
ASC MHL v1.0 Media Hash List

ASC Media Hash List
(ASC MHL)

Advanced Data Management Subcommittee
THE AMERICAN SOCIETY OF CINEMATOGRAPHERS

Specification v1.0

15. March, 2022

1 of 38

ASC MHL v1.0 Media Hash List

Table of Contents

Introduction 4

Scope 4

Conformance Notation 5

References 5

Glossary 6

Concepts and Semantics 7

General 7

ASC MHL Manifest 7

ASC MHL History 8

General 8

Nested ASC MHL Histories 9

Locating Hash Records 12

ASC MHL Chain 12

ASC MHL Collection 12

ASC MHL Operations 13

General 13

Operations 13

Ignore Semantic 13

Hash Algorithms 14

ASC MHL Create 14

ASC MHL Diff 15

ASC MHL Verify 15

ASC MHL History Append 16

ASC MHL Rename 16

ASC MHL Flatten 17

ASC MHL Manifest File 18

Schema 18

Character Encoding 18

Naming of the ASC MHL Manifest Files 18

Types 19

HashListType 19

CreatorInfoType 19

ProcessInfoType 20

AuthorType 20

ToolType 21

2 of 38

ASC MHL v1.0 Media Hash List

ProcessType 21

IgnoreType 22

RelativePathType 22

HashesType 22

HashType 23

HashFormatType 24

DirectoryHashType 25

RootDirectoryHashType 27

DirectoryHashFormatContainerType 28

ReferencesType and HashListReferenceType 28

MetadataType 28

ASC MHL Chain File 29

Schema 29

Character Encoding 29

Naming of the ASC MHL Chain Files 29

ASC MHL Chain XML Format 29

DirectoryType 29

HashlistType 30

ASC MHL Collection File 30

Schema 30

Character Encoding 30

Naming of the ASC MHL Collection Files 30

Appendix 31

Appendix A: ASC MHL Manifest XML Schema 31

Appendix B: Example ASC MHL XML File 34

Appendix C: Syntax of the Ignore Pattern 35

Appendix D: Hash Format Configuration and Encoding 36

Appendix E: ASC MHL Directory XML Schema 37

Appendix F: Example ASC MHL Chain File 37

Appendix G: Process for creating a hash of hashes. 38

3 of 38

ASC MHL v1.0 Media Hash List

Introduction
It is critical to create secure and reliable backups of on-set media content to ensure lossless
transfer during production and post processes. However, verifying the integrity of these files as
they move between various facilities is currently a challenging, laborious, and error-prone task.
There is no mechanism to track when and where a file was damaged or how many times a file has
been duplicated. These challenges stem from use of different tools and processes between
sending and receiving facilities. The American Society of Cinematographers (ASC) has developed
the ASC Media Hash List (ASC MHL) specification to standardize the media transfer process with
the goal of injecting consistency and efficiency in media workflows.

After media is recorded in camera, it needs to be copied to other storage devices, so that camera
cards can be cleared and reused. Camera cards are often organized by shooting day as part of
being offloaded to on-set storage. Then the media content needs to travel to several facilities in
order to affect post-production processes on them. Depending on the receiving facility’s ingest
policies, checksums may or may not be created for the received content files. Even if checksums
are created, their location on the transfer device and the underlying method to generate them
could be inconsistent between sending and receiving entities. ASC has designed the ASC MHL
specification to solve these underlying problems while giving facilities freedom to develop media
handling policies that fit their unique needs.

The ASC MHL specification accommodates various common hash algorithms, allowing
productions and post facilities to choose the algorithm that suits their unique workflows. ASC
MHL mandates the presence of critical information, defines how and where this information is
stored, and records the hashes for the media in a human and machine-readable ASC MHL
Manifest file. By requiring that a new ASC MHL Manifest be created for every copy, the
specification creates a chain of custody, thereby allowing for accurate tracking of damaged and
duplicated files.

1.Scope
This document specifies format definitions and operations of ASC Media Hash List (ASC MHL), for
the exchange and processing of media hashes and associated metadata. It contains the
information required to implement an “ASC MHL-compliant” software system.

ASC MHL is intended for use in media production workflows and has been optimized to support
the tracking of interactions and changes within a data set over the course of multi-step data
transfer. A common example is movement of camera original media from a production set to post
production teams and multiple backup targets with end-to-end verification.

4 of 38

ASC MHL v1.0 Media Hash List

While ASC MHL may be applicable in file-based workflows beyond media, such applications are
outside the scope of this document. For example ASC-MHL may not be ideal for indexing of
filesystems for search optimization or maintaining chain of custody in N-way sharing of dynamic
research data sets.

Note: This specification is called “ASC MHL” to unambiguously distinguish it from a predecessor
specification that predates ASC MHL and has been specified outside of the ASC as “MHL”.

2.Conformance Notation
Normative text is text that describes elements of the design that are indispensable or contains the
conformance language keywords: "shall", "should", or "may". Informative text is text that is
potentially helpful to the user, but not indispensable, and can be removed, changed, or added
editorially without affecting interoperability. Informative text does not contain any conformance
keywords.

All text in this document is, by default, normative, except: the Introduction, any section explicitly
labeled as "Informative" or individual paragraphs that start with "Note:”

The keywords "shall" and "shall not" indicate requirements strictly to be followed in order to
conform to the document and from which no deviation is permitted.

The keywords, "should" and "should not" indicate that, among several possibilities, one is
recommended as particularly suitable, without mentioning or excluding others; or that a certain
course of action is preferred but not necessarily required; or that (in the negative form) a certain
possibility or course of action is deprecated but not prohibited.

The keywords "may" and "need not" indicate courses of action permissible within the limits of the
document. The keyword “reserved” indicates a provision that is not defined at this time, shall not
be used, and may be defined in the future. The keyword “forbidden” indicates “reserved” and in
addition indicates that the provision will never be defined in the future.

The following font/font color formatting is used throughout this document:

● Consolas font is used for file or directory names, e.g. ascmhl_chain.xml
● Purple Consolas font is used for XML elements, attributes and values, e.g. HashType

3.References
World Wide Web Consortium (W3C) (26 November 2008). Extensible Markup Language (XML) 1.0
(Fifth Edition)

World Wide Web Consortium (W3C) (28 October 2004). XML Schema Part 1: Structures (Second
Edition)

5 of 38

ASC MHL v1.0 Media Hash List

World Wide Web Consortium (W3C) (28 October 2004). XML Schema Part 2: Datatypes (Second
Edition)

SMPTE ST 2114:2017, Unique Digital Media Identifier (C4 ID)

xxHash https://github.com/Cyan4973/xxHash

Internet Engineering Task Force (IETF) (September 2001). RFC3174 - US Secure Hash Algorithm 1
(SHA1)

Internet Engineering Task Force (IETF) (April 1992). RFC1321 - The MD5 Message-Digest
Algorithm

Internet Engineering Task Force (IETF) (October 2006). RFC4648 - The Base16, Base32, and
Base64 Data Encodings

4.Glossary
4.1. Scope of an ASC MHL History/Manifest: the directory tree covered by the ASC MHL

History/Manifest.

4.2. Managed Data Set: The collection of files/folders within the scope of an ASC MHL History
with one common root directory.

4.3. Data Management Process: Any process that adds new items or removes or changes
existing items within a managed data set, e.g. copying, moving or deleting files, or
updating embedded metadata structures.

4.4. Hash Record: A collection of information about a file or directory, consisting of the path to
the file or directory, related information such as file size, and the associated, qualified hash
values.

4.5. ASC MHL tool: A software system or tool implementing the required formats and
behaviors defined by this specification.

4.6. MD5: The algorithm specified in [RFC1321].

4.7. SHA1: The algorithm specified in [RFC3174].

4.8. C4: The algorithm specified in [SMPTE ST 2114].

4.9. XXH64: The algorithm specified as XXH64 in [xxHash].

4.10. XXH3: The algorithm specified as XXH3 in [xxHash].

4.11. XXH128: The algorithm specified as XXH128 in [xxHash].

6 of 38

https://github.com/Cyan4973/xxHash

ASC MHL v1.0 Media Hash List

5.Concepts and Semantics

5.1. General

ASC MHL allows for the creation of hash records for data sets and the subsequent verification of
such data sets based on established hashing algorithms. ASC MHL also supports the initiation
and maintenance of a chain of custody by tracking each copy made after the creation of a
managed data set. The application of ASC MHL is to document hash records in ASC MHL
Manifest files and, optionally, keep track of the history of a managed data set in an ASC MHL
History.

