q2. If � is small, we can thus write:



112 CHAPTER 2. BEAM OPTICS AND INTERFEROMETERS~G(p; q; z) = eikz � e�i z(p2+q2)2kAn alternative way of computing E2 is therefore:E2(x; y; z) = ggKP(p; q; z) � fE1(p; q; 0) (2.26)This is a very convenient way, as will be shown later.The Paraxial Di�raction EquationOne can derive from the Helmholtz equation an approximate equation calledThe paraxial di�raction equation (PDE) which is equivalent to theparaxial di�raction integral. Consider the Helmholtz equation:h�+ k2i E = 0 (2.27)If the �eld is expected to propagate mainly in the z direction, with a slowexpansion in the transverse plane, we can use the slowly varying envelopeapproximation scheme, i.e.E(x; y; z) = eikz � E(x; y; z)in which the envelope E(x; y; z) is assumed to depend slowly on z, therapidly oscillating factor having been extracted. More speci�cally, we intendto use the approximation @E@z � k Efor neglecting second order derivatives of E, so that the Helmholtz equa-tion becomes: [2ik @z + �T] E = 0 (2.28)where �T � @2x + @2yis the transverse Laplace operator.This is the PDE. It is clearly equivalentto the Fresnel integral, for by taking the Fourier transform of Eq.(2.28) withrespect to x; y, we obtain:



2.2. A SHORT THEORY OF DIFFRACTION 113h2ik @z � (p2 + q2)i ~E(p; q; z) = 0the solution of which is of the form~E(p; q; z +�z) = ~E(p; q; z)� exp "� i(p2 + q2)�z2k #in which we recover the propagator (2.25).2.2.6 The Fraunhofer approximationThe ultimate approximation for a di�racted wave holds when the very far�eld is considered. The Fresnel-Huyghens integral can be written as:E(x; y; z) = � i�z exp "i�x2 + y2�z # �ZR2 exp "i�x02 + y02�z # exp "�2i�xx0�z # exp "�2i� yy0�z # E(x0; y0; 0) dx0 dy0If we assume the transverse extension of the initial amplitude bounded by aradius a, the order of magnitude of the argument of the quadratic term inthe complex exponential is� < � a2�z = � � NFNF is called Fresnel number. If the observation distance is so large that NFmay be neglected, we can write simplyE(x; y; z) = � i�z exp "i�x2 + y2�z # �ZR2 exp "�2i�xx0�z # exp "�2i� yy0�z # E(x0; y0; 0) dx0 dy0which is nothing but the Fourier transform of the incoming amplitude:E(x; y; z) = � i�z exp "i�x2 + y2�z # ~E �2�x�z ; 2�y�z ; 0�



114 CHAPTER 2. BEAM OPTICS AND INTERFEROMETERSThis is the Fraunho�er approximation, and allows to compute quickly theproperties of the di�racted �eld for z very large. For instance, for a rectan-gular and uniform aperture [�a; a]� [�b; b], one �nds immediatelyjE(x; y; z)j2 = 16a2b2�2z2 �sinc�2�x�z � sinc�2�y�z ��2explaining the pattern of Fig.2.3. For a uniform circular aperture, r < a, we�nd jE(r; z)j2 = �ar J1 �2�ar�z ��2explaining the pattern of Fig.2.4. Anyway, in the very far �eld, when r=z issu�ciently small, we have I(0) � I0 � � S�z�2S being the area enclosed within the aperture, I(0) the intensity on axis inthe far �eld, and I0 the initial intensity. If we consider the total power P0passing through the aperture , we getI(0) � � S�2z2� P0The total power received by an equal area in the far �eld is P1 = S I(0), sothat we have the ratio P1P0 = � S�z�22.2.7 Representation of optical elementsThe action of thin optical elements, like thin lenses or nearly 
at mirrors onthe optical amplitudes can be modelled without using a di�raction integral.Consider for instance the re
ection o� a curved mirror of curvature radius Rcand diameter D. Assume the mirror to close the aperture in the plane z = 0(see Fig.2.10). Strictly speaking, the �eld arriving on the mirror's surfaceshould be computed fromn the �eld in the plane by Kirchho�'s equation. Itis more convenient to discuss in the Fourier space. Calling E1(x; y; 0) the�eld in the plane z = 0 , and E2(x; y; z) the �eld on the mirror's surface, wehave as seen in (2.20):
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z=f(x,y)Figure 2.10: re
ection o� a curved mirrorfE2(p; q; z) = eizpk2�p2�q2 � fE1(p; q; 0)The argument of the imaginary exponential can be written as:zqk2 � p2 � q2 = kz + z �qk2 � p2 � q2 � k�or zqk2 � p2 � q2 = kz � z(p2 + q2)2k 21 +q1 � p2+q2k2It is necessary to estimate the di�erent orders of magnitude of these terms.� The quantity p2+ q2 is determined by the spatial behavior of the inputwave. If the spatial frequencies are of the order of magnitude of w0, forinstance for a TEM mode of Fourier transform~�(p; q) = exp � w20(p2 + q2)4 !we have p2 + q2k2 � 4k2w20 �  ��w0!2 � �2g



116 CHAPTER 2. BEAM OPTICS AND INTERFEROMETERS�g being nothing but the divergence angle of the beam. For long base-line interferometers, this aperture is of the order of tens of microradians,for Virgo, �g = 1:7 � 10�5Rd. It is clear that we can neglect thisterm.� The argument of the imaginary exponential therefore reduces tozqk2 � p2 � q2 = kz � z(p2 + q2)2kbut z(p2 + q2)2k � z��w20 � zzRwhere zR is the Rayleigh parameter of the beam (see below), about 1kmfor GW interferometers, whereas z is of the order of tens of micrometers.More precisely, we have for a parabolic mirror zmax = D2=8Rc, on theother hand, the Rayleigh parameter is related to the curvature radius(in a 
at/parabolic cavity of length L) byzR = qL(Rc � L) = 1� � Rcwhere � = R=LqR=L � 1the factor � is of the order of the unity (For Virgo, � ' 2:97). Wehave thus: z(p2 + q2)2k � �8 �DRc�2Taking again Virgo �gures (D=35 cm, Rc=3.45 km) this is:z(p2 + q2)2k � 3:8� 10�9



2.2. A SHORT THEORY OF DIFFRACTION 117The conclusion is that we can write with a good accuracyfE2(p; q; z) = eikz � fE1(p; q; 0)which by inverse Fourier transform gives simplyE2(x; y; z) = eikz � E1(x; y; 0)In other words, in the Fresnel equationE2(x; y; z) = eikz Z Kp(x� x0; y � y0; z)E1(x0; y0; 0) dx0 dy0we have shown that the kernel Kp is a 2-D delta function for small z, so thatif we consider the amplitude on a surface of equation z = f(x; y), we canwrite simply E2(x; y) = eikf(x;y) � E1(x; y)For the re
ected wave E3(x; y; z), we reverse the point of view. If wewould compute E2 knowing E3 we would �nd (the propagation directionbeing reverse) E2(x; y) = e�ikf(x;y) � E3(x; y)Therefore E3(x; y) = e2ikf(x;y) � E1(x; y)and the re
ection operator is simply the phase factor ;R = e2ikf(x;y) (2.29)Let us recall that this only holds for "thin" optical elements, in the above dis-cussed sense. In particular, for a parabolic mirror, well adapted to gaussianbeams in the paraxial approximation, we haveR = exp"i 2�(x2 + y2)�Rc # (2.30)



118 CHAPTER 2. BEAM OPTICS AND INTERFEROMETERS2.3 Fundamental TEM modeIt is possible to �nd a special solution of 2.28 under the axially symmetricalform depending on two unknown functions of z:	(r; z) = eA(z) eikr2=2q(z)substituting this expression in 2.28 provides two coupled di�erential equa-tions: dqdz = 1 and dAdz = � 1qfrom where we get �rstly q(z) = q0 + zIt is convenient to choose the constant q0 in such a way that at z = 0, the waveis a real gaussian function of parameter w0. (i.e. of the form exp(�r2=w20)).This clearly happens if q0 = �ikw202 = �i bThe parameter b = kw20=2 is called Rayleigh range. We have then q(z) =z � i b, so that A(z) = ln � 1z � i b�+ CThe arbitrary integration constant C may be chosen in order to have A(0) =0, i.e. C = � ln(�1=ib), and thenA(z) = ln " 11 + iz=b#or as well A(z) = ln24 1q1 + z2=b235� i arctan(z=b)on the other hand we have, separating the real from the imaginary part of1=q: ik2q(z) = 1z + b2=z + ib+ z2=b



2.4. DISCRETE BASES FOR FREE SPACE PROPAGATION 119de�ning two new real functions , w(z) and R(z):ik2q(z) = � 1w2(z) + ik2R(z)The de�nitions of w(z) and R(z) are consequently:w(z) = w0q1 + z2=b2R(z) = z(1 + b2=z2)w(z) is the beam half-width at abscissa z, and R(z) is the curvature radiusat the same point. These two real functions have concrete optical meanings,but contain the same information as the complex function q(z) often calledcomplex curvature radius We have �nally the complete solution for theenvelope: 	(r; z) = 1q1 + z2=b2 e�r2=w(z)2 eikr2=2R(z) e�i arctan(z=b)The factor exp(ikz) may be added for representing the rapidly varying part.The extra phase arctan(z=b) appearing during propagation with respect toa plane wave is called Gouy phase. The solution 	(r; z) is a very specialone. One can �nd other solutions by considering the product of 	(r; z)by polynomials in the variables (x=w ; y=w). The solution 	(r; z) is calledTEM(0;0) propagation mode. It is the fundamental mode of two families ofmodes discussed below.2.4 Discrete bases for free space propagationThe set L2 of all complex functions f(x; y) of integrable square modulus maybe given the structure of a Hilbert vector space, by introducing the scalarproduct: h f ; g i = ZR2 dx dy f(x; y)g(x; y) (2.31)If we think to these functions in terms of optical amplitudes at a given pointof the path of a light beam having the preferred propagation direction z, wesee that kfk2 = h f ; f i = ZR2 dx dy jf(x; y)j2 (2.32)
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x,y

z

Figure 2.11: Di�raction of a gaussian wave: equal intensity and equal phasesurfacesis nothing but the light power of the beam crossing the transverse plane atz: restriction to L2 is therefore not too demanding. Obviously, a number ofbases can be constructed for this Hilbert space. It is possible to �nd discretebases, whose corresponding vectors are called Transverse ElectromagneticModes, and are labelled by two indices: TEM(m;n). The more often employedbases for studying cavities and laser beams, are the Hermite-Gauss modesHG(m;n) when rectangular coordinates are convenient, and the Laguerre-Gauss modes LG(m;n) when polar coordinates are convenient. The fundamen-tal mode has been de�ned above as: TEM(0;0)(x; y; z) = HG(0;0)(x; y; z) =LG(0;0)(x; y; z) is, with r2 � x2 + y2,TEM(0;0)(x; y; z) = s 2�w(z)2 eikz e�i arctan(z=b)e�r2=w(z)2 eikr2=2R(z) (2.33)where w(z) gives the radius of the beam, R(z) the curvature radius of thephase surface, b the Rayleigh range. The form of w(z) suggests a wideningof the beam (see Fig.2.11) during propagation, an angle aperture can beevaluated by limz!1 w(z)z



2.4. DISCRETE BASES FOR FREE SPACE PROPAGATION 121This gives the gaussian aperture angle�g = ��w02.4.1 Hermite-Gauss modesExtended solutionThe fundamental solution found above can be extended in the followingscheme. Let us look for solutions of the form:	(x; y; z) = eA(z)eikr2=2q(z)P [u(z)x]Q[u(z)y]where A and q are complex functions of z alone, whereas u is a real functionof z, and P;Q real functions. The reason for these choices are �rstly a sep-aration of the variables x and y, and secondly the clear necessity to includea variable scaling factor in the transverse plane accounting for the extensionof the wavefront, as seen in the fundamental mode. In this spirit, we ex-pect the unknown function u(z) to be inversely proportional to w(z). Afterstraightforward calculations, the paraxial di�raction equation becomes:2ik  @A@z + 1q! P (X)Q(Y ) + k2r2q2  @q@z � 1! P (X)Q(Y )++ 2ik  @u@z + uq! x@P@XQ(Y ) + y@Q@Y P (X)!+u2  @2P@X2Q(Y ) + @2Q@Y 2P (X)! = 0 (2.34)where we used the notations X � u(z)x and Y � u(z)y. Now we require thefunction q(z) to be the same as in the fundamental solution, i.e.@q@z � 1 = 0in order to keep the same dependence for the width of the beam, and forthe curvature radius of the wavefront. Now we furthermore require thatseparately: u2 @2P@X2 + 2ikx @u@z + uq! @P@X + �0P = 0 (2.35)



122 CHAPTER 2. BEAM OPTICS AND INTERFEROMETERSand u2 @2Q@Y 2 + 2iky @u@z + uq! @Q@Y + �00Q = 0 (2.36)where �0; �00 are real arbitrary constants. Owing to the fact that u must bereal, as also P and Q, it is necessary that@u@z + uqbe purely imaginary. This is<(@u@z + uz � ib ) = 0or 1u @u@z = � zz2 + b2which gives the obvious solutionu(z) = �pb2 + z2where �, an arbitrary constant, may be chosen in such a way that u(0) =p2=w0. This is �nally u(z) = p2w(z)w(z) being the function de�ned above in the fundamental solution. But now,we have: @u@z + uq = ibuz2 + b2= i 2p2kw3so that eq.2.35 becomes:2w2 @2P@X2 � 4w2X @P@X + �0P = 0or @2P@X2 � 2X @P@X + �0w22 P = 0 (2.37)



2.4. DISCRETE BASES FOR FREE SPACE PROPAGATION 123We know that polynomial solutions of eq.2.37 exist, if�0w22 = 2nwhere n is any integer; in this case, eq.2.37 de�nes the Hermite polynomialof order n. P (X) � Hn(X)Obviously, the same discussion holds for eq.2.36, and with�00w22 = 2mwe �nd Q(Y ) � Hm(Y )Now, eq.2.34 reduces to:2ik  @A@z + 1q!� (m+ n) 4w2 = 0or @A@z + 1z � ib + i(m+ n)b(1 + z2=b2) = 0so that: A(z) = ln� 1z � ib�� i(m+ n) arctan�zb�and eA(z) = (1 + z2=b2)�1=2 e�i(m+n+1) arctan(z=b)The HG basisIt has been shown that the PDE has Hermite-Gauss solutions of the formHG(m;n)(x; y; z) = cm;n eikz Hm  p2 xw(z)! Hn  p2 yw(z)! �e�i(m+n+1) arctan(z=b) e�r2=w(z)2 eikr2=2R(z) (2.38)where the functions Hn(X) are the Hermite polynomials and cm;n a normal-ization constant to be de�ned later.Several properties of these functions are very convenient, and we recallthem herafter without any proof.



124 CHAPTER 2. BEAM OPTICS AND INTERFEROMETERS� The Hermite polynomials are de�ned by:Hn(x) = ex2  � ddx!n e�x2 (2.39)� The explicit expression is:Hn(x) = [n=2]Xs=0 (�1)s n!(n � 2s)!s! (2x)n�2s (2.40)(the bracket means the integer part)� They obey the following di�erential equation:H 00n(x)� 2xH 0n(x) + 2nHn(x) = 0� Their derivatives are given by:H 0n(x) = 2nHn�1(x)� They obey a recurrence relation:Hn+1(x) = 2x Hn(x) � 2n Hn�1(x) (2.41)� They obey an orthogonality relationZ 1�1 Hm(x)Hn(x) e�x2dx = p� 2mm! �mn (2.42)The normalization constants for the HG modes are therefore:cm;n = � 2�w2 12m+nm! n!�1=2 (2.43)� They obey as well a closure relation:1p�Xp 12pp! Hp(x)Hp(x0) e�(x2+x02)=2 = �(x� x0) (2.44)



2.4. DISCRETE BASES FOR FREE SPACE PROPAGATION 125� There is a translation formula:Hn(x+�=2) = nXk=0 Ckn Hn�k(x) �k (2.45)(it can be shown using the recursion formula)� There is a scaling formula:Hn(�x) = [n=2]Xk=0 n!k!(n� 2k)! �n�2k ��2 � 1�k Hn�2k(x) (2.46)� There is a reduction formula:Hm(x)Hn(x) = min(m;n)Xs=0 m!n! 2s(m� s)!(n� s)!s! Hm+n�2s(x) (2.47)� It is possible to give the general expression of the Fourier Transform ofany mode ; We even give a more general formula under the followingform. Let	(m;n)(Z; x; y) = Hm �p2 xw� Hn �p2 yw� exp �Z x2 + y2w2 !where Z is any complex number of positive real part. The Hermite-Gauss functions correspond to Z = 1. The Fourier Transform is:e	(m;n)(Z; p; q) = �w2Z � iZ�m+n �2Z � Z2�(m+n)=2 �Hm  pwp2p2Z � Z2! Hn  qwp2p2Z � Z2! exp "�w2(p2 + q2)4Z #(2.48)For Z = 1 (HG functions) this is simply:e	(m;n)(1; p; q) = �w2 im+nHm  pwp2! Hn  qwp2! exp "�w2(p2 + q2)4 #In a certain sense, we see that the HG modes are eigenvectors of theFourier transform. The special case Z = 2 givese	(m;n)(2; p; q) = �w22  ipw2p2 !m  iqw2p2 !n exp "�w2(p2 + q2)8 #



126 CHAPTER 2. BEAM OPTICS AND INTERFEROMETERS� There is a useful Fourier transform:1p� Z e�x2Hn(x) eipx dx = (ip)ne�p2=4 (2.49)note that this formula has nothing to do with the Fourier transform ofa TEM mode, rather with the FT of the product of two modes.� A consequence of the preceding integral (or an application of the gen-erating function as well) is the expansion of a plane wave in terms ofHermite polynomials:eipx = e�p2=4 Xn�0 (ip)n2nn! Hn(x)� The �rst Hermite polynomials are explicitly:H0(x) = 1H1(x) = 2xH2(x) = 4x2 � 2H3(x) = 8x3 � 12xH4(x) = 16x4 � 48x2 + 12H5(x) = 32x5 � 160x3 + 120xH6(x) = 64x6 � 480x4 + 720x2 � 120etc...The intensity pattern of some HG functions is shown on the �gures 2.12,2.13, 2.14.2.4.2 The Laguerre-Gauss modesUsing polar coordinates (r; �) instead of (x; y) in the transverse plane, a newclass of solutions to the PDE can be found, of the formLGm;n(r; �; z) = cm;n eikz  p2 rw(z)!n L(n)m (2r2=w(z)2)�
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130 CHAPTER 2. BEAM OPTICS AND INTERFEROMETERSe�i(2m+n+1) arctan(z=b) e�r2=w(z)2 eikr2=2R(z) cos(n�) (2.50)The functions L(n)m (X) are the generalized Laguerre polynomials. Theyare de�ned by L(n)m (x) = exm! xn  ddx!m �xn+me�x�They obey the recursion relation:(m+ 1)L(n)m+1(x) = (2m+ n + 1� x)L(n)m (x) � (m+ n)L(n)m�1(x)The �rst ones are as follows: L(n)0 (x) = 1L(n)1 (x) = n+ 1� xL(n)2 (x) = (n+ 1)(n + 2)2 � (n+ 2)x + x22L(n)3 (x) = (n+ 1)(n + 2)(n+ 3)6 � (n+ 2)(n+ 3)2 x + n + 32 x2 � x36L(n)4 (x) = (n+ 1)(n+ 2)(n + 3)(n+ 4)24 � (n+ 2)(n + 3)(n+ 4)6 x ++ (n+ 3)(n+ 4)4 x2 � n+ 46 x4 + x424The normalization relation for the Laguerre polynomials comes from [11]:Z 10 L(n)m (x)2 xn e�x dx = (m+ n)!m!so that the normalization constants cmn are:cmn = 2w s m!� (1 + �n0) (m+ n)!As a special case, we see that the LGm;0 modes have all the same normaliza-tion: cm;0 = s 2�w2The intensity pattern of some LG modes is given in the maps 2.15,2.16,2.17,.
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Figure 2.18: Any Fabry-Perot cavity with curved mirrors2.5 Fabry-Perot: paraxial approximationIt has been seen that the free space propagation operator has, in a certainsense eigenmodes called TEMm;n modes. They have the signi�cant two fol-lowing properties:� They are of �nite transverse extension, there is already a storage in thetransverse plane� They have a parabolic equiphase surfaceThe second property allows to make "matched" mirrors, of shape adaptedto the equiphase surface, re
ecting the mode on itself (see Fig.2.18) A modematching two parabolic mirrors not always exists, depending on the curvatureradii of the mirrors and on the cavity length. Consider for instance a plane-spherical cavity with a plane input mirror M1, and a spherical mirror M2of curvature radius Rc, at a distance L. in order to be matched to M1, thestored wave must be at its waist at z = 0 on the input plane. Then, the



2.5. FABRY-PEROT: PARAXIAL APPROXIMATION 135stored wave must have a phase curvature radius of Rc at z = L, so that wecan write Rc = L 1 + b2L2!b (Rayleigh parameter) having the de�nition previously encountered. Thisgives b = qL(Rc � L)Clearly, this is possible only if Rc > L. This is a stability condition for thattype of cavity. If this condition is ful�lled, the cavity is able to store anyTEMm;n mode, provided it is near resonance. The size of the waist isw0 = q�b=�The resonance condition, assuming a �=2 dephasing at each re
ection,is : � � 2(m+ n + 1) tan�1 �Lb � � 2p�the eigenmodes of the cavity are thus labeled by 3 integers, exactly as themodes of a closed box. The frequency spacing between modes is a veryimportant feature in a cavity. If two modes have by chance close eigenfre-quencies, a class of perturbations of the mirrors having the right symmetrywill pump power from one mode to the other due to the �nite linewidths (seebelow). In particular, if the cavity is operated on its fundamental mode, it isbetter to choose the geometrical parameters in such a way that the nearesttransverse modes (m;n) 6= (0; 0) are well separated from the reference mode.The TEM0;1 and TEM1;0 modes are especially well coupled with the TEM0;0in case of misalignment of mirrors. Let us discuss this issue now. We call�m;n;p the total dephasing of the m;n; p mode over a round trip in the cavity.We have:�m;n;p = 4��m;n;pLc � 2(m+ n+ 1) tan�1 �Lb � + � = 2p�We see that the frequency gap between two successive longitudinal reso-nances, or Free Spectral Range (FSR), (�p = �1), is ��FSR = c=2L. wesee that the frequencies of the modes are given by�m;n;p = ��FSR �p� 12 + (m+ n+ 1)��



136 CHAPTER 2. BEAM OPTICS AND INTERFEROMETERSwith � = tan�1(L=b)=�. Assume the operation mode has frequency �0;0;p0,the distances of the other modes are:��m;n;p = �m;n;p � �0;0;p0 = (p � p0 + (m+ n)�) ��FSR (2.51)The distribution of resonances being periodic, it is su�cient to study it overa FSR. Given the length L of the cavity, the curvature radius Rc can bechosen under the following constraints:� it must be larger than L� it must not cause a too large magni�cation factor between the inputmirror and the end mirror� it must give a value of � such that equation 2.51 has no zero solutionsfor (m;n) small.In the case of Virgo, the length of the arms is L = 3km and the curvatureradius of the end mirror Rc = 3.45 km, so that � ' 0.38238. The frequencyo�sets of the 15 nearest tranverse modes are given in the following table.Mode order (m+n) Frequency o�set (Hz)8 2950.623 7352.1611 10302.786 14704.3214 17654.941 19105.869 22056.484 26458.0212 29408.647 33810.1815 36760.792 38211.7210 41162.345 45563.8813 48514.49Remark that the (0,1) and (1,0) modes are well separated from the (0,0),and that there is no coincidence for orders lower than 15. The nearest arethe family (m+n=8) which are not easy to couple to (0,0) by a simple per-turbation.
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Figure 2.19: Intracavity mode intensity (solid lines) in a 12 m long 
at/
atcavity for gaussian input wave w0=2 cm for two �nesses. Dashed lines :gaussian input wave times the surtension2.6 
at cavitiesIt is intersting to check what happens when a gaussian mode is launchedin a cavity involving 
at mirrors. This would happen in the Virgo centralzone, in the absence of cavity end mirrors. This is also what happens tothe sidebands when antiresonant. Assume the input wave at its waist, ofhalf width w0. The re
ection on 
at and perfect mirrors does not a�ect thedi�raction of the beam, so that the mode inside the cavity, of amplitudeE(r) can be expressed as the sum of gaussian waves with increasing width,curvature radius and Gouy phase. Let L be the length of the cavity andb � �w20=� the Rayleigh parameter of the beam. We have:E(r) = t 1Xn=0Rn e2inkLw0wn exp "� r2w2n + i kr22Rn � i arctan 2inL=b#



138 CHAPTER 2. BEAM OPTICS AND INTERFEROMETERSwhere R � r1 r2 (the product of the re
ectivities of the mirrors, t the trans-mission of the input mirror, and:wn = s1 + �2nLb �2Rn = 2nL + b22nLIt is easy to check that this is as well:E(r) = t 1Xn=0Rn e2inkL 1Zn exp "� r2w20Zn #A numerical investigation shows that the maximumsurtension is obtained for2kL � �, and con�rms the intuitive idea that the intracavity mode is closeto the incoming one multiplied by the surtension of the cavity (see Fig.2.19),for a moderate �nesse, and is widely spread for a high �nesse. The re
ectedwave may have a distorted wavefront for high cavity �nesses (see Fig.2.20).2.7 Hypergaussian modes2.7.1 constructionIt will be shown in a foregoing section that the thermal noise (random motionof the mirror's surface) depends on the area of the light spot on the mirror.Large spots are better than sharp. With this respect, it appears than gaussianmodes are not the best choice. The idea of constructing more homogeneousmodes has been proposed long time ago by laser scientists in order to betterexploit ampli�er media: such modes are called hypergaussian. A way ofconstructing almost 
at modes has been explored by D'Ambrosio ([16]). Inthis work, D'A. was dealing with a symmetrical cavity. In the case of plane-spherical cavities, we try a similar method. On the assumed 
at input mirror,we consider the �eld as a superposition of gaussian modes according to :	(x; y; 0) = 1�b2 Z� dx0 dy0 �(x� x0; y � y0)where � is the disk of radius b, centered at (x = 0; y = 0), and where�(x; y) = s 2�w20 exp "�x2 + y2w20 #
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Figure 2.20: Wavefront of re
ected wave (solid lines) in a 12 m long 
at/
atcavity for gaussian input wave w0=2 cm for two �nesses. Dashed lines : �tof spherical wavefronts: R=3000 m for F=50, R=1300 m for F=500



140 CHAPTER 2. BEAM OPTICS AND INTERFEROMETERSis a classical TEM00 mode. In other words, 	 is the superposition of suchmodes with various o�sets, uniformly distributed on the disk of radius b.Remark (though it is fairly clear) that 	(x; y; z) is actually a solution of theparaxial di�raction equation, for it is a linear combination of solutions. It isstraightforward to express the �eld propagated at a distance z, propagationof each elementary gaussian mode being known:	(x; y; z) = 2s 2�w2 w2b2  00(r; z)e�iArctan(z=zR) (r � qx2 + y2)with  00(r; z) � Z b=w0 e�Z(r=w�u)2 e�2Zru=w I0(2Zru=w) u duwhere Z � 1�iz=zR (zR � �w20=� being the Rayleigh parameter), and whereI0(z) denotes the 1st kind modi�ed Bessel function. w is the beam width atthe distance z, i.e. w = w0q1 + z2=z2RFollowing E.d'A, we have taken the following values (L being the length ofthe cavity): w0 = s�L� ' 3:2 cmb = 4w0 ' 12:8 cmThe integral  00(r; z) can be evaluated numerically by a simple Simpsonnumerical integration technique, the function exp(�z)I0(z) having a quitesimple behavior. The initial intensity pro�le is as shown on Fig.2.21 Theintensity pro�le after 3 km propagation is plotted on Fig.2.22. The wavefrontis shown on Fig.2.232.7.2 Angular aperture and Fourier transformIt is remarkable that the mode is practically unchanged along the propaga-tion. The di�cult point is to make a mirror having the pro�le shown onFig.2.23. The aperture angle of the beam is obviously much smaller than thegaussian's. On the 
at mirror, The beam may be viewed as the convolutionproduct of a gaussian of waist w0 with a uniform distribution on the diskr < b. The Fourier transform of the beam amplitude is therefore the simple
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Figure 2.21: Intensity pro�le on the 
at input mirrorproduct of the Fourier transform of the elementary gaussian beam with thatof the disk. A detailed calculation gives thus,~	(p; q; 0) = 2q2�w20 exp ��w20�2=4� J1(�b)�bwhere �2 � p2 + q2. By identifying � = k �, we getj~	(p; q; 0)j2 = / exp ��2�2=�2g� "2J1(�=�b)�=�b #2where �g = �=�w0 is the gaussian aperture angle, and �b = �=2�b is theBessel aperture angle. For w0 = 2 cm and b = 10 cm, �b happens to be 10times smaller than �g, and the aperture angle is practically determined by �b(see Fig. 2.24). This is consistent with the fact that the width of the beamis practically constant along the di�raction length.
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Figure 2.22: Intensity pro�le at 3 km2.7.3 NormalizationIt is di�cult to compute directly the power carried by such a mode by simplyintegrating the intensity in the plane (x; y). Instead, we do it in the Fourierspace. Owing to the Parseval-Plancherel theorem, we can write for the normP : P = Z j	(x; y)j2 dx dy = 14�2 Z j~	(p; q; 0)j2 dp dq (2.52)so that, using a precedent result:P = 2 w20b2 � 2 Z 10 exp(�w20x2=2b2) J1(x)2x dx (2.53)The integral can be carried out, yielding:P (w0; b) = 2 w20b2 F00 (2.54)with F00 � 1 � exp(�b2=w20) hI0(b2=w20) + I1(b2=w20)i
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Figure 2.23: Wavefront at 3 kmwhere I0(z) and I1(z) are the modi�ed Bessel functions of the 1st kind. Whenw0 is small, so that b=w0 is large, using the asymptotic values of the Besselfunctions we get:F00 � 1� 2w0p�b "1 � w208b2 � 3w40128b4 � 45w603072b6 � :::# (2.55)The normalized 
at mode at its waist is:	(x; y; 0) = 1� bw0p2F00 Z� dx0 dy0 �(x� x0; y � y0) (2.56)and �nally, at any distance z:	(x; y; z) = e�i arctan(z=zR)�� 2ww0bp�F00 Z b=w0 exp h�Z(r=w � �)2i exp(�2Zr�=w) I0(2Zr�=w) � d�(2.57)with the same notation as above:Z � 1 � iz=zR; zR � �w20=�; w � w0qZ:Z
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Figure 2.24: Angular distribution of the 
at beam. Solid line: gaussian dis-tribution, dashed line: circular aperture. Red dashed line: resulting angulardistribution



2.7. HYPERGAUSSIAN MODES 1452.7.4 Coupling with gaussian beamsIt is of some importance to know the coupling rate of such 
at beams withordinary gaussian modes. We can for this compute the scalar product of the
at mode 	(x; y) with for instance the fundamental gaussian mode of waistw : �00(x; y), at their common waist:�00 � h	; �00i = s 2�w2 s 2�w20 1�b2 Z� dx0 dy0 ZR2 dx dyexp "�x2 + y2w2 # exp "�(x� x0)2 + (y � y0)2w20 # (2.58)after some elementary algebra, we �nd:�00 = 2w0wb2 (1 � exp"� b2w20 + w2#) (2.59)The power directly coupled from a gaussian beam into a 
at beam (i.e. �200)is thus extremely weak. We give on Fig.2.25 a plot of this power transferversus the waist of the incoming gaussian beam, showing that only a fewpercent of the power can be this way injected in a 
at beam. The couplingbecomes worse and worse as the parameter b increases, and as the parameterw0 decreases (the most the 
at beam is interesting for thermal noise, theworst is its direct coupling to a gaussian beam). It is thus necessary todevise other ways of coupling power into 
at-beam cavities.2.7.5 Di�raction losses of 
at beamsFlat beams have been seen to have a wide extension on the mirrors (this isexactly the reason why they have been designed). It may be useful to havean idea of the di�raction losses for such modes. How the clipping of thebeam by a �nite mirror reduces the re
ected power. The following �gure(2.26) shows the decrease of di�raction losses for two cases :b = 10 cm, 12cm and w0 = 3.2 cm. We see that for Virgo-like mirrors (a = 17.5 cm), thedi�raction losses are negligible.
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Figure 2.25: Coupling rate of a gaussian beam of waist w into a 
at mode ofparameters w0; b. Solid line: b = 10 cm, w0 = 2 cm. Short dashed line : b =12 cm,w0 = 2 cm. Long dashed line : b = 10 cm, w0 = 1 cm.
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Figure 2.26: Di�raction losses of a 
at beam of parameters b = 10 cm (solidline), b = 12 cm (dashed line) and w0 = 3.2 cm
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Chapter 3Numerical methodsAn optical instrument is generally composed of optical elements like lenses,mirrors, and of space between them. For studying any property of the in-strument, we have to represent the action of each of these elements on alight beam. Everyone understands that space produces a di�raction of thebeam, thin lenses or almost 
at mirrors pure refraction or re
ection, andthick lenses both. There are a lot of ways of representing numerically a lightbeam, for, instance:� by sampling its complex amplitude on a rectangular grid in the x; yplane� by mapping it on a polar mesh in the (r; �) plane� by expanding it on a discrete basis of modesto each of these decisions correspond a special way of computing the �elddi�racted at a distance z. The method to choose depends obviously of thetype of e�ects we want to analyze. In the case of axial symmetry, the polarrepresentation will be convenient. In case of very small misalignments ofmirrors in a resonant cavity, the modal expansion will do the job. Anyway,each of the corresponding algorithm belong to the class of "spectral methods"expanding the optical amplitudes on a basis of simple functions for which thedi�raction/refraction problem is already solved. These simple functions willbe � plane waves in the case of Fourier (or Hankel) transform based methods� TEMm;n modes (HG or LG) in the modal methods149



150 CHAPTER 3. NUMERICAL METHODS3.1 Numerical propagation using Fourier trans-forms3.1.1 On the discrete Fourier transformWhen the complex amplitude is sampled on a rectangular grid with equallyspaced sampling points, it is possible to use a discrete 2D Fourier Transformto propagate the �eld. The Discrete Fourier Transform (DFT) comes fromthe crude approach of the numerical Fourier Transform of any function �(t)which is zero outside the interval [0,T ]. The Fourier Transform then reducesto: ~�(f) = Z T0 e2i�ft �(t) dtFor a numerical integration, we can cut the interval in N slices of width�t = T=n, and write approximately:~�(f) = TN N�1Xj=0 e2i�fjT=N�(jT=N)Now it is possible to sample the function in the frequency domain too. Thesmallest frequency interval we can consider is obviously �f = 1=T , becausethe longest time interval on which the function � can be studied is T . Thesampling will thus be: fm = m� 1Tand the samples of the Fourier Transform are:e�m � e�(m=T ) = 1N N�1Xj=0 e2i�mj=N�j (3.1)with the notation �j = �(jT=N). Eq.(3.1) expresses the DFT.If we consider the vector e�m, several remarks arise� It is easily seen that e�m+N = e�mshowing that the DFT has period N with respect to m, it is thereforesu�cient to compute fe�m ; m = 0; : : : ; N � 1g.



3.1. NUMERICAL PROPAGATIONUSING FOURIERTRANSFORMS151
∆ f f=2∆ f ∆ ff=-2 f=- ∆ ff=f=0

3210 N-2 N-1Figure 3.1: Assign frequencies to the DFT samples� Clearly m = 0 corresponds to the mean of the function �(t), and thusto the value at f = 0 of its Fourier transform. Now, it is easily seenthat e�N�m = e��mand as a result, the second half of the vector fe�mg contains the negativefrequencies (see Fig.(3.1))� The maximum frequency is thusfmax = �N2 � 1T� Consider a Fourier transform followed by the reciprocal:e�m = 1N N�1Xj=0 e2i�mj=N�j(as already seen, the time element is T=N , and the frequency elementis 1=T , so that the time � frequency element is 1=N) thenee�n = 1N N�1Xm=0 N�1Xj=0 e2i�m(j�n)=N�jbut �N + 1 � j � n � N � 1, so thatN�1Xm=0 e2i�m(j�n)=N = e2i�(j�n) � 1e2i�(j�n)=N � 1 = ( 0 if j 6= nN if j = nand consequently,



152 CHAPTER 3. NUMERICAL METHODSee�n = �n (3.2)which shows that the "approximate" of the inverse FT is the exactinverse of the "approximate" FT. Practically, when implementing anyDFT algorithm, this is the �rst property to check.� Let us denote here by g�N;mthe N -points DFT of �. Assume that N = 2N 0 even, and m = 2m0too. We can writeg�N;m = TN N�1Xj=0 e2i�mj=N�j = T2N 0 2N 0�1Xj=0 e2i�m0j=N 0�jBy splitting the sum into two segments we getg�N;m = 12 TN 0 N 0�1Xj=0 e2i�m0j=N 0�j + 12 TN 0 2N 0�1Xj=N 0 e2i�m0j=N 0�jand by renaming j = j0 +N 0 in the second sum,g�N;m = 12 TN 0 N 0�1Xj=0 e2i�m0j=N 0�j + 12 TN 0 N 0�1Xj0=0 e2i�m0j0=N 0�j0+mif we note �(1) and �(2) the two halves (of lengths N 0 = N=2) of theinput vector � (of length N), we have the following propertyg�2N 0;2m0 = 12 � g�(1)N 0;m0 + g�(2)N 0;m0� (3.3)In the case where m = 2m0 + 1 is odd, we have:g�N;m = 12 TN 0 N 0�1Xj=0 e2i�m0j=N 0ei�j=N 0�j � 12 N 0�1Xj0=0 e2i�m0j0=N 0ei�j=N 0�j0+m



3.1. NUMERICAL PROPAGATIONUSING FOURIERTRANSFORMS153If we introduce the new function 	j � e2i�j=N � �j , we see that thepreceding equation reads:g�2N 0;2m0 = 12 � g	(1)N 0;m0 + g	(2)N 0;m0� (3.4)and the conclusion is that the N -ranks Discrete Fourier Transform es-sentially reduces to two N=2-rank partial transformations of the twohalves of the input vector. This is the fundamental remark that led toFFT algorithms. FFT routines allow to compute rank N DFT's withNLog2N algorithms instead of N2. The result is a tremendous increaseof the computational speed of Fresnel di�raction (FFT) compared tothe general Kirchho� integral. The gain is for a 2 dimensional FT:" NLog2N #2for N = 128 this is a gain larger than 300 ! But this is at the price of arestriction of the validity of the method (very small di�raction angles).It must be clear that the result of a DFT is not a sampling of the result ofthe continuous transformation. The �nite step integration which was at thestarting point of the algorithm can only converge towards the true FT as Nincreases. The linear algebra involving vectors of size N and rank N DFT'sis perfectly closed due to eq.(3.2), but it represents a world di�erent fromreality. We give for instance the result of a basic experiment. We considerthe function F (t) = exp � t22� 2!in our experiment, we take the time constant �=1s. Its Fourier transform is:~F (f) = p2� � exp�� 12(2�f� )2�and we compare a N -sample of the continous FT of F to the DFT of aN -sample of F (see table (3.1.1)). The interval over which the function issampled is called window. The size of the window must be chosen such thatthe function takes vanishing values near the ends of the window. Moreover,there is an optimal density of samples, which implies that when the size ofthe sample is changed, the size of the window giving the optimal agreementchanges too.



154 CHAPTER 3. NUMERICAL METHODSSample size Optimal window rms error16 10s 6.9 10�732 14s 1.8 10�1264 17s 7.2 10�17In this case, it can be seen that increasing the size of the sample is useless,since at N=64, the ultimate precision of the computer is reached.We have seen that the DFT has the dichotomic property, reducing inprinciple a N -DFT to two N=2-DFT's. The basic of the FFT is to recursivelycompute any N -DFT from a series of initial 2-DFT's. In this elementaryscheme (due to J. Cooley and J. Tukey [10]), N has obviously to be aninteger power of 2. Moreover, it is clear that the number of recursions islog2(N), so that the number of operations, grows as N � log2(N), whichis a tremendous improvement with respect to the naive DFT scheme. Forinstance, in a 2D Fourier Transform, if a 1024�1024 2D sample is needed,FFT provides a factor of roughly 104 gain in CPU time. All other propertiesare exactly those described for the DFT.The Fourier Transform of the paraxial di�raction kernelK(x; y;�z) = � i��z exp �ik(x2 + y2)2�z !is: fK(p; q;�z) = exp �i�z(p2 + q2)2k !Now, if we intend to use a DFT for computing the di�raction integralaccording to the schemeE2(x; y; z +�z) = ggKP(p; q;�z) � fE1(p; q; z) (3.5)we need the discretization of fK(p; q;�z) with respect to p; q. We remem-ber that the frequency increment in the DFT is �f = 1=T where T is thetime window. In terms of spatial circular frequencies, the increment will be�p = 2�=Fx, where Fx is the x side of the 2D spatial window. We have also�q = 2�=Fy. The discretization is therefore of the form:fK(m;n;�z) = exp "� i ���z  m2F 2x + n2F 2y !#



3.1. NUMERICAL PROPAGATIONUSING FOURIERTRANSFORMS155If we remember that the DFT has a speci�c way of sorting the frequencies,we could think that we have to correctly arrange the FFT of the input �eld,before multiplying by ~K. Clearly, it is more e�cient not to correct theFFT's, but rather write the propagator according to the same convention.For a square computation window of size window the FORTRAN sequencecalculating fK(i; j; z), could be:mil=n/2+1do i=1,nif (i.le.mil) thenind1=i-1elseind1=i-1-nendifdo j=1,nif (j.le.mil) thenind2=j-1elseind2=j-1-nendifsquare=ind1**2+ind2**2phase=-pi*lambda*z*square/window**2ktilde(i,j)=cmplx(cos(phase),sin(phase))enddoenddo3.1.2 FFT-based propagation algorithmsA step �z of propagation will be carried out following the scheme showed onFig.3.2, and propagation steps can be linked into series corresponding to thevarious interfaces of an optical system. The optical amplitudes are sampledon a rectangular grid (it is not necessary to use a square grid. If we havespatially squeezed beams, one direction can be larger and more sampled thanthe other). Call a(i,j) the complex array (of size n�n) representing theamplitude at z = 0. The propagation step is for instancec-------------------------------------------------------------c the subroutine named cfft2d(m,n,ar,iflag) represents any
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z∆

Multiply by propagator

FFTFFT
-1

Direct space

Fourier spaceFigure 3.2: propagation stepc procedure carrying out the 2D-FT of a complex arraycc m,n : size of the array to be transformedc ar : the array to be transformed, and on return, thec transformed arrayc iflag = 1 : direct transformc iflag = -1: inverse transformc------------------------------------------------------------call cfft2d(n,n,a,1)do i=1,ndo j=1,na(i,j)=a(i,j)*ktilde(i,j)enddoenddocall cfft2d(n,n,a,-1)c-------------------------------------------------------------after what a(i,j) represents the propagated amplitude. Mirrors are sam-pled on the same grid, and represented by complex arrays:c-------------------------------------------------------------subroutine defmirr(n,window,reflect,radius,curvature,mir)cc returns an array of samples of the phase equivalentc of the mirror for given parameterscc n : rank of the arraysc window : computation windowc reflect : photometric amplitude reflectivity



3.1. NUMERICAL PROPAGATIONUSING FOURIERTRANSFORMS157c radius : radius (half size) of the mirrorc curvature : inverse of curvature radiusc mir : returned array representing the mirrorc implicit nonec integer n,i,jreal*8 reflect,radius,curvature,pi,x,y,rp2real*8 window,lambda,dx,phasecomplex*16 ci,mir(n,n)c data pi/3.141592653589793d0/data ci/(0.d0,1.d0)/data lambda/1.064d-6/c dx=window/ndo i=1,nx=(i-1)*dx-window/2do j=1,ny=(j-1)*dx-window/2rp2=x*x+y*yif (rp2.gt.radius*radius) thenmir(i,j)=0elsephase=2*pi*rp2*curvature/lambdamir(i,j)=ci*reflect*dcmplx(dcos(phase),-dsin(phase))endifenddoenddoreturnendA re
ection will then be carried out by a simple term to term product of theamplitude by the mirror :do i=1,ndo j=1,naref(i,j)=ain(i,j)*mir(i,j)enddo



158 CHAPTER 3. NUMERICAL METHODSenddoThe main example we shall study is the case of a Fabry-Perot cavity. In fact,round trips in the cavity will be implicitly replaced by a direct propagationthrough a series of thin lenses. It is remarkable that propagation looks justlike a lens (see below) in the Fourier space, so that di�raction and refractionprocesses are exchanged by the FT. As an example we can make the followingnumerical experiment. Start from the TEM00 amplitude at its waist (thissituation exists at the corner mirrors of the Virgo cavities, with w0 '2 cm,then propagate over the distance L =3 km, �rst by using the analyticalformula giving the continuous paraxial result, second by using one step ofthe FFT scheme, with a sampling of n�n over a grid of size s. Then makenumerically the two wave interfere. For measuring the distance between twocomplex amplitude arrays, we use the Hilbert Space metrics:d(e1; e2) = 24 sn n�1Xi;j=0 je2;ij � e1;ijj2351=2which maybe interpreted as the square root of the total power in the inter-ference of the two waves. The following table gives an idea of the convergenceof the discrete world towards continuous.Sample size Optimal window rms error32 34 cm 4.9 10�564 49 cm 1.6 10�8128 70 cm 4.9 10�15256 81 cm 8.3 10�15Now, we can also propagate a TEM00 wave having such a waist (w0 � 2cm) that the curvature radius of its wavefront matches a 3.45 km curvatureradius mirror. In the paraxial theory, starting from the waist (plane wave),the re
ected wave exactly coincide, after the return trip, with the original.We can carry out this experiment by numerical propagation, and comparethe image after the round trip with the original. The result depends of thesize of the window, and on the sampling rate. We see on (Fig.3.3) these de-pendences. The di�erence between the theoretical propagated mode and thenumerically propagated one can be visualized as an interference (see Fig.3.4).The shown intensity distribution represents the computational noise, and thecross pattern re
ects the square grid used for the discrete sampling in thewindow.
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Figure 3.3: Round trip error vs window size (m). n=50 (squares) n=100(circles), n=150 (triangles)
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Figure 3.4: Interference fringe between exact and numerically propagatedTEM00



3.1. NUMERICAL PROPAGATIONUSING FOURIERTRANSFORMS1613.1.3 Finding the �eld re
ected o� a resonant cavityAssume an amplitude Ein(x; y) is entering a Fabry-Perot cavity. The intra-cavity �eld B(x; y) obeys the following equation:B = t1 Ein � r1r2 M1 � PL �M2 � PL B (3.6)(see Fig.1.6 for notation). M1;2 are the re
ection operators on the twomirrors respectively, for instance given by (2.30). Mathematically, this isan implicit linear equation, and it could be in principle solved by matrixinversion. But for a n�n sampling grid, the linear operator PL is a n2�n2 rankoperator, which, for large n would lead to invert huge matrices. It is thereforemuch more convenient if possible, to solve eq.(3.6) by successive iterations,provided some inital guess of the intracavity �eld. For instance, if we studysmall geometrical defects of the mirrors surfaces, the initial guess could bethe ideal TEM00 mode �00(x; y), with the correct surtension coe�cient:Bguess(x; y) = < Ein;�00 > t11 � r1r2 �00(x; y)But other choices are possible. The speed of the convergence to thesolution depends on the �nesse of the cavity. Once the intracavity �eldB(x; y) is found, the re
ected amplitude is obtained byEout = M�1Ein + PL �M2 � PLB. It is possible to bring into evidence the various eignemodes of a parabolicFabry-perot cavity. In the following numerical experiment we try to scanthe di�erent resonances of a VIRGO type cavity by adding a varying phase� 2 [0; 2�] to the propagator, in order to simulate the �ne tuning of thecavity. The inital tuning is assumed to correspond to a TEM00. If the input�eld is a pure TEM00, we see only the resonances of the fundamental (Fig3.5),other modes being orthogonal to the input �eld are never excited. In orderto excite higher order modes, we have to take an input �eld not strictlyorthogonal to the TEM00. For instance, adding terms in x; y2 ; x3; : : : tothe phase of the input wave allows resonances of TEMmn up to m+ n = 4,as can be seen on �g.3.6. A more accurate study shows that the resonancesare slightly di�erent from their theoretical values. This is a consequence ofthe discretization of the �eld, of the mirrors, of the propagator. The discreteworld has di�erent rules. By increasing the order of the calculation (the
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Figure 3.5: Fabry-Perot cavity : resonances of the fundamental mode
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Figure 3.6: Fabry-Perot cavity : excitation of the TEMm;n modes. Dashedlines correspond to the �rst theoretical resonances, and are labeled by m+n.



