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Abstract

Optickle is a general model for the electro-opto-mechanical part
of an interferometric GW detector. It ventures into mechanics only
as far as is necessary to include radiation pressure effects, and into
electronics only far enough to produce demodulation signals, and into
optics only up to first order. There are many other tools that do
all these things in greater detail. Optickle is for quick, rough, but
essentially complete interferometer design studies.

1 Introduction

As discussed in previous sections (to be written), Optickle can, in
principal, simulate any interferometer. Once the construction of an
Optickle model is finished, all the optics, links and probes added and
happily in place, nothing useful has yet been done. At some point the
information represented by the Optickle model must be converted into
field amplitudes, and transfer functions. This document will discuss
the theory and implementations of the functions which perform this
conversion.

2 Example System

In the following sections, I will make frequent attempts to clarify by
reference to the example optical system presented in this section. The
example is a Fabry-Perot cavity, composed of two mirrors a source
(the laser) and a sink (the photo-detector, see figure 1).
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Figure 1: The example system: a Fabry-Perot cavity.

The source is responsible for illuminating the system. Let’s assume
that it generates a carrier and 2 RF sidebands from RF phase modu-
lation approximated to first order. Thus, the frequencies of the field
components, relative to the carrier field, are ~vfRF

= [−fmod, 0, fmod],
where fmod is the RF modulation frequency.

The field produced by the source propagates via Link 1 to the back
input of Mirror A. At the end of each link is a ”field evaluation point”,
or FEP. FEPs are represented by light red balls in figure 1, and are
labeled E1, E2, etc. The field at E1, for example, is clearly just the
source field multiplied by the propagation phase determined by the
length of Link 1.

The field computation can be described in two parts: static (DC)
fields, and audio frequency (AF) fields. The DC fields are present in
the optical system when none of the optics are driven. The AF fields
are the fields generated by driving the optics. The following sections
describe these computations in detail.

3 DC Fields

The collection of DC fields is relatively small: one for each RF field
component, at each field evaluation point (FEP). That is, Nfield =
NRF Nlink, where NRF is the number of RF components and Nlink the
number of links, such that for our example system NRF = 3, Nlink =
4 ⇒ Nfield = 12. Despite this not being a very big number, it is
enough to make matrices unwieldy and complicated, so for the next
few paragraphs I’ll use ~vfRF

= [fmod]. To compute the DC fields in
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the optical system Optickle assumes the steady state equation

~vDC = MDC~vDC + ~vsource (1)

where MDC is the optical propagation matrix between FEPs, ~vDC is
the vector of fields at each FEP, and ~vsource is the vector of injected
fields (e.g., from the source in figure 1). Solving for ~vDC

~vDC = (I−MDC)−1~vsource (2)

where I is the identity matrix. The sources are given, so ~vsource is
known and the computation boils down to computing the inverse of
I −MDC . The propagation matrix is built from the optics and links
in the optical system. For example, the matrix element which takes
E4 to E3 is determined by the reflectivity of Mirror A and the length
of Link 3. Thus, this element1 of MDC is

MDC(3, 4) = −rAei2π fmod l3/c. (3)

More generally speaking, MDC is the sum of all of the input to
output transfer matrices of all optics, multiplied by the phase induced
by the links,

MDC = MφMopt (4)

with

Mopt =
Noptic∑

n=1

MoutnMoptnMinn . (5)

As shown in the above equation, the contribution of a given optic to
the overall transfer matrix is made up of three parts, a matrix which
maps FEPs onto the inputs of the optic, the optic’s own transfer
matrix, and a matrix which maps the optic’s outputs back to FEPs.

Taking Mirror A again from our example system (figure 1), and
noting that its index is 3, its front input is from FEP 4 and its back
input from FEP 1, the corresponding input matrix is

Min3 =
[[

0 0 0 1
1 0 0 0

]]
.

1The indexing used in this document will reflect what is used in the Optickle code.
Indices will start at 1, and the colon operator indicates a series of integers (both standard
in Matlab).
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The output matrix, sending the field from the front of Mirror A to
FEP 3 and from the back to FEP 2 is

Mout3 =







0 0
0 1
1 0
0 0





 .

Finally, assuming that Mirror A has an amplitude transmission coeffi-
cient of tA and an amplitude reflectivity of rA (which may be complex),

Mopt3 =
[[ −rA tA

tA rA

]]
.

The sum is used in equation 5 to combine the matrices of all optics,
though it is expected that no element will contain contributions from
more than one optic. That is, the transfer from one FEP to another
happens only through the optic that connects them, which Optickle
forces to be unique during construction.

Returning to the full set of RF components in our example system
~vfRF

= [−fmod, 0, fmod], the matrices for Mirror A are duplicated in
block diagonal form with one block for each RF component, becoming

Min3 =







0 0 0 1
1 0 0 0

0 0 0 1
1 0 0 0

0 0 0 1
1 0 0 0







,

Mout3 =







0 0
0 1
1 0
0 0

0 0
0 1
1 0
0 0

0 0
0 1
1 0
0 0







,
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Mopt3 =







−rA tA
tA rA

−rA tA
tA rA

−rA tA
tA rA







.

