
GOSM : Grid Operations Scenario Maker

User Manual

March 23, 2018

1 Introduction

This document explains the proper usage of the programs associated with scenario creation
software in the Python package prescient gosm. The acronym GOSM stands for Grid
Operations Scenario Maker. GOSM consists of various scripts for the computation and eval-
uation of (generally probabilistic) scenarios related to the forecasting of renewable energy
production. These scripts include preprocessor.py, scenario creator.py, populator.py,
and horse racer.py. The preprocessor.py script prepares input for the scenario cre-
ation process. The scenario creator.py script creates scenarios for a single day from
one or more sources of uncertainty. The populator.py script is a barebones wrapper of
the scenario creator.py script, and offers the additional feature to loop over ranges of
dates and produce scenarios for multiple days. Finally, the horse racer.py script uses the
populator.py script to create scenarios and then executes the simulator to produce some
relevant discrimination statistics concerning different methods for creating and evaluating
scenarios.

2 Installation

2.1 Installing prescient gosm

Once you have been granted access to the prescient gosm repository, you can download the
codebase with following command:

git clone https://github.com/jwatsonnm/prescient_gosm

Upon downloading the code, you will find the all scripts mentioned in this document in
the directory <Install Dir>/prescient/release/Prescient 2.0 which will be hereafter
referred to as $PRESCIENT.

You will need to install a collection of other programs to ensure that the scripts will run
properly. These programs include python of course, as well as a collection of other python
modules (mainly pyomo and the modules in the scipy stack). In addition to python modules,
you must also download an optimizer (one of CPLEX, Gurobi, IPOPT, or another) in order
to evaluate the scenarios. Informatrion about installation of these programs follows.

1

2.2 Python 3.4 or Later and Associated Modules

2.2.1 With Anaconda

A convenient and easy way to acquire Python 3 and the other required modules is through
the Anaconda Python distribution. It may be downloaded from the following website:

https://store.continuum.io/cshop/anaconda/

Make sure to select the graphical installer for Python 3 for Windows, Mac OSX or Linux
32- or 64-bit, depending on your operating system. Run the executable installer to install
Anaconda. This should install the relevant scientific computation libraries, numpy, scipy,
and matplotlib as well as a collection of other modules.

2.2.2 Without Anaconda

If you do not wish to download Anaconda, you can obtain the relevant Python modules in the
following manner. On UNIX and MAC OS X systems, Python 3 is usually already installed
as python or python3. You can easily check this by executing the command python or the
command python3 in the terminal. This should start the Python interactive shell. The
version number should be printed immediately after running the command. You can then
exit by typing quit(). If executing python starts up python2.x whereas executing python3

starts up python3.x, navigate to your home directory and open .bashrc in an editor and add
alias python=python3. This way python3.x will be called by the python command line.

If you do not have the appropriate version of python installed, then you can download an
installer from the website:

https://www.python.org

Simply download the latest version of Python and follow the instructions on the installer.
Additionally, GOSM requires the numpy, scipy, matplotlib, pandas, PyUtilib, networkx,

and nose Python modules. For any module which is not installed, you can execute the
respective command below to install the module.

� numpy: pip install numpy

� scipy:pip install scipy

� matplotlib: pip install matplotlib

� pandas: pip install pandas

� networkx: pip install networkx

� PyUtilib: pip install PyUtilib

� nose: pip install nose

2.3 Pyomo

To install Pyomo, simply open a terminal and enter pip install pyomo. This requires
administrator access. If you do not have administrator access, the command pip install

--user pyomo will install pyomo in the user’s home directory, but it will be installed using
the system python.

2

2.4 Optimizers

There are a couple of options for optimizers which are compatible with prescient. These
include CPLEX, Gurobi, and IPOPT. The installation of any one of these and potentially
other optimizers should enable the usage of the program to optimize specific problems.

2.4.1 CPLEX

Information for CPLEX can be found at the following website:

https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

Installation of the product will likely entail creating an account on the website and may
require purchasing a copy for larger optimization problems.

2.4.2 Gurobi

Information for Gurobi can be found on the following website:

http://www.gurobi.com/

2.4.3 IPOPT

If you are using a UNIX or MAC operating system, you can install IPOPT using the following
commands in the terminal. Before you run these commands, check what the latest version
of IPOPT is on the following website (scroll down to the newest version):

http://www.coin-or.org/download/source/Ipopt/

In the commands we will refer to the version of IPOPT as 3.x.x. You should change them to
reflect the current version.

