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1 Why NwAy?

In astrophysics, a common task is to assemble multi-wavelength informa-
tion about individual sources. This is done by taking the detections of
sources in the sky (positions, errors, and fluxes/magnitudes) from a cata-
logue of one wavelength and matching it to another from another wave-
length, or multiple such catalogues. Care has to be taken to consider all
possible matches and also the possibility that the source does not have a
counterpart in a catalogue of a given depth. For many classes of sources,
the Spectral Energy Distribution (SED) provides additional hints, which
associations are likely real. For instance, the color distribution of stars in
the WISE bands is different than that of quasars or galaxies.
NWAY is a generic solution to these tasks:

1. Matching of N catalogues simultaneously.
2. Consideration of all combinatorically possible matches.

3. Consideration of partial matches across catalogues, i.e. the absence
of counterparts in some catalogues.

4. Taking into account the positional uncertainty.
5. Computation of a probability for each possible match.
6. Computation of a probability that there is no match.

7. Incorporating magnitude, color or other information about the sources
of interest, refining the match probabilities.

Contributors

* Mara Salvato — idea and leading the science case.
» Tamdas Budavari — shared basic implementation of his formulae.

* Sotiria Fotopoulou — initial implementation for matching three cat-
alogues.



¢ Johannes Buchner — complete code rewrite for the general case, doc-
umentation, manual and adding features.

The code is the results of many discussion among colleagues and friends.
We thank in particular: Tamds Budavari, Sotiria Fotopoulou, Fabrizia
Guglielmetti, Arne Rau, Tom Dwelly, Andrea Merloni and Kirpal Nan-
dra.

How to read this manual

This manual walks you through the installation and usage. It is best to try
out the examples as you read, because they illustrate how NWAY works.
Yellow boxes indicate text about the illustrative examples and their ex-
planations.
Useful explanation for users on how to prepare files or how to run
NWAY are found in blue boxes.
Light blue boxes indicate examples you can run yourself to learn NWAY.
Sometimes there are commands you can copy-paste.
If you are interested in the rigorous mathematical details, go to Chap-
ter 5.

Terminology

Source A detection in a certain wavelength significant enough to be
recorded in a catalogue with sky position.

Counterpart The corresponding source in another catalogue.

Association A specific combination of entries from the various cata-
logues, i.e. a tuple of detections associated with each other.

Match Same as association, used interchangeably.

Object A physical entity in the real universe, emitting radiation.



2 User Manual

2.1 Installation

NWAY is a pure Python program. Install NWAY through
$ sudo pip install nway
This will give you the tool nway . py.
Or if you do not have root access:
S pip install nway —-user
The tool nway . py is installed for youas ~/ . local/bin/nway.py.
If that directory is in your SPATH,youcanrun $ nway.py —--help.

Development version To get the latest development version, fetch
NWAY from
https://github.com/JohannesBuchner/nway
and run in the directory
$ python setup.py install --user.
You need to install these python packages:
scipy, astropy, matplotlib, progressbar-latest, argparse,
joblib, healpy

Upgrading from older NwWAY versions To upgrade, uninstall the
older NWAY version first:

S pip uninstall nway

Repeat until it says that NWAY is not installed. Then follow the instal-
lation instructions above.

2.2 Citing NwAY correctly

Please cite Salvato et al., MNRAS, 2018 (ArXiV: https://arxiv.
org/abs/1705.10711, ADS: http://adsabs.harvard.edu/
abs/2018MNRAS.473.4937S).


https://github.com/JohannesBuchner/nway
https://arxiv.org/abs/1705.10711
https://arxiv.org/abs/1705.10711
http://adsabs.harvard.edu/abs/2018MNRAS.473.4937S
http://adsabs.harvard.edu/abs/2018MNRAS.473.4937S

2.3 Development, questions and issues

Please let us know if you have comments about this manual or problems
running/installing NwAY.

For reporting bugs or requesting features, NWAY’s issue tracker is at the
following location.
‘https://github.com/JohannesBuchner/nway

NWAY is a small but powerful tool. Most questions or apparent issues
arise to understand which information lead to a counterpart being pre-
ferred, and therefore understanding the input data well. This manual will
guide you through the computation and the pieces of information added
together.