164 CHAPTER 3. NUMERICAL METHODSpreceding was carried out on a 64�64 grid), this small discrepancy vanishes.In order to drive the cavity exactly at resonance, it is necessary to achievea �ne tuning of the propagator. The brute force method would consist incomputing the power in the intracavity �eld for various values of the varyingphase precedingly introduced, and search for the maximum, but this wouldresult in a very time costly code. It is better to use the following scheme.Let us denote by C the cavity operator:C = M1 � PL � M2 � PLand � an arbitrary phase representing the �ne tuning of the cavity. Theintracavity �eld B obeys the implicit equationB = t1 A + ei�C B (3.7)where A is the input �eld. If the input �eld is the fundamental mode TEM00with an amplitude a, and if for the sake of simplicity we note f p ; p =1; 2; : : : ;1g (with a unique index) the basis of TEM modes, we can write:B = b0 0 + Xp>0 bp pFor a small perturbation, the coe�cients fbp ; p > 0g are �rst order quanti-ties. By taking the scalar product of eq.3.7 with the fundamental, we getb0 = t1a + ei� 24b0 <  0 ; C  0 > + Xp>0 bp <  0 ; C  p >35At the lower order we getb0 = t1 a1 � ei� <  0 ; C  0 >making clear that the value of � which corresponds to resonance is� = �Arg [<  0 ; C  0 >]The one way propagator must therefore be corrected by the phase factorei�=2The phase discrepancy � of discrete vs continuous eigenmodes of thecavity is given in the following table.



3.1. NUMERICAL PROPAGATIONUSING FOURIERTRANSFORMS165Sample size Optimal window phase corr.32 34 cm -7.4 10�8 Rd64 49 cm -4.5 10�15 Rd128 70 cm -6.1 10�16 Rd3.1.4 The Michelson InterferometerIt is easy to model a Michelson interferometer having two cavities as arms,for instance is order to study the �eld re
ected o� a cavity having imperfectmirrors, we take a perfect reference cavity and recombine the two re
ected�elds. Denoting by E1 ; E2 the amplitides re
ected by the two cavities, thetotal output �eld is Etot = E1 + ei� E2where � represents the di�erential optical path between the two arms. It isnecessary to adjust this phase to obtain the darkest �eld. In the ideal case,the phase is � and the resulting �eld is zero. In the general case, let< E1 ; E2 > = jE1j:jE2j ei�it is easy to obtain the following equation for the power ;Ptot = �qP1 �qP2�2 + 4qP1 P2 sin2[(� � �)=2]so that it is clear that we must take � = �, i.e.ei� = < E1 ; E2 >jE1j:jE2jAs an example, we consider a Michelson having the same parameters asVirgo, and in which one spherical mirror has a wrong curvature radius (1%error): After computation, we read that the relative power on the dark fringeis 1:6 10�3, the intensity �eld having the structure shown on Fig.3.7. Theinterference between the two slightly di�erently curved wavefronts gives aseries of rings of which one is visible in the non zero zone of the globallygaussian intensity. Another example corresponds to a misalignment of amirror. For instance a corner mirror of one cavity has a pointing error of10�8 Rd. The relative power on the dark fringe is 4:810�8. The structureof the fringe (see Fig.3.8) is analogous to the intensity pattern of a TEM01mode.
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Figure 3.8: Michelson interferometer: Dark fringe pattern for 10�8 Rd point-ing error on a corner mirror



168 CHAPTER 3. NUMERICAL METHODS3.1.5 The power-recycled Michelson interferometerIt is possible to model a power recycled interferometer by an external loop,starting on an estimate of the recycled �eld E then involving two subloopsfor describing the two FP cavities. A such code would be however very timeconsuming without necessity. It is much more convenient to use one loop.We begin by a �rst estimate of the recycled �eld E and of the two intracavity�elds F1 and F2 (see Fig.3.9 for notation) We denote by Ri; Ti respectivelythe operators associated to the re
ection and the transmission of mirrorMi.The 6 mirrors involved are: the recycling mirror MR, the corner mirror M11and the far mirror M12 of the North cavity, and the corresponding M21,M22 for the West cavity. The splitter is MS. We start from three estimates(E;F1; F2) of the internal �elds corresponding to the easily computed idealsituation (perfect mirrors), then new estimates can be computed accordingto the following scheme:Enew = TRA+RR [P1R11P1 + P2R21P2] Eold+RRP1T11C1 F old1 +RRP2T21C2 F old2F new1 = T11P1Eold +R11C1 F old1F new2 = T21P2Eold +R21C2 F old2where Ci denotes a round trip in cavity#i (i.e. propagation/re
ection/propagation),P1 a propagation along the North short arm through the splitter, and P2 apropagation from South to West by re
ection on the splitter. Then the pro-cess is iterated until the hilbertian distance between two successive estimatesis small enough. At the end, the �eld in the dark fringe is B given byB = [RSP 01R11P1 + TSP 02R21P2] E +RSP 01T11C1 F1 + TSP 02T21C2 F2For instance, we have taken the maps of two recently produced end mir-rors (C01077 and C02017 respectively), and used the preceding algorithmfor checking the best mutual attitude of both when installed in a power-recycled interferometer. The two mirrors are not perfectly identical, as wellfor the curvature radius than for the roughness pattern. The following tablesummarizes the main parameters:Mirror # Curv. Rad. Matched Waist RMS roughnessC01077 3584 m 2.12 cm 2.8 nmC02017 3624 m 2.15 cm 3.6 nmThe roughness maps are shown on Fig.3.10 and Fig.3.11 respectively
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Figure 3.12: Power on dark fringe for various mutual angles (see text forcomments)It is instructive to run the code with di�erent mutual angles. The two sur-face maps may be rotated in the (x; y) plane by angles �1 and �2 respectively,and the dark fringe computed as above. The results are summarized in thefollowing plot (Fig.3.12): The various types of dots correspond to consistencetests. The red squares are obtained by setting the rotation angle of map #1to zero and varying the roation angle of map #2. The green crosses areobtained by the inverse calculation: map #1 is left unchanged, and map #2rotated by opposite angles. Cyan triangles are obtained by rotating the twomirrors by indentical angles. The fact that the values found for the sameangular di�erence but di�erent o�sets are only almost equal is due to thenecessary interpolation that causes some 
uctuations of the mirrors surfaces.A merit �gure proportional to the SNR can be evaluated according to theformula M = sPic1 Pic2Prec



3.1. NUMERICAL PROPAGATIONUSING FOURIERTRANSFORMS173where Pic1 (resp. Pic2) is the power in cavity #1 (resp. # 2), and Prec thepower in the recycling cavity. It is known (Chapter I) that the signal to noiseratio of a recycled Michelson with FP cavities is� proportional to the �nesse of the two cavities. The �nesse of a cavitycan be estimated by F = �2 PicPinwhere Pin is the incoming power. We have here Pin � Prec=2, so that,for our two cavities: F1;2 = � Pic1;2PrecThe two cavities having in general di�erent �nesses, we take the geo-metric average, so that: F = �sPic1 Pic2P 2rec� also proportional to the square root of the power stored in the recyclingcavity,This explains the structure of the merit factor. Its optimum value corre-sponds to a recycling surtension of 50 and cavity �nesses of 50. For 1 Wlaser power, this is Prec = 50 W, so that the power entering the cavities isPin = 25 W, and the intracavity power Pic = 25W � 2 � 50=� = 795.8 W.The maximum merit factor is thereforeMmax = 795:8=p50 = 112:54W1=2The quantity plotted on Fig.3.13 (red squares) is M=Mmax � SNR=SNRmaxBecause the mirrors have not exactly the same curvature radii, the questionof the mode to be injected in the interferometer could be raised. It seemsreasonable to choose a waist such that the curvature radius of the wavefrontmatches the averaged curvature radius of the two mirrors, i.e. 3604 m. InFig.3.14 we have varied the input waist and computed the correspondingmerit factor. In Fig.3.14,
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Figure 3.13: SNR vs mutual angle of end mirrors (red squares), relative poweron the dark fringe (green triangles)
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176 CHAPTER 3. NUMERICAL METHODSthe red sqares correspond to the actual SMA mirrors in the nominalreciprocal attitude (marks up). The green disks correspond to the samesituation (di�erent curvature radii) but with zero residual roughness. Theblue crosses correspond to two identical mirrors without roughness, of samecurvature radius 3604 m. In all cases, mirrors have a �nite size (35 cmdiameter). The computation grid was a 1m side square, giving 256�256samples. The three dotted vertical lines correspond to values of w0 suchthat the wavefront has respectively 3854m, 3604m, 3624m curvature radius.Finally, in the best situation, the dark fringe has the following pattern (seeFig.3.15):
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178 CHAPTER 3. NUMERICAL METHODSThe three black circles have diameters respectively w0 = 2.135 cm, 2w0and 3w0, where w0 is the waist (gaussian radius of the spot on the mirror).3.1.6 On the intrinsic limitation to basic DFT-basedalgorithmsWhen chosing the spatial window and the rank of the transform, special caremust be taken of the angular limitation induced by the �nite sampling ofoptical amplitudes. We know that the maximum spatial frequency, for therank N and the window F is pmax = N�FThis is a limitation on the structure of the admissible optical amplitudes: iftheir variations are of scale shorter than �min � 2�=pmax = 2F=N , cor-responding to the Shannon frequency, aliasing will follow, and the algorithmfails. The Fourier variable p being interpreted as a transverse component ofan oblique wave vector, we can set pmax � k�max where � represents thepropagation direction with respect to the main optical axis. We can thuswrite: �max = N�2F = �2DD being the size of the sampling interval. This means that larger divergencesare forbidden. For a gaussian beam of amplitudef(r) = exp h� r2=w20 ihaving a Fourier transform given by~f(�) = �w0 exp h � �2w20=4 iwith �2 = p2 + q2, by substituting � = k�, we get~f(�) = �w0 exp h��2 = �2giwhere �g � �=�w0 is the gaussian divergence angle of the beam. Thespectrum becomes negligible for �0 = �� �g where � of the order of 3 or 4.Owing to the condition �0 < �max, we get the conditionD < �w02�



3.1. NUMERICAL PROPAGATIONUSING FOURIERTRANSFORMS179On the other hand, the window must be signi�cantly larger than w0, sayF > � w0, so that we get the new limitationD > �w0NThe compatibility of these two conditions requires thatN > 2�2�which is easily met. However, we would have serious troubles if after di�rac-tion, the intensity distribution were out of, or larger than the computationwindow.3.1.7 Propagation with magni�cationIf a beam is foreseen as very divergent, it may be di�cult to choose a windowand a sampling rate adapted to the situation. For intance assume we wantto propagate a TEM00 mode of waist w0 = 5 mm, over a distance of L =3 km (the wavelength is about 1 �m). The beam width after di�raction onthe distance L is w1 � 203 mm. If we decide to take a common squarecomputation window at both ends of the path, we see that is must be muchlarger than w1, say F � 10 � w1 � 2m. This implies that the maximumspatial frequency is pmax = 2�F � N2where N is the sampling rate. Now, the Fourier transform of the input beamis ~�(p; q) = q2�w20 exp h�(p2 + q2)w20=4iso that the maximum frequency can be estimated at aboutpmax = 5=w0 = 103 m�1by comparing with th epreceding expression of pmax, we getN � 640which is very demanding in terms of memory and cpu time. Moreover, in theinitial window, the wavefront is certainly undersampled, and the preceding



180 CHAPTER 3. NUMERICAL METHODSrough estimation based on a pure TEM is still optimistic for a distortedwavefront. It is therefore sometimes mandatory to use a modi�ed paraxialalgorithm based on a function and coordinates transform. Let us return tothe paraxial di�raction equation:(2ik@z +�T ) 	 = 0where 	(x; y; z) is the unknown wave function, and �T � @2x+@2y. After anidea proposed by Sziklas and Siegman ([13]), consider a new wave functionF (x; y; z) de�ned by	(x; y; z) = 1z exp hikr2=2zi F (x; y; z)F obeys the following partial di�erential equation:"2ik@z +�T + 2ikz (x@x + y@y)# F = 0If now we introduce the new coordinates:x0 = �xz (3.8)y0 = �yz (3.9)z0 = �2 � 1z0 � 1z � (3.10)where � and z0 are arbitrary constants, it is easily seen that the di�ractionequation becomes (2ik@z0 +�0T ) F = 0in other words, the paraxial di�raction equation is invariant under the com-bined transformation of function and coordinates. We can exploit this fact,in the case of strong focusing or defocusing to remove the convergent or di-vergent part of the �eld. Consider a freely di�racting wave which has a beamwidth w0 at z = 0, and a beam width w1 at z = L (see Fig.3.16), we maychoose the constants � and z0 in such a way that the change of coordinatesfollows the transverse extension of the �eld, namely take � = z0 andz0 + Lz0 = w1w0



3.1. NUMERICAL PROPAGATIONUSING FOURIERTRANSFORMS181this determines z0: z0 = Lw1=w0 � 1the new coordinates are now x0 = z0z x (3.11)y0 = z0z y (3.12)z0 = z0 � z20z (3.13)so that the initial plane is located at z = z0 wherez00 = 0; x00 = x; y00 = yand the �nal plane at z = z0 + L, wherez01 = w0w1 L; x01 = w0w1 x; x01 = w0w1 yConsequently, the coordinate change is smooth on the initial plane; in otherwords, the initial data may be given in the initial coordinates. The procedurefor numerical propagation is therefore the following:� The initial wave function 	0(x; y; z) is given, and the propagation stepL is �xed.� On computes the magni�cation factor w1=w0 for the propagation step(this can be estimated by analogy with a gaussian beam).� One changes of wave function by the formulaF0 = exp h�ikr2=2z0i 	0where z0 � L=(w1=w0 � 1).� one chooses the window appropriate for F0, and propagates the �eldusing the propagatorPL = exp "�i (p2 + q2)�z02k #where �z0 � w0L=w1.



182 CHAPTER 3. NUMERICAL METHODS� get the propagated wavefunction F1(x0; y0), and return to the true wavefunction by	1(x0; y0) = z0z0 + L exp hikr2=2(z0 + L)i = w0w1 exp"ik r02(z0 + L)2z20 # F1(x0; y0)be aware that the transverse coordinates are now rescaled according tothe magni�cation factor.It may be very instructive to examine step by step what happens to apure TEM00 (an analytic calculation is possible) when treated this way. Theinitial wave function is: 	0(x; y) = e�r2=w20z0 being computed, we obtained the corrected wave functionF0(x; y) = e�r2=w20 e�ikr2=2z0 = exp"� r2w20  1 + i bz0!#where b � �w20=�. The Fourier transform is:fF0(p; q) = �b1 + ib=z0 exp"�w20(p2 + q2)4(1 + ib=z0)#we obtain the propagated wave in the Fourier space byfF1 = P (�z0)� fF0where (�z0 � Lz0=(z0 + L)):P (�z0) = exp "� i w20(p2 + q2)�z04b #we �nd, after a reciprocal Fourier transform:F1(x0; y0) = 11 + i�z0(1 + ib=z0)=b exp "� r02w20 b(1 + ib=z0)b+ i�z0(1 + ib=z0)#the propagated function is thus	1(x0; y0) = z0z0 + L 11 + i�z0(1 + ib=z0)=b �



3.1. NUMERICAL PROPAGATIONUSING FOURIERTRANSFORMS183� exp(� r02w20 " b(1 + ib=z0)b+ i�z0(1 + ib=z0) � ib(z0 + L)z20 #)or as well 	1(x0; y0) = 11 + iL=b exp "� r02w20 w21w20 11 + iL=b#= w0w1 exp "� i atan(L=b)� r2w21 + ik r22R#withR � L(1+b2=L2), which is the classical result (see a preceding section) ofgaussian optics. It is thus checked that the preceding method gives the sameresult as the direct calculation giving directly 	1 from 	0. This result is notvery interesting by itself, but the detailed calculation allows to understandhow the new algorithm maps a diverging beam onto a collimated one. Let usexamine the nature of the corrected waves F0 and F1 used as intermediarydata. We have �rstly 	0 = e�r2=w20we know from the theory of gaussian beams thatw1 = w0q1 + L2=b2 = w0q1 + �2(� � L=b); consequently, z0 = L=(q1 + �2 � 1)the corrected function is then:F0 = exp(� r2w20 "1 + i p1 + �2 � 1� #)the propagator may be written as:P (p; q) = exp "� i w20(p2 + q2)4 �p1 + �2#by taking the Fourier transform of F0, multiplying by P and applying areciprocal Fourier transform, gives the propagated corrected wave functionas: F1(x0; y0) = exp(� r02w20 "1 � i p1 + �2 � 1� #)



184 CHAPTER 3. NUMERICAL METHODSwhere we see that the new wave has the same width w0 and an opposite radiusof curvature. The initial wave has been transformed into a collimated wavepropagating without magni�cation between z0 and z0 + L. The divergingbehavior of the wave is recovered through the homothetic transformation ofcoordinates at the end.3.1.8 O�-axis propagationWhen the incidence angle is not zero, the Fourier transform of the incomingamplitude may exceed the limits of the Fourier window, although the behav-ior of the �eld is quite reasonable. It is possible to suppress this e�ect simplyby translating the Fourier transform. Assume the incidence angles are (�; �)and set p0 � k� cos�; q0 � k� sin �. If the incoming amplitude is denotedby 	1(x; y), it is likely that its Fourier trnasform is peaked at (p0; q0) andpossibly out of the Fourier window. Let us de�ne a corrected �eld byF1(x; y) = 	1(x; y) � e�ip0x e�iq0ythe desired e�ect follows immediately:~F1(p; q) = ~	1(p� p0; q � q0)showing that the FT has been translated in the Fourier plane to reach acentral position. Now, we can propagate the corrected �eld over a distanceL. If the propagated �eld is 	2 and the corrected propagated �eld F2, wecan write: ~F2(p; q) = exp �ikL� i L2k (p2 + q2)� ~	1(p� p0; q � q0)and by taking the reciprocal transform:F2(x; y) = eikL 14�2 Z dp dq e�iL(p2+q2)=2k ~	1(p� p0; q � q0)= eikLe�ip0x�iq0y 14�2 Z dp dq e�iL[(p+p0)2+(q+q0)2]=2k ~	1(p; q)= exp "ikL 1 � p20 + q202k2 !# e�ip0x�iq0y e�ikL	2(x+ Lp0=k; y + Lq0=k)



3.1. NUMERICAL PROPAGATIONUSING FOURIERTRANSFORMS185the factor of exp(�ikL) comes from the fact that our de�nition of 	2 (thepropagated �eld) implicitly includes a pure propagation phase of exp(ikL).by returning to the incidence angles, we getF2(x; y) = eikL(1��2=2) e�ikx� cos� e�iky� sin� he�ikL �	2(x+ �L cos �; y + �L sin �)iwhere we have put into evidence the following facts:� the propagated wave function has been translated, so that the �eld isexpressed in the new cordinatesx0 = x+ �L cos �; y0 = y + �L sin�so as to follow the angular direction of the beam, and keep the ampli-tude map at the center of the window,� the angular direction of the beam is preserved� the pure propagation phase iskL(1 � �2=2) instead of kLthis accounts for the removed obliquity that introduces a factor of cos �which can be easily corrected if necessary.The situation is summarized on Fig.3.17
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3.2. HANKEL TRANSFORM METHODS 1873.2 Hankel transform methodsThe preceding numerical methods were designed to study situations havingno symmetry. In certain cases, we may assume the optical elements and theoptical �eld itself having the axial symmetry. This happens namely in thecase of thermally induced distortions caused by the beam. We can neglectthe beam's imperfections, and assume a pure TEM00 mode as the source ofheat, owing to what, almost all distortions will keep axial symmetry. In suchcases, we can take bene�t of the symmetry and reduce the computationaldemands by specifying explicitly the symmetry in the calculations. In thecase of the Fourier transform approach, this results in the Hankel transform.3.2.1 TheoryThe 2D Fourier Transform of a function f(x; y) is~f(p; q) = ZR eipxeiqyf(x; y) dx dyIn order to have polar coordinates both in the direct and in the Fourierspace, we de�ne (r; �) and (�;  ) by:x = r cos �; y = r sin�p = � cos ; q = � sin the transform is now:~f(�;  ) = Z 2�0 d� Z 10 r dr ei�r cos(�� ) f(r; �)If the initial function f is axially symmetrical, i.e. independent of �,then its transform ~f is also axially symmetrical in the Fourier space, the �integration can be carried out, and we obtain:~f(�) = 2� Z 10 J0(�r) f(r) r drIntegrals of this type, involving a Bessel function, are called Hankel trans-forms. The inverse Fourier transform reads~f(r) = 12� Z 10 J0(�r) ~f (�) � d�



188 CHAPTER 3. NUMERICAL METHODSIt is cumbersome to keep these factors of 2� throughout all foregoingcalculations. It is much more convenient to use here a di�erent conventionin the de�nition of the Fourier Transform:~f(p) = 1p2� Z 1�1 eipxf(x) dx (3.14)In this case, the 2D Fourier transform of f(r) is simply the Hankel trans-form: ~f(�) = Z 10 J0(�r) f(r) r dr (3.15)and its inverse is f(r) = Z 10 J0(�r) ~f (�) � d� (3.16)We are dealing with special physical solutions of the wave equation, i.e.amplitudes of �nite spatial extension (or almost), such as gaussian waves,which are practically zero for x2 + y2 > 10w20, and of �nite extension in theFourier space (again gaussian waves). There exists a circle of radius a outsideof which the amplitude is negligible, and there exists a circle of radius b inthe Fourier plane outside of which the Fourier transform of the amplitudes isnegligible. It is well known that there exists a family of orthogonal functionson the disk Da � fr < ag, i.e. the functions'�(r) = J0(��r=a); � = 1; 2; : : : ;1where the ��; � = 1; 2; � � � ;1 are the zeros of J1(z). The orthogonalityrelation is: Z a0 '�(r) '�(r) r dr = a22 J20 (��) ��� (3.17)Let us note p� = a22 J20 (��)Obviously, if Db � f� < bg is the disk in the Fourier space, it admits acorresponding family of functions: �(�) = J0(���=b); � = 0; 1; : : : ;1



3.2. HANKEL TRANSFORM METHODS 189with the notation q� = b22 J20 (��)we have the orthogonality relation:Z b0  �(�)  �(�) � d� = q� ��� (3.18)We call Ba the set of all functions of r negligible outside Da, and Bb theset of functions of � negligible outside Db. We can assume in the formulas ofthe Hankel Transform (3.15,3.16), that ~f 2 Bb, and expand it on the basis.Such an expansion is called Dini expansion:~f(�) = 1X�=0f 0� �(�) = 1X�=0f 0� J0(���=b)by substituting in (3.16) we get:f(r) = 1X�=0 f 0� Z 10 J0(�r) J0(���=b) � d�We can sample the values of f(r) by choosing an elementary distance inthe plane. It is convenient to take �r = 1=b as the distance element andsample the radii according to r� = ��=bso that there is a strong link between the coe�cients f 0� introduced in theDini expansion of ~f and the samples f(r�):f� � f(r�) = 1X�=0 f 0� Z b0 J0(���=b) J0(���=b) � d�Remark that the transform integral stops to b instead of1 because we knowthat the function ~f(�) is zero outside Db. Owing to the orthogonality relationgives: f 0� = f�q�by substituting in the expansion of ~f we get:



190 CHAPTER 3. NUMERICAL METHODS~f(�) = 1X�=0 f� J0(���=b)q�We can now also sample the values of ~f(�) by chosing the elementaryfrequency as �� = 1=a, and the spectrum samples will be evaluated at�� = ��=a. The preceding expression, after sampling becomes:~f� � ~f(��) = 1X�=0 1q� f� J0(����=ab)This is the discrete expression of the Hankel Transform, a linear relationbetween the vector ~f� and the vector f�:~f� = 1X�=0H(+)�� f�The direct transform is thus represented by the matrixH(+)�� = 2J0(����=ab)b2J20 (��) (3.19)Obviously, a similar treatment can be carried out for the inverse trans-form. The previously introduced function f 2 Da admits a Dini expansionof the form f(r) = 1X�=0 ~f 0� J0(�� r=a)so that the expression (3.15) of the continuous direct Hankel Transformbecomes: ~f (�) = 1X�=0 ~f 0� Z a0 J0(�r) J0(�� r=a) r drNow, in the Fourier plane, we can sample the conjugated variable � ac-cording to �� = ��=a, so that we have the discrete version:~f� � ~f (��) = 1X�=0 ~f 0� Z a0 J0(�� r=a)J0(�� r=a) r drfrom the orthogonality relation we obtain:



3.2. HANKEL TRANSFORM METHODS 191~f 0� = ~f�p�the Dini expansion of f(r) is now determined, and we have:f(r) = 1X�=0 1p� ~f� J0(�� r=a)Sampling of the values of f according to r� = ��=b leads to the inverseHankel Transform: f� = 1X�=0H(�)�� ~f�with H(�)�� = 2J0(����=ab)a2J20 (��) (3.20)The fact that the studied function f is in the set Ba implies that it takesnegligible values for r > a. The sampling r� can therefore stop at r = a, andwe have: �� =b � a ) �� < abThe same result is obviously obtained by considering the Fourier space.If the transformed function ~f takes negligible values for � > b, then thesampling of � must stop at b:�� =a � b ) �� < abWe can freely decide the size of the computation window a. Then wecan still freely decide the maximum number N of zeros we shall take intoaccount in the in�nite sums encountered in the expressions of the DiscreteHankel Transformn (DHT). This being done, we have� = 0; 1; 2; : : : ; Nab = �N ) b = �N=a



192 CHAPTER 3. NUMERICAL METHODSThe radial sampling is thus: r� = a ��=�Nand the spatial frequency sampling:�� = ��=aThe expressions for the Transforms (FDHT) are �nite rank matrix algebra:~f� = NX�=0H(+)�� f� ; � = 0; 1; 2; : : : ; Nwith H(�)�� having the following de�nitions:H(+)�� = 2a2J0(����=�N)�2NJ20 (��) (3.21)H(�)�� = 2J0(����=�N)a2J20 (��) (3.22)The Hermitian scalar product of two functions f(r) ; g(r) is de�ned inthe direct Hilbert space by< f ; g > = Z 10 f(r)� g(r) r drif moreover, f; g 2 Da, then the integral can be stopped at r = a andf ; g may be replaced by their Dini expansions on the '�, so that, using theorthogonality, < f ; g > = X� ~f 0�� ~g0� p�or, < f ; g > = X� ~f�� ~g� =p�The Hermitian scalar product is invariant by a Fourier Transform, so thatwe have as well: < f ; g > = < ~f ; ~g >it is easily seen that < ~f ; ~g > = X� f��g�=q�



3.2. HANKEL TRANSFORM METHODS 193these formula provide the way of computing the scalar product either in thespatial or in the frequency space. The power carried by a given amplitude fis now P (f) = < f ; f >and we have a distance in the Hilbert space, de�ned for two functions f; g byd(f; g) = qP (f � g)3.2.2 Numerical implementationIf e�cient FFT routines are available in all mathematical computer libraries,this is not the same for DHT, this is the reason why we give here the basicideas for building speci�c libraries. All preceding formulas deal with the twonumerical tables of the zeros of J1 (including 0), �� and J0(��). It is easyto obtain the table �� by the following scheme. An initial guess of � beinggiven, a better estimate is found by the Newton formula:�new = �old � J1(�old)J 01(�old)which can be iterated until a given accuracy is met. Now, using the wellknown relation J 01(z) = J0(z) � 1z J1(z)this is �new = �old "1 � J1(�old)=J0(�old)�old � J1(�old)=J0(�old)#The problem reduces to the calculation of J1(z)=J0(z). This can be doneusing a well known algorithm based on the recursion formula for Bessel func-tions, namely Jn(z) = 2(n + 1)z Jn+1 � Jn+2The recursion begins by taking arbitrarily JM = 0 and JM�1 = 1, and thendescending to J1 and �nally J0 by the preceding formula. M must be chosensu�ciently large depending on the argument. If during the recursion the Jn'sbecome to large, leading to a possible over
ow, all the terms of the recursioncan be divided by a common arbitrary renormalization constant. Finally, theratio of the two last terms gives the value of J1(z)=J0(z). The calculation



194 CHAPTER 3. NUMERICAL METHODSof J0(z) is identical, except that the last term of the recursion gives J0(z)only after normalization. This normalization is done using the well knownrelation 1 = J0(z) + 2 1Xn=1J2n(z)Finally, the determination of all f�� ; � = 0; 1; : : : ; Ng is done by takingthe �rst ones from any mathematical handbook:�0 = 0 ; �1 = 3:83 ; �2 = 7:02(values already encountered in the di�raction problem for a uniform circularaperture) as initial guesses for initializing the Newton re�nement process.Then for all higher indices, the initial guess for �� is ���1+�. One can easilyimagine routines providing at the same time the two families �� and J0(��).The question "is the inverse HT actually the algebraic inverse of the directHT ?" must be considered, because it is not manifest thatNX�=0 H(�)�� H(�)�� = ��� (?)In fact this is not true. What is true is that the linear operator H(�) H(+) is aprojector on Ba , and H(+) H(�) a projector on Bb, for N in�nite. Practically,this means that for a given function f negligible outside Da, and for N largeenough, we have f� ' NX�=0 NX�=0 H(�)�� H(+)�� f�and the corresponding formula in the Fourier space, with an accuracy de-pending on the window size a and the rank N . To be more speci�c, it ispossible to reach the limit accuracy of the computer (' 10�15) in double ,or REAL*8 , by suitably chosing the window a. We conclude that the sit-uation is theoretically di�erent from the 2D DFT, in which the productDFT�1 � DFT is exactly the unity operator, regardless of the rank of thetransform or the window size, but practically, the window being correctlychosen, the numerical accuracy is the same. If we consider a gaussian waveat its waist (w0 = 2 cm) and compare it with its double DHT, we obtain thefollowing results:



3.2. HANKEL TRANSFORM METHODS 195Sample size Optimal window rms error10 8 cm 5.2 10�720 11 cm 1.8 10�1350 17 cm 1.0 10�15Thus, withN about 50 , there is no signi�cant numerical discrepancy betweenthe DFT and the DHTThe correspondance between an initial �eld distribution e0(r) and the �eldez(r) di�racted at a distance z is represented by a matrix that can be com-puted explicitly. The paraxial propagator, as seen previously, is expressed inthe Fourier variables p ; q, byeG(p; q; z) = exp �� i z2k �p2 + q2��with �2 = p2 + q2, and using the sampling �� = ��=a, we haveeG� = exp "� i �z4�a2 �2�#The Fourier tranform of the initial �eld is:~e1;� = NX�=0H(+)�� e1;�The Fourier Transform of the �nal �eld is~e2;� = eG� � ~e1;�And the �nal �eld itself ise2;� = NX�=0H(�)�� ~e2;�All this can be summarized by the simple linear operatione2;� = NX�=0 P�� e1;� (3.23)Where the matrix P is:



196 CHAPTER 3. NUMERICAL METHODSP�� = NX�=0 H(�)�� eG� H(+)�� (3.24)In order to compare with the 2D DFT, we do the same numerical exper-iment, and we propagate a normalised TEM00 from its waist (w0 = 2cm)over a distance z = 3km. We compare in the following table the numericallypropagated wave with the theoretical.Sample size Optimal window rms error10 13 cm 6.3 10�320 18 cm 3.1 10�550 29 cm 9.5 10�13100 40 cm 1.8 10�15The intensity of the �eld can be represented on a radial plot (see Fig.3.18).The sampling has been represented by small spots. The red pro�le corre-sponds to the initial gaussian wave, the blue to the di�racted one.
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Figure 3.18: Di�raction of a gaussian wave, N=50 samples, window = 30cm. dots: HT samples, solid line: di�raction theory



198 CHAPTER 3. NUMERICAL METHODSThe di�erence between a numerically propagated mode and its exact valueis represented on Fig.3.19, the same experiment as reported on the previousFig.3.4:
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Figure 3.19: Interference fringe between a numerically propagated TEM00and its exact value



200 CHAPTER 3. NUMERICAL METHODSThe optical system being assumed axially symmetrical, the mirror sur-faces are sampled along a radius. A mirror will be de�ned by the diagonaloperator M� = i rP exp "i k a�2�2Rc �2N + i k f(a��=�N )#where rP is the photometric re
ection coe�cient, and Rc the curvature ra-dius. The function f(r) represents possible geometrical defects of the mirror.Action on an optical amplitude, giving Aref from Ain is:Aref ;� = M�Ain;�It follows that to any optical system involving distances and mirrors (orthin lenses) can be associated a single matrix which represents explicitly theoptical transfer function. An example is treated below.Finding the �eld stored in a resonant cavity is especially convenient inthe DHT scheme because it can be done by one matrix inversion. Recallthat if the input amplitude is A, the intracavity �eld B obeys the implicitequation B = t1 A + r1r2 ei� [ M1 P M2 P ]Bwhere the phase � determines the tuning of the cavity, and P is the di�ractionoperator described above. Calling C = M1 P M2 P the cavity operator,representing the e�ect of a round trip, we see from the preceding subsectionthat C is an explicitly known matrix. The solution of the preceding equationcan therefore be found asB = hI � r1r2ei�Ci�1 t1Awhere I is the identity matrix. Instead of a series of iterations, as in the DFTscheme, we may now solve the problem by a single N �N matrix inversion.In case of moderate �nesse (r1r2 not too close to 1), this is a huge bene�t.If the �nesse is high, the iteration scheme in the FFT method convergesvery slowly, but the matrix inversion may become problematic too, due tothe very small diagonal elements. An idea of the accuracy of the algorithmcan be drawn from the following experiment: We consider a resonant cavityof �nesse 50, tuned on the fundamental mode, and we check the relativeaccuracy on the solution of the implicit cavity equation, i.e:� = k B � t1A+ r1r2ei�C k



3.2. HANKEL TRANSFORM METHODS 201Sample size Optimal window rms error20 17 cm 4.8 10�550 29 cm 1.7 10�12100 39 cm 3.0 10�15For the re
ected �eld, we haveAref = My1 A + t1 Bso that the re
ection o� the cavity reduces to a matrix product:Aref = hMy1 + t1 �I � r1r2ei�C� t1i�1 A



202 CHAPTER 3. NUMERICAL METHODS3.3 Modal expansionThe principle of a modal expansion is to expand the optical amplitudes on adiscrete basis of functions having a known behavior in di�racting. Examplesof such functions have been already presented as the Hermite-Gauss (HG)functions and the Laguerre-Gauss (LG) functions respectively. A perfectbeam in a perfect cavity would be precisely a HG00 or a LG00 as well. Thissuggests that in case of very small perturbations of the system, the actualamplitudes could be described with a small number of HG or LG functions,saving much computational power. A general numerical approach of smallperturbations must involve small displacements, including rotations, of themirrors. In this case, the HG functions are highly recommended, as will beseen, and consequently, will be kept for other perturbations having the axialsymmetry, even if this increases the complexity. The ideal �eld of applicationof modal expansion is the simulation of the small motions of mirrors in anydegree of freedom.3.3.1 Return to the HG family of modesThe set of Hermite-Gauss functions fHGmn(x; y); m; n = 0; 1; : : : ;1g is acomplete set. Thus any optical amplitude admits a unique expansion of thetype E(x; y) = Xm;n Emn HGz;m;n(x; y)This kind of representation has the key advantage that, dealing with itseigenfunctions, the propagation operator has a diagonal matrix representa-tion. In fact, in a perfect system where all mirrors are matched, the prop-agation problem completely decouples in independent scalar equations, onefor each mode. linear coupling of these modes are caused by perturbationsof the optical elements. In all what follows, we take the normalized HGm;nfunctions as the basis. This means that at all optical element, there is a basisof functions�z;m;n(x; y) = cmnHm �p2x=w(z)�Hn �p2y=w(z)� �� exp "� x2 + y2w(z)2 # exp "i �(x2 + y2)�R(z) #



3.3. MODAL EXPANSION 203having a w(z) parameter equal to what di�raction imposes. The normalisa-tion constant is: cmn = s 2�w(z)2 12m+nm!n!In other words, we have one Hilbert space per element, and all these Hilbertspaces are connected by the coordinate z. For instance, at the waist, we havethe basis �w0;m;n(x; y), and at the end mirror, at a distance z = L, the basis�w1;m;n(x; y), where w1 = w0q1 + L2=b2The optical elements we shall consider as examples are weak curvaturematched mirrors having defects or wrong location. In general, the e�ect ofsuch a mirror on an incoming wave Emn; in will be represented by a matrixoperation Emn;out = irXk;l Rmn;klEkl;inwhere r is the photometric coe�cient, and where the coe�cients Rmn;kl aregiven by Rmn;kl = cmnckl ZR2 Hm �p2 xw�Hn �p2 yw� �Hk �p2 xw�Hl �p2 yw� exp �2x2 + y2w2 ! exp (2ikf(x; y)) dx dyThe total curvature phase factor vanishes, because if we represent the incom-ing wave's by ei�, the matched mirror is e�2i�, and the re
ected wave e�i�.Then we take the scalar product of this wave with the inversely directedwave which contains e�i�, and eventually, � disappears. The function f(x; y)represents consequently only the departure of the surface with respect to theideal paraboloid. We take the opportunity to remark that in kilometric FPcavities, curved mirrors can be considered as well as spherical or parabolic.The apex equation of a sphere of radius Rc osculating the plane z = 0 is:z = Rc � qR2c � x2 � y2The expansion for large Rc givesz = x2 + y22R2c � (x2 + y2)28R3c +O(a6=R5c )



204 CHAPTER 3. NUMERICAL METHODS(a being the radius of the mirror). The �rst term is the parabolic approxi-mation, and the second is bounded by�zmax = a48R3cFor typical values, a = 17.5 cm, and Rc = 3.45 km, we have �zmax '3: � 10�15m, so that there is no signi�cant di�erence between the paraboloidand the sphere. The scalar product can be writtenRmn;kl = w22 cmnckl ZR2 Hm (X)Hn (Y )Hk (X)Hl (Y ) � (3.25)exp(�X2) exp(�Y 2) exp �2ikf(wX=p2; wY=p2)� dx dy3.3.2 Tilted mirrorsThe �rst case we shall examine is the rotation of a mirror. Obviously weconsider small rotation angles. The general apex equation of a parabolicmirror, as already said, is, in the X;Y;Z coordinatesZ = X2 + Y 22RcSuppose that the X;Y;Z frame is rotated by an azimutal angle � and acolatitude angle � from the reference frame x; y; z. We need the apex equationin that reference frame. We haveX = x cos � cos � + y cos � sin� � z sin �Y = � x sin� + y cos �Z = x sin � cos� + y sin � sin� + z cos �By substituting in the apex equation, we get a second order equation in z,whose solution isz = x2 + y22Rc cos � � u tan � + u2 sin2 �2Rc cos � + O(1=R2c )where we have set u = x cos �+ y sin�



3.3. MODAL EXPANSION 205Consider now orders of magnitude. A sophisticated numerical model is usefulif the mirrors are aligned enough to allow some interference in the system. Ifnot, geometrical optics models are quite su�cient to describe what happensto the light. If the waves interfere, it means that the rotation angles allowsome light o� a mirror to reach the opposite one. In other words, the colat-itude angle � is less than �max = a=L where a is the radius of the mirror.This is less than 10�4 Rd. With 3.45 km curvature we see that the neglectedterms were less than 10�21 m. Now, x and y being at most of order w, thethird kept term is less than 10�14 m. It is therefore possible to take, with avery good accuracy, neglecting lengths of order w2�2=Rc :z = x2 + y22Rc � tan � (x cos �+ y sin�)as the rotated-mirror apex equation. It means that the function f(x; y)introduced above is simplyf(x; y) = � tan � (x cos�+ y sin�)In order to compute the rotation matrix, we have to calculate integrals ofthe form Imk(p) = Z 1�1 Hm(X)Hk(X) e�X2 eipX dx (3.26)with either p = �p2kw tan � cos � or p = �p2kw tan � sin�. It is easyto compute the integral 3.26 by using the translation formula 2.45. We canwrite indeed:Imk(p) = e�p2=4 Z 1�1 e�(X�ip=2)2Hm(X)Hk(X) dXBy considering a closed loop in the complex plane and using the Cauchytheorem, it can be immediately seen thatImk(p) = e�p2=4 Z 1�1 e�X2Hm(X + ip=2)Hk(X + ip=2) dXnow, with the translation formula this isImk(p) = e�p2=4 mXs=0 kXt=0 CsmC tk (ip)m�s+k�t Z 1�1 e�X2Hs(X)Ht(X) dX



206 CHAPTER 3. NUMERICAL METHODSand with the orthogonality relation of the Hermite polynomials, this givesImk(p) = e�p2=4 mXs=0 kXt=0 CsmC tk (ip)m�s+k�tp�2ss!�stor, �nallyImk(p) = p� im+k e�p2=4 min(m;k)Xs=0 (�2)s m! k!s! (m� s)! (k � s)! pm+n�2kthe same result can be found by using formula 2.47 and 2.49. It is thusnatural to introduce the displacement polynomialsQmk(x) = min(m;k)Xs=0 (�2)s m! k!s! (m� s)! (k � s)! xm+k�2s (3.27)so that our result can be expressed as:Imk(p) = p� im+k e�p2=4Qmk(p) (3.28)The rotation matrix takes on the formRmn;kl(�; �) = im+n+k+lp2m+n+k+lm!n!k!l! � (3.29)Qmk ��p2kw tan � cos��Qnl ��p2kw tan � sin�� e�k2w2 tan �2=2Some more details on displacement polynomials will be discussed in a follow-ing section. Remark that k�w2 = ��g ww0where �g = �=�w0 is the divergence of the gaussian beam.3.3.3 Parallel translations of the beamConsider now a parallel displacement of the beam in a region of null curva-ture. The incoming beam wasEin = Xmn Emn�mn(x; y)



