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We present a mathematical framework for simulation of optical fields in complex gravitational-wave inter-
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interferometers with high circulating power. We present a comparison of results from the simulation with
analytical calculation and show that accurate agreement is achieved.
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I. INTRODUCTION

Next-generation gravitational-wave �GW� interferom-
eters, such as those planned for Advanced LIGO �Laser In-
terferometer Gravitational-wave Observatory� �1�, are de-
signed to have a 15-fold improvement in sensitivity over
present-day detectors �2�. Among the techniques planned to
achieve this improved sensitivity is an increase in the input
laser power. The higher laser power reduces the shot noise
limit at frequencies above �100 Hz, as intended, but has the
deleterious effect of increasing the radiation-pressure noise
at lower frequencies. Consequently, advanced detector sensi-
tivity at almost all frequencies in the detection band is ex-
pected to be limited by quantum noise. Qualitatively speak-
ing, shot noise and radiation-pressure noise correspond to
measurement noise and back action noise in quantum mea-
surement theory—together they often impose the standard
quantum limit �SQL� to measurement accuracy �3�. A correct
modeling of the quantum noise of a GW interferometer
should take into account correlations between the two types
of noises, which may allow sub-SQL sensitivities to be
achieved �3–5�.

The need for optical field simulation for gravitational-
wave interferometer design has been addressed in the past
with a variety of simulation tools, both in the frequency do-
main �e.g., twiddle �6� and finesse �7�� and in the time do-
main �e.g., the LIGO end-to-end simulation program �8��.
Although time-domain simulations can study issues associ-
ated with large mirror displacements and nonlinear effects,
e.g., the lock acquisition of the interferometer, they are com-
putationally costly; in addition, full time-domain simulations
are also less straightforward to quantize. In order to study the
performance of gravitational-wave detectors, it suffices to
stay in the linear regime near the operation point. For such a
linear problem, frequency-domain simulations are dramati-
cally simpler than time-domain ones; it is straightforward to
obtain frequency-domain transfer functions, and therefore
noise spectra. In addition, since the system is linear, the
propagation of quantum Heisenberg operators are identical to
those of classical field amplitudes, therefore it suffices to
build an essentially classical propagator.

In low-power situations where radiation-pressure-induced
mirror motion is negligible and no nonlinear optical elements
�e.g., squeezers� are used, when linearizing over mirror dis-
placements, propagation of electromagnetic fields at different
frequencies are independent, and therefore the transfer func-
tions can be established for each different frequency sepa-
rately. One only needs to take into account that, for the in-
puts to this linear system: �i� mirror motion �with frequency
�� creates phase modulation of the carrier, which is equiva-
lent to generating two equally spaced sidebands on the car-
rier frequency �at �±�, where � is the carrier frequency and
we denote �+� and �−� as the upper and lower sidebands,
respectively� with opposite amplitudes, and that �ii� laser
noise can usually be decomposed into amplitude noise and
phase noise, with the former contributing equally to the up-
per and lower sidebands, and the latter oppositely. These
considerations have been the conceptual foundations of pre-
vious frequency-domain simulation programs.

For high-power interferometers, the above strategy will
have to be modified: The radiation-pressure forces acting on
the mirrors, at frequency �, depend on both upper and lower
sideband fields; the induced mirror motion will again con-
tribute to both sidebands—this makes it necessary to propa-
gate pairs of upper and lower sidebands simultaneously. The
mathematical formalism most convenient for this problem, at
least in the case of only one carrier frequency, is the Caves-
Schumaker two-photon formalism �9,10�. In this paper, we
adopt this formalism and present a mathematical framework
for calculating the propagation of fields in an arbitrary opti-
cal system that includes the dynamical response of the mir-
rors to the light field. Namely, we divide complex interfer-
ometers into interconnected elementary subsystems, and
provide a general procedure for building a set of linear equa-
tions for all optical fields propagating between these
systems—based on each individual system’s input-output re-
lation, i.e., transformation matrices relating output fields to
input ones and the incoming GW. We also describe the way
in which these subsystems are connected to each other. Solv-
ing these equations will provide us with the optical fields, in
terms of vacuum fluctuations entering the system from open
ports, laser noise, and incoming GWs. While this mathemati-
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cal framework, and the resulting numerical simulation tool,
were developed to model quantum correlation effects in
gravitational-wave interferometers, the method is general
and can be used in any system where optical fields couple to
mechanical oscillation modes.

The paper is organized as follows: In Sec. II we introduce
the mathematical framework for the simulation, and illustrate
it with a simple example; in Sec. III we provide input-output
relations of basic optical elements that may be present in a
laser interferometer, ignoring radiation-pressure effects and
the presence of gravitational waves—by reformatting well-
known results in optics; in Sec. IV, we take radiation-
pressure-induced mirror motion into account, and provide
input-output relations for movable mirrors and beamsplitters
�up to linear order in mirror motion�, which have not been
obtained before in the most general form; in Sec. V, we take
into account the presence of GWs by introducing modulation
of cavity lengths, and treat the corresponding effect on light
propagation up to linear order in L /�GW �with L the length of
the interferometer�. In Sec. VI the formulation is applied to
an interferometer designed to extract squeezed vacuum states
that are created by a strong optomechanical coupling; and,
finally, conclusions are summarized in Sec. VII.

II. MATHEMATICAL FRAMEWORK

A. General prescription

As mentioned above, the presence of optomechanical cou-
pling dictates that we propagate the upper and lower side-
bands simultaneously, which means that for each frequency
�, we will have to work with the two-dimensional linear
space spanned by the upper �a��+��� and lower �a��
−��� sidebands.1 Within the two-photon formalism, devel-
oped by Schumaker and Caves �9,10�, and outlined in the
Appendix below, instead of a��±��, the two quadrature
fields a1,2��� are chosen as the basis vectors. For simplicity
of notation, we generally denote

a � �a1

a2
� �1�

and suppress the dependence of a on �.
We consider optomechanical systems formed by the fol-

lowing elementary subsystems: movable mirrors, beamsplit-
ters, and free space propagators. We will also include a “lin-
ear squeezer,” which turns an ordinary vacuum state into a
two-mode squeezed field with arbitrary squeeze factor and
squeeze angle. Auxiliary to these optical elements, we intro-
duce the beam block and the photodetector to deal with open
ports which are either left undetected or detected with unit
quantum efficiency; we also introduce the laser as an optical
element, which injects monochromatic carrier light and laser
noise into the interferometer. Quadrature optical fields un-

dergo linear transformations when propagating through such
elementary systems, and quadrature fields with different �’s
propagate independently from each other. These linear trans-
formations are described mathematically by the input-output
relation, namely, a set of equations relating the output fields
to the input ones, including vacuum fluctuations, the carrier
laser and laser fields, as well as to incoming GWs. We pro-
vide these input-output relations in Secs. III–V.

However, we note that propagation of sideband quadra-
tures ���0�, although independent from each other, all de-
pend on the propagation of the carrier quadratures ��=0�,
i.e., the amplitude and phase of the carrier incident on each
subsystem. Fortunately, the propagation of the carrier is not
affected by that of the sidebands, and can be carried out
independently at the beginning. This said, we begin to for-
mulate our general method of simulation.

We build the following system of linear equations �for
each sideband frequency ��:

	M11 ¯ M1N

] ¯ ]

MN1 ¯ MNN

	a�1�

]

a�N� 
 = 	u�1�

]

u�N� 
 , �2�

where a�i�, i=1, . . . ,N are the N quadrature fields �each of
them a two-dimensional vector� propagating in every part of
the system, u�i�, i=1, . . . ,N are N generalized input quadra-
ture fields �each of them again a two-dimensional vector�.
The Mij, i , j=1, . . . ,N are 2�2 matrices which depend on
the details of the optical system, and the u�i� can be written
schematically as

u�i� = v�i� + l�i� + H�i�h , �3�

where v�i� arises from vacuum fluctuations entering from the
detection port or other lossy ports �Secs. II B, III, and IV�, l�i�

from the laser �Sec. II B�, and H�i�h from GW-induced phase
modulation, with h the GW amplitude �Sec. V�; depending
on the location of this generalized input field, some or all of
the above three contributions could also be zero. Henceforth
in the paper, we shall consider each pair of quadrature fields
as one object. Inverting the matrix Mij will give a�i� in terms
of u�i�, and hence all of the necessary transfer functions.