5.2. ASC MHL Manifest

An ASC MHL Manifest is a file, as detailed in ASC MHL Manifest File, that contains hash records
for one or more files and/or directories within its scope. The scope of an ASC MHL Manifest is
defined as the directory containing the files and directories of the managed data set of the ASC
MHL Manifest. File system paths relative to the scope are used for hash records in the ASC MHL
Manifest. An ASC MHL Manifest shall not contain hashes for files or directories outside of its
scope.

An ASC MHL Manifest is part of an ASC MHL History when it is located in a directory named
ascmhl alongside an ASC MHL Chain file. The ascmhl directory must reside in the root level of
the ASC MHL History’s scope.

If an ASC MHL Manifest is not part of an ASC MHL History, it is considered stand-alone and
therefore, its scope cannot be derived by its location in the file system. The scope is also not
explicitly specified in the ASC MHL Manifest and should be user-provided whenever needed.

Example: A data set is shipped on an USB drive while the associated ASC MHL Manifest is sent
via email. In order to verify the data set based on the ASC MHL Manifest, an user will need to
point an ASC MHL tool to the location of the data set in the file system and make the connection
to the associated ASC MHL Manifest.

The hashes recorded in a given ASC MHL Manifest represent a snapshot of the corresponding
managed data set at a given moment in time. Once created, ASC MHL Manifest files are
immutable and shall not be altered.

An ASC MHL Manifest may contain more than one hash value for a given file or directory, each
computed with a hash algorithm supported by ASC MHL (see Appendix D for details). Every hash
is labeled as either original, verified, or failed using the action attribute of
HashFormatType (see HashFormatType).

● original indicates that the hash is the initial hash for a file or directory within the ASC
MHL History

7 of 38

ASC MHL v1.0 Media Hash List

● verified indicates that the hash was computed directly from the current copy of the file
and verified against the file’s hash recorded in a previous ASC MHL Manifest generation

● failed indicates that the hash computed from the current copy of the file does not match
the record in a previous ASC MHL Manifest generation and that the file is therefore not
identical to its previous copy

In addition to the list of hashes, an ASC MHL Manifest contains sections with information about
the creator and the process used to create the ASC MHL Manifest. It may optionally contain
references to other ASC MHL Manifests (see Nested ASC MHL Histories), as well as user defined
metadata. See HashListType for details.

5.3. ASC MHL History

5.3.1. General

An ASC MHL History is defined as an ASC MHL Chain and all ASC MHL Manifests referenced
from that ASC MHL Chain, stored in a directory named ascmhl.

The ascmhl directory is created at the top level of a media directory, so that the ASC MHL History
is automatically transferred whenever the media directory is copied or moved. That media
directory is referred to as the scope of the ASC MHL History and the files/subdirectories inside the
media directory are referred to as the managed data set. All ASC MHL Manifests within a given
ASC MHL History shall cover the same scope, i.e. hash record paths across the ASC MHL
Manifests shall be relative to the same location in the file system.

The ascmhl directory can include one optional text file, called README.txt. The file shall be UTF-8
encoded. The README.txt file can include any human-readable text information, for example
general documentation about verification, links to ASC MHL tools, or other references. The
README.txt file is not part of the history and shall not include any information already stored in
the ASC MHL History (i.e in the ASC MHL Manifest and ASC MHL Chain files).

Example directory structure with media files, ascmhl directory, ASC MHL Manifests and ASC MHL
Chain.

8 of 38

ASC MHL v1.0 Media Hash List

5.3.2. Nested ASC MHL Histories

Example folder structure of a nested ASC MHL History

ASC MHL Histories can be nested, i.e. ASC MHL Histories may be present within the scope of a
given ASC MHL History. Nested ASC MHL Histories should be referenced in ASC MHL Manifests
(see ReferencesType and HashListReferenceType) to establish a relationship between higher-level
ASC MHL Histories and nested ASC MHL Histories.

The hash record of a file or directory shall be recorded in the ASC MHL History closest to it in
terms of the file system hierarchy. This ensures that the entire history of a managed file/directory is
documented in a single (i.e., the closest) ASC MHL History. Consequently, higher-level ASC MHL
Histories only store hashes of files/directories outside of any of the subdirectories that contain
nested ASC MHL Histories. But the references to nested ASC MHL Histories establish a
connection between higher-level ASC MHL Histories and the files/directories covered by these
nested ASC MHL Histories.

All information for a managed data set is documented between its ASC MHL History and nested
ASC MHL Histories contained within its scope. When ASC MHL Histories contain at least one

9 of 38

ASC MHL v1.0 Media Hash List

nested ASC MHL History, generational changes are applied to nested ASC MHL Histories as
follows:

● Updates to a given ASC MHL History that affect the entire data set managed by that ASC
MHL History, e.g. updates to ignore patterns (see IgnoreType) or running a verification, are
also propagated into ASC MHL Histories nested within the given ASC MHL History. New
generations of nested ASC MHL Histories are created and referenced in new generations
up to the level of the given ASC MHL History.

● In contrast, updates to ASC MHL Histories do not propagate into higher-level ASC MHL
Histories.

Note: Since such updates are recorded in new ASC MHL Manifest generations in nested
ASC MHL Histories, the references previously recorded in the higher level ASC MHL
Histories are outdated following such update.

Example 1: Renaming a file in a subdirectory managed by a nested ASC MHL History does not
affect additional ASC MHL Histories within the data set, as illustrated in the following diagram:

Example 2: Verifying a full data set with ASC MHL Histories on multiple directory levels leads to
updates (i.e. new ASC MHL Manifest generations) in all (nested) ASC MHL Histories, as illustrated
in the following diagram:

10 of 38

ASC MHL v1.0 Media Hash List

11 of 38

ASC MHL v1.0 Media Hash List

5.3.3. Locating Hash Records

When parsing an ASC MHL History for information about a given file, that information may be
distributed across one or more ASC MHL Manifests, or even ASC MHL Histories. Not every ASC
MHL Manifest within an ASC MHL History necessarily covers all files/directories of the data set. At
the same time, different ASC MHL Manifests may contain hash records for the same file/directory
that were created using either the same, or a different hashing algorithm. An ASC MHL tool should
use the ASC MHL Chain file to locate the ASC MHL Manifests of an ASC MHL History and parse
them all to assemble the full set of hash records. The same mechanism shall be used for nested
ASC MHL Histories. Even though a reference points to an individual ASC MHL Manifest, the entire
ASC MHL History is parsed based on the entries in the ASC MHL Chain file.

ASC MHL implementations shall support the renaming mechanism specified in ASC MHL
Rename, i.e. be able to locate hash records for files/directories that were renamed throughout the
lifecycle of an ASC MHL History. The previousPath element (see HashType) is used to locate
entries for a given file in previous ASC MHL Manifests.

5.4. ASC MHL Chain

An ASC MHL Chain is a file, as specified in ASC MHL Chain File, that serves as the table of
contents of an ASC MHL History. It contains paths and file hashes for all ASC MHL Manifests
contained in the ASC MHL History to allow verification of their integrity.

All ASC MHL Manifests in an ASC MHL Chain must have the same scope.

5.5. ASC MHL Collection

An ASC MHL Collection consists of an ASC MHL Collection file, as specified in ASC MHL
Collection File, and all ASC MHL Manifests recorded in that ASC MHL Collection file.

ASC MHL Collection files and ASC MHL Chain files conform to the same XML Schema (i.e. they
follow the same structure), however, ASC MHL Manifests in an ASC MHL Collection can have
independent scopes. A collection can be used as a “packing list” or “receipt” and usually contains
ASC MHL Manifest files that were created using the ASC MHL Flatten operation.

ASC MHL Manifest files are referenced in an ASC MHL Collection file using relative paths. These
relative paths need to be maintained when moving files, to ensure the paths continue to resolve to
the relative ASC MHL Manifest files.