3.3. MODAL EXPANSION 207and the translation operator T acts asT:Ein = Ein(x+�x; y+�y)The matrix elements of the operator are:Tmn;kl = w22 cmnckl �� Z 1�1 dX Z 11 dY exp "�(X +�X)2 + (Y +�Y )22 # exp "�X2 + Y 22 # �Hm(X)Hn(Y )Hk(X +�X)Hl(Y +�Y )with �X � p2�x=w. A change of variables leads toTmn;kl = w22 cmnckl Z 1�1 dX Z 1�1 dY exp "�(X +�X=2)2 + (Y +�Y=2)22 # �exp"�(X ��X=2)2 + (Y ��Y=2)22 # �Hm(X ��X=2)Hn(Y ��Y=2)Hk(X +�X=2)Hl(Y +�Y=2)By using again the translation formula, we get successivelyTmn;kl = w22 cmnckl (�1)k+l �Qmk(�X)Qnl(�Y ) exp"��X2 +�Y 24 #thenTmn;kl = (�1)k+lp2m+n+k+lm!n!k!l!Qmk(p2�x=w)Qnl(p2�y=w)� (3.30)exp "��x2 +�y22w2 #



208 CHAPTER 3. NUMERICAL METHODS3.3.4 MismatchingWhen the wavefront incoming on a mirror of curvature radius Rc has curva-ture radius R, if R 6= Rc there is mismatching. This may happen for instanceif the mirror has been displaced along the optical axis. Assume for instancethe reference beam is a TEMmn HG-mode:'mn(x; y) = cmneikr2=2R e�r2=w2 Hm(p2x=w)Hn(p2y=w)where the cmn are the normalization constants. The mirror operator is:M(x; y) = e�ikr2=Rcso that the mirror's matrix elements being de�ned asMmnkl = h'�kl;M'mniwhere '�kl is the phase-conjugate of 'kl, we getMmnkl = cmnckl Z 1�1 e�2r2=w2eikr2=Re�ikr2=Rc�� Hm(p2x=w)Hn(p2y=w) Hk(p2x=w)Hl(p2y=w) dx dyor Mmnkl = �w22 cmnckl Im;k(�) In;l(�)where we have set � � �w2� � 1R0 � 1R�and introduced the following integrals:Im;k(�) = 1p� Z 1�1 e�(1+i�)x2Hm(x) Hk(x) dxFirst of all, it is clear that the Im;k are non zero only if m and k have thesame parity. By using the reduction formula (2.47), we get for instanceH2m(x)H2k(x) = min[2m;2k]Xs=0 2m!2k!2s(2m� s)!(2k � s)!s! H2m+2k�2s(x)



3.3. MODAL EXPANSION 209moreover, one can show from the scaling formula (2.46) and the Cauchytheorem on a trivial path in the complex plane that, for any complex numberZ of positive real part:ZR e�Zx2H2n(x) dx = 2n!n! Z�1=2(1=Z � 1)nwe have thus the following result:I2m;2k = Z�1=2�mk(1=Z � 1)where Z � 1 + i�, and �mk(x) is a even-matching polynomial de�ned as:�mk(x) = min[2m;2k]Xs=0 2m!2k!2s(2m+ 2k � 2s)!(2m� s)!(2k � s)!(m+ k � s)!s!xm+k�sThe same calculation can be done for the odd-odd integral:I2m�1;2k�1 = Z�3=2�mk(1=Z � 1)which de�nes the odd-matching polynomial�mk(x) = 11 + x min[2m�1;2k�1]Xs=0 (2m� 1)!(2k � 1)!2s(2m+ 2k � 2s � 2)!(2m� 1� s)!(2k � 1� s)!(m+ k � s� 1)!s!xm+k�s�1the factor 1=(1 + x) comes from the fact that the preceding sum happensto be divisible by 1 + x. These two explicit formulas allow in principle tocompute any matrix element, but are not optimal for an e�cient numericalcomputation. It is better to know the �rst orders and �nd higher ordersby recurrence. The well-known recurrence formula for Hermite polynomialsinduces the following recurrence scheme:�m;k(x) = 2(2m� 1)x�m�1;k(x) + 4k(x+ 1)2�m;k(x)�m;k(x) = 4(m� 1)x�m�1;k(x) + 2(2k � 1)�m�1;k�1This crossed recurrence scheme can be initiated for instance from the follow-ing explicitly known matching polynomials, for n � 0:�0;n(x) = 2n!n! xn



210 CHAPTER 3. NUMERICAL METHODS�1;n(x) = 2xn�1 2n!n! h(2n+ 1)x2 + 4nx+ 2ni�2;n(x) = 4xn�2 2n!n! h(2n + 3)(2n + 1)x4 + 8n(2n + 1)x3 + 12n(2n � 1)x2++16n(n � 1)x + 4n(n� 1)]and for n � 1: �1;n(x) = 2n!n! xn�1�2;n(x) = 2xn�2 2n!n! h(2n+ 1)x2 + 4(n � 1)x+ 2(n� 1)i�3;n = 4xn�32n!n! h(2n + 3)(2n + 1)x4 + 8(n� 1)(2n + 1)x3 + 4(n� 1)(6n � 7)x2++16(n � 1)(n � 2)x + 4(n� 1)(n� 2)]the symmetry breaking between the two indices is only apparent. The matrixelements have the following expressions:M2m;2n;2k;2l(�) = 11 + i� �mk(z)�nl(z)p22m+2n+2k+2l2m!2n!2k!2l!where z � �i�=(1 + i�), andM2m�1;2n;2k�1;2l(�) = 1(1 + i�)2 �mk(z)�nl(z)q22m+2n+2k+2l�2(2m� 1)!2n!(2k � 1)!2l!M2m;2n�1;2k;2l�1(�) = 1(1 + i�)2 �mk(z)�nl(z)q22m+2n+2k+2l�22m!(2n� 1)!2k!(2l � 1)!M2m�1;2n�1;2k�1;2l�1(�) = 1(1 + i�)3 �mk(z)�nl(z)q22m+2n+2k+2l�4(2m� 1)!(2n� 1)!(2k � 1)!(2l � 1)!Some examples for the �rst orders of self-coupling:M00;00(�) = 11 + i�M01;01(�) = 1(1 + i�)2M02;02(�) = 11 + i�(1 + 2z + 3z2=2)



3.3. MODAL EXPANSION 211M11;11(�) = 1(1 + i�)3for coupling of 00 to higher orders:M00;2m;2n(�) = 11 + i� p2m!2n!2m+nm!n! zm+nfor coupling of 01 to higher orders (n � 1):M01;2m;2n�1(�) = 1(1 + i�)2 p2m!2n!2m+nm!n! p2n zm+n�13.3.5 Clipped mirrorsReal mirrors are of �nite size. The ideal TEM00 beam is, strictly speaking,of inde�nite transversal extension, but it is so sharply peaked that, in prac-tice, mirrors having radii about 2.5 times the half-width of the beam canbe considered almost inde�nite, which exactly means that "one can neglectthe di�raction losses". It is interesting to quantify these losses in terms ofpower coupled in higher order modes. The �nite sizing of an otherwise per-fectly matched mirror can be considered as a perturbation, and we addressthe question of computing the matrix elements of that perturbation in theHermite-Gauss basis. If we denote by �m;n(x; y) the elements of the basis,the matrix elements have the form�m;n;k;l = h�m;n;M�k;liM being the mirror operator. Due to the perfect matching of the mirrorcurvature radius, this scalar product reduces to�m;n;k;l = cmnckl Z 2�0 d� Z a0 r dr e�2r2=w2Hm(p2r cos�=w)Hn(p2r sin �=w)�� Hk(p2r cos �=w)Hl(p2r sin �=w)where a is the �nite radius of the mirror. When a ! 1, we expect thebracket to vanish unless m = k; n = l, due to the orthogonality of the basis.After a change of variables, the integral becomes�m;n;k;l = c0mnc0kl 2 Z �0 e�R2RdR



212 CHAPTER 3. NUMERICAL METHODS� 12� Z 2�0 d�Hm(R cos�)Hn(R sin�)Hk(R cos �)Hl(R sin�)where � � p2a=w. The new normalization constants arec0mn = 1p2m+nm!n!It is convenient to take a shorthand notation[m;n; k; l](�) = 2 Z �0 e�R2RdRHm(R cos �)Hn(R sin �)Hk(R cos �)Hl(R sin�)for the radial integral. For the angular average, we take the abbreviation(f) � 12� Z 2�0 d� f(�)so that the matrix element is�m;n;k;l = hmnjM jkli = c0mnc0kl ([m;n; k; l])From the de�nition of the Hermite polynomials we get immediately:Hm(R cos �) = [m=2]Xs=0 (�1)s m!s! (m� 2s)! (2R)m�2s (cos �)m�2s (3.31)and obviously:Hm(R sin�) = [m=2]Xs=0 (�1)s m!s! (m� 2s)! (2R)m�2s (sin�)m�2s (3.32)It is however clear that averaging over angles will eliminate a number ofterms, we have in particular:(cos2n+1 �) = (sin2n+1 �) = 0moreover, (cos2n � sin2m �) = 2m! 2n!22m+2nm!n! (m+ n)! (3.33)so that we see immediately that the only nonzero elements are:�2m;2n;2k;2l; �2m;2n+1;2k;2l+1; �2m+1;2n;2k+1;2l; �2m+1;2n+1;2k+1;2l+1



3.3. MODAL EXPANSION 213It is straightforward to derive from the recurrence relation obeyed by theHermite polynomials, the following:[m;n; k; l] = [m;n�1; k; l+1]+2l [m;n�1; k; l�1]�2(n�1) [m;n�2; k; l](3.34)[m;n; k; l] = [m�1; n; k+1; l]+2k [m�1; n; k�1; l]�2(m�1) [m�2; n; k; l](3.35)allowing to compute any matrix element, once some initial elements areknown. The point is that a whole family of elements can be computed ex-plicitly in terms of the incomplete Gamma function. We �rstly have:2 Z �0 e�R2R2n+1 dR = n! "1� e��2 nXs=0 �2ss! #so that in particular, we have simply:([0; 0; 0; 0]) = 1 � e��2 (3.36)then, by using the de�nitions (3.31,3.32), formula (3.33) and some algebra,it is possible to show that, for k+ l 6= 0 (the special case k+ l = 0 is known):([0; 0; 2k; 2l]) = (�1)k+l 2k! 2l!k! l! (k + l)! �2e��2Ck+l�1(�2) (3.37)where the Cm(x) are the clipping polynomials de�ned byCm(x) = mXs=0(�1)s Csm (m+ 1)!(s+ 1)! xs (3.38)The �rst clipping polynomials are as follows:C0(x) = 1C1(x) = 2� xC2(x) = 6� 6x+ x2C3(x) = 24 � 36x+ 12x2 � x3C4(x) = 120 � 240x + 120x2 � 20x3 + x4They obey the following recurrence relation (n > 0):Cn(x) = �(x� 2n)Cn�1(x) � n(n � 1)Cn�2(x)



214 CHAPTER 3. NUMERICAL METHODSMoreover, with (3.34):([0; 1; 2k; 2l�1]) = (�1)k+l 2k! 2l!k! l! (k + l)! �2e��2 hCk+l�1(�2)� (k + l)Ck+l�2(�2)i(3.39)One can introduce the family C(1)m (x) � Cm(x) � (m + 1)Cm�1(x), (form > 0) and show thatC(1)m (x) = xm ddxCm(x) (m > 0)or C(1)m (x) = �xm�1Xs=0 (�1)sCsm�1 (m+ 1)!(s+ 2)! xsso that ([0; 1; 2k; 2l � 1]) = (�1)k+l 2k! 2l!k! l! (k + l)! �2e��2C(1)k+l�1(�2)The �rst C(1) plynomials are: C(1)1 (x) = �xC(1)2 (x) = �3x+ x2C(1)3 (x) = �12x+ 8x2 � x3C(1)4 (x) = �60x + 60x2 � 15x3 + x4The C(1) polynomials obey the following recurrence relation (n > 1):C(1)n (x) = �(x� 2n + 1)C(1)n�1(x)� n(n� 2) C(1)n�2(x)These two results, added to the recurrence relations and to the symmetry inthe pairs (m;k) and (n; l), allow to recursively compute any matrix element.We have namely (n > 0):�m;n;k;l = sl + 1n �m;n�1;k;l+1 + s ln �m;n�1;k;l�1 � sn� 1n �m;n�2;k;land (m > 0):�m;n;k;l = sk + 1m �m�1;n;k+1;l + s km �m�1;n;k�1;l � sm� 1m �m�2;n;k;l



3.3. MODAL EXPANSION 215The clipping polynomials are orthogonal in the following sense:Z 10 e�xCm(x)Cn(x) x dx = �mnn! (n+ 1)!Result (3.37) allows already to study the coupling of the TEM00 withhigher order modes. The complete expression of the coupling coe�cient is(c000 = 1): �0;0;0;0 = 1 � e��2�0;0;2k;2l = c02k;2l ([0; 0; 2k; 2l]) (k + l 6= 0)or �0;0;2k;2l = (�1)k+lp2k! 2l!2k+lk! l!(k + l)! �2 e��2 Ck+l�1(�2) (k + l 6= 0)(recall that �2 � 2a2=w2). In Fig.3.20, one can see the dependence on aof the coupling factor (power). We see that for small values of a, there isa huge loss of power, and thus the coupling is weak, then it increases and�nally returns to zero when a is large, due to orthogonality of the modes.The explicit values for the �rst matrix elements expressing the coupling ofthe TEM00 are: �0;0;0;2 = �p22 �2 e��2�0;0;0;4 = p32p2 �2 e��2(1� �2=2)�0;0;0;6 = � p54 �2 e��2(1� �2 + �4=6)�0;0;0;8 = p358p2 �2 e��2(1� 3�2=2 + �4=2 � �6=24)�0;0;2;2 = 12 �2 e��2(1 � �2=2)�0;0;2;4 = �p34 �2 e��2(1� �2 + �4=6)�0;0;2;6 = p54p2 �2 e��2(1� 3�2=2 + �4=2 � �6=24)�0;0;4;4 = 38 �2 e��2(1� 3�2=2 + �4=2 � �6=24)



216 CHAPTER 3. NUMERICAL METHODS�0;0;4;6 = �p3016 �2 e��2(1 � 2�2 + �4 � �6=6 + �8=120)�0;1;0;3 = �p64 �4 e��2�0;1;0;5 = p308 �4 e��2(1� �2=3)�0;1;2;1 = � 12p2 �4 e��2�0;1;2;3 = p34 �4 e��2(1� �2=3)�0;2;0;4 = �p34 �2 e��2(1 � �2 + 5�4=6)In order to initiate any recursive scheme, we need the coupling factors forthe TEM01 mode (k > 0; l > 1):�0;1;2k;2l�1 = (�1)k+lq2k! (2l � 1)!2k+l�1k! (l� 1)!(k + l)! �2 e��2 hCk+l�1(�2)� (k + l)Ck+l�2(�2)iAnd for autocoupling of higher order modes, we get for instance:�0;1;0;1 = 1� e��2(1 + �2)�0;2;0;2 = 1 � e��2(1 + �2=2 + 3�4=4)�1;1;1;1 = 1� e��2(1 + �2 + �4=2)�0;3;0;3 = 1 � e��2(1 + �2 � �4=4 + 5�6=12)
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Figure 3.20: Relative power coupled from the TEM00 into the �rst higherorder modes vs. radius of the diaphragm
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Figure 3.21: Relative power coupled from the TEM00 into the �rst higherorder modes vs. radius of the diaphragmFor realistic values of a=w, a logarithmic scale is preferrable (Fig.3.21):



3.3. MODAL EXPANSION 219It may be also interesting to see how the incident power is ditributed inthe coupled modes by seeing the cumulated coupling coe�cients.P (n) = nXs=0 sXk=0�20;0;2s�2k;2kIn (Fig.3.22), we show the case of a small diaphragm aperture: the con-vergence is very slow, because the intense perturbation spread the incidentpower among almost more all the modes. In Fig.3.3.5, we have the cases ofrealistic values of w=a, and we have plotted 1 � P (n).
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Figure 3.22: Cumulated relative power coupled from the TEM00 into the �rstmodes vs. maximum order. The dashed lines indicate the total power i.e.1 � exp(�2a2=w2)
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Figure 3.23: Residual relative power coupled from the TEM00 into the higherorder modes vs. maximum order. The dashed lines indicate the total losses,i.e. exp(�2a2=w2).
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Figure 3.24: Losses caused by a �nite circular aperture in TEMm;n modes(clipping losses)Passing a TEMm;n mode through a circular aperture of radius r, or re
ec-tion on a mirror of radius a, causes losses by cutting the tail of the gaussianpro�le of the mode. These losses can be evaluated by computing the �m;n;m;ncoe�cients, expressing the power coupled from the mode into itself, after theaperture. The preceding plot (Fig.3.24) shows these losses vs radius of theaperture for the �rst modes.



3.3. MODAL EXPANSION 223It is interesting to see how the found modal expansion allows to com-pute the �eld propagated at a given distance. The coe�cients �0;0;2m;2n areassumed calcultated for a given gaussian beam of waist w0 and a circularaperture of radius a. We assume the incoming �eld at its waist on the aper-ture. The parameters for the experiment are : w0 = 2 cm and a = 1 cm.The reconstruction formula for the �eld at any distance z from the apertureis: A(x; y; z) = 1Xm=0 1Xn=0 �0;0;2m;2n(a=w0)	2m;2n(x; y; z)where the 	2m;2n(x; y; z) are the normalized Hermite-Gauss modes. it isintersting to check that we recover the incoming �eld at z = 0. The �eld,though gaussian does not vary signi�cantly in the (narrow) aperture, so thatwe expect the clipped amplitude to be nearly constant throughout a disk ofradius a. On Fig.3.25, one sees the reconstructed �eld with modes up toorder 100.
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3.3. MODAL EXPANSION 225In this case of a narrow aperture compared to the gaussian waist, we arenot far from the case of a circular aperture uniformly illuminated. In thefar �eld, we retrieve a �eld intensity very close to the well-known annularpattern. Fig.3.26 shows this pattern at distance of z = 1000 m.
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3.3. MODAL EXPANSION 2273.3.6 O�set and clippingWe consider the case where the beam being translated by � from the opticalaxis, it is then clipped by a mirror. For instance, the recycling mirror havinga radius of order 5 cm, one may worry about a possible angular displacementof the beam making it interacting with the edges. We assume without lossof generality a displacement along the x direction. The power transmissionfactor is: � = 2�w2 ZC(a) exp"�2 (x� �)2 + y2w2 # dx dywhere C(a) is the area delimited by the circle of radius a representing themirror's edge. This is� = 1� e�2�2=w2 Z 2�0 d� Z p2a=w0 � d� e��2+2�� cos�or � = 2e�2�2=w2 Z p2a=w0 � d� e��2I0(2p2��=w)where I0 is the modi�ed Bessel function of the 1st kind. The precedingintegral can be numerically computed for arbitrary �, but if we assume adisplacement small compared to w we can replace I0 by its Taylor expansionup to 2d order: I0(z) � 1 + z2=4so that � = 2e�2�2=w2 "Z p2a=w0 � d� e��2 + 2�2w2 Z p2a=w0 �3 d� e��2#= e�2�2=w2 "1� e�2a2=w2 + 2�2w2 �1 � (1 + 2a2=w2);e�2a2=w2�#= 1 � e�2a2=w2 � 2a2w2 2�2w2 e�2a2=w2 + O(�4=w4)If the o�set � is a random process �(t), we see that it induces a power noise:�P (t)P0 = 
 2�(t)2w2with the scaling factor 
 = 2a2w2 e�2a2=w2For a recycling mirror of radius 5 cm, we have a=w � 2:5, so that 
 � 5�10�5



228 CHAPTER 3. NUMERICAL METHODS3.3.7 Mismatched beamsThe �rst case of mismatching occurs when for instance a beam  of theTEM00 type of waist w1 enters a cavity having a system of eigenmodes ofwaist w2. We assume the waist precisely on the input 
at mirror. We havethus to expand the incoming beam on the basis of the HG functions of pa-rameter w2. This is done by computing the matrix elements:�m;n = h ; �m;niwhere the �m;n are the eigen HG functions:�m;n(x; y) = s 2�w22 s 12m+nm!n! exp "�x2 + y2w22 #Hm(p2 x=w2)Hn(p2 y=w2)The scalar product is thus reducible to�m;n = s 2�w21 s 2�w22 s 12m+nm!n! �� Z exp "� r2w22  1 + w22w21!# Hm(p2 x=w2)Hn(p2 y=w2) dx dywe are in the case of formula 2.48 giving a Fourier transform, in the specialcase p = q = 0, which yields a non zero result only for even orders both inm and in n. For even orders, we get�2m;2n = s 2�w21 s 2�w22 s 12m+nm!n! �� �w221 + w22=w21 " �1(1 + w22=w21)2#m+n (1 �w42=w41)m+n (�1)m2m!m! (�1)n 2n!n!so that, at the end,�2m;2n = p2m! 2n!2m2nm!n! 2w1w2w21 + w22 "w21 � w22w21 + w22 #m+nThe arithmetic factor (under the square root) has a very low decreasingrate, as m;n grow, so that if w1 and w2 are very di�erent, the couplingcoe�cients are very small and very slowly decreasing with the order (as could



3.3. MODAL EXPANSION 229be foreseen). Note that w1 = w2 yields �2m;2n = 0 for m;n 6= 0, and �0;0 = 1.It is easy to check that the total power is conserved, for the arithmetic factorscan be recognized as those in the Taylor expansion of (1 � x2)�1=2. In fact:(1 � x2)�1=2 = Xk 2k!22kk!2x2k (jxj < 1)so that,Xm;n 2m! 2n!22m+2nm!2 n!2 "w21 � w22w21 + w22 #2m+2n = 24Xm 2m!22mm!2 "w21 � w22w21 + w22 #2m352 = (w21 + w22)24w21w22and thus Xm;n j�2m;2nj2 = 1Now, if the input amplitude and the TEMmn basis are not taken at the waist,the formula for coupling the TEM00 mode of parameters (w1; R1) with theTEMmn mode of parameters (w2; R2) is simply:�2m;2n = p2m! 2n!2m2nm!n! 2w1w2w21 + w22 � ik2w21w22(1=R1 � 1=R2)� "w21 � w22 + ik2w21w22(1=R1 � 1=R2)w21 + w22 � ik2w21w22(1=R1 � 1=R2)#m+n(with k � 2�=�).3.3.8 Coupling of astigmatic beamsConsider an astigmatic normalized optical amplitude of the following type:A(x; y) = s 2�w1w2 exp"� x2w21 � y2w22 #The wavefront is assumed 
at at z = 0. After di�raction over a distance L,the amplitude becomes, up to uniform phases (propagation+Gouy):B(x; y) = s 2�W1W2 exp "� x2W 21 � y2W 22 # exp ��i ��R1x2 � i ��R2y2�



230 CHAPTER 3. NUMERICAL METHODSwhere W1; W2 on one hand, et R1; R2 on the other, are derived from w1; w2and from the distance L through the ordinary gaussian formulas:W1 = w1s1 + L2b21W2 = w2s1 + L2b22R1 = L "1 + b21L2#R2 = L "1 + b22L2#b1; b2 are the two Rayleigh parameters corresponding to the two astigmatismdirections: b1 � �w21=�; b2 � �w22=�Suppose now a TEM00 mode:�(x; y) = s 2�w20 exp "�x2 + y2w20 #Let us compute the scalar product� = h�;BiThe result is:j�j2 = 4w20W1W2r(w20 +W 21 )2 + b2W 41R21 r(w20 +W 22 )2 + b2W 42R22where b � �w20=� is the usual Rayleigh parameter for the TEM00 mode.This expresses the rate of incoming power one can couple in a perfect TEM00mode when the incoming amplitude is astigmatic in such a way that theintensity has two di�erent widths along x and y, and the wavefront twodi�erent curvatures along x and y.



3.3. MODAL EXPANSION 2313.3.9 Properties of the Displacement polynomialsThe fQmng polynomials have useful properties, that we summarize belowwithout proof. All can be obtained after some elementary algebra, using therecurrence relations of the Hermite polynomials.� De�nition:Qmn(x) = min(m;n)Xk=0 (�2)k m!n!k! (m� k)! (n� k)! xm+n�2k (3.40)making clear the symmetry with respect to m and n.� Value at x = 0: Qmn(0) = 0 (m 6= n) (3.41)Qmm(0) = (�2)mm! (3.42)� Recurrence relation:Qm+1;n(x) = xQmn(x)� 2nQm;n�1(x) (3.43)or as well Qm;n+1(x) = xQmn(x)� 2mQm�1;n(x) (3.44)� Orthogonality:Xk�0 12kk! Qmk(x) Qkn(x) = 2mm! ex2=2 �mn (3.45)� Addition law:Xk�0 (�1)k2kk! Qmk(x) Qkn(y) = e�xy=2 Qmn(x+ y) (3.46)� Derivative: dQmn(x)dx = mQm�1;n(x) + nQm;n�1(x) (3.47)� Some of the �rst polynomials:



232 CHAPTER 3. NUMERICAL METHODS0 1 2 30 1 x x2 x31 x x2 � 2 x3 � 4x x4 � 6x22 x2 x3 � 4x x4 � 8x2 + 8 x5 � 12x3 + 24x3 x3 x4 � 6x2 x5 � 12x3 + 24x x6 � 18x4 + 72x2 � 484 x4 x5 � 8x3 x6 � 16x4 + 48x2 x7 � 24x5 + 144x3 � 192x5 x5 x6 � 10x4 x7 � 20x5 + 80x3 x8 � 30x6 + 240x4 � 480x2The �rst lines are simple: Q0n(x) = xn (3.48)Q1n(x) = xn+1 � 2nxn�1 (3.49)Q2n(x) = xn+2 � 4nxn + 4n(n � 1)xn�2 (3.50)Q3n(x) = xn+3 � 6nxn+1 + 12n(n � 1)xn�1 � 8n(n� 1)(n � 2)xn�3(3.51)� Miscellaneous: Xn�0 Qmn(x)n! = (x� 2)m ex3.3.10 Structural properties of Displacement matricesPractical use of the displacement operators raises several questions.Energy conservation The energy coming under the form of a given mode(m;n) is in general spread over all others after any non perfect optical ele-ment. We have seen that rotations and translations can be represented byoperators of the formUmn;kl(p; q) =  1p2!m+n+k+l um+n+k+lpm!n!k!l! Qmk(p) Qnl(q) e�(p2+q2)=4where u is a unitary complex number, and (p; q) a couple of parametersrepresenting the two degrees of freedom of the displacement. Conservationof the energy brought by any (m;n) mode requires the following relation:1 = Xk;l jUmn;kl(p; q)j2



3.3. MODAL EXPANSION 233This leads to compute jQmkj2. We do it for de�niteness in the case of rota-tions, but the method is quite general. We �rst take the formula 3.28 de�ningthe Q polynomials, this yieldsQmk(p) = (�i)m+k 1p� ep2=4 Imk(p)then the formula 3.26 giving the de�nition of the Imk integrals:Imk(p) = ZR dx e�x2eipx Hm(x)Hk(x)So thatjQmk(p)j2 = 1� ep2=2 ZR2 dx dx0 e�(x2+x02) eip(x�x0) Hm(x)Hm(x0)Hk(x)Hk(x0)We have consequentlyXk 12kk!jQmk(p)j2 = 1� ep2=2�� ZR2 dx dx0 e�(x2+x02) eip(x�x0) Hm(x)Hm(x0) Xk 12kk!Hk(x)Hk(x0)Due to the closure relation 2.44, we haveXk 12kk!Hk(x)Hk(x0) = p�e(x2+x02)=2�(x� x0)from what we getXk 12kk! jQmk(p)j2 = 1p� ep2=2 ZR dx e�x2Hm(x)2and due to the normalization relation 2.43, we �ndXk 12kk! jQmk(p)j2 = 2mm! ep2=2 (3.52)(This is an indirect proof of eq.3.45 for m = n). Now, if we return to theenergy balance, we haveXk;l jUmn;kl(p; q)j2 = 12m+nm!n! e�(p2+q2)=2 "Xk 12kk! jQmk(p)j2# "Xl 12ll! jQnl(q)j2# = 1owing to eq. 3.52.



234 CHAPTER 3. NUMERICAL METHODSTransitivity Given any two displacements of parameters (p1; q1) and (p2; q2)respectively, the result of the sequence is a displacement of parameters (p1+p2; q1 + q2).Xkl�0Dmn;kl(p1; q1) Dkl;st(p2; q2) = Dmn;st(p1 + p2; q1 + q2)This is a direct consequence of the addition law 3.46.Inversion Given any displacement of parameters (p; q), represented by ma-trixDmn;kl(p; q), the inverse displacement (�p;�q) is represented byDmn;kl(�p;�q),and we have Xkl�0Dmn;kl(p; q) Dkl;st(�p;�q) = �ms �ltThis was a priori expected, but it is instructive to see that it is one moreconsequence of the addition law 3.46. It also can be deduced from transitivity,for Dmn;kl(0; 0) = �mk �nl3.3.11 Magnitude of displacement matrix elementsConsider for instance the rotation matrix:Rmnkl(�; �) = R0mk(�; �)R0nl(�; �)We can set as previouslyp � p2 2�� w � cos(�) ; q � p2 2�� w � sin(�)so that, setting R0mk(x) � im+kp2m+km!k! Qmk(x) e�x2=4we have Rmnkl(�; �) = R0mk(p)�R0nl(q)It is interesting to check the numerical values of these matrix coe�cients.For instance, we can study the coupling of the TEM00 mode with higherorder ones (see Fig.3.27). we see that the coupling e�ciency is very small
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Figure 3.27: Power coupled from the TEM00 mode into higher order modes(TEM0n) through rotation of a mirror
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Figure 3.28: Power coupled from the TEM10 mode into higher order modes(TEM1n) through rotation of a mirrorfor orders larger than 2 and values of p smaller than 1. If we assume (Virgoparameters) a waist of 2 cm on the cavity input mirror, a curvature radiusof 3.45 km of the far mirror, the width on that far mirror is about 5.5 cm,and the correspondance between p and the rotation angle � is:� = p � 2:18 10�6 Rdso that p = 1 corresponds to about 13% of the gaussian aperture �g =�=�w0. The gaussian aperture corresponds to p � 7:8. In this angularregion, it makes sense to assume a very weak rate of modes having orderslarger that 2. It is also interesting to see how the TEM10 and TEM20 modes,for instance, couple to higher orders (see Figs.3.28 and 3.29): This showsthat a light initially (00) is weakly directly coupled into the (20) mode, as wellas indirectly through (10). This makes consistent an approximate model (seenext subsection) involving only �rst orders modes, when � is small. Finally,
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Figure 3.29: Power coupled from the TEM20 mode into higher order modesthrough rotation of a mirror
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Figure 3.30: Power coupled from the TEMmm mode into itselfwe show how the �rst orders are coupled into themselves (see Fig.3.30): Thecomplete map of the rotation matrix squared modulus in the (p; q) plane hasthe following pattern (the example of R0055(p; q) is shown on Fig.3.31). Thefour maxima correspond to the maxima already shown on Fig.3.27.3.3.12 Numerical resultsWe check here the results we can obtain from a modal expansion limited toorders up to 2. This means that we restrict the expansion to the 6 modes (00),(10), (01), (20), (11),and (02). Namely, we consider a 
at/spherical cavitywhere the spherical mirror is rotated by an angle �, and we study �rstly thedisplacement of the intracavity mode. We classically expect a transversaldisplacement of �x = Rc � � : see Fig.3.33. When the misalignmentangle � increases, the stored poser decreases: see Fig.3.34. We can alsostudy the �eld re
ected by the cavity. Fig.3.35 shows the evolution of the
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Figure 3.35: Power re
ectance of a cavity for increasing tilt angle and forseveral �nessesre
ected amplitude from a cavity having a tilted far mirror. We see thattilting the mirror has a negligible e�ect for small angles, and for larger valuesis equivalent to a detuning, so that the re
ectance increases. It is worth toemphasize that this is not due to the longitudinal displacement of the mirror,which has been corrected as if a servo loop were present. The rotation anglebeing �, the apex equation of the mirror (of curvature radius Rc) is:z = x2 + y22Rc + �x = (x+ �Rc)2 + y22Rc + 12�2Rca corrective phase of �� = ��Rc�2=�is therefore introduced in the propagator. For higher tilt angles, the re-
ectance of the cavity progressively reaches a constant value which is noth-ing but the bare re
ectance of the input mirror: the far mirror can not more
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Figure 3.36: Power re
ectance of a cavity for increasing tilt angle and forseveral �nesses. The horizontal lines represent the power re
ectance of theinput mirror corresponding to the di�erent �nessesproduce interferences in the cavity. This happens when the tilt angle reachesvalues comparable with the beam aperture: see Fig.3.36. Remark that if thetilt angle is equal to the beam gaussian aperture, the transverse displacementof the intracavity beam is:�x = �gRc = ��w0Rcso that �x=w0 = Rc=bwhere b is the Rayleigh parameter. For the Virgo parameters, this is �x=w0 �3, so that the input beam is mostly out the intracavity beam. Even if the in-put �eld is a pure TEM00, a small misaligment introduces a second resonance
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Figure 3.37: Resonances of a Fabry Perot cavity with a small misalignment.The red line is the theoretical position of the TEM10 modeat the frequency (or cavity length corresponding to higher order modes, es-pecially the TEM10 or the TEM01 depending on the direction of the tilt.On Fig.3.37, we have scanned the free spectral range and compared the nu-merical peak with the theoretical position of the (10) resonance. Finally, itis possible to build a Michelson having a reference arm (ideal cavity) anda second arm having a tilted far mirror. The dark �nge pattern exhibits acharacteristic TEM10 signature. (Fig.3.38).3.3.13 Modal expansion of 
at modesThe interest of 
at modes already presented int the BeamOptics chapter, willbe developped in a foregoing chapter devoted to thermal noise. It is howeverthe right place to study the modal expansion of such modes. We recall that
at modes can be viewed as a superposition of elementary gaussian modes of
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3.3. MODAL EXPANSION 247waists w0 uniformly distributed on a disk of radius b in the plane transverseto propagation direction. Namely, at the abscissa z = 0 where the wavefrontis 
at, we have for the fundamental 
at mode:	00(x; y; 0) = 1�b2 Z� �00(x� x0; y � y0; 0)dx0 dy0 (3.53)where �00(x; y; z) is a TEM00 mode of waist w0. Owing to the modal prop-erties of gaussian beams precedingly presented, we have�00(x� x0; y � y0; 0) = Xm;nT00mn(x0; y0)�mn(x; y; 0)where Tklmn is the displacement matrix de�ned above. This provides a meanto expand 
at modes on the HG basis of the elementary gaussian modes ofparameter w0. We have in particular:T00mn(x0; y0) = (�)m+np2m+nm!n! Q0m(p2x0=w0)Q0n(p2y0=w0) exp �x20 + y202w20 !where the Qkm functions are the displacement polynomials. In this specialcase, we have seen that: Q0m(x) = xnso that the integral 3.53 becomes:	00(x; y; 0) = Xm;n�00mn�mn(x; y)with �00mn = 1�b2 (�)m+np2m+nm!n! �� Z 2�0 d� Z b0  x0p2w0 !m  y0p2w0 !n exp � r202w20! r0 dr0where (r0; �) are the polar coordinates equivalent to (x0; y0). It is easily seenthat the coe�cients �mn having at least one index odd are zero, moreover,we have: 12� Z 2�0 cos2m � sin2n � d� = 2m! 2n!22m+2nm!n! (m+ n)!



248 CHAPTER 3. NUMERICAL METHODSon the other hand, we know that:Z R0 �2k+1e��2 d� = k!2 "1� e�R2 kXs=0 R2ss! #Putting these together, we �nd that the non zero coe�cients are:�0;0;2m;2n = p2m! 2n!2m+nm!n! 
m+n(b2=2w20)where the functions 
k(x) (closely related to the incompleteGamma function)are de�ned by: 
k(x) � 1x "1 � e�x kXs=0 xss! #an equivalent form, useful for small arguments, is:
k(x) = xk(k + 1)! 1Xs=0 (�x)ss! k + 1k + 1 + sThe dependence of the �mn on the indices is shown on Fig.3.39 in the specialcase b = 10 cm and w0 = 2 cm: The same treatment can be applied to the(1,0) mode. We have, for the non zero coe�cients:�1;0;2m+1;2n = �w202 1q22m+2n+2(2m+ 1)!2n! Z 2�0 d� �� Z p2b=w00 Q2m+1;1(R cos�)Q2n;0(R sin�) e�R2=4RdRand the result is:�1;0;2m+1;2n = q(2m+ 1)! 2n!2m+nm!n! h
m+n(b2=2w20)� 
m+n+1(b2=2w20)i (3.54)or, as well�1;0;2m+1;2n = q(2m+ 1)! 2n!2m+nm!n!(m+ n+ 1)!e�b2=2w20  b22w20!m+n
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250 CHAPTER 3. NUMERICAL METHODS3.3.14 The A266 AlgebraWe often need a fast simulation code for a dynamical model of misalignedand detuned interferometer, in order for instance to study the global controlof the system. If the angles are small compared to the divergence of thebeam, it is possible to limit at 2d order the modal expansion for each mirror.Moreover, we see fom the preceding table that the modes of order m;n arecoupled to the TEM00 at the m+ n order. A consistent 2d order expansionwill thus involve the only �rst 6 modes, and we shall see that it is possibleto carry out all calculations using a 2d order, rank 6� 6 matrix algebra thatwe call A266. If we limit the expansion to the second order, the expressionof the mirror operator, using the notationp = p2kw� cos �; q = p2kw� sin �has the expression Rmnkl(p; q) = e�(p2+q2)=4 Rmnkl(p; q)where Rmnkl(p; q) is the following table:00 10 01 20 11 0200 1 i pp2 i qp2 � p22p2 �pq2 � q22p210 i pp2 1� p22 �pq2 ip i qp2 001 i qp2 �pq2 1� q22 0 i pp2 iq20 � p22p2 ip 0 1 � p2 � pqp2 011 �pq2 i qp2 i pp2 � pqp2 1 � p2 � q2 � pqp202 � q22p2 0 iq 0 � pqp2 1� q2There is an apparent inconsistency in keeping the exponential not expanded,but this is not necessary for numerical computations, and gives much betteraccuracy when the expansion parameter (for instance �=�g is not in�nitesi-mal. The free propagation along the optical axis is represented by the diag-onal operator Pmn;pq = exp ��i(m+ n) arctan �Lb �� �mp�nqwhere L is the propagation distance and b the Rayleigh Range. It is thereforeclear that all operators involved in A266 are of the formM = M0 +M1 + M2



3.3. MODAL EXPANSION 251where the partial operators Mi (i = 1; 2; 3) contain respectively the zerothorder in the perturbation strength (�=�g or �x=w), the �rst order and thesecond. Moreover, each partial operator has a special structure. We noteO3, O12 and O18 the sets of operators having these structures. Namely, O3is the set of 6 � 6 operators of the form� � � 
 
 
to which obviously belongs the propagation operator, and the zeroth orderof any operator, O12 is the set of 6 � 6 operators of the form�1 �2 �3 �4�5 �6�7�8 �9�10 �11�12to which belongs the �rst order part of the operators. O18 is the set of 6� 6operators of the form



252 CHAPTER 3. NUMERICAL METHODS�1 �2 �3 �4�5 �6�7 �8�9 �10 �11�12 �13 �14 �15�16 �17 �18to which belongs the second order part of the operators. This kind of storagerequires 3 + 12 + 18 = 33 places instead of 36 in the general case: Thereis no waste of memory. The global structure is stable by the elementaryalgebraic operations. More speci�cally, it is obvious that if A;B 2 O3 , thenAB 2 O3. if A 2 O3 and B 2 O12 resp O18 then AB 2 O12 resp O18. Whatis more remarkable is the following property which is the basis of A266: ifA;B 2 O12 then AB 2 O18. The separation in three partial operatorsis therefore stable, and any algebraic operation reduces to trivial sums andproducts. We give below the most necessary.� The sum of two operators is trivially de�ned by(A+B)0 = A0 +B0; (A+B)1 = A1 +B1; (A+B)2 = A2 +B2� The product of two operators is de�ned by(AB)0 = A0B0; (AB)1 = A0B1+A1B0 (AB)2 = A0B2+A1B1+A2B0note that the structure allows algorithms faster than the standard ma-trix product.� The inverse of an operator is de�ned recursively by(A�1)0 = A�10which is a trivial operation, A0 being diagonal, then(A�1)1 = �(A�1)0A1(A�1)0



3.4. MONTE-CARLO METHODS 253(A�1)2 = �(A�1)0 hA1(A�1)1 +A2(A�1)0iRemark that there is no need for a matrix inversion algorithm: In factthis is the main reason for the e�ciency of A266.� The square root X of an operator A is de�ned recursively by the fol-lowing scheme: X0 = qA0which is a trivial operation, A0 being diagonal, thenX1;ij = A1;ijX0;ii +X0;jjX2;ij = A2;ij � (X21 )ijX0;ii +X0;jj3.4 Monte-Carlo methodsIf the system in which light propagates has a complex geometry, and if theinformation carried by the phase is not essential, it is possible to representlight by particles following straight trajectories between re
ections or di�u-sion processes. This is approximately the Newton theory of light. We call"photons" these particles for brevity, though the quantum nature of light iscompletely ignored in this approach. By launching randomly a large numberof such photons, statistics can tell us where the light goes and how we canforbid certain areas to it (e.g. stray light studies). What is interesting is thatthe di�raction phenomena can be represented up to a certain extent by thisparticle description, leading to realistic models of light propagation.3.4.1 Spatial spectra, plane waves and photonsWe consider on an initial plane, a given complex amplitude of light A(x; y).We can interpret the normalized square modulus of the amplitude as a prob-ability density for a photon to be launched:dP 0ds (x; y) = jA(x; y)j2This doesn't tell us the direction of the photon. We know that the angularinformation on the angles can be extracted from the Fourier transform of



254 CHAPTER 3. NUMERICAL METHODSthe amplitude. The 2D Fourier transform of the amplitude is nothing butan expansion in terms of plane waves having for transverse components of~k, the conjugated variables (p; q). If we consider the square modulus of thelatter, we have, due to the Parseval-Plancherel theorem:ZR2 dp dq j ~A(p; q)j2 = 4�2On the other hand, by using the substitutionp = k sin � cos � ; q = k sin � sin�we obtain ZR2 dp dq j ~A(p; q)j2 = k2 Z 2�0 d� Z �0 d� j ~A(�; �)j2and consequently: 1�2 Z 2�0 d� Z �0 d� j ~A(�; �)j2 = 1which shows that we can obtain a probability density for the angular distri-bution by taking dP 00d
 (�; �) = 1�2 j ~A(�; �)j2Propagation of the light described by the complex amplitudeA(x; y) will thusbe described by the two densities of probabilities: The departure point of aphoton will obey the statistics corresponding to dP 0=ds, and its direction,the statistics de�ned by dP 00=d
.3.4.2 PropagationAfter having chosen the departure point (x; y) and the direction of the pho-ton (�; �), its trajectory is de�ned, and it is possible to compute the point(X;Y ) at which it hits the plane z = d (see Fig.3.40). It is even possible tocompute the probability density dP 0=dS of the arrival point. The conditionalprobability for a photon starting from (x; y) at z = 0 to hit the small targetof area dXdY , is dP 0dS (X;Y; x; y)dXdY = dP 00d
 (�; �)d
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yFigure 3.40: propagation from plane to planewhere d
 = dXdY=�2 is the elementary solid angle corresponding to thetarget seen from the initial point, �(x; y;X; Y ) being de�ned by�(x; y;X; Y ) = q(x�X)2 + (y � Y )2 + d2For the full density, we get thus:dP 0dS (X;Y ) =ZR2 dx dy 1�2(x; y;X; Y ) dP 00d
 (�(x; y;X; Y ); �(x; y;X; Y )) dP 0ds (x; y)This is the integral expressing the transfer of the probability density fromz = 0 to z = d. If we adopt the paraxial approximation, we can replace � byd, and � by q(x�X)2 + (y � Y )2=d, so that:dP 0dS (X;Y ) =1d ZR2 dx dy dP 00d
 �q(x�X)2 + (y � Y )2=d; �(x; y;X; Y )� dP 0ds (x; y)We can show on a very simple example how it works. Take a TEM00 nor-malized mode de�ned by the amplitude:A(x; y) = s 2�w2 exp � x2 + y2w2 !