Now let us provide a universal prescription for construct-
ing Eq. �2�, suitable for modeling generic systems. We break
this procedure into two steps:

1. Suppose we have n elementary subsystems mentioned
above, with the kth subsystem having pk ports. The entire
system will then have P��k=1

n pk ports. Because we formally
include beam blocks and photodetectors as subsystems, none
of our ports will be formally open, i.e., left unconnected to
some other port. This means that we have P /2 pairs of con-
nections. For each pair of connections, we have two fields,
one propagating in each direction. This means we have a
total of P fields with two quadrature components each.

2. For each system k, with pk ports, we also have pk input
fields and pk output fields, and therefore the input-output
relation will provide us pk equations. All subsystems together
will then provide us with P equations, exactly the number
needed.

1Strictly speaking, we have to consider the four-dimensional lin-
ear space spanned by a��+��, a��−�� and their Hermitian con-
jugates, a†��+��, a†��−��. However, the fact that the sideband
fields are real functions in the time domain will limit us to a two-
dimensional subspace.
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B. Example with the input-output relation of beam blocks,
photodetectors, and lasers

Next we illustrate the generic construction procedure with
a simple example, which also clarifies the formal roles of
beam blocks, photodetectors, and lasers. We first propagate
fields between three basic elements of an optical train: a
beam block, a partially reflecting mirror, and a photodetector.
Referring to Fig. 1, the beam block is connected to the mir-
ror, which is in turn connected to a detector. For simplicity,
we assume that the mirror is lossless and fixed in position.

As a first step, we identify the fields in consideration. The
beam block and the photodetector are one-port systems, the
mirror is a two-port system; we have a total of four ports,
and 4/2=2 connections. There are two fields associated with
each connection; we label them a, b, and c, d, respectively,
as done in Fig. 1. Since each field has two quadrature com-
ponents, the system is eight dimensional, and we need eight
scalar equations.

Now we have to provide the input-output relations for
each object. For the mirror with amplitude reflectivity � and
transmissivity �, and neglecting radiation pressure effects,
we have

�b

c
� = �− � �

� �
��a

d
� � MMir�a

d
� . �4�

Note that Eq. �4� contains four scalar equations, and that �
and � are really 2�2 scalar matricies, �I, and �I �this is true
because our mirror does not mix quadratures�—we have sup-
pressed the identity matrix I for simplicity. To comply with
the format of Eq. �2�, we write

�− � − 1 0 �

� 0 − 1 �
��

a

b

c

d

 = �0

0
� . �5�

For the beam block and the photodetector, they really are
placeholders for physically open ports. Their input-output
relation is simply that the output fields from them are
vacuum fluctuations �independent from the input fields�:

a = v�1�, d = v�2�, �6�

Here we assume implicitly that the photodetector is detecting
the field c with unit quantum efficiency. In order to model
imperfect photodetectors, we could add a mirror with zero
reflectivity and nonzero loss in front of the ideal photodetec-
tor.

Combining Eqs. �5� and �6�, we have

�7�

which are the eight scalar equations we need. Inverting M
will give us each of the propagating fields in terms of the
input vacuum fields.

Now suppose the beam block is replaced by a laser
source, coupled to the spatial mode of a field, then we only
need to replace the vacuum field v�1� in Eqs. �6� and �7� by
the laser field, l�1�: at �=0, carrier quadratures, while at �
�0, it gives the laser noises.

Here we note that all diagonal elements of M are equal to
−1—this is in fact not a coincidence, but a universal feature
of our construction procedure. In order to understand this, we
need to realize that every field a�k� is the output field of
exactly one subsystem. In the input-output relation of that
unique subsystem, there is exactly one line that relates a�k� to
the input fields of this subsystem, which reads

a�k� = �terms not involving a�k�� . �8�

This equation corresponds to, after moving a�k� to the right-
hand side of the equation, moving any non-a�j�, j=1, . . . ,N
terms to the left-hand side, and swapping left and right

�9�

It is obvious that the lines of equation found by this way for
different a�k�’s will be different. As a consequence, we can
arrange to have the line corresponding to a�k� appear on the
kth row of M, and thus have all its diagonal elements equal
to −1.

III. MATRICES FOR STATIC OPTICAL ELEMENTS

In this section, we derive the matrices for some standard
objects used in simulating quantum noise in a gravitational-
wave interferometer. Here we neglect radiation pressure ef-
fects and the presence of gravitational waves �they will be
dealt with in Secs. IV and V, respectively�. As a conse-
quence, our derivation only involves some reformatting of
previously well-known results.

A. Mirrors

Field transformations due to a mirror were introduced in
the example of Sec. II. The transformation matrix for a loss-
less mirror is given in Eq. �4�. We now derive more complete
equations for the mirror that include losses. We ascribe a
power loss A to the mirror in Fig. 1 such that �2+�2+A=1.
The introduction of losses gives rise to an additional vacuum

FIG. 1. �Color online� A sample configuration is shown. A beam
block is connected to a mirror which is in turn connected to a
detector. Input fields incident on the mirror a and d are related to
the output fields b and c by matrix operators derived in Secs. II–IV.
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field of amplitude �A / �1−A� that is added to each input of
the mirror. The �1−A�−1 factor accounts for part of the loss
field being lost to the mirror. This can be verified by having
shot-noise-limited fields a and d incident on the mirror. The
field returning to the beam block

− ��a +� A

1 − A
v�3�� + � �d +� A

1 − A
v�4�� �10�

must also be at the shot-noise level, such that

�2�1 +
A

1 − A
� + �2�1 +

A

1 − A
� =

1 − A

1 − A
= 1. �11�

The new equations governing the mirror are

�b

c
� = �− � �

� �
��a +� A

1 − A
v�3�

d +� A

1 − A
v�4� 
 �12�

where v�3� and v�4� are the vacuum fluctuations that enter due
to the presence of loss.

Equation �12� may be rewritten as

�b

c
� = �− � �

� �
��a

d
� + �A�v�3��

v�4��
� , �13�

where

v�3�� �� 1

1 − A
�− �v�3� + �v�4�� �14�

v�4�� �� 1

1 − A
��v�3� + �v�4�� . �15�

v�3�� and v�4�� are uncorrelated vacuum fields in this repre-
sentation. We can subsequently write the mirror’s contribu-
tion to Eq. �2� as

�− � − 1 0 �

� 0 − 1 �
��

a

b

c

d

 = �− �Av�3��

− �Av�4��
� . �16�

This method may also be used to inject losses in beamsplit-
ters or cavities.

B. Free space propagation

Since optical cavities are present in virtually all optical
configurations of gravitational-wave interferometers, we

must give a transformation matrix for them as an element of
our arbitrary optical train. To do so we introduce an operator
to transform the field as it propagates through free space
between any two other optical elements �in the case of an
optical cavity, these would be mirrors�. Using the convention
of Fig. 2, the matrix for propagation through a length L trans-
forms input fields a and d according to

�b

c
� = MProp�a

d
� , �17�

where the matrix for the propagator is

MProp � ei�� 0 R�

R� 0
� . �18�

Here

� �
�L

c
, �19�

� �
�L

c
, �20�

are the one-way phase shift on the carrier light at frequency
� and on modulation sidebands at frequency �, respectively,
and

R� � �cos � − sin �

sin � cos �
� �21�

is the rotation operator on quadrature fields.

C. Beamsplitters

Another essential optical element of an interferometer is
the beamsplitter. We consider a beamsplitter with amplitude
reflectivity and transmissivity � and �, respectively. The
beamsplitter transforms the input fields, shown in Fig. 3,
according to the matrix equation

FIG. 2. �Color online� The fields entering and exiting a region of
free space are shown. Propagation operators are characterized by
the propagation distance �and orientation relative to the source po-
larization, in the case of the GW signal�.

