
Document Identifier: DSP2043

Date: 2016-12-16

Version: 1.1.0

Scalable Platforms Management API
Mockup Readme

Document Class: Informative

Document Status: Published

Document Language: en-US

http://www.dmtf.org/standards/feedback
http://www.dmtf.org/standards/feedback

Copyright Notice

Copyright © 2015-2016 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party

patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third party patent right, owners or claimants, nor for any incomplete or

inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to

any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,

disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or

incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any

party implementing such standard, whether such implementation is foreseeable or not, nor to any patent

owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,

such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/

policies/disclosures.php.

This document’s normative language is English. Translation into other languages is permitted.

Scalable Platforms Management API Mockup Readme DSP2043

2 Published Version 1.1.0

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

CONTENTS

1. DSP2043 Server (DSP2043-server) .. 6

2. Simple Rack-mounted server (public-rackmount) .. 6

3. Bladed Server (public-bladed) .. 6

4. Local Storage (public-localstorage) .. 6

5. SAS Fabric (public-sasfabric) ... 6

6. Proposed OCP Redfish Profile (proposed-ocp-profile) .. 6

7. Concepts .. 7

7.1. Starting.. 7

7.2. Versioning ... 7

7.3. References.. 8

7.4. Main Objects ... 8

7.5. Collections .. 8

7.6. Current Configurations vs Settings ... 8

7.7. Common Properties .. 9

7.8. Actions .. 9

7.9. Redundancy.. 9

7.10. RelatedItems... 10

7.11. ETags .. 10

7.12. Services .. 10

7.13. Where does a client get schema definition? ... 10

8. Enough for now .. 10

DSP2043 Scalable Platforms Management API Mockup Readme

Version 1.1.0 Published 3

Foreword

The following files are part of the Redfish Scalable Platforms Management API ("Redfish") development

effort:

• DSP0226 - Redfish Specification - This file is the main Redfish Scalable Platforms Management

API Specification.

• DSP0270 - Redfish Host Interface Specification - This document specifies the "in-band" or "OS-

based" Redfish Host Interface.

• DSP2044 - Redfish Whitepaper - This is intended to be a non-normative document helping those

new to Redfish understand how to interact with the Redfish Service and understand common

functions and tasks.

These other components are part of the Redfish Scalable Platforms Management API development effort

• DSP2043 - Redfish Mockup - this is set of mockups that can be used as sample of output from

GETs from A Redfish service. Informative in nature, it was used to develop the schema. A

person can set up an NGINX or similar server and configure it to output JSON format and then

use this directory for demonstration purposes.

• DSP8010 - Redfish Schema - This contains the Redfish Schema definitions. These files are

normative in nature and are normatively referenced by the Redfish Specification. There are two

Schema formats - CSDL (OData Common Schema Definition Language format, which is in XML)

and JSON Schema. These Schema definitions should be functionally equivalent, thus specifying

the schema in two different languages.

Scalable Platforms Management API Mockup Readme DSP2043

4 Published Version 1.1.0

Redfish Mockups

This archive contains a number of mockups of various Redfish service implementations. They are

intended to be a guide for learning about the Redfish Specification by showing typical examples of

implementations. These mockups are not prototypes and do not reflect any actual product or Redfish

implementation.

Many of these mockups are also used to populate the Redfish Resource Explorer, part of the Redfish

Developer Hub located at: http://redfish.dmtf.org

DSP2043 Scalable Platforms Management API Mockup Readme

Version 1.1.0 Published 5

http://redfish.dmtf.org

1. DSP2043 Server (DSP2043-server)

This mockup provides an example of a 1U or 2U rack-mounted server typically deployed in large scale

data centers. In addition, the mockup is intended to be used as a base for "Work in Progress" mockups to

demonstrate new features, schemas or properties currently under development within the SPMF.

2. Simple Rack-mounted server (public-rackmount)

This illustration of a Redfish service implementation shows a typical rack-mount server, as commonly

used in scale-out data centers. It depicts the types of information that can be expected, but does not

represent an actual implementation.

3. Bladed Server (public-bladed)

This example represents an enclosure of “blade servers” that share infrastructure components, such as

power supplies and fans. Depicting an enclosure containing four blade servers (a total of five “Chassis”),

this mockup demonstrates the modeling of multiple chassis and systems managed from a single Redfish

service.

4. Local Storage (public-localstorage)

This example shows a server with an implementation of the Redfish storage schemas, showing an

integrated RAID controller with four attached drives.

5. SAS Fabric (public-sasfabric)

This example shows a more complex storage implementation using a pair of SAS switches (fabric),

storage enclosures and multiple storage devices.