wget https://www.coin-or.org/download/source/Ipopt/Ipopt-3.x.x.tgz

mkdir Ipopt

mv Ipopt-3.x.x.tgz Ipopt/

cd Ipopt/

tar xvfz Ipopt-3.x.x.tgz

cd Ipopt-3.x.x

cd ThirdParty/Blas/

./get.Blas

cd ../Lapack

./get.Lapack

cd ../ASL

./get.ASL

cd ../Metis

./get.Metis

cd ../Mumps

3

./get.Mumps

cd

cd Ipopt/Ipopt-3.x.x

mkdir build

cd build

../configure

make

make test

make install

After running these commands, open the file .bashrc (.bash profile on Macs) in your
home directory and add the following line to the end of the document with the appropriate
version number replacing the x’s:

export PATH=~/Ipopt/Ipopt-3.x.x/build/bin:$PATH

OR for Windows

set PATH=C:\path\to\Ipopt\Ipopt-3.x.x\build\bin;%PATH%

For more information on installing IPOPT, see the following website:

http://www.coin-or.org/Ipopt/documentation/node10.html

If you are running a Windows operating system, then you can download an executable from
the following website:

http://apmonitor.com/wiki/index.php/Main/DownloadIpopt

After downloading the executable, navigate to the Downloads folder, unzip the downloaded
file, and move the folder ipopt ampl to the C:\ directory. Then add this folder to the PATH
environment variable. You can do this by opening the Control Panel, navigating to System
and Security, then to System, and finally clicking Advanced system settings. Click the button
labeled Environment Variables... and then find the PATH variable in the User Variables and
click Edit.... Then click New and write in C:\ipopt ampl. If there is no PATH variable, click
New... and give the variable the name PATH and the value C:\ipopt ampl.

2.5 Setting up GOSM

After you have successfully installed all of the above programs, you can then install the gosm

package. To do this, navigate to $PRESCIENT and run the command:

python setup.py install

This will install all the remaining programs that you will need to run the scripts in this
document.

4

3 Formatting Input Files

With all of the required program dependencies installed, you will now be able to execute
various gosm scripts to produce and evaluation scenarios. All scripts use generally the same
input formats, so it would be useful to discuss the proper formatting for input files. To use
any of the scripts, there are six different types of input files:

� data files

� sources files

� segmentation files

� options files

� structure files

� upper bounds files

Data files are files which contain the raw forecast and actual data for various energy
sources as well as the demand for power for a certain set of datetimes. Sources files are files
which specify metadata about the data sources as well as auxiliary information on how to
handle the sources. Segmentation files specify criteria on how to select data which is relevant
for a specific datetime being analyzed. Options files specify controls for how the program as
a whole runs. Structure files define the basic structures that are used to create scenarios.
Upper bounds files specify an upper threshold to truncate generated scenarios with. Each of
these are explained in further detail in the following sections.

3.1 Data Files

Before data can be used by the various gosm scripts, it must be processed and formatted in a
manner that the programs expect. This process currently entails creating two separate ”csv”
files for any time-varying data, e.g., load, wind power, or solar power. The first such file
contains actual (measured) data and the other contains forecast data. Generally, the forecast
data will contain quantities that were predicted day-ahead, and the actuals correspond to the
realized quantities. These two files will from now on be referred to as the actuals data file
and forecasts data file, respectively. In each of these files, the first column must be labeled
as ”datetimes” and contain datetime quantities specified in the ’YYYY-MM-DD HH:MM’
format; other datetime formats may be recognized as well. The data columns must then be
labeled to indicate the type of data quantity being reported – either ”forecasts” or ”actuals”.
Any additional columns in the data files will be ignored.

In general, a user will have multiple data files when modeling a single problem, each of
which may contain load data, solar generation data, or wind generation data. All such data
files must be formatted in the manner described above. An example snippet from a properly
formatted data file is as follows:

5

datetimes,forecasts
2016-07-01 06:00,160.15
2016-07-01 07:00,710.8
2016-07-01 08:00,1536.78
2016-07-01 09:00,2103.23

Figure 1: Example file structure of a forecasts data file

3.2 Segmentation Files

For each source of uncertainty, you will need to provide a file for segmentation. Each source
can of course be segmented by the same rules as well by providing the same file. The structure
of the file is a series of lines where each line specifies a different criterion to segment the data
by. GOSM operates by going through each of the lines of the file and sequentially segmenting
the data by each criterion. Each line should indicate a segmentation criterion by listing in
order the criterion name, column to segment by, type of segmentation, and proportion.