FIG. 3. �Color online� Treating the beamsplitter as a four-port
device, definitions for the fields, including sign conventions, are
shown.

CORBITT, CHEN, AND MAVALVALA PHYSICAL REVIEW A 72, 013818 �2005�

013818-4



�
a

c

e

g

 = MBS�

d

b

h

f

 , �22�

where

MBS ��
− � 0 0 �

0 − � � 0

0 � � 0

� 0 0 �

 . �23�

In the presence of optical loss, assuming �2+�2+A=1,
and going through similar arguments to Sec. III A, we simply
add a column vector of vacuum fields −�Av�i� �i=1,2 ,3 ,4�
onto the right-hand side of Eq. �22�.

D. Correlators

The correlator module of the simulation allows for the
inclusion of squeezed light or vacuum fields in the interfer-
ometer. It is essentially a one-way device: Only fields enter-
ing from one direction are transformed; fields entering from
the other direction pass through the correlator unmodified.
Taking a to be the input field, the field at the output of the
correlator b is defined by

b = S�r,��a , �24�

where S�r ,�� is the squeeze operator with squeeze factor r
and squeeze angle �

S�r,�� � �cosh r + sinh r cos 2� sinh r sin 2�

sinh r sin 2� cosh r − sinh r cos 2�
� .

�25�

IV. RADIATION PRESSURE

Radiation pressure plays an important role in interferom-
eters operating close to or beyond the SQL, since quantum
back-action noise must be taken into account. Moreover,
radiation-pressure effects can also modify the dynamics of
these interferometers �5�. Sideband quadrature fields create
amplitude modulations to the carrier field, and the associated
power modulation drives the motion of optical elements,
which, in turn, phase modulates the carrier, thereby creating
sideband quadrature fields.

Details of this sideband-to-sideband conversion depend
on the phases �this determines which quadrature gets con-
verted into which� and amplitudes �this determines the con-
version strength� of the carrier field propagating in different
parts of the interferometer. Therefore, it is necessary to sepa-
rate the fields into carrier ��=0� and sideband ���0� com-
ponents at this point. The radiation pressure force due to the
carrier field itself is a time-independent force and can be
ignored �in reality they will be balanced by a static force
exerted on the optical elements, e.g., the pendulum restoring
force on a suspended mirror�. The effect of interest is the
time-dependent part of the force, due to sideband compo-

nents, which will be the subject of this section. As a founda-
tion, we must first of all calculate the phase and amplitude of
the carrier fields at each location. But this we can already do
by building the general Eq. �2� out of input-output relations
of static optical elements, which have already been derived
in Sec. III, and solving it.

Before incorporating radiation pressure into the treatment
of specific systems, let us study the electromagnetic momen-
tum flux carried by optical fields in the two-photon formal-
ism. In quadrature representation, we decompose the total
quadrature field E j

total �here E j can be a, b, c, or d for the
configuration in Fig. 1� into the following two terms:

E j
total = E j

carrier + E j
sb. �26�

The monochromatic carrier field in Eq. �26� can be writ-
ten more explicitly in terms of power Ij, phase 	 j and effec-
tive beam area A as

E j
carrier =�8
Ij

Ac
�cos 	 j

sin 	 j
� , �27�

while the sideband field can be written as an integral over all
sideband frequencies

E j
sb�t� =�4
��

Ac
�

0

+� d�

2

�j���e−i�t + H.c.� . �28�

The total momentum flow carried by the field is

A
4


�E j
carrier + E j

sb�2. �29�

Removing the static �dc� and optical frequency ��� compo-
nents, the Fourier transform of the time-averaged �over a
time scale much shorter than the GW period, but much
longer than 1/�� ac momentum flow carried by this field is

Ṗj��� =���

c2 D j
Tj��� , �30�

where we have defined

D j ��Ac

4

E j

carrier = �2Ij�cos 	 j

sin 	 j
� �31�

as the carrier quadrature field, and j��� is the sideband com-
ponent at angular frequency �.

In the remainder of this section we derive explicit input-
output relations for mirrors and beamsplitters, including ra-
diation pressure effects. Our results will be more general
than previously obtained results by allowing the carrier fields
incident from different ports to have different phases.

A. Mirrors

Let us once again consider the mirror in Fig. 1. Assuming
that the mirror behaves as a free particle with mass M when
no radiation-pressure forces are exerted �valid for suspended
mirrors when frequencies greater than the pendulum resonant
frequency are considered�, the Fourier transform for the
equation of motion for the mirror is
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− M�2X = �
j


 jṖj , �32�

where X is the displacement of the mirror induced by all the
sideband fields �X is positive to the left in Fig. 1, and the j
refer to a ,b ,c ,d�. The summation is performed over all the
fields entering and exiting the mirror; the coefficients 
a
=
b=−1 and 
c=
d=1 account for the directions of propa-
gation. The displacement of the mirror due to the radiation
pressure forces X can be written explicitly as �see Eq. �30��

X =
1

M�2���

c2 ��Da
T − Dd

T��a

d
� + �Db

T − Dc
T��b

c
�� .

�33�

Given a �time-dependent� displacement X�t� of the mirror,

the input-output relation can be written as �if Ẋ�c�

Eb
total�t� = − �Ea

total�t +
2X�t�

c
� + �Ed

total�t� �34a�

Ec
total�t� = �Ea

total�t� + �Ed
total�t −

2X�t�
c

� . �34b�

c in the argument of Ej
total for the jth field is the speed of light

and should be distinguished from c in the subscript of Ej
total,

which refers to the field c. In quadrature representation, to
leading order in X and in the sideband field amplitudes, we
have

Ej
total�t �

2X�t�
c

� ⇔ E j
carrier + E j

sb�t� ±
2�X�t�

c
R�=
/2E j

carrier,

=E j
carrier + E j

sb�t� �
2�X�t�

c
�E j

carrier�*. �35�

Here * refers to a rotation by 
 /2, as described by
−R�=
/2 in Eq. �35�. Accordingly, for any quadrature field v,
we define

v* � � �2

− �1
�, for v = ��1

�2
� . �36�

Equation �35� implies that time delays, or phase modula-
tions, create sideband quadratures orthogonal to the carrier,
as illustrated in terms of phasors in Fig. 4. The sideband part,
i.e., the ac components in Eqs. �34a� and �34b�, can be ob-
tained using Eq. �35�

�b

c
� = Mmirror�a

d
� −

2��X

c���
�Da

*

Dd
* � . �37�

Inserting Eq. �33� into Eq. �37� gives

�I + ��Da
*

Dd
* ��Db

T − Dc
T���b

c
�

= �Mmirror − ��Da
*

Dd
* ��Da

T − Dd
T���a

d
� , �38�

where

� �
2��

M�2c2 �39�

is a quantity with units of inverse power or W−1. �For lossy
mirrors with �2+�2+A=1, we simply insert a column vector
−�Av�i�, i=1,2 onto the right-hand sides of Eqs. �37� and
�38�, cf. Sec. III A.�

To solve for b and c, the matrix on the left-hand side of
Eq. �38� must be inverted. It is straightforward to find a
complete set of eigenvectors for this matrix, they are

��1,�2,�3,�4� = ��Db
*

0
�,� 0

Dc
* �,�Dc

Db
�,�Da

*

Dd
* �� . �40�

Since the first three vectors are orthogonal to �Db
T −Dc

T�, the
three corresponding eigenvalues are �1=�2=�3=1; the last
eigenvalue is

�4 = 1 + ��Db
TDa

* − Dc
TDd

*�

= 1 + 2��Dd
TDa

*

= 1 +
8����IaId

M�2c2 sin�	a − 	d� . �41�

Inverting the eigenvalue �4 yields a pair of resonant frequen-
cies at

±�M = ± �− 8����IaId

Mc2 sin�	a − 	d��1/2

. �42�

Physically, this resonance comes about because the sideband
fields generated by mirror motion can exert radiation pres-
sure back onto the mirror. Let us for a moment consider
classical motion of the mirror. As was mentioned after Eq.
�37�, for any given input carrier field, the sideband field gen-
erated upon reflection from the moving mirror is 
 /2 phase
shifted relative to the input carrier, so the sideband will not
beat with the reflected carrier to induce any force on the
mirror �see Eq. �30��—force can only be induced by beating
this motion-induced sideband field with the transmitted car-
rier, which must have nonzero amplitude and must have a
phase difference other than 
 /2 relative to the sideband. This
explains why the resonant frequency vanishes if either �=0
or �=0 �no reflected or transmitted field�, or if 	a−	d=N

�no phase difference between the two input fields�.

