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Abstract

This document defines the Single Particle Image Format (SPIF) file struc-
ture and and variables. The SPIF file is a NetCDF file and a universal file
format for single particle image probe data.

Contents

1 Motivation

A variety of file formats are used by particle imaging instrument manufacturers.
The formats are dictated by hardware and bandwidth limitations, and so may not
have a convenient or conventional structure. However, after data has been ac-
quired, and as hardware improves, the imposed limitations vanish. We propose a
new file format for these imaging probes. The new format will specify a single
structure which all imaging probe data formats may be mapped onto, leading to
improved accessibility for users and refinement of data processing routines. We
aim for this format to be adopted by instrument manufacturers. The format is also
suitable for representing historical datasets and is suitable for long term archiv-
ing of raw data. File converters for some of the most commonly used probes are
provided.

2 Description

The SPIF file format uses the NetCDF4 format. NetCDF4 is a structured binary
file format capable of containing large datasets and has automatic compression
utilities. NetCDF4 is widely supported on a variety of platforms and environ-
ments.



Datasets will be contained in groups within a SPIF file. Only data from a
single instrument (or instrument channel) may be stored in a given group although
SPIF files can contain data from multiple instruments through the use of multiple
groups. Metadata will be provided for each instrument to provide information on
data sources etc.

3 SPIF File Definition

root The root of the file contains global attributes.

instrument group Each instrument data included within the file has a separate
group.

root Instrument metadata

core The SPIF-Core group contains the data necessary for subsequent anal-
ysis

aux The SPIF-Aux group contains additional data which is generated by a
given instrument, but is not essential for data processing. This data is

included to maintain integrity of the original dataset, making SPIF a
suitable format for long term archiving.

IvIX Processed data may be included as a subgroup of either core or aux or
as individual variables within the same group but with an appropriate
level attribute.



3.1 SPIF Root

The root of the SPIF file has all of the global data and attributes relating to the
production of the file.

char title = “SPIF-Single Particle Image Format”;

char institution = Institution that produced the file;

char version = Conventions being used — SPIF-1.0, if following this document;

char references = Link to web, paper, document reference describing datasets, project, etc;
char history = creation/modification datetime, version number;

char comment = datetime, comment, changelog(?);

char project = Name of project;
char start_date = Reference date of all datasets;

char conventions = Conventions used in file; e.g., SPIF-0.86;

3.2 Instrument Group

The root of the instrument group contains information pertaining to the individual
instrument. It may also include information about the probe software module that
was used to create it, this may be different to the version of the overall processing
code.

Some probes will have multiple channels, for example the 2DS has two or-
thogonal arms, with each detecting particles independently, essentially behaving
as independent instruments. Since the primary coordinate applies only to particle
sequences from a single instrument, for a probe that is made up of multiple instru-
ments (e.g., 2DS, 3V-CPI, etc) where the particle detection will not be coincident,
data is split into different instrument groups. These groups should be named us-
ing the core instrument name, followed by the channel name, separated by a dash.
So for a 2DS instrument, the Instrument Groups would be named *2DS-H’ and
2DS-V’.

Metadata that should be defined in the Instrument group include:

char instrument_name = Short name of instrument;

char instrument_long_name = Full descriptive name of instrument;

char instrument_channel = Instrument channel (if applicable);

char institution = Institution operating instrument;

char reference = Link to web, paper, document reference describing instrument;
char instrument_serial_number = Serial number or instrument identifier;

char manufacturer = Manufacturer of instrument;



char instrument_firmware = Instrument firmware version;

char instrument_software = Instrument software version;

char platform = Name or description of platform instrument is mounted on;

array of char raw_filenames = Raw data filename(s) used to generate the current instrument
dataset;

char spif _processor = Name and version of code used to generate SPIF output;

char comment = Any further notes about instrument, platform, location, orientation, etc;

Although envisaged to be used exclusively with optical array probes, there is
no reason that this format could not be used for any instrument type. Therefore
there may not be suitable universal descriptive attributes for all instrument types.
It may thus be desirable that these attributes are placed in a sub-group although
this may add a layer of complexity for little gain. Below are variables which may
be used for an optical array probe.