2.4 Best practice matching

To achieve reliable results, we recommend that you run matching with
increasing amount of information (distance-based first, §2.5, then adding
priors on source properties §2.6) and understand how each influences the
results.

Typically, the goal is a compilation of “best matches”, i.e. choosing
one reliable counterpart for each source. Whatever method used, there are
always false selection fractions and false non-selection fractions in play,
which should be characterized. To this end, we recommend to shift the
source catalogues by a distance much larger than the positional errors to
simulate the results for chance alignment. This fake catalogue should not
coincide with original positions (tool nway—-create-fake-catalogue.py
may help). For the matching run with this fake catalogue, use NWAY with
the same settings and from the output, choose cut-off limits (p_any) that
correspond to the desired false selection fraction (tool nway—-calibrate—-cutoff.py
may help). The output of your first NWAY run advises how to use these
tools to characterise false selection rates and to find an appropriate p_any
threshold.

Then the NWAY output on the real data can be truncated based on
this criterion (p_any>cutoff), and made into a best match catalogue
(match_flag==1). It may be worth noting ambiguous cases with mul-
tiple solutions and to store these secondary solutions with similar proba-
bilities in another catalogue (match_flag==2).


https://github.com/JohannesBuchner/nway

2.5 Simple distance-based matching

Before exploring the full power of NWAY, we consider a simple, illustra-
tive case. We have three catalogues, provided as FITS files:

Input:
Primary Catalogue 2nd Catalogue 3rd Catalogue
A a A
B B B
Output:
Primary 2nd 3rd Catalogue  Probability
Catalogue Catalogue Entry
Entry Entry
A a A
A a B
A a (none)
A B A
A B B
A B (none)
A (none) A
A (none) B
A (none) (none)
B

A group

B group

In NWAY, only the first catalogue (the primary catalogue) plays a spe-
cial role. For each entry of it, counterparts are sought from the other cata-

logues.



2.5.1 Example - Preparing input files
Note these points about preparing a catalogue input file:

1. Each catalogue needs to be a FITS file. The second extension
should be the table (first extension is a header). TOPCAT writes
files in this way.
Three example catalogues are provided for you in the doc/ di-
rectory: COSMOS_IRAC fits, COSMOS_OPTICAL .fits and COS-
MOS_XMM . fits. These are the same files as in Appendix B of Sal-
vato et al. (2018), extracted from Sanders et al. (2007)/McCracken et al.
(2007), Ilbert et al. (2010) and Brusa et al. (2010) respectively.

2. The data table needs to have a extension name and the keyword
SKYAREA. The extension name is used as a prefix as all columns
are copied to the output catalogue. The SKYAREA keyword tells
the area on the sky in square degrees covered by the catalogue.
This is important for estimating the chance of random alignments.
You can use the tool python nway-write-header.py
mycat.fits mytablename myskyarea to set the fits
header.

For our example files we have a optical, IRAC and XMM catalogue
covering 2 square degrees:
python nway-write-header.py COSMOS_OPTICAL.fits

OPT 2

python nway-write-header.py COSMOS_IRAC.fits
IRAC 2

python nway-write-header.py COSMOS_XMM.fits XMM
2

3. Each catalogue needs to have a column RA and DEC providing the
coordinates in degrees. To make your life easier, NWAY tries to be
a bit fuzzy and detect the columns named RA_something etc. It will
print out which columns it found and used.

4. The primary catalogue needs to have a ID column. In our example
this is the X-ray catalogue. To make your life easier, NWAYtries to
be a bit fuzzy and detect the columns named ID_something etc. It
will print out which columns it found and used.

5. Otherwise the file can have arbitrary columns which are copied over
to the output file.
Every possible combination of association is considered. However, in



practice you do not want an extremely large output catalogue with ex-
tremely distant, unlikely to be physically associated. You can set the
largest distance in degrees to consider by setting ——radius. This speeds
up the computation. But use a value that is much larger than the largest
positional error.

2.5.2 Example - Matching two catalogues

Lets try the simplest example and match the XMM X-ray catalogue to an
optical catalogue. The XMM catalogue has a pos_err column with the
positional error in arcseconds. For the optical catalogue we will assume a
fixed error of 0.1 arcseconds.