There are currently two types of segmentation. The first is to segment by window and
this will be done if the type is set to window. If this method is chosen, then to compute the
prediction interval for a given datetime, GOSM will select the proportion of points closest to
the datetime in the specified field. The other method of segmentation is enumerate. This will
select all the datetimes which match exactly in the column specified. Note that the cutpoint
width is ignored in this method but it still must be provided (can be an arbitrary value). The
enumeration method is especially useful if you want to use an external program to segment
the data. In this case, you can just use the datetimes found by the external tool to call the
segmentation method of GOSM.

name , column name , method , d e s i r e d p r opo r t i on
f o r e c a s t s , f o r e c a s t s , window , 0 . 2
enumerate , d e r i v a t i v e pa t t e r n s , enumerate

Figure 2: Example of a segment criteria file

6

command/ exec s c e n a r i o c r e a t o r . py

−−sources− f i l e s o u r c e l i s t . csv
−−output−d i r e c t o r y ou tpu t s c ena r i o c r e a t o r
−−hyper rec tang l e s− f i l e hyper rec tang l e names 1source . dat
−−dps− f i l e t e s t dp s . dat
−−s cenar io−template− f i l e s c ena r i o t emp la t e . dat
−−t ree−template− f i l e t r e e t emp la t e . dat
−−r e f e r en c e−model− f i l e ReferenceModel . py
−−s cenar io−day 2015−06−30

Figure 3: Example of an options file for scenario creator.py

3.3 Structure Files

Structure files are dat-files that define the basic structure of hyperrectangles, day part sepa-
rators and skeleton point paths. How these objects are used to create scenarios is explained
in chapter 5.

A hyperrectangle is simply the product of n intervals that are subsets of [0, 1]. Here, n
refers to the number of sources of uncertainty. A set of hyperrectangles is called a pattern.
Every hyperrectangle you define must be an element of such a pattern. When writing the
hyperrectangles file, you have to obey the following rules:

� The first nonempty line has to contain the keyword Sources, followed by a whitespace
and the names of the sources, separated by whitespaces.

� Patterns start with the keyword Pattern followed by a colon, a whitespace and the
name of the pattern.

� The hyperrectangles belonging to this pattern must be listed below, each hyperractangle
in a new line starting with a dash, followed by the hyperrectangle’s name, a whitespace
and the intervals in the order of the sources as defined above, separated by whitespaces.

� An interval must be written as (x, y), where x defines the lower and y the upper bound.
The bounds cannot have more than four decimal places.

� Every hyperrectangle of one pattern must be either disjoint to all other hyperrectangles
of this pattern, or a proper subset of an other hyperrectangle. If a hyperrectangle
contains a proper subset, the subset is subtracted from the hyperrectangle.

� The whole unit cube has to be covered by hyperrectangles. The easiest way to cover
residual space is to create one hyperrectangle with every interval equal to (0,1).

Figure 4 shows an example of a hyperrectangle file.

7

Sources : SoCalSolar SoCalWind

Pattern : sun r i s eun i 3
−sunu3low (0 , 1) (0 , 0 . 3 3)
−sunu3mid (0 , 1) (0 . 3 3 , 0 . 6 7)
−sunu3high (0 , 1) (0 . 6 7 , 1)

Pattern : wide1
−widelow (0 , 0 . 1) (0 , 0 . 1)
−widehigh (0 . 9 , 1) (0 . 9 , 1)
−wide1re s id (0 , 1) (0 , 1)

Figure 4: Example of a hyperrectangle file

Day part separators (dps) are hours of the day (i.e. integer values greater than or equal
0 and less than or equal 23). They are defined within the same file as the skeleton point
paths. The latter basically define ways of connecting skeleton points (which are represented
by the hyperrectangles) at different day part separators. When writing the dps file, you have
to obey the following rules:

� Each source starts with the phrase Source:, followed by a blank space and the source’s
name (if you are specifying paths for multiple sources, the source’s name has to be
multiple). Every following line before the next source declaration is considered to
belong to this source.

� Day part separators must be defined for each source. The row in which the day part
separators are given has to start with dps, followed by the dps hours (0-based) separated
by whitespaces.

� The line before all paths of one particular source has to contain the phrase Paths. The
following lines contain the name of the hyperrectangle pattern (e.g., wide) and the
path which leads to this pattern (e.g., widelow widemid). All possible paths have to be
covered. The empty path also has to be declared. It defines the skeleton point pattern
at hour 0.

Figure 5 shows an example of a dps file.

8

Source : SoCalSolar
dps s un r i s e 10 15 sunset
Paths (dec i s i on , path)
meanonly
quick meanonly
d i v e r s e meanonly quicklow
d i v e r s e meanonly quickhigh
meanonly meanonly quicklow d iv e r s e 1
meanonly meanonly quicklow d iv e r s e 2
meanonly meanonly quicklow d iv e r s e 3
meanonly meanonly quicklow d iv e r s e 4
meanonly meanonly quickhigh d i v e r s e 1
meanonly meanonly quickhigh d i v e r s e 2
meanonly meanonly quickhigh d i v e r s e 3
meanonly meanonly quickhigh d i v e r s e 4