int pixels()

pixels:long_name =
Numbers of pixels in instrument;

pixels:comment = Any relevant comments;

float resolution(scalar or 2)

resolution:long_name =

Physical resolution of array pixels instrument;
resolution:units =

“micrometer”;
resolution:ancillary_variables =

instrument:resolution_err;
resolution:comment =

Any relevant comments;

float resolution_err(scalar or 2)

resolution_err:long_name =

Uncertainty of physical resolution of array pixels instrument;
resolution_err:units =

instrument:resolution;
resolution_err:comment =

Any relevant comments;



float arm_separation

arm_separation:long_name =

Physical distance between probe arms;
arm_separation:units =

“millimeter”;
arm_separation:ancillary_variables =

instrument:arm_separation_err;
arm_separation:comment =

Any relevant comments;

float arm_separation_err

arm_separation_err:long_name =

Uncertainty of physical distance between probe arms;
arm_separation_err:units =

instrument:arm_separation;
arm_separation_err:comment =

Any relevant comments;

boolean antishatter_tips

antishatter_tips:long_name =

Use of antishatter-, or Korolev-, tips on probe arms;
antishatter_tips:comment =

Any relevant comments;

int bpp
bpp:long_name = Bits per pixel used in image data;
bpp:comment = Any relevant comments;

int wavelength

wavelength:long_name =

Laser wavelength of instrument;
wavelength:units =

113 LL)

nm”;
wavelength:comment =
Any relevant comments;

3.3 Instrument Core

The Instrument Core group contains data necessary for analysis and processing
of the raw data. There is a single coordinate for all variables in this group. This
means that some of the arrays are larger than would otherwise be the case, but it
also means that all the arrays are the same length which makes for more efficient



storage, chunking, and retrieval. The coordinate is images, the length of image_ns
defines the length of the coordinate dimension, where the arrival time of the nth
image is given by image_ns(n) + image_sec(n).

There are two additional dimensions defined for the image data — slices and
array. The slices dimension corresponds to the image dimension in the direction
of flight, and is set as the maximum number of slices encountered (or allowed) by
the instrument. The array dimension corresponds to the image dimension along
the diode array, and is set as the number of diodes of the instrument.

The instrument core data group consists of:

float image_ns(images)

image_ns:long_name =

“image arrival time in nanoseconds”;
image_ns:units = ns since image_sec;
image_ns:ancillary_variables =

image_sec;
image_ns:comment =

Any relevant comments;

int image_sec(images)

image_sec:standard_name =

“time”’;
image_sec:long_name =

“image arrival time in seconds”;
image_sec:timezone =

“UTC”;
image_sec:units = “seconds since start_date 00:00:00 +00007;
image_sec:strftime_format =

“%F %T %z”,
image_sec:comment =

Any relevant comments;

int image_len(images)

image_len:long_name =
“image event length in number of slices”;

image_len:units = “number of slices”;
image_len:comment =
Any relevant comments;

uint8 image(images, slices, array)
. 13 %,
image:long_name = “Image array”;

image:comment = Any relevant comments;



int buffer_index(images)

buffer_index:long_name =

“index of data buffer from which image was extracted”;
buffer_index:units =

“buffer number”;
buffer_index:comment =

Buffer information can be found in the Instrument Aux section;

boolean overload(images)

overload:long_name =

“Probe particle overload status”;
overload:comment =

Any relevant comments;

In some cases, image buffers may contain pieces of information about each
image in addition to the time, length, and image, as covered above. For exam-
ple, DMT monoscale instruments include an image counter and depth of field
(DOF) flag for each image; likewise, DMT greyscale instruments include an im-
age counter and TAS for each image. In these cases where the additional informa-
tion encoded in the data stream apply to single images, these parameters may be
included in the Instrument Core section as additional parameters.

3.4 Instrument Aux

The Instrument Aux group contains auxiliary data relevant to a given instrument.
This data is included to maintain integrity of the original dataset, making SPIF a
suitable format for long term archiving. This group has its own time coordinate;
this accommodates 1 Hz one dimensional data that may be transmitted in parallel
to the two dimensional image data.