When the two input carrier fields Da and Dd have the
same phase �or differ by N
�, the phasors corresponding to
Da, Db, Dc, and Dd all become parallel to each other. This is
true for almost all interferometers that have been treated ex-

FIG. 4. Here we show that the phase modulation sideband gen-
erated by the radiation pressure force is perpendicular to the carrier
field, which is why the generated signal has a D* dependence.
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plicitly analytically. This case is rather special from a math-
ematical point of view, since the matrix we are inverting
does not have a complete set of eigenvectors. Fortunately,
the inverse is just

�I + ��Da
*

Dd
* ��Db

T − Dc
T��−1

= �I − ��Da
*

Dd
* ��Db

T − Dc
T��, if Da � Dd;

�43�

since

��Da
*

Dd
* ��Db

T − Dc
T��2

= 0, if Da � Dd. �44�

�This identity originates from the fact that the sideband field
is orthogonal to the carrier field about which it is generated.�
Using this fact, we can further simplify the input-output re-
lation to

�b

c
� = �Mmirror − 2���Da

*

Dd
* ��Da

T − Dd
T��� − �

� �
���a

d
�,

if Da � Dd. �45�

�Here for simplicity we have assumed the mirror to be
lossless.� In practice, although Eq. �38� does not give the
output fields b and c explicitly in terms of the input fields a
and d, it can be incorporated to the matrix M �and into u�i�,
in the presence of optical losses� without any trouble �cf. Eq.
�2��: its inversion will take place automatically when M−1 is
calculated. �However, doing so will make it impossible to
have −1 all along the diagonal of M.� Alternatively, the
variable X may be added to our system of variables, with Eq.
�33� providing the additional equation necessary. The equa-
tions governing a mirror may then be replaced with Eq. �37�
to include the dependence on X. In this way, the −1 diagonal
components are preserved, without the need to invert addi-
tional matrices.

B. Beamsplitter

Referring to the fields shown in Fig. 3, the displacement
due to radiation pressure forces on a beamsplitter �normal to
its reflective face� is

XN =
Xx + Xy

�2
=

1

M�2���

2c2	�Da
T Dc

T − De
T − Dg

T�

��
a

c

e

g

 + �Dd

T Db
T − Dh

T − D f
T��

d

b

h

f


 , �46�

where Xx is the displacement along the x axis and Xy is the
displacement along the y axis. Similar to the case of a cavity

mirror, this motion induces phase fluctuations on the imping-
ing fields upon reflection, and introduces additional terms in
the input-output relation. Following a procedure similar to
the one with which we obtain Eq. �37�, we get

�
a

c

e

g

 = MBS�

d

b

h

f

 −

�2��XN

c��� �
Dd

*

Db
*

Dh
*

D f
*

 . �47�

Inserting Eq. �46� into Eq. �47� gives

	I +
�

2 �
Dd

*

Db
*

Dh
*

D f
*

�Da

T Dc
T − De

T − Dg
T�
�

a

c

e

g



= 	MBS −
�

2 �
Dd

*

Db
*

Dh
*

D f
*

�Dd

T Db
T − Dh

T − D f
T�
�

d

b

h

f

 .

�48�

Equation �48� is quite similar in nature to Eq. �38�; optical
losses can also be incorporated in a similar fashion, by add-
ing −�Av�i�, i=1,2 ,3 ,4 on to its right-hand side, where �2

+�2+A=1. Again, in the generic case where

�Da
T Dc

T − De
T − Dg

T��
Dd

*

Db
*

Dh
*

D f
*

 � 0, �49�

the matrix on the left-hand side �LHS� of Eq. �48� has eight
linearly independent eigenvectors, of which seven have unit
eigenvalue, while the eighth has

�8 = 1 +
�

2
�Da

T Dc
T − De

T − Dg
T��

Dd
*

Db
*

Dh
*

D f
*



= 1 + ���D f
TDd

* + Dh
TDb

*�

= 1 +
4���0

M�2c2 ��IfId sin�	 f − 	d�

+ �IhIb sin�	h − 	b�� , �50�

which corresponds to an optomechanical resonance at angu-
lar frequency

±�BS = ± �−
4���

Mc2 ��IhIb sin�	h − 	b�

+ �IfId sin�	 f − 	d���1/2

. �51�

In the special case of

MATHEMATICAL FRAMEWORK FOR SIMULATION OF… PHYSICAL REVIEW A 72, 013818 �2005�

013818-7



�Da
T Dc

T − De
T − Dg

T��
Dd

*

Db
*

Dh
*

D f
*

 = 0, �52�

i.e., all input carrier fields are in phase with each other
�modulo 
� we get

�
a

c

e

g

 = 	MBS − ���

Dd
*

Db
*

Dh
*

D f
*

�Dd

T Db
T − Dh

T − D f
T�

��
� − �

� − �

� �

� �


�

d

b

h

f

,

if Db � Dd � D f � Dh . . �53�

For simplicity, we assume the beamsplitter to be lossless
in the above equation. This is particularly true for the beam-
splitter in Michelson- and Sagnac-type GW interferometers
�11�. Similar to the case of the mirror, for the purposes of
simulation, we incorporate the position of the beamsplitter as
an additional variable in M, in order to preserve the −1
diagonal elements and to avoid the inversion of additional
matrices.

V. GRAVITATIONAL WAVE SIGNAL AND THE OUTPUT
FIELD

A. GW contribution

In our set of optical elements, only optical cavities have
significant propagation distances, so we model the effect of
GWs by introducing a phase shift to the carrier light as it
passes through a cavity. To calculate the propagation of these
fields, all that must be done is to add a source term in the
equation governing the cavity. Refering to the fields in Fig.
2, the cavity field becomes

c = ei�R�a − 

�Lh

2c���
Dc

* = R��ei�a − 

�Lh

2c���
Da

*� ,

�54�

where h is the Fourier transform of the GW amplitude. A h
dependent term is also added to the equation relating b and d
using Dd

* in place of Da
*. The parameter 
 takes values from

−1 to 1 depending on the orientation of the cavity and the
polarization state of the incoming GW. For example, for a
linearly polarized incoming GW, and for an optimally
aligned Michelson interferometer, we have 
=1 for one and
−1 for the other.

It is straightforward to incorporate Eq. �54� into the gen-
eral equation Eq. �2�. In particular, the term containing h on
RHS contributes to the GW part of the general input field u,
i.e., to the third term of Eq. �3�, with

H = − 

�L

2c���
Dc

*, �55�

B. Photodetection: signal and noise

For our purposes, the photodetector serves two roles: first,
it represents an open port, from which vacuum fluctuations
enter the interferometer; second, it determines the measure-
ment point. For the former, the input-output relation of a
photodetector, as it contributes to the matrix M and the gen-
eralized input vector u�i�, is trivial and has been discussed in
Sec. II B. Here we focus on the latter. At zero frequency,
there is only contribution to b from the carrier laser, while at
nonzero sideband frequencies, the detected fields at a photo-
detector comprise three components: the gravitational-wave
signal, classical laser noise, and noise due to vacuum fluc-
tuations in the detected mode. The outgoing field being de-
tected b has the general form �see Eqs. �2� and �3��

b = �
i

�M−1�bi�v�i� + l�i� + H�i�h�

� �
i

Tbi�v�i� + l�i� + H�i�h� . �56�

The summation is performed over all fields. We note that
contributions to v�i� exist only for fields that emerge from
beam blocks or lossy optical elements, those to l�i� exist only
for the field that emerges from the laser, and those to H�i�

only for fields that emerge from cavities.
We suppose homodyne detection at quadrature angle � is

performed such that the measured field is

b� = b1 cos � + b2 sin � . �57�

For a complete simulation, � should be the phase of the car-
rier that emerges at this port. However, in theoretical studies,
we could also assign another value to �, assuming that the
local-oscillator phase is modified by some other means the
simulation does not address.