Example: An ASC MHL Collection can be used to bundle ASC MHL Manifest files that cover
separate camera cards. The ASC MHL Collection (alongside referenced ASC MHL Manifests) can
then be sent, e.g. via email, to the recipient of the data delivery that contains the covered camera
cards. Below diagram illustrates how ASC MHL Manifests from multiple camera cards (1) are
copied to a common folder together with an ascmhl_collection.xml file (2) that contains the
references to both ASC MHL Manifests contained in the ASC MHL Collection (3).

12 of 38

ASC MHL v1.0 Media Hash List

5.6. ASC MHL Operations

5.6.1. General

5.6.1.1. Operations

In addition to the structures and files introduced in previous sections, ASC MHL also specifies the
conceptual operations, described in ASC MHL Operations, that implementations of ASC MHL
shall support.

5.6.1.2. Ignore Semantic

Select files and directories (for instance, files that can change outside the control of the user) can
be excluded (“ignored”) from ASC MHL operations. To ignore files/directories, “ignore patterns”
are configured in ASC MHL tools and recorded in ASC MHL Manifests (see section IgnoreType
and Appendix C: Syntax of the Ignore Pattern for details).

Ignore patterns apply to existing files/directories, as well as files/directories that may be added to
the managed data set later (e.g. “.DS_Store” files).

ASC MHL Manifests shall not contain hash records for any files/directories that match an ignore
pattern recorded in the ASC MHL Manifest. Any matching files/directories are also ignored when
performing operations like ASC MHL Diff and ASC MHL Verify on the managed data set.

13 of 38

ASC MHL v1.0 Media Hash List

ASC MHL has a default set of ignore patterns to avoid common pitfalls. This default ignore pattern
list is the equivalent of ignoring all files named .DS_Store, and ignoring all directories named
ascmhl. Since these files and directories change by appending an ASC MHL History, no records
for them can be included in ASC MHL Manifests.

5.6.1.3. Hash Algorithms

An ASC MHL History (and even a single ASC MHL Manifest) can include hash records with
multiple hash algorithms, also called “hash formats”. This is to cover scenarios where hash values
of multiple hash formats are required for different data management systems (see Appendix D for
details on supported hash algorithms, their configuration, and encoding).

Users are free to change the hash algorithm for any hash record from one ASC MHL Manifest
generation to the next. However, integrity verification needs to be performed based on a hash
algorithm used to create previous hash records in the ASC MHL History.

5.6.2. ASC MHL Create

Create an ASC MHL Manifest or initiate an ASC MHL History based on input parameters that
include:

● target directory (i.e. the scope of the ASC MHL Manifest/History)
● optional list of ignore patterns (see IgnoreType for details)
● hash algorithm(s)
● additional metadata to be recorded in (initial) ASC MHL Manifest

An ASC MHL Manifest is created with hashes for all files (including those located in subdirectory
structures) within its scope, excluding files that either match the provided ignore pattern(s) or are
already covered by existing (nested) ASC MHL Histories. Directory hashes can be included
optionally. Hash values are computed using the specified hash algorithm(s).

While standalone ASC MHL Manifests are simply placed directly in the target directory, initiating
an ASC MHL History includes the following additional steps:

● a directory ascmhl is created in the target directory and the initial ASC MHL Manifest is
placed inside the ascmhl directory

● an ASC MHL Chain file is created inside the ascmhl directory with a record for the initial
ASC MHL Manifest

Note 1: An ASC MHL Manifest can be created either as part of a “transfer” process (i.e. when
managed data is copied, archived, restored, etc), or “in-place” process (i.e. ASC MHL Manifest is
instantiated without copying/moving/altering the managed data), or “flatten” process (i.e. ASC
MHL Manifest is created by the ASC MHL Flatten operation). Depending on the process used, the
hashes recorded in an ASC MHL Manifest can stem from different sources, see ProcessType for
details.

14 of 38

ASC MHL v1.0 Media Hash List

Note 2: While an ASC MHL History may be initiated “in-place” at any time, an ASC MHL History is
typically initiated when an ASC MHL tool “transfers” (e.g. copy, move) a data set that does not
contain an ASC MHL History.

Note 3: When creating an ASC MHL History for a data set that contains one or more
subdirectories that are managed by existing ASC MHL Histories, the ASC MHL Manifest in the
newly created ASC MHL History contains references to those nested ASC MHL Histories. It may
also contain hash records for files outside of managed subdirectories.

5.6.3. ASC MHL Diff

The ASC MHL Diff operation can identify files within the scope of either an ASC MHL Manifest or
ASC MHL History that are either:

● present in the file system, but neither recorded in the ASC MHL Manifest/History nor
explicitly ignored, i.e. unknown files

● recorded in the ASC MHL Manifest/History, but not present in the file system, i.e. missing
files

An implementation of ASC MHL can report both unknown and missing files within the scope of an
ASC MHL Manifest/History.

Note: This operation does not verify the integrity of files and therefore doesn’t generate any
hashes.

5.6.4. ASC MHL Verify

Verify the integrity of files covered by an ASC MHL History or ASC MHL Manifest. Users may
choose to verify all files covered by an ASC MHL History/Manifest, or a select subset. This is
achieved by:

● computing a hash for each specified file (using one of the algorithms recorded for that file
in the ASC MHL History/Manifest) and

● comparing the computed hash against the recorded hash for that file.

Only hashes labeled as either original or verified can be used for verification. Hashes labeled
as failed cannot be used. Verification is successful if the hashes match, and unsuccessful
otherwise. Verification is also considered unsuccessful if a file is missing in the managed data set.

An implementation of ASC MHL shall report verification results for each file covered by the ASC
MHL Manifest/History. When verifying a managed data set using an ASC MHL History, a new ASC
MHL Manifest generation shall be appended to the ASC MHL History (see ASC MHL History
Append).

Note 1: Hash records may be distributed across multiple ASC MHL Manifests within an ASC MHL
History, see Locating Hash Records.

15 of 38

ASC MHL v1.0 Media Hash List

Note 2: Any intentional changes to a file (except renaming, see ASC MHL Rename) will result in
failed verifications from the time of the change onward. This version of ASC MHL does not
provide the means to rehabilitate intentionally changed files. Unintentional changes to a file can be
resolved by replacing the file with a good copy that matches the original version.

5.6.5. ASC MHL History Append

Append an ASC MHL Manifest to an existing ASC MHL History. There are two general scenarios
for this:

● a managed data set is verified and the results are recorded in a new ASC MHL Manifest
generation

● files are added to a managed data set and a new ASC MHL Manifest generation is created
with hashes for the added files

Verification of a managed data set can be triggered ad-hoc, but is usually done following a data
management process that affects the managed data set, e.g. copying the managed data set to a
new volume. In case of an ad-hoc verification, a user may choose to only verify a select subset of
the managed data set. Results of a verification shall be recorded in a new ASC MHL Manifest for
the files verified in the process.

When additional files are added to a managed data set using an ASC MHL tool, a new ASC MHL
Manifest is created that only contains records for the newly added files.

The new ASC MHL Manifest follows the naming convention specified in Naming of the ASC MHL
Manifest Files and is added to the ASC MHL Chain file as part of this operation.

Example 1: A single file is added to a managed data set. An ASC MHL Manifest is created with a
hash record for the newly added file and appended to the ASC MHL History.

Example 2: A managed data set is copied to archive storage. On the archive storage volume, the
data set is verified (see ASC MHL Manifest Verify) and an ASC MHL Manifest is created
accordingly and appended to the ASC MHL History.

5.6.6. ASC MHL Rename

Rename files/folders within the scope of an ASC MHL History and record the previous and new
file/folder paths in a newly created ASC MHL Manifest generation. Previous paths are recorded
using the previousPath element, see HashType and DirectoryHashType. The previousPath

element is recorded only in the hash record created as part of the renaming process and not
repeated in subsequent ASC MHL Manifest generations, e.g. such created as part of an ASC MHL
History Verify operation.