Source : mu l t ip l e
dps s un r i s e 11 sunset
Paths (dec i s i on , path)
sun r i s eun i 3
wide1 sunu3low
wide1 sunu3mid
wide1 sunu3high
sun r i s eun i 3 sunu3low widelow
sun r i s eun i 3 sunu3low widehigh
sun r i s eun i 3 sunu3low wide1re s id
sun r i s eun i 3 sunu3mid widelow
sun r i s eun i 3 sunu3mid widehigh
sun r i s eun i 3 sunu3mid wide1re s id
sun r i s eun i 3 sunu3high widelow
sun r i s eun i 3 sunu3high widehigh
sun r i s eun i 3 sunu3high wide1re s id

Figure 5: Example of a dps file

As you can see, in the special case of solar sources (or multiple sources that include at
least one solar source) you can use the terms ”sunrise” and ”sunset” to define the day part
separators for the respective hours. The definite hours will then be estimated by the program.
In any other case, the first hour must be 0 and the last hour 23.

3.4 Upper Bounds Files

If you wish to truncate the values of scenarios by a singular upper bound for certain days,
you can specify how to do so with an upper bounds file. These files are structured to specify
an upper bound for a date range, e.g., for the month of August, the power generated must
be less than 1000 MW. To this end, the file will consist of lines in the following format:

01/01/00, 01/30/00, 20

This specifies that starting on January 1, and going on until and including January 30, the

9

upper bound is 20. Note that dates are specified in the MM/DD/YY format. Comments are
ignored and you may also specify the names of the columns as

first_date last_date value

before the actual rows with upper bounds, but this is not necessary.
Figure 6 shows an actual example of an upper bounds file.

Upper bounds f o r wind c a p a c i t i e s
f i r s t d a t e l a s t d a t e va lue
07/01/12 03/31/13 4711
04/01/13 04/01/13 4615
04/02/13 04/30/14 4515

Figure 6: Example of an upper bounds file

3.5 Sources Files

To specify all the source-specific information for scenario generation, it is required that a
sources file is written. In this file, all information for every source that is specific to that
source (data files, capacities, source type) must be explicitly defined.

To specify these sources, the user must create a file with .txt extension and within this
file, for every source, write out a Source declaration followed by a parenthesis, then the
source’s name followed by a comma. Then for each source parameter key and the corre-
sponding value value, write key="value" separated by commas. Note each value must be
surrounded by quotation marks. Then terminate the Source with a close parenthesis and a
semicolon. For an example of how this might appear, see Figure 7

Source(name1,
key1=”value1”,
key2=”value2”
);
Source(name2,
key1=”value3”,
key2=”value4”
);

Figure 7: Example sources file

There are a couple of parameters which must be specified for each source. These are as
follows

� actuals file: The name of the file containing data for actual power generation values.
This must have an ’actuals’ column. May be the same as the forecasts file.

10

� forecasts file: The name of the file containing data for forecasts of power generation.
This must have a ’forecasts’ column. May be the same as the actuals file.

� source type: The type of source. This is one of ’solar’, ’wind’, or ’load’.

In addition to these, there are additional optional parameters that can be specified for
each source.

� segmentation file: The name of the file specifying how to segment the source.

� capacity file: The name of the file specifying daily capacities for the source.

� is deterministic: Set to True if the scenario generated from this source should be
simply the forecast for the source. Set to False or leave unspecified to have the scenarios
generated stochastically.

� frac nondispatch: The fraction of power which is nondispatchable from this source.
This should be a decimal value between 0 and 1.

� scaling factor: The factor by which to scale the power generation values for this source
prior to scenario generation. This should be a decimal value greater than 0.

� diurnal pattern file: A name of the file specifying the diurnal pattern for a given
solar source. This may be used to estimate the sunrise and sunset for this source.

� forecasts as actuals: If this options is set to True, then the actuals data will be set
to the forecasts data. This option is only allowed if is deterministic is also set to
True.

For an example which sets some of these parameters, see Figure 8

Source (SoCalSolar ,
a c t u a l s f i l e=”SP acts . csv ” ,
f o r e c a s t s f i l e=”SP fo r e ca s t . csv ” ,
source type=”s o l a r ” ,
s e gmen t a t i o n f i l e=”s e g s o l a r . txt ” ,
c a p a c i t y f i l e=”ub . dat ”) ;

Source (NoCalSolar ,
a c t u a l s f i l e=”NP acts . csv ” ,
f o r e c a s t s f i l e=”NP forecast . csv ” ,
source type=”s o l a r ” ,
i s d e t e rm i n i s t i c=”True ” ,
s c a l i n g f a c t o r =”0.5” ,
f r a c nond i spa t ch =”0.5”) ;

Source (load ,
a c t u a l s f i l e=” l o ad h i s t o r y . csv ” ,
f o r e c a s t s f i l e=” l o ad h i s t o r y . csv ” ,
source type=”load ”) ;

Figure 8: Real example of a sources file

11

In addition to the above, every sources file must list one source of load data and at least
one source of power (either wind or solar).