In this group, there are three parameters with defined names covering the aux
timestamp and true airspeed (TAS). It is important to include TAS as a defined
name, since this parameter is required to calculate sample volume for use in L2
derived microphysical parameters such as number concentration, liquid water con-
tent, etc.



int time(time)

time:standard_name =

“time”;
time:long_name = “aux time in seconds”;
time:timezone = “UTC”;
time:units = “seconds since start_date 00:00:00 +00007;
time:strftime_format =
“%F %T %7,
time:comment = Any relevant comments;

int TAS_original(time)

TAS_original:long_name =
“TAS used during original data acquisition”;
TAS_original:units =

13 9,

m/s”’;
TAS_original:comment =
Any relevant comments;

int TAS_corrected(time)

TAS_corrected:long_name =

“Corrected TAS”;
TAS_corrected:units =

“m/s”;
TAS_corrected:comment =

Any relevant comments;

Note there are two TAS parameters defined. TAS_original represents the TAS
used during original acquisition of the data. If this TAS is accurate, and no correc-
tions are required, this is the only TAS that needs to be supplied, and will be used
in all subsequent calculations. However, if post-flight corrections were required
to the TAS data, these should be input to the TAS_corrected parameter. If present,
TAS_corrected will be used in all subsequent calculations. The ratio of corrected
to original TAS values will also be used to recalculate particle diameters, to ac-
count for any stretching or contraction of images that occurred due to incorrect
probe sample rates.

If desired, other parameters can be added to the Aux group, and may include:

* Housekeeping data
* Buffer time stamps
* Image counters

* Data acquisition timing words



* Temperature
* Altitude

» Standard PADS aggregated data

TODO: Add description of ’data discovery’ terms.

3.5 Level 0 Processed Data

Following extraction of image data into SPIF format, images can be analyzed
to extract information about the particles they contain. At the most basic level,
parameters of interest describe geometric and physical measurements of the iden-
tified particles. Thus, the Level O data contains basic information about identified
particles such as:

* Diameters (more discussion on this below)
* Area

* Perimeter

* Bounding box within image

* Orientation

* Right edge pixel count

 Left edge pixel count

* Center-in (boolean)

e All-in (boolean)

Interpretation of particle diameter presents a challenge, as there are currently
several definitions of particle diameter in use by the community, and a standard
definition likely isn’t reasonable, since different diameters are useful depending on
the measurement scenario. Thus, to make SPIF useful to the broader community,
it should include a wide set of diameters in use by the community.

An additional consideration for the inclusion of various particle diameters is
how these diameters are named. Throughout the literature, varying names have
been given to essentially identical diameters. In the diameter definitions here, an
attempt will be made to standardize the names, while referencing other names
used for a given diameter definition.



Note that the Level 0 particles will be sized using number of pixels — conver-
sion to sizing in microns takes place in Level 1. To differentiate measurements
made in the different coordinate systems, sizing measurements in reference to
number of pixels will have the prefix N, whereas measurements with units of mi-
crons will have the prefix D.

N, Max diameter in the photodiode-array dimension. Equivalent to Ny, (Korelev
et al. 2000, Leroy 2016) and Ls (Lawson 2011).

N; Max diameter in the time dimension. Equivalent to N, (Korolev et al. 2000,
Leroy 2016) and L; (Lawson 2011).

N, Diameter of circle with area equivalent to particle area.

N, Diameter of minimum enclosing circle. Equivalent to N,,,, (Heymsfield et
al. 2013).

N;, Hypotenuse of triangle formed by N, and N;.
N, Mean of Nj, and N;.

Nyiice _couns Diameter in slice with maximum number of shaded pixels. Equivalent to L,
(Lawson 2011).

Nyiice_airy Diameter in slice with greatest pixel separation. Equivalent to Ly (Lawson
2011).

Nreconst Reconstructed circle diameter for center-in particles.

Npore Max hole diameter as defined in Korolev 2007.

Each of the parameters discussed above applies to individual particles. For
most OAPs, there can be multiple particles in a single image. Given this n-to-one
relationship, the Level O particle data will require use of a new dimension corre-
sponding to the number of particles detected, which is likely to be different than
the number of images captured. The particles dimension thus covers all param-
eters described in this section. With the additional dimension, there is a need for
supplemental parameters which describe the relationship of detected particles to
their original image, both in terms of a reference to the additional image, as well
as a more exact temporal location, based on the particle’s location in the image
frame.

image_index Reference to source image index.

particle_sec Particle arrival time in seconds.
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particle_ns Particle arrival time in nanoseconds.