16 of 38

ASC MHL v1.0 Media Hash List

5.6.7. ASC MHL Flatten

Flatten/consolidate an ASC MHL History into a single ASC MHL Manifest. Hash records for a data
set may be distributed across multiple ASC MHL Manifests within the ASC MHL History. This
operation can be used to consolidate such distributed hash records into a standalone ASC MHL
Manifest.

The flattened ASC MHL Manifest may cover the entire managed data set or just a (user-defined)
subset. The resulting ASC MHL Manifest is not appended to the ASC MHL History and verification
of data integrity is not part of the consolidation process.

The ASC MHL Flatten operation parses the entire ASC MHL History, including any nested ASC
MHL Histories, and copies hash records into a new ASC MHL Manifest that are associated with
files that are:

● part of the managed data set and
● selected by the user (default is all) and
● not excluded by the ignore semantic

Hash records that apply to directories are ignored by this operation, i.e. directory hashes are not
consolidated into flattened ASC MHL Manifests. However, users may choose to re-create
directory hashes for inclusion in the flattened ASC MHL Manifest as part of this operation, as long
as no computation of actual file hashes is required (i.e. compatible hashes exist for all files
covered by the directory hash).

Hashes labeled as failed are not transferred into the flattened ASC MHL Manifest. If multiple
hashes of the same hashing algorithm exist for a single file, only the earliest entry is copied into
the flattened ASC MHL Manifest.

Example 1: A history contains an original MD5 hash for a particular file, and more verified

MD5 hashes for that file in subsequent ASC MHL Manifest generations. A flattened ASC MHL
Manifest will only contain one MD5 hash for the particular file, labeled as original.

Example 2: A history contains an original MD5 hash for a particular file, and more verified C4
and XXH3 hashes for that file in subsequent ASC MHL Manifest generations. A flattened ASC
MHL Manifest will contain the MD5 hash labeled as original, as well as one C4 and XXH3 hash
each labeled as verified.

Any previousPath elements present in hash records are preserved in flattened ASC MHL
Manifests.

Implementations may optionally consolidate Metadata elements present in hash records, e.g. by
providing means to concatenate multiple values into a single entry in the flattened ASC MHL
Manifest.

Attributes of the HashType path element are preserved based on the values associated with the
latest hash record present in the ASC MHL History, in case more than one hash record exists for a
given path.

17 of 38

ASC MHL v1.0 Media Hash List

Attributes of HashFormatType are preserved for each individual hash copied into the flattened
ASC MHL Manifest.

Note: Flattened ASC MHL Manifests can be identified based on the ProcessType value flatten

(see ProcessInfoType).

6.ASC MHL Manifest File

6.1. Schema

An ASC MHL Manifest File is an XML document, as specified in W3C XML 1.0, that consists of a
single hashlist element (see section 5.2.2).

<schema targetNamespace="urn:ASC:MHL:v2.0" elementFormDefault="qualified"
xmlns="http://www.w3.org/2001/XMLSchema" xmlns:ascmhl="urn:ASC:MHL:v2.0">
<element name=”hashlist” type=”ascmhl:HashListType”>

</schema>

The namespace prefixes used in XML Schema definitions herein are not normative values and
implementations shall perform correctly with any XML compliant prefix values.

6.2. Character Encoding

ASC MHL Manifests shall be encoded using the UTF-8 character encoding.

6.3. Naming of the ASC MHL Manifest Files

ASC MHL Manifest files that are part of an ASC MHL History shall conform to the following file
naming convention:

<numbering> “_” <foldername> “_” <date> “_” <time> “.mhl”

<numbering> is a sequential number within the ascmhl folder in order of creation (4-digit, or more
if required for values > 9999), starting with 1

<foldername> is the name of the folder that is covered by the ASC MHL Manifest (e.g. the name
of the root directory)

<date> is the date of creation, using the format YYYY-MM-DD

<time> is the time of creation, using the format HHMMSSZ (trailing “Z” indicating “Zulu” time, see
below)

Values for <date> and <time> are determined at the start of the operation that results in the
creation of one or more ASC MHL Manifests and the values are represented using the
Coordinated Universal Time (UTC) standard. E.g. all ASC MHL Manifest files that are created
throughout (nested) ASC MHL Histories as the result of a verification process would share the

18 of 38

ASC MHL v1.0 Media Hash List

same date/time values even if time has passed between the creation of the individual files. If the
verification process was started at 12:08:01 PM Pacific Time the value reflected in the file names
would be 190801 (the UTC 24h representation of said time).

Example: 0001_A002R2EC_2019-01-07_080228Z.mhl

6.4. Types

6.4.1. HashListType
<complexType name="HashListType">

<element name="creatorinfo" type="ascmhl:CreatorInfoType"/>
<element name="processinfo" type="ascmhl:ProcessInfoType"/>
<element name="metadata" type="ascmhl:MetadataType" minOccurs="0"/>
<element name="hashes" type="ascmhl:HashesType" minOccurs="0"/>
<element name="references" type="ascmhl:ReferencesType" minOccurs="0"/>
<attribute fixed="2.0" name="version" use="required"/>

</complexType>

Description:

HashListType is the complex type for the top-level hashlist element.

It requires the children creatorInfo and processinfo. At least one of the children hashes (a list
of hashes) or references (a list of references to other ASC MHL documents) must be present.
There is an additional, optional child metadata for carrying custom metadata concerning the
entire hash list.

The HashListType version attribute shall be set to the value “2.0” (for distinguishing documents
of this ASC MHL version 2 from the previous, incompatible MHL version 1).

6.4.2. CreatorInfoType
<complexType name="CreatorInfoType">

<sequence>
<element name="creationdate" type="dateTime"/>
<element name="hostname" type="string"/>
<element name="tool" type="ascmhl:ToolType"/>
<element name="author" type="ascmhl:AuthorType" maxOccurs="unbounded"

minOccurs="0"/>
<element name="location" type="string" minOccurs="0"/>
<element name="comment" type="string" minOccurs="0"/>

</sequence>
</complexType>

Description:

The CreatorInfoType contains information that applies to the entire ASC MHL Manifest.

Required child elements:

● creationdate: Date and time of the creation of the ASC MHL Manifest.

● hostname: Name of the computer used to create the ASC MHL Manifest.

19 of 38

ASC MHL v1.0 Media Hash List

● tool: Name and version of the software tool used to create the ASC MHL Manifest.

Optional child elements:

● author: Information about the person that initiated or controlled the process that created
the ASC MHL Manifest document (multiple author elements are possible).

● location: Free form, human readable information about the geographical location where
the process has been executed, e.g. “Los Angeles, CA”.

● comment: Informational, human readable text specifying a summary of the purpose,
context, and parameters of the process.

6.4.3. ProcessInfoType
<complexType name="ProcessInfoType">

<sequence>
<element name="process" type="ascmhl:ProcessType"/>
<element name="roothash" type="ascmhl:RootDirectoryHashType" minOccurs="0"/>
<element name="ignore" type="ascmhl:IgnoreType" minOccurs="0"/>

</sequence>
</complexType>

Description:

The ProcessInfoType contains information that applies to the entire ASC MHL Manifest.

Required child elements:

● process: Type of process used when the ASC MHL Manifest was created.

Optional child elements:

● roothash: Contains hash values representing the entire managed data set.

● ignore: Element specifying which file patterns have been used to ignore files.

6.4.4. AuthorType
<complexType name="AuthorType">

<simpleContent>
<extension base="string">

<attribute name="email" type="ascmhl:EmailAddressAttributeType"/>
<attribute name="phone" type="string"/>
<attribute name="role" type="string"/>

</extension>
</simpleContent>

</complexType>

Description:

AuthorType contains information about the person that initiated or controlled the process that
created the ASC MHL Manifest.

20 of 38

ASC MHL v1.0 Media Hash List

The value of the author element is the name of the person. The optional email and phone

attributes can be used to add contact information for the person. The optional role attribute can
be used to distinguish the different roles of the persons when adding multiple author elements.

6.4.5. ToolType
<complexType name="ToolType">

<simpleContent>
<extension base="string">

<attribute name="version" type="string"/>
</extension>

</simpleContent>
</complexType>

Description:

ToolType contains name and version information about the software tool or system used to
create the ASC MHL Manifest.