256 CHAPTER 3. NUMERICAL METHODSThe Fourier transform is:~A(p; q) = p2�w2 exp � w2(p2 + q2)4 !We have thus: dP 0ds (x; y) = 2�w2 exp � 2(x2 + y2)w2 ! (3.55)and dP 00d
 (�; �) = 2�w2�2 exp � k2w2�22 ! (3.56)And the transfer equation is: dP 0d
 (X;Y ) =4�2d2 ZR2 dx dy exp � 2(x2 + y2)w2 ! exp �2 �2w2[(x�X)2 + (y � Y )2]�2d2 !This can be calculated either directly or by Fourier transform (being a con-volution product) and the result isdP 0dS (X;Y ) = 2�w02 exp �2 X2 + Y 2w02 !with w0 = wvuut1 +  �w2�d !2exactly as in paraxial wave optics. See Fig.3.41 for an example based on theVirgo parameters: The initial waist is w0 =2 cm, the photons are assumedemitted at a point given by the 2D gaussian random variable (x; y) at z = 0,of parameter w0, the joint probability density being given by (3.55), then thedirection of 
ight is given by a new 2D gaussian random variable (�; �) ofparameter �g = �=�w0, the joint probability density being given by (3.56).and the hit point at z = d is calculated asX = x+ d � ; Y = y + d �We see the agreement between the wave optics theory (lines) and the Monte-Carlo result (histograms)
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Figure 3.41: Di�raction spot at 3 km of a 2 cm waist initial TEM mode.Histogram: Monte-Carlo simulation. Solid curve: Di�raction theory3.4.3 Di�raction patternsIt is not always possible to know the Fourier transform of the incomingamplitude. This is generally possible at the initial plane, where a clean sourceis assumed installed, but after propagation in a complex system, photonsrandomly emitted propagating as in a billiard, and reaching a given plane,do not allow to reconstruct the complex amplitude necessary to determinedP 00=d
. A very interesting procedure has been proposed in [19]. As theypass near the edge of any aperture, the photons are scattered at randomangles, the standard deviation being inversely proportional to the distanceat the edge. The heuristic argument is borrowed from quantum mechanics: aparticle being at the distance �x of the edge of a screen may be seen as havingits location determined with accuracy �x. Consequently, the accuracy on itsmomentumis �px = h=4��x (h is Planck's constant). Now, the momentumof a photon is known to be p = hk=2�, The relation �px=p = tan �� allowsthen to compute the standard deviation �� corresponding to the uncertainty�px: �� = arctan �4��x!
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Figure 3.42: Di�raction by a half-plane. The screen is at d = 5m, thewavelength is � = 1:06�m. Number of photons launched: 106. Histogram:Monte-Carlo simulation. Solid curve: Di�raction theoryWe can test the procedure on the well-known problem of di�raction by a halfplane. We assume a wide and uniform light beam centered at x = y = 0falling on a blade masking half of the plane (x < 0). If we consider a whitescreen at z = d behind, the intensity of the light on it is given [7] byI(x) = I0 � 12 2640@12 + C 0@s 2�dx1A1A2 + 0@12 + S 0@s 2�dx1A1A2375 (3.57)Where C(x) and S(x) are the Fresnel functions (see[20]). We assume auniform random law for launching photons at x o� the interval [�xM; xM ],then, x being randomly chosen, if x < 0 the process stops and a new photonis launched. if x > 0, its direction � is drawn as a random deviate knowingits standard deviation �� (a gaussian deviate works). The hit point on ascreen at distance d is X = x + �d. The statistics is reported on Fig.3.42(histogram), the line represents the wave optics theory with I0 = 1=2xM(Eq.3.57). Remark the excellent agreement in the shadow region, and theaveraged behavior in the fringes region, due to the loss of information aboutthe phase.



Chapter 4Real mirrorsIn this section, we present a more concrete representation of mirrors generallyinvolved in laser optical systems. The fact that the light source has a verynarrow linewidth around the nominal wavelength allows using mirrors havinga selective re
ectance at the same wavelength. This is fortunate, because allwavelengths mirrors, like metallic layers, have irreducible losses due to �niteconductivity (using superconducting metallicmirrors is still a dream, or moreexactly a nightmare, in realistic interferometers). This selective re
ectancecan be achieved by superposing thin dielectric material layers as a coating ona transparent block of dielectric material (substrate). The global quality ofsuch a mirror results from the quality of the substrate, and from the qualityof the coating.4.1 Multilayer coatingsIt is well known that light arriving at an interface separating two dielectricmedia of di�erent refraction indices gives rise to both a re
ected and antransmitted wave. A slice of dielectricmaterial surrounded by other dielectricmaterials with di�erent indices may thus be expected to behave like a Fabry-Perot cavity. By adjusting the round-trip phase inside, it is possible toenhance the re
ectance of the slice. Superposing more and more alternativelyhigh and low index layers produces a cascade of Fabry-Perot's, and the globalre
ectivity increases towards unity. 259



260 CHAPTER 4. REAL MIRRORS
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µFigure 4.1: waves at a plane boundary4.1.1 Dioptric matrixWe naively represent light in a dielectric medium of index n as a pair ofmonochromatic plane waves, propagating along the z direction, one electricE, one magnetic H, of the formE(t; x; y; z) = 0B@e�i!t einkz00 1CAH(t; x; y; z) = 0B@0n kjkj e�i!t einkz0 1CAwhere jkj � !=c. According to the sign of k, the wave is left or right prop-agating. Once given E, the Maxwell equations impose the form of H. Re-call that the Maxwell equations also impose the continuity of the tangentialcomponents of both E and H at a boundary separating two dielectric media.Consider namely a plane z = 0, separating a medium of index n1 (the lefthalf-space) and a medium of index n2 (the right half-space) (see Fig.4.1),where a right-propagating wave E, and a left-propagating wave F are cross-ing each other. The electric and magnetic �elds are (we forget the e�i!t timedependence) : E(z) = 0B@�ein1kz + �e�in1kz00 1CA



4.1. MULTILAYER COATINGS 261H(z) = 0B@0�n1ein1kz � �n1e�in1kz0 1CAin the left half-space, andE(z) = 0B@�ein2kz + �e�in2kz00 1CAH(z) = 0B@0� n2ein1kz � � n2e�in1kz0 1CAfor the right half-space. �; �; �; � are constant amplitudes. � and � aregiven and we want to determine � and �. Continuity of Ex and Hy bringsthe two equations : (� + � = � + �n1(� � �) = n2( � � �)from where we get � = n2 � n1n2 + n1 � + 2n1n2 + n1 �� = 2n2n2 + n1 � + n1 � n2n1 + n2 �This allows a convenient quadrupole representation of the interface. Giventhe incoming �elds, namely E1 from the left and F2 from the right, we �ndthe outgoing E2 to the right and F1 to the left, assuming that the �eldsare expressed, in the medium 2 at a distance d2 from the interface (d2 willrepresent the layer thickness), with '2 � kn2d2, we get under the matrixform :  E2F1! =  t12 r22r11 t21 ! E1F2 ! (4.1)We call Q12 the matrix operator. Owing to the preceding calculation, wehave Q12 =  t12 = 2n1n2+n1 ei'2 r22 = n2�n1n2+n1 e2i'2t21 = 2n2n2+n1 ei'2 r11 = n1�n2n2+n1 !Obviously, the relevant coe�cients (Q21) to apply when the two media areexchanged are easily deduced from the preceding by simply exchanging the



262 CHAPTER 4. REAL MIRRORSsubscripts 1 and 2. We thus have the two quadrupole operators respectivelyattached to a low index and a high index layer, assuming n2 > n1 :qhigh =  2n1n2+n1 ei'2 n2�n1n2+n1 e2i'2n1�n2n2+n1 2n2n2+n1 ei'2 ! (4.2)qlow =  2n2n2+n1 ei'1 n1�n2n2+n1 e2i'1n2�n1n2+n1 2n1n2+n1 ei'2 ! (4.3)4.1.2 Models of stacksThe stack of N layers taken as a whole, has also a quadrupole operatorQstack. It can be obtained from qlow and qhigh. But the composition law ofQ-like operators is more complicated than ordinary linear algebra. Assumefor instance that the operator Q associated to a stack of n � 1 layers is ofthe form Q =  T PR �!and we want to add one more layer at the right, either low or high index.Let q be the layer operator : q =  t �r �!Introducing intermediate �elds, we can write E2F1! = Q  E1F2 !for the uncomplete stack, and E3F2 ! = q  E2F3 !for the extra layer. By solving the system with respect to (E1, F3), we get E3F1 ! = Q
 q  E1F3 !



4.2. SURFACE MAPS 263where the operator Q
 q is given byQ
 q =  tT1�Pr �+P (t��r�)1�PrR+r(T��RP1�Pr ��1�Pr ! (4.4)This is the Q-product of two operators. It is now easy to construct theoperator corresponding to a given stack, when for instance the �rst layer islow index : assume Q0 is the operator corresponding to this layer of lowindex with vacuum in the left half-space (Q0 is a special case of qlow with n2replaced by 1). Then the complete stack operator is obtained asQn = (((Q0 
 qhigh)
 qlow)
 qhigh)
 qlow : : :The tuning of the elementary Fabry-Perot's is determined by the thicknessof the deposit. The best re
ectivity is obtained with '2 = '1 = �=2 (quarterwave) and '0 = � for the initial layer.4.1.3 Numerical codesAn explicit analytical calculation is obviously untractable and even uselesswhen n is larger than 2 or 3, but the algorithm is very well adapted tonumericalmethods. The following plot 4.2 shows the re
ectance of a 30 layersstack : the indices were n1 = 1:4783 and n2 = 2:10225. The re
ectivity forthe nominal wavelength would be 1� 4 � 10�9. We see that the re
ectivityremains high even for up to 20% variation of the wavelength.4.2 Surface mapsIn order to test mirrors before and after coating, measurements of the surfaceheight are performed by interferometric means. The result is a 2D data setfzijg, containing samples measured a the nodes fxij; yijg of a grid. This is forinstance the result of a measurement of a 7 cm diameter mirror (see Fig.4.3): one easily sees a tilt of the mirror axis.4.2.1 Collimation and 
atteningIn general the method of measurement introduces a wedge, i.e. a non zeroangle between the symmetry axis of the surface and the optical axis. It is
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Figure 4.2: Variations of re
ectance vs wavelengththus necessary to re-orient the surface. We can de�ne the surface axis by thenormal to the mean plane. The mean plane is de�ned by the linear equationz = ax + b y + cwhere (a; b; c) are parameters to be de�ned by a leat-square criterion, givingthe normal equations8><>:a < x2 > + b < xy > + c < x > = < xz >a < xy > + b < y2 > + c < y > = < yz >a < x > + b < y > + c = < z > (4.5)where the average symbol < : : : > has the following de�nition for any quan-tity X de�ned on the grid :< X > = Pij wijXijPij wij (4.6)The wij are weights, chosen according to the parameter w of the beam :wij = exp��2(x2ij + y2ij)=w2�
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xFigure 4.4: Collimated surfaceone sees the same mirror map after collimation (see Fig.4.4). The next stepis to extract the curvature radius of the surface. This can be done by �ttinga model of the type z = mr2 + p (r2 � x2 + y2)The normal equations are satis�ed bym = < r2z > � < r2 >< z >< r4 > � < r2 >2p = < z > �m < r2 >c is related to the curvature radius Rc of the mirror by Rc = 1=2m Thedetermination of the curvature was done by a procedure in which the widthw of the light beam is known. But if the mirror is involved in a cavity, this



4.2. SURFACE MAPS 267width is precisely determined by the curvature, and it seems that it becomesan implicit problem. As customary, it can be solved by iterations : one beginswith an initial guess of the curvature (it is not likely that we have no idea apriori of the curvature), then we compute the corresponding w, which allowsa better estimate of the curvature, and so on. In fact, a reasonable initialguess gives a good corrected value within one cycle only.4.2.2 Weighted RMS roughnessOnce found the coe�cients (m; p), one can make the correctionzij ! zij �mr2ij � pThis is the 
attening operation. The result of the curvature correction is theresidual departure of the mirror from the nearest paraboloid (see Fig.4.5).The statistics � = p< z2 > � < z >2with the already precised meaning of < : : : >, and applied to the collimatedand 
attened surface, gives information on the roughness, we call it theweighted RMS roughness. It is the relevant parameter for scattering lossesestimation (see below).4.2.3 2D interpolation techniquesThe mirror map has its own sampling grid, and the numerical propagationprogram has also its (di�erent) own. It is therefore in general necessary toconvert a map from an initial grid to another. This is done by interpolation.Interpolation in 1D data series is straightforward, but in a 2D data array, itis more di�cult, this is a reason for giving here the basic ideas. The problemreduces eventually to �nd an estimation of a function f(x; y), knowing itsvalues on a grid fxi; yjg. We assume, for the sake of simplicity that thesampling grid is equally spaced, i.e.xi+1 � xi = �xyj+1 � yj = �yso that knowing x and y determines easily the cell (i; j)� (i+1; j +1) wherethe estimation point falls. The only point is thus to estimate f(x; y) knowing
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attened surface : An example of a residual rough-nessthe surrounding data : fij; fi+1 j; fi j+1; fi+1 j+1; �x; �y. where we haveset fij � f(xi; yj).A linear interpolation formula is of the typez = a � + b � + cwhere � � (x�xi)=�x and � � (y�yj)=�y. it depends on three parameters,and three data are necessary to determine them. We have the choice betweentwo solutions (see Fig.4.6), the point M(x; y) may be viewed, for instance,as either in the ABC or in the BCD triangle. These two triangles determinetwo di�erent planes, and consequently two estimations of f(�; �). We could



4.2. SURFACE MAPS 269
∆ y

x∆

η

ξ

y

x

0

CD

A B
f

f

f

i+1 j+1

i j
i+1 j

fi j+1

M
O

fFigure 4.6: 2D interpolation problemtake the average of them. In fact this is equivalent to the following procedure: call O the center of the rectangular cell. Assign to O the estimate f0 takenas the average of the surrounding values, i.e. f0 = (fij + fi+1 j + fi j+1 +fi+1 j+1)=4. We have now four triangles (AOB, BOC, COD, DOA) withknown node values. It is easy to see to which of them M belongs, and usethe corresponding plane to estimate fM . For instance in the case of Fig.4.6,we would have f(�; �) = fi+1 j+1 + fi+1 j � fi j+1 � fij2 �+ (fi+1 j+1 � fi+1 j) � + fi+1 j + fi j+1 � fi+1 j+1 + fij2and obviously di�erent formulas, depending on the relevant triangle.A quadratic interpolation is of the formz = a + b � + c � + d ��and the four coe�cients are completely determined by the four corners of thecell ; the result isf(�; �) = fij + (fi+1 j � fij) � + (fi j+1 � fij) �++ (fi+1 j+1 + fij � fi+1 j � fi j+1) ��The two methods give the exact values on the nodes, and reduce to ordinary(1D) linear interpolation on the edges. The quadratic interpolation intro-duces a curvature of the interpolating surface that may give spurious e�ects.
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2a~9cm

L~140 mFigure 4.7: sketch of the modecleanerHigher order polynomials can even allow to have continuous derivatives atthe edges, smoothing the surface.4.2.4 Backcoupling due to roughnessAn example of direct application of the preceding methods has been foundin the issue caused by the so-called mode-cleaner installed on the beam, justbefore entering the interferometer. The mode-cleaner consists in a three-mirrors ring cavity having the shape of a long equilateral triangle havingthus a very sharp angle. The length of the basis is approximately 9 cm,whereas the length of one of the long sides is about 140 m. The two mirrorsforming the basis (see Fig.4.7 are 
at and nearly othogonal, and the farmirror is spherical with a curvature radius about 180 m. The reason for sucha ring cavity is to avoid spurious re
ection of the laser beam o� the inputmirror. Only one propagation direction is in principle allowed in the ring, sayclockwise. But the incidence angle on the curved mirror is so sharp (about3 10�4 Rd) that a fraction of the light scattered by the surface may be sent inthe counterclockwise mode, resulting in interferences on the photodiode usedto lock the system, and eventually causing instabilities. We can study andevaluate the e�ect on the roughness map of the spherical mirror as follows.The coordinates are such that the z axis is the spherical mirror axis. the x; yaxes are orthogonal and within the plane tangent to the mirror. We denoteby '0(x; y) an incoming gaussian beam, matched to the mirror, and incidentwith angles (�; �). We have'0(x; y) = s 2�w2 exp h�(x2 + y2)=w2i exp h�ik(x2 + y2)=2Ri �� exp [�ik�(x cos�+ y sin�)]



4.2. SURFACE MAPS 271The mirror operator is M(x; y) = exp [2ikf(x; y)]where f(x; y) refers to the wavefront map of the mirror, including the meanparaboloid plus the residual roughness. The re
ected beam is thus'R(x; y) =M(x; y)� '0(x; y)The counter propagating beam 'cis the phase conjugate of '0 :'c = '0the coupling coe�cient �(�; �) between the re
ected and the counterpropa-gating beams is given by the hermitian scalar product:�(�; �) = h'c; 'Rior, in detail :�(�; �) = ZR2 I(x; y) exp"2ik  f(x; y)� x2 + y22R !# exp [�2ik�(x cos�+ y sin�)] dx dywhere I(x; y) is the normalized intensity distribution in the beam. Notethat the function �f(x; y) � f(x; y) � x2 + y22R is nothing but the residualroughness of the mirror (see Fig.4.8).This residue being small compared to a wavelength, we can write�(�; �) = exp "�2�2w2�2�2 #+2ik ZR2 I(x; y) �f(x; y) exp [�2ik�(x cos�+ y sin�)] dx dy�2k2 ZR2 I(x; y) �f(x; y)2 exp [�2ik�(x cos �+ y sin �)] dx dyWhen the roughness is zero, the �rst term still remains. It represents thenatural overlap of the re
ected beam with the phase conjugate beam, dueto gaussian divergence. If � = 0, this overlap is simply unity, expressing theperfect matching of the beam. We can express the natural overlap as :�0(�) = exp h�2�2=�2gi
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4.2. SURFACE MAPS 275on Fig.4.9 and marked by a star.4.2.5 Zernike polynomialsIn traditional instrumental optics, there is a need for analyzing and represent-ing the departure of a given mirror surface with respect to the ideal shape. Asystematic surface analysis consists �rstly in �nding a family of orthogonaldefects over which a real surface can be expanded. The orthogonality makespossible to treat separately the various defects, and for instance to subtractany one of them without changing the expansion of the remaining surface.The required orthogonality is obtained with a family of functions Znm(�; #)in polar coordinates. It is necessary to �x the radius a of the mirror, then� � r=a. The variables (�; #) are separate, and in fact,Znm(�; #) = Rmn (�) � ( sinm#cosm#where the Rmn (�) are a family of orthogonal polynomials �rst introduced byF. Zernike for n = 0; 1; : : : and m = n; n � 2; : : : (it ends either at 0 or 1depending on the parity of n):Rmn (�) = cnm (n�m)=2Xp=0 (�)p(n� p)!p! �n+m2 � p�! �n�m2 � p�! �n�2p (4.7)The cnm are normalization constants. The Rmn polynomials obeyZ 10 Rmn (�)Rmn0(�) � d� = 12(n+ 1) �nn0and the circular functions obey :Z 2�0 sinm# sinm0#d# = ��mm0Z 2�0 cosm# cosm0#d# = �(1 + �m0)�mm0sine et cosine being obviously orthogonal. The special behaviour of cos(0 �#) � 1 forces us to have the following normalization constant :cmn = vuut 2(n+ 1)�(1 + �m0)



276 CHAPTER 4. REAL MIRRORSThe expansion of a surface of equation z = f(x; y) on the Zernike basis is asfollows : f(�; #) = 1Xn=0 nXm=0or1 fnm Znm(�; #)with fmn = Z 10 Z 2�0 f(�; #)Znm(�; #) � d� d#The generating code for calculation of Rmn (�) is very short :c===========================================================real function zerpol(n,m,rho)implicit nonec integer n,m,d,s,ireal facm,rapp,rhoreal alphaz,alpha,rnm,ro2c if (m.gt.n) thenprint*,'ERROR ! : m should be =< n !'stopendifc d=(n-m)/2s=(n+m)/2ro2=rho*rhorapp=1do i=0,n-s-1rapp=rapp*(n-i)enddofacm=1do i=2,dfacm=facm*ienddoalphaz=rapp/facmalpha=alphazrnm=alphado i=0,d-1alpha=-alpha*(s-i)*(d-i)/float((n-i)*(i+1))rnm=ro2*rnm+alpha
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278 CHAPTER 4. REAL MIRRORSn m Zmn name0 0 1 Piston1 1 2� cos # x-tilt1 1 2� sin # y-tilt2 0 p3(2�2 � 1) Defocus2 2 p6�2 cos 2# Astigmatism2 2 p6�2 sin 2# Astigmatism3 1 p8(3�3 � 2�) cos # Primary x coma3 1 p8(3�3 � 2�) sin # Primary y coma3 3 p8�3 cos 3# Triangular astigmatism3 3 p8�3 sin 3# Triangular astigmatism4 0 p5(6�4 � 6�2 + 1) Primary spherical4 2 p10(4�4 � 3�2) cos 2# Secondary astigmatism4 2 p10(4�4 � 3�2) sin 2# Secondary astigmatism4.2.6 Roughness and scattering lossesLet A(x; y) be the amplitude of a TEM00 gaussian mode falling on a mirrorthe surface of which is de�ned by the apex equation z = f(x; y)�r2=2R. There
ected wave is (forgetting the scalar or photometric re
ection coe�cient)B(x; y) = e�ikr2=R+2ikf(x;y)A(x; y)Its coupling with the TEM00 mode is given by the hermitian scalar product< A0; B >, where A0 is the phase conjugate of A (reversed wavefront) so thatthe coupling factor of the TEM00 onto itself through re
ection is
 = Z A0�(x; y) e2ikf(x;y)A(x; y) dx dyor 
 = 2�w2 Z e�2r2=w2e2ikf(x;y) dx dyIf we assume the real surface near the ideal one, then we can expand thephase at second order, and write
 = 2�w2 Z e�2r2=w2 h1 + 2ik(f(x; y)� 2k2f(x; y)2 + : : :i dx dyf(x; y) is de�ned up to a piston (additive constant) which can always bechosen such that Z e�2r2=w2f(x; y) dx dy = 0



4.2. SURFACE MAPS 279Then the function f(x; y) is nothing but what we called "
attened" surfacein a preceding section, and the quantityq = 2�w2 Z e�2r2=w2 f(x; y)2 dx dyis what we called "weighted RMS roughness", so that
 = 1� 2k2 qin terms of power, this is j
j2 = 1� 4k2 qand the losses due to the mirror's imperfections are simplyp = 4k2 q



280 CHAPTER 4. REAL MIRRORS



Chapter 5Scattered light5.1 IntroductionDue to the imperfect nature of the surface of the re
ecting coating, mirrorsnot only re
ect light and dissipate a part of it into heat, but also scatterlight in all directions. In supermirrors as those used in gravitational waveinterferometers, the total losses (thermal dissipation + scattering) is very low,of the order of a few ppm, so that the amplitudes of scattered light, unless themirror surface is polluted, is extremely small. Scattering is a process in whicha perfect TEM mode is coupled to partial waves of any direction, dependingon the size of the defects of the re
ecting surface. The symmetrical processis possible: Di�use light coming from any direction may be partially coupledinto a TEM mode. If that di�use light is phase modulated for any reason,the modulation will contaminate the stored TEM mode. The most evidentscenario is scattering of light o� a mirror, re
ection of the di�use light on themetallic walls of the vacuum pipe, then inverse scattering on the emitter orany other mirror. Due to the seismically driven motion of the vacuum pipe,seismic noise is re-entering the readout beam, and we have a by-pass of theseismic isolation system. In order to avoid such a catastrophe, it has beensoon seen that a system of ba�es for trapping scattered light was necessary.But the design and the nature of these ba�es must be such that the remedymakes nothing worse than the disease. It is clear that this double scatteringprocess is extremely weak, but GW interferometers are designed to measurebetter than 10�11 Rd:Hz�1=2 phase changes, so that any source of noise, evenvery weak, must be assessed. This is why models of scattering are useful.281



282 CHAPTER 5. SCATTERED LIGHT5.2 Scattering mirrorsThe scattered light we are faced with, is generated by re
ection of light beamson mirrors with weak roughnesses. Mirrors installed in GW interferometers asVirgo have roughnesses of rms value of a few nm, thus very small comparedto the usual wavelength (1�m). The departure of the surface of a mirrorfrom its ideal geometrical shape can be represented by a two-dimensionalrandom process f(~x), where ~x represents the coordinates in the plane wherewe project the surface. We can assume without loss of generality that it is acentered process: hfi = 0we also assume the process stationary:hf2i = �2But the relevant statistics of the process, for studying scattering, is the au-tocorrelation function: C(~x� ~x0) = hf(~x):f(~x0)i=�2 (5.1)Here the stationarity implies that the autocorrelation function does not de-pend on the location in the plane, but only on the separation vector. It willbe further assumed that the autocorrelation function depends only on thelength of the separation vector:C(~x� ~x0) = C(k ~x� ~x0 k)in words, the roughness is isotropic.Suppose now that a light beam described by the amplitude �(~r) is im-pinging normally to the re
ecting surface, and let us call  (~x) the re
ectedbeam's amplitude. We have: (~x) = e2ikf(~x)�(~x)By taking the Fourier transform, we have:j ~ (~p)j2 = Z ei~p_(~x�~x0)e2ik[f(~x)�f(~x0)]�0(~x)��0(~x0)d~x d~x0Owing to the hypothesis that f � �, we can expand the exponential andwrite:j ~ (~p)j2 = Z ei~p_(~x�~x0) n1 + 2ik[f(~x)� f(~x0)]� 2k2[f(~x)2 + f(~x0)2 � 2f(~x):f(~x0)o �



5.2. SCATTERING MIRRORS 283��0(~x)��0(~x0)d~x d~x0By taking the expectation value, we get:hj ~ (~p)j2i = (1�4k2�2)j�(~p)j2+4k2�2 Z ei~p_(~x�~x0)C(~x� ~x0)�0(~x)��0(~x0)d~x d~x0or as well:hj ~ (~p)j2i = (1 � 4k2�2)j�(~p)j2 + 4k2�2 14�2 Z ~C(~q):j~�(~p� ~q)j2 d~q (5.2)For gaussian beams, and evenmore for hypergaussian beams, the angular dis-tribution is sharply peaked, taking signi�cant values only in the neighboroodof ~p = ~0. We can assume that the Fourier transform of the autocorrelationfunction (i.e. the power spectral density) does not appreciably vary on anglesof the order of the angular width of the beam. In the preceding integral, thebeam function can therefore be treated as a Dirac function, and we have:hj ~ (~p)j2i = (1 � 4k2�2)j�(~p)j2 + 4k2�2 ~C(~p) (5.3)Under this form, it is clear that the re
ected light is the sum of two contribu-tions, one having the same angular distribution as the incoming beam, thatwe call specularly re
ected beam, and one having an angular distributiongiven by the properties of the surface, namely the power spectral density off . We identify with scattered light this contribution. It can moreover beseen that the incoming power is shared between specularly re
ected light,and scattering. We have:Pspec=Pin = 14�2 Z (1� 4k2�2)j�(~p)j2 d~p = 1� 4k2�2which shows that the scattering losses � are given by:� = 4k2�2and we have:Pscatt=Pin = 14�2 Z 4k2�2 ~C(~p) d~p = 4k2�2 = �We can express the distribution of scattered light as:1Pin dPscattd~p = �4�2 ~C(~p)



284 CHAPTER 5. SCATTERED LIGHTand by indentifying the Fourier coordinates to angles according to ~p �(k sin � cos �; k sin � sin�), we can write:dd~p = �4�2 d2sin � d� d� = �4�2 dd
so that 1�Pin dPscattd
 = 1�2 ~C(k sin �)where we have explicitly taken into acount the isotropy of the autocorrelation.Now, dPscattPscatt d
(�)is a normalized function, and we can setdPscattPscatt d
(�) = p(�)2� (5.4)where Z �0 p(�) sin � d� = 1and �nally, by comparison between the two last equations:~C(k sin �) = �22� p(�) (5.5)Information on the normalized angular density of scattered power (ADSP)can be obtained by di�erent ways depending on the angular range. Forvery small angles, corresponding to long correlation distance defects, a directmeasurement of the surface by using a pro�lometer can be carried out. Forlarger angles, a direct measurement of the ADSP is possible.5.3 The scattering coherence functionThe central concept for a wave optics treatment of light scattered from abeam (gaussian or 
at), is the coherence function. We have seen in thepreceding section that the light scattered o� a mirror of roughness f(~x) canbe viewed as emitted by the sources(~x) = 2kf(~x)�(~x)



5.3. THE SCATTERING COHERENCE FUNCTION 285where �(~r) is, as above, the incoming optical amplitude. We can consider thewave generated by this elementary source after di�raction along the distanced. It can be computed using the di�raction kernel:Kd(~x) = � i�d eik~x2=2dso that, if we denote by sd(~y) the propagated wave, we havesd(~y) = Z Kd(~y � ~x):s(~x) d~xWe shall call coherence function of the scattering process, the expectationvalue C(d; ~y; ~y0) = hsd(~y):s�d(~y0)i (5.6)This can be computed as follows. Firstly we havesd(~y):s�d(~y0) = 4k2 Z Kd(~y � ~x)K�d (~y0 � ~x0) f(~x) f(~x0)�(~x)��(~x0) d~xd~x0By taking the expectation value, this becomes:hsd(~y):s�d(~y0i = 4k2�2 Z C(~x� ~x0)Kd(~y � ~x)K�d (~y0 � ~x0)�(~x)��(~x0) d~xd~x0after replacing C by its Fourier integral, we gethsd(~y):s�d(~y0i = 4k2�24�2 Z ~C(~p) e�i~p(~x�~x0)Kd(~y�~x)K�d (~y0�~x0)�(~x)��(~x0) d~xd~x0 d~pNow, it can be checked thatZ Kd(~y � ~x)e�i~p:~x�(~x) d~x = e�id~p2=2k e�i~p:~y�d(~y + d~p=k)so thatC(d; ~y; ~y0) = �4�2 Z ~C(~p) e�i~p:(~y�~y0)�d(~y + d~p=k)��d(~y0 + d~p=k) d~pwhere �d is the beam amplitude di�racted at a distance d. Now, it may benoted that if the distance d is larger than a few m, the coordinate ~y+d~p=k fallsoutside the actual beam for values of ~p slightly di�erent from the maximum~p0 = �k~y=d. This means that the integrand takes non negligible valuesonly in the small domain where the neigborhood of �k~y=d intersects that



286 CHAPTER 5. SCATTERED LIGHTof �k~y0=d. Over this small domain, it can be assumed that the function ~Chas very small variations, and that it di�ers by a very small amount fromthe value ~p0 = �k~y=d. We therefore replace ~C(~p) by ~C(~p0) � ~C(~p00) in theintegral, givingC(d; ~y; ~y0) = �4�2 ~C(~p0) Z e�i~p:(~y�~y0)�d(~y + d~p=k)��d(~y0 + d~p=k) d~pWhen C(d; ~y; ~y0) takes signi�cant values, ~y and ~y0 are so close together thatwe can write equally~C(�k~y=d) = ~C(�k~y0=d) = ~C(k�) = �22� p(�)where � is the angle locating the direction of the small domain around ~y and~y0. It is possible to give a shorter version of the preceding integral. by thechange of variables ~p = ~q � k2d (~y + ~y0)we obtainC(d; ~y; ~y0) = ��28�3 eik(y2�y02)=2d Z d~q e�i~q:~Y �d  dk~q + 12 ~Y ! ��d  dk~q � 12 ~Y !with ~Y � ~y � ~y0. By substituting the Fourier transforms of the amplitudes,this is C(d; ~y; ~y0) = ��28�3 eik(y2�y02)=2d�116�4 Z d~q d~p d~p0 e�i~q:~Y e�i~p(d~q=k+~Y =2) ~�d(~p) ei~p0(d~q=k�~Y =2) ~��d(~p0)but the Fourier transforms of the progagated amplitudes are equal to theFourier transforms of the initial amplitudes, times the propagatore�idp2=2kso that: C(d; ~y; ~y0) = = ��28�3 eik(y2�y02)=2d�116�4 Z d~q d~p d~p0 e�i~q:(~Y+(~p�~p0)d=k e�i(~p+~p0):~Y =2 e�i(p2�p02)d=2k ~�(~p) ~��(~p0)



5.3. THE SCATTERING COHERENCE FUNCTION 287the ~q integration gives a Dirac function, so thatC(d; ~y; ~y0) = ��28�3 eik(y2�y02)=2d�14�2 k2d2 Z d~p d~p0 �(~p0 � ~p � k~Y =d) e�i(~p+~p0):~Y =2 e�i(p2�p02)d=2k ~�(~p) ~��(~p0)= �8�3d2 eik(y2�y02)=2d Z d~p~�(~p) ~��(~p+ k~Y =d)which yields the symmetrical expression for the coherence function:C(d; ~y; ~y0) = �8�3d2 eik(y2�y02)=2d Z d~p ~�(~p � k~Y =2d) ~��(~p+ k~Y =2d) (5.7)In the case of a fundamental gaussian beam at its waist w0, the explicitcalculation is straightforward. We have~�(~p) = q2�w20 e�p2w20=4and consequentlyZ d~p ~�(~p � k~Y =2d) ~��(~p+ k~Y =2d) = 4�2e�k2w20Y 2=8d2so that �nallyC(d; ~y; ~y0) = �2�d2 p(�) eik(y2�y02)=2d e�(~y�~y0)2=2d2�2g (5.8)where �g � �=�w0 is the gaussian angular aperture of the initial beam.This shows the memory e�ect of the initial beam even after di�usion anddi�raction.
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Chapter 6Heating issuesThe laser beam circulating through or re
ected o� the mirrors carries highlight power, especially in the resonant cavities. These mirrors dissipate asmall but non zero rate of this power into heat, increasing their internal tem-perature. The pro�le of the beam being sharp (gaussian), the heat generationis practically localized around the optical axis, and the resulting temperature�eld presents gradients. The non uniform temperature �eld induces �rstlyan index �eld known as a thermal lens. It induces secondly distortions of themirror's surface called thermal aberrations. These e�ects initiate non linearprocesses : the rate of heating depends on the stored light power, the storedlight power depends in turn on the cavities tuning, which in turn depends onthe thermal lensing and aberrations. Methods of simulation for these pro-cesses need �rstly a study of the steady state, then the transient case will beaddressed.6.1 Heating by dissipation in the coatingConsider a cylindrical mirror receiving the beam of a laser : A fraction �of the light power is dissipated in the coating, so that there is a source ofheat over one face. If the substrate is crossed by the beam, a fraction ofthe power is absorbed per unit of length of the path inside, so that there isalso a source in the bulk. The mirror being suspended in a vacuum by verythin wires, it cannot appreciably lose heat by conduction nor by convection.The only way for restoring thermal equilibrium with the surrounding wallsis to radiate excess energy under the form of infrared radiation, according to289
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z=h/2

laser beam

z=-h/2

r=a

Figure 6.1: Cylindrical mirror heated by laser beamthe blackbody law. Simple analytical solutions can be found in the case ofaxial symmetry. We address the case of surface heating (bulk heating will beaddressed in a coming section). Let z be the coordinate along the symmetryaxis (the optical axis), and r the radial coordinate (see Fig.6.1).6.1.1 The Fourier equation and the boundary condi-tionsIn a general time dependent situation the heat �eld obeys the Fourier equa-tion : [�C @t �K�]T (r; z) = p(r) (6.1)where K is the thermal conductivity (sorry, don't confuse with the unit K(Kelvin) of absolute temperature !) , � the density of the material , C itsspeci�c heat , and p(r) the density of power deposited in the material .To be speci�c, let us give these parameters in the case of silica, a materialfrequently used for making mirrors, with the notation used throughout thischapter, and the values used in numerical applications :



6.1. HEATING BY DISSIPATION IN THE COATING 291parameter name value units� density 2202 kgm�3C Speci�c heat 745 J kg�1K�1K Thermal conductivity 1.38 Wm�1K�1dn=dT Thermal index coe�. -0.87 10�5 K�1� Dissipation rate (coating) 10�6 dimensionless� Linear absorption coe�. 10�5 m�1� Thermal expansion coe�. 5.4 10�7 K�1Y Young modulus 7.3 1010 Nm�2� Poisson ratio 0.17 dimensionlessIf we assume the stationary state, in which the radiation losses exactly bal-ance the incoming power, the heat �eld obeys the static homogeneous Fourierequation, and if there is no internal heat sources, this reduces to the Laplaceequation : �T (r; z) = 0We must add to this equation the boundary conditions, namely the balanceof heat 
uxes on the limiting faces, according ton � [F +KrT ]surf = 0where F (W:m�2) is the escaping 
ux, �KrT the internal 
ux at boundaryand n the normal. We assume that in case of thermal radiation, the escaping
ux is [n � F]surf = �0 hT 4 � T 40 isurfwhere �0 is related to the Stefan-Boltzmann constant �SB � 5:67 10�8 Wm�2K�4that holds for the true blackbody radiation, by a correction (emissivity cor-rection) taking into account the nature of the material (Please do not confusethe SB constant �SB with the Poisson ratio �). T0 is the temperature of thesurrounding wall. �0 = 0:8�SB is plausible for SiO2. Let us detail the bound-ary conditions in the case of a cylindrical body (cf Fig.6.1) :� On the face z = h=2,�K@T@z (r; h=2) = �0(T 4 � T 40 ). The latter expression is non linear, but we hope, in case of low ab-sorption, that the temperature excess with respect to room temperature



292 CHAPTER 6. HEATING ISSUESwill be small. Of course, one must check at the end of the calculationthat : T � T0 � T0was a correct assumption, so that it was reasonable to linearize withrespect to T0. Assume T � T0 = �T , this means thatT 4 � T 40 � 4T 30 �TIt will be understood in what follows, that T is the excess of tempera-ture caused by the laser beam with respect to T0, so that the boundarycondition becomes�K@T@z (r; h=2) = 4�0T 30 T (r; h=2) (6.2)� On the face z = �h=2, we have a balance of three heat 
uxes :�K@T@z (r;�h=2) = �4�0T 30 T (r; h=2) + � I(r) (6.3)where � is the loss rate due to dissipation of light power into heat (afew ppm). We assume that the incoming beam is a TEM00 wave of halfwidth w, so that the incoming power 
ux is (P being the beam power): I(r) = 2P�w2 e�2r2=w2Note the change in the sign for the radiative part, and the presenceof an extra surface heat 
ux generated by absorption in the coating,represented as a boundary layer.� On the edge of the cylinder, we �nd only radiation losses :�K@T@r (a; z) = 4�0T 30 T (a; z) (6.4)6.1.2 Solution as a Dini expansionIn cylindrical coordinates, (still assuming axial symmetry), the Fourier (orLaplace) equation is �@2r + 1r@r + @2z�T (r; z) = 0



6.1. HEATING BY DISSIPATION IN THE COATING 293A solution of this equation is called harmonic. In cylindrical coordinates,there exist harmonic functions of the formT (r; z) = J0(kr) �A ekz +B e�kz�where k; A; B are arbitrary constants, and the fJn(z) ; n 2 Zg the Besselfunctions. It is probably worth to recall at least that@xJ0(x) = �J1(x)�@x + 1x� J1(x) = J0(x)The last boundary condition, expressed by Eq.6.4 reads thus :K k J1(ka) = 4�0T 30 J0(ka)or, using a reduced radiation constant � = 4�0T 30 a=K :kaJ1(ka)� �J0(ka) = 0An equation like the preceding one has an in�nite discrete number of solutionsde�ning the possible values of k. Call f�n ; n = 1; 2; : : :g the solutions of�J1(�)� �J0(�) = 0 (6.5)The values of k are the kn = �n=a. The temperature �eld can �nally bewritten as an expansion of the typeT (r; z) =Xn �Aneknz +Bne�knz� J0(knr)It is well known from the Sturm-Liouville theorem that the functions fJ0(�nr=a) ; n =1; 2; : : :g form a complete orthogonal basis for functions de�ned in the interval[0; a], having normalization constants cn [20] such thatZ a0 J0(�nr=a)J0(�n0r=a) r dr = 1cn �nn0with cn = 2�2na2(�2 + �2n)J0(�n)2



294 CHAPTER 6. HEATING ISSUESIn particular, the intensity pro�le can be expanded on this basis :I(r) = Xn pn J0(�nr=a) (6.6)by inverting the latter relation, one �nds :pn = cn Z a0 I(r)J0(�nr=a) r drand substituting the expression of I(r) yieldspn = 2�2na2(�2 + �2n)J0(�n)2 Z a0 2P�w2J0(�nr=a) e�2r2=w2 r drIn the cylinders used as mirror substrates, the radius is large enough thatthe di�raction losses are negligible. This is equivalent to say that in thepreceding integral, the bound a may be replaced by 1 without changingappreciably the result. In this case, the result is [20] :pn = P� a2 �2n(�2n + �2)J0(�n)2 exp �w2�2n8 a2 ! (6.7)Then the boundary conditions 6.2 and 6.3 reduce to a linear system( (�n � �)�2nAn � (�n + �)Bn = � �pna�n=K(�n + �)An � (�n � �)�2nBn = 0where for the sake of brevity, �n = exp(��nh=2a). This gives the constantsAn; Bn : An = �pnaK e�3�nh=2a �n � �(�n + �)2 � (�n � �)2e�2�nh=aBn = �pnaK e��nh=2a �n + �(�n + �)2 � (�n � �)2e�2�nh=aThe temperature �eld is now fully determined :T (r; z) = Xn �pnaK e��nh=2a (�n � �)e��n(h�z)=a + (�n + �)e��nz=a(�n + �)2 � (�n � �)2e�2�nh=a J0(�nr=a)(6.8)The reconstruction of I(r) by expansion on the J0(�nr=a) allows to determinethe maximum number N of terms to consider for convergence of the aboveseries. The precision improves very fastly with N . On Fig.6.2 one can com-pare the exact gaussian intensity pro�le with formula 6.6 with only 10 terms.The error is quite negligible for N > 30 (Fig.6.3). Finally the temperature�eld is shown on Fig.6.4.



6.1. HEATING BY DISSIPATION IN THE COATING 295
 0.000  0.010  0.020  0.030  0.040  0.050
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

N = 10

radial coordinate [m]

In
te

ns
ity

 [
W

 m
-2

]

Figure 6.2: dashed line : Beam intensity pro�le, solid line : reconstructionwith only 10 Dini terms6.1.3 Thermal lensingThe �rst consequence of a temperature �eld being installed in the bulk ma-terial is to create an index �eld according to :�n(r; z) = dndT T (r; z)where dn=dT is the index temperature coe�cient of the material. For Silicawe have dn=dT � �0:87 10�5 K�1. The e�ect of the index �eld is to changethe wavefront of a passing optical wave by an extra path, or excess opticalthickness Z(r) : Z(r) = dndT Z h=2�h=2 T (r; z) dzWith the preceding expression of the temperature �eld, we �ndZ(r) = dndT Xn �pna2K�n 1� e��nh=a�n + �� (�n � �)e��nh=a J0(�nr=a) (6.9)Fig.6.5 shows the shape of a plane wavefront after passing through a disk likethe Virgo mirrors. We call thermal lensing this kind of distortion. The e�ect
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Figure 6.3: Error in the reconstructed intensity pro�le and order of the Diniexpansionof thermal lensing is as a �rst approximation to change the curvature of thewavefront, like a real lens. We can estimate the curvature taken by a planewave after crossing the disk by calculating the nearest paraboloid. The apexequation of such a paraboloid is z = c r2 + p, and we want to minimizeQ(c; p) = Z a0 W (r) �Z(r)� c r2 � p�2 r drwhere W (r) = 4w2 e�2r2=w2is the gaussian weighting function, exactly as in the treatment of imperfectmirrors (see preceding chapter). The requirement that the partial derivativesof Q(c; p) vanish, leads to a normal system having the solutionc = < r2Z(r) > � < r2 >< Z(r) >< r4 > � < r2 >2p = < Z > �c < r2 >where the weighted average < f > of any function has the de�nition< f >� Z a0 W (r) f(r) r dr
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Figure 6.4: Temperature �eld in a Virgo mirror for 1W dissipated in thecoating. Hot point : 13.3KWith the weight W (r) we �nd (assuming w� a) :< r2 > = w22< r4 > = w42so that < r4 > � < r2 >2 = w44Let us derive a useful rule for the computation of the parameters c and p.The equivalent displacement Z(r) being known under the form 6.9Z(r) = Xn znJ0(�nr=a)where the coe�cients zn are known by the preceding theory, we �nd �rstly< J0(�nr=a) >= e��2nw2=8a2
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Figure 6.5: Thermal phase lens in a a = 17.5 cm, h = 10 cm silica mirror for1W dissipated in the coating (absolute value)and < r2J0(�nr=a) >= w22  1� �2w28a2 ! e��2nw2=8a2so that< r2J0(�nr=a) > � < r2 >< J0(�nr=a) >< r4 > � < r2 >2 = � �2n4a2 e��2nw2=8a2and �nally, the curvature c is :c = � 14a2 Xn zn �2n e��2nw2=8a2The mean optical thickness < Z > is< Z > = Xn zn e��2nw2=8a2
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Figure 6.6: Thermal lens and its weighted parabolic approximation for 1 Wabsorbed in the coatingand the piston : p = Xn zn (1 + �2nw2=8a2) e��2nw2=8a2The recipe is thus : take the formula giving the thermal lens Z(r) , thenreplace J0(�nr=a) by ��2n exp(��2nw2=8a2)=4a2 and you get the curvature ofthe wavefront. These formulas will be exploited also in foregoing calculationswith other coming de�nitions of zn. We can compare the parabolic �t to theoriginal thermal lens on Fig.6.6 ; we have espressed it in m and restablishedthe sign. For the Virgo parameters, we �nd a curvature radius of the wave-front, i.e. the focal length of the lens : Rc = f = 1=2c � 425:5 m.W (Notethat f is inversely proportional to the dissipated power).A perfect parabolic lensing could be compensated by a suitable matchingof the beam. We could therefore in principle, ignore it. In fact the curvatureis proportional to the absorbed power, which depends in turn of the dissi-pation rate in the coating. The dissipation rate could easily be di�erent by
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Figure 6.7: Thermal lens : anharmonicitya factor of the order of 2 between two mirrors, and it is therefore di�cultto compensate for the two lenses simultaneously. Moreover, the lensing isnot exactly parabolic, and this means that it couples the nominal TEM00mode with higher order modes, resulting in extra losses for the beam. OnFig.6.7, the di�erence between the actual lens and a paraboloid is plot, wecall it anharmonicity by analogy with the potential theory. Concerning thelosses, we can compute the coupling e�ciency of the thermal lens betweento matched waves. Consider for instance the incoming wave :	1 = 2we�r2=w2 eikr2=2R1and an outgoing wave (after passing the lens)	2 = 2we�r2=w2 eikr2=2R2The two waves have equal w for the lens cannot magnify the beam, but



6.1. HEATING BY DISSIPATION IN THE COATING 301di�erent curvature radii. Both are normalized according toZ 10 	(r)	(r) r dr = 1The lens can be expressed as��(r) = r22f + p+ �(r)where �(r) is the anharmonic residue. The e�ciency of the coupling dependson the scalar product 
 = < 	2;	1ei�� >this gives 
 = 4w2 Z 10 e�2r2=w2 eik r22 (1=R1+1=f�1=R2) eikp eik�(r)The matching condition is precisely1R2 = 1R1 + 1fand if � is much smaller than the wavelength, we have thus
 = eikp Z 10 W (r) �1 + ik�(r)� k2�2(r)� r drthe mean < � > is zero, so that
 = 1� k2 < �2 > =2 = 1� k2Q(c; p)=2where c and p are the optimal values we just found. the square modulus of
 gives the e�ciency : 
 
 = 1� k2 < �2 >so that the coupling losses are simplyL = 4�2 < �2 > =�2. For our a = 0.175 m, h = 0.1 m mirror, we �nd (numerically) Q(m0; p0) �4:15 10�15 m2=W2. This is L � 0:14 W�2Assume � = 1 ppm, Pintracavity = 10 kW, one �nds L � 5 ppm. Note that thelosses due to mirror roughness were computed exactly the same way, exceptthat an extra factor of 4 appeared, due to that special case of re
ection, inwhich the defects have double weight.



