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Added uncertainty in the estimated temperature due to
fixing parameters

Bas des Tombe (bdestombe@gmail.com), October 7, 2020

This note attempts to explain how parameters are fixed and to clarify why the uncertainty increases
when fixing parameters. In the example the parameter gamma is fixed.

The parameter uncertainty of𝐶 and𝐷 increaseswhen 𝛾 is fixed. Basicallywhat you are estimat-
ing is howwell does the linear system describes the observations that are corrected for the effects of
the fixed parameter. Thus from the observations you subtract the effect of the fixed gamma (Equa-
tion 11). That results in a higher uncertainty of the, now corrected, observations (Equation 13).
These observations, with a larger uncertainty, are used to estimate 𝐶 and 𝐷, resulting in a larger
uncertainty of 𝐶 and 𝐷. The larger parameter uncertainty results in a wider confidence interval of
the estimated temperature.

The following is copied and adjusted from: des Tombe, B.; Schilperoort, B.; Bakker, M. Esti-
mation of Temperature and Associated Uncertainty from Fiber-Optic Raman-Spectrum Distributed
Temperature Sensing. Sensors 2020, 20, 2235.

Single-Ended Calibration Procedure
In single-ended calibration, the temperature is estimated from Stokes and anti-Stokes intensity
measurements with Equation ??. The parameters that need to be estimated from calibration are 𝛾,
Δ𝛼, and 𝐶, where 𝐶 needs to be estimated for each time step. The parameters are estimated from
the reference temperature at𝑀 locations along the reference sections and at 𝑁 times. Equation ??
is reorganized to amend it for linear regression. The observation at location𝑚 and time 𝑛, denoted
with 𝐼𝑚,𝑛, is written as a linear combination of the unknown parameters:

𝐼𝑚,𝑛 =
1

𝑇𝑚,𝑛
𝛾 − 𝑥𝑚Δ𝛼 − 𝐶𝑛, with 𝑚 = 1, 2, ..,𝑀 and 𝑛 = 1, 2, .., 𝑁 (1)

where 𝑇𝑚,𝑛 is the reference temperature at location 𝑚 and time 𝑛, 𝑥𝑚 is the location of point 𝑚
along the reference sections, and 𝐶𝑛 is the constant 𝐶 of the fiber at time 𝑛. In total, there are𝑁+2
unknown parameters and𝑀𝑁 observations.

The system of 𝑁 Equation 1 for location𝑚may be written in vector form as:

𝐲𝑚 = 𝐗𝑚𝐚 + 𝝐𝑚, (2)

where 𝝐𝑚 are the residuals between the observed values and the fitted values for location𝑚, and

𝐲𝑚 =
⎡⎢⎢⎢
⎣

𝐼𝑚,1
𝐼𝑚,2
⋮

𝐼𝑚,𝑁

⎤⎥⎥⎥
⎦

, 𝐗𝑚 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
𝑇𝑚,1

−𝑥𝑚 −1
1

𝑇𝑚,2
−𝑥𝑚 −1

⋮ ⋮ ⋱
1

𝑇𝑚,𝑁
−𝑥𝑚 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, 𝐚 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛾
Δ𝛼
𝐶1
𝐶2
⋮
𝐶𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3)

The vector 𝐚 contains the unknown parameters that are to be estimated. The system of𝑀𝑁 equa-
tions for all locations may be combined into one system of equations:

𝐲 = 𝐗𝐚 + 𝝐, (4)
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where

𝐲 =
⎡⎢⎢⎢
⎣

𝐲1
𝐲2
⋮
𝐲𝑀

⎤⎥⎥⎥
⎦

, 𝐗 =
⎡⎢⎢⎢
⎣

𝐗1
𝐗2
⋮
𝐗𝑀

⎤⎥⎥⎥
⎦

, 𝝐 =
⎡⎢⎢⎢
⎣

𝝐1
𝝐2
⋮
𝝐𝑀

⎤⎥⎥⎥
⎦

(5)

This system (Equation 4) is solved by minimizing the sum of the squared weighted residuals 𝜒2:

𝜒2 = (𝐲 − 𝐗𝐚)⊺𝐖(𝐲 − 𝐗𝐚) (6)

where ⊺ refers to the transposed matrix and𝐖 is a diagonal matrix given by

diag (𝐖) =
⎡⎢⎢⎢
⎣

𝐖1
𝐖2
⋮

𝐖𝑀

⎤⎥⎥⎥
⎦

, 𝐖𝑚 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
𝜍2𝐼𝑚,1
1

𝜍2𝐼𝑚,2
⋮
1

𝜍2𝐼𝑚,𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7)

The variance, 𝜎2𝐼𝑚,𝑛 , of the distribution of the noise in the observation at location 𝑚, time 𝑛, is a
function of the variance of the noise in the Stokes and anti-Stokes intensity measurements (𝜎2𝑃+
and 𝜎2𝑃−), and is approximated with (Ku et al., 1966):

𝜎2𝐼𝑚,𝑛 ≈ [
𝜕𝐼𝑚,𝑛
𝜕𝑃𝑚,𝑛+

]
2
𝜎2𝑃+ + [

𝜕𝐼𝑚,𝑛
𝜕𝑃𝑚,𝑛−

]
2
𝜎2𝑃− (8)

≈ 1
𝑃2𝑚,𝑛+

𝜎2𝑃+ +
1

𝑃2𝑚,𝑛−
𝜎2𝑃− (9)

The variance of the noise in the Stokes and anti-Stokes intensitymeasurements is estimated directly
from Stokes and anti-Stokes intensity measurements using the steps outlined in Section ??.