The value of the tool element is the name of the software. The optional version attribute can be
used to specify the version of the software.

6.4.6. ProcessType
<simpleType name="ProcessType">

<restriction base="string">
<enumeration value="in-place"/>
<enumeration value="transfer"/>
<enumeration value="flatten"/>

</restriction>
</simpleType>

Description:

ProcessType carries information about the data management process during which the ASC MHL
Manifest was created.

It can have the values in-place, transfer, or flatten:

● An in-place process doesn’t move or duplicate any files, it only creates the ASC MHL
Manifest representing a new generation. This can be useful when, for example, a copy has
been made with a non-ASC MHL-aware system (such as Finder or Explorer) and the ASC
MHL Manifest is created afterwards “in-place”. Hashes are computed directly from the files
referenced in the ASC MHL Manifest.

● A transfer process is a process that copied, archived, restored, or otherwise created a
new instance of the files and at the same time (e.g. without extra user interaction) created
the ASC MHL Manifest representing a new generation. Hashes are computed directly from
files at the source and/or destination and the ASC MHL tool creating the ASC MHL
Manifest guarantees that the files on the source and destination are identical, either by
comparing hashes created from files at both the source and destination or other bona fide
means.

21 of 38

ASC MHL v1.0 Media Hash List

● A flatten process indicates that the ASC MHL Manifest was created using the ASC MHL
Flatten operation (see ASC MHL Flatten), i.e. hash values were not computed but instead
copied from existing ASC MHL Manifest files.

6.4.7. IgnoreType
<complexType name="IgnoreType">

<sequence>
<element name="pattern" type="string" maxOccurs="unbounded"/>

</sequence>
</complexType>

Description:

IgnoreType contains patterns that specify which files have been ignored during the creation of
the ASC MHL Manifest.

The syntax and semantics of the pattern value is equivalent to one line of a .gitignore file as
specified in the git reference (https://git-scm.com/docs/gitignore). See Appendix C for the
detailed specification.

6.4.8. RelativePathType
<simpleType name="RelativePathType">

<restriction base="string"/>
</simpleType>

Description:

RelativePathType is a string describing a path in the file system, relative to the scope of an ASC
MHL Manifest. The following restrictions apply to values of this type:

● case shall be preserved
● whitespaces shall be preserved
● forward slash (“/”) shall be used to separate components (i.e. directory levels)
● the path shall not start with forward slash
● the most direct path shall be used, e.g. “..” path segments are not allowed

6.4.9. HashesType
<complexType name="HashesType">

<choice minOccurs="1" maxOccurs="unbounded">
<element name="hash" type="ascmhl:HashType"/>
<element name="directoryhash" type="ascmhl:DirectoryHashType"/>

</choice>
</complexType>

Description:

HashesType contains a list of one or more hash and/or directoryhash child elements.

22 of 38

https://git-scm.com/docs/gitignore

ASC MHL v1.0 Media Hash List

No two hash or directoryhash child elements in an element of type HashesType shall have
identical values for path.

6.5. HashType
<complexType name="HashType">

<sequence>
<element name="path">

<complexType>
<simpleContent>

<extension base="ascmhl:RelativePathType">
<attribute name="size" type="integer"/>
<attribute name="creationdate" type="dateTime"/>
<attribute name="lastmodificationdate" type="dateTime"/>

</extension>
</simpleContent>

</complexType>
</element>
<sequence>

<element name="c4" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="md5" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="sha1" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="xxh128" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="xxh3" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="xxh64" type="ascmhl:HashFormatType" minOccurs="0"/>

</sequence>
<element name="previousPath" type="ascmhl:RelativePathType" minOccurs="0"/>
<element name="metadata" type="ascmhl:MetadataType" minOccurs="0"/>

</sequence>
</complexType>

Description:

HashType contains a path, a number of hashes, and optionally additional metadata for a file in the
file system.

Required child elements:

● path: Path to the file based on which the hash values were created. The path element can
have three optional parameters:

○ lastmodificationdate: The last modification date of the associated file in the file
system.

○ creationdate: The creation date of the associated file in the file system.

○ size: The size of the associated file.

● One or more of the following elements shall be present: md5, sha1, c4, xxh64, xxh3,
xxh128.

Optional child elements:

● previousPath: files within a managed data set may be renamed throughout the lifecycle
of an ASC MHL History. If a file name changed from it’s most recent record in the ASC

23 of 38

ASC MHL v1.0 Media Hash List

MHL History, the previousPath element carries the former value in the path element, i.e.
the path that was used in the previous ASC MHL Manifest within the ASC MHL History.

Example:

● An ASC MHL Manifest contains the following hash element:
<hash>

<path size="5" lastmodificationdate="2019-10-11T15:56:03+02:00">
Clips/0001.mov</path>

<xxh64 action="original">7680e5f98f4a80fd</xxh64>
</hash>

● The associated file is renamed using an ASC MHL tool and a new ASC MHL Manifest is
appended to the ASC MHL History with the following entry:

<hash>
<path size="5" lastmodificationdate="2019-10-11T16:15:03+02:00">
Clips/A002C007_141024.mov</path>

<xxh64 action="verified">7680e5f98f4a80fd</xxh64>
<previousPath>Clips/0001.mov</previousPath>

</hash>

● metadata: Custom metadata concerning the file.

6.5.1. HashFormatType
<simpleType name="ActionAttributeType">

<restriction base="string">
<enumeration value="original"/>
<enumeration value="verified"/>
<enumeration value="failed"/>

</restriction>
</simpleType>
<complexType name="HashFormatType">

<simpleContent>
<extension base="string">

<attribute name="action" type="ascmhl:ActionAttributeType"/>
<attribute name="hashdate" type="dateTime"/>

</extension>
</simpleContent>

</complexType>

Description:

HashFormatType is the complex type for the md5, sha1, c4, xxh64, xxh3, and xxh128 children of
the hash element.

The file hash value of the element is the hash value of the data content of the file in the encoding
specified by the individual hash format per Appendix D.

The action attribute:

If the parent hash element describes a file, the elements of type HashFormatType are required to
have the action attribute that qualifies each element. Possible values of the attribute are:

24 of 38

ASC MHL v1.0 Media Hash List

● original indicates that the hash is the initial hash for a file or directory within the ASC
MHL History.

● verified indicates that the hash was generated after a file was successfully verified
against a previously recorded hash in the ASC MHL History. The verification is deemed
successful when a hash generated using one of the algorithms recorded in the ASC MHL
History matches the corresponding hash in the ASC MHL History.
Note: While the verification is based on a previously used algorithm, the hashes recorded
in the new ASC MHL Manifest generation can be of different types and may or may not
include a hash of the previous type.

● failed indicates that the hash value has been created from a file but verification against a
previously recorded hash in the ASC MHL History failed, i.e. the file was altered.

The hashdate attribue:

The elements of type HashFormatType can have a hashdate attribute specifying the date and
time of

● the computation of a file hash, or
● the creation of a directory hash.

When the hashdate attribute is missing it is assumed that the hash has been created as part of
the process that created the ASC MHL Manifest (and thus at roughly the creationdate date and
time of the creatorinfo element).

See Appendix D for details on configuration and encoding of hash formats.

6.5.2. DirectoryHashType
<complexType name="DirectoryHashType">

<sequence>
<element name="path">

<complexType>
<simpleContent>

<extension base="ascmhl:RelativePathType">
<attribute name="creationdate" type="dateTime"/>
<attribute name="lastmodificationdate" type="dateTime"/>

</extension>
</simpleContent>

</complexType>
</element>
<element name="content" type="ascmhl:DirectoryHashFormatContainerType"/>
<element name="structure" type="ascmhl:DirectoryHashFormatContainerType"/>
<element name="previousPath" type="ascmhl:RelativePathType" minOccurs="0"/>
<element name="metadata" type="ascmhl:MetadataType" minOccurs="0"/>

</sequence>
</complexType>

Description:

DirectoryHashType contains a path element and content and structure hashes for a
directory.

25 of 38

ASC MHL v1.0 Media Hash List

Required child elements:

● path: Relative path to the directory represented by the content and structure hashes.
The path element can have two optional parameters:

○ lastmodificationdate: The last modification date of the associated directory in the
file system.

