
Adding a new device to labscript:

Chris Billington

January , 

Contents

 Introduction 

 Class relationships 
. labscript.labscript.Pseudoclock . 
. labscript.labscript.IntermediateDevice 

 Examples 
. PseudoClock example . 
. IntermediateDevice example . 

 Introduction

l
abscript is a compiler. It translates high-level instructions given by Python func-
tion calls into low level instructions suitable for programming into specific devices.
Clearly, the form of these low-level instructions is device-specific, and as such code to

produce these instructionsmust be written in order for labscript to work with a new device.
Despite this, many devices are similar, and instructions given to them in a labscript ex-

periment are processed in similar ways. For example, all analog output devices that are ex-
ternally pseudoclockedwill need their outputs interpolated to the times that the clock ticks.
Because of this, two analog output devices can benefit from code re-use in labscript.

Depending on how similar your new device is to an existing one, and how well it fits
the pseudoclock architecture, you may need to write a lot of code, or very little. e aim of
this document is to outline the structure of the labscriptmodule by describing the twomain
device classes (Sec. ), and how they fit into the different stages in compilation. With this
knowledge a developer writing support for a new device can choose which existing class it
is most appropriate to subclass for their device, and what data processing they should write
themselves and what they should re-use. An example of each class is provided in Sec. 

is document assumes familiarity with object oriented programming in Python.

 Class relationships

D   in labscript. In fact, they are all subclassed from the lab-
script.labscript.Device class. is class contains the logic for adding the device
to the compiler ‘inventory’, so that the compiler knows about it, and putting it into

the builtin namespace, making each device object available to the user interpreter-wide. It
also contains a few other methods pertaining to connecting devices to each other. See its
class definition in labscript.labscript to see precisely what all device classes have in com-
mon.

Writing device compatibility for labscript comprises subclassing Device or — more
likely — one of its subclasses, and overriding or adding methods as appropriate. e most
important method is the generate_code(hdf5_file) one. It will be called at compilation
time and is responsible for writing low-level instructions for that device to the givenHDF
file. e instructions should be saved as one or more datasets or attributes in the group
'/devices/<device_name>', where <device_name> is the name of the instance of that device
as used in labscript (stored in self.name).



Subclasses should generally call their superclass’s __init__ and generate_code meth-
ods when they are being overridden. Usually, calling the superclass’s generate_codemethod
does most of the instruction processing for you, at which point the object will have its in-
structions stored as instance attributes ready for your new code to access and translate into
device-specific instructions. See the existing device classes (in labscript.labscript) for
examples of overwritten __init__ and generate_codemethods.

ere are twomain subclasses of Device that you will be likely to subclass: PseudoClock
and IntermediateDevice.

. labscript.labscript.Pseudoclock

e first is labscript.labscript.Pseudoclock. Most of the control flow during compila-
tion is dictated by methods in this class. Generally, all devices capable of providing their
own timing, or providing clocking signals to other devices, should be a PseudoClock. A
PseudoClock object expects to have children which are Outputs and IntermediateDevices
(each with its own Outputs), and during compilation it calls methods on them to collect
data on what the Outputs have been asked to do in the experiment. From this information it
constructs a clocking signal, stored as self.clock in an intermediate format as a dictionary.
Implementing a pseudoclock involves converting this structure to whatever format the de-
vice itself actually requires for programming, and saving the results to the HDF file. An
example of a clocking signal is:

 self.clock = [{'start': 0, 'reps': 1, 'step': 1e-3, 'slow_clock_tick':True},
 'WAIT',
 {'start': 1e-3, 'reps': 1, 'step': 1e-6, 'slow_clock_tick':True},
 {'start': 1.001e-3, 'reps': 999, 'step': 1e-6, 'slow_clock_tick':False},
 {'start': 2e-3, 'reps': 1, 'step': 1e-3, 'slow_clock_tick':True}]

is means that the pseudoclock should tick once with a period of 1ms (0.5ms each
high and low), on both the fast and slow clock outputs. It should then halt execution and
wait for an external trigger. Aer that, it should tick once with a period of 1µs on both
outputs, then only the fast clock  times at a rate of 1MHz. It should then tick oncemore
on both clocks with a 1 ms period. e 'start' key is not needed generally for actually
producing signals, and is used only in labscript to provide a timestamp in error messages
pertaining to producing clocking signals.