3.5.1 Old Sources File Format

For backwards-compatibility purposes, prescient supports an older csv-style format for
specifying each of the sources. An example of this format is shown in Figure 9.

This f i l e i s a l i s t o f s ou r c e s o f uncerta inty , l i n e format :
source , a c tua l s f i l e , f o r e c a s t f i l e , type , segment f i l e , bounds f i l e
SoCalSolar , SP acts . csv , SP fo r e ca s t . csv , s o l a r , s e g s o l a r . txt , ub . dat
NoCalSolar , NP acts . csv , NP forecast . csv , s o l a r , s e g s o l a r . txt ,
load , l o ad h i s t o r y . csv , l o a d h i s t o r y . csv , load , s e g l oad . txt ,

Figure 9: Example of old source file format

Each row in the file corresponds to a different uncertainty source. It should list in order
a name, the filename of the historic data, the filename of the forecasts, the source type, the
segmentation filename, and then the upper bounds file each separated by a comma. Note
that you do not need to provide an upper bounds file for each source.

Note that using this sources file format, it is not possible to specify individual scaling
factors or nondispatchable factors for sources, nor can a diurnal pattern file be specified.

3.6 Options Files

Options files are text files which enable the user to actually execute a given script. These are
used in conjunction with the runner.py script located in the gosm directory. If options.txt
is the options file for a certain script it can be run with the command

python runner.py options.txt

The way an options file is structured is by listing first the program the options file is
associated with on the first line. This is specified by first writing command/exec followed by
a whitespace and the name of the python script it is associated with. Then each consecutive
line should contain options which are to be passed to the script using typical command line
syntax. An example script for running scenario creator.py is shown in Figure 3. Note that
the listed options are not necessarily all options needed to run the script. To view all possible
options you can either add the line --help to the options file and run the above command
again, or you can look at the file gosm options.py, which also contains the respective default
values.

4 preprocessor.py

The preprocessor is a script to prepare the input data files for the scenario creator. It applies
thresholds to the power values for each source separately. The user can set a negative and a

12

positive threshold such that all power values greater than the positive threshold are set to this
threshold and all values less than the negative threshold are also set to this threshold. This
is especially useful for avoiding negative values, which may cause troubles when simulating
with the created scenarios.

Running the preprocessor simply requires creating a file which lists all the files you wish
to preprocess. The format of this file is composed of lines each specifying a file name and the
type of source. An example of this file is in figure 10.

f i l e 1 . txt , s o l a r
f i l e 2 . txt , wind

Figure 10: Example of an options file for preprocessor.py

Figure 11 shows an example of the options file to run the preprocessor using the script
runner.py (cf. section 3.6). The important options to consider are --preprocessor-list,
which allows one to specify the file with the names of the files to preprocess, and --output-directory

where one specifies where to store the preprocessed files. The user also will denote which
types of sources to threshold and at what values with the various threshold options listed.

command/ exec p r ep roc e s s o r . py

Options regard ing f i l e in− and output :
−−preproce s so r− l i s t l i s t o f f i l e s . txt
−−output−d i r e c t o r y output pr ep roce s so r

Options regard ing the p r ep ro c e s s o r :
−−wind−power−pos−th r e sho ld 5000
−−wind−power−neg−th r e sho ld 0
−−s o l a r−power−pos−th r e sho ld 5000
−−s o l a r−power−neg−th r e sho ld 0
−−load−pos−th r e sho ld 10000
−−load−neg−th r e sho ld 0

Figure 11: Example of an options file for preprocessor.py

5 scenario creator.py

The script scenario creator.py constructs scenarios for a single day of data. The exact
algorithm for doing so is described in the following paragraphs.

First, the data is read from the source files. For solar sources, the average hours of
sunrise and sunset are estimated for each month in order to discard all data points outside
these sunshine hours. Note that these estimates are not used as day part separators (except
if you are using populator.py).

13

Then the errors (differences between forecasts and actuals) are segmented by the specified
segmentation criteria and a univariate epi-spline distribution is fitted to the resulting error
data at each day part separator for each source. If the user wants to use copulas across sources
to take into account, that the errors across sources are correlated, all these distributions at
one day part separator are used to create a copula (which will be used like a multivariate
distribution).

After that, the distributions are used to find representative points (vectors of error values)
at each day part separator. This is done for each hyperrectangle by computing the conditional
expected value of the respective distribution given the event of being inside of the interval
bounds of the hyperrectangle.