6. Proposed OCP Redfish Profile (proposed-ocp-profile)

This draft example, for ongoing development, represents a proposed minimal Redfish data model "profile"

that meets the needs of the Open Compute Project’s Hardware Management requirements. This draft

profile is intended to help define a list of required properties so that essential management-related tasks,

as defined by OCP, can be performed on any Redfish implementation.

Scalable Platforms Management API Mockup Readme DSP2043

6 Published Version 1.1.0

7. Concepts

Every URI represents a resource, which could be a service, a collection, an element or some other

construct. But in RESTful terms, these URIs point to resources and clients interact with Resources. So

when you see the term resource, you can think of it as what you get back when you access a URI.

The resource format is defined by a Schema. Each resource has a specific format that is specified in the

Redfish Schema that the client can use to determine the semantics about the resource (though we try to

make things as intuitive as possible). The Schema is defined in OData's Schema format.

All properties in the resource are intended to be used as JavaScript variables. This should accelerate

adoption and allow JavaScript web pages and enabled apps to use the data directly. URIs are persistent

across reboots but clients are expected to start at /redfish/v1 and do discovery of the URIs from there.

This is known as a "hypermedia API" approach. Don't fixate on the URIs as URIs can be different

between implementations. Current state objects can be separate from desired state objects. The section

below works better if you are actually doing the GETs

7.1. Starting

All clients start at the base /redfish/v1 object. Many items are broken down in arrays of references for

scalable environments. Links to other resources are in the "links" section. You can see links to Systems,

managers, the physical Chassis as well as services like Eventing, Tasks, Schema (meta data)). (Note –

discovery of service endpoints will be done using UPNP’s SSDP but that’s not in the mockup).

7.2. Versioning

Redfish has two kinds of versioning - the version of the protocol and the version of the resource schema.

The version of the protocol is in the URI - that's why you should start at /redfish/v1. It means you are

accessing version one of the protocol. Version 1 is the only one available now, but we needed to

accommodate potential future versions.

Each resource has a resource type definition. Resource types are defined in versioned namespaces.

Each resource instance has the type represented using the OData type annotation "@odata.type". The

value of the type annotation is the URI of the resourcce type, including the versioned namespace. So

when you see "@odata.type" : "#ServiceRoot.v1_0_0.ServiceRoot", you are dealing with a resource that

adheres to the ServiceRoot type definition, defined in 1.0.0 version of the ServiceRoot schema. The

corresponding schema file would be located at /schema/v1/ServiceRoot in the Redfish schema repository.

So the full URI for the type would be "/schem/v1/ServiceRoot#ServiceRoot.v1_0_0.ServiceRoot. The

schema file may contain other types used by in the resource type definition (for example, structured types

and enums), which would have the same resource path but the fragment would describe a different type

definition, typically within the same namespace.

DSP2043 Scalable Platforms Management API Mockup Readme

Version 1.1.0 Published 7

7.3. References

When you see the links section, it will have a set of references to other resources in it. URIs are either

absolute or relative. Absolute ones won’t have the IP address but will start with /redfish/v1. If you have a

plug in like the Chrome Advanced REST client, you can click on this to fill in the URI for your next GET.

7.4. Main Objects

The "main" objects are Systems, Managers and Chassis. These are all collections (see next heading).

We will dig into these resources in a minute, but it's good to know a bit about them. Systems can have

one or more managers (since some managers are redundant), and are in one chassis. Managers are in a

Chassis and can manage more than one system. And Chassis can house more than one System and/or

Managers. Chassis can also have Chassis in them. It is the chassis that houses sensors, fans and the

like. Systems have the CPU/Memory complex and devices and managers handle various management

services but also have their own devices (like NICs). This is just an overview, but looking at the base

object you can see this right away.

7.5. Collections

There are groups of similar resources returned as collections. Examples of these in the Mockup include

Systems, Managers, Chassis, LogEntries, Sessions, EventSubscriptions and more.

So pick either Systems, Managers or Chassis and go down into it. You will see this is a Collection.

Collections may be paginated; collections with a property named "@odata.nextLink" are incomplete, and

the client can use the URL-value of the property to retrieve the next portion of the collection from the

service.

Collection responses have a "value" property that contains a list of members, or links to members. Links

to members are represented as JSON objects with a single "@odata.id" property containing the URI of

the related resource.

7.6. Current Configurations vs Settings

There are basically two kinds of objects in Redfish - Current Configurations and Settings. Most objects

represent the current state of any given resource. Occasionally, you'll see a property called "Settings" in

the links section for a resource. This link tells you where to do PUTs and PATCHes. It represents the

future state of the resource. Some resources can handle changes to them right away, others may require

a restart/reboot of the system or service. "Settings" is used to let the client know what type of resource

this is and where to make the changes. If you see a Settings link, that's where to make the changes that

will be picked up at the next reboot. Examples of resources that need Settings are devices like NICs and

Storage as well as BIOS.