For the detected field, the quantum noise spectral density
is �see, e.g., Sec. III of Ref. �4��

�NQ
2 �b = �

i

�cos � sin ��TbiSvi
Tbi

† �cos �

sin �
� . �58�

Because vi is always proportional to a vacuum field, we have
used Svi

to denote the noise spectral density which is identi-
cal for all its quadratures. Here we have added the power of
different loss contributions, since we assume the vacuum
fields to be independent to each other. In general, laser noise
is neither quantum limited, nor are the magnitudes of phase
and amplitude fluctuations equal; there could also be corre-
lations between the laser amplitude and phase noise, even as
the laser field enters the system. Taking these into account,
we have a laser noise spectral density of

�NL
2�b = �cos � sin ��TblSLTbl

† �cos �

sin �
� , �59�

where l corresponds to the input laser field, and
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SL � �S11 S12

S12 S22
� �60�

describes noise of the laser as it first enters the interferom-
eter, with S11�22� being the noise spectral density of the first
�second� quadrature, and S12 the cross spectral density be-
tween the two quadratures. �In the usual convention of hav-
ing input laser in the first quadrature, 1 corresponds to the
amplitude quadrature, hence amplitude noise, while 2 corre-
sponds to the phase quadrature, hence phase noise.� The
transfer function for the GW signal is

Hb � �
i

�cos � sin ��TbiH
�i�. �61�

Note that GW contributions from different parts of the sys-
tem add up coherently. The displacement �strain� noise spec-
tral density from quantum noise is then given by

Sh =
NQ

2 + NL
2

�H�2
. �62�

VI. APPLICATION TO A COMPLEX INTERFEROMETER

The mathematical formulation described in Secs. II
through V was encoded into a simulation program written in
C��. In this section we describe tests of the simulation
code for a complex interferometer configuration, where the
simulation results were compared with analytic calculations.

The interferometer configuration is shown in Fig. 5, and
in Fig. 6 we show fields propagating in the interferometer as
well as modes of motion of the mirrors. The interferometer is
similar to that used in GW detection: a Michelson interfer-
ometer with Fabry-Pérot cavities in each arm. All the mirrors
of the interferometer are suspended as pendulums. Power
recycling �12� is optional and is not included here. The con-
figuration shown has a few unusual features compared with a
conventional interferometer, however. First, the end mirrors
of the arm cavities are a common suspended object, coated

with a high-reflectivity coating on both surfaces and assumed
to have an opaque substrate. Second, this cavity end mirror
object is very light, with a typical mass of 1 g, and is sus-
pended as a pendulum with resonant frequency of about
1 Hz. All remaining optics are assumed to have a mass of
250 g, and are also suspended as pendulums with a resonant
frequency of 1 Hz. Third, the cavities are detuned from reso-
nance.

Testing the simulation with this somewhat unconventional
interferometer configuration served two purposes: �i� It is the
baseline design for an experiment to generate squeezed states
of the electromagnetic field, produced with radiation-
pressure-induced optical forces in an interferometer with
low-mass mirror oscillators and high stored power �13�; and
�ii� the shared end mirror gives rise to unexpected dynamical
effects that prove interesting and instructive to explore, and
are relevant to other high-power interferometers, such as Ad-
vanced LIGO �1�. We note that the shared end mirror has
advantages in terms of mechanical stability and control sys-
tem design, but the desired radiation-pressure effects can be
realized by a configuration with two independent end mirrors
as well.

A. Ideal optical springs

In this section we study analytically a crucial component
of the interferometer design: the optical spring effect, espe-
cially in the case of two identical detuned cavities with a
common end mirror. The input-output relation of this system
can be obtained by carrying out our generic procedure ana-
lytically. In doing so, we extend previous results in Refs.
�5,14� to include two features. First, we consider motions of
all three mirrors, with mass of the input mirrors different
from that of the common end mirror. Second, in our system
the carrier phases incident on mirrors are different; under
such a circumstance, formulas developed in Sec. IV are non-
trivial extensions to existing ones.

In order to make results intuitively understandable, we
consider only the ideal system, with the two input mirrors

FIG. 5. �Color online� Schematic of a an interferometer de-
signed to extract ponderomotively squeezed light due to radiation-
pressure-induced motion of the ultra-light shared mirror. Light from
a highly intensity- and frequency-stabilized laser source is incident
on the beamsplitter. High-finesse Fabry-Pérot cavities in the arms of
the Michelson interferometer are used to build up the carrier field
incident on the end mirrors of the cavity, which are a single me-
chanical object.

FIG. 6. Optical fields propagating in the interferometer, and
modes of motion of the mirrors. In particular, �MA,B and �MA,B are
artificial detunings and losses one can add to the two arms of the
Michelson interferometer, respectively, see Sec. VI B for their
significance.
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completely identical, the common mirror perfectly reflective
on both sides, the two cavities having exactly the same
lengths, the carrier incident on both input mirrors having
equal amplitude and phase, and with a perfect beamsplitter.
We also ignore the free pendulum frequency, and consider
the test masses to be free. Similar to previous studies, we
assume a high-finesse cavity and ignore the interaction be-
tween the motion of the input mirror and the carrier light
outside the cavity. We retain terms only to the leading order
in �L /c, �L /c, and �L /c, where L is the cavity length, c is
the speed of light, � is the sideband frequency, and �−�
− i�� is the complex optical resonant frequency of the cavity
with fixed mirrors �−� denotes the resonant frequency and �
the bandwidth, defined in Table II; and we ignore end-mirror
loss�.

1. Differential mode

With the above assumptions, the differential optical mode
couples only to differential modes of mirror motion: those
with the two input masses moving such that xA=−xB�xD,
and arbitrary xm �see Fig. 6�; such modes form a two-
dimensional subspace of all possible motions of the three
mirrors. In the ideal case, we only need to study this mode.
The differential input-output relation is given by

�b1

b2
� =

1

MD
R��CDR−��a1

a2
� + sD�xm

�0� + xD
�0��� , �63�

with

CD = �− ��2 − �2 + �2��2 − ��D 2���2

− 2���2 + 2��D − ��2 − �2 + �2��2 − ��D
� ,

sD =
2���D�2

LhSQL
D � �

− � + i�
� , �64�

and

MD = �2��� + i��2 − �2� + ��D. �65�

Here xm
�0� is the motion of a free end mirror with the same

mass, xD
�0� is the free differential motion of the input mirrors

�xA
�0�=−xB

�0�=xD
�0��; �=arctan�� /�� is the carrier phase at the

end mirror. The carrier incident on the input mirrors has
phase 0, the carrier inside the cavity, leaving the input mirror
has phase �−�, while the carrier inside the cavity entering
the input mirror has phase �+�. The quantity hSQL

D is the
free-mass standard quantum limit associated with the differ-
ential mode, given by

hSQL
D =� 2�

�D�2L2 , �D � 2mM/�m + 2M� . �66�

The quantity �D, defined by

�D =
8�0Ic

�DLc
, �67�

measures the strength of optomechanical coupling �notice the
dependence on carrier intensity Ic and the inverse depen-
dence on the effective mass of the differential mode me-
chanical oscillator �D�. Roots of MD are the �complex� reso-
nant frequencies of the coupled optomechanical system.
From �D we define a characteristic frequency

�D � ��D�/��2 + �2� . �68�

For systems with �D��, the two resonances are well sepa-
rated, and are given approximately by ±�D �mechanical fre-
quency due to optical spring� and �±�− i�� �optical resonant
frequency�, respectively—this is indeed the regime in which
we construct our experiment.