At the end, each path is translated into a scenario with an associated probability. These
probabilities are either computed by using copulas (to take into account that the errors
across day part separators are correlated) or (assuming independence) by just multiplying
the volumes of the hyperrectangles belonging to this path/scenario. The scenarios can then
translated into dat-files as input for a PySP-model. To do so, the user would include in the
same directory as scenario creator.py a scenario template file and a tree template file.
The structure of these files is described in the documentation of daps.

By setting the option --sample-skeleton-points, the method of computing the skeleton
point values as described above is replaced by simply sampling from a uniform random
distribution in [0, 1] and applying the inverse cdf of the respective error distributions (or
marginals). The option --number-scenarios specifies how many scenarios are to be created
this way.

We describe the proper usage of this script using the prior options file (cf. figure 3) as an
example use case. The five essential options are explained below:

� --sources-file: the file which contains the sources;

� --output-directory: the directory (possibly non-existent prior to running) to store
the computed scenarios in;

� --hyperrectangles-file: the file which contains the possible hyperrectangles (cf.
figure 4);

� --dps-file: the file which contains the day part separators and the paths (cf. figure
5);

� --scenario-day: the date of the day for which you want to create the scenarios.

After running the program, the output directory should contain a directory for each date
with the desired scenarios in addition to one scenario where forecasts are used and one where
actuals are used.

6 populator.py

The populator is a simple script which loops over scenario creator.py on a specific date
range. This is implemented by simply adding options --start-date and --end-date which
specify the start and end dates for which you want to compute scenarios. These dates should

14

be provided in YYYY-MM-DD format. Figure 12 displays a sample options script for the
populator. The option --scenario-creator-options-file is used to specify an options file
that is passed to scenario creator.py each time it is called. This will come in handy in
particular when using the script horse racer.py (cf. chapter 7). However, those options
will be overwritten by the options you explicitly declare in the populator’s options file.

command/ exec populator . py

−−s t a r t−date 2015−06−20
−−end−date 2015−06−25
−−sources− f i l e s o u r c e l i s t . csv
−−output−d i r e c t o r y s c ena r i o ou tput
−−s cenar io−c reator−opt ions− f i l e r un s c e n a r i o c r e a t o r . txt

Figure 12: Example of an options file for populator.py

The output is exactly the same as for scenario creator.py only it has directories for each
date. A difference for solar sources is, that the user of scenario creator.py has to specify
the day part separators at sunrise and sunset in the options file, whereas populator.py uses
the monthly averages that are estimated in order to discard data outside the sunshine hours.
Hence, the user of populator.py is not required to specify day part separators at sunrise
and sunset for every day of the date range.

7 horse racer.py

horse racer.py is a simple script which links the results from the populator script to the
simulator in prescient. For the specified sources, it constructs scenarios via the populator
and then uses these scenarios in the simulation specified. It can be used to specify multiple
experiments and the options are to be stored in a configurations file. The options for the
populator and the simulator must be specified for each experiment, but either stage can be
skipped by passing the option --skip. The format of the configurations file should be as
follows:

Horse: <name>

Populator Options:

<populator options>

Simulator Options:

<simulator options>

This format can be repeated as many times as desired in the file. The following file is an
example of a configurations file which specifies two experiments.

15

Horse : horse1

Populator Options :
−−s t a r t−date 2015−03−01
−−end−date 2015−03−31
−−sources− f i l e s o u r c e l i s t . csv
−−output−d i r e c t o r y ou tpu t ho r s e r a c e r / horse1
−−s cenar io−c reator−opt ions− f i l e r u n s c e n a r i o c r e a t o r 1 . txt

Simulator Options :
−−s imulate−out−of−sample
−−run−s imu la tor
−−model−d i r e c t o r y .
−−s o l v e r gurobi
−−plot−i nd iv idua l−gene ra to r s
−−t raceback
−−output−sced− i n i t i a l −cond i t i on s
−−output−sced−demands
−−output−sced−s o l u t i o n s
−−output−ruc− i n i t i a l −cond i t i on s
−−output−ruc−s o l u t i o n s
−−output−ruc−d i spa t che s
−−output−d i r e c t o r y ou tpu t ho r s e r a c e r / horse1 s im

Horse : horse2

Populator Options :
−−s t a r t−date 2015−03−01
−−end−date 2015−03−31
−−sources− f i l e s o u r c e l i s t . csv
−−output−d i r e c t o r y ou tpu t ho r s e r a c e r / horse2
−−s cenar io−c reator−opt ions− f i l e r u n s c e n a r i o c r e a t o r 2 . txt

Simulator Options :
−−s imulate−out−of−sample
−−run−s imu la tor
−−model−d i r e c t o r y .
−−s o l v e r gurobi
−−plot−i nd iv idua l−gene ra to r s
−−t raceback
−−output−sced− i n i t i a l −cond i t i on s
−−output−sced−demands
−−output−sced−s o l u t i o n s
−−output−ruc− i n i t i a l −cond i t i on s
−−output−ruc−s o l u t i o n s
−−output−ruc−d i spa t che s
−−output−d i r e c t o r y ou tpu t ho r s e r a c e r / horse2 s im

To execute horse racer.py, you must pass two arguments in the command line, the
first specifying the configurations file and the second specifying the name of the output
file. If no output file is specified, the results are saved in results.txt. For example if we
named our configurations file horse configurations.txt and wanted to store the results in
sim results.txt, we would execute the command

16

python horse_racer.py horse_configurations.txt sim_results.txt

The final results of the simulation is a collection of stack graphs of the power usage at
each day for each of the methods of simulating as well as a csv file containing a summary of
the results for the simulation. A sample stack graph is shown in figure 13.