302 CHAPTER 6. HEATING ISSUES6.2 Heating by dissipation in the bulk sub-strate6.2.1 Temperature �eldA slightly di�erent model must be used when we consider the heating processcaused by dissipation of light power by its propagation through an absorbingmedium. Transparent solids as silica have a small but �nite linear absorptionrate �, so that as a function of z (the optical axis), the intensity obeys :I(r; z) = I0(r) e��zwhere I0 is the lossless solution of Maxwell's equations. The power dissipatedin the medium per volume unit is therefore at �rst order in � :p(r; z) = � "dIdz #diss � � I0(r)We shall neglect di�raction e�ects inside the medium for the Rayleigh rangeof the beam (� 1 km) is much larger than the medium thickness (� 10 cm),so that we can consider a heat source distributed in the bulk material, of theform p(r) = 2P�w2 � e�2r2=w2The heat equation now reads :�K�T (r; z) = 2P�w2 � e�2r2=w2 (6.10)We know from the coating study that2P�w2 e�2r2=w2 = Xn pn J0(�nr=a)where the �n are the discrete family of zeros of an equation similar to 6.5 (infact it is the same, as will be seen later), andpn = P�a2 �2n(�2n + �2)J0(�n)2 e��2nw2=8a2



6.2. HEATING BY DISSIPATION IN THE BULK SUBSTRATE 303In fact, it is easy to guess that the �n will be exactly the same as in thecoating study. Anyway, eq.6.10 admits a special solution Tspec(r) given byTspec(r) = Xn tn J0(�nr=a)with tn = �P�K 1(�2n + �2)J0(�n)2 e��2nw2=8a2A general solution of 6.10 requires still a general solution of the homogeneousheat equation, that can be taken of the formTgen eh =Xn An cosh(�nz=a)J0(�nr=a)where the coe�cients An are arbitrary. The particular choice of cosh ratherthan a combination of exp(��nz=a) and exp(�nz=a) is justi�ed by the symme-try of the problem : the heat source is independent of z, and the temperature�eld must therefore be symmetrical with respect to the meridian plane. Theglobal temperature �eld is now :T (r; z) =Xn (An cosh(�nz=a) + tn) J0(�nr=a)Now the boundary conditions reduce to radiation losses on the faces and onthe edge.� On the edge �K @T@r (a; z) = 4�0T 30 T (a; z)and this is the same condition as 6.3. It will be satis�ed if the �n arethe same as in the coating study, as could be foreseen.� On the face z = h=2 , we have�K @T@z (r; h=2) = 4�0T 30 T (r; h=2)Owing to the symmetry, the face z = �h=2 gives the same condition.The last boundary condition determines the An :An = �tn ��n sinh(�nh=2a) + � cosh(�nh=2a)
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5xFigure 6.8: Absorption in the bulk : temperature �eld. Hot point : 3.2 Kfor 1 W dissipatedand the temperature �eld is now determined :T (r; z) = �P�K Xn "1 � � cosh(�nz=a)�n sinh(�nh=2a) + � cosh(�nh=2a)#�� exp[��2nw2=8a2)(�2n + �2)J0(�n)2 J0(�nr=a) (6.11)The pro�le of the temperature �eld is given on Fig.6.8.6.2.2 Thermal lensingWe now know how to compute the thermal lens :Z(r) = dndT Z h=2�h=2 T (r; z) dzthis gives :Z(r) = dndT �Ph�K Xn "1 � (2�a=�nh) sinh(�nh=2a)�n sinh(�nh=2a) + � cosh(�nh=2a)#�
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Figure 6.9: Thermal lens and its parabolic approximation (1 W dissipated)-Bulk absorption � exp(��2nw2=8a2)(�2n + �2)J0(�n)2 J0(�nr=a)One sees on Fig.6.9 a plot of the lens pro�le and of its parabolic best �t,according to methods developped above. The focal length isf � 412 m:Wand the losses L = 0:15 W�2Note that these results are very similar to those obtained in the case ofcoating heating.6.3 Distortion from coating absorptionAn other e�ect of temperature changes in a solid is its thermal expansion.Moreover, if the temperature is not uniform (we have seen that this is the



306 CHAPTER 6. HEATING ISSUEScase when the heat source is the laser beam) stresses are developed insidecausing distortions of the solid. In particular, the mirror re
ecting surface isdistorted, and we have to estimate the e�ect both in the case of the coatingand bulk heating process. In the case of coating absorption, the fact thatthe temperature �eld is harmonic greatly simpli�es the solution.6.3.1 Thermoelastic solutionWe �rst recall the linear thermoelastic equations. The atoms of the distortedsolid are displaced with respect to the reference solid by a displacement vector~u(~r). The partial derivatives of ~u de�ne a rank 2 tensor Eij(~r) called strain :Eij(~r) = 12[@iuj(~r) + @jui(~r)]A generalization of Hooke's law linking applied force to displacement in thedistortion of a spring, is a linear relation between the stress tensor �ij(~r)and the strain tensor via a constant rank 4 tensor :�ij = Xk;l Cijkl EklFor isotropic solids (e.g. fused silica) , the elastic tensor reduces to only twoindependent components :�ij = � �ij E + 2�Eij� and � are known as the Lam�e coe�cients. Moreover, if a temperature �eldT is present, an extra stress arises and this becomes [28]�ij = �ij (�E � �T ) + 2�Eij� is the stress temperature modulus, and it is related to the thermal expan-sion coe�cient � by : � = �(3� + 2�)The equilibrium equation is : @j�ij = 0In the case of axial symmetry, using cylindrical coordinates, the nonzerostrain components are Err = @rur



6.3. DISTORTION FROM COATING ABSORPTION 307Erz = 12 (@ruz + @zur)E�� = urrEzz = @zuzthe stress/strain relations are8>>><>>>:�rr = �� T + �E + 2�Err��� = �� T + �E + 2�E���zz = �� T + �E + 2�Ezz�rz = 2�Erz (6.12)and the equilibrium equation are(@r�rr + (�rr ����)=r + @z�rz = 0(@r + 1=r)�rz + @z�zz = 0 (6.13)Recall that the mirror is a cylinder of radius a, of thickness h, that thecoordinates are chosen in such a way that r 2 [0; a] and z 2 [�h=2; h=2], andthat the coating is located on the z = �h=2 face. One can check that theequilibrium equation is satis�ed by a displacement vector of the formur = �2(� + �) 1r Z r0 T (r0; z) r0 dr0uz = �2(� + �) "Z z�h=2 T (r; z0) dz0 + �(r)#provided a suitable determination of the unknown function �(r). Remarkthat �(r) is exactly our target, i.e. the displacement of the surface z = �h=2holding the re
ective coating. All the following derivations aim to eventually�nd �(r). We �rst �nd the strain tensor :Err(r; z) = �2(� + �) �T (r; z)� 1r2 Z r0 T (r0; z) r0 dr0�E��(r; z) = �2(� + �) 1r2 Z r0 T (r0; z) r0 dr0Ezz(r; z) = �2(� + �) T (r; z)



308 CHAPTER 6. HEATING ISSUESErz(r; z) = �4(� + �) "�0(r) + Z z�h=2 @T@r (r; z0) dz0 + Z r0 @T@z (r0; z) r0 dr0#The stress tensor is in turn :�rr(r; z) = � ��� + � 1r2 Z r0 T (r0; z) r0 dr0���(r; z) = � ���+ � �T (r; z)� 1r2 Z r0 T (r0; z) r0 dr0��zz(r; z) = 0�rz(r; z) = ��2(� + �) "�0(r) + Z z�h=2 @T@r (r; z0) dz0 + 1r Z r0 @T@z (r0; z) r0 dr0#The equilibrium equations reduce then to :@z�rz(r; z) = 0 (6.14)(@r + 1=r)�rz(r; z) = 0 (6.15)By substituting the expression of �rz into eq.6.14 we get@�rz@z (r; z) = ��2(� + �) "@T@r (r; z) + 1r Z r0 @2T@z2 (r0; z) r0 dr0# (6.16)but there is no heat source inside the material, so that T obeys the homoge-neous Fourier equation �T = 0 i.e.@2T@z2 = � 1r @r  r @T@r !so that eq.6.14 is identically satis�ed :@z�rz = 0. Now, we have for the same reason (T being harmonic) :(@r + 1=r)�rz(r; z) = ��2(� + �) "�00(r) + �0(r)=r + @T@z (r;�h=2)#and we have to choose � in such a way that the preceding expression vanishes,that is 1r @r  r @�@r (r)! = � @T@z (r;�h=2)



6.3. DISTORTION FROM COATING ABSORPTION 309the solution of which is�(r) = � Z r0 dr0r0 Z r00 @T@z (r00;�h=2) r00 dr00 + C 0 ln(r) + Cwhere C and C 0 are arbitrary constants. Obviously, the regularity of ~u onthe axis requires C 0 = 0. Now the stress component �rz is explicitly known :�rz(r; z) = ��2(� + �)  Z z�h=2 @T@r (r; z0) dz0 +1r Z r0 "@T@z (r0; z)� @T@z (r0;�h=2)# r0 dr0!This last form makes it clear that �rz(r;�h=2) = 0, and since it has beenshown that @z�rz = 0, we have in fact simply�rz(r; z) = 0The boundary conditions express the balance of applied forces and torquesat the limiting surfaces. These conditions are here :�rr(a; z) = 0�rz(a; z) = 0�rz(r;�h=2) = 0�zz(r;�h=2) = 0all are identically ful�lled except the �rst one. It is easy to compute �rr(a; z).We recall the expression found in the preceding section for the temperature�eld 6.8T (r; z) = Xn �pnaK e��nh=2a (�n � �)e��n(h�z)=a + (�n + �)e��nz=a(�n + �)2 � (�n � �)2e�2�nh=a J0(�nr=a)We haveZ a0 J0(�nr=a) r dr = a2�2n Z �n0 J0(x)x dx = a2�2n �nJ1(�n) = a2�2n �J0(�n)where we have used the de�nition 6.5 of �n. This gives�rr(a; z) = � ��� + � �P��aK �
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Figure 6.10: The radial stress �rr on the edge is a quasi-linear function of z�Xn e�w2�2n=8a2(�2n + �2)J0(�n) (�n � �)e��n(h�z)=a + (�n + �)e��nz=a(�n + �)2 � (�n � �)2e�2�nh=aA plot of �rr(a; z) (see �g.6.10) shows that the dependence on z is quasilinear, and by adding a stress of the form �rr(a; z) = A + B z, it will bepossible to almost exactly cancel the edge stress. But we have to �nd anew solution of the elastic equations satisfying the boundary conditions andgiving a linear �rr(a; z). This is done by the new displacement vector�ur(r; z) = � + 2�2�(3� + 2�) (Ar +B rz)�uz(r; z) = � ��(3� + 2�) (Az +B z2=2) � � + 2�4�(3� + 2�) B r2some calculation shows that �rz as well as �zz are identically zero, and�rr(a; z) = A + B z. By suitably chosing the arbitrary constants A and B,and adding the correction �~u to ~u, we can remove the global resultant radialforce exerted on the edge and the resultant torque. Then the Saint-Venantprinciple tells us that the resulting solution is almost everywhere near the ex-act solution, except maybe in a small neighborhood of the edge. But we are



6.3. DISTORTION FROM COATING ABSORPTION 311interested in the region "seen" by the light beam, so that the approximationshould work quite well. By minimizingQ = Z h=2�h=2 (�rr(a; z) +A+B z)2 dzone �nds A = �1h Z h=2�h=2�rr(a; z) dzand B = �12h3 Z h=2�h=2 z�rr(a; z) dzBy substituting the expression of �rr(a; z), we getA = �Y �P��Kh Xn e�w2�2n=8a2(�2n + �2)�nJ0(�n) 1� e��nh=a�n + �� (�n � �)e��nh=a (6.17)andB = � 12�Y �P�a�Kh3 Xn e�w2�2n=8a2(�2n + �2)�2nJ0(�n) �nh2a �1� e��nh=a� � 1 + e��nh=a�n + �+ (�n � �)e��nh=a(6.18)It has been found more convenient to use the Young modulus Y and thePoisson ratio � instead of the Lam�e coe�cients. The relation is� = Y �(1 + �)(1� 2�)� = Y2(1 + �)so that �2(�+ �) = �(1 + �)and ���+ � = �YOn �g.6.11, one can see the linear function �A � B z superimposed to thefunction �rr(a; z). On the following �gure 6.12 one sees the error �rr(a; z)+A+Bz. The displacement is now fully determined, and the total displacementvector �eld is ~U = ~u + ~�u. The displacement is de�ned up to a constant
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Figure 6.11: Edge stress function (solid line) and its linear �t (dashed line)vector. We arbitrarily choose a displacement zero for r = 0 and z = �h=2.We have thus the special resultuz(r;�h=2) = �(1 + �)�P�K Xn �ne��2nw2=8a2(�2n + �2)J20 (�n)�n + �� (�n � �)e�2�nh=a(�n + �)2 � (�n � �)2e�2�nh=a [J0(�nr=a) � 1] (6.19)and �uz(r;�h=2) = 1 � �2Y B r2But the Saint-Venant correction appears very small in the region of opticalinterest, as can be seen on Fig6.13.6.3.2 Surface analysisAs in the case of thermal lensing, we wish to estimate the departure of thedistorted face from an ideally parabolic surface. The apex equation of theparaboloid being Ẑ(r) = c r2 + p
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Figure 6.12: Residual edge stresswe �nd the parameters c (curvature) and p (piston) by minimizingQ(c; p) = Z a0 W (r) huz(r;�h=2)� c r2 � pi2where W (r) is the normalized intensity of the light spot. This yieldsc = ��(1 + �)�P4�a2K Xn �3ne��2nw2=4a2(�2n + �2)J20 (�n) �n + �� (�n � �)e�2�nh=a(�n + �)2 � (�n � �)2e�2�nh=a (6.20)and, with the notation xn = �2nw2=8a2 :p = ��(1 + �)�P�K Xn �ne�xn(�2n + �2)J20 (�n) h1 � (1 + xn)e�xni �� �n + �� (�n � �)e�2�nh=a(�n + �)2 � (�n � �)2e�2�nh=a (6.21)for the Virgo corner mirrors (a = 0.175 m, h = 0.1 m and w = 0.02 m), we�nd for instance a curvaturec � �8:6 10�5 m�1W�1
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Figure 6.13: Distortion of the re
ecting surface. Without S-V corection(dashed line) and with S-V correction (solid line). The beam half-width wasw = 0.02 mand for the curvature radius (Rc = 1=2c):Rc � �5818 m:WOn Fig.6.14, we show the distorted surface in the optically interesting region,and the nearest paraboloid. This distorted surface couples the TEM00 modewith higher order modes causing coupling losses. One can evaluate thesecoupling losses as customary byL = 16�2Q(c; p)=�2where c and p have their optimal values, de�ned above. For the Virgo cornermirrors, one �nds the loss rateL � 3 10�3 =W2Recall that the displacement being linear with respect to the absorbed power,the losses are quadratic.
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Figure 6.14: Distortion Z(r) of the re
ecting surface and the nearest (inten-sity weighted) paraboloid6.4 Distortion caused by bulk absorptionIn the case of bulk absorption, the temperature �eld is not any more har-monic, and the preceding short method cannot be employed. We are boundto solve the full system of thermo-elastic equations. Let us recall that thetemperature �eld is given by :T (r; z) = Xn tn(z)J0(knr)where kn � �n=a. The functions tn(z) are of the formtn(z) = pn [1� �n cosh(knz)]namely, pn = �P�K exp(��2nw2=8a2)(�2 + �2n)J20 (�n)and �n = ��n sinh(�nh=2a) + � cosh(�nh=2a)



316 CHAPTER 6. HEATING ISSUES6.4.1 Thermoelastic solutionWe search for a solution of the form(ur(r; z) = PnAn(z)J1(knr)uz(r; z) = PnBn(z)J0(knr)where An(z) and Bn(z) are unknown functions to be determined accordingto the equilibrium equations and the boundary conditions. The strain tensorcomponents are :Err(r; z) = Pn knAn(z)J 01(knr)E��(r; z) = Pn knAn(z)J1(knr)=knrEzz(r; z) = PnB0n(z)J0(knr)Erz(r; z) = 12Pn(A0n(z)� knBn(z))J1(knr)so that the trace isE(r; z) = Xn (knAn(z) +B0n(z))J0(knr)The stress tensor is in turn :�rr(r; z) = Pn [�(knAn(z) +B0n(z))� �tn(z)] J0(knr) + 2�Pn knAn(z)J 01(knr)���(r; z) = Pn [�(knAn(z) +B0n(z))� �tn(z)] J0(knr) + 2�Pn knAn(z)J1(knr)=knr�zz(r; z) = Pn [�(knAn(z) +B0n(z))� �tn(z)] J0(knr) + 2�PnB0n(z)J0(knr)�rz(r; z) = �Pn(A0n(z)� knBn(z))J1(knr)after some algebra, we �nd the equilibrium equations :(� [A00n � k2nAn]� kn [(�+ �) (B0n + knAn) � �tn] = 0� [B00n � k2nBn] + @z [(�+ �)(B0n + knAn)� �tn] = 0The �rst consequence is thath@2z � k2ni (A0n + knBn) = 0of which the odd solution isA0n + knBn = knC 0n sinh(knz) (6.22)where C 0n is an arbitrary constant. The source of heat being independent onz and the temperature, consequently, an even function of z, we expect An



6.4. DISTORTION CAUSED BY BULK ABSORPTION 317being an even function and Bn an odd one. This result (Eq.6.22) allows toexpress Bn as a function of An and to insert it in any of the two equilibriumequations. For instance, inserting in the �rst, yields(�+ 2�) h@2z � k2ni An = (� + �)k2nC 0n cosh(knz)� �knpn [1 � �n cosh(knz)]of which the even solution including one more arbitrary constant C 00n is :An(z) = C 00n cosh(knz) + � + �2(� + 2�) C 0n knz sinh(knz) ++ �pnkn(� + 2�) [1 + �n knz sinh(knz)=2]then, using 6.22 :Bn(z) = (C 0n�C 00n) sinh(knz) � �+ �2(� + 2�) C 0n [sinh(knz) + knz cosh(knz)] �� �pn�n2kn(�+ 2�) [sinh(knz) + knz cosh(knz)]The arbitrary constants are determined by the boundary conditions on thesurfaces z = �h=2. The conditions on the edge r = a are ignored. Wehave seen indeed on the preceding case that the needed correction to thedisplacement is practically negligible on the central area of the mirror, wherelight is actually interacting with the surface. The condition �rz(r;�h=2) = 0gives " � + �� + 2� 
n cosh 
n � �� + 2� sinh 
n# C 0n + 2 sinh 
n C 00n =� �pn�nkn(�+ 2�) (sinh 
n + 
n cosh 
n) (6.23)and the condition �zz(r;�h=2) = 0 yields"cosh 
n � � + ��+ 2� 
n sinh 
n# C 0n � 2 cosh 
n C 00n =2�pnkn(�+ 2�) + �pn�nkn(� + 2�) 
n sinh 
n



318 CHAPTER 6. HEATING ISSUESwhere, 
n � �nh=2a. This is a linear system in (C 0; C 00) the solution of whichis is C 0n = �pnkn(�+ �) " 2 sinh 
n
n + sinh 
n cosh 
n � �n#C 00n = � �pn2kn(� + �) " 2�+ 2� (� + �)
n cosh 
n � � sinh 
n
n + sinh 
n cosh 
n + �n#Now, it is possible to compute Bn(�h=2) :Bn(h=2) = �pnkn(� + �) sinh 
n " sinh 
n
n + sinh 
n cosh 
n � �n2 #so that the displacement at z = h=2 (symmetrical to the displacement atz = �h=2, isuz(r; h=2) = ��+ � Xn pn sinh 
nkn " sinh 
n
n + sinh 
n cosh 
n � �n2 # J0(knr)Calling Z(r) the apex of the distorted surface, this is in detailZ(r) = �(1 + �)�Pa�K Xn exp (��2nw2=8a2)(�2n + �2) �nJ20 (�n)" 2 sinh 
n
n + sinh 
n cosh 
n � ��n sinh 
n + � cosh 
n # J0(�nr=a)where we have replaced the Lam�e coe�cients (�, � and �) by the Poissonratio � and the linear thermal expansion coe�cient �.6.4.2 Surface analysisOne can see on Fig.6.15 the shape of the distorted surface in the center re-gion, with the nearest paraboloid, computed according to the method alreadyexperimented in the previous problems. The curvature radius isrc = �16388m:Wand the losses L = 9:3 10�5W�2These �gures are signi�cantly di�erent from the case of coating heating, bya rough factor of 3 for the focal length, and even by two orders of magnitudefor the losses, due to the nearly parabolic pro�le.
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Figure 6.15: Distortion of the re
ecting surface and the nearest (intensityweighted) paraboloid6.5 Heating processes6.5.1 Transient temperature �elds : general methodUp to now we have treated the steady state solution supposed to be reachedat thermal equilibrium between the mirror and the world around the vacuumvessel. Now we turn to the question of temperature evolution from a givenstate to a new one. For instance the mirror is at a uniform temperature T0,then we switch on the laser, and the temperature begins to increase until thesteady state. In the time dependent case the heat equation is (we keep axialsymmetry) : "�C @@t � K�# T (t; r; z) = S1(t; r; z) (6.24)where S1(t; r; z) refers to the internal source of heat. The boundary con-ditions remain�K " @@zT#z=�h=2 = �4�0T 30T (t; r; h=2) + S2(t; r)



320 CHAPTER 6. HEATING ISSUES�K " @@zT#z=h=2 = 4�0T 30T (t; r; h=2)�K " @@rT#r=a = 4�0T 30T (t; a; z)where S2(t; r) is the surface source of heat localized on the coating (at z =�h=2). In the special case of a static source (a constant power laser beam),the sources are time independent, and a special static solution T1(r; z) of6.24 satisfying the boundary conditions is known since the preceding sections.The general solution of 6.24 is therefore of the formT (t; r; z) = T1(r; z) + Ttr(t; r; z)where Ttr(t; r; z) is the transient part, satisfying the homogeneous heat equa-tion and the homogeneous boundary conditions (i.e. reduced to outgoingradiation). The transient temperature can be searched under the separatedform Ttr(t; r; z) = Xn;m [�0nm(t) cos(�0mz) + �00nm(t) sin(�00mz)] J0(knr)where �0m, �00m, and kn are arbitrary constants. The functions �0nm(t) and�00nm(t) must satisfy @�0nm@t + K�C (k2n + �02m) �0nm = 0@�00nm@t + K�C (k2n + �002m ) �00nm = 0whose non exploding solutions are�0nm(t) = �0nm exp "� K�C (k2n + �02m)t#�00nm(t) = �00nm exp "� K�C (k2n + �002m )t#where the �nm are extra arbitrary constants. It is convenient to de�ne thefollowing time constants : � 0nm = �CK(�0m2 + k2n)



6.5. HEATING PROCESSES 321� 00nm = �CK(�00m2 + k2n)Now, the boundary conditions imposekn = �n=awhere the �n have the same de�nition (6.5) as in the whole present chapter,whereas for satisfying the boundary conditions on the circular faces, �0m and�00m must respectively verify�0mh2 sin(�0mh=2) � 4�0T 30h2K cos(�0mh=2) = 0�00mh2 cos(�00mh=2) + 4�0T 30h2K sin(�00mh=2) = 0Let us introduce the new radiation constant �0 � �h=2a, The �rst equationhas the form u sinu� �0 cos u = 0 (6.25)It admits an in�nite discrete family fum ; m 2 Zg of solutions, that can beeasily computed, then we have�0m = 2um=hThe same way, the equationv cos v + �0 sin v = 0 (6.26)admits an in�nite discrete family fvm ; m 2 Zg of solutions, and�00m = 2vm=hIt is essential to note that the functions fJ0(�nr=a); n 2 Ng form an orthogo-nal complete basis for functions of r de�ned on r 2 [0; a], as already remarked,and for the same theoretical reasons, the functions fcos(2umz=h); m 2 Ngand fsin(2vmz=h); m 2 Ng on z 2 [�h=2; h=2]. For the two last cases, thisis a consequence of the relations 6.25 and 6.26. The orthogonality of the sinefamily with respect to cosine is obvious over a symmetrical interval. Butmoreover, we have Z h=2�h=2 cos(�0mz) cos(�0nz) dz = �nmg0m



322 CHAPTER 6. HEATING ISSUESZ h=2�h=2 sin(�00mz) sin(�00nz) dz = �nmg00mwhere g0m = h2 "1 + sin(2um)2um # ; g00m = h2 "1 � sin(2vm)2vm #At this point, all constants are determined except �0mn and �00mn. This is donedepending on the initial condition on the temperature. Assume for instancethe excess temperature is zero at t = 0. The steady state temperature (seepreceding sections) is generally known under the formT1(r; z) =Xn tn(z)J0(knr)requiring T (0; r; z) = 0 yieldsXn tn(z)J0(knr) +Xn;m [�0nm cos(�0mz) + �00nm sin(�00mz)] J0(knr) = 0Owing to the orthogonality of the J0(knr) this is equivalent totn(z) +Xm [�0nm cos(�0mz) + �00nm sin(�00mz)] = 0and now, owing to the orthogonality of the sin(�00mz) and the cos(�0mz), thisgives �0nm = � 1g0m Z h=2�h=2 tn(z) cos(�0mz) dz�00nm = � 1g00m Z h=2�h=2 tn(z) sin(�00mz) dzwhich completes the determination. The temperature �eld is thenT (t; r; z) = � Xn;m h�0nm �1� e�t=� 0nm� cos(�0mz)+�00nm �1� e�t=� 00nm� sin(�00mz)i J0(knr) (6.27)



6.5. HEATING PROCESSES 323case of coating absorptionIn the case of heating by dissipation in the coating, we have seen thattn(z) = �pnaK e�
n (�n � �)e�2
ne�nz=a + (�n + �)e��nz=a(�n + �)2 � (�n � �)2e�4�nz=awhere 
n � �nh=2a. We clearly need the following parameters :C 0nm � 1g0m Z h=2�h=2 cos(�0mz) exp(��nz=a) dzand C 00nm � � 1g00m Z h=2�h=2 sin(�00mz) exp(��nz=a) dzafter some algebra, we �ndC 0nm = 2 cos(um)1 + sin(2um)=2um e
n 
n + �0 � (
n � �0) e�2
n
2n + u2mand C 00nm = 2 sin(vm)1 � sin(2vm)=2vm e
n 
n + �0 + (
n � �0) e�2
n
2n + u2mso that �0nm = �hpnK cos(um)1 + sin(2um)=2um 1
2n + u2m�00nm = ��hpnK sin(vm)1 � sin(2vm)=2vm 1
2n + v2mand the temperature �eld is (by substituting the explicit expression of pn) :T (t; r; z) = 4�PMC Xn;m �2n exp(��2nw2=8a2)(�2n + �2)J20 (�n) �" cos(um)1 + sin(2um)=2um � 0nm �1� e�t=� 0nm� cos(�0mz)�sin(vm)1� sin(2vm)=2vm � 00nm �1� e�t=� 00nm� sin(�00mz) # J0(�nr=a) (6.28)
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Figure 6.16: Transient thermal lensing in a standard Virgo mirror, case ofcoating absorption. Long dashed line : beam pro�le. Short dashed line :Stationary case of �g6.6.where M = ��a2h is the mass of the mirror. The thermal lens, de�ned byZ(t; r) = dndT Z h=2�h=2 T (t; r; z) dzobviously, only the even part contributes, givingZ(t; r) = dndT 2�PhMC Xn;m �2n exp(��2nw2=8a2)(�2n + �2)J20 (�n) �sin(2um)=2um1 + sin(2um)=2um � 0nm �1� e�t=� 0nm�J0(�nr=a) (6.29)On Fig.6.16, one can see the time scale of the evolution of the lens pro�le.The steady state is reached after hours. We get the time variable focal lengthf(t) de�ned by 1f(t) = � dndT �PhMCa2 Xn;m �4n exp(��2nw2=4a2)(�2n + �2)J20 (�n) �
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Figure 6.17: Evolution of the thermal focal length (heat source on the coat-ing) sin(2um)=2um1 + sin(2um)=2um � 0nm �1� e�t=� 0nm� (6.30)It is interesting to realize that though the heating process takes hours toreach the steady state, the focal length takes only a few minutes (see Fig.6.17)to reach its stationary value. This is due to the fact that the temperature�eld reaches soon its �nal pro�le, and spends further time growing uniformlywithout noticeably changing the gradients. The situation is di�erent for thepiston, which follows the evolution of the temperature on a long time scale,but is automatically corrected by the servo loops.case of bulk absorptionIn this case, as seen above,tn(z) = �a2K pn�2n "1� 2�e�
n cosh(�nz=a)�+ �n + (�� �n)e�2
n #



326 CHAPTER 6. HEATING ISSUESso that, using previous results,Z h=2�h=2 tn(z) cos(�0mz) dz = �a2hK pn�2n "sin umum � h2a � cosumu2m + 
2n #= �a2hK pn 
2n sinum=umu2m + 
2nIf we de�ne �nm = 1g0m Z h=2�h=2 tn(z) cos(�0mz) dzwe have, after susbtitution of the expression for pn :�nm = �Ph22�Ka2 �2n exp(��2nw2=8a2)(�2 + �2n)J20 (�n) 11 + sin(2um)=2um sinum=umu2m + 
2nand �nally, using the de�nition of � 0nm :T (t; r; z) = 2�hPMC Xn;m �2n exp(��2nw2=8a2)(�2 + �2n)J20 (�n) �sinum=um1 + sin(2um)=2um � 0nm �1� e�t=� 0nm� cos(�0mz)J0(�nr=a) (6.31)where M = ��a2h is the mass of the mirror. The thermal lens isZ(t; r) = dndT 2�h2PMC Xn;m �2n exp(��2nw2=8a2)(�2 + �2n)J20 (�n) �(sinum=um)21 + sin(2um)=2um � 0nm �1� e�t=� 0nm� J0(�nr=a) (6.32)Fig.6.18, show almost exactly the same behavior as in the case of coatingabsorption. The focal length is de�ned by1f(t) = � dndT �h2PMCa2 Xn;m �4n exp(��2nw2=4a2)(�2 + �2n)J20 (�n) �(sinum=um)21 + sin(2um)=2um � 0nm �1 � e�t=� 0nm� (6.33)Fig.6.19 is almost identical to Fig.6.17 and the same comments apply.
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Figure 6.18: Transient thermal lensing in a standard Virgo mirror, case ofbulk absorption. Long dashed line : beam pro�le. Short dashed line : Sta-tionary case of �g6.9.6.5.2 Transient thermoelastic deformationsWhen time enter elasticity problems, the relevant theory is elastodynamics.The basic elastodynamics equations are the equilibrium equations, modi�edin order to take into account inertial forces and generalizing Newton's secondlaw : div� = � @2t uThe boundary conditions remain the same as in elasticity. Considering mo-tions of matter caused by a constant low rate heating, the velocities of matterare so small, about one �m in tens of minutes, that we can neglect the iner-tial forces. The equations return to the form of static elasticity, except thatthe time enters as an evolution parameter through temperature. This is thequasi-static regime. It will be assumed for �nding the slow evolution of theshape of the mirrors faces. We shall start from the expression of the timedependent temperature �eld which is never harmonic (even in the case of
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Figure 6.19: Transient thermal focal length (heat source in the bulk)coating dissipation) so that we must tackle the thermoelastic equations, andassume that the temperature �eld is given under the formT (t; r; z) = Xn tn(t; z)J0(knr)As in the static study, we search the displacement vector under the form(ur(t; r; z) = PnAn(t; z)J1(knr)uz(t; r; z) = PnBn(t; z)J0(knr)We know from the study of distortions caused by bulk absorption that theunknown functions An and Bn obey�@2z � k2n� (A0n + knBn) = 0In general, there is no symmetry with respect to the meridian plane, so thatwe must take the general solution depending on two arbitrary functions of t,Cn and Dn : A0n + knBn = knCn cosh(knz) + knDn sinh(knz) (6.34)



6.5. HEATING PROCESSES 329then we are led to solve the di�erential equation�@2z � k2n� An = k2n(�+ �)�+ 2� [Cn sinh(knz) +Dn cosh(knz)]� kn�tn� + 2�the general solution of which, involving two more arbitrary functions of t isAn(t; z) = Mn sinh(knz) + Pn cosh(knz)++ � + �2(� + 2�) knz [Cn cosh(knz) +Dn sinh(knz)]� kn��n� + 2�where �n(t; z) represents a special solution of�@2z � k2n� �n = tnthen it is possible to deduce Bn(t; z) from 6.34 :Bn(t; z) = (Cn �Mn) cosh(knz) + (Dn � Pn) sinh(knz) + �+ �2(�+ 2�)�[Cn (cosh(knz) + knz sinh(knz)) +Dn (sinh(knz) + knz cosh(knz))] + ��0n�+ 2�The stress tensor is now explicitly de�ned, depending on 4 families of con-stants to be determined from the boundary conditions. These boundaryconditions on the circular faces (recall that we neglect conditions on theedge) give a rank 4 linear system, namely" �+ ��+ 2�
n sinh 
n � �� + 2� cosh 
n#Cn+" �+ �� + 2�
n cosh 
n � �� + 2� sinh 
n#Dn+ 2 cosh 
nMn + 2 sinh 
n Pn = 2��0n(t; h=2)�+ 2�" �+ ��+ 2�
n sinh 
n � �� + 2� cosh 
n#Cn�" � + �� + 2�
n cosh 
n � ��+ 2� sinh 
n#Dn+ 2 cosh 
nMn � 2 sinh 
n Pn = 2��0n(t;�h=2)� + 2�"sinh 
n � �+ �� + 2�
n cosh 
n#Cn + "cosh 
n � � + ��+ 2�
n sinh 
n#Dn
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nMn � 2 cosh 
n Pn = �2�kn�(t; h=2)�+ 2�� "sinh 
n � � + ��+ 2�
n cosh 
n#Cn + "cosh 
n � � + �� + 2�
n sinh 
n#Dn2 sinh 
nMn � 2 cosh 
n Pn = �2�kn�n(t;�h=2)� + 2�where as usual, 
n � �nh=2a. After solving the system and some tedious butelementary algebra, one can express the displacement amplitude :Bn(t;�h=2) = �� + � cosh 
nsinh(
n) cosh(
n)� 
n [sinh 
ne0n(t)� cosh 
nkno(t)]��� + � sinh 
nsinh(
n) cosh(
n) + 
n [cosh 
no0n(t)� sinh 
nkne(t)]where we have introduced the even and odd parts of the temperature �eldand its gradients : en(t) = 12 [�n(t; h=2) + �n(t;�h=2)]on(t) = 12 [�n(t; h=2)� �n(t;�h=2)]e0n(t) = 12 [�0n(t; h=2) + �0n(t;�h=2)]o0n(t) = 12 [�0n(t; h=2)� �0n(t;�h=2)]Then the shape Z(t; r) of the mirror's surface (at z = �h=2) isZ(t; r) = Xn Bn(t;�h=2)Jn(�nr=a)case of coating absorptionThe time dependent temperature �eld has been derived in a preceding sec-tion. In the case of absorption in the coating, we foundT (t; r; z) = 4�PMC Xn;m �2n exp(��2nw2=8a2)(�2n + �2)J20 (�n) �



6.6. THERMOELASTIC COUPLING : COATING ABSORPTION 331" cos(um)1 + sin(2um)=2um � 0nm �1� e�t=� 0nm� cos(�0mz)�sin(vm)1� sin(2vm)=2vm � 00nm �1� e�t=� 00nm� sin(�00mz) # J0(�nr=a) (6.35)using the preceding principles gives the apex equationZ(t; r) = � �P�(1 + �)h2�Ka2 �Xn;m pn (sinh 
n (�0 cosh 
n + 
n sinh 
n)sinh 
n cosh 
n + 
n " cos2 um1 + sin(2um)=2um 1� exp(�t=� 0nm)(u2m + 
2n)2 #+cosh 
n (�0 sinh 
n + 
n cosh 
n)sinh 
n cosh 
n � 
n " sin2 vm1� sin(2vm)=2vm 1 � exp(�t=� 00nm)(v2m + 
2n)2 #) J0(�nr=a)case of bulk absorptionIn this case, the temperature �eld is, according to the previous section,T (t; r; z) = 2�hPMC Xn;m �2n exp(��2nw2=8a2)(�2 + �2n)J20 (�n) �sin um=um1 + sin(2um)=2um � 0nm �1 � e�t=� 0nm� cos(�0mz)J0(�nr=a)and the corresponding apex equation for the time-evoluting surface isZ(t; r) = ��hP�(1 + �)h22�Ka2 Xn;m pn sinh 
n (�0 cosh 
n + 
n sinh 
n)sinh 
n cosh 
n + 
nsin(2um)=2um1 + sin(2um)=2um 1 � exp(�t=� 0nm)(u2m + 
2n)2 J0(�nr=a)6.6 Thermoelastic coupling : Coating absorp-tionDeformation of the wavefront after re
ection on a mirror due either to ther-mal lensing or to distortion of the re
ecting coating obviously a�ect thetuning of cavities involving such temperature sensitive mirrors. The tuning



332 CHAPTER 6. HEATING ISSUESa�ects, as a feedback loop, the stored power and thus the heating rate of themirrors. We are thus faced with the question of time varying power 
uxeson mirrors. The �rst step is to study the time dependent temperature �eld,and the resulting dynamical thermal lens, the second step is to derive thedynamical distortion of the re
ecting face.6.6.1 Dynamical temperatureTemperature �eldWe assume here an incoming optical beam having for any reason a timevarying integrated power. The causes may be technological (an unperfectpower stabilization) or fundamental : The absorbed power 
uctuates due toshot noise, and the situation is equivalent to a varying power 
ux. Let us�rstly evaluate the result from a coating absorption. With no internal sourceof heat, The Fourier-heat equation reads:[�C@t �K�] T (t; r; z) = 0Let us recall that C is the speci�c heat of the material, K its thermal con-ductivity, and � its density. We take the time-Fourier transform:��+ i !�CK � T (!; r; z) = 0 (6.36)We separate the space variable by takingT (!; r; z) = t(!; z)J0(kr)where J0 is the Bessel function, and k an arbitrary constant. Eq.6.36 becomesh@2z � �2i t(!; z) = 0where � = sk2 � i !�CKThe general solution is:t(!; z) = �0(!) exp(��z) + �00(!) exp(�z)



6.6. THERMOELASTIC COUPLING : COATING ABSORPTION 333where �0 and �00 are two arbitrary functions. We have now a solution ofEq.6.36 under the form:T (!; r; z) = [�0(!) exp(��z) + �00(!) exp(�z)] J0(kr)The various arbitrary constants and functions can now be determined by theboundary conditions as usual. We take the coordinates as follows: The radialcoordinate is such that 0 � r � a (a is the radius of the cylindrical mirror),the axial coordinate is such that 0 � z � h (h is the thickness of the mirror).The absorbing coating is assumed at z = 0. We �rstly address the conditionof an outgoing radiating heat 
ux o� the circular edge (r = a). This yields:�K@T@r (!; a; z) = 4�0T 30 T (!; a; z)The z dependent factor cancels out from the equation, and we are left withKkJ1(ka) = 4�0T 30J0(ka)or, by setting ka = � and � = 4�0T 30 a=K:�J1(�)� �J0(�) = 0 (6.37)An equation like 6.37 has an in�nite family of discrete solutions we notef�n; n = 1; 2; :::g. A consequence of this quantization is that now, the familyof functions J0(�nr=a) form an othonormal and closed family of functions onwhich any reasonably behaviored function (for instance an optical intensity)can be expanded. We have namely:Z a0 J0(�nr=a)J0(�mr=a) r dr = a2(�2 + �2n)J20 (�n)2�2n �nm(see for instance [20] p.485, formula 11.4.5). We shall therefore consider thesolution of Eq.6.36 as a sum over all indices n:T (!; r; z) = Xn [�0n(!) exp(��nz) + �00n(!) exp(�nz)] J0(�nr=a) (6.38)where �n = s�2na2 � i !�CK



334 CHAPTER 6. HEATING ISSUESNow we can address the boundary condition on the face z = 0:�K@T@z (!; r; 0) = � 4�0T 30T (!; r; 0) + I(!; r)Where I(!; r) is the Fourier transform of the incoming absorbed intensity
ow on the absorbing face. p(!; r) can be expanded in a Dini series:I(!; r) = P (!)2�a2 Xn pnJ0(�nr=a)where P (!) refers to the integrated absorbed power 
ow. The boundarycondition is now:�nK(�0n � �00n) = P (!)pn=2�a2 � 4�0T 30 (�0n + �00n)The boundary condition on the face z = h is simply:�nK(�0ne�
n � �00ne
n) = 4�0T 30 (�0ne�
n + �00ne
n)where 
n � �nh. By introducing the constant�0 � 4�0T 30h=Kwe get the system:( (
n + �0)�0n � (
n � �0)00n = P (!)pnh=2�Ka2(
n � �0) e�
n �0n � (
n + �0) e
n �00n = 0 (6.39)so that the solution is now fully determined, and quite analogous to the oneobtained in the static domain, except that now some quantities are complex.We have:T (!; r; z) = P (!)h2�Ka2 Xn pn (
n + �0)e��nz + (
n � �0)e�n(z�2h)(
n + �0)2 � (
n � �0)2 e�2
n J0(�nr=a)(6.40)In the case of a gaussian beam of half width w, we have:I(!; r) = 2P (!)�w2 exp(�2r2=w2)We get: pn;gauss = 2�2n(�2 + �2n)J20 (�n) exp(�w2�2n=8a2)



6.6. THERMOELASTIC COUPLING : COATING ABSORPTION 335so that the solution corresponding to a gaussian beam is explicitly:TGauss(!; r; z) = P (!)h�a2K Xn �2n exp(�w2�2n=8a2)(�2 + �2n)J20 (�n) � (6.41)� (
n + �0)e��nz + (
n � �0)e�n(z�2h)(
n + �0)2 � (
n � �0)2 e�2
n J0(�nr=a)In the case of an ideally 
at beam of half width b, we have:I(r) = (P (!)=�b2 (r � b)0 otherwiseso that pn;
at = 4a�n J1(�nb=a)b(�2 + �2n)J20 (�n)and the solution is explicitly:TFlat(!; r; z) = 2P (!)h�abK Xn �n J1(�nb=a)(�2 + �2n)J20 (�n) � (6.42)� (
n + �0)e��nz + (
n � �0)e�n(z�2h)(
n + �0)2 � (
n � �0)2 e�2
n J0(�nr=a)The temperature �eld, at frequencies higher than 1 Hz, is signi�cant onlyin the close neighborhood of the hot spot. See on Fig.6.20 the distributionof the transfer function jT j=P (!) for f = 0:1 Hz. and on Fig.6.21 the samefor 1 Hz. Moreover, as can be seen, the temperature �eld tends to a pureskin e�ect, as the frequency increases. We can see the results for an ideally
at mode on Figs.6.22, 6.23. We already see that the dynamic temperature�eld has a much lower amplitude in the case of a 
at beam.Thermal lensThe �rst e�ect of the varying temperature �eld is to create a variable thermallensing. The apex equation Z(!; r) giving the lens pro�le is obtained byintegrating the temperature along the optical path. This is:Z(!; r) = dndT Z h0 T (!; r; z) dz



336 CHAPTER 6. HEATING ISSUESWhere dn=dT is the temperature refractive index coe�cient. This gives:Z(!; r) = dndT h2P (!)2�Ka2 Xn pn(1 � e�
n)
n [
n + �0 � (
n � �0)e�
n ] J0(�nr=a) (6.43)We can �nally address the question of e�ective length variations. The beamthat crosses the mirror substrate undergoes a global length change, as seenin apreceding chapter, given by:Z(!) = 2� Z 10 Z(!; r) I(r) r drwhere I(r) is the normalized intensity pro�le of the beam. This results herein: Z(!) = dndT h2P (!)4�Ka2 Xn p2n(1� e�
n)(�2 + �2n)J0(�n)2
n [
n + �0 � (
n � �0)e�
n] �2n (6.44)If we interpret P (!) as the spectral density of absorbed power 
uctuations,and Z(!) as the spectral density of path length 
uctuations, we see that thetwo SD are related by the transfer function:F (!) = dndT h24�Ka2 Xn p2n(1 � e�
n)(�2 + �2n)J0(�n)2
n [
n + �0 � (
n � �0)e�
n] �2nOn Fig.6.24, one can see the frequency dependence of the modulus transferfunction. This dependence is clearly in 1=f for frequencies larger than afraction of a Hz, the TF is much lower for a 
at beam. One sees moreoverthat the knee frequency is di�erent for the two types of mode. or a gaussianbeam of radius w = 2 cm, it is:F (f) � 6:7 10�10f m=absorbedW:while for a 
at beam of radius b = 10 cm:F (f) � 2:7 10�11f m=absorbedW:If we assume the power 
uctuations caused by the shot noise (the power isabsorbed by quanta in the coating), the spectral density of absorbed power
uctuation is given by: �P (!) = q2�P0hP�



6.6. THERMOELASTIC COUPLING : COATING ABSORPTION 337where P0 is the nominal power of the incoming beam (even highly stable!),and � the losses in the mirror due to thermal dissipation. This allows to givean order of magnitude for the optical path 
uctuations caused by the shotnoise. We assume the Silica parameters already given, and a power of theorder of magnitude of that stored in the long cavities, i.e. 20 kW, coatingthermal losses of about 1 ppm:Z(f) � 4 10�20f m:Hz�1=2This represents the optical path 
uctuations by passing for instance throughthe Fabry-Perot input mirrors. This is negligible in the present con�gura-tion of Virgo, but should be reexamined in an advanced detector with highrecycled power.Asymptotic solutionThe exact model presented above can be hugely simpli�ed in some realisticcases. If we consider the paramters�n = s�2na2 � i !�CKwe see that in general, the second imaginary contribution will be much largerthan the real one. Namely, even for a frequency of 10 Hz, we have!�Ca2K � 2:3 105which is to be compared with �2n � n2�2. If the pn are rapidly decreasing(as in the case of a gaussian beam), the index at which the real contributionbecomes non negligible compared to the imaginary, is never reached, and wecan write: �n = � = s�i !�CK = k(1 � i)and the same way 
n = 
 = kh(1 � i)where k � q!�C=2K . Expressions like exp(��h) vanish, and we have sim-ply, instead of 6.40:T (!; r; z) = P (!)h2�Ka2 Xn pn exp(��z)
 J0(�nr=a) (6.45)



338 CHAPTER 6. HEATING ISSUESand due to the fact thatI(r) = P (!)2�a2 Xn pnJ0(�nr=a)we have �nally Tasymp(!; r; z) = 1K�I(r)e��z (6.46)Recall that I(r) is the absorbed intensity pro�le. Numerical tests show thatthere is no di�erence between 6.40 and 6.46 in the case of a gaussian beam.In the case of an ideally 
at beam, there are some di�erences due to the weakdecreasing rate of the pn in this case, but the accuracy is su�cient for furtherpurposes. A simpli�ed version of the thermal lens immediately follows:Z(!; r) = dndT 1K�2 I(r)For the e�ective displacement:Z(!) = dndT 1K�2 Z I(r)I0(r)2r dr d�where I0(r) is the same intensity pro�le, but normalized to 1 W. in the caseof a gaussian beam of half-width w, we have:Z I0;Gauss(r)2r dr d� = 1�w2so that Z(!) = i dndT P (!)�w2K �C! (6.47)and we see explicitly the dependence in 1=f , whereas in the case of a 
atbeam of radius b, we haveZ IFlat(r)2r dr d� = 1�b2so that the formula is the same with w replaced by b, and we see that theoptical path 
uctuations are reduced by a factor of (w=b)2.