○ creationdate: The creation date of the associated directory in the file system.

● content: A directory hash value created as follows:
1. For the immediate children of a directory specified through the path element,

collect a list of hashes containing
○ all file hashes (for files) and
○ the content directory hashes (for directories)

2. A hash value is created from the list of hashes, following the process described in
Appendix G.

● structure: A directory hash value created as follows:
1. For the immediate children of a directory specified through the path element,

collect a list of hashes where each hash is computed as follows:
○ A file’s encoded name is concatenated with it’s encoded hash, then a hash

value is computed from those concatenated bytes. The resulting hash value
is appended to the list of hashes.

○ A directory’s encoded name is concatenated with it’s encoded structure
hash, then a hash value is computed from those concatenated bytes. The
resulting hash value is appended to the list of hashes.

2. A hash value is created from the list of hashes, following the process described in
Appendix G.

Optional child elements:

● previousPath: directories within a managed data set may be renamed throughout the
lifecycle of an ASC MHL History. If a directory name changed from it’s most recent record
in the ASC MHL History, the previousPath element carries the former value in the path

element, i.e. the path that was used in the previous ASC MHL Manifest within the ASC
MHL History.

Example:

● An ASC MHL Manifest contains the following directoryhash element:
<directoryhash>

<path>Clips_0001</path>

<content>

<xxh64 action="original">7680e5f98f4a80fd</xxh64>

</content>

<structure>

<xxh64 action="original">8f4a80fd7680e5f9</xxh64>

26 of 38

ASC MHL v1.0 Media Hash List

</structure>

</directoryhash>

● The associated directory is renamed using an ASC MHL tool and a new ASC MHL
Manifest is appended to the ASC MHL History with the following entry:
<directoryhash>

<path>Clips_141024</path>

<content>

<xxh64 action="verified">7680e5f98f4a80fd</xxh64>

</content>

<structure>

<xxh64 action="verified">8f4a80fd7680e5f9</xxh64>

</structure>

<previousPath>Clips_0001</previousPath>

</directoryhash>

● metadata: Custom metadata concerning the directory.

The content and structure elements have the same number of children and HashFormatType

children of both the content and structure elements must represent the same hash formats.
Example:

<content>

<md5 action="verified">afd3e0ec44cdcde02d17b580329b566b</md5>

<xxh64 action="verified">7680e5f98f4a80fd</xxh64>

</content>

<structure>

<md5 action="verified">4cdcde02d17b580329b566bafd3e0ec4</md5>

<xxh64 action="verified">8f4a80fd7680e5f9</xxh64>

</structure>

Note 1: If a directory child of a folder is the root folder of a nested ASC MHL History, the content

and structure hashes of that folder can be taken from the latest available roothash element of
the nested ASC MHL History, if that roothash element contains appropriate directory hashes.

Note 2: All hash values used to create the content and structure directory hash values must be of
the individual hash format of the HashFormatType element. The content and the structure
directory hash values are encoded by the individual hash format per Appendix D.

6.5.3. RootDirectoryHashType
<complexType name="RootDirectoryHashType">

<sequence>
<element name="content" type="ascmhl:DirectoryHashFormatContainerType"/>
<element name="structure" type="ascmhl:DirectoryHashFormatContainerType"/>

</sequence>
</complexType>

Description:

See definitions for content and structure hashes in DirectoryHashType.

27 of 38

ASC MHL v1.0 Media Hash List

Note: Specifying a path for root hashes is impractical, but requiring the path element for
DirectoryHashType is desirable to allow for easy XML Schema validation of hash entries. This
additional type was therefore introduced specifically for root hashes.

6.5.4. DirectoryHashFormatContainerType
<complexType name="DirectoryHashFormatContainerType">

<sequence>
<element name="c4" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="md5" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="sha1" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="xxh128" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="xxh64" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="xxh3" type="ascmhl:HashFormatType" minOccurs="0"/>

</sequence>
</complexType>

The DirectoryHashFormatContainerType contains one or more child elements md5, sha1, c4,
xxh3, xxh64 and/or xxh128.

6.5.5. ReferencesType and HashListReferenceType
<complexType name="ReferencesType">

<sequence>
<element maxOccurs="unbounded" name="hashlistreference"

type="ascmhl:HashListReferenceType"/>
</sequence>

</complexType>
<complexType name="HashListReferenceType">

<sequence>
<element name="path" type="ascmhl:RelativePathType"/>
<element name="c4" type="ascmhl:HashFormatType"/>

</sequence>
</complexType>

Description:

ReferencesType is the complex type for the references child of the top-level hashlist element.
The HashListReferenceType is the complex type for the hashlistreference children of the
references element.

Required child elements:

● path: Path to the referenced ASC MHL Manifest, relative to the scope of the current ASC
MHL Manifest.

● c4: A hash value of the referenced ASC MHL Manifest in the C4 format.

6.5.6. MetadataType
<complexType name="MetadataType">

<complexContent>
<extension base="anyType"/>

28 of 38

ASC MHL v1.0 Media Hash List

</complexContent>
</complexType>

Description:

MetadataType is the complex type for the metadata children of the hashlist element and the
hash elements.

As a child of the hashlist element it can include information concerning the entire hash list. As a
child of a hash element it can include information concerning a file or directory. The metadata

element can contain any custom attributes or elements, e.g. free text, key-value pairs, or entire
XML structures. The content of a metadata element of course must be formatted to maintain the
validity of the XML document.

7.ASC MHL Chain File
7.1. Schema

An ASC MHL Chain file is an XML document, as specified in W3C XML 1.0, that consists of a
single ascmhldirectory element.

<schema targetNamespace="urn:ASC:MHL:DIRECTORY:v2.0" elementFormDefault="qualified"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:ascmhldirectory="urn:ASC:MHL:DIRECTORY:v2.0">

<element name=”ascmhldirectory” type=”ascmhl:DirectoryType”>
</schema>

The namespace prefixes used in XML Schema definitions herein are not normative values and
implementations shall perform correctly with any XML compliant prefix values.

7.2. Character Encoding

ASC MHL Chain files shall be encoded using the UTF-8 character encoding.

7.3. Naming of the ASC MHL Chain Files

ASC MHL Chain files shall be named ascmhl_chain.xml

7.4. ASC MHL Chain XML Format

7.4.1. DirectoryType
<complexType name="DirectoryType">

<sequence>
<element name="hashlist" type="ascmhldirectory:HashlistType"

maxOccurs="unbounded"/>
</sequence>

</complexType>

Description:

29 of 38

http://www.w3.org/2001/XMLSchema

ASC MHL v1.0 Media Hash List

DirectoryType contains a list of one or more HashlistType child elements.

No two hashlist child elements of an element of type DirectoryType shall have identical values
for their sequencenr attribute. The sequencenr attribute shall be a continuous count that starts at
1 for the first hashlist child element and is incremented by one for each subsequent entry.

7.4.2. HashlistType
<complexType name="HashlistType">

<attribute name="sequencenr" type="integer"/>
<sequence>

<element name="path" type="ascmhl:RelativePathType"/>
<element name="c4" type="ascmhl:HashFormatType"/>

</sequence>
</complexType>

Description:

Required child elements:

● path: Path to the referenced ASC MHL Manifest relative to the ASC MHL Chain file.

● c4: A hash value of the referenced ASC MHL Manifest in the C4 format.

The sequencenr attribute shall be present and uniquely identify the element within the document.

8.ASC MHL Collection File
8.1. Schema

An ASC MHL Collection file is an XML document, as specified in W3C XML 1.0, that consists of a
single ascmhldirectory element.

<schema targetNamespace="urn:ASC:MHL:DIRECTORY:v2.0" elementFormDefault="qualified"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:ascmhldirectory="urn:ASC:MHL:DIRECTORY:v2.0">

<element name=”ascmhldirectory” type=”ascmhl:DirectoryType”>
</schema>

The namespace prefixes used in XML Schema definitions herein are not normative values and
implementations shall perform correctly with any XML compliant prefix values.

8.2. Character Encoding

ASC MHL Collection files shall be encoded using the UTF-8 character encoding.