Run this command in the doc/ folder:

python ../nway.py COSMOS_XMM.fits :pos_err
COSMOS_OPTICAL.fits 0.1 —--out=examplel.fits
——radius 15 —--prior—-completeness 0.9
Lets understand what we put in:

1. We passed two catalogue files: COSMOS_XMM. fits and COS-
MOS_OPTICAL fits. For the first one, we told NWAYto use the
column (*“:”) pos_err in that catalogue for the positional error
(always in arcsec). For the second one we specified a fixed error of

0.1 arcsec.
2. We specified where the output should be written (——out).

3. The largest XMM error is 7.3 arcsec, so we adopt a cropping radius
of 15 arcsec to speed up the matching (——radius 15). A larger
radius produces a more complete catalogue. For dense catalogues
larger radii can be much slower to compute, as the number of com-
binations to consider rises exponentially.

4. The parameter ——prior—completeness 0.9 is mentioned
below.



Lets understand what NWAY did:

]. NWAY arguments:
catalogues: COSMOS_XMM.fits, COSMOS_OPTICAL.fits
position errors/columns: :pos_err, 0.1
from catalogue "XMM" (1797), density is 3.706579e+07
from catalogue "OPT" (560536), density is 1.156188e+10
magnitude columns:

It reads the catalogues and looks at their densities.

2. matching with 15.000000 arcsec radius
matching: 1007283192 naive possibilities
matching: hashing

using RA columns: RA, RA
using DEC columns: DEC, DEC

matching: healpix hashing on pixel resolution ~ 18.036304 arcsec (nside=8192)

100% | S62333 | #fffdddtdddddaadaaaadaaadtateHtH4444444#4 | Tine: 0:00:13

matching: collecting from 61787 buckets, creating cartesian products .

100% 161787 | #frft sttt aaaaaaadadtd a4 44444 | Time: 0:00:02

matching: 462267 unique matches from cartesian product. sorting

merging in 10 columns from input catalogues ...

100% 10| ###ttddddddddddaddaaaaaaaaaaaae a4 4444 | Tine: 0:00:00
adding angular separation columns

matching: 22435 matches after filtering by search radius

Within 20 seconds it created a cross-match of remotely possible
associations (1,007,283,192 in principle, 22,435 within 15 arcsec-
onds).

3. It found ID, RA, DEC, and positional error columns.

4. Computing distance-based probabilities
finding position error columns

Position error for "XMM": found column XMM_pos_err: Values are [0.109000..

Position error for "OPT": using fixed value 0.100000
finding position columns
building primary_id index
computing probabilities
correcting for unrelated associations ... not necessary

Computing final probabilities

grouping by column "XMM_ID" and flagging ...
100% | 1797 | ###44HHH#dddHHH44HHHH44 A4 4444444 [ Time: 0:00:00

It computed the probability of each association.

5. creating output FITS file
writing "examplel.fits" (37836 rows, 17 columns

It wrote the output file examplel.fits. This file contains all
columns from the input catalogues and the computed probabilities
(see below for their meaning).

10



So how does NWAY deal with a particular, possible association and
compute its probability?

The probability of a given association is computed by comparing the
probability of a random chance alignment of unrelated sources (prior) to
the likelihood that the source is the same. The gory mathematical details
are laid out in Section 5.1, but from a user point of view the following is
important:

1. The chance of a random alignment depends on the source sky den-
sity of the various catalogues. So each catalogue needs to have a
FITS header entry SKYAREA which tells the area covered by the
catalogue in square degrees. The source density on the sky is then
computed by the number of entries divided by that area. You can use
the tool python nway-write-header.py mycat.fits mytablename
myskyarea to set the fits header.

2. Varying depths between the catalogues and different coverage can
further reduce the fraction of expected matches. This can be ad-
justed by setting ——prior-completeness=0.9, if previous
experience is that only 90% of sources have a match with the given
inputs.

The outputs catalogue then contains six important new columns along with
all columns of the input catalogues:

1. dist_bayesfactor: logarithm of ratio between prior and pos-
terior from distance matching

2. dist_post: Distance posterior probability comparing this asso-
ciation vs. no association, as in Budavari & Szalay (2008).

3. p_single: Same as dist_post unless additional information
was added, see Section 2.6.