The differential optical mode couples to a two-
dimensional subspace of all possible motions of the three
mirrors. It is instructive to look at the motion of separate
mirrors, in the regime of ���, i.e., for sideband frequencies
� well within the linewidth of the cavities:

�xm

xD
� =

1

�D
2 − �2�

�D
2

�2 + 1
− �2 −

�2�D
2

�2 + 1

−
�D

2

�2 + 1

�2�D
2

�2 + 1
− �2
�xm

�0�

xD
�0� � .

�69�

Here we have defined �2�2M /m. From Eq. �69�, we con-
clude immediately that

TABLE II. Quantities associated with the detuned arm
cavities.

� Bandwidth �Ti+Te�c / �4L�
�L Bandwidth due to loss Tec / �4L�
−� Resonant frequency �c /L

� Characteristic quadrature rotation angle arctan�� /��

TABLE I. Select interferometer parameters and their nominal
values.

Parameter Symbol value Units

Light wavelength �0 1064 nm

End mirror mass m 1 g

Input mirror mass M 0.25 kg

Input mirror transmission Ti 4�10−4 —

Arm cavity finesse F 1.6�104 —

Loss per bounce — 5�10−6 —

Arm cavity detuning � 10−5 �0

Input power I0 1 W

BS reflectivity asymmetry �BS 0.01 —

Michelson phase imbalance ��M

Michelson loss imbalance ��M

Input mirror mismatch �T 5�10−6 —

Detuning mismatch �� 10−7 �0

Arm cavity loss mismatch �� 2�10−6 —
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xm + xD = −
�2

�D
2 − �2 �xm

�0� + xD
�0�� . �70�

This change in response is exactly what happens when a free
test particle is connected to a spring with mechanical reso-
nant frequency �D. Equation �70� reveals a crucial advan-
tage of the optical spring—that the response of the cavity
length to external disturbances �e.g., driven by seismic
and/or thermal forces� is greatly suppressed from the corre-
sponding value for free-mass systems. Theoretically, this
suppression is present even when a mechanical spring is
used. However, mechanical springs introduce thermal noise,
usually of much higher magnitude due to the intrinsic me-
chanical loss �14,15�.

It is interesting to notice that the suppression of total cav-
ity length fluctuations is achieved collectively by the end
mirror and the input mirror. As we see from Eq. �69�, �in the
case of large ��, the motion of the end mirrors xm is sup-
pressed from its free mass value by the factor in Eq. �70�,
while the motion of the input mirrors xD is not influenced by
the spring, since it is relatively massive. Fortunately, through
the �1,2� component of the matrix on the RHS of Eq. �69�,
this motion of the input mirror is imposed onto the end mir-
ror with opposite sign, again suppressing the total cavity
length fluctuations.

Now let us restrict ourselves to the regime of ���D
��, and study the quantum fluctuations and classical com-
ponent of the output field �due to classical disturbances to the
mirrors�. As we shall see shortly, this regime has two crucial
features: �i� the response of the output field to xm

�0�+xD
�0�, and

thus length fluctuations due to seismic and thermal noise, are
greatly suppressed by the optical spring and �ii� the output
squeezed state is frequency independent.

For quantum fluctuations, we have

CD

MD
→ � − 1 0

2�/� − 1
� , �71�

which is frequency independent. It is straightforward to de-
rive that the quantum noise spectrum in the b��b1 cos �
+b2 sin � quadrature �cf. Eq. �58��

S� → 1 +
2�2

�2 − 2� �2

�2 +
�4

�4 cos�2� − 3�� . �72�

In particular, terms in � /� are associated with squeezing,
where the constant power squeeze factor e2q �q�0� is given
by

sinh q = ��/�� . �73�

The minimum noise spectral density �S�=e−2q� is reached at
�=3� /2, while at �=� and 2� the noise spectrum is equal to
the vacuum level �S�=1�. Values of � /� corresponding to
several power squeeze factors are listed in Table III. As
shown, � and � will not differ by a factor of more than �2,
for typically desired squeeze factors.

Now for the classical component, given by the second
term in Eq. �63�, we have

1

MD
R�sD →

2

LhSQL
D ��2

�D
2

�

�
� sin 2�

− cos 2�
� . �74�

This means the entire signal due to differential displacement
xm

�0�+xD
�0� is in the single quadrature �=2�+
 /2, and there is

no xm
�0�+xD

�0� signal in the �=2� quadrature. Interestingly, the
quantum noise in this quadrature is right at vacuum level. In
addition, since hSQL

D �1/�, the response of b� to xm
�0�+xD

�0� is
proportional to �2 at this regime—therefore not only the
motion, but also the output field, has a suppressed response
to thermal and seismic noises. Note here that the suppression
factor is proportional to �Ic �since 	D���D��Ic�—because
motion is suppressed by Ic, while the optical sensing of mir-
ror motion is enhanced by �Ic. Now suppose we introduce a
noisy force which induces a spectral density Sx

N on a free
mass, then the output classical noise will be

S�
N = 4

�2

�D
2

�

�
sin2�� − 2��

Sx

L2�hSQL
D �2 . �75�

At the minimum quantum noise quadrature, �=3� /2, we
have

S3�/2
N =

2�

�
�1 −

�

��2 + �2��2

�D
2

Sx

L2�hSQL
D �2 � 0.6

�2

�D
2

Sx

L2�hSQL
D �2 ,

�76�

where the inequality is obtained by taking maximum over all
� and �. We note that because of the suppression factor
�2 /�2, the classical noise Sx

N can be much higher than the
free-mass standard quantum limit while still allowing the
interferometer to generate squeezed vacuum!

2. Common mode

We now consider the common optical mode, which
couples with motion of the input mirrors corresponding to
xA=xB�xC. This mode is irrelevant to an ideal interferom-
eter with identical arms and perfect contrast. In reality, how-
ever, the common mode will influence the output via cou-
plings induced by differences �mismatch� between the two
cavities, for example. Such effects can be quite important
near the common-mode optomechanical resonance.

The input-output relation of the common mode, similar to
that of the differential mode �cf. Eq. �63��, is given by

�y1

y2
� =

1

MC
R��CCR−��z1

z2
� + sCxC

�0�� , �77�

with �cf. Eq. �64��

TABLE III. Relationship between power squeeze factor and
� /�, see Eq. �73�.

Squeeze factor �dB� 3 7 10 20

� /� 0.58 1.13 1.42 2.12
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CC = �− ��2 − �2 + �2��2 − ��C 2���2

− 2���2 + 2��C − ��2 − �2 + �2��2 − ��C
�,

sC =
2���C�2

LhSQL
C � �

− � + i�
� , �78�

and �cf. Eq. �65��

MC = �2��� + i��2 − �2� + ��C. �79�

hSQL
C , the SQL associated with the common mode, is given

by �cf. Eq. �66��

hSQL
C =� 2�

�D�2L2 , �C = 2M . �80�

The quantity �C is given by �cf. Eq. �67��

�C =
8�0Ic

�CLc
. �81�

For the common mode, we have an optomechanical resonant
frequency of �cf. Eq. �68��

�C � ��C�/��2 + �2�, if �C � � . �82�

This frequency is in general much lower than its differential-
mode counterpart, with

�C

�D
=� �C

�D
=��D

�C
=� m

m + 2M
. �83�

B. Laser coupling to the antisymmetric port due to
mismatch

Mismatch between the optical parameters of the two arm
cavities, as well as imbalance in the beamsplitter reflection/
transmission ratio and imperfect contrast of the Michelson
interferometer, can couple the carrier and also the noise side-
bands on the laser to the differential detection port. For each
arm, A and B, we denote the true value of the kth quantity by
its nominal value plus contributions due to imperfections,
i.e.,

X�k�A,B = X�k� ±
1

2
�X�k�. �84�

Here the index k refers to the type of imperfection being
considered. The beamsplitter asymmetry is characterized by