8.3. Naming of the ASC MHL Collection Files

ASC MHL Collection files shall be named ascmhl_collection.xml

30 of 38

http://www.w3.org/2001/XMLSchema

ASC MHL v1.0 Media Hash List

Appendix

Appendix A: ASC MHL Manifest XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="urn:ASC:MHL:v2.0" elementFormDefault="qualified"

xmlns="http://www.w3.org/2001/XMLSchema" xmlns:ascmhl="urn:ASC:MHL:v2.0">
<simpleType name="EmailAddressAttributeType">

<restriction base="string">
<pattern value="[^@]+@[^\.]+\..+"/>

</restriction>
</simpleType>
<simpleType name="ActionAttributeType">

<restriction base="string">
<enumeration value="original"/>
<enumeration value="verified"/>
<enumeration value="failed"/>

</restriction>
</simpleType>
<simpleType name="RelativePathType">

<restriction base="string"/>
</simpleType>
<complexType name="HashListType">
<sequence>

<element name="creatorinfo" type="ascmhl:CreatorInfoType"/>
<element name="processinfo" type="ascmhl:ProcessInfoType"/>
<element name="hashes" type="ascmhl:HashesType"/>
<element name="metadata" type="ascmhl:MetadataType" minOccurs="0"/>
<element name="references" type="ascmhl:ReferencesType" minOccurs="0"/>

</sequence>
<attribute fixed="2.0" name="version" use="required"/>

</complexType>
<complexType name="CreatorInfoType">

<sequence>
<element name="creationdate" type="dateTime"/>
<element name="hostname" type="string"/>
<element name="tool" type="ascmhl:ToolType"/>
<element name="author" type="ascmhl:AuthorType" maxOccurs="unbounded"

minOccurs="0"/>
<element name="location" type="string" minOccurs="0"/>
<element name="comment" type="string" minOccurs="0"/>

</sequence>
</complexType>
<complexType name="ProcessInfoType">

<sequence>
<element name="process" type="ascmhl:ProcessType"/>
<element name="roothash" type="ascmhl:RootDirectoryHashType"

minOccurs="0"/>
<element name="ignore" type="ascmhl:IgnoreType" minOccurs="0"/>

</sequence>
</complexType>
<complexType name="AuthorType">

<simpleContent>
<extension base="string">

<attribute name="email" type="ascmhl:EmailAddressAttributeType"/>
<attribute name="phone" type="string"/>

31 of 38

ASC MHL v1.0 Media Hash List

<attribute name="role" type="string"/>
</extension>

</simpleContent>
</complexType>
<complexType name="ToolType">

<simpleContent>
<extension base="string">

<attribute name="version" type="string"/>
</extension>

</simpleContent>
</complexType>
<simpleType name="ProcessType">

<restriction base="string">
<enumeration value="in-place"/>
<enumeration value="transfer"/>
<enumeration value="flatten"/>

</restriction>
</simpleType>

<complexType name="IgnoreType">
<sequence>

<element name="pattern" type="string" maxOccurs="unbounded"/>
</sequence>

</complexType>
<complexType name="HashesType">

<choice minOccurs="1" maxOccurs="unbounded">
<element name="hash" type="ascmhl:HashType"/>
<element name="directoryhash" type="ascmhl:DirectoryHashType"/>

</choice>
</complexType>
<complexType name="HashType">

<sequence>
<element name="path">

<complexType>
<simpleContent>

<extension base="ascmhl:RelativePathType">
<attribute name="size" type="integer"/>
<attribute name="creationdate" type="dateTime"/>
<attribute name="lastmodificationdate" type="dateTime"/>

</extension>
</simpleContent>

</complexType>
</element>
<sequence>

<element name="c4" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="md5" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="sha1" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="xxh128" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="xxh3" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="xxh64" type="ascmhl:HashFormatType" minOccurs="0"/>

</sequence>
<element name="previousPath" type="ascmhl:RelativePathType" minOccurs="0"/>
<element name="metadata" type="ascmhl:MetadataType" minOccurs="0"/>

</sequence>
</complexType>
<complexType name="DirectoryHashType">

<sequence>
<element name="path">

<complexType>
<simpleContent>

32 of 38

ASC MHL v1.0 Media Hash List

<extension base="ascmhl:RelativePathType">
<attribute name="creationdate" type="dateTime"/>
<attribute name="lastmodificationdate" type="dateTime"/>

</extension>
</simpleContent>

</complexType>
</element>
<element name="content" type="ascmhl:DirectoryHashFormatContainerType"/>
<element name="structure" type="ascmhl:DirectoryHashFormatContainerType"/>
<element name="previousPath" type="ascmhl:RelativePathType" minOccurs="0"/>
<element name="metadata" type="ascmhl:MetadataType" minOccurs="0"/>

</sequence>
</complexType>

<complexType name="RootDirectoryHashType">
<sequence>

<element name="content" type="ascmhl:DirectoryHashFormatContainerType"/>
<element name="structure" type="ascmhl:DirectoryHashFormatContainerType"/>

</sequence>
</complexType>
<complexType name="HashFormatType">

<simpleContent>
<extension base="string">

<attribute name="action" type="ascmhl:ActionAttributeType"/>
<attribute name="hashdate" type="dateTime"/>

</extension>
</simpleContent>

</complexType>
<complexType name="DirectoryHashFormatContainerType">

<sequence>
<element name="c4" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="md5" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="sha1" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="xxh128" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="xxh3" type="ascmhl:HashFormatType" minOccurs="0"/>
<element name="xxh64" type="ascmhl:HashFormatType" minOccurs="0"/>

</sequence>
</complexType>
<complexType name="ReferencesType">

<sequence>
<element name="hashlistreference"

type="ascmhl:HashListReferenceType" maxOccurs="unbounded"/>
</sequence>

</complexType>
<complexType name="HashListReferenceType">

<sequence>
<element name="path" type="ascmhl:RelativePathType"/>
<element name="c4" type="ascmhl:HashFormatType"/>

</sequence>
</complexType>
<complexType name="MetadataType">

<complexContent>
<extension base="anyType"/>

</complexContent>
</complexType>
<element name="hashlist" type="ascmhl:HashListType"/>

</schema>

33 of 38

ASC MHL v1.0 Media Hash List

Appendix B: Example ASC MHL XML File

<?xml version="1.0" encoding="UTF-8"?>
<hashlist version="2.0"
xmlns="urn:ASC:MHL:v2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:ASC:MHL:v2.0 ASCMHL.xsd">
<creatorinfo>
<creationdate>2019-10-11T15:56:03+02:00</creationdate>
<hostname>donkey.local</hostname>
<tool version="0.0.3">ascmhl-tool</tool>
<author email="foo@bar.foo.foo.com" phone="+1 234 567 890 88">Liz Foo</author>
<author email="zed@bar.foo.foo.com" phone="+1 234 567 890 99">Ben Zed</author>
<location>Munich, Germany</location>

</creatorinfo>
<processinfo>
<process>in-place</process>
<roothash>
<content>
<xxh64>7680e5f98f4a80fd</xxh64>

</content>
<structure>
<xxh64>8f4a80fd7680e5f9</xxh64>

</structure>
</roothash>
<ignore>
<pattern>*.DS_Store</pattern>
<pattern>/tmp</pattern>

</ignore>
</processinfo>
<hashes>
<hash>
<path size="5"

lastmodificationdate="2019-10-11T15:56:03+02:00">Clips/A002C006_141024_R2EC.mov</path>
<xxh64 action="original">0ea03b369a463d9d</xxh64>

</hash>
<hash>
<path size="5"

lastmodificationdate="2019-10-11T15:56:03+02:00">Clips/A002C007_141024_R2EC.mov</path>
<xxh64 action="original">7680e5f98f4a80fd</xxh64>

</hash>
<directoryhash>
<path lastmodificationdate="2019-10-11T15:56:01+02:00">Clips/</path>

<content>
<xxh64>7680e5f98f4a80fd</xxh64>

</content>

<structure>

<xxh64>8f4a80fd7680e5f9</xxh64>

</structure>

<metadata>test2</metadata>
</directoryhash>
<hash>
<path size="58"

lastmodificationdate="2019-10-11T15:56:03+02:00">Sidecar.txt</path>
<xxh64 action="failed">3ab5a4166b9bde44</xxh64>
<metadata bar="Foo"/>