With these factors in mind, the Level O data should be implemented as de-
scribed below:

int image_index(particles)

image_index:long_name =

“reference to index of image containing current particle”;
image_index:units =

“image number”;
image_index:comment =

Any relevant comments;

float particle_ns(particles)

particle_ns:long_name =

“particle arrival time in nanoseconds”;
particle_ns:units =

ns since particle_sec;
particle_ns:ancillary_variables =

particle_sec;
particle_ns:comment =

Any relevant comments;

int particle_sec(particles)

particle_sec:standard_name =

“time”;
particle_sec:long_name =

“image arrival time in seconds”;
particle_sec:timezone =

“UTC”;
particle_sec:units =

“seconds since start_date 00:00:00 +00007;
particle_sec:strftime_format =

“%F %T %z”,
particle_sec:comment =

Any relevant comments;

float N_p(particles)

N_p:long_name = “Max diameter in the photodiode-array dimension”;
N_p:equivalent_names =
13 _y’ LS”
N_p:units = pixels;
N_p:comment = Any relevant comments;
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float N_t(particles)

N_t:long_name = “Max diameter in the time dimension”;
N_t:equivalent_names =
“N_x, L 1 2
N_t:units = pixels;
N_t:comment = Any relevant comments;

float N_eq(particles)

N_eq:long_name = “Diameter of circle with area equivalent to particle area”;
N_eq:equivalent_names =

N_eq:units = pixels;

N_eq:comment =  Any relevant comments;

float N_s(particles)

N_s:long_name = “Diameter of minimum enclosing circle”;
N_s:equivalent_names =
“N_max”
N_s:units = pixels;
N_s:comment = Any relevant comments;
float N_h(particles)
N_h:long_name = “Hypotenuse of triangle formed by N_p and N_t”;

N_h:equivalent_names =

N_h:units = pixels;

N_h:comment = Any relevant comments;

float N_m(particles)

N_m:long_name= “Mean of N_p and N_t”;
N_m:equivalent_names =

N_m:units = pixels;

N_m:comment = Any relevant comments;
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float N_slice_count(particles)

N_slice_count:long_name =
“Diameter of slice with maximum number of shaded pixels”;
N_slice_count:equivalent_names =
[ 97
N_slice_count:units =
pixels;
N_slice_count:comment =
Any relevant comments;

float N_slice_diff(particles)

N_slice_diff:long_name =
“Diameter of slice with greatest pixel separation”;
N_slice_diff:equivalent_names =
47
N_slice_diff:units=
pixels;
N_slice_diff:comment =
Any relevant comments;

float N_reconst(particles)

N_reconst:long_name =
“Reconstructed circle diameter for center-in particles”;
N_reconst:equivalent_names =

N_reconst:units = pixels;
N_reconst:comment =
Any relevant comments;

float N_hole(particles)

N_hole:long_name =
“Max hole diameter”;
N_hole:equivalent_names =

N_hole:units = pixels;

N_hole:comment = Any relevant comments;

float area(particles)

area:long_name = “Number of shaded pixels”;
area:units = pixels;
area:comment = Any relevant comments;
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float perimeter(particles)

perimeter:long_name =

“Number of pixels around perimeter of particle”;
perimeter:units = pixels;
perimeter:comment =

Any relevant comments;

series of int bbox(particles, coords)

bbox:long_name = “Bounding box of particle”;
bbox:units = p0, t0, pN, tN pixel coordinates;
bbox:comment = Any relevant comments;

float 1_edge_count(particles)

1_edge_count:long_name =
“Number of shaded pixels along left (Oth) photodiode boundary for cur-
rent particle”;
1l_edge_count:units =
pixels;
1_edge_count:comment =
Any relevant comments;

float r_edge_count(particles)

r_edge_count:long_name =
“Number of shaded pixels along right (Nth) photodiode boundary for cur-
rent particle”;
r_edge_count:units =
pixels;
r_edge_count:comment =
Any relevant comments;

boolean center_in(particles)

center_in:long_name =

“Flag indicating if particle is center-in”;
center_in:units = pixels;
center_in:comment =