Scalable Platforms Management API Mockup Readme DSP2043

8 Published Version 1.1.0

7.7. Common Properties

As you go through the model, you keep seeing some of the same properties. You'll find Name and

Modified in every resource. These are required. You'll also see Status as an embedded object and it has

the same definition across all usages. All of these are actually in a common part of the Schema and used

by other Schema by reference.

7.8. Actions

Not everything can be done easily using REST, so Redfish leverages OData Actions for procedural

operations. Things like "push button" on a System (which would reset the system or turn it off, depending

on its setting) can't easily be represented in the System because the service has no idea what the state of

the button is.

So instead of having hidden properties that you could PUT/PATCH to, or complex state machines, we

created Actions. Actions are done with POSTs to the Resource (see the spec for specifics). You can tell

what actions are supported in any resource by looking for the "Actions" property.

7.9. Redundancy

Go back to one of the Chassis and take a look at the fans by following the link to "Thermal" and you will

see how Redfish shows redundancy.

You will notice an array called "Redundancy". It shows the two fans in its set using the same values in the

RelatedItem properties. Redundancy has a common schema definition in Redfish and has other

properties in it besides the members to show other important attributes about redundancy. This is how the

client can figure out which items belongs to which redundancy set since the @odata.id values are

pointers to the redundancy set members.

The value of the "@odata.id" property, though, doesn't have to be to a whole resource. The value of this

property will be of two formats: a JSON Pointer or an OData reference.

• In the case of a JSON Pointer, there will be a # in it that indicates where the resource stops and

where the property pattern begins. The schema will also have a reference to the property. An

example of a JSON Pointer value might be "/redfish/v1/Chassis/1/Thermal#/Fans/0".

• In the case of an OData reference, there will not be a # in it. The schema will have a definition of

the property. An example of a JSON Pointer value might be "/redfish/v1/Chassis/1/Thermal/

Fans/0".

DSP2043 Scalable Platforms Management API Mockup Readme

Version 1.1.0 Published 9

7.10. RelatedItems

If you're still in the "Thermal" resource, you can see that the Temperature array elements have a

RelatedItem property with an "@odata.id" in it. This is a reference to the sub-resource that this

temperature sensor is measuring - perhaps a processor. Like Redudancy links, the value may be to a

sub-resource. Thus a client can determine what is being measured by this temperature sensor.

RelatedItem, while having a common schema definition, is situational dependent in it's usage. But it

always is used to show a relationship between two different resources or sub-resources.

And like redundancy, the value of the "@odata.id" property doesn't have to be to a whole resource.

7.11. ETags

ETags are used by browsers to optimize IO (caching). They do an If-Match and if it matches, they don’t

bother dragging the data. We use them to determine if an object has changed. Thus every ETag will

change if a PUT is done or if a tool (like BIOS configuration at the console) takes place. Thus any race

condition on PUTs between Redfish and non-Redfish clients (as well as other Redfish clients) are always

noticed.

The problem is that this is a mock-up and not a real web service so you can't see the ETags work.

7.12. Services

Let's go back to root and take a look at some common services. Tasks, Sessions, EventService and

AccountService are all common services. You can read more about them in the spec, but they should be

fairly obvious. Tasks contains a list of jobs that may have been started, usually as the result of Actions.

7.13. Where does a client get schema definition?

Payloads contain a URL that the client can use to retrieve the schema for the service. That service

schema file generally references other externally hosted schema files for common schema definitions.

Types within a JSON payload are identified by a dereferenceable type URI.

8. Enough for now

Hopefully the information will have been enough for now to get you up to speed and you can start

perusing the mockup and reading the spec as well as the schema to get an idea of how all of this works.

Scalable Platforms Management API Mockup Readme DSP2043

10 Published Version 1.1.0

	Scalable Platforms Management API Mockup Readme
	Foreword
	Redfish Mockups
	1. DSP2043 Server (DSP2043-server)
	2. Simple Rack-mounted server (public-rackmount)
	3. Bladed Server (public-bladed)
	4. Local Storage (public-localstorage)
	5. SAS Fabric (public-sasfabric)
	6. Proposed OCP Redfish Profile (proposed-ocp-profile)
	7. Concepts
	7.1. Starting
	7.2. Versioning
	7.3. References
	7.4. Main Objects
	7.5. Collections
	7.6. Current Configurations vs Settings
	7.7. Common Properties
	7.8. Actions
	7.9. Redundancy
	7.10. RelatedItems
	7.11. ETags
	7.12. Services
	7.13. Where does a client get schema definition?

	8. Enough for now