�BS = tBS
2 − rBS

2 . �85�

Michelson imperfections can be characterized by the differ-
ence in the phase shifts and losses when light travels from
the beamsplitter to the input mirrors of the two arms

�MA,B = �M ±
1

2
��M, �MA,B = �M ±

1

2
��M . �86�

In addition to �BS, ��M, and ��M, which concern the
beamsplitter, we consider the following contributions to mis-
match between the arms

TiA,B � Ti ±
1

2
�T, �87�

TeA,B � Te ±
1

2
��, �88�

�A,B � � ±
1

2
��, �89�

that is, mismatch between input mirror power transmissivi-
ties, end mirror losses, and cavity detuning, respectively. We
replace these with the following more convenient quantities:

��

�
=

�T

Ti + Te
,

��L

�
=

��

Ti + Te
,

��

�
=

��

�
. �90�

�See Table II for definitions of �, �L, and �.�
In the remainder of this section, we give the transfer func-

tions from the carrier light �dc�, laser amplitude fluctuations,
and laser phase fluctuations to the differential output port, to
first order in the mismatch �recall that ideally, in the absence
of imperfections, these common-mode inputs do not appear
in the differential output port�. We keep our formulas to the
leading order in ��L /c ,�L /c ,�L /c�, and ignore the aver-
aged losses �L and �M �but not ��L and ��M�. We refer to
this as the leading-order approximation. Furthermore, in or-
der to keep the analytical results understandable, we work
only in the regime of �� ,�C�� ��D ,� ,��, which we shall
refer to as the low-frequency regime.

Definitions and assumed values for �BS, ��M, ��M, �T,
��, and �� are given in Table I.

1. Carrier

The transfer function from the carrier to the differential
output can be written as

�
k

��k�C�k��cos ��k�
C

sin ��k�
C � , �91�

where definitions of ��k�, values of C�k� and ��k�
C are listed in

Table IV, assuming the carrier at the beamsplitter is in the
first �amplitude� quadrature.

Contributions listed in Table IV can all be obtained from
simple considerations. First, since each field that interferes at
the beamsplitter is scaled by one transmission and one reflec-
tion coefficient factor, �BS does not contribute to the output
carrier light at the differential port. Then, for all mismatches
except the loss, one only has to notice that when the arm
cavities are lossless, carrier light with amplitude D and phase
�=0 returns to the beamsplitter with amplitude reduced to
�1−�M�, and quadrature rotated by 2�+2�M. As a conse-
quence, the differential output port gets �D /2��−��M�
= �−��M /2�D in the �=2� quadrature �factor of 2 due to the
beamsplitter�, and

�D/2���2� + 2�M� = � ��

�2 + �2�−
��

�
+

��

�
� + ��M�D

�92�

in the orthogonal quadrature �=2�+
 /2. The effect of the
loss mismatch can be understood when we decompose the
�complex� reflectivity of the cavity into a sum of two com-
ponents
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�Ree
2i� − �Ri

1 − �RiRee
2i�

=
1 + i�/�

1 − i�/�
−

�L

�

2

1 − i�/�

= e2i� −
�L

�

2�

��2 + �2
ei�. �93�

Here we see that the loss �L creates an output at the �=�
quadrature, so an imbalance in loss ��L will contribute

�−
��L

�

�

��2 + �2�D �94�

in the �=� quadrature in the differential output port.

2. Amplitude (intensity) and phase (frequency) noise

Under our simplifications, the laser amplitude noise z1
and phase noise z2 couple to single �yet frequency depen-
dent� quadratures in the differential output port, as param-
etrized by

�
k

��k��N�k�
A �− sin ��k�

A

cos ��k�
A �z1 + N�k�

P �− sin ��k�
P

cos ��k�
P �z2� .

�95�

Measurement of the output quadrature b��b1 cos �
+b2 sin � will include the laser noise:

�
�k�

��k��N�k�
A z1 sin���k�

A − �� + N�k�
P z2 sin���k�

P − ��� . �96�

In particular, the output quadrature �=��k�
A�P� is not sensitive

to the kth contribution of laser amplitude �phase� noise �note
that we have switched the notation for � from that of Eq.
�91��.

As it also turns out, in the leading-order approximation
and the low-frequency regime, �N�k�

P ,��k�
P �= �C�k� ,��k��. Con-

sidering the different ways � appears in Eqs. �91� and �95�,
this means the phase noise coupled to the differential output
port remains orthogonal to the carrier. This can be argued for
easily: Since phase modulations on the carrier do not drive
mirror motion, the propagation of phase noise is not affected
by the optical spring. Amplitude modulations, on the other
hand, do drive mirror motion and therefore should couple to
the differential port in a dramatically different way. We tabu-
late the quantities N�k�

A and ��k�
A in Table V, from which we

can see that the amplitude-noise coupling has features
around the common-mode optical-spring resonant frequency
�C.

3. Evading laser noise by artificial asymmetry

For realistically achievable symmetry between the two
arms, laser noises turn out to be the dominant noise source to
our squeezer. Here we discuss a way of mitigating laser noise
coupling by introducing artificial asymmetries. According to
the approximate results �in the leading-order approximation
and low-frequency regime� obtained in the previous section,
both amplitude and phase noise emerge from single quadra-
tures �as vector sums of contributions from different mecha-
nisms�. We can, therefore, eliminate the laser noise totally,
up to this order, if we make both of them emerge from the
same quadrature �+
 /2, and make sure that the orthogonal
quadrature � has a subvacuum noise spectrum. At our dis-
posal are two asymmetries that we can adjust manually: ��M
and ��M.

At any given sideband frequency �, for a generic set of
other asymmetries, it is always possible to make both laser
noise sources emerge at the �+
 /2 quadrature �and, there-
fore, to vanish at the � quadrature�, by adjusting ��M and
��M, if the following nondegeneracy condition is satisfied

�laser��,�� � det�sin���M

A − ��N��M

A sin����M

A − ��N��M

A

sin���M

P − ��N��M

P sin����M

P − ��N��M

P �
� 0. �97�

�See Eq. �95�.�
According to Tables IV and V, laser phase noise emerges

in a frequency-independent quadrature, but the amplitude
noise does not. This means the elimination of laser noise
must be frequency dependent, and we can only choose one
particular frequency for perfect laser noise evasion. How-
ever, if ���C is also satisfied, then the frequency depen-
dence goes away. We consider this special case, and choose a
detection quadrature of �=3� /2, i.e., the one with minimum
quantum noise. From Tables IV and V, we get

��laser��,
3

2
���

�C→0
= −

�

4��2 + �2
� 0. �98�

Since the carrier always emerges 
 /2 away from the phase
noise, it emerges in exactly the same quadrature we propose
to detect. In this way, the laser-noise-evading squeezer al-
ways produces squeezed light with amplitude squeezing.

Finally, we note that, due to possible higher-order correc-
tions, laser noise evasion may not be as perfect as predicted

TABLE IV. Transfer function from carrier to differential output
�see Eq. �91��, in the leading-order approximation. The same coef-
ficients apply to phase-noise coupling, i.e., Nk

P=C�k�, �k
P=��k�

C , in the
low-frequency regime �see Eq. �95��.

��k� C�k� ��k�
C

��

�
−

��

�2+�2
2�+
 /2

��L

�
−

�

��2+�2

�

��

�

��

�2+�2
2�+
 /2

��M 1 2�+
 /2

�BS 0

��M −
1

2
2�
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by our first-order approximation, even at a single frequency.
The amount of residual laser noise, as well as the exact level
of the deliberate asymmetries we introduce, must be given
by a more accurate calculation.

C. Comparison between analytical calculations and numerical
simulations

In Table I, we list the parameters used in modeling our
interferometer. An important feature of the numerical code is
that it can handle imperfections in the optics quite naturally,
while for analytical techniques the solution becomes compli-
cated rather dramatically when more ingredients are added.
To fully test this feature, we constructed a test case with
realistic imperfections. The imperfections included were
those mentioned in Sec. VI B. Using the parameters listed in
Table I, we calculate the noise at the differential port due to
quantum fluctuations entering from this port and from lossy
mirrors, as well as laser amplitude and phase fluctuations
entering from the symmetric port.