Figure 13: Example of a stack graph

The csv file produced contains information about the total cost of power generation, load
shedding and over generation. The following figure shows an example of this file.

Horse , Total Costs , Load Shedding , Over Generation
Dete rmin i s t i c ,14636408 .3274225 ,2377 .614206718833 ,239 .97296887286
Stochas t i c ,14584649 .0065271 ,2415 .0235034420048 ,224 .16919864287

Figure 14: Example of a result file

17

command/ exec populator . py
−−output−d i r e c t o r y=s imp l e no s to rage s c engen
−−t raceback
−−sources− f i l e=s imp l e no s t o r ag e s ou r c e s . txt
−−s t a r t−date=2015−06−15
−−end−date=2015−06−20
−−s cenar io−c reator−opt ions− f i l e=run s c e n a r i o c r e a t o r . txt

Figure 15: run populator simple nostorage.txt

8 Example Populator Script

For the purposes of testing gosm, there exists a collection of scripts which demonstrate basic
usage of the program as well as ways in which a user may modify the behavior of the program
to suit his or her needs. These files are all located in the $PRESCIENT/examples directory
and can be run from that directory with the appropriate command. For the purposes of aid
in understanding the scripts, the following sections will explain one of these scripts.

8.1 run populator simple nostorage.txt

This file is the simplest example of an options file which runs the populator and is repro-
duced in Figure 15 with its corresponding scenario creator options file in Figure 16. This
program will produce scenarios for solar power generation. This script can be run when in
the $PRESCIENT/examples directory with the command
runner.py run populator simple nostorage.txt.

A few comments on the options specified are in order. The essential options for populator
scripts are --start-date and --end-date, which specify start and end date (in YYYY-MM-
DD format) for the range on which you wish to create scenarios, --output-directory which
specifies where you wish to store the created scenarios, and
--scenario-creator-options-file which specifies the file containing options specific to
the creation of scenarios. The sources file must also be specifed with the --sources-file

option. If these are not specified, the script will not execute.
The other options are optional and are ways users can modify the execution of the pop-

ulator. In this script, we see the usage of --traceback which prints errors in the event the
program crashes.

While the populator script acts more at a macroscopic level by specifying details beyond
the scope of how scenarios are generated, the user specifies details of scenario construction
on a day-by-day basis. The scenario creator options file in Figure 16 demonstrates this fact.
We first see that there are certain essential options which are those specifying the sources
file, the hyperrectangles file, the dps file, and the output directory. Each of these are needed
to execute the scenario creator.

In addition,the file includes the --scenario-template-file and --tree-template-file

options which specify to the program to construct PySP files for simulation with. These are
more complicated structured files which can be better understood with auxiliary sources for
the model by which the simulator works. We also see options for the epi-spline which specify

18

command/ exec s c e n a r i o c r e a t o r . py

−−sources− f i l e s o u r c e l i s t . csv
−−output−d i r e c t o r y ou tpu t s c ena r i o c r e a t o r
−−hyper rec tang l e s− f i l e hyper rec tang l e names 1source . dat
−−dps− f i l e t e s t dp s . dat
−−s cenar io−template− f i l e s c ena r i o t emp la t e . dat
−−t ree−template− f i l e t r e e t emp la t e . dat
−−r e f e r en c e−model− f i l e ReferenceModel . py
−−s cenar io−day 2015−06−30

Figure 16: run scenario creator.txt

certain parameters of the specific spline model that can be varied. Then, we see there are
options specifying whether to plot certain graphs which are produced during execution. The
reference model must also be specified with the --reference-model-file option.

Since we are dealing with solar data, we see that the options --dps-sunrise and
--dps-sunset are set. This is actually not essential as the program will estimate the hours
of sunrise and sunset based on historic data. It would be essential if generating scenarios for
a single day using the scenario creator, but since our scripts run the populator, it is not
required.

There are a host of other options for the scenario creator. These can be seen by using
the scenario creator.py -h command to print the program’s help page.