So in its simplest form, adding support for a new pseudoclock involves converting this
list of dictionaries (or 'WAIT' strings) into a list of strings to be piped down a serial connec-
tion, a list of parameters to be passed to C function calls, or whatever format is is easiest to
read and then program into the device once the HDF file is being read by BLACS.

See labscript.labscript.PulseBlaster and labscript.labscript.PineBlaster for ex-
amples of pseudoclock classes. e former has DDS and digital outputs as well as providing

As is always the case, exceptions are possible but are discouraged.
e PseudoClock is assumed to have at most two outputs, one that ticks at a subset of the times that the

other ticks. e one that ticks less oen is called the slow clock. We use this functionality to have more de-
vices clocked off the same pseudoclock than would otherwise be possible. e PseudoClock class inserts a slow
clock tick for every single-value instruction on an output device, as well as a single slow clock tick at the be-
ginning of ramps. However the slow clock does not tick during ramps. is means that devices attached to
the slow clock cannot execute function ramps. If you wish to implement a pseudoclock with only one out-
put, you may simply ignore this distinction and produce hardware instructions for only a fast clock signal. See
labscript.labscript.PineBlaster for an example of this

Again, your device need not support this, and you can have it simply throw an error upon encountering
such an instruction.



a clocking signal, so its code generation is quite involved. e latter produces only a signal
clock signal and so is fairly simple. e PineBlaster is used as an example in Sec. 

. labscript.labscript.IntermediateDevice

is is the class that you are likely to subclass most oen. It represents devices that have a
PseudoClock as their parent device and Outputs (analog, digital or DDS) or inputs as their
child devices. So for example, National Instruments cards with digital and analog outputs
and analog inputs are implemented in labscript as IntermediateDevices. ese devices are
programmedwith their output values, but receive their timing from theparent pseudoclock.

By the time an IntermediateDevice’s generate_code method is called during compi-
lation, the parent PseudoClock has already collected the times at which the child Outputs
change, generated its clocking data, and le behind some useful instance attributes on each
Output pertaining to what their output values should be at each clock tick. ese attributes
are what you should use in the generate_codemethod of your IntermediateDevice.

You can access the child Outputs of an IntermediateDevice with self.child_devices.
Eachof these outputs thenhas an attribute output.raw_output, which is simply a numpy array
of voltages, or in the case of digital outputs, a numpy array of ones and zeros. In the case of
a DDS output, the arrays of amplitudes, frequencies and phases are stored as attributes to
three Output-like objects, output.frequency, output.amplitude and output.phase. Each
of these is an AnalogQuantity and similarly have raw_output attributes. DDSs may also
have a digital gate for turning them on and off, if so it is stored as output.gate and similarly
has a raw_output attribute for its values.

Child devices may also be AnalogInputs. In this case, each input object has an attribute
inputs.acquisitions, which is a list of dictionaries with the acquisition times that have
been requested for that channel.

Your job in implementing an IntermediateDevice is to do any processing necessary on
these values, such as converting voltages to integers in some range, converting frequencies to
hexadecimal values, packing sets of Booleans into integers, or whatever your device requires.
You should also do any error checking that is specific to your device, like checking if the
number of instructions is within the capabilities of the device, as are the values themselves.
You should raise an informative labscript.labscript.LabscriptError in the event that
something is not right.

See labscript.labscript.NIBoard or labscript.labscript.NovaTechDDS9M for exam-
ples of IntermediateDevicess. e NIBoard is used as an example in .