4. p_any: For each entry in the primary catalogue (e.g. A) the prob-
ability that one of the association is the correct one is computed.
Because every catalogue is limited by its depth, it is possible that
the true counterpart has not been found yet. Our testing suggest that
the threshold for a secure catalogue depends on the application.
Section 2.4 explains how to calibrate a threshold.

5. p_1i: For each possible association for each entry in the primary
catalogue (e.g. A), the relative probability is computed. Our testing
suggest that secure, pure catalogue should keep only associations

11



where p_i>=0.1. Secondary solutions down to 0.1 may be in-
teresting. These thresholds may depend on the application —
please report what your testing gives.
Low p_any and p_1 values by themselves do not nec-
ﬁ essarily mean that the counterpart is ruled out. It can also
mean that there is not enough evidence/information to de-
clare it a counterpart.

6. match_flag: The most probable match is indicated with 1 for
each primary catalogue entry. Secondary, almost as good solu-
tions are marked with 2. By default, the maximum allowed ra-
tio is at most 0.5, but the user can modify this threshold via the
—-—acceptable-prob parameter. All other associations are marked
with 0.

Use the last three columns to identify sources with one solution, possible
secondary solutions, and to build final catalogues. Chapter 5.1 explains
how these quantities are computed. To filter out low-probability associa-
tions (low p_i) from the output catalogue, the ——min-prob parameter
can be used.

12



2.5.3 Example - Output of matching two catalogues

Lets understand the output fits file and the associations found for a partic-
ular X-ray source.
Open the fits file and find XMM_ID=60388. As you can see from the p__i
column, this is a ambiguous case, where more than one optical counterpart
is possible.
Below is an illustration of this ambiguous case (produced with python
../nway-explain.py examplel.fits 60388).
Two sources are at a similar distance from the X-ray source (blue, with
error circle). Therefore their association probability (p_ 1) is similar. The
slightly higher one is marked as match_flag=1 (orange), the other with 2
(yellow).
Section 2.6 solves this by adding more information (the mag-
nitude distribution). But we can also solve this another
way. We know AGN (the X-ray source) emit in the in-
frared, so you can also match with an IRAC catalogue.
Make a three-way match like so:
python ../nway.py COSMOS_XMM.fits :pos_err
COSMOS_OPTICAL.fits 0.1 COSMOS_IRAC.fits 0.5
——out=example3.fits —--radius 15
However, overall we should note that p_any is low, indicating that prob-
ably neither of the two candidates is the counterpart.

13



ADEC [arcsec]

Source 60388, p_any=0.38

6
X XMM_RA XMM_DEC
+ OPT_RA OPT_DEC
top 1 by distance (p_single=0.16, 2 cat.)
top 2 by distance (p_single=0.15, 2 cat.)
top 3 by distance (p_single=0.07, 2 cat.)
p_i=0.34 (match_flag=1)
p_i=0.33 (match_flag=2)
-4 1

D2

0
ARA [arcsec]
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2.6 Matching with additional information

For many classes of sources, the Spectral Energy Distribution (SED) pro-
vides additional hints, which associations are likely real. For instance,
bright X-ray sources have a different color distribution in the WISE bands
than non-X-ray emitting objects. A powerful feature of NWAY is to take
advantage of this additional information to improve the matching. Section
5.2 has the mathematical details and a comparison to the Likelihood Ratio
method.

2.6.1 Example - Using magnitude information

X-ray sources (which we are looking for in our example) have a different
optical magnitude distribution than non-X-ray emitting objects. Lets take

advantage of this information:

Run this command:

python ../nway.py COSMOS_XMM.fits :pos_err
COSMOS_OPTICAL.fits 0.1 —--out=example2.fits
—--radius 15 —--prior-completeness 0.9 --mag
OPT:MAG auto —--mag-radius 3.5

The last two parts are new:

——mag OPT:MAG auto —-mag-radius 3.5

We use the column MAG from the catalogue OPT (FITS table name),
therefore ——mag OPT :MAG. After this follows that the magnitude prior
histogram should be generated from the data (mode auto), by compar-
ing the MAG histogram of sources within 3.5 arcsec of a X-ray source

(-—mag-radius) to that of full histogram.
(example continued below)
There are three possible ways to specify the prior in NWAY: In all cases
you specify ——mag column-name [filename|auto]. You can
use ——mag several times.