8.1.1 Output

After executing the script, the user should find a collection of files contained in the
$PRESCIENT/examples/simple nostorage scengen directory. Within the directory pyspdir twostage,
the user may find a directory for each day of scenario creation. Within this file will be a
collection of structured files with the extension .dat which are used for the purposes of sim-
ulation. These files will not be explained here. The raw scenario data will be found in the
scenarios.csv file and will contain 24-vectors for each of the scenarios created. In the plots
directory, there will be a plot of the scenarios themselves as well as of the distributions used
to construct the scenarios. The plot of the scenarios is reproduced here in Figure 17.

9 Advanced Topics

9.1 Spatial Copulas

If the user wishes to take into account dependencies across space when constructing sce-
narios, he or she will want to use spatial copulas. This can be done by specifying the
--use-spatial-copula option and a partition file with the --partition-file option.

For an example of how the scenario creator options file should be structured, see Fig-
ure 18. We note that the user can specify a specific copula which can be fit with the

19

Figure 17: Scenario Plot Produced by run populator simple nostorage.txt

--spatial-copula option, of which currently only the Gaussian Copula is available as an op-
tion. The user can also specify the --use-same-paths-across-correlated-sources which
means that for a specific scenario, on each of the correlated sources, the same hyperrectangle
set will be used. For uncorrelated sources, different sources may use different hyperrectangles.

9.1.1 Partition Files

For the purposes of using spatial copulas, it is necessary to specify which sources are related.
For GOSM, this is done using a partition file. In it, sources which are related are grouped
together and any singleton source is specified in its own section.

The structure of the file is as follows:

<Group1 Name>:

-<Source1>

-<Source2>

...

20

command/ exec s c e n a r i o c r e a t o r . py

Options regard ing f i l e in− and output :
−−sources− f i l e gosm test / bp a s o u r c e l i s t . csv
−−output−d i r e c t o r y gosm test / ou tpu t s c ena r i o c r e a t o r
−−hyper rec tang l e s− f i l e gosm test / hyper rec tang l e names 1source . dat
−−dps− f i l e gosm test / s p a t i a l c u t p o i n t s . txt

Options regard ing a l l d i s t r i b u t i o n s :
−−plot−var i ab l e−gap 10
−−plot−pdf 1
−−plot−cd f 0
−−cdf−i nve r s e−t o l e r an c e 1 .0 e−3

−−use−s pa t i a l−copula
−−s pa t i a l−copula gauss ian−copula

−−use−same−paths−across−co r r e l a t ed−s ou r c e s

−−pa r t i t i on− f i l e gosm test / p a r t i t i o n . txt

Figure 18: An example scenario creator file for spatial copulas

<GroupN Name>:

-<SourceN1>

-<SourceN2>

...

Singletons:

-<SingleSource1>:

-<SingleSource2>:

For good measure, an actual partition file example is in Figure 19.

Par t i t i o n s F i l e

Group 1 :
−ARW
−PSW
−WFW

Sing l e t on s :
−STL
−TRW

Figure 19: Example of a partition file

21

9.2 Disaggregated Sources

In certain circumstances, it may be the case that a user has a source which is actually
an aggregation of multiple sources. This user may want to generate scenarios using this
aggregate source and then have the generated scenarios be disaggregated according to certain
proportions. This can be done by setting the ”aggregate” option for a given source to ”True”
and then setting the ”disaggregation file” to a file which has the following format:

source,proportion

<Source1>,<Proportion1>

<Source2>,<Proportion2>

...

In the above, <Source1> refers to the name of the first component source of the aggregate
source and <Proportion1> is the corresponding proportion of the power which the source
should be producing.

An example of this disaggregation file is presented in Figure 20.

source , propor t ion
A, 0 . 2
B, 0 . 4
C, 0 . 4

Figure 20: Example of a disaggregation file

A sources file which might appear with this disaggregation file is also shown in Figure 21.

Source (Wind ,
a c t u a l s f i l e=”gosm test /2012−2013 BPA fo r e ca s t s a c tua l s . csv ” ,
f o r e c a s t s f i l e=”gosm test /2012−2013 BPA fo r e ca s t s a c tua l s . csv ” ,
source type=”wind ” ,
s e gmen t a t i o n f i l e=”gosm test / segment bpa . txt ” ,
c a p a c i t y f i l e=”gosm test /manual ub . dat ” ,
aggregate=”True ” ,
d i s a g g r e g a t i o n f i l e=”gosm test /wind generator s . txt ”) ;

Source (Load ,
a c t u a l s f i l e=”gosm test /CAiso−TAC demand 12−15. csv ” ,
f o r e c a s t s f i l e=”gosm test /CAiso−TAC demand 12−15. csv ” ,
source type=”load ” ,
s e gmen t a t i o n f i l e=”gosm test / no segmentat ion . txt ”) ;

Figure 21: Example of a disaggregation file

22