Any relevant comments;
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boolean all_in(particles)
all_in:long_name =
“Flag indicating if particle is all-in”;
all_in:units = pixels;

all_in:comment = Any relevant comments;

float ellipse_maj_axis(particles)
ellipse_maj_axis:long_name =
“The length of the major axis of the ellipse fit to particle”;
ellipse_maj_axis:units =
pixels;
ellipse_maj_axis:comment =
Any relevant comments;

float ellipse_min_axis(particles)
ellipse_min_axis:long_name =
“The length of the minor axis of the ellipse fit to particle”;
ellipse_min_axis:units=
pixels;
ellipse_min_axis:comment =
Any relevant comments;

float ellipse_angle(particles)
ellipse_angle:long_name =
“Orientation of particle fit to ellipse”;
ellipse_angle:units =
radians;
ellipse_angle:comment =
“Given in radians with range from -pi/2 to pi/2. Reference is parallel to

photodiode array.”;

float £it_maj_axis(particles)
fit_maj_axis:long_name =
“The length of particle along the least-squares fit line orientation”;
fit_maj_axis:units =
pixels;
fit_maj_axis:comment =
Any relevant comments;
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float £it_min_axis(particles)

fit_min_axis:long_name =
“The length of particle perpendicular to the least-squares fit line orienta-
tion”;
fit_min_axis:units=
pixels;
fit_min_axis:comment =
Any relevant comments;

float £it_angle(particles)
fit_angle:long_name =
“Orientation of particle fit to line using least-squares technique”;
fit_angle:units =radians;
fit_angle:comment =
“Given in radians with range from -pi/2 to pi/2. Reference is parallel to
photodiode array.”;

float £it_r2(particles)

fit_r2:long_name =
“R squared value from least-squares line fit”;

fit_r2:units = unitless;

fit_r2:comment = Any relevant comments;

float F(particles)
F:long_name = “Shape factor of particle.”;
F:units = unitless;
F:comment = “As defined in Holroyd 1986.”;

float S(particles)

S:long_name = “Ratio of fully shaded slices to total slices”;
S:units = unitless;
S:comment = “As defined in Holroyd 1986.”;

3.6 Level 1 Processed Data

Whereas Level 0 data presents particle information as simply properties of an im-
age, Level 1 contains particle properties linked to physical, real-world quantities.
In Level 1, there are two primary categories of data:

1. Particle properties scaled to physical dimensions (um, etc.) using the reso-
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lution of the instrument

2. Parameters classifying particles into habits or other categories

When generating scaled particle properties, care must be taken to correct for
improper scaling in the image time direction due to inconsistencies between the
probe sampling rate and the speed of the aircraft. These inconsistencies can hap-
pen for various reasons — the most common reasons include exceeding TAS limits
of the probe; having incorrect or constant airspeed inputs supplied to the probe;
or problems with local pitot measurements due to icing, blockages, or other rea-
sons. In these cases, the image scaling along the time direction can be corrected
by scaling it by the correct TAS divided by the original TAS.

Scaled particle properties should include the following parameters:

int image_index(particles)
image_index:long_name =
“reference to index of image containing current particle”;
image_index:units =
“image number”;
image_index:comment =
Any relevant comments;

float D_p(particles)

D_p:long_name = “Max diameter in the photodiode-array dimension”;
D_p:equivalent_names =
GED_y’ LS’?
D_p:units = microns;
D_p:comment = Any relevant comments;

float D_t(particles)

D_t:long_name = “Max diameter in the time dimension”;
D_t:equivalent_names =
“D_X, Ll”
D_t:units = microns;
D_t:comment = Any relevant comments;

float D_eq(particles)

D_eq:long_name = “Diameter of circle with area equivalent to particle area”;
D_eq:equivalent_names =

D_eq:units = microns;

D_eq:comment = Any relevant comments;
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float D_s(particles)

D_s:long_name = “Diameter of minimum enclosing circle”;
D_s:equivalent_names =
“D_max”
D_s:units = microns;
D_s:comment = Any relevant comments;

float D_h(particles)

D_h:long_name = “Hypotenuse of triangle formed by D_p and D_t”;
D_h:equivalent_names =

D_h:units = microns;

D_h:comment = Any relevant comments;

float D_m(particles)

D_m:long_name = “Mean of D_p and D_t”;
D_m:equivalent_names =

D_m:units = microns;

D_m:comment = Any relevant comments;

float D_slice_count(particles)