1. “File-mode”: If we know the magnitude distribution of X-ray de-
tected AGN we can provide this prior distribution as a table (his-
togram). This table contains the color histogram of the sources of in-
terest (X-ray detected AGN) and a histogram of other, field sources
(more details below on page 17).

2. “Simple auto-mode”: Specifying auto instead of a file name de-
rives the two distributions from the data, as we did in our example:
All sources inside 3.5 arcseconds (--mag—-radius parameter) of
a X-ray source are put into one histogram, and all others into another
histogram.

15



3. “Bayesian auto-mode”: Bayesian distance probabilities (dist_post)
will be used if you leave out ——mag-radius. This is in general
safer and recommended. In small catalogues the histogram may not
be sufficiently filled, in which case NWAY will give a warning (more
details below on page 18).

Lets look at the histograms it computed. NWAY created
OPT_MAG_fit.pdf, and also OPT_MAG_fit.txt as a histogram
file:

o
w

— all
selected

They are clearly different: Lower magnitude (bright) sources are more
likely associated to X-ray sources. This will help our matching.

As an example, we show below the ambiguous case from before. The
upper association has been selected because it has a better match by mag-

nitude, resolving the ambiguity.
Source 60388, p_any=0.39

°©
N}

normalized weight
o
o

6,

X R RA X DEC
+ opT_RAOPT_DEC
top 1by d
top 26y a
wop 3by
p.1=051 (

-4

ADEC [arcsec]
o

0
ARA [arcsec]
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Multiple priors You can specify as many priors as you like, taking
advantage of more and more information. Just repeat --mag.

The following example uses one prior from the optical cat-

alogue and another prior from the IRAC catalogue.

A

three-way match is performed. python ../nway.py

COSMOS_XMM. fits :pos_err COSMOS_OPTICAL.fits
0.1 COSMOS_IRAC.fits 0.5 —--out=example3.fits
——-radius 20 —--prior-completeness 0.9 —--mag
OPT:MAG auto —-—-mag IRAC:mag_chl auto
—--mag-radius 3.5

Providing a prior as a file In the paper we demonstrate the use of a
WISE magnitude of X-ray sources. If such prior information comes from
previous studies, the distributions can be passed to NWAY as a ASCII
table histogram. This table contains the histogram of the sources of inter-
est (X-ray sources) and a histogram of other sources (non-X-ray sources).
The file OPT_MAG_fit.txt is an example of such a input file, and can
be used via ——mag OPT:MAG OPT_MAG_fit.txt. It contains four
columns (lower and upper bin edge, density of selected and non-selected)
and looks like this (# indicates comments):

# OPT_MAG_fit.txt

# lo hi selected others
10.76000 18.98571 0.00870 0.00183
18.98571 20.27286 0.05562 0.01448

Keep in mind that a prior created from a different data
set can only be used if it is applicable to the present data
set. For example, in the introduction of the paper Sal-
vato et al. (2018) we stress that a prior from a comparable
X-ray exposure depth must be used when deriving color
distributions.

A general approach Providing priors is not limited to magnitude dis-
tributions, you can use colors or any other information you want (e.g. mor-
phology, variability, etc.). The approach is very general, NWAY just looks
at the corresponding bin and reweighs the probabilities. For example, in
Salvato et al. (2018), the counterparts to ROSAT sources where found us-
ing WISE. The prior was build by using the color-magnitude (W1-W2 vs
W2) properties of ~3000 secure counterparts to the 3XMM-Bright survey
cut at the depth reached by ROSAT.

17



Discovering a prior from distance matching If you set —-—mag
OPT:MAG auto anddonotset ——mag-radius, NWAY uses the Bayesian
distance matching for discovering the histogram of OPT : MAG, as follows:

1. Those with dist_post>0. 9 are considered safe matches and are
used for the “selected” histogram.

2. Those with dist_post<0.01 are considered safe non-matches
and are used for the “others” histogram.

3. Entries of -99 are always ignored. It is usually better to assign -99
where the magnitude error is large, to get cleaner histograms.

This is in general more cautious, and recommended for large catalogues
However, if you only have a small catalogue you may
build a poorly sampled histogram, potentially leading to
biases. NWAY will warn you when only few sources were -
selected.

18



3 Program Arguments

l. python ../nway.py —-help ... display help page

2. python ../nway.py cataloguel catalogues
input catalogues as FITS files.