Fixed gamma
From an alternative calibration you have estimated 𝛾 and 𝜎2𝛾 . The adjusted system of𝑁 Equation 1
for location𝑚may be written in vector form as:

𝐲′𝑚 = 𝐗′
𝑚𝐚′ + 𝝐′𝑚, (10)

where 𝝐𝑚 are the residuals between the observed values and the fitted values for location𝑚, and

𝐲′𝑚 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐼𝑚,1 −
𝛾

𝑇𝑚,1

𝐼𝑚,2 −
𝛾

𝑇𝑚,2
⋮

𝐼𝑚,𝑁 − 𝛾
𝑇𝑚,𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, 𝐗′
𝑚 =

⎡⎢⎢⎢
⎣

−𝑥𝑚 −1
−𝑥𝑚 −1
⋮ ⋱

−𝑥𝑚 −1

⎤⎥⎥⎥
⎦

, 𝐚′ =
⎡
⎢
⎢
⎢
⎢
⎣

Δ𝛼
𝐶1
𝐶2
⋮
𝐶𝑁

⎤
⎥
⎥
⎥
⎥
⎦

(11)

The variance of 𝐲′𝑚 increases as follows

𝜎2𝐼𝑚,𝑛 ≈ [
𝜕𝐼𝑚,𝑛
𝜕𝑃𝑚,𝑛+

]
2
𝜎2𝑃+ + [

𝜕𝐼𝑚,𝑛
𝜕𝑃𝑚,𝑛−

]
2
𝜎2𝑃− +

1
𝑇𝑚,𝑛

𝜎2𝛾 (12)

≈ 1
𝑃2𝑚,𝑛+

𝜎2𝑃+ +
1

𝑃2𝑚,𝑛−
𝜎2𝑃− +

1
𝑇𝑚,𝑛

𝜎2𝛾 (13)
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Confidence Intervals of the Temperature
The uncertainty in the estimated temperature varies along the fiber as the laser pulse attenuates
when propagating through the fiber, and varies over time due to varying gains and losses in the
DTS device. The two sources that contribute to the uncertainty in the temperature estimate are
the uncertainty in the calibrated parameters and the uncertainty associated with the noise in the
Stokes and anti-Stokes intensity measurements. The former dominates the uncertainty in the es-
timated temperature for measurements with longer acquisition times, while the latter dominates
measurements with shorter acquisition times. Other sources of possible uncertainty are not taken
into account here. These include the uncertainty introduced by the model that relates measured
Stokes and anti-Stokes intensities to temperature, and the uncertainty in measured temperatures
obtained with external sensors. The latter is generally much smaller than the uncertainty in the
DTS temperature from the noise in the Stokes and anti-Stokes intensity measurements.

Estimation of the confidence intervals of the temperature starts with estimating separate prob-
ability density functions for the Stokes and anti-Stokes intensity measurements and the calibrated
parameters. The probability density functions are propagated through the model using a Monte
Carlo sampling procedure following the steps fromJointCommittee forGuides inMetrology (2008a)
and Joint Committee for Guides inMetrology (2008b). This procedure results in an approximation
of the probability density function for the estimated temperature, which is different at each lo-
cation and varies over time. Various summarizing statistics are computed from the approximate
probability density function, including the expected value, the standard deviation, and the confi-
dence intervals. The standard deviation is also called the temperature resolution, but in line with
Joint Committee for Guides in Metrology (2008a), the term standard uncertainty is used here. The
procedure is explained first for single-endedmeasurements, followed by the procedure for double-
ended measurements.

Single-Ended Measurements
Estimation of the confidence intervals for the temperatures measured with a single-ended setup
consists of five steps. First, the variances of the Stokes and anti-Stokes intensity measurements are
estimated following the steps in Section ??. A Normal distribution is assigned to each intensity
measurement that is centered at the measurement and using the estimated variance.

• Here, the original 𝜎2𝐼𝑚,𝑛 is used that is not corrected for the fixed 𝛾

Second, a multi-variate Normal distribution is assigned to the estimated parameters using the co-
variance matrix from the calibration procedure presented in Section .

• The observations have a larger variancewhen a parameter is fixed, thus the covariancematrix
contains larger values and the parameters are estimated less certain.

Third, the distributions are sampled, and the temperature is computed with Equation ??. Fourth,
step three is repeated, e.g., 10,000 times for each location and for each time. The resulting 10,000
realizations of the temperatures approximate the probability density functions of the estimated
temperature at that location and time. Fifth, the standard uncertainties are computed with the
standard deviations of the realizations of the temperatures, and the 95% confidence intervals are
computed from the 2.5% and 97.5% percentiles of the realizations of the temperatures.

• Which are wider due to fixing parameter 𝛾.


