
Optickle: Function Reference

M. Evans

December 5, 2007

Abstract

Optickle is a general model for the electro-opto-mechanical part
of an interferometric GW detector. It ventures into mechanics only
as far as is necessary to include radiation pressure effects, and into
electronics only far enough to produce demodulation signals, and into
optics only up to first order. There are many other tools that do
all these things in greater detail. Optickle is for quick, rough, but
essentially complete interferometer design studies.

1 Introduction

As discussed elsewhere (to be written), Optickle can, in principal,
simulate any interferometer. But to do so one must know how to
configure it, and how to run it. This document provides a list of
functions, ordered functionally for each class. All but two of these
are types of optics used in Optickle, the other two are the Optickle
class and the OpHG class. A brief description of what each function
does is also given, for a more complete description use the Matlab help
command.

2 The Optickle Class

An instance of the Optickle class represents a particular interferome-
ter configuration. To simulate a Fabry-Perot cavity, for example, you
start by creating an Optickle instance, which you then build into a
cavity by adding a source, mirrors, etc. Once built, an Optickle in-
stance contains the constituents of the system it represents. These are

1



the optics which make up the system, the links that tie them together,
and the probes which define how information is to be extracted from
the simulation. Some demonstrations of how this is be done can be
found in the function library discussed later in this document.

An optic is a general optical component (mirror, lens, etc.). Each
type of optic has a fixed number of inputs and outputs and a set of
parameters which characterize a given instance. The various types of
optics are:

• BeamSplitter - a beam-splitter

• GouyPhase - an abstract telescope

• Mirror - a general curved mirror

• Modulator - audio frequency phase and amplitude modulation

• RFModulator - radio frequency phase and amplitude modulation

• Telescope - a lense or set of lenses

• Sink - a field sink, used for detectors

• Source - a field source

These optics are connected to one another by links. Technically
speaking, a link is not a class, but rather a simple organizational
structure used within Optickle. The members of this structure are:

• sn = serial number of this link

• snSource, portSource = serial number and port number of source
optic

• snSink, portSink = serial number and port number of sink (des-
tination)

• len = the length of the link

Probes define the output of Optickle. They can simulate simple
intensity (a DC signal), or an RF demodulated signals. The output of
a probe is in Watts, so to convert it into a photodiode voltage factors
for the efficiency and transimpedance should be added by the user.
Like links, probes are data structures internal to the Optickle class.
The probes are characterized by:

• name, sn = name and serial number of this probe

• nField = index of the sampled field

• freq = demodulation frequency

• phase = demodulation phase offset (degrees)

2



2.1 Initializing a New Model

Creating a new Optickle model is easy. Like any other class, you need
only call the class constructor, which is a function with the class as
its name.

opt = Optickle(vFrf, lambda)
vFrf vector of RF component frequencies
lambda carrier wave length (default 1064 nm)
opt empty Optickle model

2.2 Adding Optics

After creating a shiny, new, empty, Optickle, you will need to fill it
with optics. For each of the various classes of optics there is a function
for adding it to your model. These functions work by returning a
model which is like the one you pass them as the first argument, except
for the added optic. The add functions also return the serial number
of the new optic, which you can use for future reference instead of the
optic’s name. This is fine if you are concerned about computational
efficiency, but I don’t recommend it as you will probably not notice
the speed difference and it may make your code slightly less readable.
The general function for adding an optic is

[opt, sn] = addOptic(opt, obj)
opt initial Optickle model (as argument)
obj the new optic
opt new Optickle model with optic (as return value)
sn serial number of the new optic

But you will likely never need to use this function, as there are add
functions for each type of optic. These are provided simply to shorten
the process of creating an optic and adding it to the model to a single
line. All add functions have the same first two arguments. Their
return values are as for addOptic.

[opt, sn] = addXXX(opt, name, ... optic specific arguments ...)
opt initial Optickle model (as argument)
name name of the new optic

Beyond the first two arguments, the format of the add functions
depends on the type of optic being added. Most of these arguments
are optional. The various types of optics are discussed below, each of
which has a constructor function with an argument list which matches
the add functions listed below (less the Optickle model as first argu-
ment).