Note that the input and output transformations do not change the RF
frequency of a field component, and in the case of a mirror, nor does
the optic. However, some optics can convert one RF component to
another (e.g., an RF modulator), and this will cause non-zero matrix
elements appear in the normally empty off-diagonal areas of the optic’s
transfer matrix.

Lastly, the propagation phase associated with moving from the
input of a link to its output appears in the diagonal matrix

Mφ(k, k) = ei ~vfRF
(m) ~vlength(n) (6)

with n ∈ 1 : Nlink, m ∈ 1 : NRF and k = n + Nlink(m− 1).

~vlength(n) = 2π ln/c (7)

At this point we have constructed MDC from the parameters of
the Optickle model, so we need only put it into equation 2 to find the
DC field vector ~vDC . The result is then used as the seed for computing
the response of the system to excitation of one of the optic’s internal
degrees of freedom, discussed in the following section.

4 AC Fields

The computation of AC fields is similar to that of DC fields, except
that the optics now play a more active role. Moving Mirror A at
100Hz, for example, generates 2 audio frequency sidebands on each
RF field component of the reflected fields (from E1 into Link 2 and
from E4 to Link 3). AF sidebands, in turn, beat against static fields
to produce forces on optics and signals on sensors.

In the AC case, the number of degrees of freedom to be considered
more than doubles relative to the DC computation, and the matrices
are no longer relationships just between fields, but are generalized
to include the optics in the system. The AC equation analogous to
equation 2 is

~vAC = (I−MAC)−1~vexcitation (8)
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where a given excitation vector produces a vector of audio sideband
fields. A further transformation, determined by the probes place in
the system, converts fields to signals

~vsignal = Mprb(I−MAC)−1~vexcitation (9)

The transfer matrix, from normalized excitations to signals, is thus
just the core of the above equation,

MTF = Mprb(I−MAC)−1. (10)

This matrix is one of the primary results produced by the Optickle
compute function.

In Optickle the audio frequency transfer matrix, MAC , is con-
structed in blocks

MAC =
[[

Mfield−field Moptic−field

Mfield−optic 0

]]
. (11)

where Mfield−field is a matrix similar to MDC which represents trans-
fers among fields, though in this case they are AF sideband fields.
The Moptic−optic matrix is missing as the optics’ degrees of freedom
are assumed to be decoupled. As the names indicate, Moptic−field and
Mfield−optic represent the relationships between the optics’ degrees
of freedom and the AF sideband fields. The following sections will
describe the construction of each of these matrices in detail.

4.1 Field to Optic Transfer Matrix

This matrix is actually the product of the field-to-force matrix, and
the force-to-degree of freedom matrix, where “degree of freedom” most
often means “position”.

Mfield−optic = MrctMfield−force (12)

To compute the force available for generating mechanical motion,
we start with the force exerted on a perfect absorber

F0 = (E∗
DCE− + EDCE∗

+)e−i2πfAF t/c, (13)

where the audio frequency phase rotation part has been factored out
of the audio sideband amplitudes, E− and E+, and the DC and AF
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fields are both associated with the same RF component. A not nor-
mally noteworthy feature of equation 13 is that the upper audio side-
band appears conjugated. This has implications for the matrix world
of Optickle, since matrices do not usually contain conjugation opera-
tors. To side-step this problem, the conjugate of the upper sideband
is propagated throughout the system with appropriately conjugated
operators.

The reaction matrix Mrct is typically the mechanical response of
the optics to radiation pressure induced force, summed over all optics
in the system,

Mrct =
Noptic∑

n=1

MDOFnMrctnMinn (14)

where MDOFn is the matrix which maps the internal degrees of free-
dom of the nth optic onto the system wide degrees of freedom. Mfield−force

comes directly from equation 13,

Mfield−force =
[[

diag(~vDC)∗ diag(~vDC)
]]

/c (15)

were “diag” is Matlab notation for “a square matrix with this vector
along the diagonal.”

Expanding our discussion to TEM01 and 10 modes would lead us
to consider the field-to-torque and torque-to-angle matrices, but we
can save that for later.