 Examples

. PseudoClock example
e following is an actual pseudoclock in use in labscript, commented here to explain what
each bit is for. It looks long here but is actually only about  lines of actual code. Other
pseudoclocksmay bemore complex, as is labscript.labscript.PulseBlaster, owing to its
direct digital and DDS outputs as well as a more complex method of programming.

Currently only AnalogIn
You can use the labscript.labscript.bitfield function to convert a list of these arrays of ones and zeros

into a single array of integers (bitfields), if necessary.
Which is a subclass of Output and is identical to an AnalogOut in every way except for the name. is is so

that code can tell the difference between analog outputs that correspond to actual physical outputs, and those
that exist only to store the frequency, amplitude or phase data of a DDS.



. IntermediateDevice example
e following is a class used in labscript for National Instruments cards. is class is not
used directly, it is instead subclassed further for specific National Instruments cards with
varying numbers of analog and digital outputs, and analog inputs. But it is a more informa-
tive example than the more specific classes, as it is the one that contains most of the work of
the generate_code function.

 from labscript import *

 class NIBoard(IntermediateDevice):
 # Set what types of child devices this IntermediateDevice can have:
 allowed_children = [AnalogOut, DigitalOut, AnalogIn]

 # Some device specific parameters:
 n_analogs = 4
 n_digitals = 32

 digital_dtype = uint32

 # The maximum rate that the outputs can update:
 clock_limit = 500e3

 # A name for the device:
 description = 'generic_NI_Board'

 def __init__(self, name, parent_device, clock_type, clock_terminal, MAX_name=None, acquisition_rate=0):
 # We pass the relevant parameters to the parent class's __init__ function:
 IntermediateDevice.__init__(self, name, parent_device,clock_type)

 # This implementation only allows analog aquisitions at a constant rate
 self.acquisition_rate = acquisition_rate
 self.clock_terminal = clock_terminal
 self.MAX_name = name if MAX_name is None else MAX_name
 self.BLACS_connection = self.MAX_name

 def convert_bools_to_bytes(self, digitals):
 """converts digital outputs to an array of bitfields stored
 as self.digital_dtype"""
 outputarray = [0]*self.n_digitals
 for output in digitals:
 # output.connection is the string that the user provided at
 # instantiation of the output object. It is, by convention
 # here, port0/line<n>, where <n> is an integer from 0 to 31
 # indicating which digital output it is:
 port, line = output.connection.replace('port','').replace('line','').split('/')
 port, line = int(port),int(line)
 if port > 0:
 raise LabscriptError('Ports > 0 on NI Boards not implemented. ' +
 'Please use port 0, or file a feature request ' +
 'at redmine.physics.monash.edu.au/labscript.')
 # Pack all the 1d arrays of digital output values into their appropriate spot in a list:
 outputarray[line] = output.raw_output
 # Convert this list of arrays of digital values into
 # integer bitfields (the bitfield function is located in
 # labscript.labscript)
 bits = bitfield(outputarray,dtype=self.digital_dtype)
 return bits

 def generate_code(self, hdf5_file):
 # By the time this function is called during compilation, most
 # of the work has already been done. Calling the parent class's
 # generate_code method actually does nothing at the moment,
 # but this may change in the future, so you should call it anyway.
 Device.generate_code(self, hdf5_file)

 # Now we collect up all the output and input objects from self.child_devices:
 analogs = {}
 digitals = {}
 inputs = {}
 for device in self.child_devices:
 if isinstance(device,AnalogOut):
 analogs[device.connection] = device
 elif isinstance(device,DigitalOut):
 digitals[device.connection] = device
 elif isinstance(device,AnalogIn):
 inputs[device.connection] = device
 else:
 raise Exception('Got unexpected device.')