3



[opt, sn] = addBeamSplitter(opt, name, aio, Chr, Thr, Lhr, Rar, Lmd, Nmd)
aio angle of incidence (in degrees)
Chr curvature of HR surface (Chr = 1 / radius of curvature)
Thr power transmission of HR surface
Lhr power loss on reflection from HR surface
Rar power reflection of AR surface
Nmd refractive index of medium (1.45 for fused silica, SiO2)
Lmd power loss in medium (one pass)

[opt, sn] = addGouyPhase(opt, name, phi)
phi Gouy phase (in radians)

[opt, sn] = addMirror(opt, name, aio, Chr, Thr, Lhr, Rar, Lmd, Nmd)
aio angle of incidence (in degrees)
Chr curvature of HR surface (Chr = 1 / radius of curvature)
Thr power transmission of HR surface
Lhr power loss on reflection from HR surface
Rar power reflection of AR surface
Nmd refractive index of medium (1.45 for fused silica, SiO2)
Lmd power loss in medium (one pass)

[opt, sn] = addModulator(opt, name, cMod)
cMod modulation coefficient (1 for amplitude, i for phase)

[opt, sn] = addRFmodulator(opt, name, fMod, aMod)
fMod modulation frequency
aMod modulation index (imaginary for phase, real for amplitude)

[opt, sn] = addSink(opt, name, loss)
loss power loss from input to output (default = 1)

[opt, sn] = addSource(opt, name, vArf, z0, z)
vArf amplitudes of each RF component
z0 Rayleigh Range is (waistsize)2 ∗ π/λ
z distance to waist (negative if beam is converging)

[opt, sn] = addTelescope(opt, name, f, df)
f focal length of first lens
df distances and focal lengths for lenses after the first

There are also two “compound” add functions, which are merely
common combinations of the above. As with other Optickle functions,
use the Matlab help command for a detailed description of what these
functions do. You should feel free to use the Matlab type command,
as they are quite simple and provide examples of how the other add
commands can be used.

4



opt = addReadout(opt, name, fphi, names)
fphi demod frequency and phase (Nx2)
names optional cell array of probe suffixes (instead of 1:N)

opt = addReadoutTelescope(opt, name, f, df, ts, ds, da, db)
f focal length of first lens
df distances and focal lengths for lenses after the first
ds distance from telescope to splitter
da distance from splitter to sink A
db distance from splitter to sink B

2.3 Adding Links and Probes

In addition to optics, an Optickle model is not complete without links
to connect the optics and probes to extract information. The add
functions for these are

[opt, snLink] = addLink(opt, from, out, to, in, len)
from serial number or name of the source optic (field origin)
out number or name of the output port (e.g., 1, ’fr’, etc.)
to serial number or name of the sink optic (field destination)
in number or name of the input port (e.g., 2, ’bk’, etc.)
len length of the link

[opt, snProbe] = addProbeIn(opt, name, to, in, freq, phase)
name name of the new probe
to serial number or name of the sink optic
in number or name of the input port
freq demodulation frequency
phase demodulation phase (in degrees)

[opt, snProbe] = addProbeOut(opt, name, from, out, freq, phase)
name name of the new probe
from serial number or name of the source optic
out number or name of the output port
freq demodulation frequency
phase demodulation phase (in degrees)

The last of these is technically problematic and should be avoided,
as it can always be replaced by addProbeIn, but sometimes it is con-
venient (see help addProbeOut for more information).

2.4 Model Modification: set Functions

There are some functions which allow you to modify optics after their
addition to a model. The boundary between these functions and pa-
rameters to the add functions is not well defined, but the general idea

5



is that these allow you to modify an existing model rather than create
a new one (not that they cost much). Since these functions modify a
model, they all share the same first argument (the model to modify)
and they all return the modified model.

opt = setCavityBasis(opt, name1, name2)
name1, name2 names of Mirros that make a simple Fabry-Perot cavity

opt = setGouyPhase(opt, name, phi)
name name of the GouyPhase optic
phi new phase value (in radians)

opt = setLinkLength(opt, snLink, len)
snLink serial number of a link
len new length of this link

opt = setMechTF(opt, name, mechTF, nDOF)
name name of the optic
mechTF mechanical transfer function (see LTIMODELS)
nDOF 1 for position (default), 2 for pitch

opt = setMinQuant(opt, minQuant)
minQuant minimum loss used for evaluating quantum noise

2.5 Information Retrieval: get Functions

Many functions help to get information about an Optickle model.
Much of this information is just what we put in when constructing
the model, and some of it has to do with the way Optickle arranges
its components internally. Since these functions interrogate a model,
they all share the same first argument.

