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This document describes two methods for estimating the total size of
a population given a collection of samples taken with replacement. The
first is described in Cuthbert, Michael Scott. 2009. “Tipping the Iceberg:
Missing Italian Polyphony from the Age of Schism,” Musica Disciplina 54:
39–74. The second is described in Boneh, Shahar, Arnon Boneh, and R.
J. Caron. 1998. “Estimating the Prediction Function and the Number of
Unseen Species in Sampling with Replacement,” Journal of the American
Statistical Association 93: 372–79. This discussion adopts the following no-
tation.

• N is the true population size.

• y is the number of samples taken.

• xk is the size of the kth sample.

• n is the number of distinct entities observed across all samples.

• nk is the number of entities observed k times across all samples, includ-
ing n0, which is the number of unobserved entities in the population.

• p = n
N

is the proportion of the population observed.

Cuthbert

Cuthbert’s method of estimation is a two-stage process that relies on prob-
abilistic reasoning. For the first stage, we momentarily assume that the
samples are independent, random, and select from the entire population.
Under this assumption, the probability that a given entity will appear in the
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kth sample is xk

N
, and the probability that it will not appear in any sample

is the product of the probabilities that it does not appear in each sample:

P(unobserved) =
∏y

k=1 (1− xk

N
) =

∏y
k=1N − xk
Ny

. Moreover, since under this

assumption each of the N entities in the population has an identical likeli-
hood of not appearing in any sample, the expected number of unobserved

entities is E(n0) = N · P(unobvserved) =

∏y
k=1N − xk
Ny−1

. And since, by defi-

nition, n0 = N − n, an estimate for N can be generated by solving for it in
the following equation (all parameters other than N are known).∏y

k=1N − xk
Ny−1

− (N − n) = 0 (1)

This equation is challenging to solve analytically, since the left-hand side
of this expression is largely a ratio of polynomials in N of approximate degree
y. However, since the value of N is assumed to be a positive integer greater
than n but less than some reasonably large upper bound, and since the left-
hand side of the equation is a decreasing function of N , an approximate
solution to this equation can be found relatively expediently via recursive
binary search (this is the strategy implemented in iceberg.estimate). This
approximate solution is our “initial estimate” of N , N̂0.

In the second stage of Cuthbert’s method, we cross-validate the initial
estimate of N to test and correct for the assumption that the samples are
independent and random. Note that neither the independence nor the ran-
domness of the samples themselves are really being tested here. Rather, we
are testing the degree to which the distribution of entities among the sam-
ples, as a whole, approximates the distribution that would be expected of
truly random samples. The process involves first simulating a population of
N̂0 entities that includes every observed entity along with N̂0 − n “dummy”
entities, each representing an unobserved entity. We then randomly choose a
number of the original samples to serve as a “validation set,” and note how
many entities out of the n originally observed would not have been observed
if those samples had not been collected—call this nlost. Then construct a
“simulated set” of samples by iterating through the validation set and tak-
ing truly random samples of identical size from the simulated population
(all originally observed entities plus the new dummy entities), and count
how many “new” entities are in the simulated set, from the perspective of
the corpus of known samples not in the validation set—call this n̂lost. The
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“error factor” associated with this cross-validation experiment, εi, is then
either the extent by which the true number exceeds the simulated number
relative to the smaller quantity, or 1 if the simulated number is greater than

the true number: εi = 1 + max
(

nlost−n̂lost

n̂lost
, 0
)

. Restricting εi ≥ 1 ensures

that cross-validation only increases our ultimate estimates of N (or equiva-
lently, that it only decreases our estimates of p). The “corrected estimate”
for cross-validation experiment i, N̂i, is then:

N̂i = n+ εi

(
N̂0 − n

)
(2)

The resultant distribution of {N̂i} across a sufficiently large number of
cross-validation experiments then indicate something about the stability of
N̂ for a given population—which is to say, the sensitivity of this estimate
to non-randomness in the samples. More specifically, while the definition
of the error factors ensures that most (if not all) distributions of {N̂i} will
exhibit some leftward skew, the relative severity of this skew can still indicate
whether the estimate is comparatively stable or unstable.

Boneh, Boneh, and Caron (BBC)

The second method, proposed by BBC, is completely different in its motiva-
tion and execution. the authors begin by considering a multinomial distribu-
tion, describing the outcome of sampling from N objects with replacement
and with probabilities p1, . . . , pN . They then observe that this is related in
the limit to a scenario in which there are N independent Poisson processes
with parameters λ1, . . . , λN . The relation is fairly transparent: if we track
these Poisson processes in the interval [0, 1] and count how many of them
occur once, how many occur twice, etc., then this is identical to generating
values for {n1, n2, . . . nm}, where m is the maximum number of times that
any individual Poisson process is detected.

In order to use this information to estimate the total number of Poisson
processes, N , it is useful to define the auxiliary function D(t) to be the num-
ber of processes detected in the interval (1, t+ 1] that were not first detected
in the interval [0, 1], and the function Ψ(t) = E(D(t)), which BBC call “the
prediction function.” Ψ(t) has several attractive mathematical properties,
including that it has infinite order alternating copositivity (that is, its kth

derivative takes positive values on the positive half-line for all odd k and neg-
ative values for all even k) and that it is bounded, which together mean that
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it has an asymptotic limit as t increases. Computing this limit is tantamount
to generating an estimate for n0.

BBC also show that this limit may be estimated with a relatively simple
two-part process. First, calculate a biased estimate, Ψ̂(∞), using a simple
sum of exponentials:

Ψ̂(∞) =
m∑
k=1

nke
−k (3)

An unbiased estimate, n̂0, can then be obtained by numerically solving the
equation:

n̂0

(
1− e

−n1
n̂0

)
= Ψ̂(∞) (4)

BBC also give some details for how this equation may be efficiently solved
via numerical methods; iceberg.estimate utilizes their algorithm.
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