3. python ../nway.py --out ... Output file name (also a FITS
file).

4. python ../nway.py --radius This radius (in degrees) is
used to discard distant pairs. Always choose a value that is much
larger than the largest positional uncertainty, then this value will not
change the results. Smaller values make the code run faster and use
less memory by reducing the number of combinations to explore.

5. python ../nway.py —--prior-completeness 1 ... set
expected matching completeness (default: 1)

6. python ../nway.py —-mag MAGCOLUMN MAGFILE... name
of <table>:<column> for magnitude biasing, and file name for mag-
nitude histogram (use auto for auto-computation within mag-radius).
Example: ——mag OPT:MAG auto —--mag IRAC:mag_iracl
irac_histogram.txt

7. python ../nway.py —--mag-radius ... If set, and a auto
prior is defined, then the selected sources are taken from within this
radius of the primary sources (in arc seconds). If not set (recom-
mended), the Bayesian posterior from distance matching is used,
which incorporates positional errors.

8. python ../nway.py —--min-prob ... only retain associa-
tions in the output catalogue exceeding this p_1i value. Recom-
mended: 0.1.

9. python ../nway.py ——acceptable-prob ... affects the
flagging of secondary solutions (mat ch_f1lag column). If the sec-
ondary is within this difference (default: 0.005), it is marked as a
secondary solution.

19



4 Input file specifications and
units

1. Each catalogue needs to be a FITS file. The second extension should
be the table (first extension is a header).

2. The data table needs to have a extension name.

3. The header of the data table needs the keyword SKYAREA, which
specifies the area covered by the catalogue in square degrees.

4. Each catalogue needs to have a column RA and DEC in degrees.
To make your life easier, NWAY tries to be a bit fuzzy and detect
the columns named RA_something etc.

5. The primary catalogue needs to have a ID column. To make your
life easier, NWAY tries to be a bit fuzzy and detect the columns
named ID_something etc.

6. Positional error columns, if used, need to be in arcseconds.

Example catalogues are provided in the doc/ directory: COSMOS_IRAC fits,
COSMOS_OPTICAL.fits and COSMOS_XMM fits.

20



5 Mathematical details and
Implementation

5.1 Distance-based matching

Lets consider the problem of finding counterparts to a primary catalogue
(i =1), in our example for the X-ray source position catalogue. Let each
N; denote the number of entries for the catalogues used, and v; = N;/Q;
denote their source surface density on the sky.

If a counterpart is required to exist in each of the k catalogues, there
are Hle N; possible associations. If we assume that a counterpart might
be missing in each of the matching catalogues, there are N; -Hfzz (N; +1)
possible associations. This minor modification, negligible for N; > 1, is
ignored in the following for simplicity, but handled in the code.

If each catalogue covers the same area with some respective, homoge-
neous source density v;, the probability of a chance alignment on the sky
of physically unrelated objects can then be written (Budavari & Szalay,
2008, eq. 25) as

k k k
PH) =N/ [[Ni =1/ [ N;i =1/ [] viQi. 5.
i=1 i=2 i=2
Thus P(H) is the prior probability of an association. The posterior should
strongly exceed this prior probability, to avoid false positives.

To account for non-uniform coverage, P(H) is modified by a “prior
completeness factor” ¢, which gives the expected fraction of sources with
reliable counterpart (due to only partial coverage of the matching cata-
logues Q;s1 # Q1, depth of the catalogues and/or systematic errors in the
coordinates). Our prior can thus be written as

k
P(H)=c/ [[viu. (5.2)

i=2
Bayes’ theorem connects the prior probability P(H) to the posterior
probability P(H|D), by incorporating information gained from the obser-

vation data D via
P(H|D) x P(H) x P(D|H). 5.3)
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We now extend the approach of Budaviari & Szalay (2008), to allow
matches where some catalogues do not participate in a match. Compar-
ing A12 and A14 in Budavari & Szalay (2008), assuming that positions
lie on the celestial sphere and adopting the expansions developed in their
Appendix B, we can write down likelihoods. For a counterpart across k
catalogues, we obtain:

_ 2 =2, =2

P(D|H) = okt 117 exp

Y 0172 2y Ul._z
For a given association with participating members from k catalogues,
the pairwise angular separation, ¥;;, between catalogue i and j is judged
with the relevant position uncertainties o. The likelihood for the hypoth-
esis where some catalogues do not participate in the association has the
appropriate terms in the products and sums removed. Therefore, the like-
lihood is unity for the hypothesis that there is no counterpart in any of the
catalogues.