vBasis = getAllFieldBases(opt)
vBasis a Nfldx2 matrix of complex numbers (see also @OpHG/apply)

n = getDriveIndex(opt, name, driveType)
name name of the optic
driveType name of the drive (e.g., ’pos’ or ’amp’) (optional)
n index of this drive (e.g., in sigAC returned from tickle)

strList = getDriveNames(opt)
strList cell array of drive names for display, OpticName.DriveName

6



n = getFieldIn(opt, name, inName)
name name of the optic
inName name of an input to the optic
n index of input field (e.g., in fDC returned from tickle)

n = getFieldOut(opt, name, outName)
name name of the optic
outName name of an output from the optic
n index of output field

n = getFieldProbed(opt, name)
name name of the probe
n index of probed field

str = getInputName(opt, name, inNum)
name name of the optic
inNum input index
str display name for this input

vDist = getLinkLengths(opt)
vDist lengths of each link (used with library function getGouyPhase)

n = getLinkNum(opt, nameSource, nameSink)
nameSource name of source optic (link start)
nameSink name of sink optic (link end)
n array of link serial numbers

obj = getOptic(opt, name)
name name of the optic
obj copy of the optic with this name

name = getOpticName(opt, sn)
sn number of the optic (or vector, or cell array, or nothing)
name name of the optic (or cell array of names)

par = getOptParam(opt)
par a structure of data about this Optickle model

str = getOutputName(opt, name, outNum)
name name of the optic
inNum output index
str display name for this output

7



name = getProbeName(opt, snPrb)
snPrb number of the probe (or vector, or cell array, or nothing)
name name of the probe (or cell array of names)

n = getProbeNum(opt, name)
name name of the probe
n index of probed (e.g., in sigDC returned from tickle)

phase = getProbePhase(opt, snPrb)
snPrb number or name of probe (or vector, or cell array, or nothing)
phase phase of probe (or vector of phases)

sn = getSerialNum(opt, name)
name name of the optic
sn serial number of the optic

[str, sn, port] = getSinkName(opt, snLink)
snLink serial number of a link
str display name of the sink (see getInputName)
sn serial number of sink optic
port port number of sink

[name, sn, port] = getSourceName(opt, snLink)
snLink serial number of a link
str display name of the source (see getOutputName)
sn serial number of source optic
port port number of source

[vFrf, vSrc] = getSourceInfo(opt)
vFrf source frequency vector (Nrf x 1)
vSrc source amplitude vector (Nfld x 1) (Nrf x 1)

2.6 Setting the Working Point

The optics in Optickle have two kinds of inputs: fields and drives.
Fields, or beams, originate with Source optics and are routed from
one optic to the next with the previously mentioned links. Other
excitations to the system arrive in the form of a drive to an optic. A
mirror, for instance, has a single drive, namely its location, while an
RF modulator has two drives, amplitude and phase of the oscillator.
Sources and sinks, on the other hand, have no drives.

The static value of a drive is called its “position”, which makes
sense for mirrors, but is a bit of a stretch for modulators. The following
are functions which allow you to manipulate the positions of the optics.

8



opt = addDriveOffset(opt, nDrv, pos)
nDrv drive index
pos addition to zero position for this drive (see setDriveOffset)

opt = addPosOffset(opt, name, pos)
name name or serial number of optic
pos addition to zero position for this optic (see setPosOffset)

opt = setDriveOffset(opt, nDrv, pos)
pos = getDriveOffset(opt, nDrv)
nDrv drive index (or indices)
pos zero position for this drive (or drives)

opt = setPosOffset(opt, name, pos)
pos = getPosOffset(opt, name)
name name or serial number of optic
pos zero position for this optic

[opt, pos] = setOperatingPoint(opt, mDrive, mSense, vOffset)
[opt, pos] = setOperatingPoint(opt, mDrive, nameErrFunc)
mDrive drive matrix
mSens sensing matrix
vOffset offset vector (vErr = mSense× sigDC − vOffset)
nameErrFunc name of error function

The last of these, setOperatingPoint, is a simple solver that at-
tempts to zero a set of error signals by moving some optics (i.e., to
“lock” the interferometer). Usually locking is not necessary as er-
ror signals tend to be zero when cavities are on resonance, but when
working with detuned cavities locking may be necessary (see help se-
tOperatingPoint for details).