In Fig. 7, we show the calculated noise levels from nu-
merical simulations in curves, while those from the analyti-
cal treatment are shown as solid points. The agreement be-
tween the two sets of calculations is reassuring. Now we
discuss these noise spectrum in more details. In the upper
panel of Fig. 7, we plot noises due to vacuum fluctuations
entering from the dark port �blue curve and points�, and due
to vacuum fluctuations entering from mirror losses �green
curve and points�. In both results, there is a rather dramatic
resonant feature around the differential-mode optical-spring
resonant frequency, at �D�8 kHz, as can be expected from
Sec. VI A. The rather weak but still noticeable feature
around the common-mode optical-spring resonant frequency
�C�360 Hz is solely due to optical parameter mismatch. In

the lower panel, we show laser amplitude �green curve and
dots� and phase �blue curve and points� noises; we have in-
troduced artificial asymmetries �M and �M, with values ob-
tained empirically using the numerical simulation code, such
that both laser noise sources are evaded to a roughly maxi-
mal extent at 1 kHz. For this reason, contributions to the
results shown here are largely higher order, and we cannot
hope to explain them using results obtained in Sec. VI B.
Here we do observe dramatic features around both the
differential-mode and the common-mode optical-spring reso-
nances.

Results in Fig. 7 are also of great significance for a prac-
tical reason: They show that the vacuum modes exiting the
interferometer are squeezed by a large factor even in the
presence of realistic estimates for optical losses �upper panel�
and laser amplitude and phase noise �lower panel�.

VII. SUMMARY AND CONCLUSIONS

The main purpose of this work was to develop a math-
ematical framework for the simulation of quantum fields in a
complex interferometer that includes radiation pressure ef-
fects. We work in the linear regime around the operation
point of this interferometer; in this regime, after adopting the
Heisenberg picture of quantum mechanics, the quantum
equations of motion �Heisenberg operators� of observables
are identical to classical ones.

During the development of this framework, we aug-
mented previous treatments of mirrors �and beamsplitters� by
allowing the carrier phases at the four �eight� ports to be
different. This extension gives rise to the optical spring effect
even without detuned optical cavities.

Based on this mathematical framework, we developed a
simulation code that can allow arbitrary optical topologies,

TABLE V. Laser amplitude noise coupling into the dark port, in the leading-order approximation and low-frequency regime �see Eq.
�95��.

��k� N�k�
A N�k�

A ��C→0� ��k�
A

��

�

�2��2��2 + �C
2 �2 + 4�2�C

4 �1/2

���2 + �2���2 − �C
2 �

�3

���2 + �2�
2� − arctan

2��C
2

���2 + �C
2 �

��L � �2 ���2+�2 �2

���2 + �2

�

�� � ����2�2 − �2�C
2 �2 + 4�2�2�C

4 �1/2

���2 + �2���2 − �C
2 �

��

�2 + �2 2� + arctan
2���C

2

�2�2 − �2�C
2

��M −
��2��2 − �C

2 �2 + 4�2�C
4 �1/2

���2 − �C
2 �

−1 2� − arctan
2��C

2

���2 − �C
2 �

�BS
2��2

���2 − �C
2 �

2�

�

2�

��M
����2 + �2��2 − �2�2 + �2��C

2 �2 + �2�2�C
4 �1/2

2���2 + �2��2 − �C
2 �

��2 + �2

2�
� − arctan

���C
2

��2 + �2��2 − �2�2 + �2��C
2
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and applied it to a specific example of the interferometer
shown in Fig. 5. This interferometer was shown to be ca-
pable of squeezing the vacuum modes that enter—and sub-
sequently exit—the differential port of the beamsplitter. We
introduced optical spring effects by detuning the arm cavities

as a means of mitigating the detrimental effects of thermal
noise. We study not only the quantum noise, but also laser
noise couplings from the symmetric �input or bright� port to
the output �antisymmetric or dark� port. Good agreement was
found between numerical results given by this code and ana-
lytical ones derived independently. This agreement makes us
confident that the simulation is working correctly for this
rather complex interferometer.

During our study of the laser noise couplings, we found a
method of evading the laser noise by introducing artificial
but controlled asymmetries. This is crucial for the practical
implementation of this interferometer, and is likely to find
applications in many other experiments.

Our simulation code is now being used in the detailed
optical design of the advanced LIGO interferometer. We also
envisage the following extensions to the code in the near
future:

• Allowing multiple carrier or rf sidebands, which may be
relevant to the modeling of squeezing experiments that use
nonlinear optical media, e.g., crystals, as well as the model-
ing of error signals for control systems.

• Incorporating the modeling of servo loops. Here we
may rely on the input from quantum control theory as to
whether and how realistically a Heisenberg treatment can
describe a electro-optical feedback system.

• Allowing nonlinear media or other elements with “cus-
tom” dispersion relations.
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APPENDIX: TWO-PHOTON QUANTUM OPTICAL
FORMALISM

We use the two-photon formalism developed by Caves
and Schumaker �9� and Shumaker and Caves �10� to describe
GW interferometers with significant radiation-pressure ef-
fects. In this formalism, any quasimonochromatic optical
field A with frequency near the carrier frequency � is written
as

E�t� = E1�t�cos��t� + E2�t�sin��t�

= �cos �t sin �t��E1�t�
E2�t�

� , �A1�

where E1�t� and E2�t� are called quadrature fields, which
vary at time scales much longer than that of the optical os-
cillation, 1 /�. The quadrature formalism replaces E�t� by

FIG. 7. �Color online� Spectra of noise power at the output port
of the ponderomotive interferometer, normalized to the vacuum
noise level. The noise power is dimensionless, as compared to
vacuum; a pure vacuum �or shot noise� corresponds to unity. The
continuous curves are results of the simulation code, while the data
points are values calculated from the corresponding analytical cal-
culations. In the upper panel the vacuum noise level of the light
exiting the antisymmetric port is shown. The upper �blue� curve
shows the vacuum noise due to the unsqueezed vacuum fluctuations
that enter via the antisymmetric port of the interferometer; the lower
�green� plot represents the noise due to the vacuum fluctuations that
enter via other optical losses in the system. At all frequencies where
the vacuum noise power is below unity, the vacuum modes exiting
the interferometer are squeezed due to radiation-pressure effects.
For the squeezing to be useful, all noise couplings must yield a
lower noise power than the squeezed vacuum. In the lower panel we
show the coupling of laser frequency �blue� and laser amplitude
�green� noise fields to the output port, as calculated by the simula-
tion code. Noise levels of 10−4 Hz/Hz1/2 for frequency noise and
10−8 Hz−1/2 for amplitude noise are assumed at the input to the
interferometer; all other parameters are listed in Table I.
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E = �E1�t�
E2�t�

� . �A2�

The dc components of E1,2�t� can be regarded as monochro-
matic carrier light. In particular, carrier light with amplitude
Dei� is represented as

Dei� ⇔ �Dei��e−i�t ⇔ D�cos �

sin �
� . �A3�

AC components of E1,2�t�, which we denote by A1,2�t�, are
called sideband fields, which are usually more convenient to
study once transformed into the frequency domain,

Ã1,2��� = �
−�

+�

A1,2�t�ei�tdt . �A4�

In quantum two-photon optics, it is convenient to use a
particular normalization for sideband fields

A1,2�t� =�4
��

Ac
�

0

+� d�

2

�a1,2���e−i�t + H.c.� . �A5�

In this way, we have a convenient set of commutation rela-
tions �for ���� �9,10�

�a1,a1�� = �a2,a2�� = �a1,a1�
†� = �a2,a2�

†� = 0, �A6a�

�a1,a2�
†� = − �a2,a1�

†� = 2
i!�� − ��� . �A6b�

Here we have denoted a1,2�a1,2���, a1,2� �a1,2����.
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