In comparison to our method, the method of Budavari & Szalay (2008)
only compares two hypotheses for a association: either all sources belong
to the same object (H;), or they are coincidentally aligned (Hp). In this
computation each hypothesis test is run in isolation, and relative match
probabilities for a given source are not considered. For completeness, we
also compute the posterior of this simpler model comparison:

P(H|D) P(H,) P(DIH)

o x (5.5)
P(Hy|D) P(Hp) = P(D|Hy)
p = DWDIH) (5.6)
P(D|Hp)
_ 1-P(H) |
P(H\|D) = [1+B_P(Hl) (5.7)

The output column dist_bayesfactor stores logB, while the out-
put column dist_post is the result of equation 5.7. The output column
p_single gives dist_post but modified if any additional information
is specified (see Section 5.2). As mentioned several times in the literature,
the Budavari & Szalay (2008) approach does not include sources absent in
some of the catalogues, while the formulae we develop below incorporate
absent sources. This is similar in spirit to Pineau et al., 2016, although the
statistical approach is different. We now go further and develop counter-
part probabilities.

The first step in catalogue inference is whether the source has any coun-
terpart (Pany). The posterior probabilities P(H|D) are computed using
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Bayes theorem (eq. 5.3) with the likelihood (eq. 5.4) and prior (eq. 5.2)
appropriately adopted for the number of catalogues the particular associ-
ation draws from. For each entry in the primary catalogue, the posteri-
ors of all possible associations are normalised to unity, and P(Hy|D), the
posterior probability of the no-counterpart hypothesis, i.e., no catalogue
participates, computed. From this we compute:

Pany = 1= P(Ho|D)/)_ P(H;|D) (5.8)
i

If pany is low, this indicates that there is little evidence for any of the con-
sidered, combinatorically possible associations, except for the no-association
case. The output column p_any is the result of equation 5.8.

If pany = 1, there is strong evidence for at least one of the associations
to another catalogue. To compute the relative posterior probabilities of
the options, we re-normalize with the no-counterpart hypothesis, Hy, ex-
cluded:

pi =P(H;|D)/ )_ P(H;|D) (5.9)
i>0
If a particular association has a high p;, there is strong evidence that it
is the true one, out of all present options. The output column p_1i is the
result of equation 5.9.

A “very secure” counterpart could be defined by the requirement pgny >
95% and p; > 95%, for example. However, it is useful to run simulations
to understand the rate of false positives. Typically, much lower thresholds
are acceptable.

5.2 Magnitudes, Colors and other
additional information

Astronomical objects of various classes often show distinct color and mag-
nitude distributions. Because most bright X-ray point-sources in deep im-
ages are also optically bright compared to generic sources, this informa-
tion can be exploited. Previous works (e.g. Brusa et al., 2005, 2007) have
modified the likelihood ratio coming from the angular distance f(r) in-
formation (likelihood ratio method, Sutherland & Saunders, 1992) by a
factor:

_q(m)
LR= o f) (5.10)
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Here, g(m) and n(m) are associated with the magnitude distributions of
source (e.g. X-ray sources) and background objects (e.g. stars, passive
galaxies) respectively, but additionally contain sky density contributions.

This idea can be put on solid footing within the Bayesian framework.
Here, two likelihoods are combined, by simply considering two indepen-
dent observations, namely one for the positions, Dy, and one for the mag-
nitudes D,,,. The likelihood thus becomes

P(DIH) = P(Dy|H)x P(Dy|H) (5.11)
B q(m)
= P(Dyl|H) x o) (5.12)

with g(m) and 7(m) being the probability that a X-ray (target) source
or a generic (field) source has magnitude m respectively. NWAYstores the
modifying factor, P(D,,|H), in bias_ * output columns, one for each col-
umn giving a magnitude, color, or other distribution. This modifying fac-
tor is however renormalized so that P(Dp|H) = L2/ [ Z%::; a(mdm',
which makes P(D|H) = P(Dy|H) when m is unknown. In that case, m is
marginalised over its distribution in the general population, i.e. [ P(Dy,|H)
This has the benefit that when m is unknown, the modifying factor is unity
and the probabilities remain unmodified.