2.7 Response Evaluation

One the model is build and configured, you will probably want to
compute something with it. The number of functions devoted to doing
the real work is relatively small, but what happens inside is somewhat
more complicated (type them at your own risk). The mathematics of
these functions is discussed in the document ”Optickle inner workings”
(T070260).

sCon = convertSimulink(opt, sys, f)
sys name of Simulink system
f vector of evaluation frequencies
sCon control structure to be used with tickle or tickle01

9



[fDC, sigDC] = sweep(opt, pos)
pos optic positions (Ndrive x Npos)
fDC DC fields at each position (Nlink x Nrf x Npos)
sigDC DC signals for each probe (Nprobe x Npos)

[pos, sigDC, fDC] = sweepLinear(opt, posStart, posEnd, Npos)
posStart sweep start positions (Ndrive x 1)
posEnd sweep end positions (Ndrive x 1)
Npos sweep points (including posStart and posEnd)
sigDC DC signals for each probe (Nprobe x Npos)
fDC DC fields at each position (Nlink x Nrf x Npos)

[fDC, sigDC, sigAC, mMech, noiseAC, noiseMech] = tickle(opt, pos, f)
[fDC, sigDC, sOpt, noiseOut] = tickle(opt, pos, sCon)
pos optic positions (Ndrive x 1 or empty for zeros)
f vector of evaluation frequencies (empty for DC only)
sCon control structure from convertSimulink
fDC DC fields (Nlink x Nrf)
sigDC DC signals for each probe (Nprobe x 1)
sigAC transfer matrix (Nprobe x Ndrive x Naf)
mMech modified drive transfer functions (Ndrv x Ndrv x Naf)
noiseAC quantum noise at each probe (Nprobe x Naf)
noiseMech quantum noise at each drive (Ndrv x Naf)
sOpt response structure
noiseOut quantum noise at each Simulink output

[sigAC, mMech] = tickle01(opt, pos, f)
sOpt = tickle01(opt, pos, sCon)
pos optic positions (Ndrive x 1 or empty for zeros)
f vector of evaluation frequencies (empty for DC only)
sCon control structure from convertSimulink
sigAC TEM01 transfer matrix (Nprobe x Ndrive x Naf)
mMech modified pitch drive transfer functions (Ndrv x Ndrv x Naf)
sOpt response structure

2.8 Internal Data

The members of the Optickle class are:

10



optic a cell array of optics
Noptic number of optics
Ndrive number of drives
link an array of links
Nlink number of links
probe an array of probes
Nprobe number of probes
lambda carrier wave length
vFrf RF components
h Plank constant
c speed of light
k carrier wave-number
minQuant minimum loss considered for quantum noise
debug debugging level (not widely used)

Of these, only some can be reference directly. They are: Noptic,
Ndrive, Nlink, Nprobe, lambda, k, c, h, and debug. For others, use
get functions (see previous section). 1 If an access function does not
exist for something you need, cheat and access it directly. This should
produce a warning message, which will serve as your reminder either
to create an access function to do what you need and send it to me, or
to ask me to create an access function and send it to you. Typically
these things are quick and easy to make.

3 Optics

This section has a list of types of optics, ordered alphabetically. The
general purpose of each type is given, and any special functions related
to the type of optic are listed. For more information use the Matlab
help function, followed by the name of the class (e.g., help Mirror).
At the end of the section, functions common to all types of optics are
listed for reference, though casual Optickle users are not expected to
need to know about them

1The reason for this is to protect Optickle users from developers who like to change
the internal structures of things. The access functions define an interface that developers
can try to maintain, even if the internals change.

11



3.1 BeamSplitter

The beam-splitter class is really a special type of mirror (see Mirror
class). The thing that makes it special is that it has 4 input beams
and 8 output beams (4 primary outputs, and 4 pick-off outputs). De-
spite the name, beam-splitters should not be used to split an input
beam into two output beams, as a normal mirror can do this without
problems. In fact, beam-splitters are only useful when you need to
simulation a mirror at non-normal incidence with beams entering and
exiting along the same paths (e.g., the beam-splitter in a Michelson
interferometer).