6.6. THERMOELASTIC COUPLING : COATING ABSORPTION 3396.6.2 Dynamical thermal surface distortionsThe obvious other e�ect of a 
uctuating temperature �eld in the substrate isto induce 
uctuating distortions in the bulk, resulting in surface 
cutuations,and consequently to a 
uctuation of the e�ective position of the mirror. Weconsider again the elastodynamics equation:div� = � @2t uWe take as usual the displacement vector under the form (after a Fouriertransform) : (ur(!; r; z) = PnAn(!; z)J1(knr)uz(!; r; z) = PnBn(!; z)J0(knr)The temperature �eld being given under the formT (!; r; z) = Xn tn(!; z)J0(knr)The elastodynamics equations reduce toh� �@2z � k2n�+ �!2i An � kn [(� + �)(@zBn + knAn)� �tn] = 0 (6.48)h� �@2z � k2n�+ �!2i Bn + @z [(�+ �)(@zBn + knAn)� �tn] = 0 (6.49)from what we get �@2z � k2n + �!2=�� (@zAn + knBn) = 0We have seen in the preceding section that even for frequencies as low as afew Hz, the temperature �eld is negligible outside a thin neighborhood of thebeam spot. We shall therefore consider the mirror in this regime, as an in�-nite medium. We assume the displacement vector to decrease exponentially,and we take the solution of the preceding equation as:@zAn + knBn = k Mn e��T;nzwhere �T;n = sk2n � �!2�is the transverse elastic wave vector. We have thus:Bn = Mn e��T;nz � @zAnkn



340 CHAPTER 6. HEATING ISSUESand by substituting in 6.48 we obtain:h(�+ 2�) �@2z � k2n�+ �!2i An = �kn �T;n (�+�)Mn e��T;nz�k�tn (6.50)The solution of which is:An = Qn e��L;nz � kn �T;n(� + �)(�+ 2�)(�2T;n � �2L;n)Mn e��T;nz � kn��n� + 2� (6.51)where �L;n = sk2n � �!2� + 2�is the longitudinal elastic wave vector. But�2T;n � �2L;n = ��!2 � + ��(�+ 2�)so that: An = Qn e��L;nz + �T;n2knXn � kn��n� + 2� (6.52)with the notation Xn � �!22k2n�Having An, we can calculate Bn:Bn = �L;nkn Qn e��L;nz + 12Xn Mn e��T;nz + �@z�n� + 2� (6.53)The medium being assumes in�nite, the only boundary conditions are thevanishing of the axial pressure on the heated surface, i.e.:�rz(!; r; z = 0) = �zz(!; r; z = 0) = 0 (6.54)this leads to two equations allowing to determine the Qn and the Mn. Wehave �n;rz = �(@zAn � knBn)and �n;zz = ��tn + �knAn + (�+ 2�)@zBn



6.6. THERMOELASTIC COUPLING : COATING ABSORPTION 341We get the system:( �T;n2knXn Mn + (1�Xn)Qn = ��+2�(1�Xn)kn�n(0)1�Xn2Xn Mn + �L;nkn Qn = � ��+2�kn@z�n(0) (6.55)The solution of which is:Mn = 2�Xn(1�Xn)�+ 2� @z�n(0) + �L;n�n(0)�L;n�T;n=k2n � (1�Xn)2 (6.56)and Qn = � �� + 2� �T;nkn @z�n(0) + (1�Xn)2kn�n(0)�L;n�T;n=k2n � (1�Xn)2 (6.57)Our target is the displacement of the surface, or in other words the functionXn Bn(!; z = 0)J0(knr)We have: Bn(!; 0) = 12XnMn + �L;nkn Qn + ��+ 2�@z�n(0)by substituting the values found for the Qn and the Mn, this is, after somealgebra:Bn(!; 0) = ��+ 2� Xn(1�Xn) [@z�n(0) + �L;n�n(0)]�L;n�T;n=k2n � (1 �Xn)2 (6.58)Let us now consider some �gures. It is easily seen that the parameters Xnare very small in realistic cases. Recall thatXn = �!2a22��2nThe largest Xn is obviously X1, in which �1 � 1. For the silica parameters,at a frequency of 10 Hz, we haveX1 � 4 10�6it is therefore quite allowed to compute Bn at the lowest order in Xn. Wehave: �L;n�T;n=k2n � (1�Xn)2 = Xn �+ ��+ 2� + O(X2n)



342 CHAPTER 6. HEATING ISSUESso that: Bn(!; 0) = ��+ � [@z�n(0) + �L;n�n(0)] (6.59)Now, if we introduce the temperature �eld found in the preceding section, inthe asymptotic regime:tn(!; z) = P (!)h2�Ka2 e��nz
n + �0 pnwe have �n(!; z) = P (!)h2�Ka2 e��nz
n + �0 1�2n � �2L;n pnso that @z�n(0) + �L;n�n(0) = � P (!)h2�Ka2 1
n + �0 1�n + �L;n pnRecall now that the heat wave vector �n is very large compared to the elasticalones. We have namely: �L;n=�n � 4 10�6 �2nfBy keeping only the leading terms, we obtain:Bn(!; 0) = �i �� + � P (!)2�a2�C! pnIf we express this in terms of the linear dilatation coe�cient� and the Poissonratio �, we have: B(!; 0) = �i �(1 + �)P (!)�a2�C! pn (6.60)and �nally, for the surface apex equation:Z(!; r) = �i 2�(1 + �)P (!)�C! I(r)where I(r) is the absorbed intensity. The surface distortion is thus propor-tional to the temperature �eld. For the e�ective displacement, we have:Z(!) = Z Z(!; r) I(r) r dr d�



6.7. THERMOELASTIC COUPLING : BULK ABSORPTION 343or Z(!) = � 2i�(1 + �)P (!)�C! Z I(!; r)2r dr d� (6.61)For a gaussian beam of half-width w, the transfer function from the powervariations to the mirror displacement is:Z(!)=P (!) = � 2i�(1 + �)�w2�C! (6.62)to be speci�c, in the case of silica, for w � 2 cm, this isZ(f)=P (f) � 2 10�10f m=WIn the case of a 
at beam of radius b, the formula is the same, with w replacedby b.6.7 Thermoelastic coupling : Bulk absorp-tionThe same work can be carried out in the case where the incident power isdissipated in the bulk material. As usual, we get a temperature �eld whichgenerates a thermal lens and a distortion of the solid. We follow the samescheme as in the preceding section.6.7.1 Dynamical temperatureTemperature �eldWe again assume an incoming light beam of power P (!; z) (either a Fouriercomponent or a spectral density), and normalized intensity pro�le I(r). Asusual in this chapter, the mirror is assumed to have a radius a and a thicknessh. The radial coordinate is r � a, and the axial coordinate is �h=2 � z �h=2. The beam is weakly absorbed during its crossing the mirror substrate,so that its intensity is assumed constant with respect to z : P (!; z) = P (!).We have thus a new de�nition of the axial coordinate, in order to bene�tfrom the symmetry of the problem. The intensity being constant along z,the result is that the temperature �eld will be symmetrical with respect toz. As usual, the normalized intensity pro�le can be expanded on the basis



344 CHAPTER 6. HEATING ISSUESof the Bessel functions J0(knz), where the family of constants kn are to bedetermined. We have: I(r) = 12�a2 Xn pnJ0(knr)If we note T (!; r; z) the temperature �eld, it obeys the inhomogeneous Fourier-heat equation: [i!�C �K�]T (!; r; z) = �P (!)I(r) (6.63)where � is as usual the linear absorption coe�cient (m�1). In order toseparate the variables, we can write:T (!; r; z) = Xn tn(!; z)J0(knr)where the functions tn(!; z) remain to be determined. We have exchangedthe partial di�erential equation for a set of di�erential equations:(@2z � �2n)tn(!; z) = � �P (!)2�Ka2 pn (6.64)where � = qk2n � i�C!=KThe z-symmetrical solution is obviously:tn(z) = An cosh(�nz) + �P (!)2�Ka2�2n pn (6.65)and the arbitrary constants An are to be determined by the boundary con-ditions. These conditions are the vanishing of heat 
ows on the faces and onthe edge. On the edge, we get the condition�K @T@r = 4�0T 30 T(the notations are the same as throughout all this chapter). This gives thesame equation as in the preceding section and determines the kn, namely:kn = �n=awhere the �n are the zeroes of the equation:�J1(�)� �J0(�) = 0 (� � 4�0T 30 a=K)



6.7. THERMOELASTIC COUPLING : BULK ABSORPTION 345so that the pn are the same as in all preceding sections. Now the conditionson each circular faces reduce, thanks to symmetry to one condition on theface z = h=2: �K @T@z = 4�0T 30 Tand the result determines the An:An(!) = � �00�P (!)pn2�K�2na2 1
n sinh 
n + �0 cosh 
n (6.66)where the notation being:
n � �nh=2 ; �00 � �h=2aAnd �nally, the temperature �eld is:T (!; r; z) = �P (!)2�Ka2 Xn pn�2n "1 � �00 cosh(�nz)
n sinh 
n + �00 cosh 
n # J0(�nr=a)(6.67)Again, we note that for frequencies larger than a few Hz, the �n are almostall equal: �n � q�i!C�=K = � ) 
n � 
 � �h=2so that the temperature �eld reproduces the same pro�le as the beam inten-sity: T (!; r; z) � �P (!)K�2 "1 � �00 cosh(�z)
 sinh 
 + �00 cosh 
 # I(r)Thermal lensBy integrating along z, we �nd the thermal lens:Z(!; r) = dndT �P (!)hK�2 "1 � �00 sinh 

(
 sinh 
 + �00 cosh 
)# I(r) (6.68)or simply, owing to the fact that 
 � 1:Z(!; r) = dndT �P (!)h�C! I(r) (6.69)



346 CHAPTER 6. HEATING ISSUESThe e�ective length of the path in the substrate is as usual the average ofthe thermal lens weighted by the intensity pro�le:Z(!) = Z I(r)Z(!; r) r dr d� (6.70)which gives: Z(!) = i dndT �P (!)h�w2�C! (6.71)This is identical to eq.6.47, which shows that for equal absorbed power inthe coating and in the bulk, the two contributions to thermal lensings areequal. in the case of a gaussian beam of half-width w. In the case of a 
atbeam of radius b, the formula is the same, with w replaced by b. In the caseof the Silica parameters, the transfer function is:Z(!)=�hP (!) � 6:7 10�10 "1Hzf # m=absorbedW6.7.2 Dynamical thermal distortionsGeneral solutionWe have to carry out the same calculations as in the coating absorptioncase, except that the de�nition of pm is changed, and that the symmetry isdi�erent. In the coating absorption case, the temperature �eld was localizedin the neighborhood of the hot spot. Now, the temperature �eld extendsthroughout the mirror. We take the same coordinate system as above, andwrite the displacement vector as:ur(!; r; z) = Xn An(!; z)J1(knr) (6.72)and uz(!; r; z) = Xn Bn(!; z)J0(knr)whereAn(!; z) is assumed an even function of z, and Bn(!; z) an odd functionof z. The temperature �eld is assumed expanded as:T (!; r; z) = Xn tn(!; z)J0(knz)



6.7. THERMOELASTIC COUPLING : BULK ABSORPTION 347In all the following calculations, the kn are the same as in the precedingsection. The elastodynamic equations are identical to eq.6.48 and 6.49. We�nd again that: (@2z � �2T;n)(@zAn + knBn) = 0and we choose the odd solution:@zAn + knBn = kQn sinh(�T;nz) (6.73)and by substituting in eq.6.48, we get:(@2z � �2L;n)An = k�T;n(� + �)(� + 2�)(�2T;n � �2L;n) Qn cosh(�T;nz)� kn�tn� + 2� (6.74)By using again the notation Xn � �!2=2k2n�, and taking the even solution,we get:An = Mn cosh(�L;nz)� �T;n2knXn Qn cosh(�T;nz)� kn��n� + 2� (6.75)and, owing to eq.6.73, this gives in turn:Bn = ��L;nkn Mn sinh(�L;nz) + 12Xn Qn sinh(�T;nz) + �@z�n� + 2� (6.76)where �(!; z) is assumed a particular solution of(@2z � �2L;n)�n = tWe have seen that the temperature �eld, in practice, for frequencies higherthan a few Hz, has the same pro�le as the beam's intensity. We thereforeconsider only boundary conditions on the two circular faces of the mirror(in�nite slab of �nite width), and due to symmetry, there are only two equa-tions, allowing to determine the Qn and the Mn. The condition�rz = 0 (z = �h=2)yields the equation:�L;nkn Mn sinh�L;n � 1�Xn2Xn Qn sinh �T;n = �@z�n(h=2)� + 2� (6.77)



348 CHAPTER 6. HEATING ISSUESand the condition �zz = 0 (z = �h=2)yields the equation(1�Xn)Mn cosh �L;n � �T;n2knXn Qn cosh�T;n = (1�Xn) kn��n(h=2)� + 2� (6.78)with the notation �L;T;n � �T;L;nh=2. The solution of the system (6.77,6.78)is:Mn = �(� + 2�)Dn ��T;nkn cosh �T;n�0n � (1�Xn)2 sinh �T;n kn�n� (6.79)(we have written �0n for @z�n(h=2), and �n for �n(h=2) ) we have also set:Dn = �T;n�L;nk2n sinh�L;n cosh�T;n � (1�Xn)2 cosh �L;n sinh�T;nThe same way, we get:Qn = Xn(1�Xn) �(� + 2�)Dn [cosh�L;n �0n � �L;n sinh�L;n �n] (6.80)But we are interested in the displacement of the surface z = �h=2. (or h=2as well, owing to the symmetry). We need:Bm(!;�h=2) = �L;nkn sinh �L;nMn � 12Xn sinh�T;nQn � ��0n�+ 2�(this because @z�n(�h=2) = ��0n). After some straightforward algebra, itcomes: Bn(!;�h=2) = �(�+ 2�)Dn Xn(1�Xn) sinh�T;n� (6.81)� [�L;n sinh�L;n�n � cosh �L;n �0n]The constants �n and �0n are derived from the preceding section:�n = � �P (!) pn2�K�2na2 " 1�2L;n + 1�2n � �2L;n �00 cosh 
n
n sinh 
n + �00 cosh 
n #and �0n = � �P (!) pn�n2�K�na2 (�2n � �2L;n) �00 sinh 
n
n sinh 
n + �00 cosh 
n



6.7. THERMOELASTIC COUPLING : BULK ABSORPTION 349Asymptotic regimeNow, the same considerations on the order of magnitude of �n that becomespractically independent of its index at frequencies larger than a few Hz, andmuch larger than �T;L;n, leads to:�n � � �P (!)pn2�K�2a2�Land �0n � � �P (!) pn�002�K�2a2h �00
 1�so that in the combination involved in Bn(!;�h=2), �0n can be neglected inregard of �n. We also remark that the parameters Xn are very small, so thatan expansion of the various expressions is needed. At the lowest order we�nd: Dn = �+ ��+ 2� Xn(xn + sinh xn coshxn)where xn � knh=2. The asymptotic expression for Bn is now:Bn � � ��+ � �P (!)pn2�K�2a2kn sinh2 xnxn + sinhxn cosh xnFinally, we �nd the asymptotic apex equation:Z(!; r) = ��(1 + �)�P (!)h2�K�2a2 Xn sinh2 xn pnxn(xn + sinhxn cosh xn) J0(�nr=a)(6.82)The di�erence between the exact calculation and the preceding asymptoticformula is negligible for frequencies lager than 1 Hz. An example of thesurface pro�le is shown on �g.6.25, where it can be seen that contrarilyto the previous asymptotic cases, the surface pro�le does not reproducesthe intensity pro�le. By taking the average of the surface weighted by theintensity pro�le, we get the e�ective displacement. The transfer functionfrom the absorbed power �P (!)h to the e�ective displacement Z(!) is:Z(!)=�hP (!) = �i �(1 + �)4��C!a2 X (1 + �2=�2n)J20 (�n) sinh2 xn p2nxn(xn + sinh xn cosh xn) (6.83)For an input Virgo mirror, this is:Z(f)=�hP (f) = 1:3 10�11f m=absorbedW (6.84)



350 CHAPTER 6. HEATING ISSUESand for a 
at beam of radius 10 cm, we get:Z(f)=�hP (f) = 8:8 10�13f m=absorbedW (6.85)
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Figure 6.20: Opto-thermal transfer function: f = 0.1 Hz, case of gaussianbeam w = 2 cm
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Figure 6.21: Opto-thermal transfer function: f = 1 Hz, case of a gaussianbeam w = 2 cm
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Figure 6.22: Opto-thermal transfer function: f = 0.1 Hz, case of a 
at beam,b = 10 cm
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Figure 6.23: Opto-thermal transfer function: f = 1 Hz,, case of a 
at beam,b = 10 cm
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Figure 6.24: Opto-thermal transfer function. Solid line: gaussian beam, w= 2 cm. Dashed line: 
at beam, b = 10 cm
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Figure 6.25: Bulk absorption. Surface distortion at 1 Hz for a gaussian beamof width w = 2 cm. Solid line: asymptotic solution. Dashed line: intensitypro�le for comparison
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Figure 6.26: Bulk absorption. Surface distortion at 1 Hz for a 
at beam ofradius b = 10 cm. Solid line: asymptotic solution. Dashed line: intensitypro�le for comparison
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Chapter 7Mirrors standard thermal noisestandard thermal noise is the phase noise caused by random motions of there
ecting faces of mirrors in a GW interferometer. A re
ecting face canmove either because it is displaced by its suspension system, or becauseit undergoes internal stresses. At �nite temperature, the two e�ects arepossible. We address here the internal stresses. Consider a massive bodyat temperature T . If T > 0, the atoms constituting the body are excitedand have random motions around their equibrium position. The fact thatthey are strongly coupled to neighboring atoms makes possible propagationof elastic waves of various types, re
ecting on the faces and the onset ofstationary waves. One can show that, for a �nite body (like for instance acylinder of silica), there is a discrete in�nity of such stationary waves, eachcorresponding to a particular elastic normal mode. At thermal equilibrium,the state of the body can be represented by a linear superposition of all themodes, with random relative phases, and, due to the energy equipartitiontheorem, the same energy kBT (kB is the Boltzmann constant). The motionof atoms near a limiting surface of the body will slightly modify its shape,and if we consider the re
ecting face of a mirror, a surface distortion is apossible cause of phase change in the re
ected beam, in other words, ofa noise. Estimation of the resulting spectral density of phase noise is theinternal thermal noise problem in massive mirrors.359



360 CHAPTER 7. MIRRORS STANDARD THERMAL NOISE7.1 Damped harmonic oscillatorEach internal mode is characterized by its eigenfrequency, its geometry andits amplitude. Determination of the eigenfrequencies and of the eigenmodesof an arbitrary body is in general di�cult, but the amplitude is a scalar xobeying a dynamical equation analogous to the harmonic oscillator's. If weconsider the decoupled and undamped oscillator, this is :d2xdt2 + !20x = 0where !0=2� is the eigenfrequency of the mode. At thermal equilibriumwiththe environment (the heat bath), the amplitude follows a random walk sothat the potential and kinetic energies have equal means, each being equalto kBT=2 (kB � 1:38 � 10�23J:K�1 is the Boltzmann constant). For thepotential energy, we have EP = 12m!20x2by taking the expectation value, and assuming a zero mean of x, this givesV (x) = kBTm!20It is important to understand that though very small, the displacement-like variable x is, at room temperature much larger than GW induced (xgw �10�18m) displacements. Assume for instance a frequency of 2� � 1000 Hzand an equivalent mass of 10 kg (in fact the masses equivalent to modes areeven smaller), we get a standard deviation�(x) = 3 � 10�15 mAt �rst sight, this seems to de�nitely forbid any GW detection. Even bycooling at very low temperature (say 1 mK), the result is still much too high.In fact and fortunately, this is not true if we take into account the fre-quency distribution of the noise. If we introduce simultaneously a randomdriving force (Langevin force) F (t) and a damping factor 
 accounting fordissipation, we couple the oscillator to the heat bath : the driving force ex-presses action of the external world on the oscillator, whereas the dampingfactor releases the received energy, so that the energy of the oscillator isstatistically stationary. The motion equation is (case of viscous damping) :d2xdt2 + 
 dxdt + !20 x = F (t)=m



7.1. DAMPED HARMONIC OSCILLATOR 361By taking the Fourier transform, this is~x(!) = 1m ~F (!)!20 � !2 + i
 !The relation between the spectral densities of x and F must therefore be :Sx(f) = SF (f) 1m2 1(!2 � !20)2 + 
2!2SF is a constant (white noise) , its value can be determined by requiring thatZ 10 Sx(f) df = V (x) = kBTm!20We have obviously Z 10 Sx(f) df = 12 Z 1�1 Sx(!) d!2�so that SF Z 1�1 d!(!2 � !20)2 + 
2!2 = 4�kBTm!20For carrying out the integration, it is convenient to set(!2 � !20)2 + 
2!2 = (!2 � 
2)(!2 � 
2)where 
2 = !20 � 
2=2 + i 
q!20 � 
2=4so that 
 = q!20 � 
2=4 + i 
=2then the integral can be split into two terms, givingSF Z 1�1 � 1!2 �
2 � 1!2 � 
2 � d!
2 � 
2 = 4�kBTm!20The Cauchy theorem gives (provided that 
 > 0) :Z 1�1 d!!2 � 
2 = i�




362 CHAPTER 7. MIRRORS STANDARD THERMAL NOISEso that the integral reduces to �=
!20, and the result for the spectral densityof Langevin force is: SF = 4kBTm
The spectral density of displacement is �nally:Sx(f) = 4kBT
=m(!2 � !20)2 + 
2!2 (7.1)The mechanical quality factor Q is de�ned asQ = !0=
 (7.2)The main features are: ! ! 0 ) Sx(f)! 4kBTmQ!30! ! !0 ) Sx(f)! 4kBQm!30! !1 ) Sx(f) ! 4kBT!0mQ!4so that the spectral density is a constant for low frequencies, and the rootspectral density is 1=Q the value at resonance. On Fig.7.1, one sees thegeneral philosophy of thermal noise. The integral of the spectral density Sxis independent on Q, but by increasing Q, we can concentrate the SD in theneighborhood of the resonance, which becomes more and more narrow, andreduce the thermal noise outside the resonance. This is why high-Q materialand �xations are searched for, in GW experiments. Heavy test masses andlow temperatures have been also obviously proposed a number of times.7.2 The FD theoremThere is a more general derivation of the spectral density, based on theFluctuation-Dissipation Theorem (FD), due to Callen and Welton [25] : Foran elementary dynamical system described by a degree of freedom x and anydriving force F , one can consider the resulting velocity ~v = i!~x, and computea mechanical impedance as Z = ~v= ~F . Then, (this is the FD theorem):Sx(f) = 4kBT!2 <e[Z] (7.3)
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Figure 7.1: sqrt of spectral density of thermal displacement : viscous dampingIn the preceding case, for instance, we hadZ(!) = i !=m!20 � !2 + i 
!from where 7.1 follows directly. But this approach allows to obtain resultsmore di�cult to derive by other means. For instance, if we consider a solidresonator, as for instance a mirror substrate, dissipation of the elastic energyis not caused by viscosity, but rather by thermoelastic processes: stressedregions are heated, and there is a heat 
ow from hot to cold regions due to�nite thermal consuctivity leading to irreversibility. A very simple model ofthermoelastic dissipation is given by a complex elastic sti�ness, the motionequation being in some frequency domain:h�!2 + !20 (1 + i�)i ~x(!) = ~F=m



364 CHAPTER 7. MIRRORS STANDARD THERMAL NOISEwhere � is the so-called loss angle, often considered as independent on thefrequency. It may be seen as the inverse of the quality factor. We have thus:~x(!) = ~F=m!20 � !2 + i�!20 (7.4)In order to determine the function F , we can no more use the direct approachof integrating over frequencies to recover the variance, because we know thatthe eq. 7.4 is only valid in some frequency domain. However, by using theFD theorem (eq.7.3), we getSx(f) = 4kBT!20�m! 1(!2 � !20)2 + !40 �2This formula clearly holds above some cut-o� frequency. It is essential tonote the very di�erent behavior of this thermoelastic spectral density withrespect to the viscoelastic.! ! 0 ) Sx(f)! 4kBTmQ!!20! ! !0 ) Sx(f)! 4kBQm!30! !1 ) Sx(f) ! 4kBT!20mQ!5(see Fig.7.2) This is a common behavior for all internal modes of solid res-onators, each being viewed as a thermoelastically damped harmonic oscilla-tor. It is possible to numerically compute resonance frequencies of a cylin-drical solid (as the mirror substrates), associate such a model to each cor-responding mode (the question of the e�ective mass of the mode is raised),and sum up to �nd the global noise. Anyway, the increase of the thermalnoise at low frequency is presently the main limitation to GW detectors.7.3 The Levin generalized coordinate methodWe can now address the problem of internal degrees of freedom in the mirrors.Internal elastic waves eventually distort the re
ecting surface, causing a phasenoise. We have already discussed the way of obtaining the information on
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Figure 7.2: sqrt of spectral density of thermal displacement : thermoelasticdampingthe surface relevant for the beam. Let uz(t; x; y) be the z component of thedisplacement vector of matter at the surface of the mirror. The equivalentdisplacement (generalized coordinate x) isx(t) = Z Z uz(t; x; y) I(x; y) dx dywhere I(x; y) is the normalized light intensity distribution in the TEM00mode assumed to be the readout beam. We now follow the method proposedby Levin ([24]). Let F (t) be the corresponding driving force. The interactionenergy is E = �F (t)x(t)or E = Z Z uz(t; x; y)F (t) I(x; y) dx dywhere the displacement umay be thought of as beeing caused by the pressuredistribution F � I. We address now the case of low frequencies. This case is



366 CHAPTER 7. MIRRORS STANDARD THERMAL NOISEvery relevant, because resonances of mirrors are at relatively high frequencies(several kHz) and the region where internal thermal noise is disturbing lieslong before the �rst resonance, in the low frequency regime. Thus, althougha general knowledge on internal thermal noise is useful, it is neverthelessextremely interesting to have the low frequency tail. This can be obtained asfollows. If we consider a force F (t) = F ei!t oscillating at very low frequency,the frequency will be lower than the cut-o� for any standing waves. thepressure F � I will produce an oscillating stationary displacement u, of theform uz(t; x; y) = ei(!t��)u(x; y)this is equivalent to neglecting inertial forces in the motion of matter. Thephase � represents a retardation e�ect that dissipation may cause. In theFourier domain, this isuz(!; x; y) = (1� i�)uz(x; y)the impedance isZ(f) = i! (1 � i�) R R uz(x; y) I(x; y) dx dyFso that <e[Z] = ! � R R uz(x; y)F:I(x; y) dx dyF 2where the numerator of the fraction appears as the elastic energy storedin the solid stressed by the pressure distribution F:I. The strain energy isde�ned in classical elasticity theory byW = 12 Z Z uz(x; y)p(x; y) dx dywhere p(x; y) is the pressure distribution causing the displacement uz(x; y)at the surface where it is applied. We can thus write for the spectral densityof displacement : Sx(f) = 4kBT�f � WF 2in fact, W is proportional to F 2, so that U � W=F 2 is the strain energy for astatic pressure normalized to 1 N. The SD of displacement takes the general(low frequency) form : Sx(f) = 4kBT�f �U (7.5)



7.4. BASIC LINEAR ELASTICITY 367The problem is reduced to the computation of U . This can be di�cult inthe general case of an arbitrary solid, but numerical �nite element codes areable to give more or less accurate estimates. It is however possible to obtainanalytic solutions in the case of axial symmetry.7.4 Basic linear elasticityWe recall here the principles and master formulas of the linear elasticitytheory.7.4.1 displacement, strain, stressLet a solid be decribed in the (x,y,z) coordinate system by its reference state,and its deformed state xi ! xi + ui(xk)The vector u is called displacement vector. The strain tensor Eij is de�nedas Eij = 12(@iuj + @jui)Its trace is E = 3Xi=1EiiThe stress tensor �ij is linearly related to the strain tensor in a way general-izing Hooke's law. For isotropic solids (like silica), the relation is very simple: �ij = � �ijE + 2�Eijthe two parameters (�; �) are called Lam�e coe�cients. They are related tothe Young modulus Y and the Poisson ratio � by� = Y �(1 + �)(1� 2�)� = Y2(1 + �)



368 CHAPTER 7. MIRRORS STANDARD THERMAL NOISE7.4.2 Elastodynamics equationThe elastodynamics equation is :@j�ij = � @2t uiwhich in the static case reduces to the equilibrium equation@j�ij = 0In polar coordinates (r; �; z), the strain tensor has coordinatesErr; Er�; Erz; E��; Ez�; Ezzde�ned by : Err = @rurEr� = 12 �@ru� � u�r + 1r @�ur�Erz = 12 (@ruz + @zur)E�� = 1r@�u� + urrEz� = 12 �1r@�uz + @zu��Ezz = @zuzThe elastodynamics equation reads in detail8><>:@r�rr + 1r (�rr ����) + 1r@��r� + @z�rz = � @2t ur(@r + 2r )�r� + 1r@���� + @z��z = � @2t u�(@r + 1r )�rz + 1r@���z + @z�zz = � @2t uz (7.6)In the special case of static axial symmetry, the system reduces to the equi-librium equation : (@r�rr + 1r (�rr ����) + @z�rz = 0(@r + 1r )�rz + @z�zz = 0 (7.7)



7.5. MIRROR AS A HALF-SPACE 3697.4.3 Boundary conditionsThe boundary conditions express the balance between internal stresses andexternal pressures at the limiting surfaces :[Xj �ijnj ]� = piwhere ni is the normal to surface �7.5 Mirror as a half-spaceIf the spot of the readout beam on a mirror is centered and small comparedto the mirror's dimensions (radius, thickness), we can consider the substrateas an in�nite half-space limited by a plane (the optical curvature is negligiblehere). The problem obeys the axial symmetry and it is easy to verify thatthere is a solution of 7.7 of the form :ur(r; z) =  � � �+ 2��+ � � + � kz! e�kzJ1(kr)uz(r; z) =  � + ��+ � � + � kz! e�kzJ0(kr)where (�; �; k) are arbitrary constants. The Jn are the Bessel functions.The region occupied by the substrate is supposed to extend from z = 0 tillin�nity. The boundary conditions are[�rz]z=0 = 0and [�zz]z=0 = p(r)where p(r) is the gaussian pressure having the beam's pro�le and normalizedto 1 N (the integral over the whole plane of a pressure is a force):p(r) = 2�w2 e�2r2=w2It is easy to compute the stresses :�rz = 2�k (� � �� � kz)J1(kr)



370 CHAPTER 7. MIRRORS STANDARD THERMAL NOISE�zz = �2�k (� + � kz)J0(kr)The �rst boundary condition gives � = �. The solution depends now ontwo arbitrary constants (�; k). In fact the most general solution will be anintegral over k :ur(r; z) = Z 10 �(k)  � ��+ � + kz! e�kzJ1(kr)k dkuz(r; z) = Z 10 �(k)  �+ 2��+ � + kz! e�kzJ0(kr)k dkand now, �(k) refers to an arbitrary function of k. The �zz stress componentbecomes : �zz(r; z = 0) = �2� Z 10 �(k)J0(kr) k2 dkso that the last boundary condition becomesZ 10 �(k)J0(kr) k2 dk = � 12� p(r) (7.8)This expresses a Bessel transform. Recall that for functions admitting aFourier transform, the two reciprocal Fourier transforms become, for axiallysymmetrical functions, reciprocal Bessel transforms :~f(�) = Z 10 J0(�r)f(r) r drand f(r) = Z 10 J0(�r) ~f(�) � d�we have thus, inverting the Bessel transform in 7.8 :k�(k) = � 12� Z 10 p(r)J0(kr) r drIt is possible to carry out the integration (see [20], Eq. 11.4.29), obtaining�(k) = � 14��k e�k2w2=8and consequently a displacementuz(r; z = 0) = � � + 2��(� + �) 14� Z 10 e�k2w2=8 J0(kr) dk (7.9)
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Figure 7.3: Displacement of the surface of an in�nite substrate under gaussianpressure. The dashed line recalls the beam pro�le. The surface is assumedin�nite (radius much larger than the beam width)the integral can be found in tables of Bessel transforms [26], then converting(�, �) into (Y , �) leads to :uz(r; z = 0) = � 1 � �2Y s 2�w2 I0(r2=w2) e�r2=w2where I0 refers to the modi�ed Bessel function. The pro�le of the displace-ment is shown in Fig.7.3. But we are interested in the strain energy, whichcan be calculated usingU = �12 Z Z uz(r; z = 0) p(r) r dr d�that is U = 1 � �2Y 2�w2 Z 10 r dr e�2r2=w2 Z 10 dk e�k2w2=8J0(kr)



372 CHAPTER 7. MIRRORS STANDARD THERMAL NOISE= 1� �2Y 2�w2 Z 10 dk e�k2w2=8 Z 10 r dr e�2r2=w2 J0(kr)= 1� �2Y 2�w2 Z 10 dk e�k2w2=8 w24 e�k2w2=8= 1� �22p�Y wAnd �nally, the spectral density of internal thermal noise takes the verysimple expression Sz(f) = 4kBT�f ;� 1� �22p�Y w (7.10)with values such that Y � 7:3� 1010Nm�2, � � 0:17, w = 0:02 m, and a lossangle of � � 10�6, we get a root spectral densityS1=2z (f) � 10�18 "1Hzf #1=2 mHz�1=27.6 Finite mirrorsThe preceding calculation does not allow to study the e�ect of the aspect ratioof the actual mirror on the spectral density of thermal noise. We proposehere an approximate model for a cylindrical mirror having a radius a and athickness h. This model has been published in the BHV paper [33] with onewrong boundary condition. Then Yuk Tung Liu et al. (YT) have derived acorrection to the BHV result.7.6.1 A solution to the equilibrium equationsWe consider a cylindrical mirror limited by:0 � r � a; 0 � z � hThe re
ecting face is assumed at z = 0 In the case of a �nite solid, we expectthe displacement vector to be a discrete sum of Bessel modes, of the form:8><>:ur(r; z) = PmAm(z)J1(kmr)u�(r; z) = 0uz(r; z) = PmBm(z)J0(kmr) (7.11)



7.6. FINITE MIRRORS 373Where Am; Bm are arbitrary functions of z, and km arbitrary constants. Theequilibrium equations however imply for each order:(�(A00m � k2mAm)� (� + �)km(B0m + kmAm) = 0�(B00m � k2mBm) + (� + �)(B00m + kmA0m) = 0 (7.12)so that by combining the two, we get:[@2z � k2m](A0m + kmBm) = 0the solution of which is:A0m + kmBm = km ��me�kmz + �mekmz�where �m; �m are arbitrary constants. This allows to substitute Bm in the�rst of eq.7.12, and yields:A00m � k2mAm = � �+ ��+ 2� k2m ��me�kmz � �mekmz�the solution of which is:Am(z) = 
me�kmz + �mekmz + �+ �2(� + 2�) kmz ��me�kmz + �mekmz� (7.13)introducing two new series (
m; �m) of arbitrary constants. Now Bm is de-termined:Bm(z) =  � + 3�2(� + 2�)�m + 
m! e�kmz +  �+ 3�2(� + 2�)�m � �m! ekmz++ � + �2(� + 2�) kmz ��me�kmz � �mekmz� (7.14)The stress tensor has the following non zero components of order m:8>>><>>>:�m;rr = �(B0m + kmAm)J0(kmr) + 2�kmAmJ 01(kmr)�m;�� = �(B0m + kmAm)J0(kmr) + +2�Amr J1(kmr)�m;zz = [(� + 2�)B0m + �kmAm]J0(kmr)�m;rz = �(A0m � kmBm)J1(kmr) (7.15)



374 CHAPTER 7. MIRRORS STANDARD THERMAL NOISE7.6.2 Boundary conditionsThe boundary conditions we assume are:� No shear on the cylindrical edge, i.e.�rz(r = a; z) = 0this can be satis�ed by requiring that kma is a zero of J1km � �m=awhere the �m are the strictly positive zeros of J1.� No shear on the two circular faces, i.e.�rz(r; z = 0) = 0; �rz(r; z = h) = 0 (7.16)� Pressure of the beam on the �rst face:�zz(r; z = 0) = �p(r) (7.17)� No pressure on the second face:�zz(r; z = h) = 0 (7.18)� No radial stress on the cylindrical edge:�rr(r = a; z) = 0 (7.19)To the preceding constraints, Yuk Tung Liu et al. have pointed out thatthe pressure acting on the face z = h results in a global force acceleratingthe solid, so that an acceleration �eld must be added to the equilibriumequations. This will be treated later. Now the pressure distribution can beexpanded on the orthogonal family of functions J0(�mr=a):p(r) = p0Xm pmJ0(�mr=a)where p0 = 1=�a2 is a normalisation constant such that the pm are dimen-sionless. The orthogonality relations are:Z a0 J0(�mr=a)J0(�nr=a) r dr = 12a2J20 (�m)



7.6. FINITE MIRRORS 375so that the pm are obtained as:pm = 2�J20 (�m) Z a0 p(r)J0(�mr=a) r dr (7.20)The �rz and �zz components of the stress tensor are easily found from Amand Bm:�m;rz=km� =  2�m � �� + 2��m! ekmz �  2
m + ��+ 2��m! e�kmz+� �+ ��+ 2�kmz ��me�kmz � �mekmz� (7.21)and �m;zz=km� = (�m � 2�m)ekmz � (�m + 2
m)e�kmz�� � + ��+ 2�kmz ��me�kmz + �mekmz� (7.22)The boundary conditions provide 4 equations. The two �rst are:�m � 2�m � �m � 2
m = �pm=km� (7.23)and 2�m � ��+ 2��m � 2
m � �� + 2��m = 0 (7.24)They allow to compute 
m and �m in terms of �m; �m:
m = 14 " �+ �� + 2��m � � + 3�� + 2��m + pmkm�#�m = 14 "�+ 3��+ 2��m � �+ ��+ 2��m + pmkm�#The next two boundary conditions imply:"2�m � �� + 2��m# ekmh � "2
m + ��+ 2��m# e�kmh++kmh �+ ��+ 2� h�mekmh � �me�kmhi = 0



376 CHAPTER 7. MIRRORS STANDARD THERMAL NOISEand(�m � 2�m)ekmh � (�m + 2
m)e�kmh � �+ �� + 2�kmh h�mekmh + �me�kmhi = 0by substituting the values found for 
m; �m, we �nd�m = p0 pm(� + 2�)km�(� + �) 1� qm + 2qmxm(1� qm)2 � 4qmx2m (7.25)�m = p0 pm(�+ 2�)km�(� + �) qm(1 � qm + 2xm)(1� qm)2 � 4qmx2m (7.26)then 
m = �p0 pm2km� 2qmx2m + ��+� (1� qm + 2qmxm)(1� qm)2 � 4qmx2m (7.27)�m = �p0 pmqm2km� 2x2m � ��+�(1 � qm + 2xm)(1� qm)2 � 4qmx2m (7.28)with the notation xm � kmh and qm � exp(�2xm). At this point, YT pointedout that the component of spatial frequency zero of the pressure has not beentaken into account. Because the series involves only strictly positive zerosof J1, the preceding displacement has a zero average on the strained face.One must consider the resulting force acting on the body under the uniformpressure p0 = 1=�a2producing a force of 1 N after integration on the disk. But this force pro-duces an acceleration, so that an acceleration �eld should be added in theequilibrium equations (recall that our mirrors are practically free falling inthe z direction). This can be done by adding to the preceding displacementan extra displacement of the form:8>><>>:�ur(r; z) = �p0r2�(3�+2�)(1� z=h)�u�(r; z) = 0�uz(r; z) = �p0r24�h(3�+2�) � (�+�)p0�(3�+2�)(z � z2=2h) (7.29)This extra displacement contributes only the axial stress:��zz = �p0(1� z=h)