 # Now we collect up all the output.raw_output arrays from the
 # analog outputs, and load them into a numpy recarray:
 analog_out_table = empty((len(self.parent_device.times),len(analogs)), dtype=float32)
 analog_connections = analogs.keys()
 analog_connections.sort()
 analog_out_attrs = []
 for i, connection in enumerate(analog_connections):
 output = analogs[connection]
 # A bit of error checking:



 if any(output.raw_output > 10) or any(output.raw_output < -10):
 # Bounds checking:
 raise LabscriptError('%s %s '%(output.description, output.name) +
 'can only have values between -10 and 10 Volts, ' +
 'the limit imposed by %s.'%self.name)
 # Put the 1D array of voltages into the table:
 analog_out_table[:,i] = output.raw_output
 # Record the output terminal name to an attribute, so that
 # BLACS knows which ones to program:
 analog_out_attrs.append(self.MAX_name +'/'+connection)

 # Now we make a numpy recarray of all the analog input requests:
 input_connections = inputs.keys()
 input_connections.sort()
 input_attrs = []
 acquisitions = []
 for connection in input_connections:
 input_attrs.append(self.MAX_name+'/'+connection)
 for acq in inputs[connection].acquisitions:

 # Each acquisition request is a dictionary with the
 # following data, we're just putting them all in a list
 # along with the input channel they correspond to:
 acquisitions.append((connection,acq['label'],acq['start_time'],acq['end_time'],
 acq['wait_label'],acq['scale_factor'],acq['units']))
 # The 'a256' dtype below limits the string fields to 256
 # characters. Can't imagine this would be an issue, but to not
 # specify the string length (using dtype=str) causes the strings
 # to all come out empty.
 acquisitions_table_dtypes = [('connection','a256'), ('label','a256'), ('start',float),
 ('stop',float), ('wait label','a256'),('scale factor',float), ('units','a256')]
 acquisition_table= empty(len(acquisitions), dtype=acquisitions_table_dtypes)
 # OK, now we're putting them all into the numpy array:
 for i, acq in enumerate(acquisitions):
 acquisition_table[i] = acq

 # And finally for digital output:
 digital_out_table = []
 if digitals:
 # We convert the arrays of boolean values to a single
 # array of bitfield integers. This is how many devices need
 # their digital values programmed, though as it happens,
 # the National Instruments cards we use do not. So actually
 # this is just for storage in the HDF5 file and this process
 # is reversed when BLACS reads the data later.
 digital_out_table = self.convert_bools_to_bytes(digitals.values())

 # Create the required group for this device in the HDF5 file:
 grp = hdf5_file.create_group('/devices/'+self.name)

 # Save the analog output table, if it exists (subclasses may have zero outputs and hence an empty table):
 if all(analog_out_table.shape): # Both dimensions must be nonzero
 analog_dataset = grp.create_dataset('ANALOG_OUTS',compression=config.compression,data=analog_out_table)
 # Save the corresponding list of channels:
 grp.attrs['analog_out_channels'] = ', '.join(analog_out_attrs)
 # Save the digital output table, if it exists:
 if len(digital_out_table): # Table must be non empty
 digital_dataset = grp.create_dataset('DIGITAL_OUTS',compression=config.compression,data=digital_out_table)
 # Save the corresponding list of channels:
 grp.attrs['digital_lines'] = '/'.join((self.MAX_name,'port0','line0:%d'%(self.n_digitals-1)))
 # Save the table of acquisitions, if it exists:
 if len(acquisition_table): # Table must be non empty
 input_dataset = grp.create_dataset('ACQUISITIONS',compression=config.compression,data=acquisition_table)
 # Save the channels for analog input:
 grp.attrs['analog_in_channels'] = ', '.join(input_attrs)
 # Save the acquisition rate for analog input:
 grp.attrs['acquisition_rate'] = self.acquisition_rate
 # Save the setting for which terminal this card should expect
 # a clock input on, provided by its parent pseudoclock. BLACS
 # needs this in order to configure the device to respond to the
 # clock ticks:
 grp.attrs['clock_terminal'] = self.clock_terminal




	Introduction
	Class relationships
	labscript.labscript.Pseudoclock
	labscript.labscript.IntermediateDevice

	Examples
	PseudoClock example
	IntermediateDevice example