In many respects, a BeamSplitter object is like two Mirror object
which share the same position and the same optical parameters (see
Mirror, again). In terms of inputs and outputs, if call these two virtual
mirrors A and B, then the I/O names for a beam-splitter are the same
as those for these two mirrors (e.g., fr and bk) with A and B appended:
frA, bkA, frB and bkB.

[FIGURE OF BEAMSPLITTER]

3.2 GouyPhase

The GouyPhase object is an abstraction of an optical telescope (see
Telescope class) which simplifies the process of building an angular
sensing system. The abstraction used is to ignore the lenses and dis-
tances that would actually be used to change the Gouy phase of a
TEM01 mode, and simply add the desired phase. This can save time
in the initial stages of interferometer design when the details of the
optical chain are not critical.

This object has two special functions associated with it. They are
used to interact with its unusual (and unphysical) ability to change
TEM01 phase.

getPhase return the phase added to the TEM01 mode by this optic
(in radians)

setPhase assign the phase added to the TEM01 mode by this optic
(in radians)

3.3 Mirror

Mirrors are the bread and butter of optics. A Mirror object in Optickle
has two input beams and 4 output beams (2 primary and 2 pick-off).

12



[FIGURE OF MIRROR]
Mirrors can be used for everything from core interferometer optics

to simple 1-inch steering mirrors. The optical parameters used to
describe a Mirror are

aio angle of incidence (in degrees)

Chr curvature of HR surface (Chr = 1 / radius of curvature)

Thr power transmission of HR suface

Lhr power loss on reflection from HR surface

Rar power reflection of AR surface

Nmd refractive index of medium (1.45 for fused silica, SiO2)

Lmd power loss in medium (one pass)

3.4 Modulator

Modulators are used to make audio frequency modulation. Often, this
means phase and amplitude noise. The only argument cMod is the
modulation coefficient. To made a phase modulator which produces
with one radian of phase per unit of drive, set cMod = i. For an
amplitude modulator dAmp

drive = Amp× cMod, with cMod real.

3.5 RFmodulator

An RFmodulator is used to produce optical frequency components of
different frequencies. Physically, this object is the same as modula-
tor, but computationally they are quite different as an RF modulator
results in RF sidebands while an audio modulator makes audio side-
bands. RF modulators have 2 drives, “amp” for oscillator amplitude
noise and “phase” for oscillator phase noise.

vMod modulation frequencies and amplitudes, Nmod x 2

Nmod number of RF modulation frequencies

3.6 Sink

A Sink is a beam dump or attenuator. Sinks are often used in the
place of a physical detector, but they can also be used as attenuators
by setting the loss parameter to something less than 1.

13



3.7 Source

A Source produces the carrier field which excites the optical system
(i.e., PSL, laser, fiber, etc.) Sources have no inputs and no drives.

vArf amplitudes of the RF field components in the model

z0 Rayleigh Range is (waistsize)2 ∗ π/λ (optional)

z distance to waist (negative if beam is converging) (optional)

3.8 Telescope

Telescopes are used for changing the beam size to match cavities, or to
add Gouy phase for readout. A telescope is made up of N + 1 lenses
with N distances between them.

The audio phase accumulated while propagating through a tele-
scope is NOT included. Typically this phase is very small (e.g., for
a 1 meter telescope, a 300Hz audio SB should gain 1e-6 radians of
phase). In special cases where the audio phase is of interest, break
the telescope into individual lenses and link them together with links
of the correct distances.

f focal length of first lens

df distances from previous lens and lens focal length for lenses after
the first

3.9 Optic Internals: Optical Properties

These functions are common to all optics, though each optic defines
them differently. They represent each optic’s input to output relations,
and thus determine how the optics behave in the system.

getBasisMatrix basis transformation matrices (see OpHG)

getDriveMatrix drives and input fields are combined to make out-
put audio sidebands

getDriveMatrix01 as getDriveMatrix, but the outputs are TEM01

getFieldMatrix input field to output field matrix

getFieldMatrix01 input field to output field matrix for a TEM01
field

14



getNoiseMatrix quantum noise inputs for this optic, as seen at its
outputs

getReactMatrix input field to force matrix

getReactMatrix01 as getDriveMatrix, but the outputs are torques

3.10 Optic Internals: Matlab Mechanics

I’ll only list these here, as they are the same for each class and of little
interest.

display display information about an instance

get get member data

set set member data

subsasgn handle indexed assignment (set)

subsref handle indexed retrieval (get)

15