7.6. FINITE MIRRORS 377all other stress components are identically zero. The equilibrium equationsremain satis�ed:@z��zz = p0=h = �� 1N��a2h = � � (1N)=M = ��zwhereM is the mirror mass and � the density. Now the sum of the displace-ment 7.11 and the extra displacement 7.28 satis�es all boundary conditions,except the vanishing of the radial stress on the cylindrical edge. We haveindeed�m;rr(r = a; z) = �(kmAm(z) +B0m(z))J0(�m) + 2�kmAm(z)J 01(�m)but due to the fact that J 01(�m) = J0(�m), and after substituting the explicitvalues of Am and Bm, we get�m;rr(r = a; z) = p0 J0(�m)pm(1 � qm)2 � 4qmx2m h(1 � qm + 2qmxm(1 + xm)) e�kmz��qm (1� qm + 2xm(1� xm)) ekmz��kmzqm(1� qm + 2xm)ekmz � kmz(1� qm + 2qmxm)e�kmzi (7.30)It is numerically easy to check that this function of z is not very di�erentfrom linear. It has even a vanishing average. It is therefore possible to �nd anapproximate solution of the problem by using the De Saint-Venant principle:If we add to our displacement vector one more extra displacement giving alinear stress with suitable parameters, we compensate for the mean stress andtorque on the edge, and the resulting solution is very accurate everywhere inthe body, except maybe in the neighborhood of the edge, where the strainenergy is likely weak. The second extra displacement is of the form:8>><>>:�ur(r; z) = �+2�2�(3�+2�)(c0r + c1rz)�u�(r; z) = 0�uz(r; z) = � ��(3�+2�)(c0z + c1z2=2) � �+2�4�(3�+2�)c1r2 (7.31)This displacement induces zero stresses, and thus leaves unchanged the bound-ary conditions, except for a radial contribution:��rr(z) = c0 + c1z



378 CHAPTER 7. MIRRORS STANDARD THERMAL NOISEThis linear stress can be adjusted to compensate for the �rst moments of theresidual stress �rr(r = a; z). We require for instance a minimum value forthe integral Z h0 [�rr(r = a; z) + ��rr(z)]2 dzIf we de�ne I0 = 1h Z h0 �rr(r = a; z)dzI1 = 1h2 Z h0 �rr(r = a; z)z dzwe have the values of c0; c1:c0 = 6I1 � 4I0; c1 = 6(I0 � 2I1)=hThe explicit expression of �rr(r = a; z) (eq.7.30) allows to compute I0; I1.Firstly, one �nds I0 = 0. and secondlyI1;m = p0 J0(�m)pm=k2mh2so that I1 = p0 � swhere s = a2h2 Xm pmJ0(�m)�2mthen c0 = 6sp0; c1 = �12sp0=h7.6.3 Strain EnergyThe global displacement vector has the form8><>:ur(r; z) = PmAm(z)J1(�mr=a) + Pr +Qrzu�(r; z) = 0uz(r; z) = Pm Bm(z)J0(�mr=a) +Wr2 + Tz + Sz2where P;Q;W; T; S are known coe�cients related to the two extra displace-ment terms de�ned above. The strain components are:Err(r; z) = Xm kmAm(z)J 01(�mr=a) + P +Qz



7.6. FINITE MIRRORS 379E��(r; z) = Xm Am(z)J1(�mr=a)r + P +QzEzz(r; z) = Xm B0m(z)J0(�mr=a) + T + 2SzErz(r; z) = Xm (A0m(z)� kmBm(z))J1(�mr=a)the trace of the strain tensor is thus:E(r; z) = Xm (B0m(z) + kmAm(z))J0(�mr=a) + 2P + T + 2(Q+ S)zThe strain energy per N2(our target) is given byU = Z 2�0 d� Z h0 dz Z a0 r dr w(r; z)where the energy density w is de�ned as:w = 12 h�E2 + 2� �E2rr + E2�� + E2zz + 2E2rz�i (7.32)The squares of the stress components involve the squares of the main stresses,the squares of the extra stresses, plus crossed terms. It is possible to showthat crossed terms vanish in the r integration. There is thus a perfect decou-pling,and the extra terms in the displacement vector result in corrections tothe global energy.Main contribution to the strain energyNow we can compute the main contribution. We recall the following integrals:Z a0 J0(�mr=a)J0(�mr=a)r dr = a22 J20 (�m)Z a0 J1(�mr=a)J1(�mr=a)r dr = a22 J20 (�m)For the Bessel modes contribution we have thus:U = �a22 Xm J0(�m)2 Z h0 Um(z) dz



380 CHAPTER 7. MIRRORS STANDARD THERMAL NOISEwhereUm = �(B0m + kmAm)2 + 2��k2mA2m +B 02m + 12(A0m � kmBm)2�All the terms being known, the integration is straightforward, and the resultis: U = �a34 �+ 2��(� + �)Xm J20 (�m)p2m�m 1 � q2m + 4qmxm(1� qm)2 � 4qmx2mor as well, using the Young modulus Y and the Poisson ratio � instead ofthe Lam�e coe�cients:U = 1� �2�aY Xm J20 (�m)p2m�m 1 � q2m + 4qmxm(1 � qm)2 � 4qmx2m (7.33)The dimension of U is J.N�2.Correction to strain energyThe contribution of the extra stresses to the strain energy is:�U = Z 2�0 d� Z a0 r dr Z h0 �w(z)dzwhere �w(z) is the extra density:�w(z) = 12 h� (((2P + T + 2(Q+ S)z)2 + 2� �2(P +Qz)2 + (T + 2Sz)2�iThe coe�cients are:P = p02�(3� + 2�) (� + 6s(� + 2�))Q = � p02�(3� + 2�)h (�+ 12s(� + 2�))T = � p0�(3� + 2�) (� + �+ 6s�)S = p02�(3� + 2�)h (�+ � + 12s�)The result is:�U = �a2hp206�(3� + 2�) h6�s + �+ � + 36(� + 2�)s2i



7.6. FINITE MIRRORS 381After replacing the Lam�e coe�cients by Y; �, this is:�U = a26�h3Y 24 ha!4 + 12��  ha!2 + 72(1 � �)�235 (7.34)with � � Xm>0 pmJ0(�m)=�2mExplicit coating displacement and edge stressIt is interesting to have the explicit expression for the re
ecting surface dis-placement:uz(r; z = 0) = 2(1 � �2)�aY Xm>0 1� q2m + 4qmxm(1� qm)2 � 4qmx2m pmJ0(�mr=a)�m ++ r2=a22�hY "� + 12� a2h2 (1 � �)#units are m/N. See the displacement pro�le on �gure 7.4For the stress on the cylindrical edge before correction, we have as seenabove (7.30):�rr(r = a; z) = 1�a2 Xm>0 J0(�m)pm(1� qm)2 � 4qmx2m h(1� qm + 2qmxm(1 + xm)) e��mz=a��qm (1 � qm + 2xm(1� xm)) e�mz=a���m za hqm(1� qm + 2xm)e�mz=a + (1 � qm + 2qmxm)e��mz=ai�A plot of �rr(r = a; z) (�g.7.5) shows the its quasi-linear behavior, justifyinga posteriori the De Saint-Venant approximation.Case of gaussian beamsif the beam intensity comes from a TEM00 wave of width w, we havepm = 2�J0(�m)2 2�w2 Z a0 exp(�2r2=w2)J0(�mr=a) r dr
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Figure 7.4: Displacement of the surface of a �nite substrate under a gaussianpressureThe upper integration bound can be replaced by +1 if, as a mirror, thecylinder has negligible di�raction losses. Then the result can be found in [20](eq. 11.4.29). pm = 1J0(�m)2 exp "� �2mw28a2 #The expansion of p(r) on the orthogonal family J0(�mr=a) is rapidly conver-gent. A plot of p(r) reconstructed from only 12 terms is shown on �g.7.6.A good accuracy is obtained for all the numerical calculations with only 50terms. The expression 7.33 for U takes the special formUGauss = 1 � �2�aY Xm>0 exp(��2mw2=4a2)�mJ0(�m)2 1� q2m + 4qmxm(1� qm)2 � 4qmx2m (7.35)the � parameter involved in expression 7.34 for �U takes the special form:�Gauss = Xm>0 exp(��2mw2=8a2)�2mJ0(�m)
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Figure 7.5: Radial stress along the edge of the cylindrical solid. Solid line :�rr(r = a; z), Dashed line: linear �t c0 + c1zIt is interesting to compare the results with the case discussed in the pre-ceding section, of the half-space (in�nite mirror) appproximation. If we noteUHS the corresponding strain energy and UFM that of the �nite mirror, wecan plot the ratio for varying aspect ratios (see Fig.7.7). and it is clearthat for a given thickness h, values of a as small as possible are desirable.Gong-like mirrors are worse than bar-like ones.7.6.4 Some numerical resultsFor a Virgo input mirror, a =0.175m, h =0.1m, w =0.02m, we getU � 1:81 � 10�10 J:N�2�U � 2:08 � 10�11 J:N�2Utot = U +�U � 2:02 � 10�10 J:N�2
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Figure 7.6: Solid line : gaussian pressure. Dashed line : reconstructionThe in�nite mirror approximation was:U1 � 1:88 � 10�10 J:N�2so that U=U1 � 1:07. The corresponding root spectral density of thermalnoise is given by Sx(f)1=2 = s4kBT�f �Utotso that we �nd (the loss angle being 10�6:Sx(f)1=2 � 1:03 � 10�19 m:Hz�1=2 at 100 HzFor a Virgo end mirror (a =0.175m, h =0.1m, w =0.0554m) we �nd:U � 5:55 � 10�11 J:N�2�U � 1:75 � 10�11 J:N�2
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Figure 7.8: Convergence of the �nite mirror model to the in�nite, when thesize of the mirror increases.7.7 Non gaussian beams7.7.1 Half-space approximationIt has been suggested ([37]) to use light beams with a 
at pro�le in the longcavities instead of gaussian modes, in order to reduce the thermoelastic noise.It is expected that widen the beam will average the surface 
uctuations and.The idea is convincing, but a quantitative model is obviously needed. Wehave addressed the question of how to generate these modes in a precedingsection. For any pressure pro�le p(r), the general expression of �(k) is, asalready seen: k�(k) = � 12� Z 10 p(r)J0(kr) r drso that the displacement of the surface of the half-space is:uz(r; z = 0) = � � + 2�2�(� + �) Z 10 dk J0(kr) Z 10 r0dr0 J0(kr0) p(r0)



7.7. NON GAUSSIAN BEAMS 387or as well, using the Poisson ratio and the Young modulus:uz(r; z = 0) = � 2(1 � �2)Y Z 10 dk J0(kr) Z 10 r0dr0 J0(kr0) p(r0) (7.36)It is easy to see that the strain energy per N2 is then given byU = 2�(1 � �2)Y Z 10 dk ~p(k)2where ~p(k) = Z 10 r dr p(r)J0(kr)is nothing but the Fourier transform of the pressure distribution. In thespecial case of a distribution uniform on the disk r < b, representing asimpli�ed version of a realistic mode (which would be only almost 
at), wehave p(r) = (1=�b2 (r < b)0 (r � b)so that ~p(k) = J1(kb)�kband the energy integral reduces toU = 2(1 � �2)�Y b Z 10 dx  J1(x)x !2the integral is of the Weber-Schafheitlin type (see [20] p.487), thus expressiblein terms of a hypergeometric series:Z 10 dx  J1(x)x !2 = 12 F �12 ; �12; 2 ; 1�now (see [20] p.556), F �12 ; �12; 2; 1� = 83�so that we have Z 10 dx  J1(x)x !2 = 43�



388 CHAPTER 7. MIRRORS STANDARD THERMAL NOISEwhich yields the �nal result: U = 8(1� �2)3�2Y bIt is worth to compare this value, denoted by U
at with the gaussian value,denoted by UGauss: U
atUGauss = 163�3=2 wb � :96 wbIf it is possible to establish a 
at mode of radius 10 cm where a gaussianmode of half-width 2 cm was used, the gain in thermal noise could bes U
atUGauss � 0:44which means a factor better than 2 in sensitivity, therefore 1 order of magni-tude in the analyzed volume of space in the frequency band around 100 Hz.For curious readers, and though it is of no practical interest for our presentpurpose (but any result may always be re-used one day in a di�erent con-text), we show the (virtual) distorted surface on Fig.7.9, and give the apexequation of the surface as:uz(r; z = 0) = � 2(1 � �2)�Y b 8>>>><>>>>:1 (r = 0)F �12 ; �12; 1 ; r2=b2� (0 < r < b)2=� (r = b)bF �12; 12 ; 2 ; b2=r2� =2r (r > b)where F (a; b; c; z) denotes the Gauss hypergeometric series.In this case, the pressure distribution takes however signi�cant valuesprobably near the edge of the mirror, because the reduction of thermal noiseoperates only if a is much larger than w, and secondly because the sizeof actual mirrors has been de�ned as the minimum consistent with smalldi�raction losses, so that say 5 times w is near the physical edge for inputmirrors, and outside the mirror for end mirrors of radius 35 cm. Approximaterepresentation of the mirror as an in�nite half-space is thus questionable inthis case, and a theory with a �nite mirror radius is needed.
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Figure 7.9: Displacement of the surface of an in�nite substrate under a pres-sure uniform on the disk r < b. The surface is assumed in�nite7.7.2 Finite test mass approximationThe model developped for a �nite mirror of radius a and thickness h can beextended to the case of a 
at pressure(p(r) = 1=�b2 (r � b)p(r) = 0 (r > b)representing approximately a 
at mode. The pressure coe�cients are:pm = 2aJ1(�mb=a)b�mJ20 (�m)The pm decrease much less rapidly for increasing m than in the case of agaussian pro�le, so that reconstruction of p(r) is numerically di�cult. ButThe series giving U and � are still convergent, despite the new values for thepm. In fact, these new pm are decreasing like 1=pm, so that the formal seriesgiving p(r) is valid in the sense of the distribution theory. But the terms in
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Figure 7.10: Radial stress and corresponding linear �t. b=0.1mthe series 7.33 fo r U , and in the series de�ning � are nevertheless decreasinglike 1=m3, so that ordinary convergence is secured. All the formulas derivedin the preceding section are unchanged, apart from the new values for pm. Itis nevertheless necessary to check that the correction for the radial stress onthe edge is still reasonable. If we compute the stress �rr(r = a; z) with thenew coe�cients, we get the following plot (�g.7.10), in the case of a mirror ofradius 0.175m and a pressure 
at in a disk of radius 0.1m. showing that theDe Saint-Venant correction is still realistic. Even with a spot radius of 0.15m,the linear correction seems to make sense (see �g.7.11). The displacement ofthe re
ecting surface is much less than in the gaussian case (�g.7.12), anddistortion is very similar to the in�nite case. It is especially intersting tocompare the spectral densities of thermal noise in the gaussian mode regimeto the 
at mode regime. The following plot (7.13) shows again the large gainthat could be achieved by increasing the spot radius. Comparison is madewith a gaussian beam of width 2cm. It is interesting to remark that the caseb = a (the 
at mode has the same radius as the mirror) leads to U = 0
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Figure 7.11: Radial stress and corresponding linear �t.b=0.15mand � = 0. In this case the solution is exact, and the strain energy reduces,according to 7.34 to �U = h=6�a2Y7.7.3 Numerical resultsLet us assume such a 
at mode in the Virgo cavities whose mirrors areassumed identical in size to the current situation. For the input mirrors, we�nd: U � 1:60 � 10�11 J:N�2�U � 1:06 � 10�11 J:N�2Utot � 2:65 � 10�11 J:N�2The in�nite mirror approximation was:U1 � 3:59 � 10�11 J:N�2
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b/aFigure 7.12: Displacement of the re
ecting surface under a pressure uniformin a disk of radius 0.1m. (a=0.175m, h=0.1m)so that U=U1 � 0:74. We �nd the spectral density (the loss angle being still10�6: Sx(f)1=2 � 3:74 � 10�20 m:Hz�1=2 at 100 HzFor the end mirrors, the mode having almost exactly the same spot size afterpropagation, the numerical results are almost identical.7.7.4 Realistic modesThe preceding approach is still questionable because the pressure distribu-tion, as represented by an ideal 
at top function is unrealistic from an opticalpoint of view. It is thus necessary to check that taking a more realistic 
atmode does not destroy the preceding conclusions. The more realistic modelproposed by D'ambrosio et al.[37] consists in a superposition of elementarygaussian modes of waist w0 on a disk of radius b. If we adapt the model to theVirgo parameters, for the sake of de�niteness, we would have an amplitude
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Figure 7.13: gain in SD of thermal noise vs spot radius.(a=0.175m, h=0.1m)on the 
at input mirror of the form:A(x; y; 0) = Z� �(x� x0; y � y0; 0) dx0 dy0where � is the disk of radius b, and �(x; y; z) a gaussian TEM00 wave:�(x; y; 0) = exp �x2 + y2w20 !The resulting amplitude has a quite 
at maximum, with a gaussian-like edgeParameter w0 determines the sharpness of this edge. It is easy to show thatafter propagation at a distance L, the amplitude is (up to a normalizationfactor):A(x; y; L) / Z b=w0 exp h�Z(�� �0)2i exp(�2Z��0) I0(2Z��0) �0 d�0zR = �w20=� being the Rayleigh parameter, w is the beam half-width afterpropagation on the distance L:w = w0q1 + L2=z2R
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Figure 7.14: Intensity pro�le in the 
at mode. Solid line : Pro�le on theinput 
at cavity mirror. Dashed line : Pro�le on the far mirror (3 km away).� � px2 + y2=w, and Z � 1� iL=zR. I0(z) is the modi�ed Bessel function ofthe �rst kind. There is no better analytical expression for the amplitude, buta numerical integration is straightforward, because the function exp(�z)I0(z)has an easy behavior. On Fig.7.14, we have plotted the mode intensity pro�lefor the following parameters: w0 � 3:2 cm, b = 0.1 m, at the two ends ofa cavity of length 3 km. Knowing A, we can compute numerically the pmfrom jAj2 after normalization. This can be done for the input mirrors (
atwavefront, L = 0) and for the end mirrors ('mexican hat' wavefront, L =3km). The corresponding strain energies are almost the same, because theintensity distribution is weakly modi�ed by di�raction for not too small w0.Even for smaller w0 resulting in more distorted intensity pro�les on the endmirror, the strain energies are nearly identical at the two ends. In Fig.7.15,we plot the values found for several particular radii and several values ofthe parameter w0. It is clear that by decreasing the parameter w0 (sharpingthe edge), we get more and more close to the ideally 
at model. However atoo sharp edge is not desirable from an optical point of view, giving a too
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Figure 7.15: Strain energy U vs radius of the 
at mode. Dashed line: In�nitemirror and ideally 
at mode, Solid line : Mirror of radius 0.175 m, thickness0.1 m and ideally 
at mode. Circles: same �nite mirror with realistic modew0 � 3:2 cm. Triangles: same �nite mirror with realistic mode w0 � 2 cm.Diamonds: same �nite mirror with realistic mode w0 � 1 cmdistorted wavefront (and consequently unfeasible mirrors). However, in thelimit of reasonable parameters, we remark a good agreement between theideal and realistic models.7.8 Mirror distortions and energy mapsIt is interesting to write explicitly the solution of the elastical problem. Theexpressions of the displacement vector components in the case of �nite cylin-drical mirrors are: ur(r; z) = umain;r(r; z) + �ur(r; z)uz(r; z) = umain;z(r; z) + �uz(r; z)



396 CHAPTER 7. MIRRORS STANDARD THERMAL NOISEwith the following expressions:�uz(r; z) = 12�a2hY n[� + 12s(1 � �)] r2 + (1 + 24s�)z2 � 2(1 + 12s�)hzo(with s � �a2=h2),�ur(r; z) = r�a2Y f� + 6s(1 � �)� z [� + 12s(1 � �)] =hgumain;r(r; z) = 1 + ��aY Xm>0 pmJ1(�mr=a)�mDm Pm(z)with Dm � (1� qm)2 � 4qmx2m, and�Pm(z) = h2qmx2m + (1� 2�)(1 � qm + 2qmxm)i exp(��mz=a)++qm h2x2m � (1� 2�)(1� qm + 2xm)i exp(�mz=a)���m za [(1 � qm + 2qmxm) exp(��mz=a) + qm(1� qm + 2xm) exp(�mz=a)]and umain;z(r; z) = (1 + �)�aY Xm>0 pmJ0(�mr=a)�mDm Qm(z)where 12Qm(z) = h(1� �)(1� qm + 2qmxm)� qmx2m)i exp(��mz=a)++qm h(1� �)(1� qm + 2xm) + x2mi exp(�mz=a)++�m z2a [(1� qm + 2qmxm) exp(��mz=a)� qm(1� qm + 2xm) exp(�mz=a)]Despite the apparent complexity, this is extremely fast to compute (see the"Heating issues" chapter for algorithmic details). These formulas allow todraw (see Fig.7.25) the distorted shape of the solid, and to check that thedistortion is minimized by the 
at mode. It is also possible to give the straincomponents. By derivating the preceding expressions, we get:Ei;j(r; z) = Emain;i;j(r; z) + �Ei;j(r; z)
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Figure 7.16: Distorted mirror for 1 N normalized pressure. From left toright: Gaussian mode, w=2cm, Gaussian mode w=5.54cm, 
at mode ofradius b =10cm. (exaggerated by a factor of 6 � 107)



398 CHAPTER 7. MIRRORS STANDARD THERMAL NOISEwith, in detail:Emain;rr(r; z) = 1 + ��a2Y Xm>0 pmDmJ 01(�mr=a)Pm(z)Emain;��(r; z) = 1 + ��a2Y Xm>0 pmDm J1(�mr=a)�mr=a Pm(z)Emain;zz(r; z) = 1 + ��a2Y Xm>0 pmDmJ0(�mr=a) a�mQ0m(z)Emain;rz(r; z) = 1 + ��a2Y Xm>0 pmDmJ1(�mr=a) 12 " a�mP 0m(z)�Qm(z)#Emain(r; z) = 1 + ��a2Y Xm>0 pmDmJ0(�mr=a) "Pm(z) + a�mQ0m(z)#The functions Pm(z); Qm(z) have been de�ned above. Moreover we have:a�m Q0m(z)+Pm(z) = �2(1�2�) h(1� qm + 2qmxm)e��mz=a � qm(1� qm + 2xm)e�mz=aiand12 " a�m P 0m(z)�Qm(z)# =  2qmx2m � (1 � qm + 2qmxm)�ma z! e��mz=a�� 2qmx2m � qm(1 � qm + 2xm)�ma z! e�mz=aFor the extra contributions, we have�Err(r; z) = 1�a2Y [� + 6s(1 � �)� z (� + 12s(1 � �)) =h]�E��(r; z) = �Err(r; z)�Ezz(r; z) = 1�a2Y [(1 + 24s�)z=h� 1 � 12s�)]�Erz(r; z) = 0�E(r; z) = � 1 � 2��a2Y [1 � 12s � (1 � 24s)z=h]
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Figure 7.17: Distribution of strain energy in a cylindical mirror of radiusa=17.5 cm, of thickness h=10 cm, under a gaussian pressure w=2 cm. Log-arithmic scale
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Figure 7.18: Distribution of strain energy in a cylindical mirror of ra-dius a=17.5 cm, of thickness h=10 cm, under a gaussian pressure w=5.54cm.Logarithmic scale
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Figure 7.19: Distribution of strain energy in a cylindical mirror of ra-dius a=17.5 cm, of thickness h=10 cm, under a 
at top pressure b=15cm.Logarithmic scale
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Figure 7.20: Distribution of strain energy in a cylindical mirror of radiusa=17.5 cm, of thickness h=10 cm, under a realistically 
at pressure b=15cm.
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Figure 7.21: Distribution of strain energy on the axis and on the edge ofa cylindrical mirror (a=17.5 cm, h=10 cm). Case of a gaussian (w=2 cm)beam (dashed lines), and of a realistic 
at beam (b=0.15 m) (solid lines)



404 CHAPTER 7. MIRRORS STANDARD THERMAL NOISEso that it is possible to compute explicitly the strain energy density:w(r; z) = Y2(1 + �) "E(r; z)21 � 2� + Err(r; z)2 + E��(r; z)2 + Ezz(r; z)2 + 2Er;z(r; z)2#The following pictures (Fig.7.17,7.18,7.19,7.20) show the distribution of w insome cases examined above. The energy density is weak on the edge, andthis is even more clear for wider w and a fortiori, in average for 
at beamsand realistic 
at beams. We show in Fig.7.21 the energy density on the axisand on the edge in the two extreme cases, namely a gaussian beam of width 2cm, and a realistic 
at mode of radius 15 cm. It can be seen that the energydensity is much lower on the edge than on the hot point on the axis, in bothcases, even if there is a sharp minimum for the gaussian beam, locally lowerthan the 
at beam average.7.9 Higher order LG modes7.9.1 IntroductionAnother interesting possibility is to spread power on the mirror's surface byusing high order gaussian TEM modes. We restrict here our attention toaxisymmetrical modes, for which the BHV model is relevant. The interestof using gaussian modes is to keep using spherical mirrors, instead of exoticsurfaces. We hope the e�ect of misalignments to be signi�cantly lower thanwith 
at modes.7.9.2 The BHV modelIn the case where both the mirrors and the beam are assumed axisymmetrical,there exists a model allowing an accurate calculation of the low frequency tailof the spectral densities of internal noises. As a result of Levin's [?] theoryThe power spectral density (PSD) of displacement equivalent to thermalnoise takes the general (low frequency) form :Sx(f) = 4kBT�f �U (7.37)where � is a loss angle, and where U is the strain energy of the mirror undera pressure distribution having the same pro�le as the readout beam, andnormalized to 1 N.



7.9. HIGHER ORDER LG MODES 405Let us summarize the results of the preceding chapter. the total internalenergy is the sum of two contributions:U = U0 + �Uthat can be computed separately. Let a be the radius of the mirror andh its thickness. Let J�(x) be the Bessel functions, and f�k; k > 0g thefamily of all non-zero solutions of J1(�) = 0. Let us note xk � �kh=a, andqk � exp(�2xk). Let Y be the Young modulus of the mirror's material and� its Poisson ratio.Then we have:U0 = 1 � �2�aY Xk>0 J20 (�k)p2k�k 1� q2k + 4qkxk(1� qk)2 � 4qkx2k (7.38)The dimension of U is J.N�2.In the preceding expression the Fourier-Bessel coe�cients fpk; k > 0gare determined by the pressure pro�le. If we denote by p(r) this pressuredistribution, we have:pk = 2�J20 (�k) Z a0 p(r)J0(�kr=a) r dr (7.39)For the second contribution, we have:�U = a26�h3Y 24 ha!4 + 12��  ha!2 + 72(1 � �)�235 (7.40)with � � Xk>0 pkJ0(�k)=�2kAt this level, the computation amounts to �nd the pk.7.9.3 Power pro�lesIn the case of an ideal 
at-top mode of radius b, the pressure distribution is:p
at(r) = (1=�b2 (r � a)0 (r > a) (7.41)



406 CHAPTER 7. MIRRORS STANDARD THERMAL NOISEAs seen in the preceding section, the pk coe�cients are [?]pk;
at = 2aJ1(�kb=a)b�k J20 (�k)In the case of a Gaussian TEM00 readout mode of normalized amplitude	0;0(r) = s 2�w2 exp(�r2=w2);the pressure distribution is: p(r) = j	0;0(r)j2and the pk coe�cients are:p(0)k;0 = 1J0(�k)2 exp "� �2kw28a2 #The preceding result can be extended to the case of any axisymmetricalLaguerre-Gauss mode LGn;m. It is well known that the paraxial di�ractionequation (relevant for �nding the eigenmodes of a resonant cavity with weaklyspherical mirrors) admits solutions of the form (in polar coordinates)	n;m(r; �; z) = s 2�w(z)2 m!(m+ n)! exp(�r2=w(z)2) (2r2=w(z)2)n=2 L(n)m [2r2=w(z)2]�� exp(in�) exp[�i(2m+n+1) arctan(z=zR)] exp[i�r2=�R(z)] exp(2i�z=�)(7.42)where the L(n)m (x) are the Generalized Laguerre polynomials. � is the wave-length and zR the Rayleigh parameter. The functions w(z) and R(z) de-termine respectively the width of the mode, and the curvature radius of itswavefront. In what follows, we only need w(z). At the location zM of a mir-ror, the normalized pressure distribution has therefore the general expression:p(n)m (r) = 2�w2 m!(m+ n)! exp(�2r2=w2) (2r2=w2)n L(n)m (2r2=w2)2depending on the parameter w � w(zM ). If the ratio a=w is large enoughthat the di�raction losses are small, we can replace the �nite upper boundof integral (7.39) by +1, and the Fourier-Bessel coe�cients are simply:p(n)k;m = 1J0(�k)2 exp"� �2kw28a2 # L(0)m  �2kw28a2 !L(0)n+m  �2kw28a2 !
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Figure 7.22: Pressure pro�les. (0,0): dotted, (4,1): dashed, (5,5): solidIf the di�raction losses are not small, the preceding expression losses someaccuracy, but simultaneously the corresponding mode losses its practical in-terest. The pressure pro�les on the input mirror for some among the �rstLaguerre-Gauss modes of parameter w = 3:5 cm are represented on Fig.7.22.See on Fig.7.23 the intensity pattern of a LG5;5 (for instance) mode. Theintegrated power (Fig.7.24) clearly shows a smoother distribution of poweron the mirror's surface. Some examples of the virtual deformation of themirror's surface under a pressure normalized to 1 N can be seen on Fig.7.25with again w=3.5 cm. For the mirror's size, we assume a radius a= 17.5 cmand a thickness h= 10 cm. One clearly sees that the strain is a decreasingfunction of the orders (n;m) of the mode.7.10 Relative gains on thermal noiseWith the current parameters a= 17.5 cm, h = 10 cm, w= 2 cm of the Virgoinput mirrors, if we insert the preceding p(n)k;m in equations 7.38 and 7.40, we
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Figure 7.24: Integrated power for LG5;5 (solid line) and LG0;0 (dashed line)(w=3.5 cm)
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n=0,m=0 n=0,m=1 n=1,m=0 n=1,m=3 flat n=5,m=5Figure 7.25: Deformation of a cylindrical mirror (a= 17.5 cm, h= 10 cm)under a LGn;m readout beam (w = 3.5 cm) normalized to 150 MW (1 Nintegrated radiation pressure), exaggerated by a factor of 2 � 108. The caseof a 
at beam b = 11.3 cm is also shown



7.10. RELATIVE GAINS ON THERMAL NOISE 411�nd for the fundamental:U (0)input;0 = 2:02 10�10J:N�2 (7.43)then, for the Virgo end mirrors (w= 5.54 cm):U (0)end;0 = 7:43 10�11J:N�2 (7.44)For comparison, with a 
at mode of radius 11.3 cm, we haveU
at = 1:88 10�11J:N�2 (7.45)The gain in thermal noise are:gend=input = vuuut U (0)end;0U (0)input;0 � 0:6g
at=input = vuut U
atU (0)input;0 � 0:3By increasing the order of the LG mode and the beam parameter w, it ispossible to reach gains comparable to this 
at mode. For instance, with aLG0;3 mode of parameter w = 4.5 cm, or a LG1;2 mode of parameter w =4.78 cm, we get in both casesU = 1:85 10�11J:N�2meaning a gain of � 0.3, and it is possible to do better. One must howeverconsider the di�raction losses when the width w of the mode becomes toolarge compared to the mirror's radius a (see Fig.7.26). For each mode, thereis a ratio a=w such that the losses fall to 1 ppm, and when comparing thegains for various orders, it is more relevant to take equal losses modes. OnFig.7.27 we show the ratio a=w insuring di�raction losses of 1 ppm, versusorders of the mode. We �nally show (Fig.7.28) the gains relative to the worsesituation of Virgo (input mirrors, LG0;0, w=2 cm) for several higher ordermodes having each a w parameter adjusted to set di�raction losses at 1 ppm;the gain of the 
at mode of size 11.3 cm (having the same losses) is alsoshown. Optimization of the beam parameter leads to symmetrical cavitieshaving equally curved mirrors. Modes with m � 2 give already similar orbetter results than the 
at mode.
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Figure 7.26: Di�raction losses vs ratio a/w for several LG modes
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Figure 7.28: Relative reduction in root spectral density of thermal noise vsorder (n;m) of the LG mode (each having a w tuned for 1 ppm di�ractionlosses).



7.11. CONCLUSION AND PERSPECTIVES 415To be speci�c, let us compute the spectral densities of displacement equiv-alent to thermal noise in some cases. We assume a loss angle of � = 10�6.Firstly, in the case of a TEM0;0, w = 2 cm beam on a Virgo input mirror:S1=2x (f) = 1:03 10�19 "100Hzf #1=2 m:Hz�1=2 (7.46)for w = 3.5 cm:S1=2x (f) = 7:90 10�20 "100Hzf #1=2 m:Hz�1=2 (7.47)then for a 
at mode of radius 11.3 cm:S1=2x (f) = 3:15 10�20 "100Hzf #1=2 m:Hz�1=2 (7.48)and now for a LG5;5, w = 3.5 cm:S1=2x (f) = 2:13 10�20 "100Hzf #1=2 m:Hz�1=2 (7.49)If we compare the 1st example (standard Virgo) to the third (in some \ad-vanced Virgo"), we note a gain factor of � 5 in sensitivity in the 100 Hzregion.7.11 Conclusion and perspectivesIt is possible to have a reduction of thermal noise comparable to or evenbetter than that obtained with 
at modes, by using moderately high orderLaguerre-Gauss axisymmetrical modes. It seems bene�cial that these modesare compatible with spherical cavity mirrors instead of "Mexican" surfaceshapes. The di�raction losses on the end mirror would however be too largein the present design (
at/spherical) of the Virgo cavities (2 cm waist on
at input mirror). If the 
at/spherical cavities are replaced by symmetricalspherical/spherical cavities, that issue could be overcome. The question ofgeneration of such modes having complex annular patterns could be solved bythe recently developed �ber technology (Bragg �bers)[?], allowing to design�ber-lasers with analogous mode structures. A study of the optical stabilityof such a cavity operating with a LGn;m mode is now necessary to con�rmthat it could be practically operated this way. In particular, the issue of thedegeneracy of LGn;m modes having the same n+ 2m is to be addressed.
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Chapter 8Thermoelastic noise8.1 IntroductionThe brownian motion of matter inside the substrates is not the only causeof noise in the optical readout. There is another cause due to temperature
uctuations in a �nite volume of material. These 
uctuations are called ther-modynamical and can couple with strain via the thermal dilatation constant�, producing eventually random motions of the surface. A good way formodeling this kind of noise is to start from the general thermodynamical for-mulas as detailed by Landau and Lifshitz [36], and use the Levin approachalready presented. As in the preceding chapter, we shall consider the lowfrequency tail of the spectral density of the e�ective motion of the surface(i.e. the readout noise) as depending on the energy dissipated when the bodyis under a virtual pressure having the same pro�le as the optical beam andexcited at low frequency. In this case, the spectral density is still of the form(Levin's formula): Sx(f) = 4kBT!2 W (8.1)where W is the average dissipated energy. For the standard thermal noise,we had W = 2U!� as average dissipated energy, � being a global lossangle and U the static strain energy. But now W must be interpreted asthe energy dissipated via coupling of the strain with the temperature �eldin the bulk. Obviously, the temperature �eld itself depends on the strain�eld. Using the same approach as used in [34], we �rst solve the static linearelastical problem (it is done in the preceding chapter), then we compute theresulting temperature �eld, and use it to compute the dissipated energy. For417



418 CHAPTER 8. THERMOELASTIC NOISEcomputing the dissipated energy, we use the time dependence of the entropyS. The variations of the entropy density are related to the heat 
ux ~q byrequiring conservation of the energy in the body:T @S@t = � div(~q) (8.2)where ~q = �K gradT , K being the thermal conductivity of the material(cf.Landau and Lifshitz [36]). Or, as well:@S@t = � 1T div(~q)The total entropy variation in the body is therefore:dStotdt = � Z 1T div(~q) dVwhere the integral is extended to the whole body. this is as well:dStotdt = � Z div ~qT dV + Z ~q:grad� 1T � dVOwing to the fact that the heat 
ux is zero on the surface of the body, the�rst integral vanishes, and we have:dStotdt = � Z 1T 2 ~q:gradT dVbut using the de�nition of ~q, this is:dStotdt = Z KT 2 (grad T )2 dVso that the energy variation is :W = T dStotdt = Z KT (grad T )2 dV (8.3)We shall say now that the temperature gradient �eld is caused by the smalldeformations of the body that we have computed precedingly, while T is themean temperature. This becomes:W = T dStotdt = KT Z (grad �T )2 dV (8.4)



8.1. INTRODUCTION 419Where we have replaced T by a �T in the gradient for more clarity. On theother hand, it is well known (cf. Landau-Lifshitz) that the total entropy isthe sum of two terms, one being the entropy in the reference state, and asecond one proportional to the trace E of the strain tensor:S = S0 + �E� being the thermoelastic coe�cient. so that there is in the bulk material apower source given by P = T:dSdt = � T dEdtwhere E is the trace of Eik. The resulting temperature �eld obeys the Heat(Fourier) equation: (�C@t �K �) �T = � T dEdt (8.5)The trace of the strain tensor Eik found in the preceding chapter is in anycase a harmonic function, so that there is a trivial solution:�T = �T�C EThe boundary conditions (null heat 
ux on the surfaces) are considered sat-is�ed in time average (�T is assumed oscillating at a few tens of Hz).In fact,they are exactly satis�ed on the circular edge of the mirror. Now we reachthe relevant equation for the dissipated energy:W = K�2T�2C2 Z (gradE)2 dV (8.6)� is related to the linear dilatation coe�cient � by� = � Y1 � 2�where Y is the Young modulus, and � the Poisson ratio. Finally:W = KT " �Y(1 � 2�)�C #2 Z (gradE)2 dV (8.7)(see [34]). We have after the preceding chapter on standard thermal noiseall the material for computing W .



420 CHAPTER 8. THERMOELASTIC NOISE8.2 Case of in�nite mirrorsLet us recall the results obtained in the preceding chapter on standard ther-mal noise. Under beam pressure, the displacement vector is:ur(r; z) = Z 10 u(k) [kz � 1 + 2�] exp(�kz)J1(kz) k dk (8.8)uz(r; z) = Z 10 u(k) [kz + 2� 2�] exp(�kz)J0(kz) k dk (8.9)so that:E(r; z) = div ~u(r; z) = �2(1� 2�) Z 10 u(k) exp(�kz)J0(kz) k2 dk (8.10)The function u(k) is determined by the virtual pressure distribution p(r).Namely: u(k) = �1 + �Y ~p(k)k (8.11)where ~p(k) is the Fourier-Bessel transform of p(r). As a result,E(r; z) = � 2(1 � 2�)(1 + �)Y Z 10 ~p(k) exp(�kz)J0(kr) k dkWhich shows, in passing, thatE(r; 0) = � 2(1� 2�)(1 + �)Y p(r)We can thus already foresee that in the case of an ideally 
at top beam, thegradient will involve Dirac distributions, and therefore the volume integrationof its square will be problematic. Let us compute the gradient of E:@E@r = 2(1 � 2�)(1 + �)Y Z 10 ~p(k) exp(�kz)J1(kz) k2 dk@E@z = 2(1 � 2�)(1 + �)Y Z 10 ~p(k) exp(�kz)J0(kz) k2 dkNow, using the closure relationZ 10 J�(kr)J�(k0r) r dr = �(k � k0)k (8.12)



8.2. CASE OF INFINITE MIRRORS 421for � = 0; 1. It is now possible to carry out the volume integration:2� Z 10 r dr Z 10 dz ( ~gradE)2 = 8� (1� 2�)2(1 + �)2Y 2 Z 10 ~p(k)2 k2 dk (8.13)so that W = KT�2(1 + �)2�2C2 Z 10 ~p(k)2 k2 dk (8.14)This expression shows that the function ~p(k) must have an asymptotic behav-ior better than k�3=2 for the integral to converge. This is a strong requirementon the Fourier transform of the pressure distribution.8.2.1 Gaussian beamsFor a gaussian pro�le of half width w, we have seen that:~p(k) = 12� exp h�k2w2=8igiving Z ( ~gradE)2 dV = 4(1� 2�)2(1 + �)2p�Y 2w3 (8.15)so that the spectral density of thermoelastic noise is, using (8.1) and (8.7):Sx(f) = 4kBKT 2�2(1 + �)2p� �2C2 f2w3 (8.16)This result has been found �rstly by Braginsky et al.[35], then by Liu etal.[34], using the preceding approach. For silica parameters:K � 1:4 W:m�1:K�1� � 5:4 10�7 K�1� � 2; 202kg:m�3C � 7; 500 J:kg�1:K�1on �nds: Sx(f)1=2 = 2:68 10�20 "1 Hzf # m:Hz�1=2which is lower than the standard thermal noise, but almost signi�cant. Forthe end mirrors (w = 5.54 cm) , this is:Sx(f)1=2 = 5:81 10�21 "1 Hzf # m:Hz�1=2



422 CHAPTER 8. THERMOELASTIC NOISE8.2.2 Flat beamsIf we now consider a 
at beam modeled by its ideal representation:p(r) = (1=�b2 (r < b)0 (r � b)we have the Fourier-Bessel transform:~p(k) = J1(kb)� kbwhich shows that the requirement on the decreasing rate for large k is notful�lled, J�(k) having an asymptotic behavior in k�1=2. If we try to computethe integral, we get:Z ( ~gradE)2 dV = 8(1 � 2�)2(1 + �)2�b3 Z 10 J1(x)2 dxwich is a divergent integral.This is the consequence of our preceding remarkon the discontinuity of the pressure. For fun, we note that "Mathematica"nevertheless gives a �nite (and rather strange) result:Z 10 J1(x)2 dx = Ln(64) � 4 + 2
2�(
 = Euler's constant). We meet two conclusions: the �rst is that we mustcarry out a numerical integration with the "realistic" 
at modes detailed inthe preceding chapter, the second is that we must be cautious with resultsof symbolic computation softwares.8.3 Case of �nite mirrorsIn the case of �nite mirrors, the model developped for standard thermal noiseprovides the explicit expressions for the trace E of the strain tensor:E(r; z) = E0(r; z) + �E(r; z)withE0(r; z) = � 2(1� 2�)(1 + �)�a2Y Xm>0 pmDmJ0(�mr=a) hum e��mz=a � vm e�mz=ai



8.3. CASE OF FINITE MIRRORS 423where the pm are the Fourier-Bessel coe�cients of the pressure distribution,and where the Dm have been de�ned in the preceding chapter. The um; vmare: um = 1 � qm + 2qmxm; vm = qm(1 � qm + 2xm)qm and xm have also the same de�nitions. Moreover,�E(r; z) = �1� 2��a2Y [1� 12s � (1 � 24s)z=h]so that the gradient of E is:@E0@r = 2(1 � 2�)(1 + �)�a3Y Xm>0 pm�mDm J1(�mr=a) hum e��mz=a � vm e�mz=ai(8.17)@E0@z = 2(1 � 2�)(1 + �)�a3Y Xm>0 pm�mDm J0(�mr=a) hum e��mz=a + vm e�mz=ai(8.18)@�E@z = 1� 2��a2hY (1� 24s) (8.19)Owing to the orthogonality relations for the J�(�mr=a), we getZ ( ~gradE0)2 dV = 4(1 � 2�)2(1 + �)2�a3Y 2 Xm>0wm (8.20)where wm = p2m�mD2m J0(�m)2 (1 � qm)�� h(1 � qm)(1� q2m) + 8qm(1 � qm)xm + 4qm(1 + qm)x2miand obviously, Z ( ~grad�E)2 dV = (1 � 2�)2�a2hY 2 (1� 24s)2(NB: ~grad�E and ~gradE0 are orthogonal in the r integration). We havesuccessively:W = 4KT�2�a3�2C2 "(1 + �)2 Xm>0wm + (1� 24s)2 a4h#And for the spectral density:Sx(f) = 4kBKT 2�2�a3�2C2f2 "(1 + �)2 Xm>0wm + (1 � 24s)2 a4h# (8.21)