</hash>

34 of 38

ASC MHL v1.0 Media Hash List

</hashes>
<metadata>
test
<foo bar="1">lorem</foo>

</metadata>
<references>
<hashlistreference>
<path>A002R2EC/ascmhl/0002_A002R2EC_2020-01-17_143000.mhl</path>

<c4>c418T9ncneEGEMT5NopfHGRPRBAuoxwYkP6w5S8xChNBYnFMZ4AknVurpwxTPsUouLtF9NGyxMBsZTDBEEp
L3JdHoG</c4>

</hashlistreference>
<hashlistreference>
<path>A003R2EC/ascmhl/0002_A003R2EC_2020-01-17_143000.mhl</path>

<c4>c418T9ncneEGEMT5NopfHGRPRBAuoxwYkP6w5S8xChNBYnFMZ4AknVurpwxTPsUouLtF9NGyxMBsZTDBEEp
L3JdHoG</c4>

</hashlistreference>
</references>

</hashlist>

Appendix C: Syntax of the Ignore Pattern

Adapted from https://git-scm.com/docs/gitignore, one line in the .gitignore file format equals the
value of one “pattern” element.

● Trailing spaces are ignored unless they are quoted with backslash (“\”).

● An optional prefix "!" which negates the pattern; any matching file excluded by a previous
pattern will become included again. It is not possible to re-include a file if a parent
directory of that file is excluded. Git doesn’t list excluded directories for performance
reasons, so any patterns on contained files have no effect, no matter where they are
defined. Put a backslash ("\") in front of the first "!" for patterns that begin with a literal
"!", for example, “\!important!.txt".

● The slash / is used as the directory separator. Separators may occur at the beginning,
middle or end of the search pattern.

● If there is a separator at the beginning or middle (or both) of the pattern, then the pattern is
relative to the scope of the ASC MHL Manifest. Otherwise the pattern may also match at
any level below the root path.

● If there is a separator at the end of the pattern then the pattern will only match directories,
otherwise the pattern can match both files and directories.

● For example, a pattern doc/frotz/ matches doc/frotz directory, but not a/doc/frotz
directory; however frotz/ matches frotz and a/frotz that is a directory (all paths are
relative to the root path).

● An asterisk "*" matches anything except a slash. The character "?" matches any one
character except "/". The range notation, e.g. [a-zA-Z], can be used to match one of the
characters in a range.

35 of 38

https://git-scm.com/docs/gitignore

ASC MHL v1.0 Media Hash List

Two consecutive asterisks ("**") in patterns matched against full pathname may have special
meaning:

● A leading "**" followed by a slash means match in all directories. For example, "**/foo"
matches file or directory "foo" anywhere, the same as pattern "foo". "**/foo/bar"
matches file or directory "bar" anywhere that is directly under directory “foo".

● A trailing "/**" matches everything inside. For example, "abc/**" matches all files inside
directory "abc", relative to the root path, with infinite depth.

● A slash followed by two consecutive asterisks then a slash matches zero or more
directories. For example, "a/**/b" matches "a/b", "a/x/b", "a/x/y/b" and so on.

● Other consecutive asterisks are considered regular asterisks and will match according to
the previous rules.

Appendix D: Hash Format Configuration and Encoding

MD5

The MD5 digest algorithm [RFC1321] takes no explicit parameters. An MD5 digest is a 128-bit
string in base64 [RFC4648] encoding viewed as a 16-octet octet stream (32 characters).

Example: 40e52b717fab6af085566c769cd9c6ea

SHA1

The SHA-1 digest algorithm [RFC3174] takes no explicit parameters. A SHA-1 digest is a 160-bit
string in base64 [RFC4648] encoding viewed as a 16-octet octet stream (40 characters).

Example: 48146b795eab757a46261b722bf0d8312e113ff8

C4

The C4 digest algorithm [SMPTE ST 2114] is a SHA-512 digest encoded in Base58 prepended by
the string “c4” (90 characters).

Example:
c4137gLfVPqPdRgKr8yXNp1CRgJwSN9Yr4Sh3aaVT6uGmN5GgA7HkHcrTmQxy4t2ZmfWYMqQmF4u7ZR

MKtPUM965n2

XXH64

The XXH64 digest algorithm [xxHash] takes a seed value as an input parameter. For ASC MHL the
seed value is 0 (zero) and the implementation is big endian. The 64-bit digest value is viewed as a
16-octet octet stream (32 characters).

Example: bca8c0744bf7f78d

XXH3 and XXH128

36 of 38

ASC MHL v1.0 Media Hash List

The two XXH3 digest algorithms [xxHash] take a seed value as an input parameter. For ASC MHL
the seed value is 0 (zero) and the implementation is big endian. The 64-bit digest value is viewed
as a 16-octet octet stream (32 characters), the 128-bit digest value is viewed as a 32-octet octet
stream (64 characters).

Example (XXH3): 3ab5a4166b9bde44

Example (XXH128): 00fd03cd9996ee8cf8be6a756bf82a42

Appendix E: ASC MHL Directory XML Schema

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<schema targetNamespace="urn:ASC:MHL:DIRECTORY:v2.0"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:ascmhldirectory="urn:ASC:MHL:DIRECTORY:v2.0"
xmlns:ascmhl="urn:ASC:MHL:v2.0"
elementFormDefault="qualified">
<import

schemaLocation="https://raw.githubusercontent.com/ascmitc/mhl/master/xsd/ASCMHL.xsd"
namespace="urn:ASC:MHL:v2.0"/>

<complexType name="DirectoryType">
<sequence>

<element name="hashlist" type="ascmhldirectory:HashlistType"
maxOccurs="unbounded"/>

</sequence>
</complexType>
<complexType name="HashlistType">
<sequence>

<element name="path" type="ascmhl:RelativePathType"/>
<element name="c4" type="ascmhl:HashFormatType"/>

</sequence>
<attribute name="sequencenr" type="integer"/>

</complexType>
<element name="ascmhldirectory" type="ascmhldirectory:DirectoryType"/>

</schema>

Appendix F: Example ASC MHL Chain File

<?xml version="1.0" encoding="UTF-8"?>
<ascmhldirectory xmlns="urn:ASC:MHL:DIRECTORY:v2.0">

<hashlist sequencenr="1">
<path>0001_A002R2EC_2020-01-16_091500.mhl</path>
<c4>c418T9ncneEGEMT5NopfHGRPRBAuoxwYkP6w5S8xChNBYnFMZ4AknVurpwxTPsUouL

tF9NGyxMBsZTDBEEpL3JdHoG</c4>
</hashlist>
<hashlist sequencenr="2">

<path>0002_A002R2EC_2020-01-16_091500.mhl</path>
<c4>c418T9ncneEGEMT5NopfHGRPRBAuoxwYkP6w5S8xChNBYnFMZ4AknVurpwxTPsUouL

tF9NGyxMBsZTDBEEpL3JdHoG</c4>
</hashlist>

</ascmhldirectory>

37 of 38

https://raw.githubusercontent.com/ascmitc/mhl/master/xsd/ASCMHL.xsd

ASC MHL v1.0 Media Hash List

Appendix G: Process for creating a hash of hashes.

To produce a hash of hashes, all child hashes included in the computation of the parent hash
must be of the same checksum algorithm type. For example, an MD5 directory hash can only be
computed from a list of child MD5 checksums.

The process to compute a hash from a list of hashes is as follows:
1. Given a list of hashes, reset the hash-generator* to a clear (empty / new) state.
2. Sort the list of hashes by hash value lexicographically.
3. For each hash in the list of hashes:

a. Encode the hash value into its appropriate byte representation as specified in
Appendix D.

b. Write the bytes to the hash-generator.
4. Produce a digest of the hash-generator.
5. Decode the newly generated digest into its string value as specified in Appendix D.

* “hash-generator” as used above indicates an in-memory instance of a hash creation object
within the context of a running computer program. For example, in python3 the code
“hashlib.md5()” produces a new md5 hash-generator.

38 of 38