For completeness, I mention the fully generalized case. This is attained
when an arbitrary number of photometry bands are considered, each con-
sisting of a magnitude measurement 7 and measurement uncertainty o,

[, @(m) p(m|D,y,) dm
[, im) p(m| D) dm

P(Dp|H) =]] (5.13)
Here, p(m|D,,) would refer to a Gaussian error distribution with mean m
and standard deviation o ,,. This is convolved with the distribution prop-
erties. Alternatively, p(m|Dy,) can also consider upper limits. However,
such options are not yet implemented in NWAY. Instead, we recommend
removing magnitude values with large uncertainties (setting them to -99).

5.3 Auto-calibration

The probability distributions 72(m) and g(m) can be taken from other ob-
servations by computing the magnitude histograms of the overall popula-
tion and the target sub-population (e.g. X-ray sources).

Under certain approximations and assumptions, these histograms can
also be computed during the catalogue matching procedure while also be-
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ing used for the weighting. One could perform the distance-based match-
ing procedure laid out above, and compute a magnitude histogram of the
secure counterparts as an approximation for g(m) and a histogram of ruled
out counterparts for 72(m). While the weights g(m)/7(m) may strongly in-
fluence the probabilities of the associations for a single object, the bulk of
the associations will be dominated by distance-weighting. One may thus
assume that the g(m) and 7(m) are computed with and without applying
the magnitude weighting are the same, which is true in practice. When
differences are noticed, they will only strengthen g(m), and the procedure
may be iterated.

5.4 Implementation

My implementation for matching n catalogues is a Python program called
NWwAY. The input catalogues have to be in FITS format. Information about
the (shared) sky coverage has to be provided to the program as well. The
program proceeds in four steps.

First, possible associations are found. It is unfeasible and unnecessary
to consider all theoretical possibilities (complexity O(]'[i.c=1 N;)), so the sky
is split first to cluster nearby objects. For this, a hashing procedure puts
each object into HEALPix bins (Gérski et al., 2005). The bin width w is
chosen so that any association of distance w are improbable and negligible
in practice, i.e. much larger than the largest positional error. An object
with coordinates ¢, 0 is placed in the bin corresponding to its coordinate,
but also into its neighboring bins to avoid boundary effects. This is done
for each catalogue separately. Then, in each bin, the Cartesian product
across catalogues (every possible combination of sources) is computed.
All associations are collected across the bins and filtered to be unique. The
hashing procedure adds very low effort O(Zf:1 N;) while the Cartesian
product is reduced drastically to O(Npjps - Hi.czl NZim ). All primary objects
that have no associations past this step have P("any real association"|D) =
0.

The second step is the computation of posteriors using the angular dis-
tances between counterparts. The prior is also evaluated from the size of
the catalogue and the effective coverage, as well as the user-supplied prior
incompleteness factor. The posterior for each association based on the
distances only is calculated. These posteriors have to be modified (“cor-
recting for unrelated associations”), to consider associations unrelated to
primary catalogue sources (described in the paper, Salvato et al. (2018), in
the appendix section “Computing all possible matches”).

In the third step the magnitudes are considered, and the posteriors mod-
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ified. An arbitrary number of magnitude columns in the input catalogues
can be specified. It is possible to use external magnitude histograms (e.g.
for sparse matching with few objects) as well as computing the histograms
from the data itself (see Section 5.3). The breaks of the histogram bins
are computed adaptively based on the empirical cumulative distribution
found. Because the histogram bins are usually larger than the magnitude
measurement uncertainty, the latter is currently not considered. The adap-
tive binning creates bin edges based on the number of objects, and is thus
independent of the chosen scale (magnitudes, flux). Thus the method is
not limited to magnitudes, but can be used for virtually any other known
object property (colours, morphology, variability, etc.).

In the final step, associations are grouped by the object from the pri-
mary catalogue (here: X-ray source catalogue). The posteriors pany and
p; are computed. For the output catalogue a cut on the posterior prob-
ability (e.g. above 80%) can be applied, and all associations with their
posterior probability are written to the output fits catalogue file.
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