424 CHAPTER 8. THERMOELASTIC NOISE8.3.1 Gaussian beamsFor gaussian beams, we substitute the pm's in the preceding formulae. Forthe parameters corresponding to Virgo input mirrors (w =2 cm, a = 17.5cm, h = 10 cm, we �nd:S1=2x (f) = 2:76 10�20 m:Hz�1=2 "1 Hzf #slightly worse than the in�nite case. For w = 5.54 cm (end mirrors):S1=2x (f) = 8:20 10�21 m:Hz�1=2 "1 Hzf #in Fig.8.1, one sees the distribution of (gradE)2 in the case of an input Virgomirror. which is worse than the in�nite case.8.3.2 Flat modesThe same drawback happens in the case of ideally 
at modes. The sharp edgegenerates high spatial frequencies that forbid the Fourier-Bessel coe�cientspm to have a decreasing rate able to secure the convergence of the series. Onemore time we have to numerically compute the pm for realistic 
at modes.The result for a Virgo-like mirror (a = 17.5 cm, h = 10 cm) and for a realisticmode (b = 10 cm, w0 = 3.2 cm), is:S1=2x (f) = 4:89 10�21 m:Hz�1=2 "1 Hzf # (8.22)It is weakly dependent on the parameter w0 (sharpness of the beam's edge).To be speci�c, for w0 = 1 cm, this isS1=2x (f) = 4:92 10�21 m:Hz�1=2 "1 Hzf #2On Fig.8.2, we have represented the distribution of (gradE)2 for a realistic
at mode (b = 10 cm, w0 = 1 cm). Note the two "hot" points correspondingto the regions where the gradient is the largest. When sharping the edge,these points become hoter and hoter, yielding a singularity in the limit of anideal 
at top beam.
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Figure 8.1: Distribution of the square gradient of the temperature in the caseof a gaussian beam. (Logarithmic scale, arbitrary units)
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Chapter 9Modulation and Transferfunctions9.1 IntroductionAnalysis of the statistical structure of noise at the output of gravitationalwave interferometers like LIGO or Virgo is essential regarding two di�erenttasks, that are the commissionning of the instrument and the signal process-ing. During the �rst test runs of the new instrument, identi�cation of specialtypes of noise will be a valuable aid to diagnostics and correction for bias.During the regular exploitation period, many �ltering techniques requiringa good knowledge of the spectral density of the instrument noise will berunning on line. Moreover, it will be necessary to permanently control thestationarity of statistical parameters. A correct association between noisecharacteristics and parts of the instrument requires information about thetransfer functions relating elementary perturbations of these elements andoutput at the di�erent ports of the interferometer. In the present study, weshow how to systematically construct these transfer functions, starting fromelementary objects like mirrors and space between them, in a way easily donenumerically, increasing the reliability of the results with respect to long spe-cial analytical formulas. These elementary objects are so simple that one canrely on them, then the proper algebra being de�ned, one has simply to codethe simple general analytical formulas, and the correct result is automaticallyobtained. We shall present as �rst results and examples, transfer functionsfor the motions of mirrors, for laser frequency 
uctuations, for the modulator427



428 CHAPTER 9. MODULATION AND TRANSFER FUNCTIONSfrequency 
uctuations, and for a gravitational wave. The last one is necessaryfor evaluating the spectral densities of gravitational amplitudes equivalent tothe various sources of noise and add them in a consistent way for obtain-ing the spectral sensivity of the instrument. The modulation/demodulationsystem plays an essential role in the derivation of transfer functions, and wegive the expressions for a lock in detection with a given phase lag. A spe-cial attention is devoted to the question of modulated quantum noise. Thisapproach is especially well adapted to object-oriented coding.9.2 Elementary perturbations and audio side-bandsThe basic elements constituting an interferometer are the mirrors and thevacuum space in between them. The possible perturbations reduce conse-quently to two kinds : changes in position of the mirrors, and changes in thevacuum properties due to a passing GW. In the present approach, we shalldescribe the light beams circulating in the instrument as plane waves andmirrors as 
at surfaces. In other words, we consider only the projection ofthe amplitudes on the TEM00 mode.9.2.1 Perturbation of mirrors by small displacementsSmall displacements of mirrors must be considered either for actual displace-ments (e.g. pendulum thermal noise), for distortions globally equivalent to adisplacement of the hot spot on the coating (e.g. substrate thermal noise) orfor any phase perturbation mathematically equivalent to a displacement (e.g.scattered light recombination). This comprises a large class of phenomena.We shall assume in�nite 
at mirrors, and as only allowed perturbation, adisplacement of the re
ecting surface along its normal. This is not a loss ofgenerality because other perturbations can be shown to eventually reduce toan equivalent longitudinal displacement. For instance this has been shownin detail [29],[30] for excited internal degrees of freedom of a real mirror ifcoupled to the beam phase (internal thermal noise). In the case of scatteredlight, the noisy recombination e�ect takes place on the mirror's surface andgenerate a phase that cannot be distinguished from a displacement phase.We restrict our attention to motions, or equivalent motions, x(t) of ampli-tude very small compared to a wavelength, so that a �rst order expansion is



9.2. ELEMENTARY PERTURBATIONS AND AUDIO SIDEBANDS 429allowed, and all further computations are linear with respect to the displace-ment x. We shall moreover consider x(t) as a zero mean random processof spectral density x2(f) and will refer to x(f) as its "root spectral density"(RSD). Thanks to the linarity of the calculations, it is allowed and convenientto consider x(f) as the amplitude of a Fourier component of the motion atfrequency f , and study the situation created by this elementary harmonicperturbation : The result is to add two sidebands to the main wave, so thatthe amplitude of light anywhere in the interferometer is modulated, i.e. ofthe form A(t) = �A0 + 12�(f)A1e�i
t + 12�(f)A2ei
t� e�i!Lt (9.1)where !L=2� is the laser frequency, and 
 � 2�f . �(f) = 4�x(f)=� isthe RSD of phase equivalent to the displacement. This form will hold quitegenerally, whatever the cause of the phase 
uctuation is. Because we intendto study the noise in the detection band (a few Hz to a few kHz), we call these"audio" sidebands. Assume a wave of the preceding form is re
ected by ourmoving mirror, the incidence angle being � (almost all incidence angles in theinterferometer are zero, except on the splitter, which leads us to consider thegeneral case); provided that the incident wave is propagating to the right, there
ected amplitude B(t) is given by B(t) = i r A[t� 2x(t) cos �=c], becausethe re
ected wave experiences then an extra delay. Obviously, if the incidentwave now comes from the right, we have to replace x by �x. We haveB(t) = i r � A0 e�i!L(t�2xcos�=c) + 12 �(f)A1ei[(!L+
)(t�2x cos�=c)+12 �(f)A2ei[(!L�
)(t�2x cos�=c)� (9.2)The factor of i is inserted for taking into account the necessary relativephase of �=2 between the re
ected and the transmitted wave at each partialre
ection (all transmission coe�cients will be thus taken real). Substitutingx(t) = x(f) cos(
t) and expanding this expression at �rst order leads toB(t) = A0 e�i!Lt  1 + 2 i �x(f) cos�� e�i
t + 2 i �x(f) cos�� ei
t!+ 12 �(f)A1e�i[(!L+
)t + 12 �(f)A2e�i[(!L�
)t (9.3)



430 CHAPTER 9. MODULATION AND TRANSFER FUNCTIONSThis veri�es that the structure (carrier+2 sidebands) is stable and conse-quently it is allowed representing the modulated amplitudes by 3-vectors as: A = (A0; A1; A2). Re
ection is then a linear operator, and we can write,for a mirror of photometric re
ectivity r, and for a wave coming from theleft : B = i r R Athe operator R having the formR = 0B@1 0 0i cos � 1 0i cos � 0 11CA (9.4)If the wave is coming from the right, we have to change the sign of thenon diagonal elements. This means that a mirror has two operators : aleft side re
ection operator R, and a right side operator R = R�1. Thissign convention is quite arbitrary, and is of no consequence if we consideronly one perturbed mirror in a given con�guration. But if we intend tostudy coherent motions of pairs of mirrors, (common modes, or di�erentialmodes, for instance), we have to be careful with the signs. With this operatornotation, R10 for instance, is a transfer function relating the upper sidebandamplitude to the RSD of phase �(f) = 2kx(f).9.2.2 Perturbation of a vacuum by a gravitational waveA passing gravitational wave will perturb light-distance measurements dueto small changes in the space-time metrics. Assume a GW of amplitude hand frequency f = 
=2� propagating along the z direction, having the +polarization. A photon travelling along the x or y direction and detected attime t after a round trip of length 2L, was emitted at the retarded timetr = t� 2Lc � � hLc sinc(
L=c) cos[
(t� L=c)]where � = �1 depending on the direction x or y ([27]). Consider now awave already modulated at the gravitational frequency f , i.e. having twosidebands proportional to h, of the formA(t) =  A0 + h2 A1e�i
t + h2 A2ei
t! e�i!t



9.2. ELEMENTARY PERTURBATIONS AND AUDIO SIDEBANDS 431The propagated amplitude B(t) is nothing but the incoming wave taken atthe retarded time, i.e. B(t) = A(tr)so that we obtainB(t) =  B0 + h2 B1 e�i
t + h2 B2 ei
t! e�i!twith (we set K � 
L=c): B0 = e2ikL A0B1 = e2i(k+K)L A1 � i�kL sinc(KL)ei(2k+K)L A0B2 = e2i(k�K)L A2 � i�kL sinc(KL)ei(2k�K)L A0This can be represented as the action of the operator (see [1]) :P (2L) = 0B@ e2ikL 0 0i � ei(2k+K)Lsinc(KL) e2i(k+K)L 0i � ei(2k�K)Lsinc(KL) 0 e2i(k�K)L1CA (9.5)on vector amplitudes. According to the above outlined philosophy, the diago-nal terms express the phase factor corresponding to ordinary propagation in avacuum of waves of frequency �L; �L+f; �L�f respectively, whereas P (2L)10must be understood as the transfer function relating the upper sideband am-plitude to the RSD of phase �(f) = kh(f)L. Obviously, the o�-diagonalterms evaluate the creation of sidebands by the GW, and are the seed of thewhole detection process in an interferometer; however they may be signi�-cantly di�erent from zero only on very long distances. Though the precedingexpression is valid in general, the o�-diagonal terms will be considered onlyin the case of propagation in the km long Fabry-Perot cavities.9.2.3 Algebra of �rst order perturbationsAny history of modulated light through the interferometer is thus repre-sented by a product of propagation and re
ection rank 3 operators, andconsequently, a matter of algebra. The general form of any operator is :O = 0B@O00 0 0O10 O11 0O20 0 O221CA (9.6)



432 CHAPTER 9. MODULATION AND TRANSFER FUNCTIONSThe product of two operators A, B is(AB) = 0B@ (AB)00 = A00B00 0 0(AB)10 = A10B00 +A11B10 (AB)11 = A11B11 0(AB)20 = A20B00 +A22B20 0 (AB)22 = A22B221CA(9.7)For the inverse A�1 of any operator A, we have :A�1 = 0B@ (A�1)00 = 1=A00 0 0(A�1)10 = �A10=A00A11 (A�1)11 = 1=A11 0(A�1)20 = �A20=A00A22 0 (A�1)22 = 1=A221CA(9.8)This is a non commutative algebra we call A for brevity, isomorphous to thealgebra of �rst order expansions, it is very simple, very fast (there is no needof a general matrix inversion) , and easy to implement in a numerical code.We show hereafter how for any complex optical scheme, it is possible usingA to compute global transmission and re
ection operators between an inputpoint and any output point. We have presented for the sake of clarity the fullthree dimensional version of this algebra, and one could argue a redundancy,due to the fact that (02) (resp. (22)) components can be deduced from(01) (resp (11)) components by simply changing 
 into �
. In a numericalscheme, however, it is anyway necessary to evaluate all the components, andconsequently using rank 3 operators (in practice 5 components objects) isnot a waste of time nor memory.9.3 Interferometer operators9.3.1 CavityThe basic parameters of a mirror are the re
ection coe�cient r, the transmis-sion coe�cient t and the loss rate p. The power balance reads r2+ t2 = 1�p.A Fabry-Perot cavity consists of two mirrors, a coupling mirrorM1 of param-eters r1; t1; p1 and a maximum re
ectance mirrorM2 of parameters r2; t2; p2,separated by a vacuum gap of length L. The equation relating the incoming�eld Ain and the intracaviy �eld B isB = t1Ain � r1r2R1P (L)R2P (L) B (9.9)in this expression we note that the transmission is represented by a purescalar, owing to the fact that a motion of the transparent sustrate of the



9.3. INTERFEROMETER OPERATORS 433mirror does not a�ect the phase of a transmitted wave, we note that theR2 operator has been conjugated (or inverted) because the normal to M2is in the opposite direction with respect to that of M1. We shall considerseparately the e�ects of perturbations, so that either P (L) is gravitationnallyperturbed and then R1, R2 reduce to identity, or M1 or M2 is moving andthen P (L) is diagonal. We haveB = �1 + r1r2R1P (L)R2P (L)��1 t1Ain (9.10)Concerning the �eld Aref re
ected o� the cavity, we haveAref = i r1R1Ain + i t21r2P (L)R2P (L)B (9.11)(remember that R1 corresponds to a re
ection at the left side, and R1 at theright side of M1). We �nd Aref = i F Ain with the general formula :F = R1 hr1 + (1� p1)r2R1P (L)R2P (L)i h1 + r1r2R1P (L)R2P (L)i�1(9.12)We can say that F is the Fabry-Perot re
ectance operator. It contains threepossible pertubations we enumerate below. Though it is quite useless to knowthe details of the operators in a numerical scheme, where we stick to syntheticalgebraic expressions as the preceding one, instead of long special analyticalformulas, it is nevertheless interesting to see the e�ect of these perturbationson the cavity A operator. We have the following general structure :F = 0B@F0 0 0G1 F1 0G�1 0 F�11CA (9.13)� GW event :F = [r1 + (1� p1)r2P (2L)] [1 + r1r2P (2L)]�1 (9.14)M1 and M2 are pure scalars and P (2L) is the perturbed propagator.we have here,F� = r1 + (1� p1)r2e2i(k+�K)L1 + r1r2e2i(k+�K)L (� = �1; 0; 1) (9.15)(ordinary re
ectance for the carrier and the two sidebands),G� = i � r2t21ei(2k+�K)Lsinc(KL)(1 + r1r2e2ikL) (1 + r1r2e2i(k+�K)L) (� = �1; 1) (9.16)



434 CHAPTER 9. MODULATION AND TRANSFER FUNCTIONSwhich represents the sidebands amplitudes created by the cavity whilethe GW event, with respect to the incoming carrier's.� Motion of the coupling mirror M1F = R1 [r1 + (1� p1)r2R1P (2L)] [1 + r1r2R1P (2L)]�1 (9.17)P (2L) is diagonal and M2 scalar. The components F� are the same asin the precedent item, but now :G� = � i  r2t21e2ikL(1 + r1r2e2ikL) (1 + r1r2e2i(k+�K)L) � F0! (9.18)� Motion of the far mirrorM2F = hr1 + (1 � p1)r2P (L)R2P (L)i h1 + r1r2P (L)R2P (L)i�1 (9.19)P (L) is diagonal and M1 scalar. The elements F� are still unchanged,and the G� are now :G� = i r2t21ei(2k+�K)L(1 + r1r2e2ikL) (1 + r1r2e2i(k+�K)L) (9.20)(The change of sign with respect to the coupler formula comes fromthe opposite orientation of the normal). Note the close similaritybetween the GW case and an M2 far mirror motion of amplitudex(f) = 12h(f)L. At low frequencies the sinc function can be replacedby 1 and the two formulas become identical.9.3.2 MichelsonA GW Michelson interferometer like LIGO or Virgo involves two arms con-taining each a Fabry-Perot cavity. For more clarity we can denote by "North"and "West" the directions of the arms without loss of generality. Knowingthe operators Fnorth, Fwest of both cavities, maybe having di�erent param-eters M1;M2; L due to unavoidable asymmetries, it is easy to compute thetransmittance Tmic and the re
ectance Rmic of the Michelson. We denote byMs the splitter of parameters rs; ts; ps, by a and b the short distances (seeFig.9.1) then the transmittance is
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reflected lightFigure 9.1: General setup for a Power recycled interferometerTmic = �rsts �R�1s P (a)FnorthP (a) + P (b)FwestP (b)Rs� (9.21)Let us note that the motion of any mirror can be considered as the sum of amotion along its normal, and a motion orthogonal to it. Only the normal partgives rise to a phase lag. There is therefore no ambiguity in the de�nition ofthe left and right sides of the splitterMs : these are determined with respectto the right oriented normal. For the re
ectance, we getRmic = t2sP (a)FnorthP (a)� r2sRsP (b)FwestP (b)Rs (9.22)In these expressions, P (a) and P (b) can be understood as diagonal, ne-glecting a possible GW perturbation on so short distances. In the operatorRs, the incidence angle is taken as �=4.



436 CHAPTER 9. MODULATION AND TRANSFER FUNCTIONS9.3.3 Recycled interferometer transmittance and re-
ectanceA recycling interferometer is a cavity involving a recycling mirror Mr ofparameters rr; tr; pr at a distance l of a Michelson (see Fig.9.1). Elementarycalculations lead to the transmittance Titf and the re
ectance Ritf of thewhole system. Titf = trTmicP (l) h1 + rrR�1r P (l)RmicP (l)i�1 (9.23)Ritf = Rr hrr + (1� pr)R�1r P (l)RmicP (l)i h1 + rrR�1r P (l)RmicP (l)i�1(9.24)At this point, we are able to compute the transmission of a wave of arbi-trary frequency through the interferometer, and moreover the amplitude ofthe sidebands created inside by the motion of any mirror or a passing GW.Moreover, we can do it by a constructive approach, without handling in-tricate analytical formulas : Once given the elementary operators (mirrors,propagator), a code can build the cavity operators, the Michelson operatorsand eventually the interferometer's by using A and synthetic expressions like(9.23,9.24). Any other port inside the interferometer can be treated the sameway. It is straightforward, using the same principles, to insert an input oroutput mode-cleaner. For instance, TMC being the mode-cleaner A operator,We have simply for the global transmission of the system :Tglob = Titf TMCbecause mode-cleaners are designed (ring cavities) for suppressing re
ectedwaves, there is no cavity between the MC and the interferometer.The same way, it is possible to associate a global operator describing thetransfer from input light to any point of the interferometer. For instance,apart from the main port on which we have focused unitl now, at least twoother ports are of interest (see Fig.9.2), namely the detector receiving apart of the light re
ected by the interferometer (port #2), and the detectorreceiving the light coming from the unavoidable spurious re
ection o� theback face (coated for anti-re
ection) of the splitter (port #5). The operatorassociated with port #2 is clearlyT2;glob = Ritf TMC
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NFigure 9.2: Location of the interferometer ports(this is why it is necesary to compute Ritf ). For port #5, it is convenient tode�ne, baside the operators Rmic and Tmic related to the Michelson part, anew operator : T5;mic = iPa Fnorth PaThis allows to compute the corresponding operator when recycling is applied(formula formally identical to 9.23) :T5;itf = trT5;micP (l) h1 + rrR�1r P (l)RmicP (l)i�1then the operator associated with port 5 is simplyT5;glob = T5;itf TMC9.4 Tuning the interferometerIt is essential for understanding the results that we report below, to describehow the various cavities and the interferometer itself are tuned. All informa-tion on the tuning is contained in the various propagators encountered. In



438 CHAPTER 9. MODULATION AND TRANSFER FUNCTIONSthese propagators, especially in long (km) distance operators, huge phasesinvolving the laser frequency, as 2��LL=c appear, and are di�cult to numer-ically take into account without a special care. For a light of wavelength1.064 �m, and 3 km propagation, we get kL � 17; 715; 748; 046:558; 983 Rd,value in which a variation of the last digit is enough to change the phasere
ectance of a high �nesse cavity by �=2. If we keep the full value of phases,we loss any precision on the �ne tuning. In other words, it is di�cult tohandle the same way kilometers and picometers. We try therefore to extractfrom all phases a large static value that proves irrelevant in the calculations.To obtain this result, we shall consider that the lengths of the various cavi-ties present in the interferometer are kept nearly resonant for the laser light(carrier). Possible departures from resonance will be expressed with respectto the resonant length. This way it is possible to get rid of the exact car-rier frequency, and consider only o�sets with respect to that frequency fordescribing for instance the transmission of sidebands.9.4.1 Tuning long cavitiesThe optical length L of a long cavity can be considered as the sum of aresonant part L0, plus a small detuning �L that we can express as a fraction� of the linewidth of the cavity (of �nesse F) :�L = � � �2Fwith �1 � � � 1. The parameter � allows to examine special modes ofoperation of the interferometer assuming detuned cavities, or to representDC servo errors. Resonance obviously corresponds to � = 0. We may as-sume L0 = (4n + 1)�=4 where n is the largest integer less than 4L=�. Thepropagator's phase kL appearing in P (L) (see Eq.9.5) is thus :kL = 2�c (�L + ��) L0 + � �2F!where �� represents an o�set with respect to the laser frequency caused forinstance, as will be seen in the next section, by the modulation. The resultis kL = �2 + � " ����FSR +  1 + ���L! �F # (mod 2�) (9.25)



9.4. TUNING THE INTERFEROMETER 439��FSR = c=2L is the free spectral range of the cavity. It might be thoughtthat we failed to get rid of the laser frequency �L, but the way it entersthe last formula is now much less dangerous, because is appears in a smallcorrection factor (even negligible in certain cases), and a high precision valueis no more needed for it. The argument KL appearing in some componentsof P (L) is simply KL = � f��FSR (mod 2�) (9.26)9.4.2 Tuning at a dark fringeAt the main output of the interferometer, two partial waves returning fromthe two arms interfere, and it is well known that the optimum signal to noiseratio is obtained when the the optical path di�erence between the two armsis such that the extinction is a maximum. The relevant information on thisis contained in the (00) component of the Tmic operator, namely[Tmic]00 = rsts �e2ika[Fnorth]00 + e2ikb[Fwest]00�Assume that the short arms lengths a; b are integer multiples of the laserwavelength plus a small o�set � :a = a0 + ��=4 ; b = b0 � ��=4with a0 = na�, b0 = nb�. At the laser frequency (�� = 0), we havej[Tmic]00(�L)j = rsts �j[Fnorth]00(�L)j + ei' j[Fwest]00(�L)j�where ' = 4��Lc (b� a) �Arg[Fnorth]00(�L) + Arg[Fwest]00(�L)The dark fringe at the laser frequency corresponds to ' = � (mod 2�).This is obtained if� = �0 + 12 + Arg[Fwest]00(�L)�Arg[Fnorth]00(�L)2� (9.27)where �0 represents a possible o�set with respect to the dark fringe causedfor instance by a DC servo error. This being calculated, the phase factorska; kb of the propagators P (a); P (b) are given byka = 2� a0c �� + �2 �1 + ���L� � (mod 2�)kb = 2� b0c �� � �2 �1 + ���L� � (mod 2�) (9.28)



440 CHAPTER 9. MODULATION AND TRANSFER FUNCTIONS9.4.3 Tuning the recycling cavityThe recycling resonance allows to increase the power reaching the splitter.The recycling cavity (recycling mirror + Michelson) , of length l, is at reso-nance when D = j1 + rrec[Rmic]00e2ikljis a minimum. At the laser frequency, this isD(�L) = 1 + rrecj[Rmic]00(�L)j ei where  = 4��Ll=c+Arg[Rmic]00(�L)We assume a length l = l0 + ��=4 where l0 is an integer multiple of � and� an adjustable parameter. We get = �� +Arg[Rmic]00(�L)The minimum of D(�L) is attained when  = � (mod 2�), which yields� = �0 + 1 � Arg[Rmic]00(�L)��0 allowing to take into account a possible o�set with respect to resonance.We have thus for the argument kl entering the propagator P (l) :kl = 2�l0c �� + �2  �0 + 1� Arg[Rmic]00(�L)� !  1 + ���L! (mod 2�)(9.29)9.5 Modulation, Detection, Demodulation andTransfer functions9.5.1 General caseThe optical wave entering the interferometer is not a simple monochromaticwave. It is passed through a phase modulator in order to translate thedetection band in a high frequency region where the laser frequency noise is



9.5. MODULATION,DETECTION, DEMODULATIONANDTRANSFER FUNCTIONS441lower. The action of an ideal phase modulator is analogous to a transmittanceof the form T (t) = e�i� sin!t (9.30)where ! = 2�fm, fm being the modulation frequency. The parameter � is themodulation depth. If the laser output amplitude is Ae�i!Lt, the modulatedamplitude A0(t) is a sum of a carrier and partial waves we call "rf sidebands"because fm is of the order of a few MHz.A0(t) = AXp2ZJp(�)e�i(!L+p!)t (9.31)The interferometer contains a number of points where it is useful to detectthe light amplitude. The main is obviously the dark fringe, from wherethe gravitational information is expected to come, but the �eld re
ected bythe recycling mirror, the �eld weakly transmitted by the end mirrors, somespurious re
ections, are also of some interest for the control of the instrument.Each of these amplitudes can be computed by the constructive way outlinedabove, giving a suitable operator S 2 A. The component S00(�) depends onlyon the frequency � of the light source, whereas S10(�; f); S20(�; f) dependalso on the perturbation frequency. We shall use the following notation,de�ning transfer coe�cients for each discrete Fourier component of the lightamplitude : tp = S00(�L + p fm)t+p = S10(�L + p fm; f)t�p = S20(�L + p fm; f) (9.32)We can then write the amplitude B(t) at the considered port :B(t) = Ae�i!Lt 0@Xp2Z tp Jp(�)e�ip!t + 12 �(f) Xp2Z t+p Jp(�)e�i(p!+
)t+12 �(f) Xp2Z t�p Jp(�)e�i(p!�
)t1A (9.33)where we see that the e�ect of the perturbed interferometer is to add twoaudio sidebands to every rf sideband. The power is, treating the t�p as �rstorder terms :P (t) = B(t)B(t) = P0 0@ Xp;q2Z tptqJpJqe�i(p�q)!t+



442 CHAPTER 9. MODULATION AND TRANSFER FUNCTIONS12 �(f) Xp;q2Z(t+p tq + tpt�q )JpJqe�i[(p�q)!+
]t+12 �(f) Xp;q2Z(t�p tq + tpt+q )JpJqe�i[(p�q)!�
]t1A (9.34)where Jp is a shorthand notation for Jp(�). The end of the process is a mixingwith a demodulation current of the formD(t) = sin(!t+ �)where � denotes the demodulation phase, followed by a low pass �lteringsuppressing frequencies equal or higher than fm. � = 0 gives the in-phasedemodulation current, and � = �=2 the quadrature. It is therefore clear thatin the preceding sum, only terms such that p � q = �1 will contribute thedemodulated �ltered current. We can thus write the contributing part Peffof the detected power as :Peff (t)=P0 = a0e�i!t + �12�(f) a+ e�i(!+
)t + 12�(f) a� e�i(!�
)t�+ c:c(9.35)where the coe�cients ak have the following de�nitions :a0 = Pp2Z JpJp�1tptp�1a+ = Pp2Z JpJp�1(t+p tp�1 + tpt�p�1)a� = Pp2Z JpJp�1(t�p tp�1 + tpt+p�1) (9.36)The demodulated, �ltered current (DFC) at frequency f is :DFC(t) = 14i h(a+ ei� � a� e�i�)e�2i�ft + c:ci �(f) (9.37)The function DFC(t) is given up to an arbitrary amplitude depending onthe tuning of the various ampli�ers of the detection chain. Anyway, weare going to compare one another the DFC's due to di�erent causes, andthe undetermined common amplitude plays no role in the discussion. Thefunction �(f), de�ned as�(f) = 12 [a+ ei� � a� e�i�] (9.38)is thus the (complex) transfer function relating the RSD of DFC to the RSDof special phase noise : DFC(f) = �(f) � �(f) (9.39)



9.5. MODULATION,DETECTION, DEMODULATIONANDTRANSFER FUNCTIONS443� �(f) = 2k x(f) for a moving mirror. So thatDFC(f) = �x!DFC(f)4�� x(f) (9.40)where in �x!DFC, the tkp coe�cients have been calculated from opera-tors all diagonal except the special one corresponding to the perturbedmirror� �(f) = k h(f)L for a GW event, so thatDFC(f) = �h!DFC(f)2�L� h(f) (9.41)where in �h!DFC , the tkp coe�cients have been calculated from opera-tors all diagonal except the propagators P (2Lnorth) and P (2Lwest).From �(f), one can extract the modulus and phase transfer functions, bothuseful in servo loops studies.9.5.2 The special case of quantum noiseOur discussion of the quantum noise calculation is based on the approachby Niebauer et al. [31] about non stationary shot noise. Consider a timeinterval �t, around time t, very short compared to the modulation period1=fm. The number n(t) of photons reaching the photodiode during this timeis a random variable obeying a Poisson statistics, having an expectationvalue E[n(t)] = n0(t), so that its variance is V [n(t)] = n0(t). The statisticalparameter n0(t) is related to the averaged power P0(t) during �t by (hPdenoting the Planck constant) :n0(t) = P0(t)�thP �LWe can reverse as well the point of view and consider the detected power asa random process, and we consider the associated centered process�P (t) = hP�L�t (n(t)� n0(t))Having the varianceV [�P (t)] =  hP �L�t !2 n0(t) = hP�L�t P0(t)



444 CHAPTER 9. MODULATION AND TRANSFER FUNCTIONSAssuming a quantum e�ciency of 1, the detection current generated by thediode is (for its centered part) :I(t) = ehP�L �P (t)where e is the elementary charge. The process I(t) has a varianceV [I(t)] = e2hP �L�t P0(t)D(t) being the demodulation current, the demodulated current J(t) is givenby J(t) = D(t) I(t)This de�nes a new centered process, of variance:V [J(t)] = D(t)2V [I(t)] = D(t)2 e2hP �L�t P0(t)Moreover, we can consider the 
uctuations �P as uncorrelated between anytwo di�erent time intervals, so that if t; t0 are the centers of two time slices,we have E[J(t)J(t0)] = e2hP�L�tD2(t)P0(t) �t;t0 (9.42)where �t;t = 1, and �t;t0 6=t = 0. The output current being periodic, it admitsan expansion in a Fourier series, and the coe�cients are~J(!) = 1T ZT J(t) ei!twhere T is any multiple of 1=fm and consequently much longer than �t. Theintegral is thus fairly approximated by the discrete sum~J(!) = �tT Xt2T J(t) ei!tand we get E[ ~J(!) ~J(!)�] = ��tT �2 Xt;t02T E[J(t)J(t0)] ei(!t�!0t0)



9.5. MODULATION,DETECTION, DEMODULATIONANDTRANSFER FUNCTIONS445thanks to eq.9.42, we �ndE[ ~J(!) ~J(!)�] = e2hP �LT �tT Xt2T D(t)2P0(t) ei(!�!0)t = e2hP�LT gD2P0(!�!0)In particular, E[j ~J(!)j2] = e2hP �LT gD2P0(0) (9.43)This result is independent on �t that we can take arbitrarily small, therefore,eq.(9.43) is exact. It follows that the spectral density of demodulated currentis Q(!) = e2hP�L gD2P0(0) (9.44)The mean detected power being :P0(t) = PL Xp;q2Z Jp Jq tp; tq e�i(p�q)!tand the squared demodulation currentD(t)2 = sin(!t+ �)2 = 14 �2� e2i!t+2i� � e�2i!t�2i��we getD2P0(t) = 14 0@2 Xp;q2Z JpJq tptq e�i(p�q)!t � e2i� Xp;q2Z JpJq tptq e�i(p�q�2)!t �e�2i� Xp;q2Z JpJq tptq e�i(p�q+2)!t1Aso that the Fourier coe�cient of the zero frequency isgD2P0(0) = 14 242Xp2ZJ2p tptp � e�2i� Xp2ZJpJp�2tptp�2 � e2i� Xp2ZJpJp�2tp�2tp35once substituted in (9.44), the RSD of quantum noise current is determined.Note that in the calculation of the DFC's due to classical perturbations(precedent subsection) a factor of eP0=hP�L was ignored, as a part of acommon arbitrary scale factor. It is necessary to remember it here : ignoring



446 CHAPTER 9. MODULATION AND TRANSFER FUNCTIONSthis factor is equivalent to take 1 as the amplitude of the demodulatingcurrent, and divide all DFC's by eP0=hP �L. If we keep this convention, wemust �nally take for the spectral density of modulated quantum noise :DFCqn(f) = s2hP �LP0 �qn!DFCThe factor of 2 is necessary for passing to a one sided spectral density. Wehave otherwise : �qn!DFC = 14 h2a� b e�2i� � b e2i�ia = Xp2ZJ2p tptpb = Xp2ZJpJp�2tptp�29.5.3 Transfer functions to an equivalent h(f)An essential point is to compare the various perturbations acting on theinterferometer to the expected gravitational signals. One way for doing itis to express these perturbations in terms of an equivalent spectral densityh(f) of gravitational amplitude. This is often implicitly done in papers. Themethod we propose is to identify the DFC produced by a GW to the DFCproduced by any perturbation X of RSD X(f) :DFCh(f) = DFCX(f)or, introducing the transfer functions�h!DFC h(f) = �X!DFC X(f)This allows to express the hX(f) equivalent to X(f) ashX(f) = �X!h X(f)and de�ne a new class of transfer functions :�X!h = �X!DFC�h!DFC
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Figure 9.3: Transfer functions from �x(f) to DFC(f) for 4 types of mirrors,5% �nesse asymmetry9.6 Interferometer noises9.6.1 Proof masses position noiseA �rst possible use of our method could be to �nd the transfer functionscorresponding to motions of every mirror involved in a given instrument.This could help in the commissionning phase, when we are free to test theresponse of the interferometer to given, calibrated excitations. We showbelow (Fig.9.3) the behavior of the transfer functionsrelating the RSD of motion x(f) of each mirror of a perfectly tuned inter-ferometer to the resulting DFC root spectral density. The transfer functionfrom the GW RSD to DFC is mostly identical to that of an end mirror, asalready seen, apart from an extra cause of cuto�, due to the sinc(2�fL=c)factor, representing the averaging e�ect of propagation inside the cavity dur-ing a time comparable to the GW period. This is why the transfer functions



448 CHAPTER 9. MODULATION AND TRANSFER FUNCTIONSfrom the displacements RSD to an equivalent h(f) are not exactly constant(see Fig.9.4). We see that the transfer functions for the cavity mirrors arealmost identical, the end mirror's one being slightly larger. The splitter'sand the recycler's are much smaller (at least in the detection band). If fur-thermore we assume the laser locked in frequency to the recycling cavity, thelaser frequency is correlated with the recycler's motions (error signal is takena port 2). A simple approach assuming an in�nite gain in the servo loop isto adopt the transfer function��xR!h;1 = ��xR!DFC;1 � ��xR!DFC;2���L!DFC;2 ���L!DFC;1�h!DFC;1where the numerical indices refer to the corresponding port. The transferfunction ���L!DFC;p expresses the relation between the laser frequency noiseand the DFC on port p, and will be expressed in detail in a coming section.It follows that the recycler's position noise is almost cancelled (see Fig.9.4),at least in the detection band.The irreducible part of the position noise is caused by small motionsof the mirrors, essentially driven by excitation of all degrees of freedom ofthe various oscillators coupled to each. If we restrict ourselves to the mainfeatures, we can take into account the motion of the suspension (the mirrorsare suspended like pendulums) and the motion of the re
ecting face resultingfrom excitation of the internal modes. For the pendulum thermal noise, weadopt the following model ([32]) assuming that the dissipation occurs due toa �nite thermal conductivity in the wires :x(f)2 = 2kBT�!2wm
 1(
2 � !2p)2 + �2!4wwith the following de�nitions : kB is the Boltzmann constant, T the tem-perature, 
 = 2�f as usual. The loss angle �(f) is of the thermoelasticform �(f) = �0 + �
�1 + (
� )2with the Virgo parameters (case of an end mirror) (� = 3 10�3, � = 2:34 10�4s. The frequency corresponding to the elasticity of the steel wires (pendulumfrequency in zero gravity) is !w = 2� � 0:017 Hz. The resultant pendulumfrequency is !2p = gL + !2w.
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Figure 9.4: Transfer functions from �x(f) to h(f) for 4 types of mirrors,5%�nesse asymmetry



450 CHAPTER 9. MODULATION AND TRANSFER FUNCTIONSwhere l is the pendulum length. Obviously, the parameters must beslightly modi�ed according to the type of the considered mirror. For theinternal thermal noise, we take a very simple model (see [33],[34]) valid forthe low frequency tail : x2(f) = 4kBT�f U�MWhere U is proportional to the strain energy stored in the assumed cylindricalsubstrate when a static pressure is applied having the same pro�le as the lightpower 
ux (gaussian). It depends on the size of the blank and on the radiusof the light spot. This model does not take into account resonances, that arelikely at frequencies (several kHz) where only thin peaks will emerge fromthe shot noise. For instance, for the Virgo end or corner mirror, we �ndU = 7:32 10�11J:N�2. The loss angle �M can be as low as 10�6 for silicamirrors. Suspension wires have also a special thermal noise spectrum (violinmodes), but essentially concentrated on thin resonance lines non essential fordata analysis since a number of papers [38] have been devoted to removalfrom data of that kind of component. By taking for a given mirror the sum ofall these contributions, applying its transfer function, we get the equivalentGW amplitude hi(f) (i enumerates the mirrors).9.6.2 Quantum noiseThe shot noise RSD is a constant, and therefore, the transfer function fromshot noise to an equivalent hQN(f) is the inverted transfer function from h(f)to DFC (see Fig.9.5). �QN!h = �QN!DFC�h!DFCthen the h(f) equivalent to shot noise ishQN(f) = �QN!h � s2hP �LP09.6.3 Sensitivity curveThen the (incoherent) sum of all hi(f) thermal contributions gives a globalhTHN(f) equivalent to thermal noise. A new incoherent sum with the hQNgives an estimate of the sensitivity of the interferometer (see Fig.9.6), to be
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Figure 9.5: h(f) equivalent to quantum noisetaken into account, for instance when evaluating the e�ciency of matched�lters. This sensitivity curve is very well approximated by the �t function :h(f) = 0@4:5 10�43f + 9 10�37f5 + 3:24 10�46 241 +  f500 Hz!2351A1=29.7 Upstream noisesSome noises are caused by perturbations acting before entrance of light inthe interferometer. We consider here the three main sources of upstreamnoise, the laser itself and the modulator.9.7.1 Laser frequency noiseThe laser may be noisy in phase and in amplitude (in power). Let us considerthese two cases. The frequency noise will be described by a noisy optical
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Figure 9.6: h(f) equivalent to the global noise SD



9.7. UPSTREAM NOISES 453phase �(t) : 12� @�@t = �L + ��(t)Where �L is the averaged frequency, and ��(t) a centered stationnary randomprocess of RSD ��(f). We shall as usual consider a special Fourier componentof the frequency noise and write��(t) = ��(f) cos(2�ft)so that the phase is �(t) = !Lt+ ��(f)f sin(
t)We could have directly introduced a RSD of "laser phase noise" �(f), insteadof its equivalent ��(f)=f . After a �rst order expansion (in the frequencyregion of interest, ��(f) is very small compared even to small values of f),we get the laser output amplitude as the sum of a carrier plus two sidebands: A(t) = A0 "e�i!Lt + ��(f)2f e�i(!L+
)t � ��(f)2f e�i(!L�
)t#After passing the phase modulator, the amplitude becomesA0(t) = A0 e�i!Lt 24Xp2ZJp e�ip!t + ��(f)2f Xp2Z Jp e�i(p!+
)t � ��(f)2f Xp2Z Jp e�i(p!�
)t35each of these partial waves is transmitted by the interferometer accordingto their frequency. S being as above the A operator associated with thecomsidered port of the interferometer, the transfer coe�cients are :tp = S00(�L + p fm)tp+ = S11(�L + p fm; f)tp� = S22(�L + p fm; f) (9.45)The interferometer being static, the transmittance is the ordinary scalartransmittance. The purpose of the tp� notation is to avoid confusion with thet�p of the preceding section that have a di�erent meaning. The t�p express the



454 CHAPTER 9. MODULATION AND TRANSFER FUNCTIONSrate of creation of sidebands inside the interferometer, whereas the tp� ex-press the transmission by the interferometer of sidebands already generatedThe transmitted amplitude is now :B(t) = A0 e�i!Lt 24Xp2ZJp tp e�ip!t + ��(f)2f Xp2Z Jp tp+ e�i(p!+
)t � ��(f)2f Xp2Z Jp tp� e�i(p!�
)t35And the power reaching the photodiode :P (t) = P0 24 Xp;q2Z Jp Jq tp tq e�i(p�q)!t + ��(f)2f Xp;q2Z Jp Jq (tp+tq � tptq�)e�i[(p�q)!+
]t� ��(f)2f Xp;q2Z Jp Jq (tp�tq � tptq+)e�i[(p�q)!�
]t35Applying the demodulation/�ltering scheme already detailed above, we ob-tain the RSD of DFC as :DFC(f) = ���!DFC(f) ��(f)fwhere the complex transfer function is de�ned as in the precedent section(Eq.9.38) by ���!DFC (f) = 12[a+ei� � a�e�i�]where a� have the following de�nitions :a+ = P1p=�1 Jp Jp�1(tp+tp�1 � tptp�1�)a� = P1p=�1 Jp Jp�1(tptp�1+ � tp�tp�1) (9.46)Fig.9.7 shows the behavior of the transfer function in the case where someasymmetry in the arms (di�erent �nesses) makes the interferometer sensitiveto frequency noise9.7.2 Laser amplitude noiseAssume now 
uctuations of the laser power, such that the averaged power isP and the instantaneous power P (t) the sum of P plus a centered randomprocess of RSD �P (f) :P (t) = P0 + �P (f) sin(2�ft) (9.47)
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Figure 9.7: Transfer function for laser frequency noise with and withoutmode-cleaner



456 CHAPTER 9. MODULATION AND TRANSFER FUNCTIONSThe modulus of the amplitude is thusP (t)1=2 = A0 1 + �P (f)2P0 sin(
t)! (9.48)So that the complex amplitude can be written asA(t) = A0e�i!Lt  1 + i�P (f)4P0 e�i
t � i�P (f)4P0 ei
t! (9.49)The quantity �P (f)=2P0 plays here the role of a phase RSD. Then, a treat-ment similar to the preceding leads to the transfer functionDFC(f) = ��P!DFC(f) �P (f)2P0 (9.50)with ��P!DFC(f) = 12 [a+ei� � a�e�i�]where the a� have the following de�nitions :a+ = P1p=�1 Jp Jp�1(tp+tp�1 + tptp�1�)a� = P1p=�1 Jp Jp�1(tp�tp�1 + tptp�1+) (9.51)The coe�cients tp, tp� have the same de�nition as above (Eq.9.45). Fig.9.8show the transfer function in the case where some detuning of the cavitiesmakes the interferometer is sensitive to laser power noise. It uses an exper-imental spectral density of laser power noise measured on the Virgo laser,that can be �t by the following expression :�PP (f) = 3:1 10�6f1:5 + 1:82 10�9 + 8:18 10�17 f29.7.3 Modulator noiseIf the oscillator driving the phase modulator presents some frequency noise,some e�ects could be a priori expected on the interferometer noise. Thesee�ects should however be small, if the demodulation current comes from thesame oscillator. Roughly speaking, what matters are the di�erences between
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Figure 9.8: Transfer function for laser amplitude noise. 10�11m detuning ofthe black fringethe frequencies of the rf sidebands and that of the demodulator, and they areconstants unless some extra noise is fed into the demodulator. The modulatorhas the transmittance T (t) = e�i� sin�(t)where the phase �(t) obeys12� @�@t = fm + ��(f) sin(2�ft)so that �(t) = !t� ��(f)f cos
tand (Jp � Jp(�)) T (t) = e�i� sin!tei� ��(f)f cos!t cos
t



458 CHAPTER 9. MODULATION AND TRANSFER FUNCTIONS= Xp2ZJpe�i p!t + i��(f)2 cos 
t0@Xp2ZJp e�i (p+1)!t +Xp2ZJp e�i (p�1)!t1Awhere �(f) = ��(f)=f is the RSD of phase noise. Thanks to well knownproperties of the Bessel functions, we can write as well :T (t) = Xp2ZJpe�i p!t + i�(f)2 Xp2Z pJp e�i (p!+
)t + i�(f)2 Xp2ZpJp e�i (p!�
)tThe wave transmitted by the interferometer is thusB(t) = A0 24Xp2Z tp Jp e�i (!L+p!)t + i�(f)2 Xp2Z p tp+ Jp e�i (!L+p!+
)t +Xp2Zp tp� Jp e�i (!L+p!�
)t35with the same de�nition as above (Eq.9.45) for the tp; tp�. The demodulationcurrent must contain the frequency noise :D(t) = sin !t� ��(f)f cos
t+ �!After some straightforward algebra, we �nd for the RSD of DFCDFC(f) = �(f) � ��(f)fwith as customary �(f) = 12 [a+ei� � a�e�i�]and in this special case :a+ = Pp2Z JpJp�1 (ptp+tp�1 � (p� 1)tptp�1� � tptp�1)a� = � Pp2Z JpJp�1 (ptp�tp�1 � (p� 1)tptp�1+ � tptp�1) (9.52)The third term in each parenthesis represents the demodulator's noise. Theessential feature is that independently taken, the modulator and the demod-ulator noises have the same 1=f behavior at low frequencies, but in the aboveformula, assuming a perfect coherence of phase between the modulating andthe demodulating currents, they almost exactly cancel each other at lowfrequency. This is apparent on Fig.9.9. Anyway, even with large perturba-tions, the noise level remains negligible, well below the sentitivity curve (seeFig.9.10)..
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Figure 9.9: Transfer function for modulation frequency noise. 10�12m detun-ing of 1 cavity
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