D_slice_count:long_name =
“Diameter of slice with maximum number of shaded pixels”;
D_slice_count:equivalent_names =
[ 9
D_slice_count:units =
microns;
D_slice_count:comment =
Any relevant comments;

float D_slice_diff(particles)

D_slice_diff:long_name =
“Diameter of slice with greatest pixel separation”;
D_slice_diff:equivalent_names =
47
D_slice_diff:units=
microns;
D_slice_diff:comment =
Any relevant comments;
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float D_reconst(particles)

D_reconst:long_name =
“Reconstructed circle diameter for center-in particles”;
D_reconst:equivalent_names =

D_reconst:units = microns;
D_reconst:comment =
Any relevant comments;

float D_korolev(particles)

D_korolev:long_name =
“Korolev-corrected diameter”;
D_korolev:equivalent_names =

D_korolev:refererence =
“Korolev, 2007

D_korolev:units = microns;
D_korolev:comment =
Any relevant comments;

float N_korolev(particles)

N_korolev:long_name =
“Korolev-corrected diameter”;
N_korolev:equivalent_names =

N_korolev:refererence =
“Korolev, 2007

N_korolev:units = pixels;
N_korolev:comment =
Any relevant comments;

float ellipse_maj_axis(particles)

ellipse_maj_axis:long_name =

“The length of the major axis of the ellipse fit to particle”;
ellipse_maj_axis:units =

microns;
ellipse_maj_axis:comment =

Any relevant comments;
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float ellipse_min_axis(particles)

ellipse_min_axis:long_name =

“The length of the minor axis of the ellipse fit to particle”;
ellipse_min_axis:units =

microns;
ellipse_min_axis:comment =

Any relevant comments;

float £it_maj_axis(particles)

fit_maj_axis:long_name =

“The length of particle along the least-squares fit line orientation”;
fit_maj_axis:units =

microns;
fit_maj_axis:comment =

Any relevant comments;

float £it_min_axis(particles)

fit_min_axis:long_name =
“The length of particle perpendicular to the least-squares fit line orienta-
tion”;
fit_min_axis:units =
microns;
fit_min_axis:comment =
Any relevant comments;

float area(particles)

area:long_name = “Area of shaded pixels”;
area:units = microns?;
area:comment = Any relevant comments;

The second component of Level 1 data contains parameters used to classify
particles. Examples of such classification parameters could include results from
the Holroyd habit classification technique, or the Korolev habit classification tech-
nique. There are no set requirements regarding which classification methods are
included, but any included parameters should follow the structure outlined below.

float habit(particles)

habit:long_name = “Name of habit classification technique”;

habit:key = parameterl: charl, parameter2: char2, etc;

habit:comment = Any relevant comments;

Where the key attribute uses keyword: value pairs to specify the classification
types and their corresponding character code for the given parameter.
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In cases where classifications have auxiliary parameters necessary for classi-
fication (e.g., the R parameter in the Korolev classification scheme), these should
also be included in this section. These parameters should be named in such a way
where they can be easily identified, and should include a long description and
units parameter, as appropriate.

4 Level 2 Processed Data

Level 2 Processed Data contains binned histograms and calculated bulk micro-
physical parameters calculated using the Level 1 per-particle data using a fixed
time base. These parameters are either one-dimensional (bulk parameters) or two-
dimensional (binned histograms), where a reference to time is the principle di-
mension in both cases. Thus, all parameters in Level 2 use Time as their primary
dimension, calculated using a fixed time base, and encompassing all particle de-
tection timestamps in the file. In the case of binned data, the second dimension is
Bins.

5 SPIF Code Definitions

Will complete this section when code is more final.

5.1 Data Chunking

It is quite possible for a translator to read in an entire raw data file for a sin-
gle probe, parse that into the appropriate (and possibly large) python variables,
and pass the resultant dictionary to the NetCDF read/writer module for writing
into the SPIF file. This would result in on-the-fly chunking and filtering by the
NetCDF library. It is also possible that the raw data files are too numerous or large
to be handled all together and so subsets of the data need to be streamed to the
read/write module piecemeal. This will also occur if the SPIF file is being written
in realtime. This will mean that chunking and filtering may have to be set manu-
ally. Thus there may be information passed from the translator to the read/write
module that is not stored in the SPIF file but is used to construct the SPIF file.
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