4.2 Field to Field Transfer Matrix

This part of is almost identical to MDC , the major differences being
that for each RF component 2 AF sidebands must be computed, and
that the propagation phase associated with the links must account for
the sum of the RF and AF phases. Restating,

Mfield−field =
[[

Mφ−Mopt 0
0 M∗

φ+
M∗

opt

]]
(16)

where in this case the link phase is

Mφ±(k, k) = ei (~vfRF
(m)±fAF ) ~vlength(n) (17)

which is the same as equation 6, with the addition of the audio fre-
quency component. The conjugation of the upper sideband component
is a result of equation 13, as mentioned earlier.
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4.3 Optic to Field Transfer Matrix

The optic to field matrix, much like the field to field matrix, must
result in both upper and lower audio sidebands at FEPs, so it is con-
structed as

Moptic−field =
[[

Mφ−Mgen

M∗
φ+

M∗
gen

]]
(18)

The matrix Mgen is composed of an optic specified matrix and DC
fields. The DC fields are present as source fields which the optics
modulate to produce audio SBs,

Mgen(:, kn,m) = Mdrvn,m~vDC (19)

where Mdrvn,m is the modulation produced by driving optic n, degree
of freedom m. The indices are n ∈ 1 : Noptic, m ∈ 1 : Ndofn , and kn,m

is the map of system degrees of freedom to optics internal degrees of
freedom. kn,m is related to MDOFn from equation 14 by

MDOFn(kn,m,m) = 1 (20)

with all other elements of MDOFn = 0. This mapping is a bit ugly,
but it can only be avoided by using higher dimensional tensors, which
seem even less appealing.

The drive matrix Mdrvn,m can be written in terms of Moptn

Mdrvn,m = Moutn

1
2

∂Moptn

∂xn,m
Minn (21)

where xn,m the mth degree of freedom of the nth optic. The usual
input and output transforms are in place to map the source fields in
and the generated audio-sidebands out. After the output mapping,
Mφ appears in equation 18 to carry the audio-sidebands from the
output of the optics where they are generated, which are inputs of the
associated links, to the FEPs at the outputs of the links.

5 Signal Production

Converting DC and audio frequency fields to signals is the job of
probes place in the system. Probe signals result from power measured
by the probe and is thus similar to the radiation pressure interaction
described in Mfield−optic. The major difference is that probes can de-
modulate signals at RF frequencies, thereby mixing RF components.
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As with fields, there are two computations to perform: DC and AC.
DC signals are the signals present given only the DC fields present, and
are thus related to the current working point of the Optickle system.
AC signals, on the other hand, are products between DC and audio
frequency fields: they tell us about the response of the system around
the current working point as seen in equation 9.

5.1 DC Signals

To compute the DC signals, we start with an expression for the inten-
sity present at a given FEP,

I =
NRF∑

m=1

NRF∑

n=1

E∗
DCn

EDCmei2π(~vfRF
(m)−~vfRF

(n))t (22)

where EDCn is the field amplitude of the nth RF component, with
the RF phase rotation factored out (much like equation 13 for field
induced forces).

Requiring that the output be at the demodulation frequency fdemod,
such that the integral

SDC =
∫ ∞

−∞
I cos(2πfdemodt + φdemod) dt (23)

is non-zero removes most of the terms in the sum by introducing a
delta function

SDC =
NRF∑

m=1

NRF∑

n=1

E∗
DCn

EDCmδn,m (24)

where

δn,m = δ(~vfRF
(m)− ~vfRF

(n) + fdemod) eiφdemod +

δ(~vfRF
(m)− ~vfRF

(n)− fdemod) e−iφdemod .

Translating this into the language of matrix manipulation, the DC
signal from the kth probe is

~vsigDC (k) = (Mprbk
Mpink

~v∗DC)T Mpink
~vDC , (25)

where the probe’s matrix expresses the delta function in equation 24
as the matrix

Mprbk
(m,n) = δn,m, (26)

and Mpink
is the input map for the probe.
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5.2 AC Signals

AC signal computation follows a very similar path. The audio fre-
quency signal present at a given FEP is

SAC =
NRF∑

m=1

NRF∑

n=1

(E∗
DCn

E−mδn,m + EDCnE∗
+m

δm,n). (27)

The overall probe matrix is constructed from the individuals row at a
time according to

Mprb(k, :) =
[[

Mprbk
Mpink

~v∗DC

MT
prbk

Mpink
~vDC

]]T [[
Mpink

Mpink

]]
, (28)

where k ∈ 1 : Nprobe. Note that the probe matrix Mprbk
for the upper

audio sideband is the transpose of that for the lower sideband, as m
and n are exchanged for the upper sideband in equation 27. It may
seem odd that the input map is used so may times: two instances are
for the DC fields in ~vDC and ~v∗DC , other two bring in the correct the
upper and lower audio frequency fields from ~vAC which is expected to
arrive on the right (see equations 8 and 9).

6 Quantum Noise

This section is still under construction!
Computed by injecting AF SB at each loss point, unconnected

port, and source. This is implemented, but not yet documented.

7 Angular Transfer Functions

This section is still under construction!
Optickle can compute transfer functions for the TEM01 mode pro-

duced, for example, by pitch of a mirror. This is done in almost com-
plete analogy with the TEM00 computations described in the previous
sections. The exceptions are the Gouy phase, and the dependence of
audio sideband injection amplitude on the Hermite-Gaussian beam
parameters.

Examples: mirror onto diode 1m away, FP in cavity and on trans-
mission with Gouy telescope, etc.
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8 Parting Example

This section is still under construction!
A quick example of how to run the compute function and how to

interpret its results would be good.
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